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Abstract

In recent years, deep learning has revolutionized computer vision and has been applied to a
range of problems where it often achieves accuracies equal to or greater than those obtainable
by individual human experts. This research improves on the state-of-the-art by proposing,
implementing, and testing new models, architectures, and training methods that are more
efficient while maintaining or improving the accuracy of previous methods. Special attention
is focused on improvements that facilitate the specific needs of resource-constrained devices
such as smartphones, and embedded systems, and in cases where obtaining sufficient data is
difficult. For this reason, the topic of data augmentation is a major theme of this work.

Due to the ever greater need for smarter embedded devices, my research has focused on
novel network designs and data augmentation techniques for a wide range of diverse tasks,
connected only by the need for more efficient architectures and more data – in many cases
improving the accuracy over previous works in the process.
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Chapter 1

Introduction

1.1 Introduction

From the “no free lunch” theorems [1] we know that there is no one machine learning
method that will perform better than any other for arbitrary data. This means that even the
most sophisticated convolutional neural network may perform no better, or even worse than
linear regression for some problems. For this reason, it is necessary to develop network
architectures and training methods for a specific task or subset of tasks.

Fortunately, various universal approximation theorems [2] also tell us that deep neural
networks are able to approximate almost any function the computer vision researcher might
be interested in solving, which means that, as long as we can express our problem as a “black
box” function with an output and an input, a neural network can approximate, or model the
desired output from that input. Although this theorem allows for optimism that nearly any
given task can be learned by a neural network, it provides no mechanism to do so and no
guarantee that such a network can even be learned with conventional training methods such
as backpropagation [3] with Stochastic Gradient Descent (SGD).

To achieve the goal of improving upon deep learning systems for computer vision, two
aspects of such systems are addressed. These are network architecture and training. Training
methods and network architectures are often, but not always, interrelated. For example, our
work on Smart Augmentation addresses the common problem of neural networks not having
enough data to be properly trained; it does this by inventing a new architecture that learns to
generate data at the same time it learns to accomplish the task it was trained on. Likewise, our
work on transfer learning for driver behavior monitoring demonstrates the counter-intuitive
fact that primitive temporal features from a neural network trained on a task such as sports
movies can be used to significantly improve results on the driver behavior monitoring task.
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In this case, the improvements were entirely from training methodology although the choice
of architecture (a model that could utilize temporal information) was also a factor.

1.1.1 Historical Perspective of this Work

A brief history of AI with a focus on Neural networks is provided in this subsection with the
goal of framing this work within its historical context.

One of the most important limitations of neural networks is that there are no suitable
explanations for why they work as well as they do. This lack of explainability has led to
several periods of stagnation known as AI winters. During the AI winters, funding for
research on neural networks almost vanished and the spending of public money for AI work
was discontinued at many institutions.

Nature is a seemingly endless source of inspiration for the development of learning
systems. The fact that intelligence exists in nature was always a simple counter example for
those skeptical about the possibility of artificial intelligence, but is insufficient to demonstrate
feasibility. The fact that it exists in many forms and to varying degrees provides hope that we
can develop methods to approximate or emulate some forms of intelligence.

This sentiment was also echoed by one of the pioneers of computer science and artificial
intelligence: Alan Turing. Turing believed that the human brain could be modeled as
an unorganized device with random weights which would be updated with reinforcement
learning. [4]

However, for funding agencies requiring measurable improvement and clear objectives
and results, these aspirations were largely unconvincing. Top Neural networks and machine
learning conferences such as Conference on Neural Information Processing Systems fre-
quently rejected papers on deep learning and neural networks simply because the topic was
undesirable even in the mid 2000s.

Artificial Neural networks operate on highly simplified ideas of an incomplete knowledge
of how the human brain works. It was therefore easy to dismiss progress on neural network
research until 2012 when progress on deep learning research by a small number of academics,
working with efficient new hardware designed for gaming systems, demonstrated that the
performance of these networks on real tasks not only outperformed other machine learning
models but also outperformed human operators at the same set of tasks [5].

The Darthmoth proposal, which was written in the 1950s, was written under the assump-
tion that "Every aspect of learning or other feature of intelligence can in principle be so
precisely described that a machine can be made to simulate it" [6].

From a distance, the status of AI research today is not so different from 1955 when the
authors of the Darthmoth proposal wrote:
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Neuron Nets

How can a set of (hypothetical) neurons be arranged so as to form concepts.
Considerable theoretical and experimental work has been done on this problem
by Uttley, Rashevsky and his group, Farley and Clark, Pitts and McCulloch,
Minsky, Rochester and Holland, and others. Partial results have been obtained
but the problem needs more theoretical work [6]."

This lack of theoretical understanding and the dominance of empirical results still charac-
terize this field and have been some of the main criticisms of the neural network approach to
AI to this day. Today we simply have better empirical results and slightly better algorithms
than in the 1950s but few core concepts have changed. In fact, the majority of what we call
deep learning today would be recognizable to any student of neural networks in the mid
1990s with a few exceptions:

• The adoption of the Rectified Linear Unit (RELU) activation function (sigmoid and
tanh were common at the time).

• The ability to train deeper networks using a variety of techniques that help avoid
vanishing gradients (ie resnet blocks [7] and inception modules [8]).

• The popularity of convolutional layers in neural networks.

• The large datasets we use to train and test them.

• Powerful GPU based hardware with which to train them.

• Large amounts of very fast memory.

Convolutional Neural Networks were popularized by Lecun et al. [9], who used them
successfully for handwritten digit classification. These networks are inspired by the organiza-
tion of the visual cortex and allow spatial information to be more efficiently learned. CNNs
can be used on input with any number of dimensions, but due to their success in pictures,
are most popularly implemented for 2D input plus color channels. Other popular types of
CNNs include 1D CNNs, which are commonly used for time series, and 3D CNNs, which
can be used for volumetric data or time series data where the third dimension represents
either spatial frames or temporal frames [5].

In recent times deep neural networks have become essential to a wide range of tasks but
the most common implementations of these networks require expensive hardware that will
not fit in todays consumer devices or when they are deployed on such devices often quickly
drain the device battery.
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Furthermore, gathering data for these networks is often time consuming and prone to
error, leading to poor training.

This thesis builds on previous empirical work in adapting neural networks to consumer de-
vices, focusing on dataset augmentation and deep learning techniques primarily for computer
vision applications in consumer electronics.

1.2 Overview of Published Work

In this section the contributions of this thesis are summarized. As the presented research was
performed in collaboration with others, it is important to provide information about which
contributions are those of the author versus those of coauthors. These contributions start with
the three journal papers, followed by conference papers that were subject to peer review, then
other published work, and finally unpublished work.

1.2.1 Contributions to Papers Published as Journal Articles

Smart Augmentation

Data augmentation involves modifying data from its original form. It is done with the hope
that a different perspective or transformation of the data will help the network to learn
a better representation of the desired task. For example a convolutional neural network
may not understand that an object that has been rotated is the same as one that is not
rotated, and therefore augmentation with rotated images is common. Augmentation is a
critical component of training a neural network, but it is important to carefully consider the
types of augmentation one does beforehand. This can be illustrated by considering the digit
classification task. If digits are rotated more than 90 degrees, 9s will be indistinguishable from
6s. Although some rotation invariance may be desired for digit recognition, the orientation
of digit objects is necessary to understand them properly and therefore arbitrary rotations
result in confusion and will prevent proper training of a neural network. One way of thinking
about augmentation is to consider it a form of regularization that operates on the input space.

The idea of learnable augmentation derives from the recent history of computer vision
algorithms and the fact that many of them are not used in deep learning because the network
learns to create similar filters during training if they are needed [10]. In many fields, these
traditional filters have been entirely replaced by neural networks.

The fundamental research question posed by learnable augmentation is: Can a neural
network learn to perform the labor intensive process of data augmentation? Can a network or
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a collection of networks learn not just how to perform a task, but also how to create new data
that will help it learn that task?

This question had not been studied before the fall of 2016 when the research presented
in this thesis started. The research showed that the answer to this question is: yes, neural
networks can learn to modify or augment data during training in such a way as to reduce the
error on a dataset.

Shortly after these results were published, a number of other researchers built on this
work and performed a range of additional experiments. A recent survey of these works and
other related works are provided in section 2.2.

My contributions were the initial idea of a network that could learn to perform data
augmentation, planning and performing the experiments, and writing most of the paper. I
also adapted the code to new datasets and situations. Shabab Bazrafkan made very important
contributions to further refining the idea, writing the core neural network code, designing
figures, and composing some parts of the paper.

Smart augmentation was published in [11] as a journal paper. A conference paper based
on the original paper was also published [12] and results were further disseminated at the
March 27 Fourth Edinburgh Deep Learning Workshop 2017, and at the Embedded Vision
Summit, Santa Clara California in 2018 [13]. The slides from the embeded vision summit
can be accessed at https://aran.library.nuigalway.ie/handle/10379/7480.

The primary work on Smart Augmentation is included in Appendix B and a detailed
overview of Smart Augmentation, its relation to other techniques, and the core theme of this
work are given in chapter 2.

Eye Gaze Estimation for DMS

The eye gaze estimation project started as an industry project at FotoNation Ireland. There
was a need for an eye gaze solution that would run on an embeded device in a vehicle in
real time with strict accuracy and performance, measured in multiply accumulate operations
(MACs) requirements.

As a feasibility study, we developed a parallel academic project on the same topic, but
using public (visible spectrum) data and methods. The academic portion of this work was
published in Transactions on Consumer Electronics [14]. This method was also further
developed, trained on NIR data, and integrated into an emended DMS solution. A patent
application was filed on these further innovations, but due to the commercially sensitive
nature of the know-how and datasets, no academic research papers were published on the
final (NIR) implementation of this research.

https://aran.library.nuigalway.ie/handle/10379/7480
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My contributions were in the networks and methodology, running and designing the
experiments, writing the code except for parts of the data loader, and writing all of the
paper except for the related work section. Anuradha Kar wrote the related work section
and served as an expert advisor for any questions related to norms in eye gaze research.
Alexandru Drimbarean performed a managerial role, ensuring that deadlines were met and
MAC requirements were not exceeded for the industry portion of the project. He also
proposed the project.

The journal paper that came out of this work is included in Appendix D, while a confer-
ence paper describing an extension of the same network to augmented spaces is in Appendix
E.

The core contributions of both papers, with emphasis on the journal paper, are discussed
in detail in chapter 3.

Semi Parallel Deep Neural Networks

Semi Parallel Deep Neural Networks (SPDNN) are a new algorithm to merge different types
of neural networks together in such a way as to benefit from each without duplication in
computation.

The contribution was to take an existing technique for merging networks and to generalize
it with a graph based approach.

It was discovered that if each neural network layer were uniquely labeled and then
represented as a graph, that it would then be possible to use graph contraction to come
up with a single network that had many of the advantages of others. The results of this
research was published in [15] and a patent application was also submitted with both Shabab
Bazrafkan and myself as co-inventors.

The journal paper on SPDNN for which I am an a coauthor is included in appendix F
and a detailed discussion of the graph based algorithm that I helped develop is described in
section 4.2.

1.2.2 Selected Conference Papers

Transfer Learning of Temporal Information for Driver Action Classification

In Transfer Learning of Temporal Information for Driver Action Classification [16] a set of
frames depicting driver behaviors was analyzed with a CNN. A variety of network types were
used such as regular 2D CNNs, 3D CNNs, Recurrent Neural Networks(RNNS) and various
hybrids of these approaches. A transfer learning technique based on a 3D CNN that had been
pre-trained on YouTube sports videos ranked the highest. My contributions included the
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programming, designing the experiments, organizing the data, and writing all of the paper
except for the section on the cone shape of information flow and related figures, which my
coauthor Shabab Bazrafkan contributed to. This conference paper is included in Appendix C
and a detailed description of the approach is included in chapter 4.1.

Eye Tracking in Augmented Spaces: A Deep Learning Approach

In Eye Tracking in Augmented Spaces: A Deep Learning Approach [17], two forms of eye
gaze estimation with differing needs were analyzed: Eye gaze estimation in AR/VR contexts
where head-mounted eye-facing cameras are available, and cases where the camera is at a
distance. The study concluded that current CNNs are able to outperform traditional methods
for the latter case but not the former, as high resolution images of the eyes allow for very
precise angle approximation techniques.

I performed all experiments and programming as well as writing the sections of the
paper related to experiments, results, and conclusions. The introduction was written by both
Anuradha Kar and myself, and the literature review section on eye gaze methods was written
by Anuradha Kar. This conference paper is included in Appendix E and a detailed discussion
of it is included in section 3.3.

1.2.3 Other Published Work

In Deep Learning for Consumer Devices and Services: Pushing the limits for machine
learning, artificial intelligence, and computer vision, a discussion of deep learning focused
on consumer devices is given [5]. Shabab Bazrafkan wrote section 2, Convolutional Neural
Networks, while I wrote the rest. Although this paper did not propose a new algorithm or
methodology, it was written in an accessible way and helped to introduce new researchers to
the subject. The paper provides an introduction to neural networks, starting with historical
usage and ending with the latest architectures and tools. This paper is currently my second
most cited publication and won a "Best Paper" award from the IEEE consumer electronics
society in 2018. Four follow-up papers have now been published, drawing from other works.
Such articles promote and explain CNN techniques to a broader audience. Further details on
this series of publications can be found in Appendix G.1.
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1.2.4 List of Peer Reviewed First Author Publications (Starting with
Journals)

1. J. Lemley, S. Bazrafkan, and P. Corcoran, "Smart Augmentation-Learning an Optimal
Data Augmentation Strategy," IEEE Access, vol. 5, pp. 5858-5869, 2017.[11]

2. J. Lemley, A. Kar, A. Drimbarean, and P. Corcoran, "Convolutional Neural Network
Implementation for Eye-Gaze Estimation on Low-Quality Consumer Imaging Sys-
tems". IEEE Transactions on Consumer Electronics, vol. 65, no. 2, pp. 179-187, 2019
[14].

3. J. Lemley, S. Bazrafkan, and P. Corcoran, "Deep learning for consumer devices and
services: Pushing the limits for machine learning, artificial intelligence, and computer
vision." IEEE Consumer Electronics Magazine, vol. 6, no. 2, pp. 48-56,2017. [5]

4. J. Lemley, S. Bazrafkan, and P. Corcoran. "Transfer Learning of Temporal Informa-
tion for Driver Action Classification," in Proceedings of the 28th Modern Artificial
Intelligence and Cognitive Science Conference 2017, vol. 1964, 2017, pp. 123-128.
[16]

5. J. Lemley, S. Bazrafkan, and P. Corcoran, "Learning Data Augmentation for Con-
sumer Devices and Services," in 2018 IEEE International Conference on Consumer
Electronics (ICCE). IEEE, 2018, pp. 1-3. [12]

6. J. Lemley, A. Kar, and P. Corcoran. "Eye Tracking in Augmented Spaces: A Deep
Learning Approach" in 2018 IEEE Games, Entertainment, Media Conference (GEM),
IEEE, 2018, pp. 1-6 [17].

1.2.5 List of Peer Reviewed Non-First Author Publications (Starting
with Journals)

7. S. Bazrafkan, H. Javidnia, J. Lemley and P. Corcoran, "Semiparallel deep neural
network hybrid architecture: first application on depth from monocular camera,"
Journal of Electronic Imaging, vol. 27, no. 4, pp. 0430341 1-19, 2018 [15].

8. P. Corcoran, J. Lemley, C. Costache and V. Varkarakis. "Deep Learning for Consumer
Devices & Services 2 - AI gets Embedded at the Edge", IEEE Consumer Electronics
Magazine, vol. 8, no. 5, pp. 10-19, 2019.
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9. A. McDonagh, J. Lemley, R. Cassidy and P. Corcoran. "Synthesizing Game Audio
Using Deep Neural Networks," 2018 IEEE Games, Entertainment, Media Conference
(GEM), IEEE, 2018, pp. 1-6 [18].

1.2.6 List of Filed Patents

1. S. Bazrafkan and J. Lemley, "Method for Synthesizing a Neural Network," US Patent
App. 15/413,283. [19]

2. S. Bazrafkan and J. Lemley, "Method of Training a Neural Network," US Patent App.
15/413,312. [20]

3. L. Dutu, M. Dumitru-Guzu, S. Mathe, J. Lemley, "Simultaneous Gaze and Eyelid
Opening Estimation from Both Eyes". US Patent App. 16/005,610.

4. J. Lemley, A. McDonaugh, R. Cassidy, "Hybrid Audio Synthesis Using Neural Net-
works". PCT/US2019/040,739

1.2.7 Contribution Taxonomy

As this publication based thesis includes work that was done in collaboration with others,
this section provides an overview of the contributions of each author to each major paper.
The 6 tables in this section are based on a generalization of the Contributor Role Taxonomy
(CRediT) introduced by Brand et al [21]. The CRediT approach has been adopted by journals
in several fields to specify the contributions of individual authors.

In the CRediT Taxonomy each author’s contributions are measured as a percentage point
on 14 roles. These are: Conceptualization, Data curation, Formal Analysis, Funding acquisi-
tion, Investigation, Methodology, Project administration, Resources, Software, Supervision,
Validation, Visualization, Writing – original draft, Writing – review & editing

In this thesis I adopt a more concise generalization of this taxonomy which encapsulates
the major criteria, specifically:

1. Main Idea - Involving Conceptualization.

2. Experiments and Implementation, which includes Methodology, validation, data cura-
tion, formal analysis and software development.

3. Rationalization and Context, which includes investigation and formalization.



10 Introduction

4. Manuscript Preparation which includes all aspects of writing manuscript preperation
including Writing – original draft, Writing – review & editing, and Visualization except
those specified in the next critera.

5. Background - Includes work done to place the research efforts in a wider context
of literature in a given field, this may include some aspects of writing (literature
reviews) and informs aspects of project administration and supervision and ensuring
that methodology used is typical of that used in the area of publication.

This generalization has the weakness that it ignores most aspects of funding, project
administration, resources or supervision but otherwise encapsulates the main points that
would determine primary authorship. In cases where an author’s contribution is missing,
their contribution was solely in these ignored categories. The two coauthors that this applies
to are Peter Corcoran, my supervisor, and Alexandru Drimbarean, my direct manager at
Fotonation/Xperi. Tables 1.1, 1.2, 1.3, 1.4, and 1.5 list author contributions according to the
above 5 criteria. Authors are listed by initial where JL means Joseph Lemley, SB means
Shabab Bazrafkan, AK means Anuradha Kar, PC means Peter Corcoran, and HJ means
Hossein Javidnia. Contribution percent is listed at a resolution of 10%. Further information
on contributions and motivations are given in section 1.2 and in the relevant chapters.

Table 1.1 Contributions to the Main Ideas of Selected Papers

Paper Contribution Per-
cent

Smart Augmentation: Learning an Optimal Data Augmentation Strategy
[11]

JL 100%

Convolutional Neural Network Implementation for Eye-Gaze Estimation
on Low-Quality Consumer Imaging Systems [14]

JL 100%

Eye tracking in augmented spaces: A deep learning approach [17] JL 100%
Semiparallel deep neural network hybrid architecture: first application
on depth from monocular camera [15]

SB 50% HJ 50%

Deep Learning for Consumer Devices and Services: Pushing the limits
for machine learning, artificial intelligence, and computer vision. [5]

JL 60% SB 40%

Transfer Learning of Temporal Information for Driver Action Classifica-
tion. [16]

JL 100%

1.3 Organization of Remainder of Thesis

The remaining chapters contain a summary of motivations and details about the three
qualifying journal articles as well as additional supporting work, published and unpub-
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Table 1.2 Contributions to the Rationalization and Context of selected papers

Paper Contribution Per-
cent

Smart Augmentation: Learning an Optimal Data Augmentation Strategy
[11]

JL 50% SB 50%

Convolutional Neural Network Implementation for Eye-Gaze Estimation
on Low-Quality Consumer Imaging Systems [14]

JL 100%

Eye tracking in augmented spaces: A deep learning approach [17] JL 100%
Semiparallel deep neural network hybrid architecture: first application
on depth from monocular camera [15]

SB 50% HJ 30%
JL 20%

Deep Learning for Consumer Devices and Services: Pushing the limits
for machine learning, artificial intelligence, and computer vision. [5]

JL 100%

Transfer Learning of Temporal Information for Driver Action Classifica-
tion. [16]

JL 80% SB 20%

Table 1.3 Contributions to the Experiments and Implementation of Selected Papers

Paper Contribution Per-
cent

Smart Augmentation: Learning an Optimal Data Augmentation Strategy
[11]

JL 90% SB 10%

Convolutional Neural Network Implementation for Eye-Gaze Estimation
on Low-Quality Consumer Imaging Systems [14]

JL 100%

Eye tracking in augmented spaces: A deep learning approach [17] JL 100%
Semiparallel deep neural network hybrid architecture: first application
on depth from monocular camera [15]

SB 50% HJ 50%

Deep Learning for Consumer Devices and Services: Pushing the limits
for machine learning, artificial intelligence, and computer vision. [5]

N/A (Introductory
Review Paper)

Transfer Learning of Temporal Information for Driver Action Classifica-
tion [16]

JL 100%
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Table 1.4 Contributions to the Manuscript Preparation of Selected Papers

Paper Contribution Per-
cent

Smart Augmentation: Learning an Optimal Data Augmentation Strategy
[11]

JL 90% SB 10%

Convolutional Neural Network Implementation for Eye-Gaze Estimation
on Low-Quality Consumer Imaging Systems [14]

JL 90% AK 10%

Eye tracking in augmented spaces: A deep learning approach [17] JL 90% AK 10%
Semiparallel deep neural network hybrid architecture: first application
on depth from monocular camera [15]

SB 45% HJ 45%
JL 10%

Deep Learning for Consumer Devices and Services: Pushing the limits
for machine learning, artificial intelligence, and computer vision. [5]

JL 70% SB 20%
PC 10%

Transfer Learning of Temporal Information for Driver Action Classifica-
tion [16]

JL 90% SB 10%

Table 1.5 Contributions to the Background of Selected Papers

Paper Contribution Per-
cent

Smart Augmentation: Learning an Optimal Data Augmentation Strategy
[11]

JL 90% SB 10%

Convolutional Neural Network Implementation for Eye-Gaze Estimation
on Low-Quality Consumer Imaging Systems [14]

JL 50% AK 50%

Eye tracking in augmented spaces: A deep learning approach [17] JL 50% AK 50%
Semiparallel deep neural network hybrid architecture: first application
on depth from monocular camera [15]

SB 45% HJ 45%
JL 10%

Deep Learning for Consumer Devices and Services: Pushing the limits
for machine learning, artificial intelligence, and computer vision. [5]

JL 100%

Transfer Learning of Temporal Information for Driver Action Classifica-
tion [16]

JL 90% SB 10%
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lished. As the attached articles (see appendix) contain extensive literature reviews and
methodological details, neither a literature review nor a methodology chapter is included.
The source code to duplicate the experiments described in this thesis is available at https:
//github.com/joelemley/PhD.

Chapter 2 contains a comprehensive overview of the smart augmentation technique and
its research impact and comparison with related generative and meta learning techniques.

Chapter 3 contains an overview of the work done on eye gaze estimation, including
details that were omitted in the attached journal article due to journal policies (such as page
limits and the anti-commercialism policy).

Chapter 4 contains a summary of other published and unpublished work relating to the
core theme of this thesis. This includes my work on driver monitoring using transfer learning,
my contributions to SPDNN.

An overview of the 4 articles I have published with Consumer Electronics Magazine on
deep learning, edge AI, data augmentation and contributions to Deep Learning education are
included in appendix G.

https://github.com/joelemley/PhD
https://github.com/joelemley/PhD




Chapter 2

Smart Augmentation

Data augmentation involves modifying data from its original form. It is done in the expecta-
tion that a different perspective or transformation of the data will help the network to learn a
better representation of the desired task.

For example a convolutional neural network may not understand that an object that has
been rotated is the same as one that is not rotated, and therefore augmentation with rotated
images is common. For illustration, an image of a face may not be recognized as a face if
a person turns slightly and the network has not been trained with faces in a variety of head
orientations.

Augmentation is a critical component of training a neural network, but it is important to
carefully consider the types of augmentation one does beforehand and match these carefully
to the task at hand. This can be illustrated by considering the digit classification task. If
digits are rotated more than 90 degrees, 9s will be indistinguishable from 6s. Although some
rotation invariance may be desired for digit recognition, the primary orientation of digit
objects is essential to understand them properly and therefore arbitrary rotations result in
confusion and will prevent proper training of a neural network.

The primary work on Smart Augmentation is included in Appendix B and a detailed
overview of Smart Augmentation, its relation to other techniques and the core theme of this
work are given in the remainder of this chapter.

Relating to the central theme of data augmentation for consumer devices, smart augmen-
tation seeks to address the problem of limited and incomplete data. Inspired by the recent
history of computer vision where features that were previously "hand crafted" began to be
replaced by learned features, it was desired to explore whether the same progress could be
made with augmentation as the objective in addition to classification.

The idea of Smart Augmentation is to investigate whether relevant improvements in the
design of CNNs can be achieved by learning the data augmentation task. Specifically, Smart
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Augmentation is a method of creating a network that learns the augmentation task at the
same time as a classifier network learns to classify input. The augmenter network is called
Network A and the network that performs a given task is called Network B. A combined loss
function incorporates α and β coefficients to the losses of both network A and network B -
described in detail in the relevant appendix.

Traditional data augmentation is a very manual process which can involve quite a bit of
guesswork and expertise. For some problems/datasets the choice of augmentation strategy
can be more important than the architecture of the network [10]. This led to the desire to
investigate the ability to learn the augmentation task during training.

Smart augmentation works by using 2 networks:

• The network that learns the desired task.

• The network that learns to perform augmentations for the network that learns the
desired task.

The former is called network B and the latter network A.

Network A selects, at random, 2 or more images from the same class

Fig. 2.1 This figure shows a high level overview of smart augmentation for a 3 class problem.
To add classes, simply increase the number of network As.
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2.1 Research Questions

Smart Augmentation (SA) started with one primary research question: "Can a neural network
learn to perform the augmentation task from the data alone?"

After discovering that neural networks were indeed capable of learning to perform some
augmentations, a series of research questions were designed to investigate the performance
of the technique.

The experimental and methodological details of all the experiments used to answer the
questions in this section are included in the main paper on Smart Augmentation in appendix
B. The various network configurations can be found in table 1 of the appended paper, while
the results are included in table II for experiments related to face datasets and table III for
experiments related to the MIT places dataset.

2.1.1 A First Research Question

The first question was: "Is there any difference in accuracy between using SA and not using
it? (Is SA effective?)". Although this is useful as a guiding concept, it is too vague to form a
useful testable hypothesis. Thus a more precise question would be evaluated instead: Can
a meta-learning approach such as the proposed SA technique increase accuracy for at least
one task when evaluated on at least one dataset of interest? To answer this later question one
must simply select a task and a dataset and attempt to train it using the SA methodology.
For simplicity, a binary classification task was chosen: Perceived gender recognition from
frontal face images and for the dataset I chose ARFACES, a highly constrained dataset of
face portraits. Thus the hypothesis became "Will at least one specific implementation of
an SA-like meta-learning approach increase gender recognition accuracy when trained and
evaluated on ARFACES using a standard, subject-exclusive training, validation, and testing
split?".

To examine this question, 16 experiments were performed, summarized in the following
subsections. The full details of these experiments are included in table 1 of the main
Smart Augmentation paper (Appendix B), while the results are included in table II and
in the corresponding experiments, results, and methodology sections. These experiments
demonstrated that the answer to this question was "yes" with increases in accuracy ranging
from 90% to 95% depending on the parameters used compared with a baseline model that
had 88% accuracy when using the proposed technique.
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2.1.2 How Does SA Compare with Traditional Augmentation?

Upon demonstrating that SA was able to increase accuracy on a specific dataset was sufficient
to validate the main idea in a very limited case, for real use cases it is helpful to know how it
compares to the use of traditional augmentation. After all, if traditional augmentation is just
as good, why would one bother with the added complexity of Smart Augmentation?

It would, of course, be impossible to compare SA with every possible traditional augmen-
tation (as the number of possible variations are infinite even in the case of simple rotation).
Therefore the first task was to select a representative set of traditional augmentations to
compare with. The selected examples were: flipping, Gaussian blur, and rotation (-5,2,0,2,5
degrees with the axis of rotation at the center of the image). A dataset was created from
ARFACES with every combination of these augmentations to form a new dataset called db1a.

When the baseline network, without smart augmentation, was trained on this dataset,
the resulting accuracy increased to 89%, which is still less than the worst performing SA,
indicating that, at least in this one case, the use of smart augmentation was better than
the chosen traditional augmentations. However, no claim can be made for every traditional
augmentation. It is possible, even likely with sufficient effort and time, that some combination
of traditional augmentations could be found that would generate better results. However,
the benefit of SA is that it replaces the tedious nature of trying many different manual
augmentations. It does this by leveraging the ability of a neural network to learn an optimal
augmentation strategy.

What Happens When Smart Augmentation is Trained on Traditionally Augmented
Data?

The previous research question examined the use of traditional augmentation compared to a
network that was trained with only SA but what would happen if the two approaches were
combined? In other words, if the best approach from the experiments designed to answer
the question posited in section 2.1.1 was trained on the traditionally augmented data, would
the accuracy increase or decrease on the same test set? To answer this question, the same
db1a, containing traditionally augmented images from ARFACES was used as training data
for two networks trained with SA. The accuracy achieved with this approach was 95.67%
which was a similar level of accuracy as when no traditional augmentation was used for this
configuration.
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2.1.3 Investigations into Smart Augmentation’s Hyper-Parameters

The SA technique introduces new hyper-parameters and choices into the training pipeline,
these include the α and β coefficients, the number of input channels, whether to use a
separate network A for each class, or to use just one network A. In this subsection, research
questions designed to investigate these hyper-parameters are described.

Why Does The Number of Input Channels Need to be At Least Two?

The smart augmentation technique uses randomly selected images from the same class placed
in at least 2 channels as input. An obvious first question is: Is it really necessary to use at
least 2 channels? What would happen if only 1 were used? Although it seemed pivotal to the
main idea of smart augmentation, it was important to justify this requirement experimentally.

To investigate the need for this condition I repeated the experiment from section 2.1.1 but
only supplied one image with all other parameters being the same as the best configuration
previously found for SA on the ARFACES dataset. This resulted in a reported accuracy of
86.99%, which is worse than when smart augmentation was not used at all and seems to
illustrate the importance of this rule.

This was true when one network A was used for each class, but surprisingly it did not
have much of an impact when only one network A was used for both classes. In the case
of only a single network A and a single input channel, the resulting accuracy was a 92.77%
which was better than when no smart augmentation was used, but still less than the best
single channel approach (95.38%).

It therefore seems prudent to use at least two input channels, especially when two network
As are used.

The Number of Input Channels

Previously in this thesis, the requirement of using at least two input channels was examined.
A natural question to ask is: Does varying the number of channels over 2 have an impact on
network performance? If so, is there an optimal number of channels that can be found?

Experiments investigating this issue were performed for the ARFACES dataset, with the
number of inputs set to vary between 2 and 8 for both single network A and one network A
per class approaches.

These experiments indicated wide differences in performance resulting from selection of
the number of inputs with as much as a 5% difference in accuracy depending on the number
of inputs used. Unfortunately no linear correlation could be found between the number of
inputs and the accuracy, and thus it is important to leave this parameter as a choice for the
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user. Investigations on the possibility of learning this parameter for a specific dataset are left
for future research, as the experimental effort involved would be extensive and solutions to
learn the parameter from the input are non-obvious.

How Many Network As are Needed?

There are two approaches studied for Smart augmentation. One approach uses a single
"network A", which tries to learn to generate sample images for all the classes in the network.
The second uses one network A for each class.

While using one network for each class makes some intuitive sense, it also increases
training time and causes scalability concerns, increasing excess training time to be twice as
long for a 2 class problem is reasonable, but for a 1000 class problem (such as ImageNet) it
would make use of the method infeasible. Thus the suggestion that one network A is used for
each class requires evidence of an increase in accuracy to justify the computational cost.

If the networks with just 1 and 0 input channels are excluded, there is an average (mean)
increase in accuracy from 92.94 to 93.19 when multiple network As are used, with the
median accuracy going from 92.49 to 93.35. This indicates that the use of multiple network
As provides some benefit across datasets and parameters studied.

Does Altering the α and β Parameters Change the Results?

The SA technique includes two coefficients which together control the portion of the loss
total that comes from network B (the classifier) against the portion that comes from the
network As. The coefficient to the loss from network A is called α and the coefficient to the
loss from network B is called β .

While running the experiments, alpha and beta values that seemed to work well were
empirically decided, but these decisions were made prior to any final results while investi-
gating network convergence during training. It occurred to me that an experiment should
be designed to document the impact that the alpha and beta parameters have on network
performance.

Therefore an experiment identical to that from section 2.1.1, except using the airport and
abbey classes of the MIT places dataset instead of the faces dataset, was performed.

Four experiments containing two variations of alpha and beta (0.3,0.7) vs (0.7,0.3) were
performed and allowed to run until the end. As expected, varying the loss coefficients had an
impact on accuracy with (α : 0.7,β : 0.3) reaching 99% accuracy, whereas (α : 0.3,β : 0.7)
obtained 97.87 for a network with two network As and 98.75 for the approach with just one
network A.
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2.1.4 SA on Multiple Datasets

The next research question in the Smart augmentation paper was: If smart augmentation
is effective, is it effective across a variety of different datasets?, and if so, how does this
vary as the datasets are increasingly unconstrained? This question is important because
it is common to find methods that work well on highly constrained data but work poorly
as the data becomes increasingly unconstrained. A popular example of this is the use of
Eigenfaces [22] for face recognition. In that approach, the authors assume at the training
stage that faces will be provided in a frontal format with an approximately similar size (i.e.
mugshot) and that Principle Component Analysis (PCA) will determine the 2D features
using 2D eigenvalues from the PCA analysis. While this analysis provides a very interesting
set of features, with lower-order components that clearly resemble the global structure of a
face (hence, Eigenfaces) the resulting recognition analysis will fail if faces are not upright
and if they do not lie within a specific size range. Since it has been shown that CNNs can
learn filters that are similar to those used in classic image processing [10], it is important
to investigate the sensitivity of a given method to change in the nature of task difficulty (ie
classification of constrained faces where Eigenfaces perform well vs unconstrained where it
fails).

For this, 4 increasingly unconstrained datasets (AR faces [23], FERET [24], Adience
[25], and Mit Places) were used (examples in figure 2.2). The AR Faces dataset, used for the
majority of the initial experiments on the proposed augmentation approach, is composed of
4000 frontal faces of male and female subjects. Every subject has similar pose, lighting, and
frontal orientation and they are all cropped in the same way. This dataset is easy for both
conventional and DL algorithms.

Next the FERET dataset was used. FERET is still a highly constrained dataset by most
standards but it contains some variation in pose and facial occlusions (glasses, beards, etc).
Most traditional algorithms still perform well on FERET but not as well as they do on AR
Faces.

Adience was the most challenging of the face datasets used. It was gathered automatically
from Flickr albums and contains examples with poor lighting conditions, obstructions,
multiple subjects, and difficult pose angles. Traditional algorithms do not perform well on
this dataset, but methods based on deep learning do.

Experiments were repeated on all three face datasets and the average accuracy was
recorded. Once it was established that smart augmentation worked well on all three face
datasets, a fourth final challenge on a non-face-related task was chosen - The MIT Places
dataset.
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Fig. 2.2 Selected images from each of the 4 datasets used to evaluate Smart Augmentation
demonstrate the progressively unconstrained nature of the tested images. This was necessary
to examine the relationship between the complexity of the scene and the usefulness of the
technique.

Since the Smart Augmentation experiments required one network A for each class, and
because of the increase in training time this entailed, only 2 classes from the MIT places
dataset were used: Abbey and Airport. Experiments followed the same methodology as
used previously on the face datasets and demonstrated 99% accuracy with the use of smart
augmentation compared to 96.5% without.

It was found that the use of smart augmentation improved accuracy over traditional
augmentation on a variety of increasingly unconstrained data.

2.1.5 Smart Augmentation and Overfitting

When initially designing the smart augmentation concept, a very good question was asked:
"Won’t that just cause overfitting?"

This is a reasonable concern since the role of network A is to increase the accuracy of a
target network on, the same training set that the target network is already being trained on
and increasing accuracy on the training set is useless without a corresponding increase in
accuracy on a validation or testing set.

One indication of overfitting is if the loss on the training set is going down (often close
to zero) while the loss on the validation set goes up. Assuming both the testing set and the
training set come from the same distribution, this test can show that overfitting has occurred
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but it can not verify conclusively that overfitting has not occurred. Training and testing loss
for 1000 epochs of training using smart augmentation on the ARFACES database (see figure
2.3) did not indicate any overfitting and no evidence of overfitting was found in any of the
experiments conducted.

More surprisingly, validation loss was lower with smart augmentation than without,
indicating the possibility that instead of increasing overfitting, the use of smart augmentation
decreased it.

Fig. 2.3 This figure shows training and validation losses for 1000 epochs of training using
the SA technique on the AR faces dataset. As explained in 2.1.5 this can serve as a test for
overfitting.

2.1.6 Summary of Findings from Research Questions

The experiments provoked by these research questions demonstrated that the augmentation
process can be automated, specifically in nontrivial cases where two or more samples of
a certain class are merged in nonlinear ways, resulting in improved generalization of a
target network. The results indicate that a deep neural network can be used to learn the
augmentation task in this way at the same time the task is being learned. A convergence
graph, supplied in the paper, demonstrated that smart augmentation can be used to reduce
overfitting during the training process and reduce the error during testing. Details of these
experiments and the methadology can be seen in B.

An increase in accuracy from 3.5 to 6.7 percentage points over baseline models was
achieved depending on the dataset and experiment, and no linear correlation between the
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number of samples mixed by network A and accuracy was found, so long as at least 2 samples
are used.

It was also shown that Smart Augmentation is effective at reducing error and decreasing
overfitting, and that this is true regardless of how unconstrained the database is.

Thirdly, these experiments demonstrated that better accuracy could be achieved with
smart augmentation than with traditional augmentation alone. It was found that altering the
α and β parameters of the loss function slightly impacts results, but optimal parameters
remain elusive and thus must be tuned by the experimenter.

2.2 Research Impact

Much of the the early work on Smart Augmentaion has already made an impact. This section
describes new papers that are related to the original work on smart augmentation, many
of which cite the original paper on the topic of learnable data augmentation with neural
networks. For related work published before Smart Augmentation, see appendix B.

Thus in this subsection, the work in this thesis on data augmentation is put into a broader
context. Focus is given to literature that is directly related to forms of learned augmentation,
most of which were published after the original article on Smart Augmentation.

A review paper based on this section has been accepted for publication in Consumer
Electronics Magazine.

In early 2017, the first papers on a new form of learnable augmentation were introduced.
Since then, a number of other articles have been published exploring the idea of smart
augmentation.

