QOLLSCOILNAGAILLIMHE

[JNIVERSITY oF GALWAY

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the
published version when available.

Deep learning techniques in data augmentation and neural

it network design

Author(s) | Lemley, Joseph

Publication
Date 2020-05-22

Publisher | NUI Galway

Item record | http://hdl.handle.net/10379/15988

Downloaded 2024-05-10T00:04:44Z

Some rights reserved. For more information, please see the item record link above.

@Jese

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Deep Learning Techniques in Data

Augmentation and Neural Network

Design

OE Gaillimh

NUI Galway

Joseph Ely Lemley

College of Engineering and Informatics

National University of Ireland, Galway

This dissertation is submitted for the degree of
Doctor of Philosophy

Supervisor: Prof. Peter Corcoran

May 2020

“Pray, Mr. Babbage, if you put into the machine wrong figures, will the right

answers come out? ”

~Charles Babbage - Passages from the Life of a Philosopher (1864)

Table of contents

List of figures xvii
List of tables Xix
Nomenclature xXi

1 Introduction 1
1.1 Introduction 1
1.1.1 Historical Perspective of thisWork 2
1.2 Overview of Published Work 4
1.2.1 Contributions to Papers Published as Journal Articles 4
1.2.2 Selected Conference Papers 6
1.2.3 Other Published Work 7
1.2.4 List of Peer Reviewed First Author Publications (Starting with Journals) 8

1.2.5 List of Peer Reviewed Non-First Author Publications (Starting with

Journals) 8
1.2.6 Listof Filed Patents
1.2.7 Contribution Taxonomy 9
1.3 Organization of Remainderof Thesis 10
2 Smart Augmentation 15
2.1 Research Questions v i i e 17
2.1.1 AFirstResearchQuestion 17
2.1.2 How Does SA Compare with Traditional Augmentation? 18
2.1.3 Investigations into Smart Augmentation’s Hyper-Parameters 19
2.1.4 SA onMultiple Datasets 21
2.1.5 Smart Augmentation and Overfitting 22
2.1.6 Summary of Findings from Research Questions 23

22 ResearchImpact. 24

vi

Table of contents

2.2.1 Learnable Data Augmentation 25
2.2.2 Alternative Learned Augmentation Techniques 26
2.2.3 Methods Based on GANs and Statistical Generative Techniques . . 27
2.2.4 Data Augmentation for Audio 28
2.2.5 Other Recent Augmentation Techniques 30
22.6 Discussion 31
2.3 A Discussion on Smart Augmentationand GANs 31
2.3.1 Differences 32
2.3.2 Similarities oL L 33
233 GASA . . e 33
2.4 Smart Augmentation and other Similar Techniques 34
Eye Gaze 37
3.1 Exploring Eye Gaze Estimation forDMS 38
3.2 Convolutional Neural Network Implementation for Eye-Gaze Estimation on
Low-Quality Consumer Imaging Systems 39
3.2.1 Contributions of thisWork 40
3.2.2 Impact of Random Resizing as Augmentation 41
323 Models Examined 41
3.2.4 Discussion and Overview of Major Findings 44
3.3 Extending the Idea to Augmented Environments 45
Transfer Learning of Temporal Information for Driver Action Classification
And Semi Parallel Deep Neural Networks 49
4.1 Transfer Learning of Temporal Information for Driver Action Classification 49
4.1.1 Frame Based Methods and the Need for Temporal Information . . . 50
4.1.2 Data Used for Training and Testing the Temporal and Frame Based
Networks 50
413 ResearchQuestions 52
4.1.4 Augmentation i e e 53
4.1.5 Experiments e e e 53
4.1.6 Summaryof Findings. 55
4.2 Semi-Parallel Deep Neural Network (SPDNN) Hybrid Architecture, First
Application on Depth from Monocular Camera 56

4.2.1 How to Construct a Semi-Parallel Deep Neural Network with Graph
Contraction and Labeling 57

Table of contents vii

References 61
Appendix A Deep Learning for Consumer Devices and Services 67

Appendix B Smart Augmentation - Learning an Optimal Data Augmentation Strat-
egy 87

Appendix C Transfer Learning of Temporal Information for Driver Action Clas-
sification 101

Appendix D Convolutional Neural Network Implementation for Eye-Gaze Esti-
mation on Low-Quality Consumer Imaging Systems 109

Appendix E Eye Tracking in Augmented Spaces: a Deep Learning Approach 121

Appendix F Semi-Parallel Deep Neural Network (SPDNN) Hybrid Architecture,

First Application on Depth from Monocular Camera 129
Appendix G Contributions to Deep Learning Education 151
G.1 Deep Learning For Consumer Devices and Services 152
G.2 Contributions to Deep Learning Education 152
G.2.1 Mobile Device Technology: A First DLLab 152

G.2.2 The Edge AI Workshop at IEEEGEM 2018 154

G.2.3 Mobile Device Technology and ESAPlabs 156
Appendix H Worksheet for MDT lab 7 (EES5116) on Deep Learning 159
Appendix I GEM 2018 Workshop 163

Appendix J Deep learning labs in 2018 169

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 80,000 words including appendices, bibliography, footnotes,

tables and equations and has fewer than 150 figures.

Joseph Ely Lemley
May 2020

Acknowledgements

To fully express my appreciation and to acknowledge every person who deserves to be
listed here would force me to violate the 80,000 word maximum guideline for this thesis,
and thus I have written as much as I think I will be able to get away with. First of all, I
thank my supervisor, Peter Corcoran. I was fortunate to have such a good and supportive
supervisor for my PhD studies. Any time I needed another GPU for experiments, wanted
to test an idea with an embedded prototype or other equipment, he always made sure I had
everything I needed. Professor Corcoran was the one who initially suggested that I apply
to the Irish Research council for a PhD position here in Galway. I’ll always be appreciative
for the many opportunities he has given and continues to give me. I look forward to writing
more papers and IP disclosures with you in 2020 and beyond. I’d like to thank my industry
supervisor, Chris Dainty. It is rare to have the opportunity to interact with a scholar of your
accomplishments and yet you always had time for me. I still have a lot to learn from you
and am ever grateful for your support and suggestions throughout my PhD and in writing
this thesis. I’'m honoured to work on the Heliaus project with you and I look forward to
all the collaborations the future holds. Alexandru Drimbarean, you were my manager at
Fotonation for most of my PhD. You were one of my first contacts in Fotonation while I was
still in Ellensburg working on my master’s research. I deeply appreciate every discussion
and idea we’ve exchanged and your faith and trust in me through all these years. You gave
me my first DMS related projects, an eye gaze project that eventually became a paper and
patent, and the head pose project. You mentored me as [became a manager at Fotonation
and I will always be grateful for you. Petronel, you promised that you’d make sure I was
never bored and you’ve kept that promise. There are very few PhD students who have had
the opportunity to train neural networks that are implemented in real products and to lead
talented teams of R&D engineers while working on their thesis. I’'m grateful for your trust
and confidence and for giving me so many interesting tasks to work on and all the cool
cameras to play with. I look forward to our continued collaborations, we have so many cool
things to make! The opportunities I have had here in Galway could never have happened
without the amazing support and mentorship I received back home in Washington State so I

would like to acknowledge but a small subset of those who deserve acknowledgement, who

xii Table of contents

were responsible for me going to Ireland to work on a PhD. Boris Kovlechuck for not only
being an excellent professor but also providing me with my first experience in working in a
research environment with your Computational Intelligence and Visualization lab. I learned
so much from you and will always look back on our time together with fondness. I hope
we’ll see eachother again, and maybe long enough to write another paper together. Razvan
Andonie for teaching me practically everything I know about Artificial Intelligence, for
introducing me to neural networks, genetic algorithms, and for all the research ideas over the
years when I was working on my undergraduate degree and my master’s degree. Speaking of
which, thank you for administering the MS in Computational Science program at CWU and
inviting me to attend as a student on a research assistantship. I greatly enjoy collaborating
with you and hope that we have much more research and teaching to collaborate on in the
future. James Schwing as the chair of the Computer Science Department at CWU for all
the extra effort you made for every student. You enabled the beginning of my exposure to
research and had faith in me when I had very little experience or knowledge. Sharon Martin
for teaching me the skills necessary to succeed in a university setting and for believing in me
and supporting my goal of getting a PhD even before I’d completed my first year of university
studies. I truly don’t think I would be here without your early guidance and patience. Thank
you. I thank Steve Robeck for sticking by me and befriending me when all seemed hopeless
in middle school. My parents, Enid and Joseph W Lemley for always believing in me and
supporting my desire to learn, wherever it took me. The Apple II GS you bought me when
I was 8 was the first computer I ever learned to program on. I don’t know if I would have
had such an aptitude for computer science without this early exposure to programming. It is
impossible to express how much I appreciate you both. My loving wife, Kimberly Sowell,
who has supported me throughout my masters and PhD, whose love, resourcefulness, and
creativity have brought so much joy to my life. You’ve made sure I’ve had everything I've
needed to focus on research during these times and you’ve never complained about the late
nights I spend working. I will always be grateful for my colleagues and friends at Fotonation,
NUIG and the C3 Imaging lab. We have had so many amazing experiences together. Shabab
Bazrafkan, when I first arrived to the office in Galway, I told you that I really looked forward
to collaborating with you on Deep learning projects. I had no idea that this would mean 4
papers, 2 patents, and more research projects than I can remember, or that we’d fly all over
the world together and teach a workshop on Edge Al. Galway was much more fun with you
here and I miss you. Come back and we’ll open the tremoco stand — or at least I'll take your
Salsa class. I’'ll have more time for that kind of thing with my thesis out of the way. Thank
you for your friendship. Adrian Ungureanu, on my first day in Ireland, before I had met

anyone else, you met me in Galway, a city I’d never been to in a country I’d never been to

Table of contents xiii

before, made sure I had everything I needed, and eventually became my roommate. Thank
you for your friendship. Hossein Javidnia, for your friendship and support during my PhD
and for tolerating me for the 3 years you sat beside me. Shejin Thavalengal, in a way you
paved the way for all of us; you had already graduated by the time I arrived. Your help and
friendship were appreciated. Also, this thesis was written using the LaTeX template you used
for your thesis. It only took a couple changes to get it to work with overleaf. Thanks! Thank
you Joe Desbonnet for your knowledge, support, and friendship. Thank you Ashkan Parsi,
Aoife McDonagh, and Viktor Varkarakis for the friendship and for all the help in running the
labs at NUIG for MDT and ESAP. Thank you Anuradha Kar, Tudor Nedelcu, Asma Aman,
Faisal khan, and Timothy Cognard for all the lunchroom discussions and all the experiences
we’ve shared together. Thank you Claudia Costache for always knowing what forms to file
and how to navigate this whole process. And all of you for the for all the birthdays, parties,
travels, discussions, and company. Your friendship means so much to me and I've learned so
much from you. Alin and Diana, you were the first ML Engineers that I was a Manager for.
We built so many cool things together! Thank you for all the late nights doing acquisitions
and tuning networks. You took what I started and transformed it into the best single camera
driver monitoring system available. And of course everyone at Fotonation/Xperi, from whom
I’ve learned so much. You’ve all been so welcoming and wonderful. I will never be able to
fully express how grateful I am for all of you. A person only has one chance to be a PhD
student and I am very thankful to everyone I have met in this journey. And of course the Irish
Research Council and Fotonation/Xperi for generously funding my PhD.

Abstract

In recent years, deep learning has revolutionized computer vision and has been applied to a
range of problems where it often achieves accuracies equal to or greater than those obtainable
by individual human experts. This research improves on the state-of-the-art by proposing,
implementing, and testing new models, architectures, and training methods that are more
efficient while maintaining or improving the accuracy of previous methods. Special attention
is focused on improvements that facilitate the specific needs of resource-constrained devices
such as smartphones, and embedded systems, and in cases where obtaining sufficient data is
difficult. For this reason, the topic of data augmentation is a major theme of this work.

Due to the ever greater need for smarter embedded devices, my research has focused on
novel network designs and data augmentation techniques for a wide range of diverse tasks,
connected only by the need for more efficient architectures and more data — in many cases

improving the accuracy over previous works in the process.

List of figures

2.1
2.2
23
24

3.1

3.2
3.3
3.4

4.1
4.2
4.3
4.4

G.1

High Level Overview of Smart Augmentation 16
Datasets Used to Evaluate Smart Augmentation 22
Training and Validation Losses for SA 23
Generative Adversarial Smart Augmentation 34

Eye Gaze Networks Included in Xperi Driver Monitoring System at CVPR

2019 . . e 39
Network Architecture for Eye Gaze Networks 41
Data Flow for Eye Gaze Networks 42
Cases when Traditional Methods Outperfrom Deep Learning 46
Transfer Learning withC3D 54
Labeling and Contractionof SPDNN 57
Ilustration of 8 Networks Before Graph Contraction with SPDNN 58
Ilustration of Networks After Graph Contraction 59

Example Edge-AIKit 155

List of tables

1.1
1.2
1.3
1.4
1.5

3.1
3.2
3.3

4.1
4.2

Contributions to the Main Ideas of Selected Papers
Contributions to the Rationalization and Context of Selected Papers

Contributions to the Experiments and Implementation of Selected Papers . .
Contributions to the Manuscript Preparation of Selected Papers
Contributions to the Background of Selected Papers

Result of Distance Simulation and Augmentation Experiments
Frames Per Second of CNN on Commodity Hardware
Comparison of Proposed Model and Other Published Works on the MPII-

Gaze Database

Top Performing Approaches (>=30%)
The Best Results on the Validation Set After Reaching 100% on the Training

Nomenclature

Acronyms / Abbreviations

ADAM Adaptive Moment Estimation
AE AutoEncoder

ANN Artificial Neural Networks
CNN Convolutional Neural Networks
DMS Driver Monitoring System

DSP Digital Signal Processor

ELU Exponential Linear Unit

GAN Generative Adversarial Network
GD Gradient Descent

GPU Graphics Processing Unit

MAC Multiply-Accumulate Operation
ReLU Rectified Linear Unit

RNN Recurrent Neural Network

SA Smart Augmentation

SGD Stochastic Gradient Descent

Chapter 1

Introduction

1.1 Introduction

From the “no free lunch” theorems [1] we know that there is no one machine learning
method that will perform better than any other for arbitrary data. This means that even the
most sophisticated convolutional neural network may perform no better, or even worse than
linear regression for some problems. For this reason, it is necessary to develop network

architectures and training methods for a specific task or subset of tasks.

Fortunately, various universal approximation theorems [2] also tell us that deep neural
networks are able to approximate almost any function the computer vision researcher might
be interested in solving, which means that, as long as we can express our problem as a “black
box” function with an output and an input, a neural network can approximate, or model the
desired output from that input. Although this theorem allows for optimism that nearly any
given task can be learned by a neural network, it provides no mechanism to do so and no
guarantee that such a network can even be learned with conventional training methods such

as backpropagation [3] with Stochastic Gradient Descent (SGD).

To achieve the goal of improving upon deep learning systems for computer vision, two
aspects of such systems are addressed. These are network architecture and training. Training
methods and network architectures are often, but not always, interrelated. For example, our
work on Smart Augmentation addresses the common problem of neural networks not having
enough data to be properly trained; it does this by inventing a new architecture that learns to
generate data at the same time it learns to accomplish the task it was trained on. Likewise, our
work on transfer learning for driver behavior monitoring demonstrates the counter-intuitive
fact that primitive temporal features from a neural network trained on a task such as sports

movies can be used to significantly improve results on the driver behavior monitoring task.

2 Introduction

In this case, the improvements were entirely from training methodology although the choice

of architecture (a model that could utilize temporal information) was also a factor.

1.1.1 Historical Perspective of this Work

A brief history of Al with a focus on Neural networks is provided in this subsection with the
goal of framing this work within its historical context.

One of the most important limitations of neural networks is that there are no suitable
explanations for why they work as well as they do. This lack of explainability has led to
several periods of stagnation known as Al winters. During the Al winters, funding for
research on neural networks almost vanished and the spending of public money for Al work
was discontinued at many institutions.

Nature is a seemingly endless source of inspiration for the development of learning
systems. The fact that intelligence exists in nature was always a simple counter example for
those skeptical about the possibility of artificial intelligence, but is insufficient to demonstrate
feasibility. The fact that it exists in many forms and to varying degrees provides hope that we
can develop methods to approximate or emulate some forms of intelligence.

This sentiment was also echoed by one of the pioneers of computer science and artificial
intelligence: Alan Turing. Turing believed that the human brain could be modeled as
an unorganized device with random weights which would be updated with reinforcement
learning. [4]

However, for funding agencies requiring measurable improvement and clear objectives
and results, these aspirations were largely unconvincing. Top Neural networks and machine
learning conferences such as Conference on Neural Information Processing Systems fre-
quently rejected papers on deep learning and neural networks simply because the topic was
undesirable even in the mid 2000s.

Artificial Neural networks operate on highly simplified ideas of an incomplete knowledge
of how the human brain works. It was therefore easy to dismiss progress on neural network
research until 2012 when progress on deep learning research by a small number of academics,
working with efficient new hardware designed for gaming systems, demonstrated that the
performance of these networks on real tasks not only outperformed other machine learning
models but also outperformed human operators at the same set of tasks [5].

The Darthmoth proposal, which was written in the 1950s, was written under the assump-
tion that "Every aspect of learning or other feature of intelligence can in principle be so
precisely described that a machine can be made to simulate it" [6].

From a distance, the status of Al research today is not so different from 1955 when the

authors of the Darthmoth proposal wrote:

1.1 Introduction 3

Neuron Nets

How can a set of (hypothetical) neurons be arranged so as to form concepts.
Considerable theoretical and experimental work has been done on this problem
by Uttley, Rashevsky and his group, Farley and Clark, Pitts and McCulloch,
Minsky, Rochester and Holland, and others. Partial results have been obtained

but the problem needs more theoretical work [6]."

This lack of theoretical understanding and the dominance of empirical results still charac-
terize this field and have been some of the main criticisms of the neural network approach to
Al to this day. Today we simply have better empirical results and slightly better algorithms
than in the 1950s but few core concepts have changed. In fact, the majority of what we call
deep learning today would be recognizable to any student of neural networks in the mid

1990s with a few exceptions:

* The adoption of the Rectified Linear Unit (RELU) activation function (sigmoid and

tanh were common at the time).

The ability to train deeper networks using a variety of techniques that help avoid
vanishing gradients (ie resnet blocks [7] and inception modules [8]).

* The popularity of convolutional layers in neural networks.
* The large datasets we use to train and test them.

* Powerful GPU based hardware with which to train them.
* Large amounts of very fast memory.

Convolutional Neural Networks were popularized by Lecun et al. [9], who used them
successfully for handwritten digit classification. These networks are inspired by the organiza-
tion of the visual cortex and allow spatial information to be more efficiently learned. CNNs
can be used on input with any number of dimensions, but due to their success in pictures,
are most popularly implemented for 2D input plus color channels. Other popular types of
CNNs include 1D CNNs, which are commonly used for time series, and 3D CNNs, which
can be used for volumetric data or time series data where the third dimension represents
either spatial frames or temporal frames [5].

In recent times deep neural networks have become essential to a wide range of tasks but
the most common implementations of these networks require expensive hardware that will
not fit in todays consumer devices or when they are deployed on such devices often quickly

drain the device battery.

4 Introduction

Furthermore, gathering data for these networks is often time consuming and prone to
error, leading to poor training.

This thesis builds on previous empirical work in adapting neural networks to consumer de-
vices, focusing on dataset augmentation and deep learning techniques primarily for computer

vision applications in consumer electronics.

1.2 Overview of Published Work

In this section the contributions of this thesis are summarized. As the presented research was
performed in collaboration with others, it is important to provide information about which
contributions are those of the author versus those of coauthors. These contributions start with
the three journal papers, followed by conference papers that were subject to peer review, then

other published work, and finally unpublished work.

1.2.1 Contributions to Papers Published as Journal Articles
Smart Augmentation

Data augmentation involves modifying data from its original form. It is done with the hope
that a different perspective or transformation of the data will help the network to learn
a better representation of the desired task. For example a convolutional neural network
may not understand that an object that has been rotated is the same as one that is not
rotated, and therefore augmentation with rotated images is common. Augmentation is a
critical component of training a neural network, but it is important to carefully consider the
types of augmentation one does beforehand. This can be illustrated by considering the digit
classification task. If digits are rotated more than 90 degrees, 9s will be indistinguishable from
6s. Although some rotation invariance may be desired for digit recognition, the orientation
of digit objects is necessary to understand them properly and therefore arbitrary rotations
result in confusion and will prevent proper training of a neural network. One way of thinking
about augmentation is to consider it a form of regularization that operates on the input space.

The idea of learnable augmentation derives from the recent history of computer vision
algorithms and the fact that many of them are not used in deep learning because the network
learns to create similar filters during training if they are needed [10]. In many fields, these
traditional filters have been entirely replaced by neural networks.

The fundamental research question posed by learnable augmentation is: Can a neural

network learn to perform the labor intensive process of data augmentation? Can a network or

1.2 Overview of Published Work 5

a collection of networks learn not just how to perform a task, but also how to create new data
that will help it learn that task?

This question had not been studied before the fall of 2016 when the research presented
in this thesis started. The research showed that the answer to this question is: yes, neural
networks can learn to modify or augment data during training in such a way as to reduce the
error on a dataset.

Shortly after these results were published, a number of other researchers built on this
work and performed a range of additional experiments. A recent survey of these works and
other related works are provided in section 2.2.

My contributions were the initial idea of a network that could learn to perform data
augmentation, planning and performing the experiments, and writing most of the paper. |
also adapted the code to new datasets and situations. Shabab Bazratkan made very important
contributions to further refining the idea, writing the core neural network code, designing
figures, and composing some parts of the paper.

Smart augmentation was published in [11] as a journal paper. A conference paper based
on the original paper was also published [12] and results were further disseminated at the
March 27 Fourth Edinburgh Deep Learning Workshop 2017, and at the Embedded Vision
Summit, Santa Clara California in 2018 [13]. The slides from the embeded vision summit
can be accessed at https://aran.library.nuigalway.ie/handle/10379/7480.

The primary work on Smart Augmentation is included in Appendix B and a detailed
overview of Smart Augmentation, its relation to other techniques, and the core theme of this

work are given in chapter 2.

Eye Gaze Estimation for DMS

The eye gaze estimation project started as an industry project at FotoNation Ireland. There
was a need for an eye gaze solution that would run on an embeded device in a vehicle in
real time with strict accuracy and performance, measured in multiply accumulate operations
(MAC:s) requirements.

As a feasibility study, we developed a parallel academic project on the same topic, but
using public (visible spectrum) data and methods. The academic portion of this work was
published in Transactions on Consumer Electronics [14]. This method was also further
developed, trained on NIR data, and integrated into an emended DMS solution. A patent
application was filed on these further innovations, but due to the commercially sensitive
nature of the know-how and datasets, no academic research papers were published on the

final (NIR) implementation of this research.

https://aran.library.nuigalway.ie/handle/10379/7480

6 Introduction

My contributions were in the networks and methodology, running and designing the
experiments, writing the code except for parts of the data loader, and writing all of the
paper except for the related work section. Anuradha Kar wrote the related work section
and served as an expert advisor for any questions related to norms in eye gaze research.
Alexandru Drimbarean performed a managerial role, ensuring that deadlines were met and
MAC requirements were not exceeded for the industry portion of the project. He also
proposed the project.

The journal paper that came out of this work is included in Appendix D, while a confer-
ence paper describing an extension of the same network to augmented spaces is in Appendix
E.