These techniques have in common that, instead of designing the augmentation process
before training, they use artificial neural networks to learn the augmentation task at some
point in the training pipeline. In this subsection, the latest techniques for using deep neural
networks, and related techniques to generate data for augmentation, are explored.

Recent research has indicated that augmentation may be superior to other regularization
approaches. For example, Hernandez et al. [26] [27] studies how augmentation can be used
instead of regularization. They explain that many types of regularization (weight decay,
dropout), waste model capacity by blindly eliminating learned information, and argue that
data augmentation can do a better job at promoting generalization while more efficiently
using network weight information.

Hernandez defines explicit regularization as techniques that are "specifically and solely
designed to constrain the effective capacity of a given model in order to reduce overfitting.
Furthermore, explicit regularizers are not a structural or essential part of the network archi-
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tecture, the data or the learning algorithm and can typically be added or removed easily."
[26]

He goes further to define implicit regularization as "the reduction of the generalization
error or overfitting provided by characteristics of the network architecture, the training data or
the learning algorithm, which are not specifically designed to constrain the effective capacity
of the given model." [26]

Although these definitions are not universally accepted, and the number of datasets
tested may be insufficient for such bold claims, they allowed the authors of that paper
to classify data augmentation as a form of implicit regularization and form a series of
experiments documenting how both forms of regularization impact model performance.
These experiments demonstrated that in the majority of cases, using augmentation alone
was a superior strategy to using explicit regularization or even augmentation and explicit
regularization together.

2.2.1 Learnable Data Augmentation

Learning the data augmentation task with a neural network is a natural progression of the
recent history of computer vision algorithms. Traditional computer vision involved creating a
filter/feature detector, or set of filters/feature detectors, and transforming them in such a way
as to allow a computer to make decisions about their content. The "Learning" part would
often involve support vector machines (SVM), and any high dimensional features were often
reduced with Principle Component Analysis (PCA) or Linear Discriminant analysis (LDA).
For most computer vision tasks today, these methods, some of which were state of the art a
little more than 5 years ago, are now archaic and only recommended in cases where Deep
Learning performs poorly, typically when dealing with very small datasets or when Deep
Learning is unnecessary, such as when an exact solution exists or when the task is simple
enough to not need it. The problem with the traditional approaches is that they all require a
person to decide ahead of time what features are most useful for a given task.

The phenomenal recent advancements in face recognition, object classification, voice
recognition, and other tasks for which Deep Neural Networks are commonly applied are
partly due to the fact that CNNs do not use hand-engineered features. Instead, they learn how
to generate filters for input data as they learn their task.

The first paper describing fully learnable data augmentation, where all components of the
augmentation pipeline are learned using an artificial neural network, appears to have been the
paper on "Smart Augmentation" [11]. However, when researching related work for this thesis
a paper that used a non neural network approach with the idea of learnable augmentation that
was published few months earlier in 2016 [28] was found. Hauberg used statistical models of
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transformations for learning data augmentation tasks. Hauberg’s approach can be considered
the first approach to learning to augment data from the data itself using a statistical model,
whereas Smart Augmentation [11] is likely the first approach to learn to augment data from
the data itself using an artificial neural network.

2.2.2 Alternative Learned Augmentation Techniques

This subsection describe techniques for learned augmentation that do not use GANs or
traditional statistical modeling and have been shown to perform well on image data.

Learning to Augment Data with a Neural Network

Another approach, similar to smart augmentation for learning augmentations that best im-
prove a classifier called "neural augmentation" is discussed by Wang and Perez [29]. Neural
augmentation takes two random images from a class and trains an augmenter that tries to
generate images that reduce the loss of a target network. Neural augmentation has a number
of similarities to smart augmentation and was reported to substantially improve accuracy
(from 85.5% to 91.5% on dogs vs cats, and from 70.5% to 77.0% on cats vs fish classification).
Neural augmentation appears to have been the result of a class project at Stanford and some
of the author’s experiments are similar to the early experiments performed when testing the
idea of Smart Augmentation. Although they never published their technique as a journal or
conference paper, their work is cited by many of the same papers that cite my work.

Augmentation Policy Learning

One alternative approach to learnable augmentation, called auto-augment, is to use machine
learning to identify known augmentation techniques that cause better results for a specific
dataset during training. This is a promising hybrid approach that allows learnable task
specific augmentation policies, introduced in [30], that may be especially useful in cases
where several traditional augmentations are suspected to work well. This approach can also
be blended with approaches in the previous two subsections. Lin [31] and Lim [32] have
proposed updated architectures for auto-augment that show speed improvements over the
initial proposal.

Another approach to augmentation policy learning suggested by Ho et al. [33] was able to
match the accuracy of auto-augment (state of the art) with 1000x less computational require-
ments on a number of datasets. Their method, called Population Based Augmentation (PBA),
generates non stationary augmentation schedules, meaning a new optimal augmentation
strategy is learned for each epoch.
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Evolutionary Image Augmentation

An interesting type of learned augmentation using evolutionary image processing was inves-
tigated by Fujita et al in [34]. An image transformation tree using Automatic Construction of
Tree-Structural Image Transformations (ACTIT) is used to create augmented images that are
shown to improve results on various two class problems.

2.2.3 Methods Based on GANs and Statistical Generative Techniques

Generative models for data augmentation attempt to model the data found in the dataset and
then use the generator to create unique image samples.

An early approach to learnable augmentation was suggested by Hauberg et al. [28]. They
demonstrated a fascinating statistical approach to generative augmentation by modeling
the transformations found within a given dataset. In this idea, augmentations are a type of
deformation. A parametric model is used for generating transformations of input images.
Promising results were reported on MNIST-like datasets of hand-written digits, but no further
results have been reported for more challenging datasets. After the model has been trained to
generate images similar to those in the dataset, generated images are sampled randomly from
the parametric model, allowing for a large number of realistic transformations. A similar
statistical model was used by Acero et al. [35] to augment MRI images to improve results on
the cardiac segmentation task.

In addition to techniques based on classic statistical generative models, generative adver-
sarial networks have also been used for the task of learnable data augmentation. Compared
with classic generative models, this has the advantage that no assumptions are made about
the types of transformations that should be allowed in a pre-augmentation step. Instead,
GANs learn the distribution of the training set by competing against a discriminator and this
competitive process alone determines the types of data that the GAN generates.

Several recent works on using GANs for augmentation have been published. For example,
[36] used the GAN target loss to improve human pose estimation in a class-specific way. This
paper is distinguished in that it learns to generate data at the same time it learns to perform
its task. An interesting feature of this approach is the use of a "reward and penalty strategy"
during training. Such strategies are common in reinforcement learning, but uncommon in
GANs. As with all GAN techniques, the generator (augmenter) network attempts to find
weaknesses in the discriminator. This corresponds to generating "hard" augmentations.

Another GAN approach to data augmentation is given by Ratner et al. [37]. A generative
sequence model is trained over a transformation function. Like the method introduced by
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Peng et al. this method uses reinforcment learning to generate data points that may be useful
in the data augmentation task.

Wang and Perez [29] use a Cyclegan to generate images for use in data augmentation, but
report that traditional augmentation techniques improved their results more than the GAN.
Their inspiration for the use of style GANs was to train networks to address the problem
whereby video data that is collected in one condition (daylight) when used for training will
cause problems in other weather and lighting conditions (ie, fog and night).

Utilizing GANs for data augmentation is further studied by Poduturi in [38]. Poduturi
used the GAN’s latent vector to generate images for augmentation. A detailed analysis of
error sources is provided and various augmentation techniques are ranked with results from
the GAN performing competitively.

Antoniou et al. [39] use a conditional GAN to generate augmented samples, resulting
in improved accuracy on a number of datasets. They call their method DAGAN (Data
Augmentation Generative Adversarial Networks). They also apply their method to few shot
learning and show that their method can substantially increase accuracy when only small
amounts of data are available for training.

Zang et al. [40] extend a classic GAN with an augmentation module and a modified loss
function they call 2k loss. They call their technique Deep Adversarial Data Augmentation
(DADA). Like other class-aware GANs, the discriminator is adapted to return multiple class
probabilities. The data augmentation module and classifier are learned at the same time and
demonstrate state-of-the-art results on a number of small datasets that would typically be
difficult for GANs to learn. Zang reports competitive results on EEG, breast imaging, and
tumor classification tasks.

Finally Tran et al. [41] introduced a Bayesian approach to data augmentation, using
generalized expectation maximization, whereby augmented data are treated as missing
variables. These variables are sampled from the distribution learned from the training set.
The proposed GAN is based on AC-GAN.

2.2.4 Data Augmentation for Audio

A majority of the papers published on data augmentation focus on visual data, and the
most popular techniques are not relevant to audio data. With the rise of smart speakers
and intelligent audio assistants, it is important not to neglect data augmentation for neural
networks that operate on audio. For this reason a subsection is devoted specifically to
dealing with the augmentation of audio data. The majority of these techniques augment on
spectrogram data (linear or mel).
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The interest in applying augmentation to audio data comes from a collaboration with
Aoife Mcdonagh when she was starting her research in deep learning for audio. Although
most of the work that was intended for audio augmentation never occurred due to new
priorities, it is still worth discussing this thesis.

As this work never progressed to the point of using it for data augmentation, we instead
applied it to the problem of generating unique audio for video games.

The paper that came out of my collaboration proposed a GAN for unique audio generation
that can be applied to augmentation in Synthesizing Game Audio Using Deep Neural
Networks [18] by latent space interpolation or by randomly sampling the Z vector. Although
no evaluation of performance on augmentation tasks was done in the paper, the similarity of
the method to GAN-based augmentation techniques provides reason to believe the method
will work for this task. Raw waveforms are used rather than spectrograms. In a way this
represented an attempt to apply one of the core ideas that made Smart Augmentation work to
audio by training a network to learn to combine features learned from sounds to create new
distinct sounds. In that work, the latent space of the Z vector was used to synthesize unique
audio that has the properties of two or more audio clips, just as smart augmentation created
new images that had the properties of two or more images.

My contribution was the original idea of using a GAN to synthesize unique audio using
latent space interpolation of two classes, writing parts of the paper, and processing the output
from the trained GAN to gather data. The majority of the work was performed by a colleague.
Ideas for extending this work using a recurrent neural network are included in a filed patent
application.

The remainder of this subsection includes a short review of audio augmentation tech-
niques.

Shluter et al. [42] investigates label-preserving transformations (augmentation strategies)
for audio signals with a focus on singing voice detection, and measures the techniques that
result in the best performance. They train a CNN to perform classification on spectrograms
of voice sounds modified with the following transformations:

• Noise (dropout and Gaussian) applied directly to the spectograms

• Pitch shifting and time stretching by scaling spectograms vertically (for pitch) or
horizontally (for time) followed by additional processing.

• Loudness (by randomly scaling linear spectograms)

• Random frequency filters

• Mixing two music excerpts using linear spectograms.
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It was found that random frequency and pitch shifting improved results significantly,
but the remaining filters were ineffective or reduced accuracy. State of the art results were
achieved when using frequency randomization and pitch shifting. Some of these filters can
be implemented in the Audio Degradation Toolbox, in matlab, or in the munda Musical Data
Augmentation package in python. These packages were both designed for performing audio
augmentation.

Park et al. used a similar approach with the introduction of an audio augmentation
method they call SpecAugment that operates on mel spectograms [43]. They demonstrate
SpecAugment for automatic speech recognition without the need for a language model
(although they saw further improvements when language models were used). State of the art
results were achieved on LibriSpeech and Swichboard 300h datasets. Warping and masking
(on time and frequency) policies are used for augmentation.

Vatolkin et al. proposed an evolutionary optimization technique to identify what they call
"smart data", that is, sound samples that contain the most relevant information for a given
class [44]. They apply their proposed technique on vocal activity detection.

2.2.5 Other Recent Augmentation Techniques

In this section, new augmentation techniques that, although they would not qualify as smart
augmentation or learned augmentation in a strict sense, contain a learned component or show
a significant improvement from a new augmentation technique.

Devries et al. describes a new method of data augmentation called "cutout". The approach
works by applying a fixed-size zero mask to a random location of each input image during
training. Surprisingly, this simple technique yielded state-of-the-art results on the CIFAR-
10, CIFAR-100, and SVHN datasets in August 2017. This illustrates the ability of simple
transformations to greatly improve network performance [45].

Another interesting recent technique called MixUp [46] [47], provides a method for auto-
matic augmentation by interpolation. This method has been shown to mitigate adversarial
attacks on neural networks. The explanation for why mixup provides protection from adver-
sarial examples is that the decision boundaries produced by mixup transition smoothly and
linearly from one class to another. Mixup is related to other forms of learned augmentation
because the interpolations are learned from the data.

A method is presented by Duan et al. that uses information about which neurons activate
during training to create augmented images and found that their method improved accuracy
by 11.31 percent on the CUB200-2011 dataset [48]. This approach is somewhere between a
learnable "smart" augmentation and traditional augmentation.



2.3 A Discussion on Smart Augmentation and GANs 31

2.2.6 Discussion

Learnable augmentation is a new, highly active sub-field of deep learning research that
has the goal of reducing the human labor inherent in selecting, designing, and validating
data augmentation. Common approaches to learnable augmentation include policy learning,
learning to generate images with a GAN or other network, and building statistical models. It
is interesting that, while a wide variety of methods work well on image data, there are far
fewer methods that work well on audio data. The investigation of smart augmentation for
audio data thus remains an interesting possibility for future work.

2.3 A Discussion on Smart Augmentation and GANs

Shortly after I first came up with the idea of smart augmentation and ran the initial experi-
ments, a patent application needed to be prepared. One of the benefits of being placed in a
company with so many talented engineers is that rapid practical feedback is often possible:
especially when an idea is being considered for patentability. One engineer was particularly
adamant that our smart augmentation idea was a type of GAN and the arguments in this sec-
tion are based off my counter argument to him on why the method should not be considered
a GAN.

In this subsection, important differences and similarities between Smart Augmentation
and a popular related technique - Generative Adversarial Networks are discussed.

Generative Adversarial Networks (GAN) were developed in 2014 by Goodfellow, et al
[49]. The main idea was to synthesize examples of observed data in an unsupervised way by
use of competing networks. To explain how this works, the paper uses the analogy of police
vs counterfeiters.

One network (the counterfeiter) attempts to trick the other network (the police) into
thinking that a generated image is legitimate. The second network (the police) attempts
to learn how to detect the counterfeits in a minimax fashion. The goal is that through
this competitive process, the counterfeiter network will be able to produce images that are
indistinguishable from real images.

Specifically, the generative model in a GAN generates samples by passing random noise
through a multi-layer perceptron. The discriminative model is also a multi-layer perceptron.
The models are trained using backpropagation and dropout.

Generative Adversarial Networks use competition to generate an image which is not used
for augmentation but is instead used to make images that are “similar” to other images that
the discriminator has seen before.
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Additionally, Generative Adversarial Networks and smart augmentation have differing
objectives. In Generative Adversarial Networks they make more images that are similar to
images that have been seen. This is the entire goal. With Smart Augmentation the idea is
to train a network to use the joint information between image samples to improve a second
network which later operates independently. Furthermore, Smart augmentation is not a
process for generating data. It is a process for training a separate network that includes a
generative component.

Importantly, Smart Augmentation is considered to be working if it generates data that
improves a target network, regardless of whether that data looks "good". The performance
of GANs is measured based on their ability to create "realistic" images that seem similar
to others in their class. The subjective nature of evaluating GANs has led to subjective
metrics such as mean opinion score, inception score [50], or Fréchet Inception Distance
[51] in evaluating GAN performance. Smart Augmentation is evaluated based on easily and
objectively measurable criteria: The amount by which the target network has improved (in
terms of accuracy, ROC scores, precision/recall, or other classification metrics).

2.3.1 Differences

Unlike GANs, Smart Augmentation does not use competition, and utilizes a loss that has no
relation to that used by GANs. Furthermore generative adversarial models are unsupervised
learning tools that disregard class labels, whereas our model is supervised and has a network
tuned to the best augmentation strategy for each class.

Generative Adversarial Networks also require large amounts of unlabeled data, whereas
our method is designed to work with classes that may not have very many samples.

With GANs, one typically uses the discriminator only during training, using the trained
generator to create content as a "stand alone" network. In smart augmentation the opposite
approach is used. The generator, our network A, is discarded and only the classifier is used
for the given task.

The Smart Augmentation model learns to merge k images based on similarity to a specific
arbitrarily chosen image in the same class, as well as the loss function of the target network.
Generative Adversarial Networks learn to create images similar to images in the dataset
in a different way: instead of learning to merge images they learn to generate images by
performing minimax optimization between the generator and discrimator. Therefore both
GANS and SA use information from the loss function of more than one network, but the
information used and what they do with that information is different.

Another difference is that SA does not pass noise through a multilayer perceptron. Instead,
multiple images in channels are passed as input to a network that learns to modify them. It is
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important to note here that there do exist GAN models that use variation in the training set as
the "noise" instead of the original random input idea while retaining other aspects of GANs.
The most popular of these is CycleGAN [52]. Unlike regular unconditional Gans, which
learn to map random noise to an image, CycleGAN learns to map an image to another image
as well as the reverse operation. Specifically it learns an objective for bidirectional mapping
between a source image x and a target image y. For such networks, this argument about
the input does not apply, however "CycleGAN" was published concurrently with "Smart
Augmentation".

2.3.2 Similarities

Generative Adversarial Networks also have a network “A” that generates data (typically
images or sound). Network A in Generative Adversarial Networks also uses information
about how network B (the discriminator) is interpreting its input. This similarity is only in
the abstract sense because the nature of the information used and what it does with the input
are different. Generative Adversarial Networks and network A in the Smart Augmentation
system both create artificial images that are similar to other images in their data set, although
the methods by which this is accomplished are different.

Both networks’ models have a “generator” and “discriminator” component. With Smart
Augmentation Network A is a “generator” and network B could be considered the “discrimi-
nator” although this same terminology is not as meaningful for Smart Augmentation.

2.3.3 GASA

The unique properties of GANS and Smart augmentation inspired an experiment whereby a
GAN was used in place of network A with a classifier and similar loss structure. The research
question in this case was "Will the generator of a GAN (specifically BEGAN [53]), with
input from a classifier’s loss during training, improve the training of a target classifier. This
implementation was called GASA (Generative Adversarial Smart Augmentation) and the
architecture is shown in figure 2.4. It was predicted that this would not improve the results
because the GAN would be pushed to making images that are as close as possible to those
which were already well understood by the classifier.

Our initial experiments indicated that this assumption was correct. GASA was not
successful as our experiments indicated no improvement over not augmenting at all. Further
GAN/SA experiments for data augmentation were not attempted due to this negative result
and more pressing research priorities, but this negative result does not imply that it would be
impossible for a successful GASA-like idea to work in the future.
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Although the work on GASA was not used for augmentation, the idea was later success-
fully adapted by my coauthor to perform the opposite task: to improve the generator of GAN
by attaching an auxiliary classifier or regression network.

Fig. 2.4 Diagram of unsuccessful GASA idea built for the perceived gender recognition
task. In this case two generators take the place of two network As in the smart augmentation
model.

2.4 Smart Augmentation and other Similar Techniques

The concept of using one network to train another is not unique. One example is the so called
“student teacher networks” or just “Student Neural Networks” where one network is used to
train another network in such a way as to mimic its output [54]. A similar concept is used for
neural cryptography which uses a neural key exchange mechanism to secure communication
[55]. The method shows promise in the future because it is not vulnerable to the varieties of
cryptographic attacks that are theorized to become feasible with quantum computers or other
unforeseen advancements in factorization algorithms.

A brief overview of the main differences between smart augmentation and the above
mentioned methods follows:

1. Neither student/Teacher networks nor neural cryptographic networks use an augmenta-
tion strategy as part of their design.



2.4 Smart Augmentation and other Similar Techniques 35

2. Neither Student/Teacher networks nor neural cryptographic networks mix or merge
loss functions during training.

3. In the design of Student/Teacher networks, network “A” is the teacher from which
network B learns to classify the same material. In neural cryptography network A and
network B negotiate a key exchange mechanism. Our network A generates Augmented
data and takes in multiple inputs at once while network A and network B learn from
eachother. The other networks don’t do this.

4. These networks do not have selector functions that allow comparison with existing
data.

Both Smart Augmentation and the above networks use one network to train another -
this is common to many meta-learning approaches. In neural cryptography, the training
process happens concurrently (i.e., network A and B are “trained” simultaneously). This is
the same with Smart Augmentation. Student/Teacher networks do not typically share this
commonality.





Chapter 3

Eye Gaze

Eye gaze tracking and gaze-based human computer interactions in modern consumer devices
are an important aspect of exploring human interface design (HID). Eye gaze has been used
to derive human behavioral cues, as an input modality and for achieving immersive user
experiences in virtual and augmented reality systems.

After decades of research on desktop-based gaze estimation techniques, the focus has
recently shifted to building eye gaze applications for dynamic platforms such as driver
monitoring systems [56] and handheld devices [57]. For an automobile driver, eye based
cues such as levels of gaze variation, speed of eyelid movements and eye closure can be
indicative of a driver’s cognitive state. These can be useful inputs for intelligent vehicles
to understand driver attentiveness levels, lane change intent, and vehicle control in the
presence of obstacles to avoid accidents [58]. Handheld devices like smartphones and tablets
form unique platforms for gaze tracking applications wherein gaze may be used as an input
modality for device control, activating safety features and novel user interface (UI) designs
[59]. Eye gaze estimation is also an essential component on the path to autonomous driving
as the vehicle needs to know when it is safe to surrender control to a driver.

The most challenging aspect of these modern gaze applications includes operation
under dynamic user conditions and unconstrained environments. Further requirements
for implementing a consumer-grade gaze-tracking system include real-time high-accuracy
operation, minimal or no calibration, and robustness to user head movements and varied
lighting conditions. Therefore accurate and reliable gaze tracking typically demands high
quality cameras and special equipment like narrow angle lenses, external illumination, and
stereo setups [60] for capturing eye region features with sufficient details. As a result, gaze
estimation systems frequently become costly with complicated setups, which are unsuitable
for generic and consumer applications.
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Therefore a major challenge of gaze-based consumer electronics design involves maxi-
mizing system performance while reducing costs and system complexities.

Gaze-tracking algorithms can be broadly classified into two types: model-based methods
and appearance-based methods [61]. Appearance-based methods operate directly on the eye
images. Examples of model-based methods include 2D and 3D models that use near infrared
(NIR) illumination to create corneal reflections and track them with respect to the pupil center
to estimate the gaze vector. These require polynomial or geometric approximations of the
human eye to obtain the gaze direction or the point of gaze. Appearance-based methods use
eye region images to extract content information such as local features, shape, and texture of
eye regions, to estimate gaze direction.

Contemporary research on gaze tracking measures accuracy in a wide variety of ways
[60]. For example, commonly used measures include angular resolution in degrees [62], gaze
recognition rates in percentage [63], and shifts in number of pixels or distance in cm/mm
between gaze [64] and target locations.

3.1 Exploring Eye Gaze Estimation for DMS

This research on eye gaze followed from the earlier work on driver monitoring systems [16]
and was part of the larger participation in training neural networks for the Fotonation/Xperi
driver monitoring system technologies and algorithms.

Some of this work, due to the significant improvements in performance over alternative
approaches became central to the Fotonation’s first DMS system. This chapter contains an
overview of work that can be publicly disclosed. Other significant improvements were later
made but cannot be fully detailed here due to the commercially sensitive nature of Driver
Monitoring systems.

However driver monitoring systems based on it are currently being used commercially,
have been shown at CVPR 2019, and helped to win the Irish research innovation award.
These developments eventually resulted in the opportunity to lead a small team of R&D
engineers developing a series of neural networks for driver monitoring tasks such as head
pose, eye gaze, occlusions, driver action recognition, and other core driver monitoring and
occupant monitoring technologies.
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Fig. 3.1 CVPR 2019 demo which included an eye gaze network that I contributed to as
part of a complete driver monitoring system.

3.2 Convolutional Neural Network Implementation for Eye-
Gaze Estimation on Low-Quality Consumer Imaging
Systems

This section summarizes the work taken from my journal article [14] about the implementa-
tion of an eye gaze estimation system for a driver monitoring system, and continues with the
theme of investigating advanced data augmentation strategies and increasing the performance
(both speed and accuracy) of convolutional neural networks in consumer applications.

The major contributions are a new CNN for eye gaze estimation and analysis of a method
for improving invariance to user distance by data augmentation. A major challenge of
gaze-based consumer electronics design involves maximizing system performance while
reducing costs and system complexities.

Specifically, it describes work on a calibration-free method for appearance-based gaze
estimation that is suitable for consumer applications and low cost hardware with real time
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requirements, using a Convolutional Neural Network (CNN). An analysis of both model
architecture and an augmentation approach is provided.

When deploying eye gaze solutions for consumer devices, there are two important aspects
to consider: accuracy and efficiency. This work addresses both issues by demonstrating
improved accuracy and also by reducing the number of multiplications needed for predictions,
thus increasing efficiency. It should be noted that the total number of matrix multiplications
needed to obtain predictions from a convolutional neural network is determined by the size
of the convolutional kernels, the step size, the number of nodes in each layer, and the number
of layers [10]. These multiplications are often measured in multiply-accumulate operations
(MACs).

3.2.1 Contributions of this Work

From the perspective of developing a deep learning model for gaze estimation, the task can
either be considered a regression task or a classification task. Although both are useful,
regression provides the greatest predictive flexibility and thus this paper treats the eye gaze
estimation task as a regression problem with the goal of finding a gaze angle (φ ,θ ) that
corresponds with a low resolution eye image such as one taken from a distance with a simple
RGB webcam mounted on a dashboard.

A hardware optimized network is implemented with demonstrated suitability for deploy-
ment on such consumer devices in terms of memory requirements and speed. This network
achieves superior accuracy using a dual channel input technique when compared against
other state-of-the-art CNN-based gaze tracking methods for unconstrained, low resolution
eye tracking.

Table 3.1 Result of Distance Simulation and Augmentation Experiments

Resolution Unaugmented error Augmented error
60 x 36 4.63 degrees 4.918
52 x 31 9.90 degrees 4.94
26 x 16 10.10 degrees 4.98

This table shows the impact of camera distance and augmentation for a trained eye gaze
model on angle accuracy.

This demonstrates that the model is sensitive to changes in distance. In the next section,
an experiment is performed to see if data augmentation can be used to improve upon this.
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3.2.2 Impact of Random Resizing as Augmentation

Data augmentation has been shown in many studies [65] to have a large impact on model
performance, but augmenting to increase accuracy on a wide range of distances appears to be
neglected in literature on eye gaze. To further improve accuracy, the dataset was augmented
with multiple randomly chosen resolutions to match the full range of desired distances. To
help reduce the chance that the network would learn the specific interpolation method used,
Nearest is used in the training set, but Lanczos filtering is used in the testing set.

These results indicate that augmenting the images with distances that are likely to be
encountered in real world usage situations is an effective way to increase accuracy and
succeeds in achieving some invariance to subject distance.

Fig. 3.2 This figure contains network architecture details for the 5 networks examined in this
section. See Appendix D for more details.

3.2.3 Models Examined

The Five Networks

Five networks used in this subsection were evaluated on commodity processors for both
accuracy and speed. The result of speed experiments are in the table 3.2. A comparison
of the best performing network with related work is shown in table 3.3, and the results of
an experiment examining an augmentation technique using these networks are shown in
table 3.1 the architectural details are shown in figure 3.2 the data flow is shown in figure 3.3.
Additional experiments, results, and methodology are provided in appendix B.
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Fig. 3.3 This diagram provides a visual overview of the data flow for networks 2-5 used for
eye gaze estimation. Layer details differ for different networks and are illustrated in Figure
3.2.

The first network used (Network 1 in figure 3.2) was the “one channel” approach used
in [66], with which I compare. In contrast to the new approaches, this method performs a
separate inference for each eye and flips the right eye. The reason the right eye is flipped,
and the corresponding vectors recalculated, is to allow the network to learn a single model
for a given eye patch without consideration to the side of the face it is on. My first step was
to duplicate the results of [66] on the same network using the same architecture to establish a
reliable baseline for performance on the mpii-gaze database.

The next network architecture (Network 2 in figure 3.2) involved using both eyes in
separate channels, input to the network at the same time. Experiments with this network
showed that this architecture change increased accuracy.
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A variation of network 2, Network 3 in figure 3.2 contains half as many outputs per layer
and provided a significant increase in speed at the cost of a slight reduction in accuracy.

The fourth network replaces network 2 with 3x3 kernels (as shown in figure 3.2 such that
the receptive field is maintained but without additional changes. This network was included
to differentiate between results that occured due to the increase in outputs and addition of
nonlinearities in network 5 from those due to the 3x3 kernel replacement.

The fifth network (network 5 in figure 3.2) adds RELU nonlinearities to network 4. This
is the best performing model I examined for eye gaze. The replacement of 5x5 kernels with
3x3 kernels was motivated by the needs of an embedded system where the corresponding
reduction in multiplications with the same receptive field was important for performance and
implementation reasons.

Table 3.2 Frames Per Second of CNN on Commodity Hardware

Model ARM Cortex-A53 AMD 1950X
Threadripper CPU

NVIDIA 1080 TI
GPU

Network 1 [66] 20.64 473.11 3984.09
Network 2 39.81 960.06 8078.47
Network 3 92.59 3080.80 12607.90
Network 4 29.68 592.02 6134.02
Network 5 19.11 400.50 5500.37
VGG16 [67] 0.0043 0.64 120.4

All units are in frames per second. Details of these networks are discussed in appendix D.
As can be seen from this table, networks 2-4 perform faster on all tested hardware than the
comparison networks (Network 1 and VGG16) while providing greater accuracy. Network 4
has similar performance to network 1 while increasing accuracy. The well known VGG16
network is included to allow the reader to see the speed gain over this type of architecture.
VGG16 is an improvement over Alexnet, which was used to achieve 4.8 percent error on the
same dataset [68].

Table 3.2 shows the results of an experiment to measure the runtime of the 5 networks
with the popular VGG16 included for comparison.

The embedded processor used for these experiments was the ARM Cortex-A53, a typical
64 bit processor used in embedded and mobile systems, and available on a well-known
embedded prototyping platform: the Raspberry PI. Tests used only one core of this processor.

The second processor, an AMD 1950X Threadripper, is a popular high end workstation
central processing unit (CPU). For a fair comparison, only one thread was used for tests.
Lastly the GPU used is a popular high end consumer GPU targeted at video gamers, the
NVIDIA 1080 TI GPU. As can be seen in Table 3.2, network 3 is significantly faster than the
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Table 3.3 Comparison of Proposed Model and Other Published Works on the MPII-Gaze
Database

Citation Error (degrees)
Baltrusaitis et al [69] 9.96
Wood et al [70] 9.58
Shrivastava et al [71] 7.8
Nie et al [72] 7.1
Zhang et al [66] 6.1
Zhang et al [68] 4.8
Proposed 3.65

This table shows the best performing network from the proposed networks compared with
other reported results on the MPII-Gaze dataset. See appendixF for methodology.

other networks while network 5 provides a good balance between speed and accuracy. In
some cases network 3 may be preferred due to increased speed and competitive accuracy.

In order to facilitate a fair comparison with [66] the loss function for all networks follow
that which was used by the authors of that paper, and is calculated according to the following
equations, where φ and θ are the predicted gaze and φ̂ θ̂ are the corresponding ground truth.

norm1 =
√

(−1 · cos(φ) · sin(θ))2 +(−1 · sin(φ))2 +(−1 · cos(φ) · cos(θ))2

norm2 =

√
(−1 · cos(φ̂) · sin(θ̂))2 +(−1 · sin(φ̂))2 +(−1 · cos(φ̂) · cos(θ̂))2

angle = (−1 · cos(φ) · sin(θ)) · (−1 · cos(φ̂) · sin(θ̂))+

sin(θ) · sin(θ̂)+(−1 · cos(φ) · cos(θ)) · (−1 · cos(φ̂) · cos(θ̂))

loss =
acos( angle

norm1·norm2
) ·180

π

3.2.4 Discussion and Overview of Major Findings

It was found that by changing the network architecture to accept two eye crops, one for the
left and one for the right eye in two input channels, and merging the gaze vectors and the
position vectors, I was able to improve accuracy over that reported in Zhang et al [66]. It
was then shown that the increased performance could be achieved by halving the number of
nodes in each layer with a slight decrease in accuracy.
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An experiment was done that demonstrated that the error more than doubles when the
network is exposed to images that have been artificially resized to simulate a wide range
of distances between the subject and the camera. This problem had not been addressed in
previous work. The solution to this was to augment the data with random simulated distances.
Finally, an improved network architecture that outperforms previously published works while
reducing the number of multiplications, and thus increasing efficiency, was proposed.

These results show that using information from both eyes in the neural network can
increase accuracy. In this experiment, adding additional eye information from the opposite
eye enabled improved results over individual eyes, helping the network make sense of low
quality images with ambiguous gaze. As expected, in all cases, the deeper network had the
best performance. This research demonstrated the sensitivity of such models to variations in
distance and how data augmentation can be used to overcome this. Most importantly, a new,
compact, hardware-friendly architecture designed for use in small consumer electronics has
been introduced and evaluated on the eye gaze task.

When evaluated on MPII Gaze, the proposed model performs favorably even when
compared with much larger networks in the literature. Running an optimized CNN based
algorithm such as this can provide a high-performance, low-energy solution for continuous
eye-tracking in next generation consumer electronic products.

In future work it would be interesting to see if Smart Augmentation could provide further
improvements but this would require either posing the eye gaze task as a classification task
or updating Smart augmentation to work with regression tasks, and neither of these options
would be trivial to implement with Smart Augmentation.

3.3 Extending the Idea to Augmented Environments

The use of deep learning for estimating eye gaze in augmented spaces estimation is investi-
gated in this section. The work in this section was presented at GEM 2018 in Galway Ireland.
The corresponding publication is attached in appendix E.

There are two primary ways of designing systems to facilitate interaction with augmented
spaces. The first involves the use of AR/VR systems where an eye facing camera is attached
to the AR/VR system. This provides clear, sharp eye images that are usually a fixed distance
from the user.

The other approach is to use a single camera or array of cameras/sensors at a distance.
This approach typically results in lower quality images but (in the single camera case) is less
expensive to implement and allows a single sensor to estimate the gaze of more than one
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(a) Example image from the McMurrough
dataset, showing subject’s right eye. This is
typical of AR/VR systems that utilize eye fac-
ing cameras to estimate gaze.

(b) Example image from the MPII-Gaze dataset,
showing subject’s right eye typical of gaze track-
ing systems that use low quality cameras that
are further from the subject.

Fig. 3.4 Traditional methods work best on images that are typical of an AR/VR system such
as 3.4a but convolutional neural networks perform the best for low quality images such as
those shown in 3.4b

subject without requiring the use of head gear. This approach is typical in DMS systems and
is covered in detail in the previous section.

The use of deep learning for gaze estimation in augmented spaces for AR/VR use cases
is not well explored in the literature, and dedicated network models or datasets for gaze
estimation in such environments are not publicly available.

High Resolution Datasets for AR/VR Gaze Estimation

As mentioned previously, there are not enough public datasets from which deep learning
systems can be trained (or evaluated) for eye gaze estimation utilizing head-mounted eye-
facing cameras. The only suitable publicly available dataset found is the one developed by
McMurrough et al called the “Point of Gaze (PoG) Eye Tracking Dataset” [73]. Unfortunately,
this dataset only has images of the right eye and therefore may not be used for AR applications
where knowing what a person is looking at in 3D space involves calculating the intersection
of two gaze vectors. This information is still useful because there are typically only a few
objects that collide with a given gaze vector that are within a person’s field of view and
these can all be assumed to be the gaze target in an augmented or virtual space. Despite
this limitation, the PoG Eye Tracking Dataset is the most suitable publicly available dataset
captured with a head-mounted eye tracker and was therefore used for this research. An
example of typical images from PoG and MPII-Gaze are shown in figure 3.4
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Because only right eyes were available, the network described at the start of this chapter
could not be used directly. Instead, a single eye version of this network was used in addition
to other architectures described in appendix E.

To create the Point of Gaze dataset, twenty participants (18 men, two women) were asked
to track target points on a video display while wearing an Applied Science Laboratories
Mobile Eye™ infrared monocular recording device. The participants’ right eye is centered
in the video frame and is annotated for specific target points. The dataset is composed of 20
subjects with ages ranging from 21 to 54. The dataset is annotated with head pose and eye
gaze information. Eye images are recorded with a resolution of 768 X 480 pixels at 29.97 Hz
frame rate.

Summary of Experiments and Results

Several experiments were performed on the Point of Gaze dataset using state of the art deep
learning tools but it was found that, contrary to the case of images taken at a distance, Deep
learning models did not perform as well for images that are typical of AR/VR setups as
typical traditional approaches.

One consideration when comparing or evaluating these results is that the average accuracy
includes frames where eyes are not open. This is a deliberate choice, as CNNs may be capable
of estimating gaze of even closed eyes therefore comparing these results with those that
disregard closed or partly open eyes would be misleading. Although this methodological
detail could explain some of the decrease in performance, it is insufficient to explain it fully
as the decrease in accuracy is observed even in fully visible eyes.

As deep learning begins to surpass traditional techniques in many eye gaze tasks, it is of
interest to investigate its potential for gaze estimation on AR/VR setups. In this research,
several CNN architectures were used to try to improve upon traditional gaze estimation
techniques for AR/VR use cases.

Although the error +- (1.329cm x 4.2246cm) of the best trained model, based on Xception
[74], would make it suitable for many gaze estimation tasks, the pure CNN model still
underperformed traditional methods.





Chapter 4

Transfer Learning of Temporal
Information for Driver Action
Classification And Semi Parallel Deep
Neural Networks

In this chapter work that does not form the core of this research, but nonetheless supports the
advancement of the application of machine learning and deep neural networks within the
limitations that arise on small consumer devices, is documented.

4.1 Transfer Learning of Temporal Information for Driver
Action Classification

In early 2017, after the first work on Smart Augmentation, research on driver monitoring
systems became a priority at fotonation/Xperi as an early feasibility study on their imple-
mentation. This early work later led to the publications on eye gaze as part of the efforts of
the in-the-cabin monitoring long term research and development group at fotonation/XPERI
which this work was performed.

This section contains an overview of the findings from this original feasibility study, and
the corresponding conference paper "Transfer Learning of Temporal Information for Driver
Action Classification". This paper was presented orally at MAICS 2017 in Dayton Ohio.
Neural Network Architectures that utilized a temporal component for the driver monitoring
task were explored and compared with the more commonly used frame-based approaches.
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This early exploratory work on driver monitoring systems was never implemented in a
product, but it informed later work that became part of successive generations of AI-based
driver and occupant monitoring systems. It also led to my current role as a project manager
for the Fotonation’s Heliaus project team, an H2020 project with the goal of developing
driver monitoring systems using thermal cameras. Further information on this project can be
viewed here http://www.heliaus.eu).

4.1.1 Frame Based Methods and the Need for Temporal Information

Although frame based methods for determining action can perform with high accuracy for
some tasks such as "eating" or "smoking", other tasks cannot be effectively differentiated
without information from more than one frame. For example, by looking at a single frame
it may be difficult to determine if a person is putting down a cup or picking up a cup, or
more importantly, taking control of the steering wheel or letting go of the steering wheel. In
many cases, the added temporal component can also improve the robustness of algorithms
that already work well for single frame tasks, especially in the case where one frame is
ambiguous but the following or preceding frame can be understood with high confidence. By
including a concept of time in a model, the network is often better able to make predictions.
Additionally, temporal information allows for the concept of action that is more similar to
the way many animals process visual information, where greater attention is paid to things
that move, or the way that humans use temporal information for peripheral vision.

As we approach the limits of frame-based methods, there is a desire to further improve
deep learning algorithms by utilizing temporal information, which is information between
multiple frames taken sequentially to give a more complete idea of what is happening. Using
a single frame, it is trivial to train a classifier to determine if a person is holding a glass, but
difficult or impossible to train a classifier to understand if the glass is being picked up or put
down. Even distinguishing jogging from walking can be difficult without a time component.

4.1.2 Data Used for Training and Testing the Temporal and Frame
Based Networks

Correct classification of image data can depend on features learned in multiple sequential
frames. In this section the problem of learning action from video data with an emphasis on
driver behavior monitoring is studied. An insufficient quantity of high quality labeled data
is a major problem in machine learning research. This is especially true when deep neural
networks are used.

http://www.heliaus.eu
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Although some sufficiently large, general purpose image databases exist for action
recognition, most of these are limited to single frames. This kind of data requires that the
action recognition task is applied without considering temporal information (information
from previous and next frames of a video sequence).

The largest database for driver behavior monitoring that could be found was “Distracted
Driver Dataset”, provided as part of a Kaggle challenge in mid-2016. Although this database
is intended for single frame classification, it is possible to identify the original frame se-
quences from which movies can be created. These movies can then be used for learning a
limited amount of temporal information.

The Distracted Driver Dataset was provided as part of a Kaggle Competition in 2016.
The dataset was created by filming actors on a closed driving course engaging in various
distracted and undistracted behaviors. It should be noted that these images were obtained in
a controlled environment and the car was not actually being driven. It was being pulled by a
truck instead. The objective of the competition was to correctly classify still images into 10
categories.

The training set of the distracted driver database contains frames of 26 subjects displaying
several of the following behaviors/actions:

1. c0: safe driving

2. c1: texting - right

3. c2: talking on the phone - right

4. c3: texting - left

5. c4: talking on the phone - left

6. c5: operating the radio

7. c6: drinking

8. c7: reaching behind

9. c8: hair and makeup

10. c9: talking to passenger

Although all the images in the supplied training set are still images, it is possible to
reconstruct the original “movies” based on their order in the CSV file supplied with ground
truth annotations.
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While classifying frames for driver monitoring is an interesting problem, which I would
go on to develop techniques for later with the industry partner, I wanted to see if anything
could be learned from the temporal information in the movies. Instead of using individual
frames as required for the competition, short movie clips were used.

4.1.3 Research Questions

The two major research questions that formed the motivation for this work were:

1. Can temporal information be used to improve accurate classification of driver actions?

2. Can low-level information about temporal information from an unrelated problem be
successfully used to better understand driver actions in videos?

To answer these questions, several networks based on CNNs and RNNs were used with
and without augmentation.

To answer the second question, a transfer learning approach was used. Transfer learning
is the process of transferring knowledge that has already been learned by one neural network
into another one. This is often accomplished by copying the learned weights and biases from
one or more layers of a fully trained network to a different network. Transfer learning can be
used to overcome overfitting issues and to speed up the training process for a related task.

One important paper on the use of transfer learning with 3D CNNs was written by Tran
et al. [75]. That paper makes a compelling case for the use of 3D CNNs for understanding
video data. Their method, which they named C3D, compared favorably to other published
results on 5 of 6 generic action datasets used. They also showed that their network learns
information about both motion and appearance, first learning appearance and then motion.
One problem with this design is that only relatively short action sequences (16 frames) can
be learned. The best results were obtained using this approach, as explained further.

Another approach, which was new at the time this research was conducted, combines
LSTMs with convolutions and is introduced by Xing et al in [76]. Although the focus of
their paper is forecasting precipitation, their method is generally applicable to the task of
gathering long and short term time information from video sequences. Several experiments
involving this method were performed as explained later, but none of them performed well,
likely because of the lack of data.

Addressing the problem of insufficient data to train a neural network, [77] introduced a
large, automatically generated, database gathered from YouTube clips called the sport 1M
dataset. They showed that a transfer learning approach is effective at gaining accuracy on
UCF 101 when a network is first trained on sports 1M. They evaluate their method on the
UCF - 101, a database that contains over 12,000 videos with 101 human action classes [78].
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4.1.4 Augmentation

Augmentation is a recurring theme in this thesis and the driver monitoring study was no
exception.

In experiments where augmentation was applied, the ImageDataGenerator class within
Keras was used. This class is used to dynamically create augmented images during training
given a set of parameters. Since the standard implementation of ImageDataGenerator only
supports 2D data, so it was extended to properly apply the transformations to video data.
This modification involved ensuring that the same transformation was applied to every frame
of a clip instead of treating each frame as an individual image with a potentially different
transformation. Transformations included rotation (random 5 and 15 degrees left and right),
and translation (up to 10% on width and height).

4.1.5 Experiments

In this section, experiments on the distracted driver database are summarized. The experi-
ments were designed to allow comparison between networks that use temporal information
(LSTM, 3D CNN, etc) and networks that ignore it (2D CNN). The last experiments are
designed to measure the improvement that is achieved by transfer learning.

For a proper comparison, the single-frame-based method chosen was a full VGG16,
trained [67] from scratch on the distracted driver dataset in Keras with a learning rate of
0.001. The experiment was then repeated on a grayscale version of the distracted driver
dataset with rotation, translation, and feature normalization (inputs are divided by the standard
deviation of the dataset).

Experiments Utilizing Temporal Data

Once reliable baseline for what a frame-based method could accomplish had been established,
experiments involving temporal information were performed. The LSTM used was the
implementation from [76], implemented in Keras as ConvLSTM2D.

Network 1 was a simple 3D CNN, network 2 was the same 3D CNN, but with a LSTM
step before. Network 3 was the same as network 2, except with the order reversed (3DCNN
followed by LSTM). Further details on these architectures and the training methodology
used are in Appendix C. All three experiments were performed on both visible and grayscale
versions of the dataset. Unfortunately, these networks all quickly overfit and didn’t produce
satisfactory results.
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This overfitting was expected due to the limited number of subjects and the highly
correlated frames. Investigation of the source of the overfitting revealed that low level
features (in the first few layers) were responsible.

Transfer Learning

In this experiment, a C3D was trained with random weight initialization on the distracted
driver dataset. This was compared with a C3D network that had been pretrained [75] on the
sports 1-M dataset.

Transfer Learning with C3D

Fig. 4.1 Illustration of transfer learning concept where the first layers in network A and
network B are the same.

Since other approaches to reducing the overfitting problem, were of limited success, a
transfer learning approach was tried. The idea is to use pretrained weights from an existing
network, trained for a more generic action recognition task, and then to tune them with the
Distracted Driver training set.

In the previous experiments, the first layers were identified as being the primary source of
overfitting, thus two transfer learning approaches were attempted. The first was to train the
pretrained C3D network with a very low learning rate of 0.0001 without freezing any layers.

The alternate transfer learning approach wherein freezing the learning rate of the first
layers was attempted. Since the first layers were identified as the cause of the greatest source
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Table 4.1 Top Performing Approaches (>= 30%)

Approach Accuracy
Transfer learning on 3D CNN. First 2 layers frozen 73.35%
Transfer learning on 3D CNN. First 5 layers frozen 60%
2D VGG 16 with augmentation 46%
3D CNN without augmentation 39.57 (no transfer learning)%
2D VGG 16 without augmentation 30%

Table 4.2 The Best Results on the Validation Set After Reaching 100% on the Training Set

Train loss* Val loss Train Accuracy Val Accuracy
0.0173 0.8563 1 0.7335

of overfitting, this experiment was repeated again, except freezing only the first five layers,
followed by freezing the first two layers.

4.1.6 Summary of Findings

In this subsection, the experiments in the previous section are summarized. Detailed results
are available in appendix C. The experiments with the best results are listed in table 4.1.
Since overfitting is found to be the primary cause of validation error in most experiments,
details about the loss and accuracy are shown in table 4.2 before and after 100% accuracy
was obtained on the training set (indicating overfitting).

In this research, it was shown that low level filters (early layers) learned by a 3D CNN
can be used to greatly increase the accuracy on small datasets of drivers for the driver
behavior classification task. It is not obvious that the first layers of a network trained for
identifying actions in sports videos, such as basketball and swimming, could also be used
to distinguish between distracted driver actions like left and right hand cell phone use or
speaking with a passenger. It was also shown that temporal information could be used to
increase accuracy for the driver behavior monitoring task over a network that does not use
such temporal information. At a very low level, the action of moving fingers and heads may
not be substantially different between different action recognition problems for convolutional
neural networks. In these experiments, freezing any more than the first two layers decreased
accuracy.
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4.2 Semi-Parallel Deep Neural Network (SPDNN) Hybrid
Architecture, First Application on Depth from Monoc-
ular Camera

SPDNN is an algorithm to merge different types of neural networks together in such a way
as to benefit from each without duplication in computation.

As stated previously in this thesis, Deep Neural Networks (DNN) have been used in a
range of machine learning and data-mining applications. These networks comprise sequential
layers including, for example, convolutional layers or fully connected layers, typically
accompanied by pooling or regularization tasks.

At times, one may encounter two or more networks that perform well at some aspects
of a given task which, when taken together, perform better than they would individually. A
common approach in this case is to use an ensemble or other method of merging the output
of these networks. This section suggests an alternative approach called Semi-Parallel Deep
Neural Network (SPDNN).

The main idea of SPDNN is to merge two or more neural networks without altering the
kernel sizes or the order of layers. This is accomplished by representing each layer of each
network as nodes in a graph, labeling the nodes and applying graph contraction. This will be
explained in detail in the following sections. Complete details of SPDNN can be found in
Appendix F.

Merging components of specialized deep neural networks was producing better results
than not combining them, but some critics wondered what the difference between this
approach and inception or even ensembling was.

Of course: it was not any of these methods ensambling keeps the existing network archi-
tectures and there are no inception modules in SPDNN (although inception type networks
can be merged using the SPDNN technique). The major problem was that that there was no
algorithm that could describe exactly what SPDNN was. A general method for generating
any SPDNN-like network was elusive. At some point it became clear that this was a graph
contraction problem. If each neural network layer is uniquely labeled and then represented
as a graph, then it would then be possible to use graph contraction to come up with the exact
same networks which had worked well in experiments. At that point, from then on, SPDNN
changed from being an observation to a graph based algorithm.

SPDNN has been applied successfully to depth estimation[15] and iris segmentation [79].

The journal paper on SPDNN is included in appendix F and a detailed discussion of the
graph-based algorithm is described in section 4.2.
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Fig. 4.2 High level overview showing labeling and contraction steps of SPDNN workflow.

4.2.1 How to Construct a Semi-Parallel Deep Neural Network with
Graph Contraction and Labeling

As my contribution to SPDNN was entirely in the graph algorithm, I omit details on appli-
cations of SPDNN, as I was not involved in these aspects. This subsection explains how to
create an SPDNN type network from multiple existing network typologies.

A high level overview showing the main steps of the SPDNN algorithm can be seen in
figure 4.2. To convert two or more neural networks with the same output and input type into
a graph as part of the SPDNN process, the following steps should be applied.

First, arrange each layer as a node in a graph, connecting nodes according to how they
were connected in the original network. This involves labeling each node according to its
properties. In the case of convolutional layers, this would be: kernel size, layer type, and
distance from input. For example (5c,3) would be a convolutional layer with a 5x5 kernel at
distance 3 from the input.

In the case of fully connected layers, there is no kernel size, but the number of neurons is
often important so the syntax is: number of neurons, followed by the layer type and then the
distance from input. For example (4f,7) would be a fully connected layer with 4 neurons at
distance 7 from the input.

Pooling and unpooling layers are represented by U and P symbols with their kernel size
in front. For example 2p means a 2x2 pooling layer. Pooling and unpooling operations are
never represented as their own nodes in the graph but are instead appended to the previous
layer. They also have a "stickiness" property, which means every node after the first keeps
the pooling or unpooling property. Fully connected layers remove this property and later
pooling or unpooling layers modify it. This mechanism is best illustrated by figure 4.3, where
nodes labeled with C are (3c2p,2) indicating a 3x3 convolutional layer with 2x2 max pooling
applied and distance 2 from the input. Also note that this property is retained until N in the
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Fig. 4.3 This figure illustrates a parallelized version of 8 networks before the graph contraction
step. Note that each note is labeled according to the methods described previously and there
is a single input and output.

same figure. This was caused by an unpooling layer of the same kernel size removing the
convolution property.

Finally, nodes with the same properties get assigned the same labels (Shown in figure
4.3). For example every (3c2p,2) will be assigned a label (perhaps C). This allows us to
complete the graph contraction step shown in figure 4.4 wherein all labels that are the same
are merged together.

After this point a new SPDNN type network with the same properties as the original
networks can be created by following the labeling process in reverse order.

There is one final issue that remains ambiguous in the above explanations, and that is
what to do with convolutional layers with kernels that are the same size and that have a
different numbers of outputs. These layers should be merged but the number of outputs may
be chosen according to the judgment of the engineer. In case of uncertainty or if designing
an automated version of SPDNN, my suggestion is to select the number of outputs based on
the maximum outputs of the merged nodes.
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Fig. 4.4 This is the same network as shown in 4.3 after graph contraction is applied.
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1. Introduction to Deep Learning 
In the last few years we have witnessed an exponential growth in research activity into the advanced 

training of convolutional neural networks (CNN) – a field which has become known as “Deep 

Learning”. This has been triggered by a combination of the availability of significantly larger data-

sets, thanks in part to a corresponding growth in “Big Data”, and the arrival of new GPU-based 

hardware that enables these large data-sets to be processed in reasonable time-scales. Suddenly a 

myriad of long-standing problems in machine learning, artificial intelligence and computer vision 

have seen significant improvements, often sufficient to break through long-standing performance 

thresholds. Across multiple fields these achievements have inspired the development of improved 

tools and methodologies leading to even broader applicability of Deep Learning. The new generation 

of smart assistants – Alexa, Hello Google and others – have their roots and learning algorithms tied 

into deep learning.  In this article we review the current state of Deep Learning, explaining what it is, 

why it has managed to improve on the longstanding techniques of conventional neural networks 

and, most importantly, how you can get started with adopting deep learning into your own research 



activities to solve both new and old problems and build better, smarter consumer devices & 

services.  

1.1 Deep Learning & Consumer Electronics 
There has perhaps never been a better time to take advantage of the power of deep learning in 

consumer products. In retrospect, we may consider 2016 the year that deep learning toolkits and 

techniques matured from tools that were mostly oriented to researchers into easily used product-

enabling technology that can be used to add “intelligence” to almost any consumer device even by 

non-experts. We expect to see an explosion in products that take advantage of these resources in 

the coming years, with early adopters differentiating themselves from competitors and further 

refinement of technology and deep learning methods.  

In this article, we hope to provide you with the tools and understanding to start using deep learning 

today, or to understand what consumer devices that are built using this technology can do and how 

they work.  

1.2 Neural Networks - what they are and what they are used for 
 Artificial neural networks (ANN) are able to learn something about what they “see” and then 

“generalize” that knowledge to examples (or samples) that they have never seen before [1]. This is a 

very powerful capability that humans often take for granted because our brains do it so well 

automatically. You are able to understand the concept of a rock after seeing and perhaps touching 

very few examples of rocks. From that point on you can identify any rock, even those that are 

shaped differently or have different colours or textures from the rocks you’ve seen before. This 

approach can be seen as opposed to the traditional method of “teaching” or explicitly programming 

computers based on detailed “rules” that must cover every possible outcome.  

The process of discerning the category to which a piece of data belongs is called a classification task; 

one of the more famous uses of this technique is that of training a neural network. The ability to 

classify unseen examples is referred to as “generalization”.  

Not surprisingly, Artificial Neural Networks are especially powerful in tasks for which the appropriate 

outcome cannot be determined beforehand and thus cannot use traditional pre-programmed rules 

[2]. 

1.3 Training the Network 
Artificial Neural Networks (ANN) are not the only techniques that can do this, and much of the 

terminology we use when talking about ANNs comes from other fields such as statistics. The process 

of “teaching” our network is called “training”. When we train a network, what we are formally doing 

is “fitting” a network to our training (data-)set. This language is borrowed from mathematics where 

we may try to find the best way to “fit” information to a regression line or other mathematical 

model.  The “training set” is the sample information that we think is sufficiently representative that 

our network should be able to learn from it. The thing we want our network to learn to do is called 

the “task”. 

When training Artificial Neural Networks, we want the network to perform well at a given task on 

unseen information. When an ANN is not trained sufficiently to do this, we call it “underfitting”. 

Which means that the network did not sufficiently learn the training set. The opposite of this is 

called overfitting, where the network learns the training set so well that it cannot effectively be 

applied to data that it has not seen before [3]. These concepts can be best understood by referring 



to Figure 1 which illustrates a simple 2D data-set. Note that in practice we deal with multi-

dimensional data leading to far more complex fitting problems.  

 

Figure 1- The red dashed line is an example of overfitting. It's not likely to work as well as the solid black line at predicting 
future values. The straight green dashed line is an example of under fitting. Choosing an overly complex model (such as a 
high degree polynomial that generates the red line leads to overfitting but picking a model that is too simple (the straight 
line) causes under fitting. Our goal is often to find the best model to fit the data.   

If a model is underfitting, we can increase the number or size of parameters or improve the type of 

model. If a model is overfitting, we can reduce the size of the model or apply other techniques which 

we will describe later. A key challenge is how to accurately identify if the model is close to optimal 

fitting, and this is one of the reasons that very large data-sets are needed to achieve working 

solutions for these problems.  

We measure the suitability of a model for a given task by withholding some of the information that 

we have from the training process so that we can evaluate the model during and after training. We 

typically separate this withheld information into two parts: the validation set and the training set. 

The information that we use to evaluate our model on during training is called the “validation set”. 

This data is never used directly for training. It is only used to provide us with information about how 

well the network performs during the training process.  

Supervised Vs Unsupervised Learning 
There are two primary types of learning that neural networks can do: supervised learning, in which 

the data is labelled or annotated in some way and the task is to somehow learn to match the data 

with the labels, and unsupervised learning where there are no labels and the neural network learns 

to find relationships between data [4].  

A common example of supervised learning is “classification” where we try to find a category (or 

label) that can successfully discriminate between each class using the supplied labels and data. An 

example of unsupervised learning is “clustering” where the neural network tries to separate data 

into “chunks” or groups without anyone giving the network any labels to apply to the groups it finds. 

The appeal of the latter approach is that creating “ground truth” labels is a time consuming and 

often expensive process which requires humans to create appropriate labels for the training, 

validation, and testing sets before a model can be trained and later placed into products in the real 

world with unseen (and unlabelled) data.  



Despite the cost and difficulty in data preparation, much of the success of neural networks comes 

from supervised learning.  

1.4 Inside the Neural Network 
We’ve discussed what neural networks can do but we’ve not discussed the details of how they do it. 

We will now describe the details of how this works.  Neural networks typically have an input layer, 

an output layer, and 1 or more so called “hidden layers”.    

These layers are full of nodes, often called neurons which are connected to subsequent and previous 

layers using a number of schemes.  

Perhaps the most common connection scheme is the fully connected layer where every neuron in a 

layer is connected to every neuron in the previous and next layer.   

 

Figure 2 Typical Artificial Neural Network with a fully connected hidden layer. 

This idea is inspired from biological neurons where we have axons and dendrites that connect 

individual neurons to each other.  In the biology model axons receive input from other neurons and 

dendrites transmit information to other cells [5]. This corresponds to the input and output 

connections in a neural network. The concept of multiple connection schemes also comes from 

biology where we see Unipolar, Biploar, Multipolar, and Pseudounipolar connection mechanisms.  

The body of a biological neuron is called the Soma which can decide to when and what to transmit 

based on various criteria. Artificial neurons have a similar mechanism called the “activation 

function”.  

This model of neurons was first invented in 1943 by Waren McCulloch and Walter Pitts [6]. The first 

popular implementation of these on computers was formalized in the idea of the Perceptron in 1957 

by Frank Rosenblatt [7]. 

 



 

Figure 3: Diagram of biological neuron (Illustrated by Kimberly Sowell, permission obtained) above diagram of artificial 
neuron. 

All artificial neural networks have layers, weights, inputs, biases (or thresholds), activation functions 

and some connection mechanism. But this is not enough to effectively train a neural network. When 

training a neural network we calculate an error (or loss). There are many ways to calculate the loss, 

but the simplest way is the difference between the predicted (learned) and the true outputs.  

Training algorithms work by updating the weights and measuring the way that the loss changes over 

time. This is usually accomplished by some form of gradient descent optimizer. It’s possible to get 

“stuck” or quickly converge to a non-optimal solution when strictly following the steepest gradients, 

and because of this, we typically use some form of stochastic gradient descent, which is simply a 

stochastic (or slightly randomized) form of gradient descent.  

Back propagation is used to allow us to “propagate” the error information from the last layer to the 

first layer to modify the weights, and is often used in a way that is synonymous with training. 

Methods that can be used to improve a networks results are called “learning rules”. 

1.5 A Renaissance for Neural Networks? 
Although these methods have been successfully used for decades, they have seen a very recent 

resurgence as refinements upon existing techniques, combined with newer hardware, and the 

growth of “Big Data”, have created an AI boom that shows no signs of slowing down.  



The global market for smart machines is expected to grow to +15 billion by 2019, with an average 

annual growth rate of nearly 20% [8]. The set of techniques that have led to this growth has been 

coined “deep learning”.  

In the following sections we will discuss some of the techniques that enable deep learning, why they 

work, and how they are used to make smart machines.  

2. Convolutional Neural Networks 
In order store and process analog signals (for example image, voice and biological signals), on a 

computer, one must first convert these inputs into a digital form in a process called Analog to Digital 

conversion (A2D). This transforms the information from a continuous space to a discrete space, 

losing some information in the process. Often that information isn’t critical to understanding the 

underlying analog signal but in some instances we could lose critical data – e.g. high frequency 

information.  

 

In digital processing we often refer to a “piece” of data, such as a picture, as a sample. It is 

convenient, but computationally expensive, to represent these samples in a high dimensional space 

where each unit (or pixel in the case of images), is considered as being located on a specific axis with 

the range of possible values (for example 0-255 in the case of an 8 bit color-channel in an image’) 

being the size of that axis.  

An image that is 100x100 would be represented as a vector that is a point in 10,000 dimensional 

space. We call this space the “feature space”.  

Since even the most powerful computers can have trouble with such high dimensional space, we try 

to reduce the number of dimensions to just those that are critical to a task or to change the way 

these features are represented.  

In the traditional pattern recognition approach, to perform a given task we separate our process into 

two steps, Feature generation and Feature selection. Feature generation generates new features 

from the pixel space.  Feature selection reduces the dimensionality of the feature space.  

Examples of feature generation include morphological, fourier and wavelet transforms which create 

more useful features for specific tasks and feature selection includes methods like Principal 

Component Analysis (PCA) and Linear Fisher Discriminant (LDA) [9]. 

There is a newer technique based on sparse mapping where instead of trying to reduce the 

dimensionally, we expand it with the goal of representing more abstract features. This is inspired by 

models of the visual cortex of animals [10]. Convolutional layers, a key component of deep learning, 

make use of this sparse mapping approach.  

2.1 Convolution and its Role in a Neural Network: 
One of the most novel and useful aspects of convolutional neural networks is that they can learn the 

filters that previously had to be custom designed by the researcher (a task that would often take 

years of trial & error). These convolutional layers are essential to this task in modern deep neural 

networks.  

Convolutional layers make use of the convolution operator. The Convolution operator is used on two 

functions. One is the signal from the sample space and the other, called the filter, is applied to the 

sample. On a GPU, convolutions are implemented as matrix multiplications.  



This operator has a long history in image processing applications and dates back to the time when 

digital image processing started. The Convolution operation can be discussed in both spatial and 

transform space. In the spatial space the convolution operator is the equivalent operation of 

correlation with the reversed filter, i.e., this operator calculates the similarity of the input function 

with the filter. For example, the edge detection and corner detection filters are using the similarity 

of the input image with a pre-defined filter mimicking the edge or corner shape. Looking at the 

function in the transform space the convolution is performing frequency filtering. For example, low 

pass or high pass filters have their equivalent spatial filters which could be applied to the image 

using convolution operations. 

 

Figure 4 Visualization of the learned convolutional filters at different layers. Copyright Movidius, used with permission.  

In the deep learning approach, the filter is learned and applied to the data during the training 

process with the hope that after training, the learned filter will be the best choice for the task. One 

difference between the way Convolutions are used in CNN’s from more traditional uses is that the 

convolution operator is applied using a 4 dimensional filter. This is essentially a set of 3D filters that 

are stacked in the fourth dimension. We use the 4 dimensional filter to map a 3d space to another 

3d space. See figure 5 

 



 

Figure 5. A 4 dimensional filter maps 3d space to another 3d space using convolutions.  

Convolutional layer: in general for an n dimensional signal, the convolutional layer is an n or n+1 

dimensional feature space mapping with n+1 or n+2 dimensional kernels (filters). For example, given 

a 2 dimensional image, the convolutional layer would be 3 dimensional with a 4 dimensional kernel. 

In this case the 4 dimensions of the kernel are correspond to 1. width and 2. height of the input, 3. 

the number of channels of the input and 4. the number of channels of the output. In figure 5 you can 

see two different convolutional layers. The k channel layer on the left side is mapped to a p channel 

layer on the right side using a 4D kernel. This kernel is shown using different 3D kernels with 

different colors.  

Pooling layer: pooling is an operation which accepts a pool of data values as input, and generates 

one value from them to be passed to the next layer. For example this operation could be mean or 

maximum of the input values. There are two important purposes for pooling operations. One is 

reducing the size of the data space to reduce overfitting and the other is transition invariance. A 

pooling layer is performing the pooling operation on its inputs. Figure 6 shows how a pooling 

operation is applied to a one channel input to reduce the dimensionality of the dataspace. In this 

figure we have a 3x3 pooling operation applied to a 12x6 one channel feature space. The most used 

pooling operation is max-pooling wherein the maximum value of the features in the pool is selected 

to be mapped to the next layer. 

 



 

Figure 6.A pooling operation is reducing the size of the feature space.  

The importance of this layer is described in the next example. In generic deep neural networks 

(described in 2.2.1 Generic Deep Neural Networks:)a dense, fully connected layer emerges from the 

convolutional layers. For example, consider a convolutional layer with 10 channels and a 100x100 

feature space. Placing a fully connected layer after it would result in computing 100000 weights from 

this layer to each neuron in the dense layer which requires significant memory and computation 

resources. Using a pooling layer helps to reduce resource demands. Additionally, without a pooling 

layer, a network this big might suffer from over-fitting, especially if there is not enough 

representative data in the training set. Pooling also helps to provide transition invariance by helping 

each kernel to cover more space.   

Nonlinearities: Each neuron in the deep neural network model is taking advantage of a non-linear 

activation function to calculate the output value. This would lead to one of the most advantageous 

properties of the deep neural networks which is their ability to describe highly non-linear systems. 

Being highly non-linear helps the model to be suitable for real-life problems and gives solutions in 

pattern recognition that cannot be achieved through more classical methods. In the early days of the 

neural networks the tanh and sigmoid activation functions were most popular. Realizing that most of 

the data tends to be concentrated around zero, newer techniques such as rectified linear units 

(RELU) and Exponential linear units (ELU) [11] become popular because they are nonlinear near zero. 

They also benefit from an infinite range.  

2.2 Deep Neural Networks 
The power of deep learning first made worldwide news in 2011, when a deep learning algorithm 

achieved better than human visual pattern recognition in an international competition. The accuracy 

was 6 times better than the nearest non neural network approach and twice as accurate as human 

experts [12].  

In this section we discuss four of the better-known deep learning architectures that have made the 

most impact in recent research.  

2.2.1 Generic Deep Neural Networks:  
are usually made of one or more convolutional layers, wherein each convolutional layer is usually 

accompanied by a pooling (max-pooling) operation. One can also use bigger strides in the 

convolution layer in order to reduce the data dimensionality (the stride of a convolution operation is 

the number of the pixels the kernel window is sliding before calculating the convolution in each 

location).  



In generic deep neural networks, the convolutional layers are usually followed by one or more dense 

fully connected layers. See figure 7. The rectified linear unit is the most common activation function 

used in these kind of networks. The last layer is typically taking advantage of other nonlinearities 

based on the task.   

 

Figure 7:  A generic deep neural network. Convolutional and pooling layers followed by fully conneceted dense layers. 

 

2.2.2 Fully Convolutional Networks (FCN):  
These are deep neural networks where all the layers are convolutional, pooling, and Un-pooling 

layers wherein the pooling and un-pooling layers are usually placed between two convolutional 

layers. They are similar to typical deep neural networks except they have no dense layer.  

The output of a fully convolutional network is as the same type as its input. For example if the input 

is a k channel image the output of the network could be a p channel image but not something else 

entirely.  

Un-pooling layers are designed to perform the inverse operation of pooling layers by increasing the 

size of the feature space. These layers operate on a single pixel and expand that pixel into a pool of 

data. There are different implementations of un-pooling layers. The most popular of which are 

repeating values and sparse un-pooling in DNN designs. The repeating value technique is expanding 

the data from one value to a pool of data with the same value (figure 8). With sparse un-pooling, the 

values of the original data are mapped to a larger space in sparse form. Figure 9 illustrates 2x2 

sparse un-pooling. There are different methods for choosing the location where the value is mapped 

in sparse un-pooling. For example in [13] the indices have been memorized while applying the 

pooling layer and in the un-pooling layer those indices are used to map the values.  



 

Figure 8: a 2x2 un-pooling operation with repeating values 

 

Figure 9: a 2x2 sparse un-pooling operation 

2.2.2 Auto-Encoders:  
Auto-Encoders are a design of a deep neural network wherein the input and output data are from 

the same class and also have the same data structure. For example if the input of the network is a 3 

channel 128x128 image the output of the auto-encoder is also a 3 channel image with the size 

128x128.  

The auto-encoder network could be a fully convolutional network or it can have one or several fully 

connected layers in the middle of the network which is usually known as the bottleneck of the 

network. The idea with this kind of network is to create a compressed version of the input in the 

bottleneck. The data can then be reconstructed from the bottleneck. The part of the network that 

does the compression is called the encoder. The part that decompresses the data from the 

bottleneck is called the decoder.  

The auto-encoder refers to the merged structure of the encoder and decoder in a model. See figure 

10. 

 



 

Figure 10: Auto encoder is the merged structure of the encoder and decoder in a model 

 

2.2.4 Recurrent Neural Networks (RNN):  
These networks are designed to operate on a sequence of the data as input, for example, a 

sequence of frames from a video. This can be considered as a system with memory that can 

remember the input at the previous stage and make decision for the present input based on the 

sequence of the data before.  

The memory of an RNN networks is known as the hidden state of the network. The hidden state of 

the network is updated based on the current state. The input to the network and the output of the 

RNN is calculated based on the state of the network at each sequence. Recurrent Neural networks 

have had great success in speech and video scene recognition where they are often combined with 

convolutional layers.   

3. State of Art Today 

    3.1 Main Enabling Technologies (overview) 
 GPU – how they impact training 

Despite advancements in parallel pipelines, hyperthreading, and multiple cores, modern CPU’s are 

optimized primarily for problems that are best solved sequentially. This is ideally suited for many 

common algorithms and tasks, but is not performant for tasks with inherent parallelism. GPU 

(graphics processing units) are designed for highly parallel graphical processes which can normally 

be reduced to a limited set of matrix or tensor operations. As GPUs became more and more 

powerful to cope with the increasing sophistication of 3D graphical models used in gaming, and in 

augmented and virtual reality, they became the preferred option for deep learning research. A 

typical GPU has hundreds or thousands of cores, and although each core is much slower than a 

typical CPU core, together they are able to train networks (especially deep neural networks) at the 

level of 1 or 2 orders of magnitude faster than on a CPU. This makes intuitive sense.  Human neurons 

are significantly slower than GPU or CPU cores, but our brains are able to perform many recognition 

and classification tasks faster and with more accuracy than most computer models. This is because 

human brains have billions of individual, asynchronous neurons, and with highly parallel analog 

electro-chemical communication.  

 GPU vs CPU training benchmarks.  

For some tasks, a GPU can be on the order of 100X faster while using less power and at a much 

lower cost. Generally, any task which requires the same operation to be performed thousands of 

times (as in matrix multiplication) will greatly benefit from the use of a GPU [14].  

GPU models and setups:  



NVIDIA’s latest consumer series is the Pascal series, labelled with a 10 prefix. This series 

represents a significant improvement in both performance and power consumption over previous 

models.  

 Titan X Pascal 1080 1070 1060 

CUDA cores 3584 2560 2048 1280 

Memory Capacity 12 GDDR5X 8 GB GDDR5X 8 GB GDDR5 Up to 6 GB 
GDDR5 

Memory Speed 10 Gbps 10 Gbps 8 Gbps 8 Gbps 

(source: [15], [16]) 

Multiple NVIDIA GPUs can be combined with the use of an SLI bridge, but currently, generic 

drivers only exist for 2 GPU SLI for the 10 series. NVIDIA also sells non consumer GPU’s that are 

specialized for deep learning that do not have this driver limitation.   

 When choosing a GPU setup for deep learning, it is important to choose a device that has 

enough memory to fit your model and enough cores to efficiently solve the problem. One also needs 

to decide on multi GPU vs single GPU setups. It is also important that enough system memory exists 

to easily copy the model between GPU ram and system ram with room to spare for the operating 

system and any running applications and services.  

 Deep Learning on a stick  

Many companies are deploying hardware customized for deep learning, often targeted at 

deployment in smart objects. There are significant speed and 

power consumption improvements that can be realized in 

hardware implementations of DL operations. Movidius, for 

example, released the “fathom neural compute stick” which 

uses approximately 12.5 times less power than an equivalent 

NVIDIA GPU in a small USB compatible device [17]. It is 

targeted at robots, drones and surveillance cameras and can 

drastically improve recognition accuracy. It is a good choice 

for “off the shelf” deep learning hardware when one is ready 

to deploy a model.   

 CUDNN/CUDA  

NVIDIA is the most popular consumer GPU manufacturer with 

Deep Learning researchers. Although their products are 

targeted primarily at gaming and 3D graphics processing, they also invest significant resources in 

deep learning research. NVIDIA provides CUDNN, a low level library of deep learning primitives that 

run on top of CUDA [17]. 

Developing and evaluating Deep Learning models.  

When deploying or designing a deep neural network, it is useful to try out several variations with 

many parameters. Although speed and power consumption are critical to end products, people 

often design their networks using slightly slower but higher level frameworks. This allows us to test 

out ideas and “prove” products before creating highly optimized implementations in hardware or 

software. Although deep learning can be implemented in nearly any programing language, most 

resources and community support available is intended for python.  Although most deep learning 

tools are now compatible with python 3X, the deep learning community still primarily uses python 

Figure 7: Movidus fathom USB stick. 
Copyright Movidius, used with 
permission. 



2.7.  

 

The most popular high level frameworks for this are Caffe, Theano, and Tensorflow.    

 Caffe [18] –  Created at the Berkely Vision and Learning center. Models are defined in a 

configuration file instead of being coded directly. They claim to have the fastest convolutional neural 

network implementation available.  

 Theano [19]– Initially designed for fast, stable symbolic operations (including symbolic 

differentiation). It dynamically generates optimized C code which can be transparently executed on 

the GPU up to 140 times faster than an equivalent CPU implementation.  

 Tensorflow [20]– The newest of the three, tensorflow was designed by Google and is 

currently experiencing the fastest growth in usage.  As of this writing, tensorflow performs slightly 

slower than the other two on benchmarks but is easier to deploy on multiple GPUs.  

There are a number of frameworks built on top of these platforms, such as Lasagne and Keras that 

allow further abstraction and thus ease and speed of development. Keras is a good choice, especially 

for beginners since it can use either Tensorflow and or Theano as a back end and it provides a 

simpler model for development.  

3.2 Example applications 
Recently, Google provided a mobile Tensorflow API which allows developers to deploy deep learning 

models directly to smart phones [21]. Google uses it for “Translate's instant visual translation” and 

recommend it for any application where processing needs to be done on the device 

FotoNation (www.fotonation.com), a company whose software runs in over 2.7 Billion smartphones 

worldwide, has released a new Face Recognition product based on the latest deep learning 

techniques to achieve rapid and accurate face recognition.  

Nuance uses deep learning for their “Dragon Naturally Speaking” line of voice recognition 

applications [22]. Deep learning is used in both initial product development and later for custom 

refinement on consumer electronics.   

Prisma, with 27 million users, is a popular cell phone app that uses deep learning to transform 

photos into paintings in the style of famous artists [23].  

Soundhound, inc is collaborating with NVIDIA using deep learning to create “to add a smart, voice-

enabled, conversational interface to every technology that humans interact with” based on their 

platform called “Houndafiy” [24].  

At the WWDC 2016 keynote, Apple’s John Gruber revealed that they use deep learning in their 

photo app, first in their own datacenter where they pre-train a model based on a vast base of 

labeled photos, and later on the iPhone to annotate images as they are taken. They also analyze all 

photos on a phone when the device is plugged in and not in use so as to avoid draining battery 

power. Google takes a different approach, avoiding “on device” classification, and instead processing 

users’ photos with their cloud infrastructure [25].  

Neurala released an API that uses deep learning to perform real time object tracking, recognition, 

and other tasks. As of September 2016 they are the largest supplier of deep learning software for 

Consumer Drones. Their deep learning software allows drones to operate autonomously, enabling 



tasks such as “follow this person” or “find this car”. Good performance on such tasks were the realm 

of sci-fi only a few years ago [26]. 

4. Thoughts & Conclusions 
Today deep learning is being used in our cell phones, in our cars, in tablets and computers.  It has 

pushed the boundaries of what is possible for tasks such as Image segmentation [13], object 

detection [27], face recognition [28], voice analyzing [29], emotion detection [30] and gender 

recognition [31]. 