The core contributions of both papers, with emphasis on the journal paper, are discussed

in detail in chapter 3.

Semi Parallel Deep Neural Networks

Semi Parallel Deep Neural Networks (SPDNN) are a new algorithm to merge different types
of neural networks together in such a way as to benefit from each without duplication in
computation.

The contribution was to take an existing technique for merging networks and to generalize
it with a graph based approach.

It was discovered that if each neural network layer were uniquely labeled and then
represented as a graph, that it would then be possible to use graph contraction to come
up with a single network that had many of the advantages of others. The results of this
research was published in [15] and a patent application was also submitted with both Shabab
Bazrafkan and myself as co-inventors.

The journal paper on SPDNN for which I am an a coauthor is included in appendix F
and a detailed discussion of the graph based algorithm that I helped develop is described in
section 4.2.

1.2.2 Selected Conference Papers
Transfer Learning of Temporal Information for Driver Action Classification

In Transfer Learning of Temporal Information for Driver Action Classification [16] a set of
frames depicting driver behaviors was analyzed with a CNN. A variety of network types were
used such as regular 2D CNNs, 3D CNNs, Recurrent Neural Networks(RNNS) and various
hybrids of these approaches. A transfer learning technique based on a 3D CNN that had been

pre-trained on YouTube sports videos ranked the highest. My contributions included the

1.2 Overview of Published Work 7

programming, designing the experiments, organizing the data, and writing all of the paper
except for the section on the cone shape of information flow and related figures, which my
coauthor Shabab Bazrafkan contributed to. This conference paper is included in Appendix C
and a detailed description of the approach is included in chapter 4.1.

Eye Tracking in Augmented Spaces: A Deep Learning Approach

In Eye Tracking in Augmented Spaces: A Deep Learning Approach [17], two forms of eye
gaze estimation with differing needs were analyzed: Eye gaze estimation in AR/VR contexts
where head-mounted eye-facing cameras are available, and cases where the camera is at a
distance. The study concluded that current CNNs are able to outperform traditional methods
for the latter case but not the former, as high resolution images of the eyes allow for very

precise angle approximation techniques.

I performed all experiments and programming as well as writing the sections of the
paper related to experiments, results, and conclusions. The introduction was written by both
Anuradha Kar and myself, and the literature review section on eye gaze methods was written
by Anuradha Kar. This conference paper is included in Appendix E and a detailed discussion

of it is included in section 3.3.

1.2.3 Other Published Work

In Deep Learning for Consumer Devices and Services: Pushing the limits for machine
learning, artificial intelligence, and computer vision, a discussion of deep learning focused
on consumer devices is given [5]. Shabab Bazrafkan wrote section 2, Convolutional Neural
Networks, while I wrote the rest. Although this paper did not propose a new algorithm or
methodology, it was written in an accessible way and helped to introduce new researchers to
the subject. The paper provides an introduction to neural networks, starting with historical
usage and ending with the latest architectures and tools. This paper is currently my second
most cited publication and won a "Best Paper" award from the IEEE consumer electronics
society in 2018. Four follow-up papers have now been published, drawing from other works.
Such articles promote and explain CNN techniques to a broader audience. Further details on

this series of publications can be found in Appendix G.1.

8 Introduction

1.2.4 List of Peer Reviewed First Author Publications (Starting with
Journals)

1. J. Lemley, S. Bazrafkan, and P. Corcoran, "Smart Augmentation-Learning an Optimal
Data Augmentation Strategy," IEEE Access, vol. 5, pp. 5858-5869, 2017.[11]

2. J. Lemley, A. Kar, A. Drimbarean, and P. Corcoran, "Convolutional Neural Network
Implementation for Eye-Gaze Estimation on Low-Quality Consumer Imaging Sys-
tems". IEEE Transactions on Consumer Electronics, vol. 65, no. 2, pp. 179-187, 2019
[14].

3. J. Lemley, S. Bazrafkan, and P. Corcoran, "Deep learning for consumer devices and
services: Pushing the limits for machine learning, artificial intelligence, and computer
vision." IEEE Consumer Electronics Magazine, vol. 6, no. 2, pp. 48-56,2017. [5]

4. J. Lemley, S. Bazrafkan, and P. Corcoran. "Transfer Learning of Temporal Informa-
tion for Driver Action Classification," in Proceedings of the 28th Modern Artificial
Intelligence and Cognitive Science Conference 2017, vol. 1964, 2017, pp. 123-128.
[16]

5. J. Lemley, S. Bazrafkan, and P. Corcoran, "Learning Data Augmentation for Con-
sumer Devices and Services," in 2018 IEEE International Conference on Consumer
Electronics (ICCE). 1IEEE, 2018, pp. 1-3. [12]

6. J. Lemley, A. Kar, and P. Corcoran. "Eye Tracking in Augmented Spaces: A Deep
Learning Approach" in 2018 IEEE Games, Entertainment, Media Conference (GEM),
IEEE, 2018, pp. 1-6 [17].

1.2.5 List of Peer Reviewed Non-First Author Publications (Starting

with Journals)

7. S. Bazrafkan, H. Javidnia, J. Lemley and P. Corcoran, "Semiparallel deep neural
network hybrid architecture: first application on depth from monocular camera,"
Journal of Electronic Imaging, vol. 27, no. 4, pp. 0430341 1-19, 2018 [15].

8. P. Corcoran, J. Lemley, C. Costache and V. Varkarakis. "Deep Learning for Consumer
Devices & Services 2 - Al gets Embedded at the Edge", IEEE Consumer Electronics
Magazine, vol. 8, no. 5, pp. 10-19, 2019.

1.2 Overview of Published Work 9

9. A. McDonagh, J. Lemley, R. Cassidy and P. Corcoran. "Synthesizing Game Audio
Using Deep Neural Networks," 2018 IEEE Games, Entertainment, Media Conference
(GEM), IEEE, 2018, pp. 1-6 [18].

1.2.6 List of Filed Patents

1. S. Bazratkan and J. Lemley, "Method for Synthesizing a Neural Network," US Patent
App. 15/413,283. [19]

2. S. Bazrafkan and J. Lemley, "Method of Training a Neural Network," US Patent App.
15/413,312. [20]

3. L. Dutu, M. Dumitru-Guzu, S. Mathe, J. Lemley, "Simultaneous Gaze and Eyelid
Opening Estimation from Both Eyes". US Patent App. 16/005,610.

4. J. Lemley, A. McDonaugh, R. Cassidy, "Hybrid Audio Synthesis Using Neural Net-
works". PCT/US2019/040,739

1.2.7 Contribution Taxonomy

As this publication based thesis includes work that was done in collaboration with others,
this section provides an overview of the contributions of each author to each major paper.
The 6 tables in this section are based on a generalization of the Contributor Role Taxonomy
(CRediT) introduced by Brand et al [21]. The CRediT approach has been adopted by journals
in several fields to specify the contributions of individual authors.

In the CRediT Taxonomy each author’s contributions are measured as a percentage point
on 14 roles. These are: Conceptualization, Data curation, Formal Analysis, Funding acquisi-
tion, Investigation, Methodology, Project administration, Resources, Software, Supervision,
Validation, Visualization, Writing — original draft, Writing — review & editing

In this thesis I adopt a more concise generalization of this taxonomy which encapsulates
the major criteria, specifically:

1. Main Idea - Involving Conceptualization.

2. Experiments and Implementation, which includes Methodology, validation, data cura-
tion, formal analysis and software development.

3. Rationalization and Context, which includes investigation and formalization.

10

Introduction

4. Manuscript Preparation which includes all aspects of writing manuscript preperation

including Writing — original draft, Writing — review & editing, and Visualization except

those specified in the next critera.

5. Background - Includes work done to place the research efforts in a wider context

of literature in a given field, this may include some aspects of writing (literature

reviews) and informs aspects of project administration and supervision and ensuring

that methodology used is typical of that used in the area of publication.

This generalization has the weakness that it ignores most aspects of funding, project

administration, resources or supervision but otherwise encapsulates the main points that

would determine primary authorship. In cases where an author’s contribution is missing,

their contribution was solely in these ignored categories. The two coauthors that this applies

to are Peter Corcoran, my supervisor, and Alexandru Drimbarean, my direct manager at

Fotonation/Xperi. Tables 1.1, 1.2, 1.3, 1.4, and 1.5 list author contributions according to the

above 5 criteria. Authors are listed by initial where JL means Joseph Lemley, SB means

Shabab Bazrafkan, AK means Anuradha Kar, PC means Peter Corcoran, and HJ means

Hossein Javidnia. Contribution percent is listed at a resolution of 10%. Further information

on contributions and motivations are given in section 1.2 and in the relevant chapters.

Table 1.1 Contributions to the Main Ideas of Selected Papers

Paper Contribution Per-
cent

Smart Augmentation: Learning an Optimal Data Augmentation Strategy | JL 100%

[11]

Convolutional Neural Network Implementation for Eye-Gaze Estimation | JL 100%

on Low-Quality Consumer Imaging Systems [14]

Eye tracking in augmented spaces: A deep learning approach [17] JL 100%

Semiparallel deep neural network hybrid architecture: first application
on depth from monocular camera [15]

SB 50% HJ 50%

tion. [16]

Deep Learning for Consumer Devices and Services: Pushing the limits | JL 60% SB 40%
for machine learning, artificial intelligence, and computer vision. [5]
Transfer Learning of Temporal Information for Driver Action Classifica- | JL. 100%

1.3 Organization of Remainder of Thesis

The remaining chapters contain a summary of motivations and details about the three

qualifying journal articles as well as additional supporting work, published and unpub-

1.3 Organization of Remainder of Thesis

11

Table 1.2 Contributions to the Rationalization and Context of selected papers

Paper

Contribution Per-
cent

Smart Augmentation: Learning an Optimal Data Augmentation Strategy

[11]

JL 50% SB 50%

Convolutional Neural Network Implementation for Eye-Gaze Estimation | JL 100%
on Low-Quality Consumer Imaging Systems [14]
Eye tracking in augmented spaces: A deep learning approach [17] JL 100%

Semiparallel deep neural network hybrid architecture: first application
on depth from monocular camera [15]

SB 50% HJ 30%
JL 20%

Deep Learning for Consumer Devices and Services: Pushing the limits
for machine learning, artificial intelligence, and computer vision. [5]

JL 100%

Transfer Learning of Temporal Information for Driver Action Classifica-
tion. [16]

JL 80% SB 20%

Table 1.3 Contributions to the Experiments and Implementation of Selected Papers

Paper

Contribution Per-
cent

Smart Augmentation: Learning an Optimal Data Augmentation Strategy

[11]

JL 90% SB 10%

Convolutional Neural Network Implementation for Eye-Gaze Estimation | JL 100%
on Low-Quality Consumer Imaging Systems [14]
Eye tracking in augmented spaces: A deep learning approach [17] JL 100%

Semiparallel deep neural network hybrid architecture: first application
on depth from monocular camera [15]

SB 50% HJ 50%

tion [16]

Deep Learning for Consumer Devices and Services: Pushing the limits | N/A (Introductory
for machine learning, artificial intelligence, and computer vision. [5] Review Paper)
Transfer Learning of Temporal Information for Driver Action Classifica- | JL 100%

12 Introduction
Table 1.4 Contributions to the Manuscript Preparation of Selected Papers
Paper Contribution Per-

cent

Smart Augmentation: Learning an Optimal Data Augmentation Strategy
[11]

JL 90% SB 10%

Convolutional Neural Network Implementation for Eye-Gaze Estimation
on Low-Quality Consumer Imaging Systems [14]

JL 90% AK 10%

Eye tracking in augmented spaces: A deep learning approach [17]

JL 90% AK 10%

Semiparallel deep neural network hybrid architecture: first application
on depth from monocular camera [15]

SB 45% HJ 45%
JL 10%

Deep Learning for Consumer Devices and Services: Pushing the limits
for machine learning, artificial intelligence, and computer vision. [5]

JL 70% SB 20%
PC 10%

Transfer Learning of Temporal Information for Driver Action Classifica-
tion [16]

JL 90% SB 10%

Table 1.5 Contributions to the Background of Selected Papers

Paper

Contribution Per-
cent

Smart Augmentation: Learning an Optimal Data Augmentation Strategy

[11]

JL 90% SB 10%

Convolutional Neural Network Implementation for Eye-Gaze Estimation | JL 50% AK 50%
on Low-Quality Consumer Imaging Systems [14]
Eye tracking in augmented spaces: A deep learning approach [17] JL 50% AK 50%

Semiparallel deep neural network hybrid architecture: first application
on depth from monocular camera [15]

SB 45% HJ 45%
JL 10%

Deep Learning for Consumer Devices and Services: Pushing the limits
for machine learning, artificial intelligence, and computer vision. [5]

JL 100%

Transfer Learning of Temporal Information for Driver Action Classifica-
tion [16]

JL 90% SB 10%

1.3 Organization of Remainder of Thesis 13

lished. As the attached articles (see appendix) contain extensive literature reviews and
methodological details, neither a literature review nor a methodology chapter is included.
The source code to duplicate the experiments described in this thesis is available at https:
//github.com/joelemley/PhD.

Chapter 2 contains a comprehensive overview of the smart augmentation technique and
its research impact and comparison with related generative and meta learning techniques.

Chapter 3 contains an overview of the work done on eye gaze estimation, including
details that were omitted in the attached journal article due to journal policies (such as page
limits and the anti-commercialism policy).

Chapter 4 contains a summary of other published and unpublished work relating to the
core theme of this thesis. This includes my work on driver monitoring using transfer learning,
my contributions to SPDNN.

An overview of the 4 articles I have published with Consumer Electronics Magazine on
deep learning, edge Al, data augmentation and contributions to Deep Learning education are

included in appendix G.

https://github.com/joelemley/PhD
https://github.com/joelemley/PhD

Chapter 2
Smart Augmentation

Data augmentation involves modifying data from its original form. It is done in the expecta-
tion that a different perspective or transformation of the data will help the network to learn a
better representation of the desired task.

For example a convolutional neural network may not understand that an object that has
been rotated is the same as one that is not rotated, and therefore augmentation with rotated
images is common. For illustration, an image of a face may not be recognized as a face if
a person turns slightly and the network has not been trained with faces in a variety of head
orientations.

Augmentation is a critical component of training a neural network, but it is important to
carefully consider the types of augmentation one does beforehand and match these carefully
to the task at hand. This can be illustrated by considering the digit classification task. If
digits are rotated more than 90 degrees, 9s will be indistinguishable from 6s. Although some
rotation invariance may be desired for digit recognition, the primary orientation of digit
objects is essential to understand them properly and therefore arbitrary rotations result in
confusion and will prevent proper training of a neural network.

The primary work on Smart Augmentation is included in Appendix B and a detailed
overview of Smart Augmentation, its relation to other techniques and the core theme of this
work are given in the remainder of this chapter.

Relating to the central theme of data augmentation for consumer devices, smart augmen-
tation seeks to address the problem of limited and incomplete data. Inspired by the recent
history of computer vision where features that were previously "hand crafted" began to be
replaced by learned features, it was desired to explore whether the same progress could be
made with augmentation as the objective in addition to classification.

The idea of Smart Augmentation is to investigate whether relevant improvements in the

design of CNNs can be achieved by learning the data augmentation task. Specifically, Smart

16 Smart Augmentation

Augmentation is a method of creating a network that learns the augmentation task at the
same time as a classifier network learns to classify input. The augmenter network is called
Network A and the network that performs a given task is called Network B. A combined loss
function incorporates o and 3 coefficients to the losses of both network A and network B -

described in detail in the relevant appendix.

Traditional data augmentation is a very manual process which can involve quite a bit of
guesswork and expertise. For some problems/datasets the choice of augmentation strategy
can be more important than the architecture of the network [10]. This led to the desire to

investigate the ability to learn the augmentation task during training.
Smart augmentation works by using 2 networks:

¢ The network that learns the desired task.

* The network that learns to perform augmentations for the network that learns the
desired task.

The former is called network B and the latter network A.

Network A selects, at random, 2 or more images from the same class

Companson

Network B
‘ Comparison

Network A3

@/ Comparison

Fig. 2.1 This figure shows a high level overview of smart augmentation for a 3 class problem.
To add classes, simply increase the number of network As.

Network A1

Class Prediction
/ Loss

2.1 Research Questions 17

2.1 Research Questions

Smart Augmentation (SA) started with one primary research question: "Can a neural network
learn to perform the augmentation task from the data alone?"

After discovering that neural networks were indeed capable of learning to perform some
augmentations, a series of research questions were designed to investigate the performance

of the technique.

The experimental and methodological details of all the experiments used to answer the
questions in this section are included in the main paper on Smart Augmentation in appendix
B. The various network configurations can be found in table 1 of the appended paper, while
the results are included in table II for experiments related to face datasets and table III for
experiments related to the MIT places dataset.

2.1.1 A First Research Question

The first question was: "Is there any difference in accuracy between using SA and not using
it? (Is SA effective?)". Although this is useful as a guiding concept, it is too vague to form a
useful testable hypothesis. Thus a more precise question would be evaluated instead: Can
a meta-learning approach such as the proposed SA technique increase accuracy for at least
one task when evaluated on at least one dataset of interest? To answer this later question one
must simply select a task and a dataset and attempt to train it using the SA methodology.
For simplicity, a binary classification task was chosen: Perceived gender recognition from
frontal face images and for the dataset I chose ARFACES, a highly constrained dataset of
face portraits. Thus the hypothesis became "Will at least one specific implementation of
an SA-like meta-learning approach increase gender recognition accuracy when trained and
evaluated on ARFACES using a standard, subject-exclusive training, validation, and testing
split?".

To examine this question, 16 experiments were performed, summarized in the following
subsections. The full details of these experiments are included in table 1 of the main
Smart Augmentation paper (Appendix B), while the results are included in table II and
in the corresponding experiments, results, and methodology sections. These experiments
demonstrated that the answer to this question was "yes" with increases in accuracy ranging
from 90% to 95% depending on the parameters used compared with a baseline model that

had 88% accuracy when using the proposed technique.

18 Smart Augmentation

2.1.2 How Does SA Compare with Traditional Augmentation?

Upon demonstrating that SA was able to increase accuracy on a specific dataset was sufficient
to validate the main idea in a very limited case, for real use cases it is helpful to know how it
compares to the use of traditional augmentation. After all, if traditional augmentation is just

as good, why would one bother with the added complexity of Smart Augmentation?

It would, of course, be impossible to compare SA with every possible traditional augmen-
tation (as the number of possible variations are infinite even in the case of simple rotation).
Therefore the first task was to select a representative set of traditional augmentations to
compare with. The selected examples were: flipping, Gaussian blur, and rotation (-5,2,0,2,5
degrees with the axis of rotation at the center of the image). A dataset was created from

ARFACES with every combination of these augmentations to form a new dataset called dbla.

When the baseline network, without smart augmentation, was trained on this dataset,
the resulting accuracy increased to 89%, which is still less than the worst performing SA,
indicating that, at least in this one case, the use of smart augmentation was better than
the chosen traditional augmentations. However, no claim can be made for every traditional
augmentation. It is possible, even likely with sufficient effort and time, that some combination
of traditional augmentations could be found that would generate better results. However,
the benefit of SA is that it replaces the tedious nature of trying many different manual
augmentations. It does this by leveraging the ability of a neural network to learn an optimal

augmentation strategy.

What Happens When Smart Augmentation is Trained on Traditionally Augmented
Data?

The previous research question examined the use of traditional augmentation compared to a
network that was trained with only SA but what would happen if the two approaches were
combined? In other words, if the best approach from the experiments designed to answer
the question posited in section 2.1.1 was trained on the traditionally augmented data, would
the accuracy increase or decrease on the same test set? To answer this question, the same
dbla, containing traditionally augmented images from ARFACES was used as training data
for two networks trained with SA. The accuracy achieved with this approach was 95.67%
which was a similar level of accuracy as when no traditional augmentation was used for this

configuration.

2.1 Research Questions 19

2.1.3 Investigations into Smart Augmentation’s Hyper-Parameters

The SA technique introduces new hyper-parameters and choices into the training pipeline,
these include the o and B coefficients, the number of input channels, whether to use a
separate network A for each class, or to use just one network A. In this subsection, research
questions designed to investigate these hyper-parameters are described.

Why Does The Number of Input Channels Need to be At Least Two?

The smart augmentation technique uses randomly selected images from the same class placed
in at least 2 channels as input. An obvious first question is: Is it really necessary to use at
least 2 channels? What would happen if only 1 were used? Although it seemed pivotal to the
main idea of smart augmentation, it was important to justify this requirement experimentally.

To investigate the need for this condition I repeated the experiment from section 2.1.1 but
only supplied one image with all other parameters being the same as the best configuration
previously found for SA on the ARFACES dataset. This resulted in a reported accuracy of
86.99%, which is worse than when smart augmentation was not used at all and seems to
illustrate the importance of this rule.

This was true when one network A was used for each class, but surprisingly it did not
have much of an impact when only one network A was used for both classes. In the case
of only a single network A and a single input channel, the resulting accuracy was a 92.77%
which was better than when no smart augmentation was used, but still less than the best
single channel approach (95.38%).

It therefore seems prudent to use at least two input channels, especially when two network

As are used.

The Number of Input Channels

Previously in this thesis, the requirement of using at least two input channels was examined.
A natural question to ask is: Does varying the number of channels over 2 have an impact on
network performance? If so, is there an optimal number of channels that can be found?

Experiments investigating this issue were performed for the ARFACES dataset, with the
number of inputs set to vary between 2 and 8 for both single network A and one network A
per class approaches.

These experiments indicated wide differences in performance resulting from selection of
the number of inputs with as much as a 5% difference in accuracy depending on the number
of inputs used. Unfortunately no linear correlation could be found between the number of

inputs and the accuracy, and thus it is important to leave this parameter as a choice for the

20 Smart Augmentation

user. Investigations on the possibility of learning this parameter for a specific dataset are left
for future research, as the experimental effort involved would be extensive and solutions to

learn the parameter from the input are non-obvious.

How Many Network As are Needed?

There are two approaches studied for Smart augmentation. One approach uses a single
"network A", which tries to learn to generate sample images for all the classes in the network.
The second uses one network A for each class.

While using one network for each class makes some intuitive sense, it also increases
training time and causes scalability concerns, increasing excess training time to be twice as
long for a 2 class problem is reasonable, but for a 1000 class problem (such as ImageNet) it
would make use of the method infeasible. Thus the suggestion that one network A is used for
each class requires evidence of an increase in accuracy to justify the computational cost.

If the networks with just 1 and O input channels are excluded, there is an average (mean)
increase in accuracy from 92.94 to 93.19 when multiple network As are used, with the
median accuracy going from 92.49 to 93.35. This indicates that the use of multiple network

As provides some benefit across datasets and parameters studied.

Does Altering the o and Parameters Change the Results?

The SA technique includes two coefficients which together control the portion of the loss
total that comes from network B (the classifier) against the portion that comes from the
network As. The coefficient to the loss from network A is called & and the coefficient to the
loss from network B is called 3.

While running the experiments, alpha and beta values that seemed to work well were
empirically decided, but these decisions were made prior to any final results while investi-
gating network convergence during training. It occurred to me that an experiment should
be designed to document the impact that the alpha and beta parameters have on network
performance.

Therefore an experiment identical to that from section 2.1.1, except using the airport and
abbey classes of the MIT places dataset instead of the faces dataset, was performed.