Why has Deep Learning suddenly catalyzed research across so many fields? Well it is a combination 

of many factors: the recent emergence of highly affordable high-density, GPU-based computational 

hardware has provided the engines to process very large datasets and implement the advanced 

training methodologies required to develop accurate CNNs; the widespread availability of GPUs in 

today’s devices, coupled with cloud-based data processing services provides the means to apply 

these CNN architectures to everyday applications such as voice or image processing. Big data 

provides the fuel to drive research activity and refine results to the point where Deep Learning 

solutions typically outperform even the best of human-designed pattern recognition tools.  

Today we are at a point where many new problems can be tackled through the use of Deep Learning 

techniques – many of these are long-standing problems such as voice recognition which was never 

quite good enough to make its way out of the laboratory and into everyday use. But this year we 

have seen several launches of ‘smart speakers’ that can control your home – and behind these new 

devices lies a web of deep learning technologies – both analyzing your needs, translating your voice 

requests and marshalling the necessary logistics to deliver everything to your doorstep or onto your 

TV set.  

To get started with solving your own problem you’ll need a state-of-art GPU – the same technology 

going into the latest gaming PCs – and most of the core software is freely available on the Internet.   

There are several software packages trending in the Deep Learning field, including but not limited to 

Theano (on python), Lasagne (on Theano), Tensorflow (on python and C++), Caffe (on python and 

MATLAB), and MatConvNet (on MATLAB).  

And the good news is that all of these tools are relatively inexpensive and readily available!  

Finally you’ll need a large dataset – for your particular application we’ll assume you have your own 

specialized data sources, but there are many public sources of suitable data. And from here its is 

deep oceans of learning ahoy!   
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Abstract—A recurring problem faced when training neural
networks is that there is typically not enough data to maximize
the generalization capability of deep neural networks(DNN).
There are many techniques to address this, including data
augmentation, dropout, regularization, and transfer learning. In
this paper, we introduce an additional method which we call
Smart Augmentation and we show how to use it to increase
the accuracy and reduce overfitting on a target network. Smart
Augmentation works by creating a network that learns how to
generate augmented data during the training process of the target
network in a way that reduces the loss of the target neural
network. This allows us to learn augmentations that minimize
the error of that network.

I. INTRODUCTION

In order to train a deep neural network, the first and
probably most important task is to have access to enough
labeled samples of data. Not having enough quality labeled
data will generate overfitting, which means that the network
is highly biased to the data it has seen in the training set and,
therefore will not be able to generalize the learned model to
any other samples. In [1] there is a discussion about how much
the diversity in training data and mixing different datasets can
affect the model generalization. Mixing several datasets might
be a good solution, but it is not always feasible due to lack of
accessibility. One of the other approaches to solve this problem
is using different regularization techniques. In recent years
different regularization approaches have been proposed and
successfully tested on deep neural network models. The drop-
out technique [2] and batch normalization [3] are two well-
know regularization methods used to avoid overfitting when
training deep models.

Another technique for addressing this problem is called
augmentation. Data augmentation is the process of supple-
menting a dataset with similar data that is created from the
information in that dataset. The use of augmentation in deep
learning is ubiquitous, and when dealing with images, often
includes application of rotation, translation, blurring and other
modifications to existing images that allow a network to better
generalize [4].

Augmentation serves as a type of regularization, reducing
the chance of overfitting by extracting more general infor-
mation from the database and passing it to the network.
One can classify the augmentation methods into two different
types. The first is unsupervised augmentation. In this type of
augmentation the data expansion task is done regardless of the
label of the sample. For example adding different kind of noise,
rotating or flipping the data. These kinds of data augmentations
are usually not difficult to implement.

Next there is Supervised augmentation. One of the most
challenging kind of data expansion is mixing different samples
with the same label in feature space in order to generate a
new sample with the same label. The generated sample has to
be recognizable as a valid data sample, and also as a sample
representative of that specific class. Since the label of the data
is used to generate the new sample, this kind of augmentation
is named supervised augmentation.

Many deep learning frameworks can generate augmented
data. For example, Keras [5] has a built in method to randomly
flip, rotate, and scale images during training but not all of these
methods will improve performance and should not be used
blindly. For example, on MNIST (The famous hand written
number dataset), if one adds rotation, the network will be
unable to distinguish properly between hand written 6 and 9
digits. Likewise a system that uses deep learning to classify
or interpret road signs may become incapable of discerning
left and right arrows if the training set was augmented with
by indiscriminate flipping of images.

More sophisticated types of augmentation, such as se-
lectively blending images or adding directional lighting rely
on expert knowledge. Besides intuition and experience, there
is no universal method that can determine if any specific
augmentation strategy will improve results until after training.
Since training deep neural nets is a time consuming process,
this means only a limited number of augmentation strategies
will likely be attempted before deployment of a model.

Blending several samples in the dataset in order to highlight
their mutual information is not a trivial task in practice. Which
samples should be mixed together how many of them and
how they mixed is a big problem in data augmentation using
blending techniques.



Augmentation is typically performed by trial and error,
and the types of augmentation performed are limited to the
imagination, time, and experience of the researcher. Often, the
choice of augmentation strategy can be more important than
the type of network architecture used [6]. Before Convolutional
Neural Networks (CNN) became the norm for computer vision
research, features were ”hand crafted”. Hand crafting features
went out of style after it was shown that Convolutional Neural
Networks could learn the best features for a given task. We
suggest that since the CNN can generate the best features for
some specific pattern recognition tasks, it might be able to give
the best feature space in order to merge several samples in a
specific class and generate a new sample with the same label.
Our idea is to generate the merged data in a way that produces
the best results for a specific target network through intelligent
blending of features between 2 or more samples.

II. RELATED WORK

Manual augmentation techniques such as rotating, flipping
and adding different kinds of noise to the data samples, are
described in depth in [4] and [7] which attempt to measure the
performance gain given by specific augmentation techniques.
They also provide a list of recommended data augmentation
methods.

In 2014, Srivastava et al. introduced the dropout technique
[2] aiming to reduce overfitting, especially in cases where there
is not enough data. Dropout works by temporarily removing a
unit (or artificial neuron) from the Artificial Neural Network
and any connections to or from that unit.

Konda et al. Showed that dropout can be used for data
augmentation by ”projecting the the dropout noise within a
network back into the input space”. [8]

Jaderberg et al. devised an image blending strategy as part
of their paper ”Synthetic Data and Artificial Neural Networks
for Natural Scene Text Recognition” [9]. They used what they
call “natural data blending” where each of the image layers
are blended with a randomly sampled crop of an image from
a training dataset. They note a significant (+44%) increase in
accuracy using such synthetic images when image layers are
blended together via a random process.

Another related technique is training on adversarial ex-
amples. Goodfellow et al. notes that, although augmentation
is usually done with the goal of creating images that are
as similar as possible to the natural images one expects in
the testing set, this does not need to be the case. They
further demonstrate that training with adversarial examples can
increase the generalization capacity of a network, helping to
expose and overcome flaws in the decision function [10].

The use of Generative Adversarial Neural Networks [11]
is a very powerful unsupervised learning technique that uses a
min-max strategy wherein a ’counterfeiter’ network attempts to
generate images that look enough like images within a dataset
to ’fool’ a second network while the second network learns to
detect counterfeits. This process continues until the synthetic
data is nearly indistinguishable from what one would expect
real data to look like. Generative Adversarial Neural Networks
can also be used to generate images that augment datasets, as
in the strategy employed by Shrivastav et al. [12]

Another method of increasing the generalization capacity
of a neural network is called “transfer learning”. In transfer
learning we want to take knowledge learned from one network,
and transfer it to another [13]. In the case of Convolutional
Neural Networks, when used as a technique to reduce over-
fitting due to small datasets, it is common to use the trained
weights from a large network that was trained for a specific
task and to use it as a starting point for training the network
to perform well on another task.

Batch normalization, introduced in 2015, is another pow-
erful technique. It was discovered upon the realization that
normalization need not not just be performed on the input
layer, but can also be achieved on intermediate layers. [3]

Like the above regularization methods, Smart Augmen-
tation attempts to address the issue of limited training data
to improve regularization and reduce overfitting. As with
[10], our method does not attempt to produce augmentations
that appear “natural”. Instead our network learns to combine
images in ways that improve regularization. Unlike [4] and [7],
we do not address manual augmentation, nor does our network
attempt to learn simple transformations. Unlike the approach
of image blending in [9], we do not arbitrarily or randomly
blend images. Smart augmentation can be used in conjunction
with other regularization techniques, including dropout and
traditional augmentation.

III. SMART AUGMENTATION

Smart Augmentation is the process of learning suitable
augmentations when training deep neural networks.

The goal of Smart Augmentation is to learn the best
augmentation strategy for a given class of input data. It does
this by learning to merge two or more samples in one class.
This merged sample is then used to train a target network. The
loss of the target network is used to inform the augmenter at
the same time. This has the result of generating more data for
use by the target network. This process often includes letting
the network come up with unusual or unexpected but highly
performant augmentation strategies.

During the training phase, we have two networks: Network
A, which generates data; and network B, which is the network
that will perform a desired task (such as classification). The
main goal is to train network B to do some specific task
while there are not enough representative samples in the given
dataset. To do so, we use another network A to generate new
samples. This network accepts several inputs from the same
class (the sample selection could be random, or it could use
some form of clustering, either in the pixel space or in the
feature space) and generates an output which approximates
data from that class. This is done by minimizing the loss
function LA which accepts out1 and image i as input. Where
out1 is the output of network A and mage i is a selected sample
from the same class as the input. The only constraint on the
network A is that the input and output of this network should
be the same shape and type. For example, if N samples of a
P channel image are fed to network A, the output will be a
single P channel image.



The loss function can be further parameterized by the
inclusion of ↵ and � as f(↵⇤LA,� ⇤LB). In the experiments
and results sections of this paper we examine how these can
impact final accuracy.

Network A can either be implemented as a single network
(figure 2), or as multiple networks, as in figure1. Using more
than one network A has the advantage that the networks can
learn class-specific augmentations that may not be suitable for
other classes, but which work well for the given class.

Network A is a neural network, such as a generative model,
with the difference that network A is being influenced by
network B in the back propagation step, and network A accepts
multiple samples as input simultaneously instead of just one
at a time. This causes the data generated by network A to
converge to the best choices to train network B for that specific
task, and at the same time it is controlled by loss function
LA in a way that ensures that the outputs are similar to
other members of its class. The overall loss function during
training is f(LA, LB) where f is a function whose output
is a transformation of LA and LB. This function could be
an epoch-dependent function i.e. the function could change
with the epoch number. In the training process, the error back-
propagates from network B to network A. This tunes network
A to generate the best augmentations for network B. After
training is finished, Network A is cut out of the model and
network B is used in the test process. The joint information
between data samples is exploited to both reduce overfitting,
and to increase the accuracy of the target network during
training.

The proposed method uses a network (network A) to learn
the best sample blending for the specific problem. The output
of network A is the used for the input of network B. The idea
is to use network A to learn the best data augmentation to
train network B. Network A accepts several samples from the
same class in the dataset, and generates a new sample from
that class, and this new sample should reduce the training loss
for network B. In figure 3 we see an output of network A
designed to do the gender classification. The image on the left
is a merged image of the other two. This image represents
a sample from the class “male” that does not appear in the
dataset, but still has the identifying features of its class.

Notice that in figure 3, an image was created with an
open mouth and open eyes from two images. The quality
of the face image produced by network A does not matter.
Only its ability to help network B better generalize. Our
approach is most applicable to classification tasks but may also
have applications in any approach where selective blending of
sample features improves performance. Our observations show
that this approach can reduce overfitting and increase accuracy.
In the following sections we evaluate several implementations
of our smart augmentation technique on various datasets to
show how it can improve accuracy and prevent overfitting. We
also show that with smart augmentation, we can train a very
small network to perform as well as (or better than) a much
larger network that produces state of the art results.

IV. METHODS

Experiments were conducted on NVIDIA Titan X GPU’s
running a pascal architecture with python 2.7, using the Theano
[14] and Lasange frameworks.

A. Data Preparation

To evaluate our method, we chose 4 datasets with charac-
teristics that would allow us to examine the performance of the
algorithm on specific types of data. Since the goal of our paper
is to measure the impact of the proposed technique, we do not
attempt to provide a comparison of techniques that work well
on these databases. For such a comparison we refer to [15] for
gender datasets or [16] for the places dataset.

1) Highly constrained faces dataset (db1): Our first
dataset, db1 was composed from the AR faces database [17]
with a total of 4,000 frontal faces of male and female subjects.
The data was split in to subject exclusive training, validation,
and testing sets, with 70% for training, 20% for validation,
and 10% for testing. All face images were reduced to 96X96
grayscale with pixel values normalized between 0 and 1.

2) Augmented, highly constrained faces dataset (db1a):
To compare traditional augmentation with smart augmentation
and to examine the effect of traditional augmentation on smart
augmentation, we created an augmented version of db1 with
every combination of flipping, blurring, and rotation (-5,-
2,0,2,5 degrees with the axis of rotation at the center of the
image). This resulted in a larger training set of 48360 images.
The test and validation sets were unaltered from db1. The data
was split in to a subject exclusive training, validation, and
testing sets with 70% for training, 20% for validation, and
10% for testing. All face images were reduced to 96X96 with
pixel values normalized between 0 and 1.

3) FERET: Our second dataset, db2, was the FERET
dataset. We converted FERET to grayscale and reduced the
size of each image to 100X100 with pixel values normalized
between 0 and 1. The data was split in to subject exclusive
training, validation, and testing sets, with 70% for training,
20% for validation and 10% for testing.

Color FERET [18] Version 2 was collected between De-
cember 1993 and August 1996 and made freely available with
the intent of promoting the development of face recognition
algorithms. The images are labeled with gender, pose and
name.

Although FERET contains a large number of high quality
images in different poses and with varying face obstructions
(beards, glasses, etc), they all have certain similarities in qual-
ity, background, pose, and lighting that make them very easy
for modern machine learning methods to correctly classify. In
our experiments, we use all images in FERET for which gender
labels exist.

4) Adience: Our third dataset, db3, was Adience. We
converted Adience to grayscale images with size 100x100 and
normalized the pixel values between 0 and 1. The data was
split in to subject exclusive training, validation, and testing
sets, with 70% for training, 20% for validation and 10% for
testing.



Fig. 1: Smart augmentation with more than one network A

Fig. 2: Diagram illustrating the reduced smart augmentation concept with just one network A

Fig. 3: The image on the left is created by a learned combi-
nation of the two images on the right. This type of image
transformation helped increase the accuracy of network B.
The image was not produced to be an ideal approximation
of a face but instead contains features that helped network B
better generalize the concept of gender which is the task it was
trained for.

5) DB4: Our fourth dataset, db4, was the MIT places
dataset [16]. The MIT PLACES dataset is a machine learning
database containing has 205 scene categories and 2.5 million
labeled images.

Fig. 4: Arbitrarily selected images from FERET demonstrate
similarities in lighting, pose, subject, background, and other
photographic conditions.

The Places Dataset is unconstrained and includes complex
scenery in a variety of lighting conditions and environments.



Fig. 5: Arbitrarily selected images from the Adience show
significant variations in lighting, pose, subject, background,
and other photographic conditions.

We restricted ourselves to just the first two classes in the
dataset (Abbey and Airport). Pixel values were normalized
between 0 and 1. The ”small dataset,” which had been rescaled
to 256x256 with 3 color channels, was used for all experiments
without modification except for normalization of the pixel
values between 0 and 1.

Fig. 6: Example images from the MIT places dataset showing
two examples from each of the two classes (abbey and airport)
used in our experiments.

V. EXPERIMENTS

In these experiments, we call network B the network that
is being trained for a specific task (such as classification). We
call network A the network that learns augmentations that help
train network B.

All experiments are run for 1000 epochs. The test accuracy
reported is for the network that got the highest score on the
validation set during those 1000 epochs.

To analyze the effectiveness of Smart Augmentation, we
performed 30 experiments using 4 datasets with different
parameters. A brief overview of the experiments can be seen in
Table I. The experiments were conducted with the motivation
of answering the following questions:

1) Is there any difference in accuracy between using smart
augmentation and not using it? (Is smart augmentation
effective?)

2) If smart augmentation is effective, is it effective on a
variety of datasets?

3) As the datasets become increasingly unconstrained, does
smart augmentation perform better or worse?

4) What is the effect of increasing the number of channels
in the smart augmentation method?

5) Can smart augmentation improve accuracy over tradi-
tional augmentation?

6) If smart augmentation and traditional augmentation are
combined, are the results better or worse than not com-
bining them?

7) Does altering the ↵ and � parameters change the results?
8) Does Smart Augmentation increase or decrease overfitting

as measured by train/test loss ratios?

9) If smart augmentation decreases overfitting, can we use
it to replace a large complex network with a simpler one
without losing accuracy?

10) What is the effect of the number of network A’s on the
accuracy? Does training separate networks for each class
improve the results?

As listed below, we used three neural network architectures
with varied parameters and connection mechanisms. In our
experiments, these architectures were combined in various
ways as specified in table I.

• Network B1 is a simple, small Convolutional neural
network, trained as a classifier, that takes an image as
input, and outputs class labels with a softmax layer. This
network is illustrated in figure 7.

• Network B2 is a unmodified implementation of VGG16
as described in [19]. Network B2 is a large network that
takes an image as input, and outputs class labels with a
softmax layer.

• Network A is a Convolutional neural network that takes
one or more images as input and outputs a modified
image. The details of this network can be seen in figure
[insert figure number here]

Fig. 7: Illustration of network B1

Fig. 8: Illustration of network A

A. Smart Augmentation with one network A on the gender
classification task

Experiments 1-8, 19,22, and 24 as seen in table I were
trained for gender classification using the same technique as
illustrated in figure 9. In these experiments, we use smart
augmentation to train a network (network B) for gender
classification using the specified database.



Fig. 9: Diagram of simplified implementation of Smart Augmentation showing network A and network B

TABLE I: Full listing of experiments.

Exp DB Net A A ch Net B ↵ � LR Momentum
1 db1 1 1 B 1 0.3 0.7 0.01 0.9
2 db1 1 2 B 1 0.3 0.7 0.01 0.9
3 db1 1 3 B 1 0.3 0.7 0.01 0.9
4 db1 1 4 B 1 0.3 0.7 0.01 0.9
5 db1 1 5 B 1 0.3 0.7 0.01 0.9
6 db1 1 6 B 1 0.3 0.7 0.01 0.9
7 db1 1 7 B 1 0.3 0.7 0.01 0.9
8 db1 1 8 B 1 0.3 0.7 0.01 0.9
9 db1 2 1 B 1 0.3 0.7 0.005 0.9
10 db1 2 2 B 1 0.3 0.7 0.005 0.9
11 db1 2 3 B 1 0.3 0.7 0.005 0.9
12 db1 2 4 B 1 0.3 0.7 0.005 0.9
13 db1 2 5 B 1 0.3 0.7 0.005 0.9
14 db1 2 6 B 1 0.3 0.7 0.005 0.9
15 db1 2 7 B 1 0.3 0.7 0.005 0.9
16 db1 2 8 B 1 0.3 0.7 0.005 0.9
17 db1 NA NA B 1 NA NA 0.01 0.9
18 db1a NA NA B 1 NA NA 0.01 0.9
19 db1a 1 2 B 1 0.3 0.7 0.01 0.9
20 db1a 2 2 B 1 0.3 0.7 0.005 0.9
21 db2 NA NA B 1 NA NA 0.01 0.9
22 db2 1 2 B 1 0.3 0.7 0.01 0.9
23 db3 NA NA B 1 NA NA 0.01 0.9
24 db3 1 2 B 1 0.3 0.7 0.01 0.9
25 db4 NA NA B 2 NA NA 0.005 0.9
26 db4 NA NA B 1 NA NA 0.005 0.9
27 db4 1 2 B 1 0.3 0.7 0.01 0.9
28 db4 1 2 B 1 0.7 0.3 0.01 0.9
29 db4 2 2 B 1 0.7 0.3 0.005 0.9
30 db4 2 2 B 1 0.3 0.7 0.005 0.9

The first, k images are randomly selected from the same
class (male or female) in the dataset. These k samples are
merged into k channels of a single sample. The grayscale
values of the first image, img0, are mapped to channel 0 and
the grayscale values of the second image im1 are mapped to
channel 1 and so on until we reach the number of channels
specified in the experiments table. This new k channel image
is fed into the network A. Network A is a fully convolutional
neural network (See figure 8) which accepts images as the
input and gives the images with the same size at the output in
single channel.

An additional grayscale image is then randomly selected
from the same class in the dataset (this image should not be
any of those images selected in step 1). The loss function
for this network A is calculated as the mean squared error
between this randomly selected image and the output of
network A. The output of network A, and the target image
are then fed into network B as separate inputs. Network B is
a typical deep neural network with two convolutional layers
followed by batch normalization and max-pooling steps after
each convolutional layer. Two fully connected layers are placed
at the end of the network. The first of these layers has 1024
units and the second dense layer is made of two units as the
output of network B using softmax. Each dense layer takes
advantage of the drop-out technique in order to avoid over-
fitting. The loss function of network B is calculated as the
categorical cross-entropy between the outputs and the targets.

The total loss of the whole model is a linear combination of
the loss functions of two networks. This approach is designed
to train a network A that generates samples which reduces the
error for network B. The validation loss was calculated only
for network B, without considering network. This allows us to
compare validation loss with and without smart augmentation.

Our models were trained using Stochastic Gradient De-
scent with Nestrov Momentum [20], learning rate 0.01 and
momentum 0.9. The lasagne library used to train the network
in python.

In these experiments, we varied the number of input
channels and datasets used. Specifically, we trained a network
B from scratch with 1-8 input channels with a single network A
on db1, 2 channels on network A for db2 and 3, and 2 channels
on network db1a as shown in the table of experiments.



B. Smart Augmentation with two network A’s on the gender
classification task

In experiments 9-16 and 20 we evaluate a different im-
plementation of smart augmentation, containing a separate
network A for each class. As before, the first k images are
randomly selected from the same class (male or female) in
the dataset. These k samples are merged into k channels of a
single sample.The grayscale values of the first image, img0,
are mapped to channel 0 and the grayscale values of the second
image, im1, are mapped to channel 1, and so on until we reach
the number of channels specified in the experiments table just
as before. Since we now have two network A’s, it is important
to separate out the loss functions for each network as illustrated
in figure 9.

All other loss functions are calculated the same way as
before.

One very important difference is the updated learning rate
(0.005). While performing initial experiments we noticed that
using a learning rate above 0.005 led to the dying relu problem
and stopped effective learning within the first two epochs. This
network is also more sensitive to variations in batch size.

The goal of these experiments was to examine how us-
ing multiple network As impacts accuracy and over fitting
compared to just using one network A. We also wanted to
know if there were any differences when trained on a manually
augmented database (experiment 20).

C. Training without smart augmentation on the gender clas-
sification task

In these experiments we train a network (network B) to
perform gender classification without applying network A
during the training stage. These experiments (23, 21, 18, and
17) are intended to serve as a baseline comparison of what
network B can learn without smart augmentation on a specific
dataset (db3 ,db2, db1a, and db1 respectively). In this way we
measure any improvement given by smart augmentation. A full
implementation of Network B is shown in figure 7.

This network has the same architecture as the network
network B presented in the previous experiment except that
it does not utilize a network A.

As before, two fully connected layers are placed at the end
of the network. The first of these layers has 1024 units, and
the second dense layer has two units (one for each class). Each
dense layer takes advantage of the drop-out technique in order
to avoid over-fitting.

All loss functions (training, validation, and testing loss)
were calculated as the categorical cross-entropy between the
outputs and the targets.

As before, models were trained using Stochastic Gradient
Descent with Nestrov Momentum [20], learning rate 0.01 and
momentum 0.9. The lasagne library was used to train the
network in python.

D. Experiments on the places dataset

In the previous experiments in this section, we used 3
different face datasets. In experiments 25 - 30 we examine
the suitability of Smart Augmentation with color scenes from
around the world from the MIT Places dataset to evaluate our
method on data of a completely different topic. We varied
the ↵ and � parameter in our global loss function so that we
could identify how they influence results. Unlike in previous
experiments, we also retained color information.

Experiment 25 utilized a VGG16 trained from scratch as
a classifier, chosen because VGG16 models have performed
very well on the places dataset in public competitions [16].
The input to network A was 256x256 RGB images and the
output was determined by a 2 class softmax classifier.

In experiment 26 we use a network B, identical in all
respects to the one used in the previous subsection, except
that we use the lower learning rate specified in the experiments
table and take in color images about places instead of gender.

These two experiments (25,26) involved simple classifiers
to establish a baseline against which other experiments on the
same dataset could be evaluated.

In experiments 27-28, k images were randomly selected
from the same class (abbey or airport) in the dataset. These k
samples are merged into k ⇤ 3 channels of a single sample.
The values of the first three channels of image img0 are
mapped to channel 0-2, and the first three channels of the
second image im1 are mapped to channels 3-5, and so on, until
we reach the number of channels specified in the experiments
table multiplied by the number of color channels in the source
images. This new k ⇤ 3 channel image is fed into the network
A. Network A is a fully convolutional neural network) which
accepts images as the input, and outputs a single color image.

An additional image is then randomly selected from the
same class in the dataset. The loss function for network A is
calculated as the mean squared error between the randomly
selected image and the output of network A. The output of
network A, and the target image are then fed into network B
as separate inputs. Network B is a typical deep neural network
with two convolutional layers followed by batch normalization
and max-pooling steps after each convolutional layer. Two
fully connected layers are placed at the end of the network. The
first of these layers has 1024 units and the second dense layer
is made of two units as the output of network B using softmax.
Each dense layer takes advantage of the drop-out technique in
order to avoid over-fitting. The loss function of network B is
calculated as the categorical cross-entropy between the outputs
and the targets.

The total loss of the whole model is a linear combination of
the loss functions of two networks. This approach is designed
to train a network A that generates samples that reduce the
error for network B. The validation loss was calculated only for
network B, without considering network A. This allows us to
compare validation loss with and without smart augmentation.

Our models were trained using Stochastic Gradient De-
scent with Nestrov Momentum [20], learning rate 0.005 and
momentum 0.9. The lasagne library used to train the network
in python.



Fig. 10: Diagram of our implementation of Smart Augmentation with one network A for each class

Fig. 11: Diagram of implementation of network B without
Smart Augmentation

In these experiments, we varied the number of input
channels and datasets used. Specifically, we trained a network
B from scratch with 1-8 input channels on network A on db1,
2 channels on network A for db2 and 3, and 2 channels on
network db1a as shown in the table of experiments.

In experiments 29-30, k images are randomly selected from
the same class (abbey or airport) in the dataset. These k
samples are merged into k ⇤ 3 channels of a single sample.
The values of the first three channels in image img0 are
mapped to channel 0-2 and the first three channels of the
second image im1 are mapped to channels 3-5 and so on until
we reach the number of channels specified in the experiments
table multiplied by the number of color channels in the source
images. This new k ⇤ 3 channel image is fed into the network
A. Network A is a fully convolutional neural network which
accepts images as the input and outputs a single color image.

An additional image is then randomly selected from the
same class in the dataset. The loss function for each network A
is calculated as the mean squared error between the randomly
selected image and the output of network A. The output of
network A, and the target image are then fed into network B
as separate inputs. Network B is a typical deep neural network
with two convolutional layers followed by batch normalization
and max-pooling steps after each convolutional layer. Two
fully connected layers are placed at the end of the network. The
first of these layers has 1024 units, and the second dense layer
is made of two units as the output of network B using softmax.
Each dense layer takes advantage of the drop-out technique in
order to avoid over-fitting. The loss function of network B is
calculated as the categorical cross-entropy between the outputs
and the targets.



TABLE II: Results of experiments on Face Datasets

Experiments on Face Datasets
Dataset #Net As Input Channels Augmented Test Accuracy

AR Faces 1 1 no 0.927746
AR Faces 1 2 no 0.924855
AR Faces 1 3 no 0.950867
AR Faces 1 4 no 0.916185
AR Faces 1 5 no 0.910405
AR Faces 1 6 no 0.933526
AR Faces 1 7 no 0.916185
AR Faces 1 8 no 0.953757
AR Faces 2 1 no 0.869942188
AR Faces 2 2 no 0.956647396
AR Faces 2 3 no 0.942196548
AR Faces 2 4 no 0.942196548
AR Faces 2 5 no 0.907514453
AR Faces 2 6 no 0.933526039
AR Faces 2 7 no 0.916184962
AR Faces 2 8 no 0.924855471
AR Faces 0 NA no 0.881502867
AR Faces 0 NA yes 0.890173435
AR Faces 1 2 yes 0.956647396
AR Faces 2 2 yes 0.956647396
Adience 0 NA no 0.700206399
Adience 1 2 no 0.760577917
FERET 0 NA no 0.835242271
FERET 1 2 no 0.884581506

TABLE III: Results of experiments on Place Dataset

Experiments on MIT places dataset
#Net As Target Network Test Accuracy A B

0 VGG16 98.5 NA NA
0 Small net B 96.5 NA NA
1 Small net B 98.75 0.3 0.7
1 Small net B 99% 0.7 0.3
2 Small net B 99% 0.7 0.3
2 Small net B 97.87% 0.3 0.7

The total loss of the whole model is a linear combination
of the loss functions of the two networks. This approach is
designed to train a network A that generates samples that
reduce the error for network B. The validation loss was
calculated only for network B, without considering network
A. This allows us to compare validation loss with and without
smart augmentation.

Our models were trained using Stochastic Gradient Descent
with Nestrov Momentum [20], learning rate 0.005 and momen-
tum 0.9. The lasagne library was used to train the network in
python.

In these experiments, we varied the number of input
channels and datasets used. Specifically, we trained a network
B from scratch with 1-8 input channels on network A on db1,
2 channels on network A for db2 and 3, and 2 channels on
network db1a as shown in the table of experiments.

VI. RESULTS

The results of experiments 1-30 as shown in Table I are
listed in tables II and III.

A. Smart Augmentation with one network A on the gender
classification task

In figure 12, we show the training and validation loss
for experiments 1 and 17. As can be observed , the rate of
overfitting was greatly reduced when smart augmentation was
used compared to when it was not used.

One can see how the smart augmentation technique could
prevent network B from overfitting in the training stage. The
smaller difference between training loss and validation loss
caused by the smart augmentation technique shows how this
approach helps the network B to learn more general features
for this task. Network B also had higher accuracy on the test
set when trained with smart augmentation (92% compared to
88 percent without).

In figures 13 and 14 we show examples of the kinds of
images network A learned to generate. In these figures, the
image on the left side is the blended image of the other two
images produced by network A.

We observe an improvement in accuracy from 83.52% to
88.46% from smart augmentation on Feret with 2 inputs and
an increase from 70.02% to 76.06% on the adience dataset.

We see that there is no noticeable pattern when we vary
the number of inputs for network A. Despite lack of a pattern,
a significant difference was observed with 8 and 3 channels
providing the best results at 95.38% and 95.09% respectively.
At the lower end, 7, 5, and 4 channels performed the worst,
with accuracies of 91.62%, 91.04%, and 91.04%.

For comparison, the accuracy without network A was:
88.15%. We suspect that much of the variation in accuracy
reported above may be due to chance. Since in this particular
experiment, images are chosen randomly there may be times
when 2 or more images with very helpful mutual information
are present by chance and the opposite is also possible. It is
interesting that when 3 and 8 channels were used for network
A, the accuracy was over 95%.

B. Smart augmentation and Traditional Augmentation

We note that traditional augmentation improved the accu-
racy from 88.15% to 89.08% without smart augmentation on
the gender classification task. When we add smart augmenta-
tion we realize an improvement in accuracy to 95.66%

The results of the same experiment when we used 2 net-
works A’s was also 95.66 % which seems to indicate that both
configurations may have found the same optima when smart
augmentation was combined with traditional augmentation.

This demonstrates that smart augmentation can be used
with traditional augmentation to further improve accuracy. It
is clear that in all cases examined so far, smart augmenta-
tion performed better than traditional augmentation. However,
since there are no practical limits on the types of traditional
augmentation that can be performed, there is no way to
guarantee that manual augmentation could not find a better
augmentation strategy. This is not a major concern since we
do not claim that smart augmentation should replace traditional
augmentation. We only claim that smart augmentation can help
with regularization.



Fig. 12: Training and validation losses for experiments 1 and 17, showing reductions in overfitting by using Smart Augmentation

Fig. 13: The image on the left is a learned combination of the
two images on the right as produced by network A

Fig. 14: The image on the left is a learned combination of the
two images on the right as produced by network A

C. Smart Augmentation with two network A’s on the gender
classification task

In this subsection we discuss the results of our two network
architecture when trained on the gender classification set.

These experiments show that approaches which use a
distinct network A for each class, tend to slightly outperform
networks with just 1 network A. This seems to provide support
for our initial idea that one network A should be used for
each class so that class-specific augmentations could be more
efficiently learned. If the networks with just 1 and 0 input
channels are excluded, we see an average increase in accuracy
from 92.94% to 93.19% when smart augmentation is used,
with the median accuracy going from 92.49% to 93.35%.

There is only one experiment where smart augmentation
performed worse than not using smart augmentation. This can
be seen in the 9th row of table II where we use only one
channel which caused the accuracy to dip to 86.99%, con-
trasted with 88.15% when no smart augmentation is used. This
is expected because when only one channel is used, mutual
information can not be effectively utilized. This experiment
shows the importance of always using at least 2 channels.

D. Experiments on the places dataset

As with previously discussed results, when the places
dataset is used, networks with multiple network A’s performed
slightly better. We also notice that when ↵ is higher than � an
increase in accuracy is realized.

The most significant results of this set of experiments
is the comparison between smart augmentation, VGG 16,
and network B trained alone. Note that a small network B
trained alone (no smart augmentation) had an accuracy of
96.5% compared to VGG 16 (no smart augmentation) at 98.5.
When the same small network B was trained with smart
augmentation we see accuracies ranging from 98.75% to 99%
which indicates that smart augmentation, in some cases, can
allow a much smaller network to replace a larger network.



VII. DISCUSSION AND CONCLUSION

In this paper we discussed a new regularization approach,
called “Smart Augmentation” to automatically learn suitable
augmentations during the process of training a deep neural
network. We focus on learning augmentations that take advan-
tage of the mutual information within a class. The proposed
solution was tested on progressively more difficult datasets
starting with a highly constrained face database and ending
with a highly complex and unconstrained database of places.
This indicates that our method is appropriate for a wide range
of tasks and demonstrates that it is not biased to any particular
type of image data.

Our experiments showed that the augmentation process can
be automated, specifically in non trivial cases where two or
more samples of a certain class are merged in non linear ways
resulting in improved generalization of a target network. Our
results indicate that a deep neural network can be used to
learn the augmentation task at the same time the task is being
learned. We have demonstrated that smart augmentation can
be used to reduce overfitting during the training process and
reduce the error during testing.

No linear correlation between the number of samples mixed
by network A and accuracy was found so long as at least 2
samples are used.

We found that smart augmentation is effective at reducing
error and decreasing overfitting and that this is true regardless
of how unconstrained the database is. In our experiments we
were able to achieve better accuracy with smart augmentation
than with traditional augmentation alone. We found that al-
tering the ↵ and � parameters of the loss function slightly
impacts results but more experiments are needed to identify if
optimal parameters can be found.

Finally, we found that Smart Augmentation on a small net-
work allowed us to achieve better results than those obtained
by a much larger network (VGG 16).

Future work may include expanding Smart Augmentation
to learn other types of augmentation strategies and performing
experiments on larger datasets with significantly more classes.
A statistical study to identify the number of channels that give
the highest probability of obtaining good results could also be
useful.
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ABSTRACT
Correct classi�cation of image data can depend on features learned
in multiple sequential frames. We focus on the problem of learning
action from video data with an emphasis on driver behavior mon-
itoring. An insu�cient quantity of high quality labeled data is a
major problem in machine learning research. �is is especially true
when deep neural networks are used. Although some su�ciently
large, general purpose image databases exist for action recognition,
most of these are limited to single frames. �is kind of data requires
that the action recognition task is applied regardless of the tempo-
ral information (information from previous and next frames of a
video sequence). In this paper, we show that temporal information
is useful for accurate classi�cation of video and that the temporal
information in lower layers of a convolutional neural network can
successfully be transferred from one network to another to greatly
improve performance on the driver behavior monitoring task.

KEYWORDS
Deep Learning, Transfer Learning, Action Recognition

1 INTRODUCTION
In recent years, deep learning has become ubiquitous for image
classi�cation, with some results exceeding human accuracy for
certain tasks. With few exceptions, these impressive results have
been limited to a set of tasks for which a single picture provides all
the information required to easily distinguish between classes and
essentially ignore any time element for the recognition task.

As we approach the limits of frame-based methods, there is a
desire to further improve deep learning algorithms by utilizing tem-
poral information, which is information between multiple frames
taken sequentially to give a more complete idea of what is hap-
pening. Using a single frame, it is trivial to train a classi�er to
determine if a person is holding a glass, but di�cult or impossible
to train a classi�er to understand if the glass is being picked up
or put down. Even distinguishing jogging from walking can be
di�cult without a time component.

For this more re�ned level of visual understanding, we need
machine learning models that can learn temporal information and
information about frame content at the same time. We also need
quality labeled data of su�cient size to prevent over��ing. Much
work has been done recently to address these issues (described in

MAICS’2017, Fort Wayne Indiana
© 2017 Copyright retained by the authors. .

the related work section below), but there is still a lack of quality
data for use in many practical applications. For example, there are
no publicly available databases for driver monitoring that are of
su�cient size to train a deep neural network from scratch.

�e largest database for driver behavior monitoring that we could
�nd is the “Distracted Driver Dataset”, provided as part of a Kaggle
challenge in mid-2016. Although this database is intended for single
frame classi�cation, it is possible to identify the original frame
sequences from which movies can be created. �ese movies can
then be used for learning a limited amount of temporal information.

In this paper, we address two questions:
“Can temporal information be used to improve accurate classi-

�cation of driver actions?” and “Can low-level information about
temporal information from an unrelated problem be successfully
used to be�er understand driver actions in videos?”

In the next session, we provide brief background information on
Recurrent Neural networks and 3D CNN’s for the interested reader.
In section three, we present related work. In sections 4, 5, and 6,
we present the methods, experiments, and results.

2 BACKGROUND
In this section, we provide a brief overview of the key neural net-
work architectures used in this work, including recurrent neural
networks, long short term neural networks, convolutional neural
networks and 3D convolutional neural networks. We also brie�y
describe transfer learning. Readers with a knowledge of these topics
are encouraged to skip to the Related Work section below.

2.1 RNN (Recurrent Neural Network)
Recurrent neural networks(RNN) [19] are a highly �exible network
architecture frequently used to model time series data, such as a
sequence of frames from a video. RNNs remember the input at
a previous stage and make a decision for the present input based
on the sequence of the previous data. �e hidden state of an RNN
is calculated based on the state of the network at each sequence.
�e hidden state can be considered the memory. RNNs have had
great success in speech and video recognition and are sometimes
combined with convolutional layers [11].