Four experiments containing two variations of alpha and beta (0.3,0.7) vs (0.7,0.3) were
performed and allowed to run until the end. As expected, varying the loss coefficients had an
impact on accuracy with (o : 0.7, 8 : 0.3) reaching 99% accuracy, whereas (« : 0.3, : 0.7)
obtained 97.87 for a network with two network As and 98.75 for the approach with just one
network A.

2.1 Research Questions 21

2.1.4 SA on Multiple Datasets

The next research question in the Smart augmentation paper was: If smart augmentation
is effective, is it effective across a variety of different datasets?, and if so, how does this
vary as the datasets are increasingly unconstrained? This question is important because
it is common to find methods that work well on highly constrained data but work poorly
as the data becomes increasingly unconstrained. A popular example of this is the use of
Eigenfaces [22] for face recognition. In that approach, the authors assume at the training
stage that faces will be provided in a frontal format with an approximately similar size (i.e.
mugshot) and that Principle Component Analysis (PCA) will determine the 2D features
using 2D eigenvalues from the PCA analysis. While this analysis provides a very interesting
set of features, with lower-order components that clearly resemble the global structure of a
face (hence, Eigenfaces) the resulting recognition analysis will fail if faces are not upright
and if they do not lie within a specific size range. Since it has been shown that CNNs can
learn filters that are similar to those used in classic image processing [10], it is important
to investigate the sensitivity of a given method to change in the nature of task difficulty (ie
classification of constrained faces where Eigenfaces perform well vs unconstrained where it
fails).

For this, 4 increasingly unconstrained datasets (AR faces [23], FERET [24], Adience
[25], and Mit Places) were used (examples in figure 2.2). The AR Faces dataset, used for the
majority of the initial experiments on the proposed augmentation approach, is composed of
4000 frontal faces of male and female subjects. Every subject has similar pose, lighting, and
frontal orientation and they are all cropped in the same way. This dataset is easy for both

conventional and DL algorithms.

Next the FERET dataset was used. FERET is still a highly constrained dataset by most
standards but it contains some variation in pose and facial occlusions (glasses, beards, etc).
Most traditional algorithms still perform well on FERET but not as well as they do on AR
Faces.

Adience was the most challenging of the face datasets used. It was gathered automatically
from Flickr albums and contains examples with poor lighting conditions, obstructions,
multiple subjects, and difficult pose angles. Traditional algorithms do not perform well on

this dataset, but methods based on deep learning do.

Experiments were repeated on all three face datasets and the average accuracy was
recorded. Once it was established that smart augmentation worked well on all three face
datasets, a fourth final challenge on a non-face-related task was chosen - The MIT Places

dataset.

22 Smart Augmentation

AR Faces FERET Adience M_IT Places _
Highly constrained Constrained Unconstrained ~ Highly Unconstrained

Fig. 2.2 Selected images from each of the 4 datasets used to evaluate Smart Augmentation
demonstrate the progressively unconstrained nature of the tested images. This was necessary
to examine the relationship between the complexity of the scene and the usefulness of the
technique.

Since the Smart Augmentation experiments required one network A for each class, and
because of the increase in training time this entailed, only 2 classes from the MIT places
dataset were used: Abbey and Airport. Experiments followed the same methodology as
used previously on the face datasets and demonstrated 99% accuracy with the use of smart
augmentation compared to 96.5% without.

It was found that the use of smart augmentation improved accuracy over traditional

augmentation on a variety of increasingly unconstrained data.

2.1.5 Smart Augmentation and Overfitting

When initially designing the smart augmentation concept, a very good question was asked:
"Won’t that just cause overfitting?"

This is a reasonable concern since the role of network A is to increase the accuracy of a
target network on, the same training set that the target network is already being trained on
and increasing accuracy on the training set is useless without a corresponding increase in
accuracy on a validation or testing set.

One indication of overfitting is if the loss on the training set is going down (often close
to zero) while the loss on the validation set goes up. Assuming both the testing set and the

training set come from the same distribution, this test can show that overfitting has occurred

2.1 Research Questions 23

but it can not verify conclusively that overfitting has not occurred. Training and testing loss
for 1000 epochs of training using smart augmentation on the ARFACES database (see figure
2.3) did not indicate any overfitting and no evidence of overfitting was found in any of the
experiments conducted.

More surprisingly, validation loss was lower with smart augmentation than without,
indicating the possibility that instead of increasing overfitting, the use of smart augmentation
decreased it.

1
T T T
—— trainLoss Smart Augmentation
—— trainLoss without Smart Augmentation
09~ validationLoss Smart Augmentation =

i

it

| === |

1

Moy nb

W,
bt
Wb g g W’A’Ww“’ww‘VM\A‘WMN»«NWWM Ay A gt/

et e Al i
, ity LT R TN DU Lo I | po b |
4] 100 200 300 400 500 600 700 800 900 1000
Epochs

Fig. 2.3 This figure shows training and validation losses for 1000 epochs of training using
the SA technique on the AR faces dataset. As explained in 2.1.5 this can serve as a test for
overfitting.

2.1.6 Summary of Findings from Research Questions

The experiments provoked by these research questions demonstrated that the augmentation
process can be automated, specifically in nontrivial cases where two or more samples of
a certain class are merged in nonlinear ways, resulting in improved generalization of a
target network. The results indicate that a deep neural network can be used to learn the
augmentation task in this way at the same time the task is being learned. A convergence
graph, supplied in the paper, demonstrated that smart augmentation can be used to reduce
overfitting during the training process and reduce the error during testing. Details of these
experiments and the methadology can be seen in B.

An increase in accuracy from 3.5 to 6.7 percentage points over baseline models was

achieved depending on the dataset and experiment, and no linear correlation between the

24 Smart Augmentation

number of samples mixed by network A and accuracy was found, so long as at least 2 samples
are used.

It was also shown that Smart Augmentation is effective at reducing error and decreasing
overfitting, and that this is true regardless of how unconstrained the database is.

Thirdly, these experiments demonstrated that better accuracy could be achieved with
smart augmentation than with traditional augmentation alone. It was found that altering the
o and B parameters of the loss function slightly impacts results, but optimal parameters

remain elusive and thus must be tuned by the experimenter.

2.2 Research Impact

Much of the the early work on Smart Augmentaion has already made an impact. This section
describes new papers that are related to the original work on smart augmentation, many
of which cite the original paper on the topic of learnable data augmentation with neural
networks. For related work published before Smart Augmentation, see appendix B.

Thus in this subsection, the work in this thesis on data augmentation is put into a broader
context. Focus is given to literature that is directly related to forms of learned augmentation,
most of which were published after the original article on Smart Augmentation.

A review paper based on this section has been accepted for publication in Consumer
Electronics Magazine.

In early 2017, the first papers on a new form of learnable augmentation were introduced.
Since then, a number of other articles have been published exploring the idea of smart
augmentation.

These techniques have in common that, instead of designing the augmentation process
before training, they use artificial neural networks to learn the augmentation task at some
point in the training pipeline. In this subsection, the latest techniques for using deep neural
networks, and related techniques to generate data for augmentation, are explored.

Recent research has indicated that augmentation may be superior to other regularization
approaches. For example, Hernandez et al. [26] [27] studies how augmentation can be used
instead of regularization. They explain that many types of regularization (weight decay,
dropout), waste model capacity by blindly eliminating learned information, and argue that
data augmentation can do a better job at promoting generalization while more efficiently
using network weight information.

Hernandez defines explicit regularization as techniques that are "specifically and solely
designed to constrain the effective capacity of a given model in order to reduce overfitting.

Furthermore, explicit regularizers are not a structural or essential part of the network archi-

2.2 Research Impact 25

tecture, the data or the learning algorithm and can typically be added or removed easily."
[26]

He goes further to define implicit regularization as "the reduction of the generalization
error or overfitting provided by characteristics of the network architecture, the training data or
the learning algorithm, which are not specifically designed to constrain the effective capacity
of the given model." [26]

Although these definitions are not universally accepted, and the number of datasets
tested may be insufficient for such bold claims, they allowed the authors of that paper
to classify data augmentation as a form of implicit regularization and form a series of
experiments documenting how both forms of regularization impact model performance.
These experiments demonstrated that in the majority of cases, using augmentation alone
was a superior strategy to using explicit regularization or even augmentation and explicit

regularization together.

2.2.1 Learnable Data Augmentation

Learning the data augmentation task with a neural network is a natural progression of the
recent history of computer vision algorithms. Traditional computer vision involved creating a
filter/feature detector, or set of filters/feature detectors, and transforming them in such a way
as to allow a computer to make decisions about their content. The "Learning" part would
often involve support vector machines (SVM), and any high dimensional features were often
reduced with Principle Component Analysis (PCA) or Linear Discriminant analysis (LDA).
For most computer vision tasks today, these methods, some of which were state of the art a
little more than 5 years ago, are now archaic and only recommended in cases where Deep
Learning performs poorly, typically when dealing with very small datasets or when Deep
Learning is unnecessary, such as when an exact solution exists or when the task is simple
enough to not need it. The problem with the traditional approaches is that they all require a
person to decide ahead of time what features are most useful for a given task.

The phenomenal recent advancements in face recognition, object classification, voice
recognition, and other tasks for which Deep Neural Networks are commonly applied are
partly due to the fact that CNNs do not use hand-engineered features. Instead, they learn how
to generate filters for input data as they learn their task.

The first paper describing fully learnable data augmentation, where all components of the
augmentation pipeline are learned using an artificial neural network, appears to have been the
paper on "Smart Augmentation" [11]. However, when researching related work for this thesis
a paper that used a non neural network approach with the idea of learnable augmentation that

was published few months earlier in 2016 [28] was found. Hauberg used statistical models of

26 Smart Augmentation

transformations for learning data augmentation tasks. Hauberg’s approach can be considered
the first approach to learning to augment data from the data itself using a statistical model,
whereas Smart Augmentation [11] is likely the first approach to learn to augment data from
the data itself using an artificial neural network.

2.2.2 Alternative Learned Augmentation Techniques

This subsection describe techniques for learned augmentation that do not use GANs or

traditional statistical modeling and have been shown to perform well on image data.

Learning to Augment Data with a Neural Network

Another approach, similar to smart augmentation for learning augmentations that best im-
prove a classifier called "neural augmentation" is discussed by Wang and Perez [29]. Neural
augmentation takes two random images from a class and trains an augmenter that tries to
generate images that reduce the loss of a target network. Neural augmentation has a number
of similarities to smart augmentation and was reported to substantially improve accuracy
(from 85.5% to 91.5% on dogs vs cats, and from 70.5% to 77.0% on cats vs fish classification).
Neural augmentation appears to have been the result of a class project at Stanford and some
of the author’s experiments are similar to the early experiments performed when testing the
idea of Smart Augmentation. Although they never published their technique as a journal or
conference paper, their work is cited by many of the same papers that cite my work.

Augmentation Policy Learning

One alternative approach to learnable augmentation, called auto-augment, is to use machine
learning to identify known augmentation techniques that cause better results for a specific
dataset during training. This is a promising hybrid approach that allows learnable task
specific augmentation policies, introduced in [30], that may be especially useful in cases
where several traditional augmentations are suspected to work well. This approach can also
be blended with approaches in the previous two subsections. Lin [31] and Lim [32] have
proposed updated architectures for auto-augment that show speed improvements over the
initial proposal.

Another approach to augmentation policy learning suggested by Ho et al. [33] was able to
match the accuracy of auto-augment (state of the art) with 1000x less computational require-
ments on a number of datasets. Their method, called Population Based Augmentation (PBA),
generates non stationary augmentation schedules, meaning a new optimal augmentation

strategy is learned for each epoch.

2.2 Research Impact 27

Evolutionary Image Augmentation

An interesting type of learned augmentation using evolutionary image processing was inves-
tigated by Fujita et al in [34]. An image transformation tree using Automatic Construction of
Tree-Structural Image Transformations (ACTIT) is used to create augmented images that are

shown to improve results on various two class problems.

2.2.3 Methods Based on GANs and Statistical Generative Techniques

Generative models for data augmentation attempt to model the data found in the dataset and
then use the generator to create unique image samples.

An early approach to learnable augmentation was suggested by Hauberg et al. [28]. They
demonstrated a fascinating statistical approach to generative augmentation by modeling
the transformations found within a given dataset. In this idea, augmentations are a type of
deformation. A parametric model is used for generating transformations of input images.
Promising results were reported on MNIST-like datasets of hand-written digits, but no further
results have been reported for more challenging datasets. After the model has been trained to
generate images similar to those in the dataset, generated images are sampled randomly from
the parametric model, allowing for a large number of realistic transformations. A similar
statistical model was used by Acero et al. [35] to augment MRI images to improve results on

the cardiac segmentation task.

In addition to techniques based on classic statistical generative models, generative adver-
sarial networks have also been used for the task of learnable data augmentation. Compared
with classic generative models, this has the advantage that no assumptions are made about
the types of transformations that should be allowed in a pre-augmentation step. Instead,
GAN:Ss learn the distribution of the training set by competing against a discriminator and this
competitive process alone determines the types of data that the GAN generates.

Several recent works on using GANs for augmentation have been published. For example,
[36] used the GAN target loss to improve human pose estimation in a class-specific way. This
paper is distinguished in that it learns to generate data at the same time it learns to perform
its task. An interesting feature of this approach is the use of a "reward and penalty strategy"
during training. Such strategies are common in reinforcement learning, but uncommon in
GANs. As with all GAN techniques, the generator (augmenter) network attempts to find

weaknesses in the discriminator. This corresponds to generating "hard" augmentations.

Another GAN approach to data augmentation is given by Ratner et al. [37]. A generative

sequence model is trained over a transformation function. Like the method introduced by

28 Smart Augmentation

Peng et al. this method uses reinforcment learning to generate data points that may be useful
in the data augmentation task.

Wang and Perez [29] use a Cyclegan to generate images for use in data augmentation, but
report that traditional augmentation techniques improved their results more than the GAN.
Their inspiration for the use of style GANs was to train networks to address the problem
whereby video data that is collected in one condition (daylight) when used for training will
cause problems in other weather and lighting conditions (ie, fog and night).

Utilizing GANs for data augmentation is further studied by Poduturi in [38]. Poduturi
used the GAN’s latent vector to generate images for augmentation. A detailed analysis of
error sources is provided and various augmentation techniques are ranked with results from
the GAN performing competitively.

Antoniou et al. [39] use a conditional GAN to generate augmented samples, resulting
in improved accuracy on a number of datasets. They call their method DAGAN (Data
Augmentation Generative Adversarial Networks). They also apply their method to few shot
learning and show that their method can substantially increase accuracy when only small
amounts of data are available for training.

Zang et al. [40] extend a classic GAN with an augmentation module and a modified loss
function they call 2k loss. They call their technique Deep Adversarial Data Augmentation
(DADA). Like other class-aware GANSs, the discriminator is adapted to return multiple class
probabilities. The data augmentation module and classifier are learned at the same time and
demonstrate state-of-the-art results on a number of small datasets that would typically be
difficult for GANSs to learn. Zang reports competitive results on EEG, breast imaging, and
tumor classification tasks.

Finally Tran et al. [41] introduced a Bayesian approach to data augmentation, using
generalized expectation maximization, whereby augmented data are treated as missing
variables. These variables are sampled from the distribution learned from the training set.
The proposed GAN is based on AC-GAN.

2.2.4 Data Augmentation for Audio

A majority of the papers published on data augmentation focus on visual data, and the
most popular techniques are not relevant to audio data. With the rise of smart speakers
and intelligent audio assistants, it is important not to neglect data augmentation for neural
networks that operate on audio. For this reason a subsection is devoted specifically to
dealing with the augmentation of audio data. The majority of these techniques augment on

spectrogram data (linear or mel).

2.2 Research Impact 29

The interest in applying augmentation to audio data comes from a collaboration with
Aoife Mcdonagh when she was starting her research in deep learning for audio. Although
most of the work that was intended for audio augmentation never occurred due to new
priorities, it is still worth discussing this thesis.

As this work never progressed to the point of using it for data augmentation, we instead
applied it to the problem of generating unique audio for video games.

The paper that came out of my collaboration proposed a GAN for unique audio generation
that can be applied to augmentation in Synthesizing Game Audio Using Deep Neural
Networks [18] by latent space interpolation or by randomly sampling the Z vector. Although
no evaluation of performance on augmentation tasks was done in the paper, the similarity of
the method to GAN-based augmentation techniques provides reason to believe the method
will work for this task. Raw waveforms are used rather than spectrograms. In a way this
represented an attempt to apply one of the core ideas that made Smart Augmentation work to
audio by training a network to learn to combine features learned from sounds to create new
distinct sounds. In that work, the latent space of the Z vector was used to synthesize unique
audio that has the properties of two or more audio clips, just as smart augmentation created
new images that had the properties of two or more images.

My contribution was the original idea of using a GAN to synthesize unique audio using
latent space interpolation of two classes, writing parts of the paper, and processing the output
from the trained GAN to gather data. The majority of the work was performed by a colleague.
Ideas for extending this work using a recurrent neural network are included in a filed patent
application.

The remainder of this subsection includes a short review of audio augmentation tech-
niques.

Shluter et al. [42] investigates label-preserving transformations (augmentation strategies)
for audio signals with a focus on singing voice detection, and measures the techniques that
result in the best performance. They train a CNN to perform classification on spectrograms

of voice sounds modified with the following transformations:
* Noise (dropout and Gaussian) applied directly to the spectograms

* Pitch shifting and time stretching by scaling spectograms vertically (for pitch) or

horizontally (for time) followed by additional processing.
* Loudness (by randomly scaling linear spectograms)
* Random frequency filters

* Mixing two music excerpts using linear spectograms.

30 Smart Augmentation

It was found that random frequency and pitch shifting improved results significantly,
but the remaining filters were ineffective or reduced accuracy. State of the art results were
achieved when using frequency randomization and pitch shifting. Some of these filters can
be implemented in the Audio Degradation Toolbox, in matlab, or in the munda Musical Data
Augmentation package in python. These packages were both designed for performing audio
augmentation.

Park et al. used a similar approach with the introduction of an audio augmentation
method they call SpecAugment that operates on mel spectograms [43]. They demonstrate
SpecAugment for automatic speech recognition without the need for a language model
(although they saw further improvements when language models were used). State of the art
results were achieved on LibriSpeech and Swichboard 300h datasets. Warping and masking
(on time and frequency) policies are used for augmentation.

Vatolkin et al. proposed an evolutionary optimization technique to identify what they call
"smart data", that is, sound samples that contain the most relevant information for a given

class [44]. They apply their proposed technique on vocal activity detection.

2.2.5 Other Recent Augmentation Techniques

In this section, new augmentation techniques that, although they would not qualify as smart
augmentation or learned augmentation in a strict sense, contain a learned component or show
a significant improvement from a new augmentation technique.

Devries et al. describes a new method of data augmentation called "cutout". The approach
works by applying a fixed-size zero mask to a random location of each input image during
training. Surprisingly, this simple technique yielded state-of-the-art results on the CIFAR-
10, CIFAR-100, and SVHN datasets in August 2017. This illustrates the ability of simple
transformations to greatly improve network performance [45].

Another interesting recent technique called MixUp [46] [47], provides a method for auto-
matic augmentation by interpolation. This method has been shown to mitigate adversarial
attacks on neural networks. The explanation for why mixup provides protection from adver-
sarial examples is that the decision boundaries produced by mixup transition smoothly and
linearly from one class to another. Mixup is related to other forms of learned augmentation
because the interpolations are learned from the data.

A method is presented by Duan et al. that uses information about which neurons activate
during training to create augmented images and found that their method improved accuracy
by 11.31 percent on the CUB200-2011 dataset [48]. This approach is somewhere between a

learnable "smart" augmentation and traditional augmentation.

2.3 A Discussion on Smart Augmentation and GANs 31

2.2.6 Discussion

Learnable augmentation is a new, highly active sub-field of deep learning research that
has the goal of reducing the human labor inherent in selecting, designing, and validating
data augmentation. Common approaches to learnable augmentation include policy learning,
learning to generate images with a GAN or other network, and building statistical models. It
is interesting that, while a wide variety of methods work well on image data, there are far
fewer methods that work well on audio data. The investigation of smart augmentation for

audio data thus remains an interesting possibility for future work.

2.3 A Discussion on Smart Augmentation and GANs

Shortly after I first came up with the idea of smart augmentation and ran the initial experi-
ments, a patent application needed to be prepared. One of the benefits of being placed in a
company with so many talented engineers is that rapid practical feedback is often possible:
especially when an idea is being considered for patentability. One engineer was particularly
adamant that our smart augmentation idea was a type of GAN and the arguments in this sec-
tion are based off my counter argument to him on why the method should not be considered
a GAN.

In this subsection, important differences and similarities between Smart Augmentation
and a popular related technique - Generative Adversarial Networks are discussed.

Generative Adversarial Networks (GAN) were developed in 2014 by Goodfellow, et al
[49]. The main idea was to synthesize examples of observed data in an unsupervised way by
use of competing networks. To explain how this works, the paper uses the analogy of police
vs counterfeiters.

One network (the counterfeiter) attempts to trick the other network (the police) into
thinking that a generated image is legitimate. The second network (the police) attempts
to learn how to detect the counterfeits in a minimax fashion. The goal is that through
this competitive process, the counterfeiter network will be able to produce images that are
indistinguishable from real images.

Specifically, the generative model in a GAN generates samples by passing random noise
through a multi-layer perceptron. The discriminative model is also a multi-layer perceptron.
The models are trained using backpropagation and dropout.

Generative Adversarial Networks use competition to generate an image which is not used
for augmentation but is instead used to make images that are “similar” to other images that

the discriminator has seen before.

32 Smart Augmentation

Additionally, Generative Adversarial Networks and smart augmentation have differing
objectives. In Generative Adversarial Networks they make more images that are similar to
images that have been seen. This is the entire goal. With Smart Augmentation the idea is
to train a network to use the joint information between image samples to improve a second
network which later operates independently. Furthermore, Smart augmentation is not a
process for generating data. It is a process for training a separate network that includes a
generative component.

Importantly, Smart Augmentation is considered to be working if it generates data that
improves a target network, regardless of whether that data looks "good". The performance
of GANs is measured based on their ability to create "realistic” images that seem similar
to others in their class. The subjective nature of evaluating GANs has led to subjective
metrics such as mean opinion score, inception score [50], or Fréchet Inception Distance
[51] in evaluating GAN performance. Smart Augmentation is evaluated based on easily and
objectively measurable criteria: The amount by which the target network has improved (in

terms of accuracy, ROC scores, precision/recall, or other classification metrics).

2.3.1 Differences

Unlike GANs, Smart Augmentation does not use competition, and utilizes a loss that has no
relation to that used by GANs. Furthermore generative adversarial models are unsupervised
learning tools that disregard class labels, whereas our model is supervised and has a network
tuned to the best augmentation strategy for each class.

Generative Adversarial Networks also require large amounts of unlabeled data, whereas
our method is designed to work with classes that may not have very many samples.

With GANS, one typically uses the discriminator only during training, using the trained
generator to create content as a "stand alone" network. In smart augmentation the opposite
approach is used. The generator, our network A, is discarded and only the classifier is used
for the given task.

The Smart Augmentation model learns to merge k images based on similarity to a specific
arbitrarily chosen image in the same class, as well as the loss function of the target network.
Generative Adversarial Networks learn to create images similar to images in the dataset
in a different way: instead of learning to merge images they learn to generate images by
performing minimax optimization between the generator and discrimator. Therefore both
GANS and SA use information from the loss function of more than one network, but the
information used and what they do with that information is different.

Another difference is that SA does not pass noise through a multilayer perceptron. Instead,

multiple images in channels are passed as input to a network that learns to modify them. It is

2.3 A Discussion on Smart Augmentation and GANs 33

important to note here that there do exist GAN models that use variation in the training set as
the "noise" instead of the original random input idea while retaining other aspects of GANSs.
The most popular of these is CycleGAN [52]. Unlike regular unconditional Gans, which
learn to map random noise to an image, CycleGAN learns to map an image to another image
as well as the reverse operation. Specifically it learns an objective for bidirectional mapping
between a source image x and a target image y. For such networks, this argument about
the input does not apply, however "CycleGAN" was published concurrently with "Smart

Augmentation".

2.3.2 Similarities

Generative Adversarial Networks also have a network “A” that generates data (typically
images or sound). Network A in Generative Adversarial Networks also uses information
about how network B (the discriminator) is interpreting its input. This similarity is only in
the abstract sense because the nature of the information used and what it does with the input
are different. Generative Adversarial Networks and network A in the Smart Augmentation
system both create artificial images that are similar to other images in their data set, although
the methods by which this is accomplished are different.

Both networks’ models have a “generator” and “discriminator” component. With Smart
Augmentation Network A is a “generator” and network B could be considered the “discrimi-

nator” although this same terminology is not as meaningful for Smart Augmentation.

2.3.3 GASA

The unique properties of GANS and Smart augmentation inspired an experiment whereby a
GAN was used in place of network A with a classifier and similar loss structure. The research
question in this case was "Will the generator of a GAN (specifically BEGAN [53]), with
input from a classifier’s loss during training, improve the training of a target classifier. This
implementation was called GASA (Generative Adversarial Smart Augmentation) and the
architecture is shown in figure 2.4. It was predicted that this would not improve the results
because the GAN would be pushed to making images that are as close as possible to those
which were already well understood by the classifier.

Our initial experiments indicated that this assumption was correct. GASA was not
successful as our experiments indicated no improvement over not augmenting at all. Further
GAN/SA experiments for data augmentation were not attempted due to this negative result
and more pressing research priorities, but this negative result does not imply that it would be

impossible for a successful GASA-like idea to work in the future.

34

Smart Augmentation

Although the work on GASA was not used for augmentation, the idea was later success-

fully adapted by my coauthor to perform the opposite task: to improve the generator of GAN

by attaching an auxiliary classifier or regression network.

Feed forward discriminators ==

Discriminator ifi
Generator —_— A . . Feed forward classifier =
Male —Y (UtoM nlco er) Backpropagation for generator
ale
Input
—
M~ —
Database
Male
\&//

Female

Generator
Female

/A\
[~
Database /

/

—

Gender

Classifier

Discriminator
(Auto Encoder)
Female

3

Output

Fig. 2.4 Diagram of unsuccessful GASA idea built for the perceived gender recognition
task. In this case two generators take the place of two network As in the smart augmentation
model.

2.4 Smart Augmentation and other Similar Techniques

The concept of using one network to train another is not unique. One example is the so called
“student teacher networks” or just “Student Neural Networks” where one network is used to
train another network in such a way as to mimic its output [54]. A similar concept is used for
neural cryptography which uses a neural key exchange mechanism to secure communication
[55]. The method shows promise in the future because it is not vulnerable to the varieties of
cryptographic attacks that are theorized to become feasible with quantum computers or other
unforeseen advancements in factorization algorithms.

A brief overview of the main differences between smart augmentation and the above
mentioned methods follows:

1. Neither student/Teacher networks nor neural cryptographic networks use an augmenta-
tion strategy as part of their design.

2.4 Smart Augmentation and other Similar Techniques 35

2. Neither Student/Teacher networks nor neural cryptographic networks mix or merge

loss functions during training.

3. In the design of Student/Teacher networks, network “A” is the teacher from which
network B learns to classify the same material. In neural cryptography network A and
network B negotiate a key exchange mechanism. Our network A generates Augmented
data and takes in multiple inputs at once while network A and network B learn from

eachother. The other networks don’t do this.

4. These networks do not have selector functions that allow comparison with existing
data.

Both Smart Augmentation and the above networks use one network to train another -
this is common to many meta-learning approaches. In neural cryptography, the training
process happens concurrently (i.e., network A and B are “trained” simultaneously). This is
the same with Smart Augmentation. Student/Teacher networks do not typically share this

commonality.

Chapter 3
Eye Gaze

Eye gaze tracking and gaze-based human computer interactions in modern consumer devices
are an important aspect of exploring human interface design (HID). Eye gaze has been used
to derive human behavioral cues, as an input modality and for achieving immersive user

experiences in virtual and augmented reality systems.

After decades of research on desktop-based gaze estimation techniques, the focus has
recently shifted to building eye gaze applications for dynamic platforms such as driver
monitoring systems [56] and handheld devices [57]. For an automobile driver, eye based
cues such as levels of gaze variation, speed of eyelid movements and eye closure can be
indicative of a driver’s cognitive state. These can be useful inputs for intelligent vehicles
to understand driver attentiveness levels, lane change intent, and vehicle control in the
presence of obstacles to avoid accidents [58]. Handheld devices like smartphones and tablets
form unique platforms for gaze tracking applications wherein gaze may be used as an input
modality for device control, activating safety features and novel user interface (UI) designs
[59]. Eye gaze estimation is also an essential component on the path to autonomous driving
as the vehicle needs to know when it is safe to surrender control to a driver.

The most challenging aspect of these modern gaze applications includes operation
under dynamic user conditions and unconstrained environments. Further requirements
for implementing a consumer-grade gaze-tracking system include real-time high-accuracy
operation, minimal or no calibration, and robustness to user head movements and varied
lighting conditions. Therefore accurate and reliable gaze tracking typically demands high
quality cameras and special equipment like narrow angle lenses, external illumination, and
stereo setups [60] for capturing eye region features with sufficient details. As a result, gaze
estimation systems frequently become costly with complicated setups, which are unsuitable

for generic and consumer applications.

38 Eye Gaze

Therefore a major challenge of gaze-based consumer electronics design involves maxi-

mizing system performance while reducing costs and system complexities.

Gaze-tracking algorithms can be broadly classified into two types: model-based methods
and appearance-based methods [61]. Appearance-based methods operate directly on the eye
images. Examples of model-based methods include 2D and 3D models that use near infrared
(NIR) illumination to create corneal reflections and track them with respect to the pupil center
to estimate the gaze vector. These require polynomial or geometric approximations of the
human eye to obtain the gaze direction or the point of gaze. Appearance-based methods use
eye region images to extract content information such as local features, shape, and texture of

eye regions, to estimate gaze direction.

Contemporary research on gaze tracking measures accuracy in a wide variety of ways
[60]. For example, commonly used measures include angular resolution in degrees [62], gaze
recognition rates in percentage [63], and shifts in number of pixels or distance in cm/mm
between gaze [64] and target locations.

3.1 Exploring Eye Gaze Estimation for DMS

This research on eye gaze followed from the earlier work on driver monitoring systems [16]
and was part of the larger participation in training neural networks for the Fotonation/Xperi

driver monitoring system technologies and algorithms.

Some of this work, due to the significant improvements in performance over alternative
approaches became central to the Fotonation’s first DMS system. This chapter contains an
overview of work that can be publicly disclosed. Other significant improvements were later
made but cannot be fully detailed here due to the commercially sensitive nature of Driver
Monitoring systems.

However driver monitoring systems based on it are currently being used commercially,
have been shown at CVPR 2019, and helped to win the Irish research innovation award.
These developments eventually resulted in the opportunity to lead a small team of R&D
engineers developing a series of neural networks for driver monitoring tasks such as head
pose, eye gaze, occlusions, driver action recognition, and other core driver monitoring and

occupant monitoring technologies.

3.2 Convolutional Neural Network Implementation for Eye-Gaze Estimation on
Low-Quality Consumer Imaging Systems 39

FotoNation-

Leading Innovations in
Automotive In-Cabin Imaging

Fig. 3.1 CVPR 2019 demo which included an eye gaze network that I contributed to as
part of a complete driver monitoring system.

3.2 Convolutional Neural Network Implementation for Eye-
Gaze Estimation on Low-Quality Consumer Imaging

Systems

This section summarizes the work taken from my journal article [14] about the implementa-
tion of an eye gaze estimation system for a driver monitoring system, and continues with the
theme of investigating advanced data augmentation strategies and increasing the performance
(both speed and accuracy) of convolutional neural networks in consumer applications.

The major contributions are a new CNN for eye gaze estimation and analysis of a method
for improving invariance to user distance by data augmentation. A major challenge of
gaze-based consumer electronics design involves maximizing system performance while

reducing costs and system complexities.

Specifically, it describes work on a calibration-free method for appearance-based gaze

estimation that is suitable for consumer applications and low cost hardware with real time

40 Eye Gaze

requirements, using a Convolutional Neural Network (CNN). An analysis of both model

architecture and an augmentation approach is provided.

When deploying eye gaze solutions for consumer devices, there are two important aspects
to consider: accuracy and efficiency. This work addresses both issues by demonstrating
improved accuracy and also by reducing the number of multiplications needed for predictions,
thus increasing efficiency. It should be noted that the total number of matrix multiplications
needed to obtain predictions from a convolutional neural network is determined by the size
of the convolutional kernels, the step size, the number of nodes in each layer, and the number

of layers [10]. These multiplications are often measured in multiply-accumulate operations
(MAGC:s).

3.2.1 Contributions of this Work

From the perspective of developing a deep learning model for gaze estimation, the task can
either be considered a regression task or a classification task. Although both are useful,
regression provides the greatest predictive flexibility and thus this paper treats the eye gaze
estimation task as a regression problem with the goal of finding a gaze angle (¢,0) that
corresponds with a low resolution eye image such as one taken from a distance with a simple
RGB webcam mounted on a dashboard.

A hardware optimized network is implemented with demonstrated suitability for deploy-
ment on such consumer devices in terms of memory requirements and speed. This network
achieves superior accuracy using a dual channel input technique when compared against
other state-of-the-art CNN-based gaze tracking methods for unconstrained, low resolution

eye tracking.

Table 3.1 Result of Distance Simulation and Augmentation Experiments

Resolution Unaugmented error Augmented error
60 x 36 4.63 degrees 4918

52 x 31 9.90 degrees 4.94

26x 16 10.10 degrees 4.98

This table shows the impact of camera distance and augmentation for a trained eye gaze
model on angle accuracy.

This demonstrates that the model is sensitive to changes in distance. In the next section,

an experiment is performed to see if data augmentation can be used to improve upon this.

3.2 Convolutional Neural Network Implementation for Eye-Gaze Estimation on
Low-Quality Consumer Imaging Systems 41

3.2.2 Impact of Random Resizing as Augmentation

Data augmentation has been shown in many studies [65] to have a large impact on model
performance, but augmenting to increase accuracy on a wide range of distances appears to be
neglected in literature on eye gaze. To further improve accuracy, the dataset was augmented
with multiple randomly chosen resolutions to match the full range of desired distances. To
help reduce the chance that the network would learn the specific interpolation method used,
Nearest is used in the training set, but Lanczos filtering is used in the testing set.

These results indicate that augmenting the images with distances that are likely to be
encountered in real world usage situations is an effective way to increase accuracy and

succeeds in achieving some invariance to subject distance.

Network 1 Network2 Network3 Network4 Network5

Input: Right Eye Input: Both Eyes Input: Both Eyes Input: Both Eyes Input: Both Eyes
Convl:5x520 | |Convi:sxs 20 Conv1:5x510 | |Convi:3x3 20 Conv1: 3x3 32
Conv 2: 3x3 20 RELU

Conv2: 3x3 32 5x5 receptive field

Max Pool Max Pool Max Pool Max Pool Max Pool o
10%10 receptive field
Conv 2: 5x5 50 Conw 2: 5x5 50 Conv 2: 5x5 10 Conwv3: 3x3 50 Conv 3: 3x3 64
Conv4: 3x3 50 RELU

Conv3: 3x3 64 | 15115 receptive field

Max Pool Max Pool Max Pool Max Pool Max Pool L
30x%30 receptive field

— FC 500 FC 500 FC 250 FC 500 FC 500
RELU

-~ T
(| InputHead Pose)
\\-.___H___ ___P’_.J

FC2 FC2 FC2 FC2 FC2

Fig. 3.2 This figure contains network architecture details for the 5 networks examined in this
section. See Appendix D for more details.

3.2.3 Models Examined
The Five Networks

Five networks used in this subsection were evaluated on commodity processors for both
accuracy and speed. The result of speed experiments are in the table 3.2. A comparison
of the best performing network with related work is shown in table 3.3, and the results of
an experiment examining an augmentation technique using these networks are shown in
table 3.1 the architectural details are shown in figure 3.2 the data flow is shown in figure 3.3.

Additional experiments, results, and methodology are provided in appendix B.

42 Eye Gaze

-

Gaze (0, 8) Gaze,~(0; 8,)

-

| Channel0 || Channell |
Target = Gaze, + Gaze,
2
Convolutional Neural Network New (D*_ New 6
\
Head Pose
(Roll, Pitch, Yaw) l,

Fully Connected layer

-
Predicted Gaze (O, 6)

i | 4

Loss(Prediction,Target)

Fig. 3.3 This diagram provides a visual overview of the data flow for networks 2-5 used for
eye gaze estimation. Layer details differ for different networks and are illustrated in Figure
3.2.

The first network used (Network 1 in figure 3.2) was the “one channel” approach used
in [66], with which I compare. In contrast to the new approaches, this method performs a
separate inference for each eye and flips the right eye. The reason the right eye is flipped,
and the corresponding vectors recalculated, is to allow the network to learn a single model
for a given eye patch without consideration to the side of the face it is on. My first step was
to duplicate the results of [66] on the same network using the same architecture to establish a

reliable baseline for performance on the mpii-gaze database.

The next network architecture (Network 2 in figure 3.2) involved using both eyes in
separate channels, input to the network at the same time. Experiments with this network

showed that this architecture change increased accuracy.

3.2 Convolutional Neural Network Implementation for Eye-Gaze Estimation on
Low-Quality Consumer Imaging Systems 43

A variation of network 2, Network 3 in figure 3.2 contains half as many outputs per layer
and provided a significant increase in speed at the cost of a slight reduction in accuracy.

The fourth network replaces network 2 with 3x3 kernels (as shown in figure 3.2 such that
the receptive field is maintained but without additional changes. This network was included
to differentiate between results that occured due to the increase in outputs and addition of
nonlinearities in network 5 from those due to the 3x3 kernel replacement.

The fifth network (network 5 in figure 3.2) adds RELU nonlinearities to network 4. This
is the best performing model I examined for eye gaze. The replacement of 5x5 kernels with
3x3 kernels was motivated by the needs of an embedded system where the corresponding
reduction in multiplications with the same receptive field was important for performance and
implementation reasons.

Table 3.2 Frames Per Second of CNN on Commodity Hardware

Model ARM Cortex-AS53 AMD 1950X NVIDIA 1080 TI
Threadripper CPU ~ GPU

Network 1 [66] 20.64 473.11 3984.09

Network 2 39.81 960.06 8078.47

Network 3 92.59 3080.80 12607.90

Network 4 29.68 592.02 6134.02

Network 5 19.11 400.50 5500.37

VGG16 [67] 0.0043 0.64 120.4

All units are in frames per second. Details of these networks are discussed in appendix D.
As can be seen from this table, networks 2-4 perform faster on all tested hardware than the
comparison networks (Network 1 and VGG16) while providing greater accuracy. Network 4
has similar performance to network 1 while increasing accuracy. The well known VGG16
network is included to allow the reader to see the speed gain over this type of architecture.
VGG16 is an improvement over Alexnet, which was used to achieve 4.8 percent error on the
same dataset [68].

Table 3.2 shows the results of an experiment to measure the runtime of the 5 networks
with the popular VGG16 included for comparison.

The embedded processor used for these experiments was the ARM Cortex-AS53, a typical
64 bit processor used in embedded and mobile systems, and available on a well-known
embedded prototyping platform: the Raspberry PI. Tests used only one core of this processor.

The second processor, an AMD 1950X Threadripper, is a popular high end workstation
central processing unit (CPU). For a fair comparison, only one thread was used for tests.
Lastly the GPU used is a popular high end consumer GPU targeted at video gamers, the
NVIDIA 1080 TI GPU. As can be seen in Table 3.2, network 3 is significantly faster than the

44 Eye Gaze

Table 3.3 Comparison of Proposed Model and Other Published Works on the MPII-Gaze
Database

Citation Error (degrees)
Baltrusaitis et al [69] 9.96

Wood et al [70] 9.58
Shrivastava et al [71] 7.8

Nie et al [72] 7.1

Zhang et al [66] 6.1

Zhang et al [68] 4.8

Proposed 3.65

This table shows the best performing network from the proposed networks compared with
other reported results on the MPII-Gaze dataset. See appendixF for methodology.

other networks while network 5 provides a good balance between speed and accuracy. In

some cases network 3 may be preferred due to increased speed and competitive accuracy.
In order to facilitate a fair comparison with [66] the loss function for all networks follow

that which was used by the authors of that paper, and is calculated according to the following

equations, where ¢ and 0 are the predicted gaze and ¢ 0 are the corresponding ground truth.

norm; = \/(—1 cos(¢)-sin(0))>+ (—1-sin(¢9))>+ (—1-cos(¢) - cos(0))?

normp = \/(—1 -cos(9) - sin(6))2 + (—1-sin(¢))2 + (—1-cos() - cos(8))?
angle = (—1-cos(¢) -sin(0)) - (—1-cos(d) - sin(0))+
sin(0) - sin(0) + (—1-cos(9) - cos(0)) - (—1-cos(P) - cos(6))

acos(—28le__y . 180

normi-norm;

loss =
18

3.2.4 Discussion and Overview of Major Findings

It was found that by changing the network architecture to accept two eye crops, one for the
left and one for the right eye in two input channels, and merging the gaze vectors and the
position vectors, I was able to improve accuracy over that reported in Zhang et al [66]. It
was then shown that the increased performance could be achieved by halving the number of

nodes in each layer with a slight decrease in accuracy.

3.3 Extending the Idea to Augmented Environments 45

An experiment was done that demonstrated that the error more than doubles when the
network is exposed to images that have been artificially resized to simulate a wide range
of distances between the subject and the camera. This problem had not been addressed in
previous work. The solution to this was to augment the data with random simulated distances.
Finally, an improved network architecture that outperforms previously published works while

reducing the number of multiplications, and thus increasing efficiency, was proposed.

These results show that using information from both eyes in the neural network can
increase accuracy. In this experiment, adding additional eye information from the opposite
eye enabled improved results over individual eyes, helping the network make sense of low
quality images with ambiguous gaze. As expected, in all cases, the deeper network had the
best performance. This research demonstrated the sensitivity of such models to variations in
distance and how data augmentation can be used to overcome this. Most importantly, a new,
compact, hardware-friendly architecture designed for use in small consumer electronics has

been introduced and evaluated on the eye gaze task.

When evaluated on MPII Gaze, the proposed model performs favorably even when
compared with much larger networks in the literature. Running an optimized CNN based
algorithm such as this can provide a high-performance, low-energy solution for continuous
eye-tracking in next generation consumer electronic products.

In future work it would be interesting to see if Smart Augmentation could provide further
improvements but this would require either posing the eye gaze task as a classification task
or updating Smart augmentation to work with regression tasks, and neither of these options

would be trivial to implement with Smart Augmentation.

3.3 Extending the Idea to Augmented Environments

The use of deep learning for estimating eye gaze in augmented spaces estimation is investi-
gated in this section. The work in this section was presented at GEM 2018 in Galway Ireland.

The corresponding publication is attached in appendix E.

There are two primary ways of designing systems to facilitate interaction with augmented
spaces. The first involves the use of AR/VR systems where an eye facing camera is attached
to the AR/VR system. This provides clear, sharp eye images that are usually a fixed distance
from the user.

The other approach is to use a single camera or array of cameras/sensors at a distance.
This approach typically results in lower quality images but (in the single camera case) is less

expensive to implement and allows a single sensor to estimate the gaze of more than one

46 Eye Gaze

laza6eoon] 9°L L:o0:0

(b) Example image from the MPII-Gaze dataset,
showing subject’s right eye typical of gaze track-
ing systems that use low quality cameras that
are further from the subject.

(a) Example image from the McMurrough
dataset, showing subject’s right eye. This is
typical of AR/VR systems that utilize eye fac-
ing cameras to estimate gaze.

Fig. 3.4 Traditional methods work best on images that are typical of an AR/VR system such
as 3.4a but convolutional neural networks perform the best for low quality images such as
those shown in 3.4b

subject without requiring the use of head gear. This approach is typical in DMS systems and
is covered in detail in the previous section.

The use of deep learning for gaze estimation in augmented spaces for AR/VR use cases
is not well explored in the literature, and dedicated network models or datasets for gaze

estimation in such environments are not publicly available.

High Resolution Datasets for AR/VR Gaze Estimation

As mentioned previously, there are not enough public datasets from which deep learning
systems can be trained (or evaluated) for eye gaze estimation utilizing head-mounted eye-
facing cameras. The only suitable publicly available dataset found is the one developed by
McMurrough et al called the “Point of Gaze (PoG) Eye Tracking Dataset” [73]. Unfortunately,
this dataset only has images of the right eye and therefore may not be used for AR applications
where knowing what a person is looking at in 3D space involves calculating the intersection
of two gaze vectors. This information is still useful because there are typically only a few
objects that collide with a given gaze vector that are within a person’s field of view and
these can all be assumed to be the gaze target in an augmented or virtual space. Despite
this limitation, the PoG Eye Tracking Dataset is the most suitable publicly available dataset
captured with a head-mounted eye tracker and was therefore used for this research. An

example of typical images from PoG and MPII-Gaze are shown in figure 3.4

3.3 Extending the Idea to Augmented Environments 47

Because only right eyes were available, the network described at the start of this chapter
could not be used directly. Instead, a single eye version of this network was used in addition
to other architectures described in appendix E.

To create the Point of Gaze dataset, twenty participants (18 men, two women) were asked
to track target points on a video display while wearing an Applied Science Laboratories
Mobile Eye™ infrared monocular recording device. The participants’ right eye is centered
in the video frame and is annotated for specific target points. The dataset is composed of 20
subjects with ages ranging from 21 to 54. The dataset is annotated with head pose and eye
gaze information. Eye images are recorded with a resolution of 768 X 480 pixels at 29.97 Hz

frame rate.

Summary of Experiments and Results

Several experiments were performed on the Point of Gaze dataset using state of the art deep
learning tools but it was found that, contrary to the case of images taken at a distance, Deep
learning models did not perform as well for images that are typical of AR/VR setups as
typical traditional approaches.

One consideration when comparing or evaluating these results is that the average accuracy
includes frames where eyes are not open. This is a deliberate choice, as CNNs may be capable
of estimating gaze of even closed eyes therefore comparing these results with those that
disregard closed or partly open eyes would be misleading. Although this methodological
detail could explain some of the decrease in performance, it is insufficient to explain it fully
as the decrease in accuracy is observed even in fully visible eyes.

As deep learning begins to surpass traditional techniques in many eye gaze tasks, it is of
interest to investigate its potential for gaze estimation on AR/VR setups. In this research,
several CNN architectures were used to try to improve upon traditional gaze estimation
techniques for AR/VR use cases.