2.2 LSTM (Long Short Term Memory)
LSTMs [5] are a type of RNN that are designed with both long and
short term memory which permits the modeling of more complex
time series. LSTMs include at least 3 gates which control the way
information �ows.
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2.3 CNN(Convolutional Neural Networks)
Convolutional Neural networks (CNNs) were popularized by le-
cun et al. [9], who used them successfully for handwri�en digit
classi�cation. �ese networks are inspired by the organization
of the visual cortex and allow spatial information to be more e�-
ciently learned. Convolutional Neural Networks can be used on
input of any number of dimensions but due to their success in
pictures, are most popularly implemented for 2D input plus color
channels. Other popular types of CNN’s include 1D CNNs which
are commonly used for time series and 3D CNNs which can be used
for volumetric data or time series data where the third dimension
represents either spatial frames or temporal frames [11].

2.4 Transfer Learning
Transfer learning is the process of transferring knowledge that has
already been learned by one neural network into another one. �is
is o�en accomplished by copying the learned weights and biases
from one or more layers of a fully trained network to a di�erent
network. Transfer learning can be used to overcome over��ing
issues and to speed up the training process for a related task.

3 RELATED WORK
In 2008, before the recent wave of deep learning, Klaser et al. [8]
used 3D HOG (Histogram of Oriented Gradients) descriptors and
showed that 3D gradients were able to assist in understanding
action from videos. More modern approaches to action classi�ca-
tion from videos are primarily based on 3D convolutional neural
networks (CNN) or recurrent neural networks (RNN) with some
convolutional component or a combination of the two. 3D CNNs
have been shown to capture short-term temporal information.

For example, [18] makes a compelling case for the use of 3D
CNNs for understanding video data. �eir method, which they
named C3D, compared favorably to other published results on 5 of
6 generic action datasets used. �ey also showed that their network
learns information about both motion and appearance, �rst learning
appearance and then motion. One problem with this design is that
only relatively short action sequences (16 frames) can be learned.

Addressing this problem, Lei, et al. [10] present an interesting
approach to action recognition, they combine a 3D convolutional
neural network with a hidden Markov model (HMM) and show that
their method compares favorably with other methods. �is paper
adds support to the idea that 3D convolutions are important to
understanding short-term temporal information about movement
and the need for another mechanic (RNN, HMM, etc) to understand
long-term context (more than a few frames)

Keeping on the theme of combining 3D CNN with a network
that is able to learn long-term information, Molchanov et al. [12]
combined a 3D convolutional neural network with a recurrent neu-
ral network to classify short video clips of hand gestures, reporting
excellent results.

Donahue et al. introduced a new architecture called LRCN (Long-
term Recurrent Convolutional Networks) that combines RNNs with
CNNs [2]. Speci�cally, they show how to train and optimize a
long-term RNN model that can account for temporal information in
video data. �ey evaluate their method on the UCF - 101, a database

that contains over 12,000 videos with 101 human action classes [16]
.

Another new architecture that combines LSTM with convolu-
tions is introduced in “A Machine Learning Approach for Precip-
itation Nowcasting” [20]. Although the focus of their paper is
forecasting precipitation, their method is generally applicable to
the task of gathering long and short term time information from
video sequences.

In [21], convolutional temporal pooling is used with a long short
term memory (LSTM) network to produce state of the art results.
In the same year, [2] used a convolutional LSTM to narrate videos.

Because convolutions on 3D data are time intensive, there have
been a�empts to combine 2D networks while retaining temporal
information. For example, in [3], Feichtenhofer et al. train separate
CNNs for motion and appearance and report very good results.

Addressing the problem of insu�cient data to train a neural
network, [7] introduced a large, automatically generated, database
gathered from YouTube clips called the sport 1M dataset. �ey
showed that a transfer learning approach is e�ective at gaining
accuracy on UCF 101 when a network is �rst trained on sports 1M.

Object proposal networks, speci�cally fast/faster R-CNNs (region-
based convolutional neural networks) have been used successfully
as in [14],and [22], for action recognition, and seem to work espe-
cially well in cases where there is not enough data to train a full
network. Hoang, et al. used this method for detecting cell phone
usage and hands on steering wheel detection in [4].

Just as there are a�empts to classify behavior without exploit-
ing temporal information, there are also ways of addressing the
problem of driver behavior monitoring that do not depend on spa-
tial information but instead use only temporal information. For
example, [6] compared LSTM, RNN, logistic regression, and deep
neural networks, for detecting driver confusion. Rather than using
images, that paper uses multimodal sensor data to assess driver
confusion. �ey found that LSTM outperforms the other models,
likely because some long-term information is important for this
task. Similarly, [13] uses human motion, as given by cell phone
sensors, as a biometric, and an RNN was utilized to process sensor
signals.

4 METHODS
Experiments were conducted on NVIDIA Titan X GPU’s running
a pascal architecture with python 2.7, using the �eano [17] and
Keras [1].

4.1 Data Preparation
4.1.1 Driver Monitoring Dataset. �e Distracted Driver Dataset

was provided as part of a Kaggle Competition in 2016. �e dataset
was created by �lming actors on a closed driving course engaging
in various distracted and undistracted behaviors. It should be noted
that these images were obtained in a controlled environment the
car was not actually being driven. It was being pulled by a truck
instead. �e objective of the competition was to correctly classify
still images into 10 categories.

�e training set of the distracted driver database contains frames
of 26 subjects displaying several of the following behaviors/actions:

(1) c0: safe driving
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(2) c1: texting - right
(3) c2: talking on the phone - right
(4) c3: texting - le�
(5) c4: talking on the phone - le�
(6) c5: operating the radio
(7) c6: drinking
(8) c7: reaching behind
(9) c8: hair and makeup

(10) c9: talking to passenger
Although all the images in the supplied training set are still

images, it is possible to reconstruct the original “movies” based on
their order in the CSV �le supplied with ground truth annotations.

While classifying frames for driver monitoring is an interesting
problem, we wanted to see if we could learn anything from the
temporal information in the movies. Instead of using individual
frames as required for the competition, we created short movie
clips, as we describe later. It is not possible to create such movies
from the supplied testing set because sequence information was
intentionally le� out of it by the competition organizers.

First, we arranged the dataset into distinct subject, action seg-
ments ordered by time. �e generated movies varied between 38
and 135 frames in length (average is about 101) for a total of 100
clips. Because the 3D convolutional neural network we were plan-
ning to experiment with requires a �xed frame size, we further
processed the videos into �xed sized frames using the sliding time
window method. For each of these segments, we create a series
of 5, 10, 16, and 30 frame clips. Each clip is made using a sliding
window starting with the �rst (subject, action) with a step equal
to approximately 70% of the clip length to allow su�cient frame
overlap. Appropriate action labels are applied to each clip.

In all experiments, 20 drivers are used for the training set and
the remaining 6 for the validation set. Due to the small size of
this database, we did not feel that further dividing the data into a
smaller test set would be reasonable.

In our experiments, we used 4 variations of these:
(1) Grayscale video: All videos of the 26 drivers were reduced

to 60 ⇥ 80 Grayscale images.
(2) Color video: All videos of the 26 drivers were reduced to

112 ⇥ 112 full color.
(3) Grayscale frames: All frames of the 26 drivers were reduced

to 60 ⇥ 80 Grayscale images.
(4) Color Frames: All frames of the 26 drivers were reduced

112 ⇥0 112 Grayscale images.
Due to copyright restrictions, we are unable to include examples

of these images in this paper, but the interested reader may view
them by visiting the relevant competition at:

h�ps://www.kaggle.com/c/state-farm-distracted-driver-detection

4.2 Augmentation
In experiments where augmentation was applied, the ImageData-
Generator class within Keras was used. �is class is used to dy-
namically create augmented images during training given a set of
parameters. Since the standard implementation of ImageDataGen-
erator only supports 2D data, we subclassed it to properly apply
the transformations to video data. �is modi�cation involved en-
suring that the same transformation was applied to every frame of

a clip instead of treating each frame as an individual image with a
potentially di�erent transformation.

5 EXPERIMENTS
In this section, we describe 10 experiments on the distracted driver
database. �e experiments were designed to allow comparison
between networks that use temporal information (LSTM, 3D CNN,
etc) and networks that ignore it (2D CNN). �e last experiments are
designed to measure the improvement that is achieved by transfer
learning.

5.1 2D experiments
We train an implementation of VGG-16 [15] from scratch on the
distracted driver dataset in Keras with a learning rate of 0.001. Our
loss function was categorical cross entropy and our output class
predictions were obtained from a �nal so�max layer.

We then repeated our experiments on our grayscale dataset
with rotation, translation, and feature normalization. By feature
normalization, we mean that the inputs are divided by the standard
deviation of the dataset.

5.2 Very Small CNNs and LSTMs
In this set of experiments, we utilized several small (one or two
layer) con�gurations of CNN+LSTM, 3DCNN +LSTM, and 3DCNN.

For these experiments, the LSTM used is the one described by
[20], implemented in Keras as ConvLSTM2D.

�ree networks were evaluated:
Network 1: 3DCNN followed by So�max (Num Classes)
One 3D convolution with 16 �lters and a kernel size of 3,3,3

followed by a so�max layer.
Network 2: LSTM followed by 3DCNN! So�max (Num Classes)
One LSTM with time length 16, and a 3x3x3 convolution kernel

followed by one 3D convolutional layer with 16 �lters and a kernel
size of 3,3,3 ending with a so�max layer.

Network 3: 3DCNN followed by LSTM! So�max (Num Classes)
One 3D convolutional layer with 16 �lters and a kernel size

of 3,3,3 followed by one LSTM with time length 16, and a 3x3x3
convolution ending with a so�max layer.

All three experiments used a learning rate of 0.001 with nestrov
momentum as 0.95. Categorical crossentropy was our loss function
and stochastic gradient descent as the training method.

�ese experiments were then repeated with the grayscale video
database.

5.3 Experiments with small 3DCNN
architectures

Since the distracted driver dataset has a strong tendency to over�t
due to the limited number of subjects, we designed a network and
training strategy that would delay over��ing for as long as possible
and prevent fast convergence. �is involved using a high learning
rate and large batch size, resulting in a training method that would
allow the network to jump over minima. We also observed that the
over��ing came from very low level information, so we restricted
the �rst layer to only 8 features. �e network architecture was
designed as follows:

(1) input layer with 15 frames, a width and height of 112.
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(2) 3D Convolutional Layer(RELU). 8 �lters with size: 3, 3, 3
(3) 3D Max pooling operator with size: (2,2,2)
(4) 3D Convolutional Layer(RELU). 16 �lters with size: 3, 3, 3
(5) 3D Max pooling operator with size: (2,2,2)
(6) 3D Convolutional Layer(RELU). 32 �lters with size: 3, 3, 3
(7) 3D Max pooling operator with size: (2,2,2)
(8) 3D Convolutional Layer(RELU). 64 �lters with size: 3, 3, 3
(9) 3D Convolutional Layer(RELU). 128 �lters with size: 3, 3, 3

(10) 3D Convolutional Layer(RELU). 256 �lters with size: 3, 3, 3
(11) Fully connected Layer (RELU) with 4096 units.
(12) Dropout with a probability of 0.5
(13) Fully connected Layer (RELU) with 4096 units.
(14) Dropout with a probability of 0.5
(15) So�max with 10 units (one for each of the 10 action classes

in the Distracted Driver Dataset)
A learning rate of 0.001 with nestrov momentum as 0.95 and cat-
egorical crossentropy as the loss function was used. Stochastic
gradient descent was used as the optimizer.

Variations with additional dropout and Batch Normalization
layers were also evaluated, but only increased the over��ing and
decreased validation accuracy.

�ese experiments were repeated with rotation, translation, and
featurewise normalization.

5.4 C3D trained from scratch
In this experiment, we trained a C3D [18] from scratch on the
distracted driver dataset. Since C3D was designed to use 16 frame
color video clips of size 112 X 112 we used the color video dataset
described previously. As with previous experiments, a learning rate
of 0.001 with nestrov momentum as 0.95 was used with categorical
crosentropy and gradient descent.

5.5 Transfer Learning with C3D
Since other approaches to reducing the over��ing problem were of
limited success, we tried a transfer learning approach. �e idea is
to use pretrained weights from an existing network, trained for a
more generic action recognition task, and then to tune them with
the Distracted Driver training set.

We used a pretrained 3CD on the sports 1-M dataset, included
the architecture, and trained weights for �e Sports-1M dataset in a
GitHub repository as a 3D CNN. �ey reported very good results at
capturing temporal information using their 3D CNN, so it seemed
like a natural place to start.

In this experiment, we investigate the use of transfer learning to
overcome the over��ing problem identi�ed in the previous cases.
In the previous experiments, the �rst layers were identi�ed as being
the primary source of over��ing, so we wanted to try two transfer
learning approaches.

�e �rst transfer learning approach we tried was to train the C3D
network with a very low learning rate of 0.0001 without freezing
any layers with these pretrained weights.

We then used an alternate transfer learning approach where we
trained only on the �nal so�max layer, freezing the learning rate
of the �rst layers.

Since we previously identi�ed the �rst layers as being the great-
est source of over��ing, we repeated this experiment freezing only

the �rst �ve layers, and then repeated it again with only the �rst
two layers frozen.

6 RESULTS
In this section, we report the results of the experiments in the
previous section. �e experiments with the best results are listed
in table 1. Since over��ing is found to be the primary cause of
validation error in most experiments, we also show details about
the loss and accuracy in tables 2 and 3 before and a�er we reach
100% on the training set.

6.1 2D experiments
�e best 2D accuracy we obtain without augmentation is 30% using
a modi�ed VGG 16. [15]

Interestingly, randomly augmenting the 2D dataset with shi�s
of up to 10% in the horizontal or vertical direction is enough to
increase the accuracy from 30% to 46.3%. Adding rotation (5 or 15
degrees) lowered accuracy and allowing shi�s of greater than 10%
also decreased accuracy.

6.2 Very Small CNNs and LSTMs
In this set of experiments, we used 3D convolutional LSTM of 3
di�erent con�gurations that have been widely cited in the literature
as being e�ective for this task.

Despite widely di�erent architectures, these networks all quickly
resulted in an over�t network with 100% accuracy on the training
set and roughly 10% accuracy on the validation set, o�en within
the �rst 10 epochs.

When trained on reduced size grayscale data the results were
similar but slightly be�er with the best accuracy on the validation
set at around 16%.

�e goal of this set of experiments was to identify the network
architecture which would be most promising for measuring the
impact of temporal information for the driver monitoring task, but
due to the over��ing issue, we can not reach any conclusions from
these 3 experiments.

6.3 Experiments with small 3DCNN
architectures

Here we report the results of our experiment with small 3DCNN,
which was designed to reduce over��ing by forcing the network to
concentrate on more general features and by limiting the number
of low level features.

�is network achieved an accuracy of 39.57% on the validation
set which is be�er than the 2D VGG 16 inspired network, which
had been shown to be e�ective at this task in the Distracted Driver
Competition without manual augmentation, but not be�er than the
2D VGG when augmented data was provided.

Variations with additional dropout and Batch Normalization
layers were also evaluated, but only increased the over��ing and
decreased validation accuracy.

None of the augmentation strategies that were found to improve
accuracy for the 2D network (translation, rotation, featurewise nor-
malization) increased accuracy for this small 3DCNN architecture.
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Table 1: Top performing approaches (>= 30%)

Approach Accuracy
Transfer learning on 3D CNN. First 2 layers frozen 73.35%
Transfer learning on 3D CNN. First 5 layers frozen 60%
2D VGG 16 with augmentation 46%
3D CNN without augmentation 39.57%
2D VGG 16 without augmentation 30%

Table 2: �e best result on the validation set before reaching
100% on the training set was:

Train loss* Val loss Train Accuracy Val Accuracy
0.0359 0.9004 0.9984 0.7273

Table 3: �e best results on the validation set a�er reaching
100% on the training set was

Train loss* Val loss Train Accuracy Val Accuracy
0.0173 0.8563 1 0.7335

6.4 C3D trained from scratch
When we trained the C3D from scratch on the distracted driver
dataset, the results were: 100% accuracy on the training set. 12%
accuracy on the validation set.

6.5 Transfer Learning with C3D
�e �rst experiment was to train the pretrained 3CD network at a
very low learning rate using the driver monitoring dataset. �is still
resulted in over��ing and unsatisfactory results on the validation
set (13%).

�e next and most successful transfer learning approach we used
was to train only on the last few layers, freezing the learning rate
of the �rst layers. When the �rst 5 layers were frozen, we achieved
60% on the validation set, which is a signi�cant improvement over
the previous results. Further re�nement (freezing just the �rst 2
layers) allowed us to achieve over 72% accuracy on the validation
set.

*in all cases loss is the categorical cross-entropy calculated on
an entire batch.

7 DISCUSSION
When training a CNN, Information �ows in a cone-shaped manner
(see �gure 1). �is is a property of the convolution and pooling
operations, which merge and mix the information of several pixels
(a window of pixels) into a single value. In the early layers of the
convolutional network, each row of the layer corresponds to a small
spatial portion of the input image. �is means that in these early
layers, the network is restricted to the details and low-level features
of the input data.

�is is also the case for temporal information where time is the
depth dimension. In the early stages of the 3D network, the kernels
are able to observe a very short part of the input time sequence
data. i.e., the beginning layers of the network are processing a short
time sequence from a small spatial portion of the input data.

�is could correspond to small �nger movement, or eye blinking
for example. �ese movements are common among a wide variety
of human activities like swimming or holding a cell phone. �is is
the main reason a transfer learning approach that involved freezing
the �rst two layers gave signi�cantly be�er results than other
methods (See �gure 2). In our presented approach, the network
trained on the sports 1m dataset (a database of YouTube videos
focused on sports) was tuned for the driver monitoring task, but
the �rst two layers were frozen during the tuning procedure. �e
success of these features indicates that the early stage features
learned from sports activity classi�cation are generic enough to be
used for other human activities.

�ese features represent the most detailed activities, which are
the same for a wide variety of human behaviors. Figure 1 shows
that by going deeper in network layers, each row of a convolutional
layer is observing a wider and larger temporal and spatial region
of the input data.

�is suggests that the kernels in these later layers are dealing
with coarser features of the input data, which includes speci�c
movements or behaviors of the subject in the input movie stream.
�is explains why tuning later layers for our speci�c task converged
to a reasonable approximation of driver activities. In �gure 2, net-
work A is the C3D network trained on the sports 1M dataset and
the network B is the presented network for driver activity classi�-
cation. As you can see, the parameters from the �rst two layers of
the network A were transferred to network B and the rest of the
network was tuned for our task.

�is is our explanation of the results obtained by a transfer
learning approach.

 toward 
the output

input
Convolutional 

layer
Convolutional 

layer
Convolutional 

layer

Figure 1: Illustration of cone shape of information �ow in
convolutional neural networks.

8 CONCLUSIONS
We have shown that the lower level �lters learned by a 3D CNN
can be used to greatly increase the accuracy on small datasets of
drivers for the driver behavior classi�cation task. It is not obvious
that the �rst layers of a network trained for identifying actions in
sports videos, such as basketball and swimming, could also be used
to distinguish between distracted driver actions like le� and right
hand cell phone use or speaking with a passenger.

We have also shown that temporal information can be used to
increase accuracy for the driver behavior monitoring task over a
network that does not use such temporal information.
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Figure 2: Illustration of transfer learning concept where the
�rst layers in network A and network B are the same.

At a very low level, the action of Moving �ngers and heads may
not be substantially di�erent between di�erent action recognition
problems for convolutional neural networks. In our experiments,
using any more than the �rst two layers decreased accuracy.

Given the shortage of well-labeled task-speci�c datasets for ac-
tion recognition, this is an encouraging result.
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Efficient CNN Implementation for Eye-Gaze
Estimation on Low-Power/Low-Quality Consumer

Imaging Systems
Joseph Lemley, Student Member, IEEE, Anuradha Kar, Student Member, IEEE, Alexandru

Drimbarean, Member, IEEE, and Peter Corcoran, Fellow, IEEE

Abstract—Accurate and efficient eye gaze estimation is impor-
tant for emerging consumer electronic systems such as driver
monitoring systems and novel user interfaces. Such systems are
required to operate reliably in difficult, unconstrained environ-
ments with low power consumption and at minimal cost. In this
paper a new hardware friendly, convolutional neural network
model with minimal computational requirements is introduced
and assessed for efficient appearance-based gaze estimation.
The model is tested and compared against existing appearance
based CNN approaches, achieving better eye gaze accuracy with
significantly fewer computational requirements. A brief updated
literature review is also provided.

Index Terms—Eye gaze, Neural Networks, Deep Learning

I. INTRODUCTION

The potential of eye gaze tracking and gaze-based human
computer interactions in modern consumer devices is cur-
rently an active topic for exploration. Eye gaze has been
used to derive human behavioral cues, as an input modality
and for achieving immersive user experiences in virtual and
augmented reality systems. However, applications of gaze in
consumer devices operating in real world conditions face tough
challenges in terms of accuracy and reliability

A. Gaze Tracking in Consumer Devices

After decades of research on desktop-based gaze estimation
techniques, the focus has recently shifted to building eye gaze
applications for dynamic platforms such as driver monitoring
systems [1] and handheld devices [2]. For an automobile
driver, eye based cues such as levels of gaze variation, speed
of eyelid movements and eye closure can be indicative of
a driver’s cognitive state. These can be useful inputs for
intelligent vehicles to understand driver attentiveness levels,
lane change intent, and vehicle control in the presence of
obstacles to avoid accidents [3].

Handheld devices like smartphones and tablets form unique
platforms for gaze tracking applications wherein gaze may be
used as an input modality for device control, activating safety
features and novel UI designs [4]. The most challenging aspect
of these modern gaze applications includes operation under

Joseph Lemley, Anurada Kar, and Peter Corcoran are with the Department
of Electrical and Electronic Engineering, National University of Ireland Gal-
way, Galway, Ireland e-mail: J.lemley2@nuigalway.ie Alexandru Drimbarean
is with Xperi Corporation, Galway Ireland,

dynamic user conditions and unconstrained environments. Fur-
ther requirements for implementing a consumer-grade gaze-
tracking system include real-time high-accuracy operation,
minimal or no calibration, and robustness to user head move-
ments and varied lighting conditions. Therefore accurate and
reliable gaze tracking typically demands high quality cameras
and special equipment like narrow angle lenses, external
illumination, and stereo setups [5] for capturing eye region
features with sufficient details. As a result, gaze estimation
systems frequently become costly with complicated setups,
which are unsuitable for generic and consumer applications.

Therefore a major challenge of gaze based consumer elec-
tronics design involves maximizing system performance while
reducing costs and system complexities.

B. Deep Learning for Eye Gaze

In this paper, we introduce a calibration-free method for
appearance-based gaze estimation that is suitable for consumer
applications and low cost hardware with real time require-
ments, using a Convolutional Neural Network (CNN).

Convolutional Neural networks (CNNs) were popularized
by Lecun et al. [6], who used them successfully for hand-
written digit classification. These networks are inspired by the
organization of the visual cortex and allow spatial information
to be more efficiently learned. Convolutional Neural Networks
can be used on input with any number of dimensions, but due
to their success in pictures, are most popularly implemented
for 2D input plus color channels. Other popular types of
CNN’s include 1D CNNs, which are commonly used for time
series, and 3D CNNs, which can be used for volumetric data
or time series data where the third dimension represents either
spatial frames or temporal frames [7]. Although CNNs have
become ubiquitous for most computer vision tasks, they have
yet to become popular for eye gaze estimation.

C. Contributions of this Work

From the perspective of developing a deep learning model
for gaze estimation, the task can either be considered as a
regression task or a classification task. Although both are
useful, regression provides the greatest predictive flexibility
and thus this paper treats the eye gaze estimation task as a
regression problem with the goal of finding a gaze angle (φ,θ)
that corresponds with a low resolution eye image such as one
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taken from a distance with a simple RGB webcam mounted
on a dashboard.

In this paper, a hardware optimized network is implemented
with demonstrated suitability for deployment on such con-
sumer devices in terms of memory requirements and speed.
This network achieves superior accuracy using a dual channel
input technique when compared to other state-of-the-art CNN-
based gaze tracking methods for unconstrained, low resolution
eye tracking.

II. RELATED WORK

In this section a review of conventional gaze tracking
techniques, studies on using low resolution data, and the
application of deep learning in gaze estimation are discussed.
The development and usage of important databases for gaze
research are also presented.

A. Contemporary Methods for Eye Gaze Estimation

Gaze-tracking algorithms can be broadly classified into two
types: model-based methods and appearance-based methods.
[8] Appearance-based methods operate directly on the eye
images.

Examples of model-based methods include 2D and 3D mod-
els that use NIR illumination to create corneal reflections and
track them with respect to the pupil center to estimate the gaze
vector. These require polynomial or geometric approximations
of the human eye to obtain the gaze direction or the point of
gaze. Appearance-based methods use eye region images to
extract content information such as local features, shape, and
texture of eye regions to estimate gaze direction. Some key
works in each of these classes of methods are summarized
below.

1) Measures of Accuracy for Eye Gaze Tracking Methods:
Contemporary research on gaze tracking measures accuracy
in a wide variety of ways [9]. For example, commonly used
measures include angular resolution in degrees [10], gaze
recognition rates in percentage [11], and shifts in number of
pixels or distance in cm/mm between gaze [12] and target lo-
cations. Unfortunately, these 4 methods are not correlated and
not inter-comparable. It is the view of the authors that angular
resolution is most reliable as it describes the performance of
an algorithm irrespective of other system variables like user
distance from tracker, pixel size of screen etc. Therefore, in
this work, the angular resolution in degrees is estimated and
used as the metric of accuracy for the proposed algorithm.
Results from this work are only directly compared to other
papers which express their performance in angles.

2) 2D Models: 2D models utilize polynomial transforma-
tion functions for mapping the gaze vector (vector between
pupil center and corneal glint) to corresponding gaze coor-
dinates on the screen. In [13], it is shown that calibration
targets and components of the mapping function are significant
in determining overall accuracy of a regression-based tracker.
Artificial Neural Network (ANN) based mapping methods are
presented in [14], [15], [16] . In [16] a three layer ANN
achieves better accuracy than regression-based approaches.
Methods that are robust to head pose are presented in [17]

and [18]. Multiple geometrical transformation based mapping
for handling variable user distances and head motion are
used in [17]. A highly accurate calibration-free algorithm
with tolerance for natural head movements is discussed in
[18] using a support vector machine (SVM). Another high
resolution, head-pose-invariant tracking method that does not
require geometric models is presented by [19]. The typical
accuracy of such models is between two and four degrees.

3) 3D Models: 3D model-based methods typically use a
geometrical model of the human eye to estimate the center of
the cornea, and the optical and visual axes of the eye. Gaze
coordinates are estimated as points of intersection of the visual
axes with the scene. These methods achieve high accuracy ( 1
degree) but require elaborate system setups and knowledge
about geometric relations between system components like
LEDs, monitors and cameras. [20] presents a mathematical
model to estimate the optical and visual axes of the users’ eyes
from the center of the pupil and glint, considering single and
multiple cameras and light sources. Methods achieving high
accuracy and head pose robustness are reported in [5], [21],
[22], [23] which require multiple cameras in their setup. [22]
also uses a dynamic head compensation model for updating the
mapping function to track gaze under natural head movement.
Calibration-free gaze estimation techniques are proposed by
[24], [25] in which cameras, light sources and a spherical
model of the cornea are used. Recent developments in 3D
gaze tracking include usage of depth sensors along with RGB
cameras such as proposed in [26]. In this, 3D gaze coordinates
can be tracked in real time with a Kinect device, which
provides 3D coordinates of eye features while eye parameters
like eyeball and pupil center are derived from user calibration.
The Kinect sensor is used in [27] for gaze estimation using
free head motion along with the iris center localization method
and geometric constraints-based eyeball center estimation.

4) Appearance-Based Methods: Appearance based meth-
ods utilize cropped eye images of a subject gazing at known
locations to generate gaze point coordinates. The eye images
are then used as training data for various machine learning
models. For example, in [28], coordinates of eye contours,
iris size, location, and pupil positions are estimated using an
Active Appearance Model (AAM) and then used as input
to a support vector machine (SVM) for gaze estimation. In
[12], texture features are obtained using Local-Binary-Pattern
(LBP) and used with an SVM along with space coordinates
of the eyes for head pose free gaze tracking. A comparative
evaluation of different classification methods, such as SVM,
neural networks, and k-Nearest Neighbor (k-NN)s is presented
in [29] where Local Binary Patterns Histograms (LBPH) and
Principle Component Analysis (PCA) are used to extract eye
appearance features. The use of Haar features is reported
in [30], [31] for real time gaze tracking. In [32] a neural
network with a skin colour model to detect face and eye
regions is used. Head-pose tolerant tracking is achieved in [33]
using a neural network. Recently, appearance-based methods
implemented using deep learning (DL) and convolutional
neural network (CNN) approaches have gained momentum.
These are described in detail in section C.
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B. Gaze Estimation from Low Resolution Images

To facilitate gaze tracking in everyday settings, the use of
cheap, compact and easy-to-integrate webcams is commonly
preferred. Unfortunately, webcams offer low resolution im-
ages (typically 640x480 pixels) resulting in very poor gaze
estimation accuracy. Low resolution images have strong noise
effects [34], and distortions in the eye region contours and eye
features become indistinguishable under varying illumination
levels, user distance, and movements. Therefore, several ap-
proaches have been developed to achieve high gaze accuracy
from low quality images and are discussed in this subsection.

An early ANN approach was used to map gaze coordinates
to low quality cropped eye images in [33]. The ANN used back
propagation and 50 output units each for X and Y coordinate.
It was trained with 2000 image/gaze position pairs. A hybrid
approach is adopted in [35] in which the iris centres are
determined first using circular a Hough transform, followed by
refinement using a gradient-aware random sample consensus
(RANSAC) algorithm and ellipse fitting. Eye corners are
estimated using Gabor jets [36] and tracked using optical flow
with normalized cross-correlation. Finally, the point of gaze
(POG) is estimated from the iris center and eye corners using
regression. A similar method is proposed in [34], where the
problem arising due to the small size of cropped eye regions
from low resolution images is overcome using 2D bilinear
interpolation for reconstructing the eye image to a larger size
for accurate tracing of the corneal reflection vector.

In [37], multiple miniature low resolution cameras posi-
tioned around a head-mounted setup are used. The gaze-
mapping function is learned from multiple cameras using a
512 unit ANN, and trained on a large dataset of eye images.
In [38], the eyeball and its movement direction are detected
using a deformable angular integral search (DAISMI) method
followed by a Deformable template-based 2D gaze estimation
(DTBGE) algorithm used as a noise filter. [39] trains an
appearance model using Singular Value Decomposition (SVD)
and a set of eye region images expanded artificially by adding
positioning errors. Then a third order tensor is estimated from
the training images as the gaze direction and positioning
vectors of these images. The SVD is trained and tested by
extracting the gaze vector from the test images and comparing
with that obtained from the training images.

C. Eye Gaze Estimation Using CNN’s

Deep learning (DL) techniques have been successfully used
in challenging conditions such as those with variable illu-
mination, unconstrained backgrounds and free head motion.
For example, [40] describes a calibration-free real-time CNN-
based framework for gaze classification. Two CNNs, for the
left and right eyes, are then trained independently to classify
the gaze in seven directions. In [41], CNN-based gaze tracker
for Augmented and Virtual reality devices achieves foveated
rendering and gaze-contingent focus. The deep learning model
is built to be robust to variations like skin and eye colour,
illumination and occlusion. In [42], deep features are obtained
from eye images using multi-scale convolutions and pooling
for predicting gaze direction. This method uses minimized

cross-entropy loss, coupled with Random Forest regression as
a clustering algorithm. It classifies areas on a device screen
according to gaze locations, and operates under natural illu-
mination and head poses. [43] describes a novel, appearance-
based gaze estimation method in which a CNN utilizes the full
face image as input with spatial weights on the feature maps
to suppress or enhance information in different facial regions.
It achieves high accuracy and robust performance under varied
illumination and extreme head poses. [44] achieves free head
pose, 3D gaze tracking using two separate head pose and
eye movement models with two CNNs, connected via a gaze
transform layer. Finally, in [45] a CNN is built to learn the
mapping between 2D head angle, eye image and gaze angle
(output) using a small Lenet-inspired CNN. For testing, an
extensive database is built with more than 200,000 images
under variable illumination levels and eye appearances. This
database (called MPII Gaze) is also used in this work and its
further details are provided in the next section.

Several of the CNN-based works are specifically targeted
towards gaze tracking in consumer/handheld devices such as
[46], [47]. In [46], a CNN-based real time, calibration-free
gaze estimation algorithm is presented. It is trained using a
large and diverse dataset of eye images taken under variable
lighting, head pose, and backgrounds captured from users
through a smartphone app. Inputs to their CNN model include
eye and face images. The location of the faces in the images
are obtained through a face grid, which is used to infer
relative eye and head poses. [47] presents a calibration-free
method using Deep Belief Networks which classifiy gaze into
a grid of nine gaze locations under various head-poses and
viewing directions. In [48], a nine directional CNN-based gaze
classifier is developed for a screen typing application, robust
to false detections, blinks, and saccades (rapid, abrupt changes
in fixation).

An overview of selected deep learning methods for gaze
estimation can be seen in table I.

D. Related Work Utilizing the MPII Gaze Dataset

The MPII Gaze dataset[45] is large and challenging, con-
taining images collected under a wide range of realistic
scenarios, such as varied illumination levels, eye appearances
and head poses. Use of MPII gaze dataset for training and
testing gaze estimation algorithms can be found in their own
paper [45], as also in [43], [49], [57], [58]. [45], which
introduces the MPII Gaze dataset, uses a multimodal CNN
for gaze estimation and reports a cross dataset test accuracy
of 6 degrees. [43] uses full face (instead of eye only and multi-
region) images with a CNN and achieves a person independent
accuracy of 4.8 degrees on MPII Gaze while being robust to
illumination variations and extreme head poses. In [49], gaze
location over a block of screen area is tracked using a CNN,
and the cross-subject performance is tested with MPII Gaze
and that authors’ own dataset. On MPII Gaze, the classification
accuracy is poor (75.6%) compared to that on authors’ dataset
(92.5%). A Deep Regression Bayesian Network described in
[58] achieves an accuracy of 7.1 degrees when tested on this
dataset. In [59], [60], [61], the MPII Gaze dataset is used for
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TABLE I
SELECTED CNN MODELS FOR EYE GAZE ESTIMATION

Citation Dataset used Network model used Image
Resolu-
tion

Accuracy Special features

[41] CAVE and Own dataset
(cropped images of the
eye and their respective
gaze pixel coordinates)

LeNet (two convolutional layers and two
pooling layers followed by a fully con-
nected layer at the end). 21 classes for
CAVE , 1829 classes for captured dataset.

28x28 6.7 degrees tested on CAVE
as well as own collected
dataset

Near eye
tracking,
operating under
lighting changes
and occlusions

[43] MPII Gaze, UT Multiview AlexNet. five convolutional layers, two
fully connected layers. Additional linear re-
gression layer on top of last fully connected
layer.

448 x
448 (full
face)

4.8 degrees on MPII Gaze,
6 degrees on UT dataset.
Person-independent evalua-
tion

Tolerates various
illumination,
gaze direction,

[42] Own dataset with 107,681
images under different
lighting, head movement,
glasses.

Three convolutional layers with max- pool-
ing layer, one single max-pooling layer,
one hidden layer and one soft-max layer

40x70 5-7 degrees within dataset
evaluation, but training and
test set have different gaze
angles.

Works under nat-
ural light with
free head motion

[44] Own dataset 200-subjects
different head poses, eye-
ball movements, lighting
conditions, glasses, occlu-
sions, reflections.

AlexNet, BN-Inception network. Two
CNNs to model head pose and eyeball
motion. A gaze transform layer to
aggregate them into gaze prediction

62x62 4.3 degrees cross subject
evaluation

Allows free head
motion

[45] MPII Gaze, Eyediap, UT
Multiview

LeNet architecture. A linear regression
layer trained on top of fully connected
layer. Multimodal CNN model to use eye
image and head pose information

60x36 ∼6 degrees Cross Dataset
Evaluation

Variable
appearance,
illumination,
head pose

[46] Gaze Capture dataset AlexNet + SVR 80x80 2.58cm (within dataset eval-
uation)

Tolerant pose,
appearance, and
lighting

[49] Own dataset. 56 groups
of eye videos, 181440 eye
images from 22 subjects

3 convolutional layers followed by max-
pooling layers, 2 fully connected and a
soft-max layer for classification. 6 & 54
classes

40x72 6.375 deg, 69.3% Cross
dataset evaluation

—-

comparing synthetic datasets and facial models. [59] presents
a method for synthesizing a large set of variable eye region
images with a generative 3D eye region model. Then a gaze
estimation method using the k-Nearest-Neighbour algorithm)
is tested on the synthetic data and the MPII Gaze dataset to
achieve an accuracy of 9.95 and 9.58 degrees respectively.
Another method for synthetic, labelled photo-realistic eye
region image creation is described in [60] using head scan
geometry. The generated dataset, along with MPII gaze, is
used to test and compare the accuracy of a CNN based gaze
estimation method. In [61], a facial behaviour analysis tool
is developed that is capable of tracking gaze vectors using
a Conditional Local Neural Fields (CLNF) framework by
detecting eye region features like eyelids, irises and pupils.
The tool is tested on MPII Gaze to achieve 9.96 degrees
of accuracy in gaze estimation. In [62] a semi-supervised
learning method is developed for improving the realism of
simulated data and used to create refined training images for
gaze estimation using CNNs. The CNNs are then tested on the
MPII gaze dataset to achieve an error of 7.8 degrees. Apart
from the above, the MPII dataset has been used for training a
CNN for gaze estimation coupled with gaze target discovery in
[63] and a cascaded-regressor-based eye center detector [64].

III. IMAGE AND VIDEO DATASETS FOR LOW RESOLUTION
AND UNCONSTRAINED GAZE ESTIMATION

A survey of relevant publicly available gaze databases is
summarized in Table II. In this survey, only the databases built
for training and testing gaze estimation algorithms are listed,

while other gaze databases, e.g. for studying saliency models,
are not included as they are out of scope for this work.

IV. METHODS

The CNN-based gaze estimation methods in this work were
evaluated on NVIDIA 1080 TI GPUs using python 2.7 and
caffe 1.0 with accuracy and euclidean loss layers modified to
calculate angle difference in radians. Person-exclusive, leave-
one-out cross-validation was used in all experiments.

In eye gaze tracking literature it is common to use the
word “accuracy” and “error” interchangeably and this can
sometimes cause confusion to the reader. For this reason we
use the word “error” in any case where the meaning could be
unclear. All angles are reported in degrees. In this paper, error
was determined as the average euclidean distance between
the ground truth and predicted angles on the left-out, person-
exclusive test set.

Multiple deep neural networks were compared for eye gaze
estimation using deep neural networks. The publicly available
MPII Gaze dataset was used for all experiments except for the
first where the UT Multiview dataset is also used.