Although the error +- (1.329cm x 4.2246¢cm) of the best trained model, based on Xception
[74], would make it suitable for many gaze estimation tasks, the pure CNN model still

underperformed traditional methods.

Chapter 4

Transfer Learning of Temporal
Information for Driver Action
Classification And Semi Parallel Deep
Neural Networks

In this chapter work that does not form the core of this research, but nonetheless supports the
advancement of the application of machine learning and deep neural networks within the

limitations that arise on small consumer devices, is documented.

4.1 Transfer Learning of Temporal Information for Driver

Action Classification

In early 2017, after the first work on Smart Augmentation, research on driver monitoring
systems became a priority at fotonation/Xperi as an early feasibility study on their imple-
mentation. This early work later led to the publications on eye gaze as part of the efforts of
the in-the-cabin monitoring long term research and development group at fotonation/XPERI
which this work was performed.

This section contains an overview of the findings from this original feasibility study, and
the corresponding conference paper "Transfer Learning of Temporal Information for Driver
Action Classification". This paper was presented orally at MAICS 2017 in Dayton Ohio.
Neural Network Architectures that utilized a temporal component for the driver monitoring

task were explored and compared with the more commonly used frame-based approaches.

Transfer Learning of Temporal Information for Driver Action Classification And Semi
50 Parallel Deep Neural Networks

This early exploratory work on driver monitoring systems was never implemented in a
product, but it informed later work that became part of successive generations of Al-based
driver and occupant monitoring systems. It also led to my current role as a project manager
for the Fotonation’s Heliaus project team, an H2020 project with the goal of developing
driver monitoring systems using thermal cameras. Further information on this project can be

viewed here http://www.heliaus.eu).

4.1.1 Frame Based Methods and the Need for Temporal Information

Although frame based methods for determining action can perform with high accuracy for
some tasks such as "eating" or "smoking", other tasks cannot be effectively differentiated
without information from more than one frame. For example, by looking at a single frame
it may be difficult to determine if a person is putting down a cup or picking up a cup, or
more importantly, taking control of the steering wheel or letting go of the steering wheel. In
many cases, the added temporal component can also improve the robustness of algorithms
that already work well for single frame tasks, especially in the case where one frame is
ambiguous but the following or preceding frame can be understood with high confidence. By
including a concept of time in a model, the network is often better able to make predictions.
Additionally, temporal information allows for the concept of action that is more similar to
the way many animals process visual information, where greater attention is paid to things
that move, or the way that humans use temporal information for peripheral vision.

As we approach the limits of frame-based methods, there is a desire to further improve
deep learning algorithms by utilizing temporal information, which is information between
multiple frames taken sequentially to give a more complete idea of what is happening. Using
a single frame, it is trivial to train a classifier to determine if a person is holding a glass, but
difficult or impossible to train a classifier to understand if the glass is being picked up or put
down. Even distinguishing jogging from walking can be difficult without a time component.

4.1.2 Data Used for Training and Testing the Temporal and Frame
Based Networks

Correct classification of image data can depend on features learned in multiple sequential
frames. In this section the problem of learning action from video data with an emphasis on
driver behavior monitoring is studied. An insufficient quantity of high quality labeled data
is a major problem in machine learning research. This is especially true when deep neural

networks are used.

http://www.heliaus.eu

4.1 Transfer Learning of Temporal Information for Driver Action Classification 51

Although some sufficiently large, general purpose image databases exist for action
recognition, most of these are limited to single frames. This kind of data requires that the
action recognition task is applied without considering temporal information (information
from previous and next frames of a video sequence).

The largest database for driver behavior monitoring that could be found was “Distracted
Driver Dataset”, provided as part of a Kaggle challenge in mid-2016. Although this database
is intended for single frame classification, it is possible to identify the original frame se-
quences from which movies can be created. These movies can then be used for learning a
limited amount of temporal information.

The Distracted Driver Dataset was provided as part of a Kaggle Competition in 2016.
The dataset was created by filming actors on a closed driving course engaging in various
distracted and undistracted behaviors. It should be noted that these images were obtained in
a controlled environment and the car was not actually being driven. It was being pulled by a
truck instead. The objective of the competition was to correctly classify still images into 10
categories.

The training set of the distracted driver database contains frames of 26 subjects displaying
several of the following behaviors/actions:

1. cO: safe driving

2. cl: texting - right

3. ¢2: talking on the phone - right
4. c3: texting - left

5. c4: talking on the phone - left
6. c5: operating the radio

7. c6: drinking

8. c¢7: reaching behind

9. ¢8: hair and makeup

10. ¢9: talking to passenger

Although all the images in the supplied training set are still images, it is possible to
reconstruct the original “movies” based on their order in the CSV file supplied with ground
truth annotations.

Transfer Learning of Temporal Information for Driver Action Classification And Semi
52 Parallel Deep Neural Networks

While classifying frames for driver monitoring is an interesting problem, which I would
go on to develop techniques for later with the industry partner, I wanted to see if anything
could be learned from the temporal information in the movies. Instead of using individual

frames as required for the competition, short movie clips were used.

4.1.3 Research Questions

The two major research questions that formed the motivation for this work were:

1. Can temporal information be used to improve accurate classification of driver actions?

2. Can low-level information about temporal information from an unrelated problem be

successfully used to better understand driver actions in videos?

To answer these questions, several networks based on CNNs and RNNs were used with
and without augmentation.

To answer the second question, a transfer learning approach was used. Transfer learning
is the process of transferring knowledge that has already been learned by one neural network
into another one. This is often accomplished by copying the learned weights and biases from
one or more layers of a fully trained network to a different network. Transfer learning can be
used to overcome overfitting issues and to speed up the training process for a related task.

One important paper on the use of transfer learning with 3D CNNs was written by Tran
et al. [75]. That paper makes a compelling case for the use of 3D CNNs for understanding
video data. Their method, which they named C3D, compared favorably to other published
results on 5 of 6 generic action datasets used. They also showed that their network learns
information about both motion and appearance, first learning appearance and then motion.
One problem with this design is that only relatively short action sequences (16 frames) can
be learned. The best results were obtained using this approach, as explained further.

Another approach, which was new at the time this research was conducted, combines
LSTMs with convolutions and is introduced by Xing et al in [76]. Although the focus of
their paper is forecasting precipitation, their method is generally applicable to the task of
gathering long and short term time information from video sequences. Several experiments
involving this method were performed as explained later, but none of them performed well,
likely because of the lack of data.

Addressing the problem of insufficient data to train a neural network, [77] introduced a
large, automatically generated, database gathered from YouTube clips called the sport 1M
dataset. They showed that a transfer learning approach is effective at gaining accuracy on
UCF 101 when a network is first trained on sports 1M. They evaluate their method on the
UCEF - 101, a database that contains over 12,000 videos with 101 human action classes [78].

4.1 Transfer Learning of Temporal Information for Driver Action Classification 53

4.1.4 Augmentation

Augmentation is a recurring theme in this thesis and the driver monitoring study was no
exception.

In experiments where augmentation was applied, the ImageDataGenerator class within
Keras was used. This class is used to dynamically create augmented images during training
given a set of parameters. Since the standard implementation of ImageDataGenerator only
supports 2D data, so it was extended to properly apply the transformations to video data.
This modification involved ensuring that the same transformation was applied to every frame
of a clip instead of treating each frame as an individual image with a potentially different
transformation. Transformations included rotation (random 5 and 15 degrees left and right),
and translation (up to 10% on width and height).

4.1.5 Experiments

In this section, experiments on the distracted driver database are summarized. The experi-
ments were designed to allow comparison between networks that use temporal information
(LSTM, 3D CNN, etc) and networks that ignore it (2D CNN). The last experiments are
designed to measure the improvement that is achieved by transfer learning.

For a proper comparison, the single-frame-based method chosen was a full VGG16,
trained [67] from scratch on the distracted driver dataset in Keras with a learning rate of
0.001. The experiment was then repeated on a grayscale version of the distracted driver
dataset with rotation, translation, and feature normalization (inputs are divided by the standard
deviation of the dataset).

Experiments Utilizing Temporal Data

Once reliable baseline for what a frame-based method could accomplish had been established,
experiments involving temporal information were performed. The LSTM used was the
implementation from [76], implemented in Keras as ConvLSTM2D.

Network 1 was a simple 3D CNN, network 2 was the same 3D CNN, but with a LSTM
step before. Network 3 was the same as network 2, except with the order reversed (3DCNN
followed by LSTM). Further details on these architectures and the training methodology
used are in Appendix C. All three experiments were performed on both visible and grayscale
versions of the dataset. Unfortunately, these networks all quickly overfit and didn’t produce

satisfactory results.

Transfer Learning of Temporal Information for Driver Action Classification And Semi
54 Parallel Deep Neural Networks

This overfitting was expected due to the limited number of subjects and the highly
correlated frames. Investigation of the source of the overfitting revealed that low level

features (in the first few layers) were responsible.

Transfer Learning

In this experiment, a C3D was trained with random weight initialization on the distracted
driver dataset. This was compared with a C3D network that had been pretrained [75] on the
sports 1-M dataset.

Transfer Learning with C3D

Network A
L

input

O @ >
- *lo e
—— e s
O /@
y O @
. O Output
(‘ J J .‘ O
oo o®

Network B

Fig. 4.1 Illustration of transfer learning concept where the first layers in network A and
network B are the same.

Since other approaches to reducing the overfitting problem, were of limited success, a
transfer learning approach was tried. The idea is to use pretrained weights from an existing
network, trained for a more generic action recognition task, and then to tune them with the
Distracted Driver training set.

In the previous experiments, the first layers were identified as being the primary source of
overfitting, thus two transfer learning approaches were attempted. The first was to train the
pretrained C3D network with a very low learning rate of 0.0001 without freezing any layers.

The alternate transfer learning approach wherein freezing the learning rate of the first

layers was attempted. Since the first layers were identified as the cause of the greatest source

4.1 Transfer Learning of Temporal Information for Driver Action Classification 55

Table 4.1 Top Performing Approaches (>= 30%)

Approach Accuracy
Transfer learning on 3D CNN. First 2 layers frozen 73.35%
Transfer learning on 3D CNN. First 5 layers frozen 60%

2D VGG 16 with augmentation 46%
3D CNN without augmentation 39.57 (no transfer learning)%
2D VGG 16 without augmentation 30%

Table 4.2 The Best Results on the Validation Set After Reaching 100% on the Training Set

Train loss* Val loss Train Accuracy Val Accuracy
0.0173 0.8563 1 0.7335

of overfitting, this experiment was repeated again, except freezing only the first five layers,
followed by freezing the first two layers.

4.1.6 Summary of Findings

In this subsection, the experiments in the previous section are summarized. Detailed results
are available in appendix C. The experiments with the best results are listed in table 4.1.
Since overfitting is found to be the primary cause of validation error in most experiments,
details about the loss and accuracy are shown in table 4.2 before and after 100% accuracy

was obtained on the training set (indicating overfitting).

In this research, it was shown that low level filters (early layers) learned by a 3D CNN
can be used to greatly increase the accuracy on small datasets of drivers for the driver
behavior classification task. It is not obvious that the first layers of a network trained for
identifying actions in sports videos, such as basketball and swimming, could also be used
to distinguish between distracted driver actions like left and right hand cell phone use or
speaking with a passenger. It was also shown that temporal information could be used to
increase accuracy for the driver behavior monitoring task over a network that does not use
such temporal information. At a very low level, the action of moving fingers and heads may
not be substantially different between different action recognition problems for convolutional
neural networks. In these experiments, freezing any more than the first two layers decreased

accuracy.

Transfer Learning of Temporal Information for Driver Action Classification And Semi
56 Parallel Deep Neural Networks

4.2 Semi-Parallel Deep Neural Network (SPDNN) Hybrid
Architecture, First Application on Depth from Monoc-

ular Camera

SPDNN is an algorithm to merge different types of neural networks together in such a way

as to benefit from each without duplication in computation.

As stated previously in this thesis, Deep Neural Networks (DNN) have been used in a
range of machine learning and data-mining applications. These networks comprise sequential
layers including, for example, convolutional layers or fully connected layers, typically

accompanied by pooling or regularization tasks.

At times, one may encounter two or more networks that perform well at some aspects
of a given task which, when taken together, perform better than they would individually. A
common approach in this case is to use an ensemble or other method of merging the output
of these networks. This section suggests an alternative approach called Semi-Parallel Deep
Neural Network (SPDNN).

The main idea of SPDNN is to merge two or more neural networks without altering the
kernel sizes or the order of layers. This is accomplished by representing each layer of each
network as nodes in a graph, labeling the nodes and applying graph contraction. This will be
explained in detail in the following sections. Complete details of SPDNN can be found in
Appendix F.

Merging components of specialized deep neural networks was producing better results
than not combining them, but some critics wondered what the difference between this
approach and inception or even ensembling was.

Of course: it was not any of these methods ensambling keeps the existing network archi-
tectures and there are no inception modules in SPDNN (although inception type networks
can be merged using the SPDNN technique). The major problem was that that there was no
algorithm that could describe exactly what SPDNN was. A general method for generating
any SPDNN-like network was elusive. At some point it became clear that this was a graph
contraction problem. If each neural network layer is uniquely labeled and then represented
as a graph, then it would then be possible to use graph contraction to come up with the exact
same networks which had worked well in experiments. At that point, from then on, SPDNN
changed from being an observation to a graph based algorithm.

SPDNN has been applied successfully to depth estimation[15] and iris segmentation [79].
The journal paper on SPDNN is included in appendix F and a detailed discussion of the

graph-based algorithm is described in section 4.2.

4.2 Semi-Parallel Deep Neural Network (SPDNN) Hybrid Architecture, First Application on
Depth from Monocular Camera 57

Net2 Translate Label Label Granh Translate
. from || Graph n from | . Pt. L back to
Net 3 mio input to contraction output to contraction network
Graph output input

Net N

Fig. 4.2 High level overview showing labeling and contraction steps of SPDNN workflow.

4.2.1 How to Construct a Semi-Parallel Deep Neural Network with
Graph Contraction and Labeling

As my contribution to SPDNN was entirely in the graph algorithm, I omit details on appli-
cations of SPDNN, as I was not involved in these aspects. This subsection explains how to
create an SPDNN type network from multiple existing network typologies.

A high level overview showing the main steps of the SPDNN algorithm can be seen in
figure 4.2. To convert two or more neural networks with the same output and input type into
a graph as part of the SPDNN process, the following steps should be applied.

First, arrange each layer as a node in a graph, connecting nodes according to how they
were connected in the original network. This involves labeling each node according to its
properties. In the case of convolutional layers, this would be: kernel size, layer type, and
distance from input. For example (5¢,3) would be a convolutional layer with a 5x5 kernel at
distance 3 from the input.

In the case of fully connected layers, there is no kernel size, but the number of neurons is
often important so the syntax is: number of neurons, followed by the layer type and then the
distance from input. For example (4f,7) would be a fully connected layer with 4 neurons at
distance 7 from the input.

Pooling and unpooling layers are represented by U and P symbols with their kernel size
in front. For example 2p means a 2x2 pooling layer. Pooling and unpooling operations are
never represented as their own nodes in the graph but are instead appended to the previous
layer. They also have a "stickiness" property, which means every node after the first keeps
the pooling or unpooling property. Fully connected layers remove this property and later
pooling or unpooling layers modify it. This mechanism is best illustrated by figure 4.3, where
nodes labeled with C are (3¢2p,2) indicating a 3x3 convolutional layer with 2x2 max pooling
applied and distance 2 from the input. Also note that this property is retained until N in the

Transfer Learning of Temporal Information for Driver Action Classification And Semi
58 Parallel Deep Neural Networks

(3¢,1) (3¢2) (3¢,3) (3¢,4) (3¢,5) (3¢,6) (3¢,7) (3¢,8)

@ © O @ O O

B F N
(3C2p,2) (3€2p,3) (3c2p,4) (3¢,5) (3¢,6) (3¢,7) (3¢,8)
© O O @ O O
(o K N P
(3¢4p,2) (3¢4p,3) (3c4p,4) (3¢,5) (3¢,6) (3¢,7)
@ @ @ @ O O
D H L N P
. output
input (3¢,1) (3c8P,2) (3c8pP,3) (3c8P,4) (3¢,5) (3€,6) (3¢,7)
@ @ O O @ O O
A E | M N P
ey - (362) Be3) Bca) (30F,5) (330F.6)
@ © O o—@
B F o Q
(3¢,1) (3c2p,2) (3C2P3) (3C2P4) (30F,5) (330F,6)
© O O Oo—@
C K (o] Q
(3cap,2) (3€4P,3) (3C4P,4) (30F,5) (330F,6)
@ @ @ O—@
D H L 0 Q

(3c8p,2) (3c8p,3) (3c8p4) (30F,5) (330F,6)
O O Oo—@

A E 1 M (] Q T

Fig. 4.3 This figure illustrates a parallelized version of 8 networks before the graph contraction
step. Note that each note is labeled according to the methods described previously and there
is a single input and output.

same figure. This was caused by an unpooling layer of the same kernel size removing the
convolution property.

Finally, nodes with the same properties get assigned the same labels (Shown in figure
4.3). For example every (3c2p,2) will be assigned a label (perhaps C). This allows us to
complete the graph contraction step shown in figure 4.4 wherein all labels that are the same
are merged together.

After this point a new SPDNN type network with the same properties as the original
networks can be created by following the labeling process in reverse order.

There is one final issue that remains ambiguous in the above explanations, and that is
what to do with convolutional layers with kernels that are the same size and that have a
different numbers of outputs. These layers should be merged but the number of outputs may
be chosen according to the judgment of the engineer. In case of uncertainty or if designing
an automated version of SPDNN, my suggestion is to select the number of outputs based on
the maximum outputs of the merged nodes.

4.2 Semi-Parallel Deep Neural Network (SPDNN) Hybrid Architecture, First Application on
59

Depth from Monocular Camera

(3€) (3¢) (30)

B
(3€) (30) (30)

(3¢2P)
output

(@)

(3¢2P)

input (3€)

C

(3cap) (3cap)

(30F) (330F) (30)

H

(3c8P)

Fig. 4.4 This is the same network as shown in 4.3 after graph contraction is applied.

References

[1]

(2]

[3]

[4]

[5]

[6]

[8]

[9]

[10]

[11]

[12]

D. H. Wolpert, W. G. Macready et al., “No free lunch theorems for optimization,” IEEE
transactions on evolutionary computation, vol. 1, no. 1, pp. 67-82, 1997.

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are
universal approximators,” Neural networks, vol. 2, no. 5, pp. 359-366, 1989.

D. E. Rumelhart, G. E. Hintont, and R. J. Williams, “Learning representations by
back-propagating errors,” NATURE, vol. 323, p. 9, 1986.

A. M. Turing, “Intelligent machinery,” 1948.

J. Lemley, S. Bazrafkan, and P. Corcoran, “Deep learning for consumer devices and
services: Pushing the limits for machine learning, artificial intelligence, and computer
vision.” IEEE Consumer Electronics Magazine, vol. 6, no. 2, pp. 48-56, 2017.

J. McCarthy, M. Minsky, and N. Rochester, “A proposal for the dartmouth summer
research project on artificial intelligence,” Reprinted online at http://www-formal.
stanford. edu/jmc/history/dartmouth/dartmouth. html, 1955.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,
pp. 770-778.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp. 1-9.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.
Jackel, “Backpropagation applied to handwritten zip code recognition,” Neural Comput,
vol. 1, no. 4, pp. 541-551, 1989.

I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT press
Cambridge, 2016, vol. 1.

J. Lemley, S. Bazrafkan, and P. Corcoran, “Smart augmentation learning an optimal
data augmentation strategy,” IEEE Access, vol. 5, pp. 5858-5869, 2017.

——, “Learning data augmentation for consumer devices and services,” in 2018 IEEE
International Conference on Consumer Electronics (ICCE). 1EEE, 2018, pp. 1-3.

62 References

[13] P. Corcoran, J. Lemley, and S. Bazrafkkan, “Getting more from your datasets: Data
augmentation, annotation and generative techniques,” Embedded Vision Summit 2018,
2018.

[14] J. Lemley, A. Kar, A. Drimbarean, and P. Corcoran, “Convolutional neural network
implementation for eye-gaze estimation on low-quality consumer imaging systems,”
IEEE Transactions on Consumer Electronics, 2019.

[15] S. Bazrafkan, H. Javidnia, J. Lemley, and P. Corcoran, “Semiparallel deep neural
network hybrid architecture: first application on depth from monocular camera,” Journal
of Electronic Imaging, vol. 27, no. 4, p. 043041, 2018.

[16] J. Lemley, B. Shabab, and P. Corcoran, “Transfer learning of temporal information for
driver action classification,” in Proceedings of the 28th Modern Artificial Intelligence
and Cognitive Science Conference 2017, vol. 1964, 2017, pp. 123—-128.

[17] J. Lemley, A. Kar, and P. Corcoran, “Eye tracking in augmented spaces: A deep learning
approach,” in 2018 IEEE Games, Entertainment, Media Conference (GEM). 1EEE,
2018, pp. 1-6.

[18] A.McDonagh, J. Lemley, R. Cassidy, and P. Corcoran, “Synthesizing game audio using
deep neural networks,” in 2018 IEEE Games, Entertainment, Media Conference (GEM).
IEEE, 2018, pp. 1-9.

[19] S. Bazrafkan and J. Lemley, “Method for synthesizing a neural network,” Jul. 26 2018,
US Patent App. 15/413,283.

[20] ——, “Method of training a neural network,” Jul. 26 2018, US Patent App. 15/413,312.

[21] A.Brand, L. Allen, M. Altman, M. Hlava, and J. Scott, “Beyond authorship: attribution,
contribution, collaboration, and credit,” Learned Publishing, vol. 28, no. 2, pp. 151-155,
2015.

[22] L. Sirovich and M. Kirby, “Low-dimensional procedure for the characterization of
human faces,” Josa a, vol. 4, no. 3, pp. 519-524, 1987.

[23] A. Martinez and R. Benavente, “The ar face database,” CVC Technical Report #24,
Tech. Rep., 1998.

[24] P.J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss, “The feret evaluation methodology
for face-recognition algorithms,” IEEE Transactions on pattern analysis and machine
intelligence, vol. 22, no. 10, pp. 1090-1104, 2000.

[25] E. Eidinger, R. Enbar, and T. Hassner, “Age and gender estimation of unfiltered faces,”
Information Forensics and Security, IEEE Transactions on, vol. 9, no. 12, pp. 2170-
2179, 2014.

[26] A. Hernandez-Garcia and P. Konig, “Data augmentation instead of explicit regulariza-
tion,” arXiv preprint arXiv:1806.03852, 2018.

[27] ——, “Further advantages of data augmentation on convolutional neural networks,” in
International Conference on Artificial Neural Networks. Springer, 2018, pp. 95-103.

References 63

[28] S.Hauberg, O. Freifeld, A. B. L. Larsen, J. Fisher, and L. Hansen, “Dreaming more data:
Class-dependent distributions over diffeomorphisms for learned data augmentation,” in
Artificial Intelligence and Statistics, 2016, pp. 342-350.

[29] L. Perez and J. Wang, “The effectiveness of data augmentation in image classification
using deep learning,” arXiv preprint arXiv:1712.04621, 2017.

[30] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, “Autoaugment: Learn-
ing augmentation strategies from data,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 113-123.

[31] C. Lin, M. Guo, C. Li, W. Wu, D. Lin, W. Ouyang, and J. Yan, “Online hyper-parameter
learning for auto-augmentation strategy,” arXiv preprint arXiv:1905.07373, 2019.

[32] S. Lim, I. Kim, T. Kim, C. Kim, and S. Kim, “Fast autoaugment,” arXiv preprint
arXiv:1905.00397, 2019.

[33] D. Ho, E. Liang, I. Stoica, P. Abbeel, and X. Chen, “Population based augmentation:
Efficient learning of augmentation policy schedules,” arXiv preprint arXiv:1905.05393,
2019.

[34] K. Fujita, M. Kobayashi, and T. Nagao, “Data augmentation using evolutionary image
processing,” in 2018 Digital Image Computing: Techniques and Applications (DICTA).
IEEE, 2018, pp. 1-6.

[35] J. C. Acero, E. Zacur, H. Xu, R. Ariga, A. Bueno-Orovio, P. Lamata, and V. Grau,
“Smod-data augmentation based on statistical models of deformation to enhance seg-
mentation in 2d cine cardiac mri,” in International Conference on Functional Imaging
and Modeling of the Heart. Springer, 2019, pp. 361-369.

[36] X. Peng, Z. Tang, F. Yang, R. S. Feris, and D. Metaxas, “Jointly optimize data augmen-
tation and network training: Adversarial data augmentation in human pose estimation,”
in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2018.

[37] A.J. Ratner, H. Ehrenberg, Z. Hussain, J. Dunnmon, and C. Ré, “Learning to com-
pose domain-specific transformations for data augmentation,” in Advances in neural
information processing systems, 2017, pp. 3236-3246.

[38] M. Podduturi, “Data augmentation for supervised learning with generative adversar-
ial networks,” lowa State University Digital Repository GRADUATE THESES AND
DISSERTATIONS, 2018.

[39] A. Antoniou, A. Storkey, and H. Edwards, “Data augmentation generative adversarial
networks,” arXiv preprint arXiv:1711.04340, 2017.

[40] X.Zhang, Z. Wang, D. Liu, and Q. Ling, “Dada: Deep adversarial data augmentation
for extremely low data regime classification,” in ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). 1EEE, 2019, pp.
2807-2811.

64 References

[41] T. Tran, T. Pham, G. Carneiro, L. Palmer, and I. Reid, “A bayesian data augmentation
approach for learning deep models,” in Advances in Neural Information Processing
Systems, 2017, pp. 2797-2806.

[42] J. Schliiter and T. Grill, “Exploring data augmentation for improved singing voice
detection with neural networks.” in ISMIR, 2015, pp. 121-126.

[43] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk, and Q. V. Le,
“Specaugment: A simple data augmentation method for automatic speech recognition,”
arXiv preprint arXiv:1904.08779, 2019.

[44] I. Vatolkin and D. Stoller, “Evolutionary multi-objective training set selection of data
instances and augmentations for vocal detection,” in International Conference on Com-
putational Intelligence in Music, Sound, Art and Design (Part of EvoStar). Springer,
2019, pp. 201-216.

[45] T.DeVries and G. W. Taylor, “Improved regularization of convolutional neural networks
with cutout,” arXiv preprint arXiv:1708.04552, 2017.

[46] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond empirical risk
minimization,” arXiv preprint arXiv:1710.09412, 2017.

[47] H. Guo, Y. Mao, and R. Zhang, “Mixup as locally linear out-of-manifold regularization,”
arXiv preprint arXiv:1809.02499, 2018.

[48] Y. Duan, X. Niu, and G. Nie, “Data augmentation based on interest points of feature,” in
Tenth International Conference on Digital Image Processing (ICDIP 2018), vol. 10806.
International Society for Optics and Photonics, 2018, p. 108060B.

[49] 1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural
information processing systems, 2014, pp. 2672-2680.

[50] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Im-
proved techniques for training gans,” in Advances in neural information processing
systems, 2016, pp. 2234-2242.

[51] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained
by a two time-scale update rule converge to a local nash equilibrium,” in Advances in
Neural Information Processing Systems, 2017, pp. 6626—6637.

[52] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation
using cycle-consistent adversarial networks,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2223-2232.

[53] D. Berthelot, T. Schumm, and L. Metz, “Began: Boundary equilibrium generative
adversarial networks,” arXiv preprint arXiv:1703.10717, 2017.

[54] A.Mims, “Student neural network,” Jun. 13 2006, US Patent 7,062,476.

[55] W. Kinzel and 1. Kanter, “Neural cryptography,” in Proceedings of the 9th International
Conference on Neural Information Processing, 2002. ICONIP’02., vol. 3. 1EEE, 2002,
pp- 1351-1354.

References 65

[56] Y. Liang, M. L. Reyes, and J. D. Lee, “Real-time detection of driver cognitive distraction
using support vector machines,” IEEE Trans. Intell. Transp. Syst., vol. 8, no. 2, pp.
340-350, June 2007.

[57] E. Wood and A. Bulling, “Eyetab: Model-based gaze estimation on unmodified
tablet computers,” in Proceedings of the Symposium on Eye Tracking Research and
Applications, ser. ETRA °14. New York, NY, USA: ACM, 2014, pp. 207-210.
[Online]. Available: http://doi.acm.org/10.1145/2578153.2578185

[58] A. Tawari and M. M. Trivedi, “Robust and continuous estimation of driver gaze zone by
dynamic analysis of multiple face videos,” in 2014 IEEE Intelligent Vehicles Symposium
Proceedings, June 2014, pp. 344-349.

[59] V. Vaitukaitis and A. Bulling, “Eye gesture recognition on portable devices,” in
Proceedings of the 2012 ACM Conference on Ubiquitous Computing, ser. UbiComp
’12. New York, NY, USA: ACM, 2012, pp. 711-714. [Online]. Available:
http://doi.acm.org/10.1145/2370216.2370370

[60] A. Kar and P. Corcoran, “A review and analysis of eye-gaze estimation systems, al-
gorithms and performance evaluation methods in consumer platforms,” IEEE Access,
vol. 5, pp. 16495-16519, 2017.

[61] D. W. Hansen and Q. Ji, “In the eye of the beholder: A survey of models for eyes and
gaze,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 3, pp. 478-500, 2010.

[62] F. L. Coutinho and C. H. Morimoto, “Augmenting the robustness of cross-ratio gaze
tracking methods to head movement,” in Proceedings of the Symposium on Eye Tracking
Research and Applications. ACM, 2012, pp. 59-66.

[63] S. Chen and C. Liu, “Eye detection using discriminatory haar features and a new
efficient svm,” Image Vision Comput., vol. 33, pp. 6877, 2015.

[64] H. chuan Lu, C. Wang, and Y. w. Chen, “Gaze tracking by binocular vision and lbp
features,” in 2008 19th International Conference on Pattern Recognition, Dec 2008, pp.
1-4.

[65] J. Lemley, S. Bazrafkan, and P. Corcoran, “Smart augmentation learning an optimal
data augmentation strategy,” IEEE Access, vol. 5, pp. 5858-5869, 2017. [Online].
Available: https://doi.org/10.1109/ACCESS.2017.2696121

[66] X. Zhang, Y. Sugano, M. Fritz, and A. Bulling, “Appearance-based gaze estimation
in the wild,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2015, pp. 4511-4520.

[67] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[68] X.Zhang, Y. Sugano, M. Fritz, and A. Bulling, “It’s written all over your face: Full-face
appearance-based gaze estimation,” in 2017 IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), July 2017, pp. 2299-2308.

http://doi.acm.org/10.1145/2578153.2578185
http://doi.acm.org/10.1145/2370216.2370370
https://doi.org/10.1109/ACCESS.2017.2696121

66 References

[69] T. Baltrusaitis, P. Robinson, and L. P. Morency, “Openface: An open source facial be-
havior analysis toolkit,” in 2016 IEEE Winter Conference on Applications of Computer
Vision (WACV), March 2016, pp. 1-10.

[70] E. Wood, T. Baltrusaitis, L.-P. Morency, P. Robinson, and A. Bulling, “Learning an
appearance-based gaze estimator from one million synthesised images,” in Proceedings
of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications, ser.
ETRA ’16. New York, NY, USA: ACM, 2016, pp. 131-138. [Online]. Available:
http://doi.acm.org/10.1145/2857491.2857492

[71] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb, “Learning
from simulated and unsupervised images through adversarial training,” in 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), July 2017, pp. 2242—
2251.

[72] S. Nie, M. Zheng, and Q. Ji, “The deep regression bayesian network and its applications:
Probabilistic deep learning for computer vision,” IEEE Signal. Proc. Mag., vol. 35,
no. 1, pp. 101-111, Jan 2018.

[73] C. D. McMurrough, V. Metsis, J. Rich, and F. Makedon, “An eye tracking dataset for
point of gaze detection,” in Proceedings of the Symposium on Eye Tracking Research
and Applications. ACM, 2012, pp. 305-308.

[74] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2017,
pp- 1251-1258.

[75] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning spatiotemporal
features with 3d convolutional networks,” in Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 4489-4497.

[76] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo, “Convo-
lutional Istm network: A machine learning approach for precipitation nowcasting,” in
Advances in Neural Information Processing Systems, 2015, pp. 802-810.

[77] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei, “Large-
scale video classification with convolutional neural networks,” in Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition, 2014, pp. 1725-1732.

[78] K. Soomro, A. R. Zamir, and M. Shah, “Ucf101: A dataset of 101 human actions
classes from videos in the wild,” arXiv preprint arXiv:1212.0402, 2012.

[79] S. Bazrafkan, S. Thavalengal, and P. Corcoran, “An end to end deep neural network for
iris segmentation in unconstrained scenarios,” Neural Networks, vol. 106, pp. 79-95,
2018.

[80] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,
“Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model
size,” arXiv preprint arXiv:1602.07360, 2016.

http://doi.acm.org/10.1145/2857491.2857492

Appendix A

Deep Learning for Consumer Devices

and Services

ARAN - Access to Research at NUI Galway

Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published
version when available.

Deep learning for consumer devices and services. Pushing the
Title limits for machine learning, artificial intelligence, and
computer vision

Author(s) | Lemley, Joseph; Bazrafkan, Shabab; Corcoran, Peter

Publication | 5,74

Date
Lemley, J., Bazrafkan, S., & Corcoran, P. (2017). Deep
Publication Learning for Consumer Devices and Services: Pushing the
Information limits for machine learning, artificial intelligence, and

computer vision. |EEE Consumer Electronics Magazine, 6(2),
48-56. doi: 10.1109/M CE.2016.2640698

Publisher | Institute of Electrical and Electronics Engineers (IEEE)

Link to
publisher's | http://dx.doi.org/10.1109/M CE.2016.2640698
version

Item record | http://hdl.handle.net/10379/6699

DOI http://dx.doi.org/10.1109/M CE.2016.2640698

Downloaded 2020-05-10T18:14:01Z

Some rights reserved. For more information, please see the item record link above.

Deep Learning for Improved Consumer
Devices & Services

1. INTRODUCTION TO DEEP LEARNING 1
1.1 DEEP LEARNING & CONSUMER ELECTRONICS 2
1.2 NEURAL NETWORKS - WHAT THEY ARE AND WHAT THEY ARE USED FOR 2
1.3 TRAINING THE NETWORK 2
SUPERVISED VS UNSUPERVISED LEARNING 3
1.4 INSIDE THE NEURAL NETWORK 4
1.5 A RENAISSANCE FOR NEURAL NETWORKS? 5
2. CONVOLUTIONAL NEURAL NETWORKS 6
2.1 CONVOLUTION AND ITS ROLE IN A NEURAL NETWORK: 6
2.2 DeeP NEURAL NETWORKS 9
2.2.1 TypiCAL DEEP NEURAL NETWORKS: 9
2.2.2 FULLY CONVOLUTIONAL NETWORKS (FCN): 10
2.2.2 AUTO-ENCODERS: 11
2.2.4 RECURRENT NEURAL NETWORKS (RNN): 12
3. STATE OF ART TODAY 12
3.1 MAIN ENABLING TECHNOLOGIES (OVERVIEW) 12
3.2 EXAMPLE APPLICATIONS 14
4. CONCLUSIONS 15
REFERENCES 15

1. Introduction to Deep Learning

In the last few years we have witnessed an exponential growth in research activity into the advanced
training of convolutional neural networks (CNN) — a field which has become known as “Deep
Learning”. This has been triggered by a combination of the availability of significantly larger data-
sets, thanks in part to a corresponding growth in “Big Data”, and the arrival of new GPU-based
hardware that enables these large data-sets to be processed in reasonable time-scales. Suddenly a
myriad of long-standing problems in machine learning, artificial intelligence and computer vision
have seen significant improvements, often sufficient to break through long-standing performance
thresholds. Across multiple fields these achievements have inspired the development of improved
tools and methodologies leading to even broader applicability of Deep Learning. The new generation
of smart assistants — Alexa, Hello Google and others — have their roots and learning algorithms tied
into deep learning. In this article we review the current state of Deep Learning, explaining what it is,
why it has managed to improve on the longstanding techniques of conventional neural networks
and, most importantly, how you can get started with adopting deep learning into your own research

activities to solve both new and old problems and build better, smarter consumer devices &
services.

1.1 Deep Learning & Consumer Electronics

There has perhaps never been a better time to take advantage of the power of deep learning in
consumer products. In retrospect, we may consider 2016 the year that deep learning toolkits and
techniques matured from tools that were mostly oriented to researchers into easily used product-
enabling technology that can be used to add “intelligence” to almost any consumer device even by
non-experts. We expect to see an explosion in products that take advantage of these resources in
the coming years, with early adopters differentiating themselves from competitors and further
refinement of technology and deep learning methods.

In this article, we hope to provide you with the tools and understanding to start using deep learning
today, or to understand what consumer devices that are built using this technology can do and how
they work.

1.2 Neural Networks - what they are and what they are used for

Artificial neural networks (ANN) are able to learn something about what they “see” and then
“generalize” that knowledge to examples (or samples) that they have never seen before [1]. This is a
very powerful capability that humans often take for granted because our brains do it so well
automatically. You are able to understand the concept of a rock after seeing and perhaps touching
very few examples of rocks. From that point on you can identify any rock, even those that are
shaped differently or have different colours or textures from the rocks you’ve seen before. This
approach can be seen as opposed to the traditional method of “teaching” or explicitly programming
computers based on detailed “rules” that must cover every possible outcome.

The process of discerning the category to which a piece of data belongs is called a classification task;
one of the more famous uses of this technique is that of training a neural network. The ability to
classify unseen examples is referred to as “generalization”.

Not surprisingly, Artificial Neural Networks are especially powerful in tasks for which the appropriate
outcome cannot be determined beforehand and thus cannot use traditional pre-programmed rules

[2].

1.3 Training the Network

Artificial Neural Networks (ANN) are not the only techniques that can do this, and much of the
terminology we use when talking about ANNs comes from other fields such as statistics. The process
of “teaching” our network is called “training”. When we train a network, what we are formally doing
is “fitting” a network to our training (data-)set. This language is borrowed from mathematics where
we may try to find the best way to “fit” information to a regression line or other mathematical
model. The “training set” is the sample information that we think is sufficiently representative that
our network should be able to learn from it. The thing we want our network to learn to do is called
the “task”.

When training Artificial Neural Networks, we want the network to perform well at a given task on
unseen information. When an ANN is not trained sufficiently to do this, we call it “underfitting”.
Which means that the network did not sufficiently learn the training set. The opposite of this is
called overfitting, where the network learns the training set so well that it cannot effectively be
applied to data that it has not seen before [3]. These concepts can be best understood by referring

to Figure 1 which illustrates a simple 2D data-set. Note that in practice we deal with multi-
dimensional data leading to far more complex fitting problems.

A

......... Over fitted
-~ — — Under fitted
Good fitted
¥ Sample point

>

Figure 1- The red dashed line is an example of overfitting. It's not likely to work as well as the solid black line at predicting
future values. The straight green dashed line is an example of under fitting. Choosing an overly complex model (such as a
high degree polynomial that generates the red line leads to overfitting but picking a model that is too simple (the straight
line) causes under fitting. Our goal is often to find the best model to fit the data.

If a model is underfitting, we can increase the number or size of parameters or improve the type of
model. If a model is overfitting, we can reduce the size of the model or apply other techniques which
we will describe later. A key challenge is how to accurately identify if the model is close to optimal
fitting, and this is one of the reasons that very large data-sets are needed to achieve working
solutions for these problems.

We measure the suitability of a model for a given task by withholding some of the information that
we have from the training process so that we can evaluate the model during and after training. We
typically separate this withheld information into two parts: the validation set and the training set.
The information that we use to evaluate our model on during training is called the “validation set”.
This data is never used directly for training. It is only used to provide us with information about how
well the network performs during the training process.

Supervised Vs Unsupervised Learning

There are two primary types of learning that neural networks can do: supervised learning, in which
the data is labelled or annotated in some way and the task is to somehow learn to match the data
with the labels, and unsupervised learning where there are no labels and the neural network learns
to find relationships between data [4].

A common example of supervised learning is “classification” where we try to find a category (or
label) that can successfully discriminate between each class using the supplied labels and data. An
example of unsupervised learning is “clustering” where the neural network tries to separate data
into “chunks” or groups without anyone giving the network any labels to apply to the groups it finds.
The appeal of the latter approach is that creating “ground truth” labels is a time consuming and
often expensive process which requires humans to create appropriate labels for the training,
validation, and testing sets before a model can be trained and later placed into products in the real
world with unseen (and unlabelled) data.

Despite the cost and difficulty in data preparation, much of the success of neural networks comes
from supervised learning.

1.4 Inside the Neural Network

We've discussed what neural networks can do but we’ve not discussed the details of how they do it.
We will now describe the details of how this works. Neural networks typically have an input layer,
an output layer, and 1 or more so called “hidden layers”.

These layers are full of nodes, often called neurons which are connected to subsequent and previous
layers using a number of schemes.

Perhaps the most common connection scheme is the fully connected layer where every neuron in a
layer is connected to every neuron in the previous and next layer.

Hidden layers

Figure 2 Typical Artificial Neural Network with a fully connected hidden layer.

This idea is inspired from biological neurons where we have axons and dendrites that connect
individual neurons to each other. In the biology model axons receive input from other neurons and
dendrites transmit information to other cells [5]. This corresponds to the input and output
connections in a neural network. The concept of multiple connection schemes also comes from
biology where we see Unipolar, Biploar, Multipolar, and Pseudounipolar connection mechanisms.

The body of a biological neuron is called the Soma which can decide to when and what to transmit
based on various criteria. Artificial neurons have a similar mechanism called the “activation
function”.

This model of neurons was first invented in 1943 by Waren McCulloch and Walter Pitts [6]. The first
popular implementation of these on computers was formalized in the idea of the Perceptron in 1957
by Frank Rosenblatt [7].

Synapse

Dendrite

inputs

» output

Figure 3: Diagram of biological neuron (lllustrated by Kimberly Sowell, permission obtained) above diagram of artificial
neuron.

All artificial neural networks have layers, weights, inputs, biases (or thresholds), activation functions
and some connection mechanism. But this is not enough to effectively train a neural network. When
training a neural network we calculate an error (or loss). There are many ways to calculate the loss,
but the simplest way is the difference between the predicted (learned) and the true outputs.

Training algorithms work by updating the weights and measuring the way that the loss changes over
time. This is usually accomplished by some form of gradient descent optimizer. It’s possible to get
“stuck” or quickly converge to a non-optimal solution when strictly following the steepest gradients,
and because of this, we typically use some form of stochastic gradient descent, which is simply a
stochastic (or slightly randomized) form of gradient descent.

Back propagation is used to allow us to “propagate” the error information from the last layer to the
first layer to modify the weights, and is often used in a way that is synonymous with training.
Methods that can be used to improve a networks results are called “learning rules”.

1.5 A Renaissance for Neural Networks?

Although these methods have been successfully used for decades, they have seen a very recent
resurgence as refinements upon existing techniques, combined with newer hardware, and the
growth of “Big Data”, have created an Al boom that shows no signs of slowing down.

The global market for smart machines is expected to grow to +15 billion by 2019, with an average
annual growth rate of nearly 20% [8]. The set of techniques that have led to this growth has been
coined “deep learning”.

In the following sections we will discuss some of the techniques that enable deep learning, why they
work, and how they are used to make smart machines.

2. Convolutional Neural Networks

In order store and process analog signals (for example image, voice and biological signals), on a
computer, one must first convert these inputs into a digital form in a process called Analog to Digital
conversion (A2D). This transforms the information from a continuous space to a discrete space,
losing some information in the process. Often that information isn’t critical to understanding the
underlying analog signal but in some instances we could lose critical data — e.g. high frequency
information.

In digital processing we often refer to a “piece” of data, such as a picture, as a sample. It is
convenient, but computationally expensive, to represent these samples in a high dimensional space
where each unit (or pixel in the case of images), is considered as being located on a specific axis with
the range of possible values (for example 0-255 in the case of an 8 bit color-channel in an image’)
being the size of that axis.

An image that is 100x100 would be represented as a vector that is a point in 10,000 dimensional
space. We call this space the “feature space”.

Since even the most powerful computers can have trouble with such high dimensional space, we try
to reduce the number of dimensions to just those that are critical to a task or to change the way
these features are represented.

In the traditional pattern recognition approach, to perform a given task we separate our process into
two steps, Feature generation and Feature selection. Feature generation generates new features
from the pixel space. Feature selection reduces the dimensionality of the feature space.

Examples of feature generation include morphological, fourier and wavelet transforms which create
more useful features for specific tasks and feature selection includes methods like Principal
Component Analysis (PCA) and Linear Fisher Discriminant (LDA) [9].

There is a newer technique based on sparse mapping where instead of trying to reduce the
dimensionally, we expand it with the goal of representing more abstract features. This is inspired by
models of the visual cortex of animals [10]. Convolutional layers, a key component of deep learning,
make use of this sparse mapping approach.

2.1 Convolution and its Role in a Neural Network:

One of the most novel and useful aspects of convolutional neural networks is that they can learn the
filters that previously had to be custom designed by the researcher (a task that would often take
years of trial & error). These convolutional layers are essential to this task in modern deep neural
networks.

Convolutional layers make use of the convolution operator. The Convolution operator is used on two
functions. One is the signal from the sample space and the other, called the filter, is applied to the
sample. On a GPU, convolutions are implemented as matrix multiplications.

This operator has a long history in image processing applications and dates back to the time when
digital image processing started. The Convolution operation can be discussed in both spatial and
transform space. In the spatial space the convolution operator is the equivalent operation of
correlation with the reversed filter, i.e., this operator calculates the similarity of the input function
with the filter. For example, the edge detection and corner detection filters are using the similarity
of the input image with a pre-defined filter mimicking the edge or corner shape. Looking at the
function in the transform space the convolution is performing frequency filtering. For example, low
pass or high pass filters have their equivalent spatial filters which could be applied to the image
using convolution operations.

Low-Level " Mid-Level ¥ High-Level Trainable
Feature Feature Feature Classifier
A | 9

i

Figure 4 Visualization of the learned convolutional filters at different layers. Copyright Movidius, used with permission.

In the deep learning approach, the filter is learned and applied to the data during the training
process with the hope that after training, the learned filter will be the best choice for the task. One
difference between the way Convolutions are used in CNN’s from more traditional uses is that the
convolution operator is applied using a 4 dimensional filter. This is essentially a set of 3D filters that
are stacked in the fourth dimension. We use the 4 dimensional filter to map a 3d space to another
3d space. See figure 5

Before convolution ‘
After convolution

Figure 5. A 4 dimensional filter maps 3d space to another 3d space using convolutions.