A. MPII Gaze Dataset Details

The MPII gaze dataset is a large collection of 213659 im-
ages captured under unconstrained conditions from 15 subjects
over several days. The images are collected under multiple
illumination conditions. Some of the subjects wear spectacles
and some do not. The images were captured at various gaze
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TABLE II
PUBLICLY AVAILABLE DATASETS FOR GAZE ESTIMATION

Name Per-
sons Items Conditions Resolution Purpose

MPII Gaze
[45] 15 213,659 images.

Software running on subjects’ laptops ask
participants to look at a random 20 on-screen

positions and confirm
unknown Appearance-based gaze estimation

in the wild.

UT
Multiview

[50]
50 64000 eye

images
160 gaze directions per person were acquired

using 8 cameras (views)

SXGA
resolution

(1280x1024)

Training and test data for
appearance-based gaze estimation

methods.

EYEDIAP
[51] 16 94 sessions

Diversity of participants, head poses, gaze
targets and sensing conditions. Screen or 3D
objects. Data collection with Kinect for RGB

and depth video streams

640x480 at
30 fps

Training and evaluation of gaze
estimation approaches with
robustness to pose, person.

Gaze Capture
[46] 1474 2445504 images

Data captured with iphone/ipad using app.
Large variation in pose, appearance, lighting.

Variation in relative distance and orientation of
the mobile device

unknown

Training CNNs for high accuracy
calibration-free eye tracking on
handheld devices under variable

conditions.

TabletGaze
[52] 51 100000 images

Video sequences recorded with tablet
front-facing camera while subjects look at a

dot on tablet screen. Unrestricted subject
motion, each subject performed 4 body

postures: standing, sitting, slouching, and lying.

1280x720
Mobile gaze dataset for studying

unconstrained mobile gaze
estimation

Weiden-
bacher
[53]

20 2220 images

Manual landmarks on pupils, eye corners, nose
tip, mouth corners. Horizontal head rotations (0

to 90 in steps of 10 ), vertical head poses 0,
30, and 60 azimuth (-20, +20) elevation. For

each head pose, nine different gaze conditions

1600x1200
Evaluating computational methods

for head pose and eye gaze
estimation

McMurrough
[54] 20 120 sessions

Videos recorded eye motion as subjects look
at, or follow a set of predefined points on a

computer screen. Head position in 3D captured
using a Vicon Motion Tracking System

768x480
pixels at a
frame rate
of 29.97

Hz

To be used as a benchmark for
Point of Gaze (PoG) detection

algorithms

OMEG [55] 50 40000 images
Eye images captured under multiple head

poses, three fixed poses, 0 and 30 degree , and
a free pose style.

1280 x
1024

Evaluating and comparing gaze
tracking algorithms

HPEG [56] 10 20 videos
Subject faces camera frontally, free to move,
background covers a big part of the image,

with intense human action.

1280x960
pixels, 30

fps

Head pose and gaze estimation
algorithm testing

angles, recorded by software running on the participant’s
laptops. In each session, the subjects were asked to look at
random sequences of 20 onscreen positions and to confirm
their attentiveness, the subjects were asked to press the space
bar once the onscreen target was disappearing.

The dataset contains eye and head features and target (gaze
angle) values for every participant. To use MPII Gaze, the
authors suggest mapping their reported vector to angles using
a Rodrigious transformation, and this has been done for all
reported experiments.

V. EXPERIMENTS AND RESULTS

In this section, multiple experiments are described to pro-
vide insight on 4 primary research questions. These are tested
on multiple CNN architectures and are discussed in this
section. One of the first research goals was to achieve state of
the art test error on a network that could perform inference
within 3-15 ms on a typical single proprietary low power
consumer embedded device.

The specific research questions are:

1) How does an architecture that uses both eyes compare
to one that uses one eye in terms of accuracy?

2) How does simulated camera distance impact eye gaze
accuracy for the proposed model?

3) Can augmentation be used to reduce any negative im-
pacts?

4) Can the proposed hardware-friendly architecture per-
form with sufficient accuracy and speed?

First, the intra-dataset, person-exclusive experiments from [45]
were duplicated. The same procedure to estimate accuracy
was used except the altered accuracy layers were modified
to eliminate NaNs by replacing undefined values of the arc
cosine function with the largest or smallest valid values as
appropriate.

A. Approach 1: Analysis of Eye Flipping

In [45], one network is used for both eyes and one of the
eyes is flipped so that the gaze angle is roughly correct. An
experiment was designed to see if this flipping had an impact
on model accuracy. Six experiments were performed using the
UT and MPII-Gaze datasets to see if training on both eyes or
just one eye impacted accuracy. By doing experiments with
combined and non combined datasets, it was also possible
to determine if they had similar distributions, and thus, if
combining the two would be helpful for future experiments.

As shown in table III, the method of individually classifying
eye images and simply adjusting the right eye and angles as
used in [45] is a limiting factor in accuracy for that method. In
both datasets, the performance was increased exclusively using
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TABLE III
RESULTS OF APPROACH 1

Training set Error
MPII Left eye only 5.9 degrees
MPII+UT Left eye only 5.6 degrees
MPII Both eyes 7.4 degrees
MPII+UT Both eyes 6.5 degrees
MPII Right eye only 5.3 degrees
MPII+UT Right eye only 6.1 degrees

left eyes or right eyes. This suggests that simply flipping the
eye as suggested by [45] may be a source of error in their
model.

These results also indicated that the distribution of MPII
Gaze and UT-Multiview are sufficiently different that combin-
ing the two for training gives no or very little improvement.
Because of this, it was decided to use only MPII Gaze for the
remaining experiments in this section as UT-Multiview had no
significant influence on error.

B. A New Approach: Dual Eye Channels

Given the problems identified in the previous subsection
with flipping one of the eyes, and not wanting to use two
different networks for reasons of efficiency, a new approach
involving using both the left and right eyes in separate input
channels was investigated. Specifically, the left eye and right
eye images are passed to the network in channels 0 and 1
respectively, and the gaze and pose information are averaged
between the left and right eye images to create a single gaze
and pose vector. Due to the results in the previous section,
which indicated that data from UT did not significantly impact
the results, only the MPII-Gaze dataset was used.

This modified, two channel architecture resulted in a sig-
nificant increase in accuracy, averaging 4.63 degrees of error
between the target and predicted values on unseen individuals.
A diagram of this network can be seen in Figure 1.

Fig. 1. Diagram of hardware CNN for initial eye gaze estimation tasks,
heavily based on network from [45]

C. Can We Reduce the Number of Parameters?

Deep neural networks can often be made more efficient by
reducing the number of parameters but this can sometimes
come at the cost of accuracy. To see if reducing the number
of parameters was possible without harming accuracy, an

TABLE IV
RESULT OF DISTANCE SIMULATION EXPERIMENTS

Resolution Error
60 x 36 4.63 degrees
52 x 31 9.90 degrees
26 x 16 10.10 degrees

experiment was performed to halve the size of all output
parameters. This experiment was not allowed to run for the
full duration because the exact angle accuracy did not matter,
only evidence that the network complexity could be reduced
to a point where it would be small enough if necessary. This
resulted in an average error of 4.980% on an unseen individual
from the MPII Gaze dataset and indicates that reducing the
number of parameters had little impact on accuracy.

D. Multi Resolution Experiments

Eye gaze systems in consumer devices must be able to
maintain accuracy at a large range of distances. Although
MPII Gaze has some variability in distance from the camera,
the distances are not realistic for the conditions expected in,
for example, a driver monitoring system or a distant cell
phone camera. Specifically, it was desired to accommodate
realistic distances between the camera and the subject in
situations that would be typical in commercial eye trackers
that utilize low cost, low resolution cameras. To simulate the
loss of information caused by distance, down-sampling was
performed on the eye images in MPII-Gaze as follows:

• Input image 60 x 36 ->Downscale to 52 x 31 ->Upscale
to 60 x 36 ->CNN Eye gaze angle

• Item Input image 60 x 36 ->Downscale to 26 x 16 -
>Upscale to 60 x 36 ->CNN Eye gaze angle.

As can be seen in table IV, the network learned a narrow
range of distances, and performance deteriorates when the
subject is further from the camera than those in the training
set. As a sanity check, an experiment was done to see if
the Downscaling algorithm was at fault for the poor results,
so in addition to nearest, we also tried bicubic, linear, and
LANCZOS from using OpenCV. The experiment showed that
the downscaling algorithm used had no influence on the
results.

This demonstrates that the model is sensitive to changes in
distance. In the next section, an experiment is performed to
see if data augmentation can be used to improve upon this.

E. Impact of Random Resizing as Augmentation

Data augmentation has been shown in many studies to have
a large impact on model performance.

To further improve accuracy, the dataset was augmented
with multiple randomly chosen resolutions to match the full
range of desired distances. To help reduce the chance that the
network would learn the specific interpolation method used,
Nearest is used in the training set, but Lanczos filtering is used
in the testing set.

• Original resolution: 4.918 degrees error
• 60 x 36 ->52 x 31 ->60 x 36 : 4.94 degrees error
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TABLE V
ERROR OF PROPOSED MODEL FOR VARIOUS RESOLUTIONS (DEGREES)

Resolutions 36 x 60 31 x 52 26 x 16
Best 3.650 4.1690 4.240
Second best 4.100 4.324 4.366
Benchmark 4.917 4.940 4.970

TABLE VI
COMPARISON OF PROPOSED MODEL WITH OTHER PUBLISHED WORKS ON

THE MPII-GAZE DATABASE

Citation Error (degrees)
[61] 9.96
[59] 9.58
[62] 7.8
[58] 7.1
[45] 6
[43] 4.8
Proposed 3.64

• 60 x 36 ->26 x 16 ->60 x 36: 4.97 degrees error
These results indicate that augmenting the images with

distances that are likely to be encountered in real world usage
situations is an effective way to increase accuracy and succeeds
in achieving some invariance to subject distance.

F. A Quest for Hardware Efficiency and Even Better Accuracy

It was shown in [65] that two stacked layers of 3x3 convo-
lutions has the same receptive field as a single 5x5 layer, with
fewer multiplications. Due to this, one of the requirements
was that kernel sizes be 3x3, this required retraining and
slight redesign of the network. Several experiments involving
architectures with stacked 3x3 kernels were performed using
different parameters. The best two architectures were further
evaluated, and the best models from each of them were chosen
and evaluated on multiple resolutions as shown in table V. A
diagram of the final architecture used can be seen in figure 2,
and a comparison with other published works can be seen in
table VI.

Fig. 2. Diagram of hardware optimized CNN for eye gaze estimation
corresponding to the accuracies in table V.

VI. CONCLUSION

Our results show that using information from both eyes in
the neural network can increase accuracy. This is demonstrated
in section V, where adding additional eye information from
the opposite eye enabled improved results over individual
eyes, helping the network make sense of low quality images
with ambiguous gaze. As expected, in all cases, the deeper
network had the best performance. This research demonstrated
the sensitivity of such models to variations in distance and
how data augmentation can be used to overcome this. Most
importantly, a new compact hardware-friendly architecture
designed for use in small consumer electronics has been
introduced and evaluated on the eye gaze task.

When evaluated on MPII Gaze, the proposed model per-
forms favorably (see table VI even when compared with much
larger networks in the literature.

Since augmentation resulted in a significant improvement in
accuracy, it may be fruitful to try other types of augmentation
such as Generative Adversarial Networks (GANS) with land-
marks, [66] and Smart Augmentation (SA) [67] in future work.
This will either require modifying such methods to work on
regression problems or translating the eye gaze problem into
a classification task for the purpose of generating augmented
data[68] and then back to a regression task. Additionally, there
are plans to investigate whether temporal information[69] can
be used to further increase the accuracy without sacrificing
the need for performance as it has been shown to increase
performance in DMS systems.
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Appendix E

Eye Tracking in Augmented Spaces: a
Deep Learning Approach



Abstract—The use of deep learning for estimating eye gaze in 

augmented spaces is investigated in this work. There are two 

primary ways of interacting with augmented spaces. The first 

involves the use of AR/VR systems; the second involves devices 

that respond to the user’s gaze directly. This domain can overlap 

with AR/VR environments but is not exclusive to them and 

contains its own unique set of issues. Deep learning methods for 

eye tracking that are capable of performing with minimal power 

consumption are investigated for both problems.  

 

Keywords: Augmented reality, Virtual reality, gaze estimation, 

deep learning, convolutional neural networks, smart spaces 

I. INTRODUCTION 

Eye gaze estimation is one of the most challenging frontiers of 

deep learning (DL) research in vision tasks and one of the few 

areas where conventional approaches are still dominant [1]. 

Recently, deep learning has been able to surpass conventional 

approaches in difficult gaze estimation tasks such as in DMS 

systems or handheld devices [2][3]. The strength of DL lies in 

inferring gaze, or performing subtasks in more complex gaze 

detection systems, even with poor image quality. Further, with 

novel data augmentation techniques as [4], DL has prospects to 

achieve good classification abilities using smaller network sizes 

and hardware-friendly architectures, which make it attractive 

for use in consumer electronic devices. 

Augmented spaces are defined as any physical space with 

additional sensory or display elements that augment the 

physical function/utility/purpose of that space. These are 

achieved through the use of sensors, actuators, computing and 

networking devices incorporated within the space that enable 

recognition of humans, their activities and gestures in real time 

[5][6]. Examples may include a television that reduces power 

to screen when no one is looking at it, automatic room 

brightness adaptation based on human presence or motion 

sensor based security systems [7] .  

With respect to eye tracking in augmented spaces, there are the 

two types of configurations to consider when designing gaze 

based interactions. The first type involves smart glasses or head 

mounted AR/VR systems. In these, the gaze tracking task is 

equivalent to that in conventional AR/VR applications where 

high quality close-up images of the eye are used and the subject 

interacts with nearby objects at least partly through the AR/VR 

system. The second scenario involves individual smart devices 

and appliances each with their own camera systems that can 

respond to gaze. If no one is watching the TV or digital readout, 

why should it operate at full power? Useful information and 

controls can be displayed only when someone is actively paying 

attention to them. These systems typically need to track the eye 

movements of everyone in their vicinity, in real time and with 

varying lighting conditions and user distances. Gaming is 

another domain which benefit from gaze information[8]. For 

example, if a player is momentarily distracted and not looking 

at the screen, it would be a bad time to introduce a crucial plot 

element or battle. Gaze information can also be used to provide 

an element of surprise in dynamic scenes by spawning enemy 

NPC (Non player characters) away from the players current 

gaze. However, the distance between the eye tracker camera 

and the player, and player head movements are significant 

factors determining accurate gaze tracking in gaming 

applications. AR/VR gaming systems typically have close eye 

facing cameras and are able to capture detailed eye images, 

whereas gaze tracking for games on remote game consoles, cell 

phones and other devices typically have cameras at a distance 

and varying user head movements, making eye tracking 

challenging for them. 

In this paper we examine the use of deep learning for gaze 

tracking in AR/VR as well as remote setups for augmented 

environments. In the first case, DL is still behind conventional 

methods which can achieve accuracies as high as 0.5 degrees 

[9]. In the second case however, DL is emerging as the most 

feasible solution due to its ability to make sense of eye images 

that are too low quality for conventional approaches[10]. 

The paper is organized as follows: in section II.A, eye gaze 

estimation in augmented and virtual reality (AR & VR 

respectively) applications is explained. Gaze information has a 

significant impact in AR/VR environments [11][12], where 

gaze directions and gaze based functions are used to make user 

experiences more immersive, natural and effortless. In section 

II B gaze estimation in pure augmented spaces, without the use 

of AR/VR systems is explained. These include the tracking and 

application of gaze information for domotic controls, 

multimedia communications or assisted living systems  [13].  

The use of deep learning for gaze estimation in augmented 

spaces is primarily an unexplored area of research and 

dedicated network models or datasets for gaze estimation in 

such environments are not publicly available. Therefore in 

Section III, we describe our methodologies of using 

convolutional neural networks (CNN) and two different gaze 

datasets- one captured using a head-mounted eye tracker and 

another with normal remote setup to test our algorithm 

performance. The description of the CNN model, two datasets 

and proposed approaches pertaining to the two types of eye gaze 

estimation methods for augmented spaces are presented, 

followed by discussions and conclusion in Section IV. 
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II. EYE TRACKING IN AUGMENTED SPACES: PROSPECTS & 

CHALLENGES 

A. Eye tracking in AR/VR applications 

The significance of tracking user eyes in an AR/VR 

environment has been recently acknowledged in literature. In 

Augmented Reality applications, gaze information is fused with 

data from a scene camera to estimate the point of gaze of a user, 

for applications such as reading and document retrieval as 

described in [9]. In this work, eye tracking is used to identify 

the part of a document the user is reading and display relevant 

information on the see-through head mounted display  

(HMD). Gaze information, coupled with other eye movement  

features like dwell time and blinks can be used for object 

selection [12] and zooming and capturing snapshots in AR 

devices [14]. Gaze has also been used for wearable context 

aware messaging service in [15] and for attention guidance 

using peripheral vision in AR headsets in [16]. 

In Virtual reality (VR) research, eye movements can be used   

for interaction such as in [17]. [18] presents an immersive 3D 

VR interface with gaze based interactions such as menu 

selection and gaze directed typing of mails using a virtual 

keyboard. Realistic rendering of characters and social 

interaction between a user and virtual characters may be 

established by combining dynamic facial appearances and gaze 

directions as described in [19]. Other purposes of using gaze in 

VR include achieving wide view panoramas, foveated 

rendering and natural exploration of virtual environment [20]. 

 

B. Eye gaze tracking in non-AR/VR augmented spaces 

Intelligent environmental controls using eye gestures fall into this 

category. In the consumer device domain, there has been 

developments of gaze controlled TV [21] which senses gaze to 

enable screen brightness variations, menu selection and 

understanding user program preferences. For assisted living 

applications, gaze based control of wheelchairs[22] and home 

appliances have been proposed[23], and also eye tracking as 

diagnostic technology for patients with disabilities[24].  
 

TABLE I. SUMMARY OF SOME RECENT WORKS USING EYE GAZE 
IN AUGMENTED SPACES 

C. Challenges of eye tracking in augmented spaces 

Eye tracking in AR/VR headsets may face significant and 

unique challenges as described in [25]. These include motion 

and depth of field blur, latency, rapid calibration drifts while 

following smooth pursuit eye movements and loss in tracking 

due to varying orientation of the eye camera with respect to the 

eye. Complicated system design, bulky processing units and 

high power consumption may also limit the usability of these 

devices in the consumer electronics domain.  

Major problems in using remote gaze trackers for estimating 

gaze as an input modality arise from the issue of Midas touch 

[26], difficulty in handling complex tasks by gaze gestures and 

expensive hardware. 

III. DEEP LEARNING FOR GAZE ESTIMATION IN AUGMENTED 

SPACES. 

A. Concept and approach 

Deep learning has been successful in achieving good accuracy 

in remote gaze estimation problems [27]. However, 

implementing DL based eye tracking in AR/VR is difficult due 

to lack of publicly available datasets built for gaze tracking in 

AR/VR environments. In this work, gaze estimation for both 

the eye tracking scenarios in an augmented space is approached. 

For the AR/VR problem, we start by training a DL model with 

eye images captured using a head-mounted eye tracker. We 

then progressively introduce complex variations in the images 

typical to those faced by eye trackers in AR/VR environments. 

For the non-AR/VR eye tracking condition, we use a low 

resolution gaze dataset, which typically has the characteristics 

of images captured by remote eye trackers. 

 

B. Eye datasets used  

Since augmented spaces can be experienced through either 

AR/VR or through smart devices that are farther from the users 

eyes, it is necessary to use separate datasets to train and test the 

two DL methods. In this section we describe two gaze datasets:  

a high resolution dataset (for AR/VR) and low resolution 

datasets for gaze tracking on smart devices having their own 

cameras.   

1) High resolution datasets for AR/VR 

There is a dearth of public datasets from which deep learning 

systems can be trained (or evaluated) for eye gaze estimation 

utilizing head mounted eye-facing cameras.  The only suitable 

publically available dataset found is the one developed by 

McMurrough et al called the “Point of Gaze (PoG) Eye 

Tracking Dataset”[28]. Unfortunately, this dataset only has 

images of the right eye and therefore may not be used for AR 

applications where knowing what a person is looking at in 3D 

space involves calculating the intersection of two gaze vectors. 

This information is still useful because there are typically only 

a few objects that collide with a given gaze vector that are 

within a person’s field of view and these can all be assumed to 

be the gaze target in an augmented or virtual space. Despite this 

limitation, the PoG Eye Tracking Dataset is the most suitable 

publically available dataset captured with a head-mounted eye 

tracker and therefore used in this paper.  

To create the dataset, twenty participants (18 men, two 

women) were asked to track target points on a video display 

while wearing an Applied Science Laboratories Mobile Eye™ 

infrared monocular recording device. The participants’ right 

eye is centered in the video frame and is annotated for specific 

Citation Type Setup Applications Gaze 

accuracy 

[9] AR/VR HMD and eye 
tracker 

Assisting 
reading activity 

0.5 
degrees 

[14] AR/VR HMD with eye 

tracker and lenses 

Eye directed 

zooming 

0.5 

degrees 

[17] AR/VR HMD with eye 

tracker 

Gaze based object 

selection 

0.6 

degrees 

[18] AR/VR HMD with head and 

eye trackers 

Gaze based 

multimedia use  

1 degree 

[19] AR/VR 3D Stereo Rig with 
remote eye tracker 

Gaze-aware facial              
re-enactment in VR 

1.5 
degrees 

[21] Non-AR/VR Remote tracker with 

camera, LED, lens 

 TV display input 

and control 

1.32 

degrees 

[22] Non-AR/VR Remote tracker Wheelchair motion 

control with gaze 

0.5 

degrees 

[23] Non-AR/VR Camera Appliances detect 

and respond to gaze 
  

-- 



 
 

target points.  The dataset is composed of 20 subjects with ages 

ranging from 21 to 54. The dataset is annotated with head gaze 

and eye pose information. Eye images are recorded with a 

resolution of 768 X 480 pixels at 29.97 Hz frame rate.  

 

2) Low resolution datasets for smart devices. 

   Datasets for low resolution images are more common, for 

example the MPII-Gaze dataset[29], the UT Multiview 

dataset[30], and the Gaze Capture[3] dataset are all suitable for 

training appearance based Deep neural networks. That said, all 

of these methods come from different distributions and 

sometimes have incompatible annotations.  

For experiments with non-AR/VR augmented spaces where 

the camera may be far from the user we use the MPII-Gaze 

dataset[29]. MPII-Gaze was captured over several days and 

includes annotations for 15 subjects in unconstrained situations 

in multiple illumination conditions and gaze angles. A 

Rodrigues transformation is used to map gaze vectors to angles.   

 

 
Fig 1.  Example image from the McMurrough dataset [28], showing 

subject’s right eye. This is typical of AR/VR systems that utilize eye 

facing cameras to estimate gaze.  

 
Fig 2.  Example image from the MPII-Gaze dataset [29], showing 

subject’s right eye typical of gaze tracking systems that use low quality 

cameras that are further from the subject.  

C. Deep Learning model 

Deep learning models such as those proposed by [31] have 

suggested architectures that work well for low resolution eye 

gaze estimation systems but these approaches may not be as 

suitable for high quality eye images as traditional approaches. 

In this paper, the Deep learning approach is developed for high 

resolution, close up images of the human eye and compared 

with one or more traditional approaches.  

The inputs to the convolutional neural networks are eye frames 

from the PoG Eye Tracking Dataset scaled down to 157X96.  

Two architectures are developed and tested. The first consist of 

5 (3x3) convolutional layers with RELU activation functions, 

followed by one or more fully connected layers and are trained 

to perform a regression task, predicting gaze targets given a 

head pose and eye image as inputs. Next a Resnet 18-like [32] 

architecture are trained and compared with the previous model.  

Lastly, the two above models are compared with a traditional 

approach, thus providing information about how an 

appearance-based end-to-end deep learning approach compares 

with the best alternative. 

 
TABLE II. SUMMARY OF EYE TRACKING METHODS USING LOW 

RESOLUTION IMAGES 

Citation Input 

resolution/ 
eye crop size  

Details of 

method used  

Accuracy Toleranc

e 

[33] 15x40 ANN based, 

trained with 2000 
images 

1.7 deg --- 

[10] 640 × 480 

(30 fps 

video) 

Iris center 

detection, ellipse 

fitting, eye 

corner detection 

1.33 deg moderate 

head 

movemen

ts 

[34] 40x30 Image 

reconstruction 
using bilinear 

interpolation, 

Hough transform 

1.89 deg --- 

[35] 640×480 (16 
fps video) 

Fourier 
descriptors of  

eye shape, 

classification  
with SVM 

90% 
accuracy 

Head 
motion 

lighting 

variations 

[36] 5 × 5 Images from 

multiple 
miniature low 

resolution eye 

cameras with 
ANN 

2.25 deg Head 

motion 

 

D. Deep learning for Eye tracking non-AR/VR applications 

Non AR/VR approaches to eye gaze estimation require 

solutions that can make use of low quality eye images taken at 

a distance (figure 2) from the user. Traditional gaze estimation 

methods are unable to perform reliably in this task for 

unconstrained situations (i.e., outside of lab settings or carefully 

measured environments). Because traditional methods fail in 

such situations, approaches based on Deep Learning have 

recently become popular. These methods use convolutional 

neural networks, which are can generally be expected to at the 

level of a human expert on vision tasks when given enough 

samples.  

In augmented spaces, such networks have the additional 

requirement of real time execution which involves a tradeoff 

between network complexity and power consumption.  

Table II contains examples of networks that have been used for 

this task. Also it gives an idea about the existing methods that 

work on low resolution images and their typical accuracy. 



 
 

 

 
Fig. 3 Architecture of one proposed network for [18] 

IV. EXPERIMENTS & METHODOLOGY 

A. Data pre-processing 

In this paper, the major focus is the presentation of experiments 

and results from deep learning based gaze estimation using the 

“near eye” gaze and eye image data provided by the 

McMurrough et al dataset[28], that is typical of AR/VR devices 

as described above. The other case of remote gaze estimation 

using deep learning that uses the MPII Gaze dataset has been 

discussed in detail in other other work[31] and will be presented 

during the conference.  

The McMurrough (or PoG) dataset provides eye images (video 

frames), gaze target coordinates as well as head pose 

information for twenty users which are used as inputs in the 

experiments for this work. In first half of the dataset, the users 

are asked to keep their head still while in the other, free head 

movement is allowed. Based on this, there are several 

experiments done in this work, some of which are described 

below and the others will be described and compared in the 

camera ready version as this is an ongoing work. For the first 

experiments, data of users with limited head movement is used 

and in the next phase of experiments, data having free user head 

movements will be used and results will be compared.   

 

B. Experiment details 

A series of experiments were conducted to determine 

appearance based convolutional neural network architectures 

that show the most promise for future exploration. In this 

section a summary of these experiments is provided. All 

experiments were trained to perform a regression task, mapping 

the pixels from the camera facing eye crops to the x and y 

coordinates that were being gazed upon. Eye crops were 

reduced to 1/4th their original size. All Xception[37] 

experiments used the Adam optimizer whereas all the other 

experiments used Stochastic Gradient Descent(SGD). This was 

because the Xception models failed to converge with SGD 

while the other networks suffered poor convergence with 

Adam. Images from the first 17 people in the dataset were used 

for training while the remaining were reserved as a test set.  To 

the best of our knowledge this is the first work that utilized the 

Xception model for AR/VR eye gaze situations.  

 It may be noted that in this work, all input gaze locations 

values are uniformly scaled between 0 and 1 based on the 

maximum value of x or y in the labels, Therefore, to get the 

average distance in pixel space for the outputs x or y, the 

respective network output values must be multiplied by 1366.0 

which is the maximum label value in the dataset. The accuracy 

in pixels from the method can therefore be stated as:     

   

x (or y pixel deviation) = output x (or y)*1366     (1) 

 

As mentioned in the paper describing the PoG dataset[28], the 

monitor where gaze of participants was tracked has a 32 inch 

screen and the estimated dot pitch is 0.5mm. Hence the gaze 

tracking accuracy results from our algorithm using this dataset 

may be estimated as the deviation from the target location in 

millimeters (mm) as: 

 

x (or y) deviation in mm = output x(or y) * 1366 *0.5 (2) 

 

C. Experiment 1 

In this experiment a network utilizing 5x5 kernels and RELU 

activation functions with 3 convolutional layers, separated by 

max pooling layers, followed by a fully connected RELU layer 

and dropout was used. The first convolutional layer had 15 

features, the second convolutional layer had 30 features, and the 

final convolutional layer had 10. This network was trained for 

10 epochs. 
 

D. Experiment 2 

In this experiment a model utilizing a decreasing number of 

units in each layer was used. The first 3 layers use 128 3x3 

convolution followed by RELU activation functions. These 3 

layers are followed by a dropout layer and a max pooling layer. 

The next block of layers consists of 2 convolutional layers with 

64 units, using 3x3 kernels and RELU activation functions. This 

is again followed by the dropout and max pooling technique 

before the final block of convolutional layers. This final block 

of 2 convolutional layers has 32 3x3 kernels with RELU. 

Finally, a max pooling layer which leads to a fully connected 

RELU layer with 1024 units before being passed to a final linear 

layer with 2 outputs (x and y). This network was trained for 10 

epochs.  

E. Experiment 3 

A very small network was developed with a similar architecture 

to the first experiment. Eight 7x7 convolutional kernels were in 

the first layer, followed by RELU and max pooling layers. The 

next convolutional layer had 16 units with 5x5 convolutional 

kernels, RELU activations and another max pooling layer. The 

final convolutional layer had eight 5x5 convolutional units with 

RELU and max pooling.  Finally, a fully connected RELU layer 

and a dropout layer is used before the final linear layer with 2 

outputs (x and y). This network was trained for 10 epochs. 



 
 

F. Xception experiments 

This subsection details the experiments performed with the 

Xception network. For these experiments the last two layers 

were removed and replaced by a fully connected RELU layer 

with 1024 units followed by a linear layer of 2 units (x,y). Due 

to the complexity and size of this architecture it is not 

reproduced in this paper. Instead we refer readers to the relevant 

literature[37]. In these experiments the modified Xception 

network was trained for 10,20,40, 60  and 100 epochs with a 

learning rate of 0.0001 with the Adam Optimizer in Keras[38].  

V. RESULTS  

The results from the experiments described above are presented 

in the subsections below. The results are mentioned both as 

direct outputs from the network as well as in units of centimeter, 

obtained using the calculations in Section IV. B. 

 

A. Results from experiment 1  

Surprisingly, experiment 1, despite being the second smallest 

network performed competitively with Xception at 10 epochs 

of training. This experiment resulted in a x axis error 

of 0.195970613497 (or 13.3 cm) and an y axis error of 

0.124699373411 (8.5cm). 

 

B. Results from experiment 2 

Despite being significantly larger, this network underperformed 

the one from Experiment 1, with an average x error of 

0.231945403853 (15.8 cm) and average y error of 

0.12801038554 (8.7 cm). Interestingly, while the x error was 

less than that from Experiment 1, the y error is very similar  

 

C. Results from experiment 3  

This experiment resulted in an average error of 

0.318149438847 (21 cm) on x and  0.180763828216 on the y 

axis (12.3 cm). This small network helps to establish a lower 

bound on the number of layers and units for reasonable results 

indicating that attempting to train networks smaller than this on 

this dataset is not likely to succeed. Still the similarity of this 

network to the one in Experiment 1 mean that only a few more 

neurons are sufficient to greatly increase the accuracy.  

 

D. Results of Xception experiments 

The first Xception experiment followed the pattern from the 

previous experiments with just 10 epochs and a learning rate of 

0.0001, resulting in an x error of 0.280041239485 (19 cm) and 

a y error of 0.108832461737 (7.4 cm) . Increasing this to 20 

epochs resulted in 0.196193765786 (13.4 cm) error on x and 

0.0976574753508 (6.6 cm) error on y. Running an additional 

40 epochs with a reduced learning rate (0.00001) did not show 

improvement but instead resulted in an x axis error of 

0.223783574125 (15 cm) and an y axis error of 

0.114304279187 (7.8 cm). 

Finally, the second best results were obtained after 60 epochs at 

a 0.0001 learning rate. These results were: 0.135601494699 

(9.2 cm) on x and 0.0618490625694 (4.2 cm) on y. The best 

results were from using 100 epochs with an average x error of 

0.0935291282692 (6.3 cm) and average y error of 

0.0466684513451 (3.1 cm). 

VI. SUMMARY & DISCUSSIONS 

It is noticed that in all experiments done with CNN models and 

the PoG gaze dataset, the error on the y direction is lower than 

on the x, although we do not currently have an explanation for 

this. It may result from the difference in the monitor’s (where 

the user gaze was captured during collection of the PoG dataset) 

horizontal and vertical resolution but this is not sufficient to 

explain the accuracy differences between horizontal and 

vertical predations. 

In this dataset, roughly half of participants wear glasses so it 

remains a matter of investigation as to if this factor has any 

impact on the result. 

One consideration when comparing or evaluating these results 

is that the average accuracy includes frames where eyes are not 

open. This is a deliberate choice, as CNNs may be capable of 

estimating gaze of even closed eyes therefore comparing these 

results with those that disregard closed or partly open eyes 

would be misleading. An expanded CNN may utilize temporal 

information to increase the accuracy of these results as in [39].  

This research is ongoing and currently more experiments on 

the near eye dataset are being implemented. Further results will 

be presented partly in the camera ready version of this paper 

and full details during the conference. These include studying 

the impact of head pose on eye tracking accuracy and other 

variable conditions like motion and camera defocus blur, 

extreme eye poses due to camera position drift and results on 

smooth pursuit movements which are commonly faced by eye 

tracking algorithms in AR/VR systems. The results for CNN 

based remote eye tracking using data from MPIIGaze dataset 

are promising and will be presented during the conference. 

VII.  CONCLUSION 

This paper evaluates the use of deep neural networks for end 

to end mapping of eye images to gaze coordinates with 

applications in augmented spaces. The eye images are sourced 

from two small low cost eye facing cameras: one for the left and 

one for right eye in the case of AR/VR type systems.  

For the case of gaze tracking in augmented spaces that do not 

involve AR/VR, images from one or more cameras at a greater 

distance are used as input.  

As deep learning begins to surpass traditional techniques in 

many eye gaze tasks, it is of interest to investigate its’ potential 

for gaze estimation on AR/VR setups.  

In future work, problems arising from the lack of suitable 

datasets for AR/VR systems are addressed by introducing 

artificial variations into an existing gaze dataset. However, 

since such augmentations may fail to capture the true 

distribution of the data, additional real data from an AR/VR 

setup may be necessary to learn further details about challenges 

of eye tracking in AR/VR environments. As mentioned in 

section III.A, there are currently no suitable public datasets that 

utilize two head-mounted eye-facing cameras of left and right 

eyes, and therefore a future work may involve creating such a 

dataset specifically built to implement deep learning models for 

augmented spaces. This problem does not exist however, for 

low quality images taken at a distance which makes training 

deep learning systems in their use easier.  
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1 Introduction
Computing pixel depth values provides a basis for under-
standing the three-dimensional (3-D) geometrical structure
of images. Having the depth and 3-D information of a
scene enables users to infer and understand its semantics
and geometric structure as well as enabling many applica-
tions in computer vision such as autonomous navigation,1

3-D geographic information systems,2 object detection and
tracking,3 medical imaging,4 advanced graphical applica-
tions,5 3-D holography,6 3-D television,7 multiview stereo-
scopic video compression,8 disparity-based segmentation,9

and human detection10/action recognition.11,12

As has been presented in the recent research,13 using
stereo images provides an accurate depth due to the advan-
tage of having local correspondences; however, the process-
ing time of these methods is still an open issue.

To solve this problem, it has been suggested to use single
images to compute the depth values but extracting depth
from monocular images requires extracting a large number
of cues from the global and local information in the
image. Using a single camera is more convenient in indus-
trial applications. Stereo cameras require detailed calibration
and many industrial use cases already employ single cam-
eras, e.g., security monitoring, automotive and consumer
vision systems, and camera infrastructure for traffic and
pedestrian management in smart cities. These and other
smart-vision applications can greatly benefit from accurate

monocular depth analysis. This challenge has been studied
for a decade and is still an open research problem.

Recently, the idea of using neural networks (NN) to solve
this problem has attracted attention. In this paper, we tackle
this problem by employing a deep neural network (DNN)
equipped with semantic pixelwise segmentation utilizing
our recently published disparity postprocessing method.

This paper also introduces the use of semiparallel deep
neural networks (SPDNN). An SPDNN is a semiparallel net-
work topology developed using a graph theory optimization
of a set of independently optimized convolutional neural
networks (CNNs), each targeted at a specific aspect of the
more general classification problem. In Refs. 14 and 15, the
effect of an SPDNN approach on increasing convergence and
improving model generalization is discussed. For the depth
from monocular vision problem a fully connected topology,
optimized for fine features, is combined with a series of
max-pooled topologies (2 × 2, 4 × 4, and 8 × 8) each opti-
mized for coarser image features. The optimized SPDNN
topology is retrained on the full training dataset and con-
verges to an improved set of network weights.

It is worth mentioning that this network design strategy is
not limited to the “depth from monocular vision” problem,
and further application examples and refinements will
be developed in a series of future publications, currently
in press.

1.1 Depth Map
Deriving the 3-D structure of an object from a set of
two-dimensional (2-D) points is a fundamental problem in
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computer vision. Most of these conversions from 2-D to 3-D
space are based on the depth values computed for each 2-D
point. In a depth map, each pixel is defined not by color, but
by the distance between an object and the camera. In general,
depth computation methods are divided into two categories:

1. Active methods.
2. Passive methods.

Active methods involve computing the depth in the scene
by interacting with the objects and the environment. There
are different types of active methods, such as light-based
depth estimation, which uses the active light illumination
to estimate the distance to different objects.16 Ultrasound
and time-of-flight (ToF) are other examples of active meth-
ods. These methods use the known speed of the wave to mea-
sure the time an emitted pulse takes to arrive at an image
sensor.17

Passive methods utilize the optical features of the cap-
tured images. These methods involve extracting the depth
information by computational image processing. In the cat-
egory of passive methods, there are two primary approaches
(a) multiview depth estimation, such as depth from stereo,
and (b) monocular depth estimation.