Convolutional layer: in general for an n dimensional signal, the convolutional layer is an n or n+1
dimensional feature space mapping with n+1 or n+2 dimensional kernels (filters). For example, given
a 2 dimensional image, the convolutional layer would be 3 dimensional with a 4 dimensional kernel.
In this case the 4 dimensions of the kernel are correspond to 1. width and 2. height of the input, 3.
the number of channels of the input and 4. the number of channels of the output. In figure 5 you can
see two different convolutional layers. The k channel layer on the left side is mapped to a p channel
layer on the right side using a 4D kernel. This kernel is shown using different 3D kernels with
different colors.

Pooling layer: pooling is an operation which accepts a pool of data values as input, and generates
one value from them to be passed to the next layer. For example this operation could be mean or
maximum of the input values. There are two important purposes for pooling operations. One is
reducing the size of the data space to reduce overfitting and the other is transition invariance. A
pooling layer is performing the pooling operation on its inputs. Figure 6 shows how a pooling
operation is applied to a one channel input to reduce the dimensionality of the dataspace. In this
figure we have a 3x3 pooling operation applied to a 12x6 one channel feature space. The most used
pooling operation is max-pooling wherein the maximum value of the features in the pool is selected
to be mapped to the next layer.

y
A
00
P

/‘f. 7
i
/ s

i

Figure 6.A pooling operation is reducing the size of the feature space.

\
AN

The importance of this layer is described in the next example. In generic deep neural networks
(described in 2.2.1 Generic Deep Neural Networks:)a dense, fully connected layer emerges from the
convolutional layers. For example, consider a convolutional layer with 10 channels and a 100x100
feature space. Placing a fully connected layer after it would result in computing 100000 weights from
this layer to each neuron in the dense layer which requires significant memory and computation
resources. Using a pooling layer helps to reduce resource demands. Additionally, without a pooling
layer, a network this big might suffer from over-fitting, especially if there is not enough
representative data in the training set. Pooling also helps to provide transition invariance by helping
each kernel to cover more space.

Nonlinearities: Each neuron in the deep neural network model is taking advantage of a non-linear
activation function to calculate the output value. This would lead to one of the most advantageous
properties of the deep neural networks which is their ability to describe highly non-linear systems.
Being highly non-linear helps the model to be suitable for real-life problems and gives solutions in
pattern recognition that cannot be achieved through more classical methods. In the early days of the
neural networks the tanh and sigmoid activation functions were most popular. Realizing that most of
the data tends to be concentrated around zero, newer techniques such as rectified linear units
(RELU) and Exponential linear units (ELU) [11] become popular because they are nonlinear near zero.
They also benefit from an infinite range.

2.2 Deep Neural Networks

The power of deep learning first made worldwide news in 2011, when a deep learning algorithm
achieved better than human visual pattern recognition in an international competition. The accuracy
was 6 times better than the nearest non neural network approach and twice as accurate as human
experts [12].

In this section we discuss four of the better-known deep learning architectures that have made the
most impact in recent research.

2.2.1 Generic Deep Neural Networks:

are usually made of one or more convolutional layers, wherein each convolutional layer is usually
accompanied by a pooling (max-pooling) operation. One can also use bigger strides in the
convolution layer in order to reduce the data dimensionality (the stride of a convolution operation is
the number of the pixels the kernel window is sliding before calculating the convolution in each
location).

In generic deep neural networks, the convolutional layers are usually followed by one or more dense
fully connected layers. See figure 7. The rectified linear unit is the most common activation function
used in these kind of networks. The last layer is typically taking advantage of other nonlinearities
based on the task.

in'/‘

Pool/

Conv layer pooling Conv layer pooling conv

i St

Fully connected dense layers

Figure 7: A generic deep neural network. Convolutional and pooling layers followed by fully conneceted dense layers.

2.2.2 Fully Convolutional Networks (FCN):

These are deep neural networks where all the layers are convolutional, pooling, and Un-pooling
layers wherein the pooling and un-pooling layers are usually placed between two convolutional
layers. They are similar to typical deep neural networks except they have no dense layer.

The output of a fully convolutional network is as the same type as its input. For example if the input
is a k channel image the output of the network could be a p channel image but not something else
entirely.

Un-pooling layers are designed to perform the inverse operation of pooling layers by increasing the
size of the feature space. These layers operate on a single pixel and expand that pixel into a pool of
data. There are different implementations of un-pooling layers. The most popular of which are
repeating values and sparse un-pooling in DNN designs. The repeating value technique is expanding
the data from one value to a pool of data with the same value (figure 8). With sparse un-pooling, the
values of the original data are mapped to a larger space in sparse form. Figure 9 illustrates 2x2
sparse un-pooling. There are different methods for choosing the location where the value is mapped
in sparse un-pooling. For example in [13] the indices have been memorized while applying the
pooling layer and in the un-pooling layer those indices are used to map the values.

Unpool
2 2 2x2

NN |-
N[N[~
O | O |ul | U
o | |uv | u

Figure 8: a 2x2 un-pooling operation with repeating values

Unpool
2 9 2x2

Ol o0|Oo |
Ol N|IO | O
|0l o | o
o |o|ul|O

Figure 9: a 2x2 sparse un-pooling operation

2.2.2 Auto-Encoders:
Auto-Encoders are a design of a deep neural network wherein the input and output data are from
the same class and also have the same data structure. For example if the input of the network isa 3

channel 128x128 image the output of the auto-encoder is also a 3 channel image with the size
128x128.

The auto-encoder network could be a fully convolutional network or it can have one or several fully
connected layers in the middle of the network which is usually known as the bottleneck of the
network. The idea with this kind of network is to create a compressed version of the input in the
bottleneck. The data can then be reconstructed from the bottleneck. The part of the network that
does the compression is called the encoder. The part that decompresses the data from the
bottleneck is called the decoder.

The auto-encoder refers to the merged structure of the encoder and decoder in a model. See figure
10.

input

.....

Figure 10: Auto encoder is the merged structure of the encoder and decoder in a model

2.2.4 Recurrent Neural Networks (RNN):

These networks are designed to operate on a sequence of the data as input, for example, a
sequence of frames from a video. This can be considered as a system with memory that can
remember the input at the previous stage and make decision for the present input based on the
sequence of the data before.

The memory of an RNN networks is known as the hidden state of the network. The hidden state of
the network is updated based on the current state. The input to the network and the output of the
RNN is calculated based on the state of the network at each sequence. Recurrent Neural networks
have had great success in speech and video scene recognition where they are often combined with
convolutional layers.

3. State of Art Today

3.1 Main Enabling Technologies (overview)
GPU - how they impact training

Despite advancements in parallel pipelines, hyperthreading, and multiple cores, modern CPU’s are
optimized primarily for problems that are best solved sequentially. This is ideally suited for many
common algorithms and tasks, but is not performant for tasks with inherent parallelism. GPU
(graphics processing units) are designed for highly parallel graphical processes which can normally
be reduced to a limited set of matrix or tensor operations. As GPUs became more and more
powerful to cope with the increasing sophistication of 3D graphical models used in gaming, and in
augmented and virtual reality, they became the preferred option for deep learning research. A
typical GPU has hundreds or thousands of cores, and although each core is much slower than a
typical CPU core, together they are able to train networks (especially deep neural networks) at the
level of 1 or 2 orders of magnitude faster than on a CPU. This makes intuitive sense. Human neurons
are significantly slower than GPU or CPU cores, but our brains are able to perform many recognition
and classification tasks faster and with more accuracy than most computer models. This is because
human brains have billions of individual, asynchronous neurons, and with highly parallel analog
electro-chemical communication.

GPU vs CPU training benchmarks.

For some tasks, a GPU can be on the order of 100X faster while using less power and at a much
lower cost. Generally, any task which requires the same operation to be performed thousands of
times (as in matrix multiplication) will greatly benefit from the use of a GPU [14].

GPU models and setups:

NVIDIA’s latest consumer series is the Pascal series, labelled with a 10 prefix. This series
represents a significant improvement in both performance and power consumption over previous
models.

Titan X Pascal 1080 1070 1060
CUDA cores 3584 2560 2048 1280
Memory Capacity | 12 GDDR5X 8 GB GDDR5X 8 GB GDDR5 Up to 6 GB
GDDR5
Memory Speed 10 Gbps 10 Gbps 8 Gbps 8 Gbps

(source: [15], [16])

Multiple NVIDIA GPUs can be combined with the use of an SLI bridge, but currently, generic
drivers only exist for 2 GPU SLI for the 10 series. NVIDIA also sells non consumer GPU’s that are
specialized for deep learning that do not have this driver limitation.

When choosing a GPU setup for deep learning, it is important to choose a device that has
enough memory to fit your model and enough cores to efficiently solve the problem. One also needs
to decide on multi GPU vs single GPU setups. It is also important that enough system memory exists
to easily copy the model between GPU ram and system ram with room to spare for the operating
system and any running applications and services.

Deep Learning on a stick

Many companies are deploying hardware customized for deep learning, often targeted at
deployment in smart objects. There are significant speed and

power consumption improvements that can be realized in Fal:hom q
hardware implementations of DL operations. Movidius, for \

example, released the “fathom neural compute stick” which

uses approximately 12.5 times less power than an equivalent =

NVIDIA GPU in a small USB compatible device [17]. It is Fat‘hom L;_ q
targeted at robots, drones and surveillance cameras and can

drastically improve recognition accuracy. It is a good choice

for “off the shelf” deep learning hardware when one is ready Rﬁgiy}idius L:_ \ V2
to deploy a model. -

CUDNN/CUDA Figure 7: Movidus fathom USB stick.

. . Copyright Movidius, used with
NVIDIA is the most popular consumer GPU manufacturer with o mission.

Deep Learning researchers. Although their products are

targeted primarily at gaming and 3D graphics processing, they also invest significant resources in
deep learning research. NVIDIA provides CUDNN, a low level library of deep learning primitives that
run on top of CUDA [17].

Developing and evaluating Deep Learning models.

When deploying or designing a deep neural network, it is useful to try out several variations with
many parameters. Although speed and power consumption are critical to end products, people
often design their networks using slightly slower but higher level frameworks. This allows us to test
out ideas and “prove” products before creating highly optimized implementations in hardware or
software. Although deep learning can be implemented in nearly any programing language, most
resources and community support available is intended for python. Although most deep learning
tools are now compatible with python 3X, the deep learning community still primarily uses python

2.7.

The most popular high level frameworks for this are Caffe, Theano, and Tensorflow.

Caffe [18] — Created at the Berkely Vision and Learning center. Models are defined in a
configuration file instead of being coded directly. They claim to have the fastest convolutional neural
network implementation available.

Theano [19]- Initially designed for fast, stable symbolic operations (including symbolic
differentiation). It dynamically generates optimized C code which can be transparently executed on
the GPU up to 140 times faster than an equivalent CPU implementation.

Tensorflow [20]- The newest of the three, tensorflow was designed by Google and is
currently experiencing the fastest growth in usage. As of this writing, tensorflow performs slightly
slower than the other two on benchmarks but is easier to deploy on multiple GPUs.

There are a number of frameworks built on top of these platforms, such as Lasagne and Keras that
allow further abstraction and thus ease and speed of development. Keras is a good choice, especially
for beginners since it can use either Tensorflow and or Theano as a back end and it provides a
simpler model for development.

3.2 Example applications

Recently, Google provided a mobile Tensorflow APl which allows developers to deploy deep learning
models directly to smart phones [21]. Google uses it for “Translate's instant visual translation” and
recommend it for any application where processing needs to be done on the device

FotoNation (www.fotonation.com), a company whose software runs in over 2.7 Billion smartphones
worldwide, has released a new Face Recognition product based on the latest deep learning
techniques to achieve rapid and accurate face recognition.

Nuance uses deep learning for their “Dragon Naturally Speaking” line of voice recognition
applications [22]. Deep learning is used in both initial product development and later for custom
refinement on consumer electronics.

Prisma, with 27 million users, is a popular cell phone app that uses deep learning to transform
photos into paintings in the style of famous artists [23].

Soundhound, inc is collaborating with NVIDIA using deep learning to create “to add a smart, voice-
enabled, conversational interface to every technology that humans interact with” based on their
platform called “Houndafiy” [24].

At the WWDC 2016 keynote, Apple’s John Gruber revealed that they use deep learning in their
photo app, first in their own datacenter where they pre-train a model based on a vast base of
labeled photos, and later on the iPhone to annotate images as they are taken. They also analyze all
photos on a phone when the device is plugged in and not in use so as to avoid draining battery
power. Google takes a different approach, avoiding “on device” classification, and instead processing
users’ photos with their cloud infrastructure [25].

Neurala released an API that uses deep learning to perform real time object tracking, recognition,
and other tasks. As of September 2016 they are the largest supplier of deep learning software for
Consumer Drones. Their deep learning software allows drones to operate autonomously, enabling

tasks such as “follow this person” or “find this car”. Good performance on such tasks were the realm
of sci-fi only a few years ago [26].

4. Thoughts & Conclusions

Today deep learning is being used in our cell phones, in our cars, in tablets and computers. It has
pushed the boundaries of what is possible for tasks such as Image segmentation [13], object
detection [27], face recognition [28], voice analyzing [29], emotion detection [30] and gender
recognition [31].

Why has Deep Learning suddenly catalyzed research across so many fields? Well it is a combination
of many factors: the recent emergence of highly affordable high-density, GPU-based computational
hardware has provided the engines to process very large datasets and implement the advanced
training methodologies required to develop accurate CNNs; the widespread availability of GPUs in
today’s devices, coupled with cloud-based data processing services provides the means to apply
these CNN architectures to everyday applications such as voice or image processing. Big data
provides the fuel to drive research activity and refine results to the point where Deep Learning
solutions typically outperform even the best of human-designed pattern recognition tools.

Today we are at a point where many new problems can be tackled through the use of Deep Learning
techniques — many of these are long-standing problems such as voice recognition which was never
quite good enough to make its way out of the laboratory and into everyday use. But this year we
have seen several launches of ‘smart speakers’ that can control your home — and behind these new
devices lies a web of deep learning technologies — both analyzing your needs, translating your voice
requests and marshalling the necessary logistics to deliver everything to your doorstep or onto your
TV set.

To get started with solving your own problem you’ll need a state-of-art GPU — the same technology
going into the latest gaming PCs — and most of the core software is freely available on the Internet.
There are several software packages trending in the Deep Learning field, including but not limited to
Theano (on python), Lasagne (on Theano), Tensorflow (on python and C++), Caffe (on python and
MATLAB), and MatConvNet (on MATLAB).

And the good news is that all of these tools are relatively inexpensive and readily available!

Finally you’ll need a large dataset — for your particular application we’ll assume you have your own
specialized data sources, but there are many public sources of suitable data. And from here its is
deep oceans of learning ahoy!

References
[1] B. Yegnanarayana, Artificial neural networks. PHI Learning Pvt. Ltd., 2009.
[2] S. Lawrence, C. L. Giles, and A. C. Tsoi, “What Size Neural Network Gives Optimal

Generalization ? Convergence Properties of Backpropagation,” Networks, no. UMIACS-TR-96-
22 and CS-TR-3617, pp. 1-37, 1996.

[3] Y. Chauvin, “Generalization performance of overtrained back-propagation networks,” in
Neural Networks, Springer, 1990, pp. 45-55.

(4] S. Theodoridis and K. Koutroumbas, “Pattern recognition and neural networks,” in Machine
Learning and Its Applications, Springer, 2001, pp. 169-195.

[5]

(6]

(7]

(8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]
[20]

[21]
[22]

[23]

[24]

[25]

P. Lewis, “Analogy between human and artificial neural nets.” [Online]. Available:
http://users.ecs.soton.ac.uk/phl/ctit/nn/node2.html.

W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,”
Bull. Math. Biophys., vol. 5, no. 4, pp. 115-133, 1943.

F. Rosenblatt, “The Perceptron - A Perceiving and Recognizing Automaton,” Report 85, Cornell
Aeronautical Laboratory. pp. 460-1, 1957.

A. McWilliams, “Smart machines: Technologies and global markets,” BCC Res., no. May, 2014.

G. Chandrashekar and F. Sahin, “A survey on feature selection methods,” Comput. Electr.
Eng., vol. 40, no. 1, pp. 16-28, 2014.

“Convolutional Neural Networks (LeNet).” [Online]. Available:
http://deeplearning.net/tutorial/lenet.html.

D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and Accurate Deep Network Learning by
Exponential Linear Units (ELUs),” CoRR, vol. abs/1511.0, 2015.

J. Schmidhuber, “Who Invented Backpropagation?,” 2014. [Online]. Available:
http://people.idsia.ch/~juergen/who-invented-backpropagation.html.

V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: {A} Deep Convolutional Encoder-
Decoder Architecture for Image Segmentation,” CoRR, vol. abs/1511.0, 2015.

K. Krewell, “What’s the Difference Between a CPU and a GPU,” 2009. [Online]. Available:
https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/.

“GEFORCE GTX 10-SERIES NOTEBOOKS.” [Online]. Available:
http://www.geforce.com/hardware/10series/notebook.

“NVIDIA TitanX Graphics Card with Pascal.” [Online]. Available:
http://www.geforce.com/hardware/10series/titan-x-pascal.

“NVIDIA cuDNN.” [Online]. Available: https://developer.nvidia.com/cudnn.
“Caffe.” [Online]. Available: http://caffe.berkeleyvision.org/.
“Theano.” [Online]. Available: http://deeplearning.net/software/theano/.

“TensorFlow is an Open Source Software Library for Machine Intelligence.” [Online].
Available: https://www.tensorflow.org/.

“Mobile TensorFlow.” [Online]. Available: https://www.tensorflow.org/mobile.html.

N. Lenke, “Why we’re using Deep Learning for our Dragon speech recognition engine,” 2016.
[Online]. Available: http://whatsnext.nuance.com/in-the-labs/dragon-deep-learning-speech-
recognition/.

“The Technology Behind the Viral Prisma Photo App,” 2016. [Online]. Available:
https://news.developer.nvidia.com/the-technology-behind-the-viral-prisma-photo-app/.

“SoundHound Inc. Collaborates With NVIDIA to Bring Deep Learning-Based Natural Language
Understanding to Cars,” 2016. [Online]. Available:
http://www.businesswire.com/news/home/20160105006247/en/SoundHound-Collaborates-
NVIDIA-Bring-Deep-Learning-Based-Natural.

“The Technology Behind Apple Photos And The Future Of Deep Learning And Privacy,” 2016.
[Online]. Available: http://highscalability.com/blog/2016/6/20/the-technology-behind-apple-

[26]

[27]
[28]

[29]

[30]

[31]

photos-and-the-future-of-deep-le.html.

“Neurala Becomes Largest Supplier od Deep Learning Software Running in Real Time on a
Drone,” 2016. [Online]. Available: http://www.neurala.com/top-deep-learning-software/.

C. Szegedy et al., “Going Deeper with Convolutions,” 2014.

Y. Sun, Y. Chen, X. Wang, and X. Tang, “Deep learning face representation by joint
identification-verification,” in Advances in Neural Information Processing Systems, 2014, pp.
1988-1996.

X.-L. Zhang and J. Wu, “Deep belief networks based voice activity detection,” IEEE Trans.
Audio. Speech. Lang. Processing, vol. 21, no. 4, pp. 697-710, 2013.

S. Bazrafkan, T. Nedelcu, P. Filipczuk, and P. Corcoran, “Deep Learning for Facial Expression
Recognition: A step closer to a SmartPhone that Knows your Moods,” in IEEE International
Conference on Consumer Electronics (ICCE), 2017.

J. Lemley, S. Abdul-Wahid, D. Banik, and R. Andonie, “Comparison of Recent Machine
Learning Techniques for Gender Recognition from Facial Images,” in Modern Artificial
Intelligence and Cognitive Science (MAICS 2016), 2016.

Appendix B

Smart Augmentation - Learning an

Optimal Data Augmentation Strategy

ARAN - Access to Research at NUI Galway

Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published
version when available.

Title Smart augmentation learning an optimal data augmentation
strategy

Author(s) | Lemley, Joseph; Bazrafkan, Shabab; Corcoran, Peter

Publication
Date 2017-04-24

Lemley, J., Bazrafkan, S., & Corcoran, P. (2017). Smart
Publication | Augmentation Learning an Optimal Data Augmentation
Information | Strategy. IEEE Access, 5, 5858-5869. doi:
10.1109/ACCESS.2017.2696121

Publisher | Institute of Electrical and Electronics Engineers (IEEE)

Link to
publisher's | https://dx.doi.org/10.1109/ACCESS.2017.2696121
version

Item record | http://hdl.handle.net/10379/14586

DOI http://dx.doi.org/10.1109/ACCESS.2017.2696121

Downloaded 2020-05-10T18:18:36Z

Some rights reserved. For more information, please see the item record link above.

Smart Augmentation
Learning an optimal data augmentation strategy

Joseph Lemley
Collage of Engineering and Informatics
National University of Ireland Galway
Galway Ireland
Email: j.lemley2 @nuigalway.ie

Abstract—A recurring problem faced when training neural
networks is that there is typically not enough data to maximize
the generalization capability of deep neural networks(DNN).
There are many techniques to address this, including data
augmentation, dropout, regularization, and transfer learning. In
this paper, we introduce an additional method which we call
Smart Augmentation and we show how to use it to increase
the accuracy and reduce overfitting on a target network. Smart
Augmentation works by creating a network that learns how to
generate augmented data during the training process of the target
network in a way that reduces the loss of the target neural
network. This allows us to learn augmentations that minimize
the error of that network.

I. INTRODUCTION

In order to train a deep neural network, the first and
probably most important task is to have access to enough
labeled samples of data. Not having enough quality labeled
data will generate overfitting, which means that the network
is highly biased to the data it has seen in the training set and,
therefore will not be able to generalize the learned model to
any other samples. In [1] there is a discussion about how much
the diversity in training data and mixing different datasets can
affect the model generalization. Mixing several datasets might
be a good solution, but it is not always feasible due to lack of
accessibility. One of the other approaches to solve this problem
is using different regularization techniques. In recent years
different regularization approaches have been proposed and
successfully tested on deep neural network models. The drop-
out technique [2] and batch normalization [3] are two well-
know regularization methods used to avoid overfitting when
training deep models.

Another technique for addressing this problem is called
augmentation. Data augmentation is the process of supple-
menting a dataset with similar data that is created from the
information in that dataset. The use of augmentation in deep
learning is ubiquitous, and when dealing with images, often
includes application of rotation, translation, blurring and other
modifications to existing images that allow a network to better
generalize [4].

Shabab Bazrafkan
Collage of Engineering and Informatics Collage of Engineering and Informatics
National University of Ireland Galway
Galway Ireland
Email: s.bazratkanl @nuigalway.ie

Peter Corcoran

National University of Ireland Galway
Galway Ireland
Email: peter.corcoran@nuigalway.ie

Augmentation serves as a type of regularization, reducing
the chance of overfitting by extracting more general infor-
mation from the database and passing it to the network.
One can classify the augmentation methods into two different
types. The first is unsupervised augmentation. In this type of
augmentation the data expansion task is done regardless of the
label of the sample. For example adding different kind of noise,
rotating or flipping the data. These kinds of data augmentations
are usually not difficult to implement.

Next there is Supervised augmentation. One of the most
challenging kind of data expansion is mixing different samples
with the same label in feature space in order to generate a
new sample with the same label. The generated sample has to
be recognizable as a valid data sample, and also as a sample
representative of that specific class. Since the label of the data
is used to generate the new sample, this kind of augmentation
is named supervised augmentation.