1.2 Stereo Vision Depth
Stereo matching algorithms can be used to compute depth
information from multiple images. By using the calibration
information of the cameras, the depth images can be gener-
ated. This depth information provides useful data to identify
and detect objects in the scene.18

In recent years, many applications, including ToF,19,20

structured light,21 and Kinect, were introduced to calculate
depth from stereo images. Stereo vision algorithms are gen-
erally divided into two categories: local and global. Local
algorithms were introduced as statistical methods that use
the local information around a pixel to determine the depth
value of the given pixel. These kinds of methods can be used
for real-time applications if they are implemented efficiently.
Global algorithms try to optimize an energy function to
satisfy the depth estimation problem through various optimi-
zation techniques.22

In terms of computation, global methods are more com-
plex than local methods, and they are usually impractical for
real-time applications. Despite these drawbacks, they have
the advantage of being more accurate than local methods.
This advantage recently attracted considerable attention in
the academic literature.23,24

For example, the global stereo model proposed in Ref. 23
works by converting the image into a set of 2-D triangles
with adjacent vertices. Later, the 2-D vertices are converted
to a 3-D mesh by computing the disparity values. To solve
the problem of depth discontinuities, a two-layer Markov
random field (MRF) is employed. The layers are fused
with an energy function allowing the method to handle the
depth discontinuities. The method has been evaluated on
the new Middlebury 3.0 benchmark,24 and it was ranked
the most accurate at the time of the paper’s publication on
the average weight on the “bad 2.0” index.

Another global stereo matching algorithm, proposed in
Ref. 25, makes use of the texture and edge information of
the image. The problem of large disparity differences in

small patches of nontextured regions is addressed by utiliz-
ing the color intensity. In addition, the main matching cost
function produced by a CNN is augmented using the same
color-based cost. The final results are postprocessed using
a 5 × 5 median filter and a bilateral filter. This adaptive
smoothness filtering technique is the primary reason for
the algorithm’s excellent performance and placement in the
top of the Middlebury 3.0 benchmark.24

Many other methods have been proposed for stereo depth,
such as PMSC,24 GCSVR,24 INTS,26 MDP,27 and ICSG,28

which all aimed to improve the accuracy of the depth esti-
mated from stereo vision or to introduce a new method to
estimate the depth from a stereo pair. However, there is
always a trade-off between accuracy and speed for stereo
vision algorithms.

Table 1 shows an overview of the average normalized
time by the number of pixels (s/megapixels) of the most
accurate stereo matching algorithms as they are ranked by
the Middlebury 3.0 benchmark, based on the “bad 2.0” met-
ric. The ranking is on the test dense set. This comparison
illustrates that obtaining an accurate depth from a stereo
pair requires significant processing power. These results
demonstrate that today, these methods are too resource inten-
sive for real-time applications such as street sensing or
autonomous navigation due to their demand for processing
resources.

To decrease the processing power of stereo matching
algorithms, researchers recently began to work on depth from
monocular images. Such algorithms estimate depth from
a single camera while keeping the processing power low.

1.3 Deep Learning
DNN are among the most recent approaches in pattern rec-
ognition science that are able to handle highly nonlinear
problems in classification and regression. These models
use consecutive nonlinear signal processing units in order
to mix and reorient their input data to give the most repre-
sentative results. The DNN structure learns from the input
and then it generalizes what it learns into data samples it
has never seen before.33 The typical DNN model is com-
posed of one or more convolutional, pooling, and fully
connected layers accompanied by different regularization
tasks. Each of these units is as follows:

1.3.1 Convolutional layer

This layer typically convolves the 3-D image I with the four-
dimensional kernel W and adds a 3-D bias term b to it. The
output is given as

EQ-TARGET;temp:intralink-;e001;326;216P ¼ I �W þ b; (1)

where the * operator is nD convolution and P is the output of
the convolution. During the training process, the kernel and
bias parameters are updated in a way that optimizes the error
function of the network output.

1.3.2 Pooling layer

The pooling layer applies a (usually) nonlinear transform
(note that the average pooling is a linear transform, but
the more popular max-pooling operation is nonlinear) on
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the input image, which reduces the spatial size of the data
representation after the operation.

It is common to put a pooling layer after each convolu-
tional layer. Reducing the spatial size leads to less computa-
tional load and also prevents overfitting. The reduced spatial
size also provides a certain amount of translation invariance.

1.3.3 Fully connected layer

Fully connected layers are the same as classical NN layers,
where all the neurons in a layer are connected to all the
neurons in their subsequent layer. The neurons give the
summation of their input, multiplied by their weights, passed
through their activation functions.

1.3.4 Regularization

Regularization is often used to prevent overfitting of an NN.
One can train a more complex network (more parameters)
with regularization and prevent overfitting. Different kinds

of regularization methods have been proposed. The most
important ones are weight regularization, drop-out,34 and
batch normalization.35 Each regularization technique is suit-
able for specific applications, and no single technique works
for every task.

1.4 Monocular Vision Depth
Depth estimation from a single image is a fundamental prob-
lem in computer vision and has potential applications in
robotics, scene understanding, 3-D reconstruction, and medi-
cal imaging.36–38 This problem remains challenging because
there are no reliable cues for inferring depth from a single
image. For example, temporal information and stereo corre-
spondences are missing from such images.

As the result of the recent research, deep CNNs are setting
new records for various vision applications. A deep convolu-
tional neural field model for estimating depths from a single
image has been presented in Ref. 39 by reformulating the
depth estimation into a continuous conditional random

Table 1 Comparison of the performance time between the most accurate stereo matching algorithms.

Algorithm Time/MP (s) W × H (ndisp) Programming platform Hardware

PMSC24 453 1500 × 1000 (< ¼ 400) C++ i7-6700K, 4 GHz-GTX TITAN X

MeshStereoExt23 121 1500 × 1000 (< ¼ 400) C, C++ 8 Cores-NVIDIA TITAN X

APAP-Stereo24 97.2 1500 × 1000 (< ¼ 400) Matlab+Mex i7 Core 3.5 GHz, 4 Cores

NTDE25 114 1500 × 1000 (< ¼ 400) n/a i7 Core, 2.2 GHz-Geforce GTX TITAN X

MC-CNN-acrt29 112 1500 × 1000 (< ¼ 400) n/a NVIDIA GTX TITAN Black

MC-CNN+RBS30 140 1500 × 1000 (< ¼ 400) C++ Intel(R) Xeon(R) CPU E5-1650 0, 3.20 GHz,
6 Cores-32 GB RAM-NVIDIA GTX TITAN X

SNP-RSM24 258 1500 × 1000 (< ¼ 400) Matlab i5, 4590 CPU, 3.3 GHz

MCCNN_Layout24 262 1500 × 1000 (< ¼ 400) Matlab i7 Core, 3.5 GHz

MC-CNN-fst29 1.26 1500 × 1000 (< ¼ 400) n/a NVIDIA GTX TITAN X

LPU24 3523 1500 × 1000 (< ¼ 400) Matlab Core i5, 4 Cores- 2xGTX 970

MDP27 58.5 1500 × 1000 (< ¼ 400) n/a 4 i7 Cores, 3.4 GHz

MeshStereo23 54 1500 × 1000 (< ¼ 400) C++ i7-2600, 3.40 GHz, 8 Cores

SOU4P-net24 678 1500 × 1000 (< ¼ 400) n/a i7 Core, 3.2 GHz-GTX 980

INTS26 127 1500 × 1000 (< ¼ 400) C, C++ i7 Core, 3.2 GHz

GCSVR24 4731 1500 × 1000 (< ¼ 400) C++ i7 Core, 2.8 GHz-Nvidia GTX 660Ti

JMR24 11.1 1500 × 1000 (< ¼ 400) C++ Core i7, 3.6 GHz-GTX 980

LCU24 9572 750 × 500 (< ¼ 200) Matlab, C++ 1 Core Xeon CPU, E5-2690, 3.00 GHz

TMAP31 1796 1500 × 1000 (< ¼ 400) Matlab i7 Core, 2.7 GHz

SPS24 49.4 3000 × 2000 (< ¼ 800) C, C++ 1 i7 Core, 2.8 GHz

IDR32 0.36 1500 × 1000 (< ¼ 400) CUDA C++ NVIDIA GeForce TITAN Black
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field (CRF) learning problem. The CNN employed in this
research was composed of five convolutional and four
fully connected layers. At the first stage of the algorithm,
the input image was oversegmented into superpixels. The
cropped image patch centered on its centroid was used as
input to the CNN. For a pair of neighboring superpixels,
a number of similarities were considered and were used as
the input to the fully connected layer. The output of these
two parts was then used as input to the CRF loss layer.
As a result, the time required for estimating the depth
from a single image using the trained model decreased to
1.1 s on a desktop PC equipped with NVIDIA GTX 780
GPU with 6-GB memory.

It has been found that the superpixelling technique of
Ref. 39 is not a good choice to initialize the disparity
estimation from mono images because of the lack of the
monocular visual cues such as texture variations and gra-
dients, defocus or color/haze in some parts of the image.
To solve this issue, an MRF learning algorithm has been
implemented to capture some of these monocular cues.40

The captured cues were integrated with a stereo system to
obtain better depth estimation than with the stereo system
alone. This method uses a fusion of stereo + mono depth
estimation.

At small distances, the algorithm relies more on stereo
vision, which is more accurate than monocular vision.
However, at further distances, the performance of stereo
degrades; and the algorithm relies more on monocular vision.

The problem of depth estimation from monocular images
has been also studied in Ref. 41, where a network is designed
with two components. First, the global structure of the scene
is estimated and later refined using local information.
Although this approach enables the early idea of estimating
monocular depth using CNNs, the output depth maps do not
clearly represent the geometrical structure of the scene.

In another approach,42 an unsupervised convolutional
encoder is trained to estimate the depth from monocular
images. The depth is estimated considering the small motion
between two images (stereo set as input and target). Later,
the inverse warp of the target image is generated using
the predicted depth and the known displacement between
cameras, which results in reconstructing the source image.
In a similar research,43 an unsupervised CNN is trained
by exploiting epipolar geometry constraints to estimate dis-
parity from single images. The idea is to learn a function that
is able to reconstruct one image from the other by utilizing a
calibrated pair of binocular cameras. A left-right disparity
consistency loss is also introduced, which combines smooth-
ness, reconstruction, and left-right disparity consistency

terms and keeps the consistency between the disparities pro-
duced relative to both the left and right images.

In Refs. 44 and 45, authors presented a method to mix the
output information of multiple CNNs using CRF where two
different models are proposed, one with a cascade of CRFs
and the other with a unified graph. They trained and tested
the networks on NYU Depth V2,46 KITTI,47 and Make 3-D
datasets.48,49 The best results were drawn from ResNet50.

1.5 Paper Overview
In this paper, a DNN is presented to estimate depth from
monocular cameras. The depth map from the stereo sets is
estimated using the same approach as Ref. 50 and they
are used as the target to train the network while using infor-
mation from a single image (the left image in the stereo set)
as input. Four models are trained and evaluated to estimate
the depth from single camera images. The network structure
for all the models is the same. In the first case, the input is
simply the original image. In the second case, the first
channel is the original image and the second channel is
its segmentation map. For each of these two cases, one of
two different targets is used; specifically, these targets
were the stereo depth maps with or without postprocessing
explained in Ref. 50. Figure 1 shows the overview of the
general approach used in this paper. In this figure, the
DNN is shown as a black box. The semantic segmentation
has been used in two experiments out of four. A detailed
explanation of each experiment is given in Sec. 2.3.

1.6 Contributions
In this paper, two major contributions are presented:

1. SPDNN15 is a method to mix and merge several
DNNs. This method is versatile enough to be applied
to any DNN design. In this work, this method is
utilized to design a network to approximate the depth
from the monocular images. Network design pro-
cedure is described in detail in Appendix A.

2. The application of DNNs and SPDNN on estimating
depth from a monocular camera.

3. The effect of using segmentation information in
approximating depth is investigated.

4. Two different ground truth sets have been used to train
the network and comparisons of the network perfor-
mances for each ground truth have been investigated.

The rest of the paper is organized as follows: in the next
section, the network structure, database preparation, and the

Fig. 1 The overview of the trained models in this paper. The semantic segmentation is just used in
two experiments. Detailed explanation on each experiment is given in Sec. 2.3.
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training process are presented. Section 3 discusses the results
and evaluation of the proposed method. The conclusion and
discussions are presented in the last section.

2 Methodology

2.1 Network Structure
2.1.1 Semiparallel deep neural network

This paper introduces the SPDNN concept, inspired by graph
optimization techniques. In this method, several DNNs are
parallelized and merged in a way that facilitates the advan-
tages of each. The final model is trained for the problem.
References 14 and 15 show that using this method increases
the convergence and generalization of the model compared
to alternatives.

The merging of multiple networks using SPDNN is
described in the context of the current depth mapping prob-
lem. In this particular problem, eight different networks were
designed for the depth estimation task. These are described
in detail in Appendix A. None of these networks on their
own gave useful results on the depth analysis problem.
However, it was noticed that each network tended to perform
well on certain aspects of this task while failing at others.
This led to the idea that it would be advantageous to combine
multiple individual networks and train them in a parallelized
architecture. Our experiments showed that better output
could be achieved by merging the networks and then training
them concurrently.

Combined model/architecture. The process of the net-
work design is discussed in detail in Appendix A. In the
final model presented in Fig. 2, the input image is first proc-
essed in four parallel fully convolutional subnetworks with
different pooling sizes. This provides the advantages of dif-
ferent networks with different pooling sizes at the same time.
The outputs of these four subnetworks are concatenated in
two different forms; one is to pool the larger images to be
the same size as the smallest image in the previous part, and
the other one is to unpool the smaller images of the previous
part to be the same size as the largest image.

After merging these outputs, the data are led to two differ-
ent networks. One is the fully convolutional network (FCN)

to deepen the learning and release more abstract features of
the input, and the other network is an autoencoder network
with different architectures for encoder and decoder.

It is mentioned in the network design section in
Appendix A that having a fully connected layer in the net-
work is crucial for correct estimation of the image’s depth,
which is provided in the bottleneck of the autoencoder. The
results from the autoencoder and the fully convolutional sub-
network are again merged in order to give a single output
after applying a one channel convolutional layer.

In order to regularize the network, prevent overfitting, and
increase the convergence, batch normalization35 is applied
after every convolutional layer, and the drop-out technique34

is used in fully connected layers. The experiments in this
paper show that using weight regularization in the fully
connected layers gives slower convergence; therefore, this
regularization was eliminated from the final design. All the
nonlinearities in the network are the ReLU nonlinearity,
which is widely used in DNNs, except for the output layer,
which took advantage of the sigmoid nonlinearity. The value
repeating technique was used in the unpooling layer due
to nonspecificity of the corresponding pooled layer in the
decoder part of the autoencoder subnetwork.

The value repeating technique, shown in Fig. 3, involves
repeating the value from the previous layer in order to obtain
the unpooled image. The figure shows the 2 × 2 unpooling,
and the process is the same for other unpooling sizes.

2.2 Database
In this paper, the KITTI Stereo 2012, 2015 datasets47 are
used for training and evaluation of the network. The database
is augmented by vertical and horizontal flipping to expand

Fig. 2 The model designed for the depth estimation from monocular images. The network design is
explained in Appendix A.2.

Fig. 3 The repeating technique used in unpooling layers.
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the total size to 33,096 images. 70% of this dataset is used for
training, 20% for validation, and 10% for testing. Dividing
the database to train-validation-test subsets is performed
before scrambling the indices so there is minimum corre-
spondence between the samples in each subset. The reason
for this is because the database is drawn from sequences of
images wherein each two consecutive samples look very
similar. Each model is trained for two sets of input samples
and two sets of output targets. The input and target prepara-
tion are explained in the following sections.

2.2.1 Data preparation

Input preparation. Two different sets have been used as
the input of the network. The first set includes the visible
images given by the left camera. The second set is the visible
image + the semantic segmentation of the corresponding
input. This gives the opportunity of investigating the seg-
mentation influence on the depth estimation problem. The
segmentation map for each image is calculated by employing
the well-known model “SegNet.”51,52 This model is one of
the most successful recent implementations of DNN for
semantic pixelwise image segmentation and has surpassed
other configurations of FCNs both in accuracy and simplicity
of implementation. A short description of SegNet is given in
Appendix B.

In our experiments, SegNet was trained using stochastic
gradient descent with learning rate 0.1 and momentum 0.9.
In this paper, the Caffe implementation of SegNet has been
employed for training purposes.53 The gray-scale CamVid
road scene database (360 × 480)54 has been used in the train-
ing step.

Target preparation. The targets for training the network
are generated from the stereo information using the adaptive
random walk with restart algorithm.55 The output of the
stereo matching algorithm suffers from several artifacts,
which are addressed and solved by a postprocessing method
in Ref. 50. In the present experiments, both depth maps
(before postprocessing and after postprocessing) are used
independently as targets. The postprocessing procedure is
based on the mutual information of the RGB image (used
as a reference image) and the initial estimated depth
image. This approach has been used to increase the accuracy
of the depth estimation in stereo vision by preserving the
edges and corners in the depth map and filling in the missing
parts. The method was compared with the top eight depth
estimation methods in the Middlebury benchmark24 at the
time the paper was authored. Seven metrics, including mean
square error (MSE), root mean square error (RMSE), peak
signal-to-noise ratio (PSNR), signal-to-noise ratio (SNR),
mean absolute error (MAE), structural similarity index
(SSIM), and structural dissimilarity index were used to
evaluate the performance of each method. The evaluation
ranked the method as first in five metrics and second and
third in other metrics

2.3 Training
As described in Sec. 2.2.1, there are two separate sets as
inputs and two separate sets as targets for the training proc-
ess. This will give four experiments in total as follows:

1. Experiment 1: Input: left visible image + pixelwise
segmented image. Target: postprocessed depth map

2. Experiment 2: Input: left visible image. Target: post-
processed depth map.

3. Experiment 3: Input: left visible image + pixelwise
segmented image. Target: depth map.

4. Experiment 4: Input: left visible image. Target:
depth map.

The images are resized to 80 × 264 pixels during the
whole process. Training is done on a standard desktop
with an NVIDIA GTX 1080 GPU with 8 GB memory.

In the presented experiments, the MSE value between the
output of the network and the target values have been used as
the loss function, and the Nestrov momentum technique56

with learning rate 0.01 and momentum 0.9 has been used to
train the network. The training and validation loss for each of
these experiments are shown in Figs. 4 and 5, respectively.

These figures show that using the postprocessed depth
map as the target results in lower loss values, which means
that the network was able to learn better features in those

Fig. 4 Train loss for each experiment.

Fig. 5 Validation loss for each experiment.
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experiments, while semantic segmentation decreases the
error only marginally.

The reason that the postprocessed depth maps are consid-
ered as the target in two experiments is twofold: first, the post-
processing pipeline is proven to be effective in increasing the
performance of the depth estimation methods by considering
the geometrical structure of the scene. Second, it helps the
network to avoid the densification process of the sparse
depth maps, which are captured using LIDAR scanners.

3 Results and Evaluations
The evaluation in this paper has been done in four parts. In
the first two parts, the four experiments given in Sec. 2.3 are
compared to each other, given different ground truths. The
third part compares the proposed method to a stereo match-
ing method and the last part shows the comparison against
the state-of-the-art monocular depth estimation method. For
evaluation purposes, eight metrics including PSNR, MSE
(between 0 and 1), RMSE (between 0 and 1), SNR, MAE
(between 0 and 1), SSIM (between 0 and 1),57 universal qual-
ity index (UQI) (between 0 and 1),58 and Pearson correlation
coefficient (PCC) (between −1 and 1)59 are used. For the
metrics PSNR, SNR, SSIM, UQI, and PCC, the larger value
indicates better performance, and for MSE, RMSE, and
MAE, the lower value indicates better performance. PSNR,
MSE, RMSE, MAE, and SNR represent the general similar-
ities between two objects. UQI and SSIM are structural
similarity indicators and PCC represents the correlation
between two samples. To the best of our knowledge, there
have been no other attempts at estimating depth from a mono
camera on the KITTI benchmark.

3.1 Comparing Experiments Given Benchmark
Ground Truth

The KITTI database came with a depth map ground truth
generated by a LIDAR scanner.

The test set has been forward propagated through the four
different models trained in the four experiments, and the out-
put of the networks has been compared to the benchmark
ground truth. The results are shown in Table 2. The best
value for each metric is presented in bold.

Figures 6–8 represent the color-coded depth maps com-
puted by the trained models using the proposed DNN, where
the dark red and dark blue parts represent closest and furthest
points to the camera, respectively. On the top right of each
figure, the ground truth given by the benchmark is illustrated.
For visualization purposes, all of the images presented in this
section are upsampled using joint bilateral upsampling.60

The results show that using semantic segmentation along
with the visible image as input will improve the model

Table 2 Numerical comparison of the models given the benchmark’s
ground truth.

Exp. 1 Exp. 2 Exp. 3 Exp. 4

PSNR 14.3424 13.7677 13.8333 13.8179

MSE 0.0382 0.0436 0.0435 0.0439

RMSE 0.1937 0.2069 0.206 0.2066

SNR 4.4026 3.8279 6.1952 6.1798

MAE 0.1107 0.1212 0.1236 0.1234

SSIM 0.9959 0.9955 0.9955 0.9955

UQI 0.9234 0.9252 0.9053 0.9064

PCC 0.7687 0.8485 0.7702 0.7729

Fig. 6 Estimated depth maps from the trained models, example 1, for
experiments 1 to 4 explained in Sec. 2.3.

Fig. 7 Estimated depth maps from the trained models, example 2, for
experiments 1 to 4 explained in Sec. 2.3.

Fig. 8 Estimated depth maps from the trained models, example 3, for
experiments 1 to 4 explained in Sec. 2.3.
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marginally. Using the postprocessed target in the training
stage helps the model to converge to more realistic results.

As it is shown in Figs. 6–8, the depth map generated in
experiment 1 contains more structural details, and more
precise, less faulty depth levels compared with the other
experiments. In general, the presented models in this paper
are able to handle occlusions and discontinuities at different
depth levels.

3.2 Comparing Experiments Given the Ground Truth
from Stereo Matching

In this section, proposed models are compared to see which
one produces closer results to the target value. This gives
an idea whether using deep learning techniques on the mono
camera can produce reasonable results or not.

Images in the test set have been forward propagated
through the models trained in Sec. 2.3, and the outputs are
compared with the depth map generated in Ref. 50. The
numerical results are shown in Table 3.

The best value for each metric is presented in bold.
Figures 9–11 represent the color-coded depth maps com-
puted by the trained models using the proposed DNN,

where the dark red and dark blue parts represent closest
and furthest points to the camera, respectively. On the top
right of each figure, the ground truth calculated in Ref. 50
is illustrated. For visualization purposes, all of the images
presented in this section are upsampled using joint bilateral
upsampling.60

The results show that using semantic segmentation along
with the visible image as input will improve the model mar-
ginally. Using the postprocessed target in the training stage
helps the model to converge to more realistic results.

Figures 9–11 show that the trained models in this paper
are able to estimate depth maps comparable to state-of-the-
art stereo matching with structural accuracy and precise
depth levels. This is also a result of using the semantic seg-
mentation data and injecting the structural information into
the network.

3.3 Comparing Mono Camera Results with Stereo
Matching

In this section, the results from the mono camera depth esti-
mation given by the proposed method are compared with one
of the top-ranked stereo matching methods given in Ref. 50.
The ground truth for this comparison is the set of depth maps
provided by the KITTI benchmark.

Table 3 Numerical comparison of the models given the ground truth
from stereo matching.

Exp. 1 Exp. 2 Exp. 3 Exp. 4

PSNR 15.0418 14.1895 13.3819 14.0491

MSE 0.0378 0.0447 0.0535 0.0441

RMSE 0.1854 0.203 0.2223 0.2039

SNR 8.822 7.9696 5.4271 6.0943

MAE 0.1442 0.1581 0.1673 0.153

SSIM 0.9952 0.9943 0.994 0.9951

UQI 0.8401 0.8369 0.7951 0.8178

PCC 0.8082 0.795 0.704 0.6919

Fig. 9 Estimated depth maps from the trained models, example 1, for
experiments 1 to 4 explained in Sec. 2.3.

Fig. 10 Estimated depth maps from the trained models, example 2,
for experiments 1 to 4 explained in Sec. 2.3.

Fig. 11 Estimated depth maps from the trained models, example 3,
for experiments 1 to 4 explained in Sec. 2.3.
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The test images have been forward propagated through
the models trained in Sec. 2.3 and the best results are com-
pared with the stereo matching technique. The results are
shown in Table 4.

The results indicate that using mono camera images and
deep learning techniques can provide results that are compa-
rable to stereo matching techniques. As shown in Table 4, the
mono camera DNN method was able to provide depth maps
similar to the stereo matching methods, represented by
PSNR, MSE, MAE, RMSE, and SNR.

Having close values for SSIM (0.9966 and 0.9959 in the
range [0,1]) and UQI (0.9353 and 0.9234 in the range [0,1])
shows how the mono camera DNN method is able to pre-
serve the structural information, as compared to the stereo
matching method.

3.4 Comparison against Other Monocular Depth
Estimation Methods

In this section, the proposed network is compared against the
method presented in Refs. 39 and 41–43. Table 5 represents
the performance of the proposed network compared to the
state-of-the-art methods based on seven metrics including
absolute relative difference, squared relative difference, and
RMSE/RMSE log. The metrics are defined as follows:

• Mean relative error (Rel): 1
P

P
P
i¼1

jd̃i−d�i j
d�i

;

• Root mean squared error (RMSE):
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
P

P
P
i¼1 ðd̃i−d�i Þ2

q
;

• Mean log 10 error: 1
P

P
P
i¼1 klog10ðd̃iÞ − log10ðd�i Þk;

• Accuracy with threshold t: Percentage (%) of d�i ,
subject to max

�
d�i
d̃i
; d̃id�i

�
¼ δ< t ðt∈ ½1.25;1.252;1.253�Þ.

These numbers indicate that the unsupervised CNN pro-
posed by Godard et al.43 outperforms the others because of
the left-right disparity consistency term, which allows the
network to optimize the disparity values based on both
left and right images. However, we believe that the proposed
network has a competitive performance compared to the
studied methods considering the fact that our models are
trained using only the left image without taking into account
the influence of the right disparity values.

3.5 Comparing Running Times
In this section, the computational time of the proposed
method is compared against the stereo matching methods
provided in Table 1. The evaluations indicate that the pro-
posed method is able to perform at a rate of ∼1.23 s∕MP
on a desktop computer equipped with i7 2600 CPU @
3.4 GHz and 16 GB of RAM.

Table 4 Numerical comparison between stereo matching and the
proposed mono camera model.

Stereo matching50 Mono camera DNN

PSNR 14.8234 14.3424

MSE 0.0351 0.0382

RMSE 0.1845 0.1937

SNR 4.8836 4.4026

MAE 0.1017 0.1107

SSIM 0.9966 0.9959

UQI 0.9353 0.9234

PCC 0.823 0.7687

Table 5 Results on the KITTI 2015 stereo 200 training set disparity images.

Method Stereo Dataset Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Eigen et al.41 coarse No KITTI 0.361 4.826 8.102 0.377 0.638 0.804 0.894

Eigen et al.41 fine No KITTI 0.203 1.548 6.307 0.282 0.702 0.890 0.958

Liu et al.39 DCNF-FCSP FT No KITTI 0.201 1.584 6.471 0.273 0.68 0.898 0.967

Garg et al.42 L12 Aug 8× cap 50 m Yes KITTI 0.169 1.080 5.104 0.273 0.740 0.904 0.962

Godard et al.43 Yes KITTI 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Saxena et al.61 No KITTI 0.280 — 8.734 0.327 0.601 0.820 0.926

Zhou et al.62 No KITTI 0.208 1.768 6.858 — 0.678 0.885 0.957

Kuznietsov et al.63 (only supervised) No KITTI — — 4.815 — 0.845 0.957 0.987

Kuznietsov et al.63 Yes KITTI — — 4.621 — 0.852 0.960 0.986

Xu et al.44 No KITTI 0.125 0.899 4.685 0.154 0.816 0.951 0.983

Ours No KITTI 0.288 1.065 4.071 0.401 0.51 0.77 0.893

In columns 4–7 lower is better, in columns 8–10 higher is better.
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Figure 12 shows the comparison of the computational
times. The comparison is done in a logarithmic scale due
to the large range of computational times between different
methods.

3.6 Effects of Scaling, Rotation, and Translation
In this section, the effect of the scaling, rotation, and trans-
lation is explained for the proposed method. The test data
have been manipulated in three ways:

1. Scaling: Images have been cropped with random val-
ues for height in U½37;70� and width in U½128;240�
where U½a; b� is the uniform distribution between
a and b. The cropped images are resized to [80, 264]
using bilinear interpolation.

2. Rotating: Each sample in the test set has been rotated
randomly between 3 deg and 30 deg and also −3 deg
and −30 deg.

3. Translating: Each sample has been translated with
random values between 5 and 30 pixels in height and
50 and 100 pixels in width.

Each set of these samples has been tested on the proposed
networks for each experiment and the results are given in
Tables 6–9.

This experiment shows that the method is relatively robust
to scaling in comparison to rotation and translation.
Translation introduces more error than rotation. The main
reason is the change in the sky position in the translated
images. Since the network is trained on samples where the
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Fig. 12 Comparison of computational time in logarithmic scale.

Table 6 Network trained in experiment 1, tested on scaled, rotated,
and translated samples.

Exp. 1,
original

Exp. 1,
scaled

Exp. 1,
rotated

Exp. 1,
translated

PSNR 14.3424 13.4155 7.3789 6.9341

MSE 0.0382 0.0561 0.1890 0.2083

RMSE 0.1937 0.2253 0.4313 0.4533

SNR 4.4026 1.4561 3.0047 2.5507

MAE 0.1107 0.1811 0.3480 0.3609

SSIM 0.9959 0.9924 0.9791 0.9754

UQI 0.9234 0.2234 0.343 0.530

Table 7 Network trained in experiment 2, tested on scaled, rotated,
and translated samples.

Exp. 2,
original

Exp. 2,
scaled

Exp. 2,
rotated

Exp. 2,
translated

PSNR 13.7677 13.1384 7.1016 6.7348

MSE 0.0436 0.0600 0.2017 0.2218

RMSE 0.2069 0.2328 0.4454 0.4660

SNR 3.8279 1.8092 3.7111 2.8531

MAE 0.1212 0.1882 0.3501 0.3665

SSIM 0.9955 0.9919 0.9776 0.9738

UQI 0.9252 0.2244 0.708 0.764
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sky is at the top of the image, the translating the sky position
induces a large amount of uncertainty on the output values.

The other observation is for using segmentation as aux-
iliary information for depth estimation. The observations
show that the segmentation is not introducing any helpful
information while dealing with scaling, rotation, and
translation.

4 Conclusion and Discussion
In this paper, we have introduced the use of the SPDNN
method. An SPDNN is a network topology developed
using a graph theory optimization of a set of independently
optimized CNNs, each targeted at a specific aspect of the
more general classification problem. For depth estimation
from a monocular setup, a model including fully connected
topology optimized for fine features is combined with a
series of max-pooled topologies. The optimized SPDNN top-
ology is retrained on the full training dataset and converges
to an improved set of network weights. Here, we used this
design strategy to train an accurate model for estimating
depth from monocular images.

In this work, eight different DNNs have been mixed and
merged using the SPDNN method in order to take advantage

of each network’s qualities. The mixed network architecture
was then trained in four separate scenarios where each sce-
nario used a different set of inputs and targets during train-
ing. Four distinct models have been trained. The pixelwise
segmentation and depth estimations given in Ref. 50 were
used to provide samples for use in the training stage. The
KITTI benchmark was used for training and experimental
purposes.

Each model was evaluated in two sections, first against
the ground truth provided by the benchmark, and second
against the disparity maps computed by the stereo matching
method (Secs. 3.1 and 3.2). The results show that using the
postprocessed depth map presented in Ref. 50 for training
the network results in more precise models and adding
the semantic segmentation of the input frame to the input
helps the network preserve the structural information in
the output depth map. The results in Sec. 3.2 show how
close the proposed depth estimation using mono camera can
be to the stereo matching method. The semantic segmenta-
tion information helps the network converge to the stereo
matching results, although the improvement is marginal in
this case. The results of the third comparisons in Sec. 3.3
show a slightly higher accuracy obtained by employing the
stereo matching technique, but our results demonstrate that
there is not a big difference between the depths from the
models trained by the proposed DNN and the values com-
puted by stereo matching. The numerical results of this
evaluation show the similarity between the mono camera
using the DNN method and the stereo matching method,
and also the power of the presented method in preserving
the structural information in the output depth map.

An important advantage of these models is the processing
time of ∼1.23 s∕MP. This is equal to 38 fps for an input
image of size (80 × 264) on an i7 2600 CPU @ 3.4 GHz
and 16 GB of RAM. This makes the model suitable for
providing depth estimation in real time. This performance
is comparable to the stereo methods MC-CNN-fst29 and
JMR,24 whose times are 37 and 4 fps, respectively, for the
same size of the image, taking advantage of GPU computa-
tion power (NVIDIA GTX TITAN X and GTX 980, respec-
tively). The IDR method32 can give up to 131 fps for the
same image size by using an NVIDIA GeForce TITAN
Black GPU and CUDA C++ implementation, but the perfor-
mance on a CPU is not given by the authors, so any com-
parisons with this method would be unfair.

Using pixelwise segmentation as one of the inputs of the
network slightly increased the accuracy of the models, and
also helped the model preserve the structural details of the
input image. However, it also brought some artifacts, such as
wrong depth patches on the surfaces. The evaluation results
also illustrate the higher accuracy of the models where a
postprocessed depth map was used as the target in the train-
ing procedure.

4.1 Future Works and Improvements
The model presented in this work is still a big model to
implement in low power consumer electronic devices (e.g.,
handheld devices). Future work will include a smaller design
that is able to perform as well as the presented model. The
other consideration for the current method is the training data
size (which is always the biggest consideration with deep
learning approaches). The amount of stereo data available

Table 8 Network trained in experiment 3, tested on scaled, rotated,
and translated samples.

Exp. 3,
original

Exp. 3,
scaled

Exp. 3,
rotated

Exp. 3,
translated

PSNR 13.8333 11.5803 7.2379 6.2700

MSE 0.0435 0.0808 0.1962 0.2420

RMSE 0.206 0.2740 0.4388 0.4890

SNR 6.1952 4.1375 4.6070 5.3933

MAE 0.1236 0.2187 0.3580 0.3787

SSIM 0.9955 0.9897 0.9780 0.9715

UQI 0.9053 0.826 0.293 0.489

Table 9 Network trained in experiment 4, tested on scaled, rotated,
and translated samples.

Exp. 4,
original

Exp. 4,
scaled

Exp. 4,
rotated

Exp. 4,
translated

PSNR 13.8179 12.0590 8.0581 7.5241

MSE 0.0439 0.0725 0.1649 0.1847

RMSE 0.2066 0.2595 0.4009 0.4253

SNR 6.1798 3.6592 3.5843 4.3851

MAE 0.1234 0.2023 0.3191 0.3294

SSIM 0.9955 0.9908 0.9817 0.978

UQI 0.9064 0.878 0.250 0.468
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in the databases is usually not big enough to train a DNN.
The augmentation techniques can help to expand databases,
but the amount of extra information they provide is limited.
Providing a larger set with accurate depth maps will improve
the results significantly.

The future works also involve designing and training
networks on other databases, such as NYU Depth V246

and Make3D,48,49 and performing interdatabase evaluation
wherein the network is trained on one database and tested
on another one. We will also utilize the SPDNN method
to design a network for a mixed database to get more gen-
eralization power.

The SPDNN approach is currently being applied to other
problems and is giving promising results on both classifica-
tion and regression problems. Those results will be presented
in future publications.

Appendix A: Network Design

A1 Individual Networks for Depth Analysis
The network shown in Fig. 13 is a deep fully CNN (a fully
CNN is a network wherein all the layers are convolutional
layers) with no pooling and no padding. Therefore, no infor-
mation loss occurs inside the network, as there is no bottle-
neck or data compression; this network is able to preserve
the details of the input samples. But the main problem is
that this model is unable to find big objects and coarse
features in the image. In order to solve this problem, three
other networks have been designed as shown in Figs. 14–16.
These three networks take advantage of the max-pooling
layers to gain transition invariance and also to recognize
larger objects and coarser features inside the image. These
networks use 2 × 2, 4 × 4, and 8 × 8 max-pooling operators,

Fig. 13 Top row: network 1, Bottom row: graph corresponds to network 1.

Fig. 14 Top row: network 2, Bottom row: graph corresponds to network 2.

Fig. 15 Top row: network 3, Bottom row: graph corresponds to network 3.
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respectively. Larger pooling kernels allow coarser features to
be detected by the network. The main problem with these
networks is that the spatial details vanished as a result of
data compression in pooling layers.

After several attempts of designing different networks, the
observations showed that in order to estimate the depth from
an image, the network needed to see the whole image as one
object. To do that requires the kernel to be the same size as
the image in at least one layer that is equivalent to a fully
connected layer inside the network.

In fully connected layers, each neuron is connected to
all neurons in the previous/next layer. Due to the computa-
tionally prohibitive nature of training fully connected layers
and their tendency to cause overfitting, it is desirable to

reduce the number of these connections. Adding fully
connected layers results in a very tight bottleneck, which
seems to be crucial for the depth estimation task, but
also causes the majority of the details in the image to be
lost. In Figs. 17–20, the networks with fully connected
layers are shown. These networks correspond to networks
in Figs. 13–16 but with convolutional layers replaced with
fully connected layers on the righthand side of the network.
Using different pooling sizes before the fully connected
layer will cause the network to extract different levels of
features, but all these configurations introduce loss of
detail.

Each of these eight configurations has its own advantages
and shortcomings, from missing the coarse features to

Fig. 16 Top row: network 4, Bottom row: graph corresponds to network 4.

Fig. 17 Top row: network 5, Bottom row: graph corresponds to network 5.

Fig. 18 Top row: network 5, Bottom row: graph corresponds to network 6.
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missing the details. None of these designs converged to a
reasonable depth estimation model.

The main idea of the SPDNN method is to mix and merge
these networks and generate a single model, which includes
all the layers of the original models in order to be able to
preserve the details and also detect the bigger objects in
the scene for the depth estimation task.

A.2 SPDNN Parallelization Methodology

A.2.1 Graph Contraction
A consideration while parallelizing NNs is that having the
same structure of layers with the same distance from the
input might lead all the layers to converge to similar values.
For example, the first layer in all of the networks shown in
Figs. 13–20 is a 2-D convolutional layer with a 3 × 3 kernel.

The SPDNN idea uses graph contraction to merge several
NNs. The first step is to turn each network into a graph in
which it is necessary to consider each layer of the network
as a node in the graph. Each graph starts with the input node
and ends with the output node. The nodes in the graph are
connected based on the connections in the corresponding
layer of the network. Note that the pooling and unpooling
layers are not represented as nodes in the graph, but their
properties will stay with the graph labels, which will be
explained later.

Figures 13–20 presents the networks and their corre-
sponding compressed graphs. Two properties are assigned
to each node in the graph. The first property is the layer struc-
ture, and the second one is the distance of the current node to
the input node. To convert the network into a graph, a label-
ing scheme is required. The proposed labeling scheme uses
different signs for different layer structures, C for convolu-
tional layer (e.g., 3C mean a convolutional layer with 3 × 3
kernel), F for fully connected layer (e.g., 30F means a fully
connected layer with 30 neurons), and P for pooling property
(e.g., 4P means that the data have been pooled by the factor
of 4 in this layer).