Many deep learning frameworks can generate augmented
data. For example, Keras [5] has a built in method to randomly
flip, rotate, and scale images during training but not all of these
methods will improve performance and should not be used
blindly. For example, on MNIST (The famous hand written
number dataset), if one adds rotation, the network will be
unable to distinguish properly between hand written 6 and 9
digits. Likewise a system that uses deep learning to classify
or interpret road signs may become incapable of discerning
left and right arrows if the training set was augmented with
by indiscriminate flipping of images.

More sophisticated types of augmentation, such as se-
lectively blending images or adding directional lighting rely
on expert knowledge. Besides intuition and experience, there
is no universal method that can determine if any specific
augmentation strategy will improve results until after training.
Since training deep neural nets is a time consuming process,
this means only a limited number of augmentation strategies
will likely be attempted before deployment of a model.

Blending several samples in the dataset in order to highlight
their mutual information is not a trivial task in practice. Which
samples should be mixed together how many of them and
how they mixed is a big problem in data augmentation using
blending techniques.

Augmentation is typically performed by trial and error,
and the types of augmentation performed are limited to the
imagination, time, and experience of the researcher. Often, the
choice of augmentation strategy can be more important than
the type of network architecture used [6]. Before Convolutional
Neural Networks (CNN) became the norm for computer vision
research, features were hand crafted”. Hand crafting features
went out of style after it was shown that Convolutional Neural
Networks could learn the best features for a given task. We
suggest that since the CNN can generate the best features for
some specific pattern recognition tasks, it might be able to give
the best feature space in order to merge several samples in a
specific class and generate a new sample with the same label.
Our idea is to generate the merged data in a way that produces
the best results for a specific target network through intelligent
blending of features between 2 or more samples.

II. RELATED WORK

Manual augmentation techniques such as rotating, flipping
and adding different kinds of noise to the data samples, are
described in depth in [4] and [7] which attempt to measure the
performance gain given by specific augmentation techniques.
They also provide a list of recommended data augmentation
methods.

In 2014, Srivastava et al. introduced the dropout technique
[2] aiming to reduce overfitting, especially in cases where there
is not enough data. Dropout works by temporarily removing a
unit (or artificial neuron) from the Artificial Neural Network
and any connections to or from that unit.

Konda et al. Showed that dropout can be used for data
augmentation by ’projecting the the dropout noise within a
network back into the input space”. [8]

Jaderberg et al. devised an image blending strategy as part
of their paper ”Synthetic Data and Artificial Neural Networks
for Natural Scene Text Recognition” [9]. They used what they
call “natural data blending” where each of the image layers
are blended with a randomly sampled crop of an image from
a training dataset. They note a significant (+44%) increase in
accuracy using such synthetic images when image layers are
blended together via a random process.

Another related technique is training on adversarial ex-
amples. Goodfellow et al. notes that, although augmentation
is usually done with the goal of creating images that are
as similar as possible to the natural images one expects in
the testing set, this does not need to be the case. They
further demonstrate that training with adversarial examples can
increase the generalization capacity of a network, helping to
expose and overcome flaws in the decision function [10].

The use of Generative Adversarial Neural Networks [11]
is a very powerful unsupervised learning technique that uses a
min-max strategy wherein a ’counterfeiter’ network attempts to
generate images that look enough like images within a dataset
to "fool’ a second network while the second network learns to
detect counterfeits. This process continues until the synthetic
data is nearly indistinguishable from what one would expect
real data to look like. Generative Adversarial Neural Networks
can also be used to generate images that augment datasets, as
in the strategy employed by Shrivastav et al. [12]

Another method of increasing the generalization capacity
of a neural network is called “transfer learning”. In transfer
learning we want to take knowledge learned from one network,
and transfer it to another [13]. In the case of Convolutional
Neural Networks, when used as a technique to reduce over-
fitting due to small datasets, it is common to use the trained
weights from a large network that was trained for a specific
task and to use it as a starting point for training the network
to perform well on another task.

Batch normalization, introduced in 2015, is another pow-
erful technique. It was discovered upon the realization that
normalization need not not just be performed on the input
layer, but can also be achieved on intermediate layers. [3]

Like the above regularization methods, Smart Augmen-
tation attempts to address the issue of limited training data
to improve regularization and reduce overfitting. As with
[10], our method does not attempt to produce augmentations
that appear “natural”. Instead our network learns to combine
images in ways that improve regularization. Unlike [4] and [7],
we do not address manual augmentation, nor does our network
attempt to learn simple transformations. Unlike the approach
of image blending in [9], we do not arbitrarily or randomly
blend images. Smart augmentation can be used in conjunction
with other regularization techniques, including dropout and
traditional augmentation.

III. SMART AUGMENTATION

Smart Augmentation is the process of learning suitable
augmentations when training deep neural networks.

The goal of Smart Augmentation is to learn the best
augmentation strategy for a given class of input data. It does
this by learning to merge two or more samples in one class.
This merged sample is then used to train a target network. The
loss of the target network is used to inform the augmenter at
the same time. This has the result of generating more data for
use by the target network. This process often includes letting
the network come up with unusual or unexpected but highly
performant augmentation strategies.

During the training phase, we have two networks: Network
A, which generates data; and network B, which is the network
that will perform a desired task (such as classification). The
main goal is to train network B to do some specific task
while there are not enough representative samples in the given
dataset. To do so, we use another network A to generate new
samples. This network accepts several inputs from the same
class (the sample selection could be random, or it could use
some form of clustering, either in the pixel space or in the
feature space) and generates an output which approximates
data from that class. This is done by minimizing the loss
function LA which accepts outl and image i as input. Where
outl is the output of network A and mage i is a selected sample
from the same class as the input. The only constraint on the
network A is that the input and output of this network should
be the same shape and type. For example, if N samples of a
P channel image are fed to network A, the output will be a
single P channel image.

The loss function can be further parameterized by the
inclusion of « and § as f(«a* L4, 8% Lp). In the experiments
and results sections of this paper we examine how these can
impact final accuracy.

Network A can either be implemented as a single network
(figure 2), or as multiple networks, as in figurel. Using more
than one network A has the advantage that the networks can
learn class-specific augmentations that may not be suitable for
other classes, but which work well for the given class.

Network A is a neural network, such as a generative model,
with the difference that network A is being influenced by
network B in the back propagation step, and network A accepts
multiple samples as input simultaneously instead of just one
at a time. This causes the data generated by network A to
converge to the best choices to train network B for that specific
task, and at the same time it is controlled by loss function
LA in a way that ensures that the outputs are similar to
other members of its class. The overall loss function during
training is f(LA, LB) where f is a function whose output
is a transformation of LA and LB. This function could be
an epoch-dependent function i.e. the function could change
with the epoch number. In the training process, the error back-
propagates from network B to network A. This tunes network
A to generate the best augmentations for network B. After
training is finished, Network A is cut out of the model and
network B is used in the test process. The joint information
between data samples is exploited to both reduce overfitting,
and to increase the accuracy of the target network during
training.

The proposed method uses a network (network A) to learn
the best sample blending for the specific problem. The output
of network A is the used for the input of network B. The idea
is to use network A to learn the best data augmentation to
train network B. Network A accepts several samples from the
same class in the dataset, and generates a new sample from
that class, and this new sample should reduce the training loss
for network B. In figure 3 we see an output of network A
designed to do the gender classification. The image on the left
is a merged image of the other two. This image represents
a sample from the class “male” that does not appear in the
dataset, but still has the identifying features of its class.

Notice that in figure 3, an image was created with an
open mouth and open eyes from two images. The quality
of the face image produced by network A does not matter.
Only its ability to help network B better generalize. Our
approach is most applicable to classification tasks but may also
have applications in any approach where selective blending of
sample features improves performance. Our observations show
that this approach can reduce overfitting and increase accuracy.
In the following sections we evaluate several implementations
of our smart augmentation technique on various datasets to
show how it can improve accuracy and prevent overfitting. We
also show that with smart augmentation, we can train a very
small network to perform as well as (or better than) a much
larger network that produces state of the art results.

IV. METHODS

Experiments were conducted on NVIDIA Titan X GPU’s
running a pascal architecture with python 2.7, using the Theano
[14] and Lasange frameworks.

A. Data Preparation

To evaluate our method, we chose 4 datasets with charac-
teristics that would allow us to examine the performance of the
algorithm on specific types of data. Since the goal of our paper
is to measure the impact of the proposed technique, we do not
attempt to provide a comparison of techniques that work well
on these databases. For such a comparison we refer to [15] for
gender datasets or [16] for the places dataset.

1) Highly constrained faces dataset (dbl): Our first
dataset, dbl was composed from the AR faces database [17]
with a total of 4,000 frontal faces of male and female subjects.
The data was split in to subject exclusive training, validation,
and testing sets, with 70% for training, 20% for validation,
and 10% for testing. All face images were reduced to 96X96
grayscale with pixel values normalized between O and 1.

2) Augmented, highly constrained faces dataset (dbla):
To compare traditional augmentation with smart augmentation
and to examine the effect of traditional augmentation on smart
augmentation, we created an augmented version of dbl with
every combination of flipping, blurring, and rotation (-5,-
2,0,2,5 degrees with the axis of rotation at the center of the
image). This resulted in a larger training set of 48360 images.
The test and validation sets were unaltered from dbl. The data
was split in to a subject exclusive training, validation, and
testing sets with 70% for training, 20% for validation, and
10% for testing. All face images were reduced to 96X96 with
pixel values normalized between 0 and 1.

3) FERET: Our second dataset, db2, was the FERET
dataset. We converted FERET to grayscale and reduced the
size of each image to 100X100 with pixel values normalized
between 0 and 1. The data was split in to subject exclusive
training, validation, and testing sets, with 70% for training,
20% for validation and 10% for testing.

Color FERET [18] Version 2 was collected between De-
cember 1993 and August 1996 and made freely available with
the intent of promoting the development of face recognition
algorithms. The images are labeled with gender, pose and
name.

Although FERET contains a large number of high quality
images in different poses and with varying face obstructions
(beards, glasses, etc), they all have certain similarities in qual-
ity, background, pose, and lighting that make them very easy
for modern machine learning methods to correctly classify. In
our experiments, we use all images in FERET for which gender
labels exist.

4) Adience: Our third dataset, db3, was Adience. We
converted Adience to grayscale images with size 100x100 and
normalized the pixel values between 0 and 1. The data was
split in to subject exclusive training, validation, and testing
sets, with 70% for training, 20% for validation and 10% for
testing.

Data from same
class

sample - Loss function for network A
from the (LA)
same class

Selected

A

Oy

Data from same
class

NETWORK
Al
Class > NETWORK Selection NETWORK |
mapper A2 function o B
NETWORK Selected Loss function for
AN sample network B
from the (LB)

same class

Loss = f(L,,Ly)

Fig. 1: Smart augmentation with more than one network A

Selected
sample from

the same
class

Loss function for
network A
(La)

4

%‘/\ NET\ZORK 4>‘——> Selection function —> NET\;;/ORK —>‘

v

Selected ion fi
ampie from Loss function for
Loss = f(L,,Ly) the same net(WL(;r)k ’

class

Fig. 2: Diagram illustrating the reduced smart augmentation concept with just one network A

Fig. 3: The image on the left is created by a learned combi-

80 100

nation of the two images on the right. This type of image] o]

transformation helped increase the accuracy of network B. Fig. 4: Arbitrarily selected images from FERET demonstrate
The image was not produced to be an ideal approximation sn’mlantles.m hgh.u.ng, pose, subject, background, and other
of a face but instead contains features that helped network B Photographic conditions.

better generalize the concept of gender which is the task it was

trained for.

The Places Dataset is unconstrained and includes complex
scenery in a variety of lighting conditions and environments.

5) DB4: Our fourth dataset, db4, was the MIT places
dataset [16]. The MIT PLACES dataset is a machine learning
database containing has 205 scene categories and 2.5 million

labeled images.

Fig. 5: Arbitrarily selected images from the Adience show
significant variations in lighting, pose, subject, background,
and other photographic conditions.

We restricted ourselves to just the first two classes in the
dataset (Abbey and Airport). Pixel values were normalized
between 0 and 1. The ”small dataset,” which had been rescaled
to 256x256 with 3 color channels, was used for all experiments
without modification except for normalization of the pixel
values between 0 and 1.

Fig. 6: Example images from the MIT places dataset showing
two examples from each of the two classes (abbey and airport)
used in our experiments.

V. EXPERIMENTS

In these experiments, we call network B the network that
is being trained for a specific task (such as classification). We
call network A the network that learns augmentations that help
train network B.

All experiments are run for 1000 epochs. The test accuracy
reported is for the network that got the highest score on the
validation set during those 1000 epochs.

To analyze the effectiveness of Smart Augmentation, we
performed 30 experiments using 4 datasets with different
parameters. A brief overview of the experiments can be seen in
Table 1. The experiments were conducted with the motivation
of answering the following questions:

1) Is there any difference in accuracy between using smart
augmentation and not using it? (Is smart augmentation
effective?)

2) If smart augmentation is effective, is it effective on a
variety of datasets?

3) As the datasets become increasingly unconstrained, does
smart augmentation perform better or worse?

4) What is the effect of increasing the number of channels
in the smart augmentation method?

5) Can smart augmentation improve accuracy over tradi-
tional augmentation?

6) If smart augmentation and traditional augmentation are
combined, are the results better or worse than not com-
bining them?

7) Does altering the o and 3 parameters change the results?

8) Does Smart Augmentation increase or decrease overfitting
as measured by train/test loss ratios?

9) If smart augmentation decreases overfitting, can we use
it to replace a large complex network with a simpler one
without losing accuracy?

10) What is the effect of the number of network A’s on the
accuracy? Does training separate networks for each class
improve the results?

As listed below, we used three neural network architectures
with varied parameters and connection mechanisms. In our
experiments, these architectures were combined in various
ways as specified in table 1.

e Network B; is a simple, small Convolutional neural
network, trained as a classifier, that takes an image as
input, and outputs class labels with a softmax layer. This
network is illustrated in figure 7.

e Network B is a unmodified implementation of VGG16
as described in [19]. Network Bs is a large network that
takes an image as input, and outputs class labels with a
softmax layer.

e Network A is a Convolutional neural network that takes
one or more images as input and outputs a modified
image. The details of this network can be seen in figure
[insert figure number here]

input

-~ P

L R AN

M. 8 B ;{/ \W Loss function (Lg)
16 ax Max Pool Categorical cross-
channels Pool Channels i (}O/\/ Eemm
3x3 | | B3 | 33 - %\ : py
\\\ L/ T
targets
Batch
. Drop-out
normalization

Fig. 7: Illustration of network B

Input Output
(Multi Channel) (Single Channel)

I

16 16 32 32

3x3 5x5 7x7 5x5

Fig. 8: Illustration of network A

A. Smart Augmentation with one network A on the gender
classification task

Experiments 1-8, 19,22, and 24 as seen in table I were
trained for gender classification using the same technique as
illustrated in figure 9. In these experiments, we use smart
augmentation to train a network (network B) for gender
classification using the specified database.

Network A
|

Two random
samples input to

Network B

|

net A
Two channels Net A output
and original
data input to
network B
___One channel

One channel
~qutput of
network A

~ —

16 16 32 32
channels channels channels channels

Net B
outputs

3x3 5x5 7x7 5x5

| / : \\

16 Max 8 B %/)
channels Pool Channels " ;m‘ (}O/\@

SO | 3a ey | L] e | | BT

Loss function (Ls)
Categorical cross-
entropy

Random -
Selection
1sample

Random
Selection
2 samples

|

L database

Loss function (La)
Mean square
error

O] T

targets

Batch

. Drop-out
normalization

Loss =aLA+/5’LB

Fig. 9: Diagram of simplified implementation of Smart Augmentation showing network A and network B

TABLE I: Full listing of experiments.

Exp DB Net A | Ach | NetB «@ B LR Momentum
1 dbl 1 1 B_1 0.3 0.7 0.01 0.9
2 dbl 1 2 B_1 0.3 0.7 0.01 0.9
3 dbl 1 3 B_1 0.3 0.7 0.01 0.9
4 dbl 1 4 B_1 0.3 0.7 0.01 0.9
5 dbl 1 5 B_1 0.3 0.7 0.01 0.9
6 dbl 1 6 B_1 0.3 0.7 0.01 0.9
7 dbl 1 7 B_1 0.3 0.7 0.01 0.9
8 dbl 1 8 B_1 0.3 0.7 0.01 0.9
9 dbl 2 1 B_1 0.3 0.7 | 0.005 0.9
10 dbl 2 2 B_1 0.3 0.7 | 0.005 0.9
11 dbl 2 3 B_1 0.3 0.7 | 0.005 0.9
12 dbl 2 4 B_1 0.3 0.7 | 0.005 0.9
13 dbl 2 5 B_1 0.3 0.7 | 0.005 0.9
14 dbl 2 6 B_1 0.3 0.7 | 0.005 0.9
15 dbl 2 7 B_1 0.3 0.7 | 0.005 0.9
16 dbl 2 8 B_1 0.3 0.7 | 0.005 0.9
17 dbl NA NA B_1 NA | NA 0.01 0.9
18 dbla NA NA B_1 NA | NA 0.01 0.9
19 dbla 1 2 B_1 0.3 0.7 0.01 0.9
20 dbla 2 2 B_1 0.3 0.7 | 0.005 0.9
21 db2 NA NA B_1 NA | NA 0.01 0.9
22 db2 1 2 B_1 0.3 0.7 0.01 0.9
23 db3 NA NA B_1 NA | NA 0.01 0.9
24 db3 1 2 B_1 0.3 0.7 0.01 0.9
25 db4 NA NA B_2 NA | NA | 0.005 0.9
26 db4 NA NA B_1 NA | NA | 0.005 0.9
27 db4 1 2 B_1 0.3 0.7 0.01 0.9
28 db4 1 2 B_1 0.7 0.3 0.01 0.9
29 db4 2 2 B_1 0.7 0.3 | 0.005 0.9
30 db4 2 2 B_1 0.3 0.7 | 0.005 0.9

The first, k images are randomly selected from the same
class (male or female) in the dataset. These k& samples are
merged into k channels of a single sample. The grayscale
values of the first image, ¢mgg, are mapped to channel 0 and
the grayscale values of the second image im; are mapped to
channel 1 and so on until we reach the number of channels
specified in the experiments table. This new k channel image
is fed into the network A. Network A is a fully convolutional
neural network (See figure 8) which accepts images as the
input and gives the images with the same size at the output in
single channel.

An additional grayscale image is then randomly selected
from the same class in the dataset (this image should not be
any of those images selected in step 1). The loss function
for this network A is calculated as the mean squared error
between this randomly selected image and the output of
network A. The output of network A, and the target image
are then fed into network B as separate inputs. Network B is
a typical deep neural network with two convolutional layers
followed by batch normalization and max-pooling steps after
each convolutional layer. Two fully connected layers are placed
at the end of the network. The first of these layers has 1024
units and the second dense layer is made of two units as the
output of network B using softmax. Each dense layer takes
advantage of the drop-out technique in order to avoid over-
fitting. The loss function of network B is calculated as the
categorical cross-entropy between the outputs and the targets.

The total loss of the whole model is a linear combination of
the loss functions of two networks. This approach is designed
to train a network A that generates samples which reduces the
error for network B. The validation loss was calculated only
for network B, without considering network. This allows us to
compare validation loss with and without smart augmentation.

Our models were trained using Stochastic Gradient De-
scent with Nestrov Momentum [20], learning rate 0.01 and
momentum 0.9. The lasagne library used to train the network
in python.

In these experiments, we varied the number of input
channels and datasets used. Specifically, we trained a network
B from scratch with 1-8 input channels with a single network A
on dbl, 2 channels on network A for db2 and 3, and 2 channels
on network dbla as shown in the table of experiments.

B. Smart Augmentation with two network A’s on the gender
classification task

In experiments 9-16 and 20 we evaluate a different im-
plementation of smart augmentation, containing a separate
network A for each class. As before, the first £ images are
randomly selected from the same class (male or female) in
the dataset. These k samples are merged into k channels of a
single sample.The grayscale values of the first image, imgo,
are mapped to channel 0 and the grayscale values of the second
image, ¢m1, are mapped to channel 1, and so on until we reach
the number of channels specified in the experiments table just
as before. Since we now have two network A’s, it is important
to separate out the loss functions for each network as illustrated
in figure 9.

All other loss functions are calculated the same way as
before.

One very important difference is the updated learning rate
(0.005). While performing initial experiments we noticed that
using a learning rate above 0.005 led to the dying relu problem
and stopped effective learning within the first two epochs. This
network is also more sensitive to variations in batch size.

The goal of these experiments was to examine how us-
ing multiple network As impacts accuracy and over fitting
compared to just using one network A. We also wanted to
know if there were any differences when trained on a manually
augmented database (experiment 20).

C. Training without smart augmentation on the gender clas-
sification task

In these experiments we train a network (network B) to
perform gender classification without applying network A
during the training stage. These experiments (23, 21, 18, and
17) are intended to serve as a baseline comparison of what
network B can learn without smart augmentation on a specific
dataset (db3 ,db2, dbla, and dbl respectively). In this way we
measure any improvement given by smart augmentation. A full
implementation of Network B is shown in figure 7.

This network has the same architecture as the network
network B presented in the previous experiment except that
it does not utilize a network A.

As before, two fully connected layers are placed at the end
of the network. The first of these layers has 1024 units, and
the second dense layer has two units (one for each class). Each
dense layer takes advantage of the drop-out technique in order
to avoid over-fitting.

All loss functions (training, validation, and testing loss)
were calculated as the categorical cross-entropy between the
outputs and the targets.

As before, models were trained using Stochastic Gradient
Descent with Nestrov Momentum [20], learning rate 0.01 and
momentum 0.9. The lasagne library was used to train the
network in python.

D. Experiments on the places dataset

In the previous experiments in this section, we used 3
different face datasets. In experiments 25 - 30 we examine
the suitability of Smart Augmentation with color scenes from
around the world from the MIT Places dataset to evaluate our
method on data of a completely different topic. We varied
the o and 8 parameter in our global loss function so that we
could identify how they influence results. Unlike in previous
experiments, we also retained color information.

Experiment 25 utilized a VGG16 trained from scratch as
a classifier, chosen because VGG16 models have performed
very well on the places dataset in public competitions [16].
The input to network A was 256x256 RGB images and the
output was determined by a 2 class softmax classifier.

In experiment 26 we use a network B, identical in all
respects to the one used in the previous subsection, except
that we use the lower learning rate specified in the experiments
table and take in color images about places instead of gender.

These two experiments (25,26) involved simple classifiers
to establish a baseline against which other experiments on the
same dataset could be evaluated.

In experiments 27-28, k images were randomly selected
from the same class (abbey or airport) in the dataset. These k
samples are merged into k * 3 channels of a single sample.
The values of the first three channels of image imgy are
mapped to channel 0-2, and the first three channels of the
second image im are mapped to channels 3-5, and so on, until
we reach the number of channels specified in the experiments
table multiplied by the number of color channels in the source
images. This new k x 3 channel image is fed into the network
A. Network A is a fully convolutional neural network) which
accepts images as the input, and outputs a single color image.

An additional image is then randomly selected from the
same class in the dataset. The loss function for network A is
calculated as the mean squared error between the randomly
selected image and the output of network A. The output of
network A, and the target image are then fed into network B
as separate inputs. Network B is a typical deep neural network
with two convolutional layers followed by batch normalization
and max-pooling steps after each convolutional l<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>