Some properties, such as convolutional and fully connected
layers, occur in a specific node, but pooling and unpooling
operations will stick with the data to the next layers. The pool-
ing property stays with the data except when an unpooling or
a fully connected layer is reached. For example, a node with
the label (3C8P, 4) corresponds to a convolutional layer with
a 3 × 3 kernel, the 8P portion of this label indicates that the
data have undergone 8 × 8 pooling, and the four at the end
indicates that this label is at a distance of four from the input
layer. The corresponding graphs, with assigned labels for each
network, are shown in Figs. 13–20.

The next step is to put all these graphs in a parallel format
sharing a single input and single output node. Figure 21
shows the graph in this step.

Fig. 19 Top row: network 7, Bottom row: graph corresponds to network 7.

Fig. 20 Top row: network 8, Bottom row: graph corresponds to network 8.
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In order to merge layers with the same structure and the
same distance from the input node, nodes with the exact
same properties are labeled with the same letters. For exam-
ple, all the nodes with properties (3C, 1) are labeled with
letter A, and all the nodes with the properties (3C2P, 4)
are labeled K, and so on.

The next step is to apply graph contraction on the paral-
lelized graph. In the graph contraction procedure, the nodes
with the same label are merged to a single node while saving
their connections to the previous/next nodes. For instance,

all the nodes with label A are merged into one node, but
its connection to the input node and also nodes B, C, D,
and E are preserved. The contracted version of the graph in
Fig. 21 is shown in Fig. 22.

Afterward, the graph has to be converted back to the NN
structure. In order to do this, the preserved structural proper-
ties of each node are used. For example, node C is a 3 × 3
convolutional layer that has experienced a pooling operation.
Note that the pooling quality will be recalled from the origi-
nal network.

Fig. 21 Parallelized version of the graphs shown in Figs. 13–20 sharing a single input node and single
output node.

Fig. 22 Contracted version of the big graph shown in Fig. 21.
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The concatenation layer is used in the NN in order to
implement the nodes wherein several other nodes lead to
one node. For example, in nodes N and O the outputs of
nodes J, K, L, and M are concatenated with the pooling
qualities taken from their original networks.

The graph is translated back to a DNN. The network
corresponds to the graph shown in Fig. 22.

A.3 SPDNN: How It Works and Why It Is Effective?
One might ask why the SPDNN approach is effective and
what the difference is between this approach and other mix-
ing approaches. Here, the model designed by the SPDNN
scheme is investigated in the forward and backpropagation
steps. The key component is in the backpropagation step
where the parameters in parallel layers influence each
other. These two steps are described below:

Forward propagation: Consider the network designed by
the SPDNN approach shown in Fig. 23. This exemplary net-
work is made of five subnetworks. Just the general view of
the network is shown in this figure and the layers’ details are
ignored since the main goal is to show the information flow
within the whole network.

When the input samples are fed into the network, the data
travel through the network along three different paths shown
in Fig. 24.

At this stage, the parallel networks are blind to each other,
i.e., the networks placed in parallel do not share any infor-
mation with each other. As shown in Fig. 24, the data trav-
eling in Sub-Net 1 and Sub-Net 2 are not influenced by each
other since they do not share any path together, as in Sub-Net
3 and Sub-Net 4.

Backpropagation: While training the network, the loss
function calculated based on the error value at the output
of the NN is a mixed and merged function of the error
value corresponding to every data path in the network. In
the backpropagation step, the parameters inside the network
update based on this mixed loss values, i.e., this value back-
propagates throughout the whole network as shown in
Fig. 25. Therefore, at this stage of training, each subnetwork
is influenced by the error value from every data path shown

in Fig. 25. This illustrates the way each subnetwork is trained
to reduce the error of its own path and also the error from
the mixture of all paths.

The main difference between the SPDNN approach and
other mixing approaches, such as the voting approach, lies in
the backpropagation step where different subnets are influ-
enced by the errors of each other and try to compensate for
each other’s shortcomings by reducing the final mixed error
value. In the voting approach, different classifiers are trained
independently of each other and they do not communicate to
reduce their total error value.

A.3.1 SPDNN versus Inception
One of the approaches that has superficial similarities to
SPDNN is the inception technique.64 For clarity, and to aid
the reader in understanding, the authors list four significant
points of difference between SPDNN and inception with
regard to mixing networks.

1. The main idea in SPDNN is to maintain the overall
structure of the networks, but to mix them in a reason-
able way. For example, if there is a big kernel such
as 13 × 13 in one of the configurations, the SPDNN
method always preserves the structure (13 × 13
kernel) inside the final network. This contrasts with
inception,64 which reduces larger kernels into smaller
ones.

2. In the inception method, all the layers are merged into
one final layer, which does not happen with the
SPDNN approach.

3. The number of the layers in the SPDNN architecture is
less than or equal to the number of layers in the origi-
nal networks. In contrast, the inception idea aims
to increase the number of layers in the network by
(it breaks down each layer into several layers with
smaller kernels).

The SPDNN idea is to design a new network from
existing networks that perform well at some task or subtask
while the idea in inception is to design a network from
scratch.

A.4 Comparisons of Individual Networks
In this section, the behavior of each subnetwork is investi-
gated and compared with the final network. Each of the eight
networks proposed in Appendix A.2 is trained on the training
data explained in Sec. 2.2. The training is performed in the
Lasagne library on top of Theano in Python. Training is done
on a standard desktop with an NVIDIAGTX 1080 GPU with
8 GB memory.

Fig. 23 A network designed using the SPDNN approach. It contains
five subnetworks placed in parallel and semiparallel forms.

Fig. 24 Forward propagation inside the SPDNN. There are three dif-
ferent paths on which the information can flow inside the network.

Fig. 25 Backpropagation for SPDNN. The mixed error is backpropa-
gated throughout the network while updating parameters.
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In the presented experiments, the MSE value between the
output of the network and the target values has been used as
the loss function, and the Nestrov momentum technique with
learning rate 0.01 and momentum 0.9 has been used to train

the network. The training and validation losses for the first
300 epochs are shown Figs. 26 and 27, respectively.

The convergence of the network is significantly increased
after merging the networks for both training and validation
sets. The fluctuations in validation are less for the merged
network, which demonstrates less variance in the loss value.
This shows a more stable training process when the SPDNN
is applied.

This is also shows how much pooling can help the
network to converge and also that networks with fully
connected layers are providing better overall outputs, but
they miss details in the depth maps since they observe the
input sample as a single entity.

The evaluation of each network on the test set is presented
in Table 10.

The merged network is giving superior results compared
to each individual network for all measurements. This is
while the final merged network is designed to have the
same number of parameters as each individual subnetwork.
This means that the same memory efficiency and also the
processing speed for the merged network stay same as for
the subnetworks.

Appendix B: SegNet
SegNet is a fully convolutional semantic image segmentation
framework presented in Refs. 51 and 52. This model uses the
convolutional layers of the VGG16 network as the encoder
of the network and eliminates the fully connected layers, thus
reducing the number of trainable parameters from 134 M to
14.7 M, which represents a reduction of 90% in the number
of parameters to be trained. The encoder portion of SegNet
consists of 13 convolutional layers with ReLU nonlinearity
followed by max-pooling (2 × 2 window) and stride 2 in
order to implement a nonoverlapping sliding window. This
consecutive max-pooling and striding results in a network
configuration that is highly robust to translation in the
input image but has the drawback of losing spatial resolution
of the data.

This loss of spatial resolution is not beneficial in segmen-
tation tasks where it is necessary to preserve the boundaries
of the input image in the segmented output. To overcome
this problem, the following solution is given in Ref. 51.
As most of the spatial resolution information is lost in

Fig. 26 Training loss for each subnetwork and also the merged
network.

Fig. 27 Validation loss for each subnetwork and also the merged
network.

Table 10 Test loss for each subnetwork.

Net #1 Net #2 Net #3 Net #4 Net #5 Net #6 Net #7 Net #8 Net merged

PSNR 12.2409 12.0153 12.3419 12.4382 12.1458 13.0247 12.3698 13.2233 15.0418

MSE 0.0640 0.0672 0.0639 0.0628 0.0676 0.0556 0.0639 0.0527 0.0378

RMSE 0.2486 0.2549 0.2471 0.2447 0.2535 0.2293 0.2467 0.2238 0.1854

SNR 0.8944 1.2153 1.3206 1.5260 2.5726 0.8139 1.5435 0.9104 8.822

MAE 0.2028 0.2081 0.2007 0.1938 0.2009 0.1864 0.2001 0.1798 0.1442

SSIM 0.9918 0.9914 0.9918 0.9922 0.9916 0.9927 0.9918 0.9932 0.9952

UQI 0.0455 0.0526 0.0856 0.1044 0.0954 0.1067 0.1154 0.1015 0.8401
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the max-pooling operation, saving the information of the
max-pooling indices and using this information in the
decoder part of the network preserves the high-frequency
information.

Note that for each layer in the encoder portion of the
network, there is a corresponding decoder layer. The idea
of SegNet is that wherever max-pooling is applied to the
input data, the index of the feature with the maximum
value is preserved. Later these indices will be employed to
make a sparse feature space before the deconvolution step,
applying the unpooling step in the decoder part. A batch
normalization layer35 is placed after each convolutional
layer to avoid overfitting and to promote faster convergence.
Decoder filter banks are not tied to corresponding encoder
filters and are trained independently in the SegNet
architecture.
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G.1 Deep Learning For Consumer Devices and Services

IEEE Consumer Electronics Magazine is a peer reviewed technical magazine with an impact
factor of 3.273. Throughout the course of my PhD I have published 4 articles in this magazine
on deep learning for consumer devices aimed at researchers and practitioners in the consumer
electronics industry.

The first of these articles "Deep Learning for Consumer Devices and Services" won a
best paper award from the IEEE Consumer Electronics society in 2018, and as of this writing
is my second most cited publication. This first article in the series aims to introduce deep
learning to a CE audience starting from the basics. It also serves to augment the introduction
to this thesis, providing details on foundational techniques in deep learning.

The next article in the series, "Deep Learning for consumer devices and services II",
describes the current state of "Edge AI", focusing on emerging trends and technologies. It is
the cover article on the September/October issue of IEEE Consumer Electronics Magazine
and discusses deep learning in "edge" scenarios including AR/VR, DMS, bio-metrics and
other applications. The emergent shift from cloud based to device based inference is also
discussed.

The third article explains traditional augmentation techniques and the fourth describes
techniques for learnable augmentation" for a CE audience. This last article was written
concurrently with this thesis and borrows heavily from section 2.2. These last two articles
have been accepted for publication and are expected to be published in early 2020.

G.2 Contributions to Deep Learning Education

I’m grateful to have had the opportunity to share my knowledge and passion for deep
learning research in a formal classroom setting at NUIG. I was also able to run a successful
workshop at IEEE GEM 2018, attracting 20 participants, which enabled dissemination of
this knowledge beyond the classroom.

Since Engineering students are increasingly likely to encounter technologies based on
deep learning in their careers, it is important to give them a foundation in deep learning
techniques and methodologies, even if they don’t intend to directly utilize neural networks in
their future.

G.2.1 Mobile Device Technology: A First DL Lab

My first opportunity to design a lab at NUIG was for electronic engineering masters students
in the Mobile Device Technology (EE5116) class in 2017 organized as a double lab. This
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was the 7th and final lab for the students. On the day of the lab, I started with a brief lecture
on the fundamentals of Deep Learning and passed out a Raspberry Pi disk image containing
code and libraries that the students would need for completing their assignments, which were
to be done in Tensorflow, Keras, and Python. A copy of the lab handout I wrote for this class
can be found in appendix H.

Designing such a disk image was more difficult in 2017 than it would be in 2020 as
Tensorflow had no official ARM support at that time. Fortunately, an unofficial Tensorflow
port existed for ARM, so I included a prebuilt version of this and other dependencies in the
image.

The first portion of the lab was designed to introduce students to deep learning tools
and to give them a chance to utilize a neural network, both at inference time and training
time, as well as to appreciate the amount of time needed for training as opposed to inference.
When they were finished with part 1, they understood why we train neural networks on
powerful GPUs and not small ARM processors such as those in the Raspberry Pi but just as
importantly, they learned that these processors are more than good enough for inference.

In part 2 of the lab, the students downloaded pretrained weights for Squeezenet [80]. I
supplied them with a Python script that would take an image as a command line argument
and, using supplied weights and class labels, provide a prediction and confidence value.
Squeezenet is a binarized network that was chosen due to the fact that such quantized or
compressed networks are important in embedded devices, where computing resources are
scarce.

As in part one, the students used the Raspberry Pi, the supplied code, and instructions
to identify the classes and confidences of 5 images of everyday animals and objects. They
were asked to download these images from the internet using an image search tool such as
Google images and were able to choose any image they liked. At this point they were not to
worry if the image they picked was one of the classes that the network had been trained on
yet. During the lab students were asked if they could find images that were misclassified by
the model.

At this point, the students had been given the experience of training a model and of using
a model for specific images.

The last section of the lab (part 3) was designed to be more difficult; the previous two
tasks allowed them to treat a network as a "black box", but the final task required modifying
the supplied code to create an independent assessment of the network’s performance on a
separate dataset, which the students made themselves during the lab.

This is an important skill because the reported accuracy for neural networks are seldom
as high as when tested on a separate dataset. This allowed us to have a discussion on
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generalization, datasets, and being skeptical about how well reported results will be reflected
in a related but different use-case.

G.2.2 The Edge AI Workshop at IEEE GEM 2018

In the spring of 2018, I became involved in helping to organize the IEEE Games, Enter-
tainment and Media conference, which would take place in Galway, Ireland. A copy of the
handout for the "hands on" section of the workshop can be seen in Appendix I.

Given the success of the Deep Learning lab for the masters students, I decided to
expand the masters lab to a workshop/tutorial that would be co-located with this conference.
Participants paid between 150 dollars to 400 dollars depending on IEEE membership and
whether they also were registered for the full conference. Fotonation/Xperi paid for 7 of their
engineers to attend, but we had attendees from all over the world. I served as the workshop
chair and organizer. My colleague Shabab Bazrafkan also contributed to the materials but I
had the overall responsibility to co-ordinate the material and its delivery.

The first part of the workshop (from 9:00 to 11:00) contained practical and theoretical
lectures on deep learning and edge AI. These lectures were intended to give participants with
no previous machine learning background the ability to understand what Edge AI is about
and to feel comfortable participating in the last two sessions 11:30 to 16:00. The lectures
were given by Shabab Bazrafkan, Peter Corcoran, and myself.

Since this was an all day event and we had a budget for materials, I was able to expand
the Masters lab to include training on GPUs.

Before the workshop I prepared 20 USB sticks with Ubuntu Preinstalled with Tensorflow-
gpu, Caffe, Keras and everything the participants would need to train deep learning algo-
rithms.

After the workshop, each participant received one of these USB sticks so that they could
have the same build environment, tools, and GPU drivers used during the lab. This was
important because the process of configuring a PC with a GPU to run deep learning software
was still error prone and could sometimes result in days of work just to get the environment
built correctly for engineers. With this stick, getting a working development environment to
get started with deep learning simply required, they select the provided USB drive at boot.

For the first hands-on session of the workshop participants would train a classifier on
MNIST using the GPUs and also on the Raspberry Pis. Participants were put in groups of 2
to enable collaborative learning. Besides this training, the first hands-on session was nearly
identical to the Masters lab described previously.

The second hands-on session (from 13:30-16:00) involved building various Edge AI
technology prototypes using a Raspberry Pis and Movidius sticks.
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Fig. G.1 An Edge-AI kit supplied to participants in the Edge-AI workshop at IEEE GEM
2018 in Galway Ireland.
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The first such task was to take the network they had previously trained on MNIST with
the GPU and use it to create a real-time hand-written digit recognizer using a Raspberry Pi
with a PiCAM, a Movidius stick, and a 7 inch touch screen.

I provided the code to do this, but to make their digit recognizer work well on actual
hand-written digits (which they were encouraged to write themselves on a sheet of paper)
they needed to figure out how to modify the provided code to change the color images to
black and white images that look like those the network was trained on. I distributed working
"answer" code as well as hints to the TAs ahead of time so that if anyone was struggling they
could get help from the TAs or from myself, but few needed it.

An important lesson from this first task was that even a network that has over 99%
accuracy on hand written digits must be given data that looks similar to what it was trained
on if it’s to be useful in any way.

The final task involved building a battery powered, real-time object detector based on
MNIST with their Raspberry PI, PiCAM, and Movidius stick. We purchased a collection of
toys that participants could use to see if their device worked properly.

I ran tests before the workshop to ensure that the batteries we provided could provide
power for such a use case for at least 4 hours before running out of charge. Feedback from
the workshop was very positive and the participants seemed to enjoy it.

G.2.3 Mobile Device Technology and ESAP labs

As a result of student feedback from 2017 and previous years, it was desired that the
Embedded Systems Applications Programming class at NUIG be redesigned to utilize
continuous lab-based assessment in place of a final exam.

Under Peter Corcoran’s supervision, my colleague Aoife and I redesigned the labs to fit
this style of assessment and also updated the class with new topics for 2018.

At the same time, we redesigned the Mobile Device Technology labs taken by the graduate
students similarly, although they also had exams.

We designed 9 of these lab classes, with topics such as shell scripting and Linux, Python,
version control with git, image processing, IOT devices and lastly Deep Learning.

The labs were designed such that approximately 70% of the grade came from correctly
following instructions and paying attention to the previous labs, whereas the remaining 30%
was intended to be challenging. Thus the usual format was to have 2 or 3 "challenges".

To prepare the students for the deep learning section, I gave several lectures on deep
learning to the ESAP undergraduate and MDT graduate class. This was my first time giving
formal lectures at NUIG.
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The deep learning lab was largely based on our practical experiences from the workshop
except that due to resource constraints we could not provide the students access to suitable
GPUs to use for training networks. Because this lab was more challenging than the others,
students were given 2 lab sessions to complete it.

Another difference was that a final challenge was added whereby students would modify
the YOLO code so that the boxes predicted with YOLO were run through the Squeezenet
network they used previously, thus expanding the number of classes that could be predicted
from 20 to 1000. The handout given to the students for the deep learning lab can be found in
Appendix J





Appendix H

Worksheet for MDT lab 7 (EE5116) on
Deep Learning



Lab EE5116 - Week 7 
 
Content:  First experience using Deep Learning Neural Networks. 

Evaluate Neural Network performance.  
Pre-requisite: 16 Gb SD-cards 
Milestones:  
1) Flash Raspbian image onto SD-card (Win32DiskImager, SD Formatter) 
2) Download the required documents (provided on BlackBoard) 
3) Train a network using the RPi 
4) Evaluate the network using an image 
5) Evaluate the network using 3 sets of images 
 
 
 
  



 

Part 0: Flash Raspbian image 
 

1. Copy the Raspbian image provided by the TAs and unzip its contents (approx. 16Gb) 
2. Download and install Win32DiskImager and SD Card Formatter 
3. Insert the sd-card in your computer using an sd-card reader 
4. Format the sd-card you have (clear all partitions) with SD Card Formatter 
5. Open Win32DiskImager and set the path to the 16 Gb image 
6. Flash the image onto the sd-card by clicking on ‘Write’ (approx. 10 minutes) 

 
Part 1: -- Training a deep neural network 
 

1. Insert SD card and start up pi 
2. Enter the “deeplearning” directory.  
3. Run the mnist demo with python mnist.py 

Allow the CNN to train a while to get a feel for the time it takes to train on a raspberry pi compared to 
a GPU. Let it run for at least 3 minutes.  

4. Before you stop it, write down the current epoch, the “ETA, the loss, and the accuracy in a 
separate file for a TA to view later.   

Question: What epoch will be reached by the Raspberry Pi if we don’t stop it? The student making the 
best guess is going to receive 0.25 points extra  

 
Part 2:  -- Using/Deploying a deep neural network.  
 
Since training on a raspberry pi is typically wasteful in terms of time and power consumption, we will 
instead use a pre-trained model. You can find pre-trained networks for a variety of tasks online and 
these can be deployed to a PI.  
It’s important to choose a model wisely as many of them are excessively large and unwise to use on 
embedded or mobile electronics. For this exercise we’ll be using squeezenet [1], a binarised network 
that achieves similar accuracy to larger well known models on imagenet while being about 2 orders of 
magnitude smaller. For example, VGG16 is 528 MB and inception V3 is 92 MB whereas squeezenet is 
5 MB with similar performance.  Squeezenet can be deployed on mobile phones, raspberry pi’s, and 
other resource constrained hardware. The size of the network is 5 MB.    

1. Make a new directory under deeplearning called squeeze 
2. Enter that directory 
3. Download a pretrained version of squeezenet with weights in a format tensorflow will 

understand 
 

wget https://github.com/avoroshilov/tf-squeezenet/raw/master/sqz_full.mat 
 

4. Download class labels: 
 

wget https://github.com/avoroshilov/tf-squeezenet/raw/master/synset_words.txt 
 

5. Download script deeplearning.py from blackboard.  



6. Use google image search to locate 5 images of everyday objects or animals. Download these 
images and use the script to get the class predictions and confidences for each of the 5 images 
you download.  

7. Write the class predictions and confidences to a file for later discussion with a TA.  
 

Part 3: -- Evaluating a Deep neural network.  
 
Neural networks often report accuracy information on specific datasets, but these datasets may or 
may not be similar enough to yours to be useful for you. In this exercise, you will create a very small 
dataset, annotate that dataset with class labels, and evaluate squeezenet on specific classes.  
 

1. Open the file synset_words.txt and take a moment to browse the class labels. The class labels 
look like this: n12267677, beside each class label is one or more corresponding words. 

2. Decide on three classes that you want to use to evaluate the network.  
3. Using google image search or another tool of your choice, locate and download 5 images for 

each class by using the words that correspond to the class label.  
4. Prepare a text document in the same directory that your files are in. You may format your file 

in CSV format like this:  
 

classlabel , filename 
classlabel , filename 

 
5. Write all 15 of your image file names and class labels to the file using the format above and 

save it as annotations.txt 
6. Make a copy of the python script from Part 2 and save it as deeplearning2.py  

 
7. In the function def main(): , note the line imgname=sys.argv[1]. It accepts the name of an 

image file as its first argument. Instead we want it to accept annotations.txt that we made in 
the previous stage and to create two python lists: a list of file names and a list of classes from 
this annotations file. You can use the python “split” function or csvreader (use online 
resources!!) 

8. You’ll notice that the code (deeplearning.py) loads just one image and reports the predicted 
class and confidence (probability) for that prediction. Modify the code so that it will provide 
predictions for all 15 of your images. The efficiency of the code will be taken in consideration 
when evaluated by a TA. 

9. Write code to automatically check the predictions from above against the “real” or “ground 
truth” labels that you read from annotations.txt 

10. Change the output of the program to report the total number of times the predicted labels 
were not the same as the true labels.   

 
REFERENCES 

[1] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, “SqueezeNet: 
AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size,” pp. 1–13, 2016. 
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Hands on session 1 (11:30-13:00) 
 

Part 1A: -- Training a deep neural network on GPU 
In this exercise you will train a neural network on the famous MNIST dataset of hand written digits.  

The computers you are using contain NVIDIA 1080 TI GPUs.  

1. Log in to PC and open a terminal window with 

CTRL+ALT+T 

2. Type nvidia-smi and note the details of the graphic cards 

including any tasks running on them. nvidia-smi is one of 

the most useful commands for determining if any jobs are 

running on the GPU as well as resource utilization 

information.  

3. Navigate to ~/workspace/ncappzoo/tensorflow/mnist and type make train. This starts the 

process of training the network on MNIST and will provide a graph file for later use.  

4. When training is complete a graph file will be created. Let this process run as you proceed to 

the next steps.  

Part 1B: -- Training a deep neural network on RPIs 
1. Connect mouse, keyboard, and monitor to the Raspberry PI using provided material.  

2. Insert SD card and start up pi, 

3. Enter the “~workspace/deeplearning” directory.  

4. Run the mnist demo with python3 mnist.py 

Allow the CNN to train a while to get a feel for the time it takes to train on a raspberry pi compared to 

a GPU. Let it run for at least 3 minutes.  

 

Part 2:  -- Using/Deploying a deep neural network.  
 

Since training a neural network on a raspberry pi is typically wasteful in terms of time and power 

consumption, we will instead use a pre-trained model. You can find pre-trained networks for a variety 

of tasks online and these can be deployed to a PI.  

It’s important to choose a model wisely as many of them are excessively large and unwise to use on 

embedded or mobile electronics. For this exercise we’ll be using squeezenet [1], a binarized network 

that achieves similar accuracy to larger well known models on imagenet while being about 2 orders of 

magnitude smaller. For example, VGG16 is 528 MB and inception V3 is 92 MB whereas squeezenet is 

5 MB with similar performance.  Squeezenet can be deployed on mobile phones, raspberry pi’s, and 

other resource constrained hardware.  

1. Inside the workspace directory make a new directory called squeeze 

2. Enter that directory 

3. Download a pretrained version of squeezenet with weights in a format tensorflow will 

understand 

 

wget https://github.com/avoroshilov/tf-squeezenet/raw/master/sqz_full.mat 

 



4. Download class labels: 

 

wget https://github.com/avoroshilov/tf-squeezenet/raw/master/synset_words.txt 

 

5. Type cp workspace/deeplearning.py /workspace/squeeze/ 

6. Use Bing image search to locate 5 images of everyday objects or animals. Download these 

images to the same directory your script is stored in and use the script to get the class 

predictions and confidences for each of the 5 images you download.  

7. Did the network perform well or poorly? Was your accuracy the same as this network on 

imagnet? (top 1 accuracy is ~57% and top 5 accuracy ~80%).  

 

Part 3: -- Evaluating a Deep neural network.  
 

Neural networks often report accuracy information on specific datasets, but these datasets may or 

may not be similar enough to yours to be useful for you. In this exercise, you will create a very small 

dataset, annotate that dataset with class labels, and evaluate squeezenet on specific classes.  

 

1. Open the file synset_words.txt and take a moment to browse the class labels. The class labels 

look like this: n12267677, beside each class label is one or more corresponding words. 

2. Decide on three classes that you want to use to evaluate the network.  

3. Using google bing search or another tool of your choice, locate and download 5 images for 

each class by using the words that correspond to the class label.  

4. Prepare a text document in the same directory that your files are in. You may format your file 

in CSV format like this:  

 

classlabel , filename 

classlabel , filename 

 

5. Write all 15 of your image file names and class labels to the file using the format above and 

save it as annotations.txt 

6. Make a copy of the python script from Part 2 and save it as deeplearning2.py  

 

7. In the function def main(): , note the line imgname=sys.argv[1]. It accepts the name of an 

image file as its first argument. Instead we want it to accept the annotations.txt file that we 

made in the previous stage and to create two python lists: a list of file names and a list of 

classes from this annotations file. Hint: Use the python “split” function or csvreader.   

8. You’ll notice that the code (deeplearning.py) loads just one image and reports the predicted 

class and confidence (probability) for that prediction. Modify the code so that it will provide 

predictions for all 15 of your images.  

9. Write code to automatically check the predictions from above against the “real” or “ground 

truth” labels that you read from annotations.txt 

10. Change the output of the program to report the total number of times the predicted labels 

were not the same as the true labels.   

 

For more information on squeezenet view: https://arxiv.org/pdf/1602.07360.pdf 

 

 



 

 

Hands on session 2 (13:30-14:50 [as late 
as 16:00 for those who wish to stay 
longer]) 
 

Part 1: -- Assembling and using a battery powered Edge AI device 
1. Connect Camera, 7 inch touch screen, and plug in movidious stick as shown in Adrian’s 

demonstration. Connect keyboard.  

2. Boot up PI.  

3. Using keyboard find IP address of PI using ifconfig 

4. On your PC, open an SSH connection to the PI using: ssh pi@[ip] in a terminal window. 

Experiment with a few commands to make sure everything is configured correctly. If you 

want to run any gui programs you can connect with ssh -XY : ssh pi@[ip] first.  

5. On your PC open filezilla.  

6. In the file menu select site manager.  

7. Enter the information for your PI as shown below and click connect 

8.  
9. Copy the mnist graph file to [directory] on the raspberry PI.  



Information covered in this part will help speed up development and debugging in the remaining 

parts.   

Part 2: -- Assembling a battery powered Digit recognizer 
As you saw in the first session, your model performs very well on the MNIST dataset. But how well 

does it work on real data from a PI CAM? In this subsection the graph file from the first session will 

be used to make a hand written digit recognizer. 

1. Write digit on piece of paper.  

2. Move the graph file you copied to ~workspace/mnist 

3. cd ~workspace/mnist 

4. mnist.py uses the NCS to perform inference on live frames from a camera. Before we run it 

there are a few things you should know.  

a. We’re using the NCS 2.0 SDK, which is the latest library for the movidius neural 

compute sticks because it has several advantages over 1.0, including the ability to 

queue multiple graphs and inputs.  The 2.0 SDK was released recently and is 

incompatible with the 1.0 SDK. If you find code written for the 1.0 version of the 

library, the conversion is easy. You can follow the directions here to do it:  

https://movidius.github.io/ncsdk/ncapi/python_api_migration.html 

5. Type python3 mnist.py 

6. Try to get it to recognize a written digit by pointing the camera at it. Did it work as well as 

you thought it would?  What’s going wrong?  

 

The problem is, your network was trained on images that are 28 by 28 with each digit 

centered, written with white on black with non-noisy backgrounds. Neural networks are not 

magic, they can only work with data that is similar to information they are trained on. To get 

your live digit recognizer to work you’ll need to use some image processing 

techniques make the digits you wrote look more those in the mnist dataset.  

7. See if you can get your input similar to this by converting the images to 

white on black, cropping, and any other techniques you can think of. If you are struggling 

with this, ask a TA for a “hint” or for a working code snippet.   

8. Now that you’ve made these improvements, try again. Center the camera directly over the 

digit you want to recognize and you should get a better result.  

Part 3: -- Real time Object Detector.  
In this task a battery powered, live object recognizer is developed based on the yolo algorithm.  

Delegates set up battery powered real time yolo on a movidius stick with a picam and a raspberry pi 

for object recognition. For more information about the yolo algorithm see: 

https://pjreddie.com/darknet/yolo/ 

1. On your raspberry PI, navigate to ~/workspace/yolo 

2. In idle3 or nano, open runyolo.py 

3. This script won’t run as is. Read through the code and locate the parts marked with “TODO” 

comments. If you need any help, don’t hesitate to ask a TA for hints or working solutions. Use 

the mnist example as a reference.  

4. When you’ve implemented the changes, walk around the room and see what predictions your 

hand held object recognizer gives you for various people and objects. At what distance does it 

stop working? There are a variety of toys for you to test your object recognizer on.  See what 

happens when you change perspectives and backgrounds or when you adjust the threshold.   



Part 4: -- Bonus round! 
If additional time is left and, you are free to train, test, or modify any demo from the 

~workspace/ncappzoo or ncsdk/examples located both on the USB stick and on the raspberry PI’s SD 

card or to try some bigger models on the NVIDIA GPUs. Feel free to test out any ideas you may have. 

As always, don’t hesitate to contact the TAs if you would like advice.   



Appendix J

Deep learning labs in 2018



ESAP lab 9 and 10 
 

Task 1 – Try training a digit recognizer on a raspberry pi.  
1. Connect mouse, keyboard, and monitor to the Raspberry PI using provided material.  

2. Insert SD card and start up pi, 

3. Create and enter a directory called ESAP9 

4. Clone the esap 9 on github.  

5. Download mnist.py from the lab 9 blackboard python3 mnist.py 

Allow the CNN to train a while to get a feel for the time it takes to train on a raspberry pi compared to 

a GPU. Let it run for at least 3 minutes. 

6. Stop the program with ctrl+c, copy and paste the network’s progress information and save it 

to a file called progress.txt 

7. This code was training a digit recognizer on your raspberry pi. This would take less than 

minutes to fully train on a modern GPU and approximately 8 hours to finish training on your 

PI.  

 

Task 2:  -- Using/Deploying a deep neural network.  
 

Since training a neural network on a raspberry pi is typically wasteful in terms of time and power 

consumption, we will instead use a pre-trained model. You can find pre-trained networks for a variety 

of tasks online and these can be deployed to a PI.  

 

It’s important to choose a model wisely as many of them are excessively large and unwise to use on 

embedded or mobile electronics. For this exercise we’ll be using squeezenet [1], a binarized network 

that achieves similar accuracy to larger well known models on imagenet while being about 2 orders of 

magnitude smaller. For example, VGG16 is 528 MB and inception V3 is 92 MB whereas squeezenet is 

5 MB with similar performance.  Squeezenet can be deployed on mobile phones, raspberry pi’s, and 

other resource constrained hardware.  

1. Copy deeplearning.py to a new directory called squeeze 

2. Enter that directory 

3. Download a pretrained version of squeezenet with weights in a format tensorflow will 

understand 

 

wget https://github.com/avoroshilov/tf-squeezenet/raw/master/sqz_full.mat 

 

4. Download class labels: 

 

wget https://github.com/avoroshilov/tf-squeezenet/raw/master/synset_words.txt 

 

5. Use Bing image search to locate 5 images of everyday objects or animals. Download these 

images to the same directory your script is stored in and use the script to get the class 

predictions and confidences for each of the 5 images you download.  

6. To use deeplearning.py simply give it the name of an image file as an argument.  

7. Did the network perform well or poorly? Was your accuracy the same as this network on 

imagnet? (top 1 accuracy is ~57% and top 5 accuracy ~80%).  



8. Save the class predictions, filepath, and accuracy for these 5 images that you chose in a file 

called predictions.txt for your TA to view later.  

 

 

Task 3: -- Evaluating a Deep neural network.  
 

Neural networks often report accuracy information on specific datasets, but these datasets may or 

may not be similar enough to yours to be useful for you. In this exercise, you will create a very small 

dataset, annotate that dataset with class labels, and evaluate squeezenet on specific classes.  

 

1. Open the file synset_words.txt and take a moment to browse the class labels. The class labels 

look like this: n12267677, beside each class label is one or more corresponding words. 

2. Decide on three classes that you want to use to evaluate the network.  

3. Using bing search locate and download 5 images for each class by using the words that 

correspond to the class label.  

4. Prepare a text document in the same directory that your files are in. You may format your file 

in CSV format like this:  

 

classlabel , filename 

classlabel , filename 

 

5. Write all 15 of your image file names and class labels to the file using the format above and 

save it as annotations.txt 

6. Make a copy of the python script from Part 2 and save it as deeplearning2.py  

 

7. In the function def main(): , note the line imgname=sys.argv[1]. It accepts the name of an 

image file as its first argument. Instead we want it to accept the annotations.txt file that we 

made in the previous stage and to create two python lists: a list of file names and a list of 

classes from this annotations file. Hint: Use the python “split” function or csvreader.   

8. You’ll notice that the code (deeplearning.py) loads just one image and reports the predicted 

class and confidence (probability) for that prediction. Modify the code so that it will provide 

predictions for all 15 of your images.  

9. Write code to automatically check the predictions from above against the “real” or “ground 

truth” labels that you read from annotations.txt 

10. Change the output of the program to report the total number of times the predicted labels 

were not the same as the true labels.   

 

For more information on squeezenet view: https://arxiv.org/pdf/1602.07360.pdf 

 

 

Task 4: -- Assembling a battery powered Digit recognizer 
The mnist model you are using reports an accuracy of greater than 99%. But how well does it work 

on real data from a PI CAM? In this subsection the graph file from the first session will be used to 

make a hand written digit recognizer. 

1. Write digit on piece of paper. 



2. Assemble python tablet with picam and NCS stick. Feel free to use your battery for a power 

source if you’d like to be more mobile.  

3.  digit_recogniser.py uses the NCS to perform inference on live frames from a camera. Before 

we run it there are a few things you should know.  

a. We’re using the NCS 2.0 SDK, which is the latest library for the movidius neural 

compute sticks because it has several advantages over 1.0, including the ability to 

queue multiple graphs and inputs.  The 2.0 SDK was released recently and is 

incompatible with the 1.0 SDK. If you find code written for the 1.0 version of the 

library, the conversion is easy. You can follow the directions here to do it:  

https://movidius.github.io/ncsdk/ncapi/python_api_migration.html 

4. In digit_recogniser.py, change the line “graph_filename = "mnist_inference.graph"” to 

graph_filename = "inference.graphs” 

5. Type python3 digit_recogniser.py 

6. Try to get it to recognize a written digit by pointing the camera at it. Did it work as well as 

you thought it would?  What’s going wrong?  

The problem is, your network was trained on images that are 28 by 28 with each digit 

centered, written with white on black with non-noisy backgrounds. Neural networks are not 

magic, they can only work with data that is similar to information they are trained on. To get 

your live digit recognizer to work you’ll need to use some image processing techniques make 

the digits you wrote look more those in the mnist dataset.  

7. See if you can get your input similar to this by converting the images to 

white on black, cropping or using other computer vision techniques.  

8. Now that you’ve made these improvements, try again. Center the camera directly over the 

digit you want to recognize and you should get a better result.  

Task 5: -- Real Time Object Detector.  
In this task a battery powered, live object recognizer is developed based on the yolo algorithm.  

You will set up a battery powered real time yolo based object detector on a movidius stick with a 

picam and a raspberry pi for object recognition. For more information about the yolo algorithm see: 

https://pjreddie.com/darknet/yolo/ 

1. On your raspberry PI, open runyolo.py 

2. This script won’t run as is. Read through the code and locate the parts marked with “TODO” 

comments. Use the mnist example as a reference.  

3. When you’ve implemented the changes, walk around the room and see what predictions your 

hand held object recognizer gives you for various people and objects. At what distance does it 

stop working? There are a variety of toys for you to test your object recognizer on.  See what 

happens when you change perspectives and backgrounds or when you adjust the threshold.   

4. Try pointing it at a youtube video playing on a laptop or phone.  

Task 6: -- Combining everything 
 

There are a limited number of classes in yolo. Wouldn’t it be nice if we could get more detailed 

information about what each bounding box has in it?  

For this task, copy the file you made from task 6 to a new file called task7.py  

1. Modify tasky7.py so that it automatically saves each bounding box as an image every half 

second. Each of these images should be stored in a subdirectory called task7_images 



2. Copy the program you used in task 2 to a new file called task7_background.py 

3. task7_background.py should scan the task7_images directory every 2 seconds and print to 

the console the top 5 class labels of any newly added images. This means you’ll need to keep 

track of previously read images in a list or use some other technique to ensure you don’t 

reclassify the same images. This program should run continuously until closed and should 

use tensorflow on the raspberry PIs cpu as in task 2.  

4. In different terminals start both task7_background.py and task7.py 

5. Walk around the room for at least 30 seconds, allowing your pi to take images of a diverse 

range of things automatically and test your code. You should see bounding boxes drawn on 

your touchscreen and detailed classes for each object in a terminal window (with quite a bit 

of lag). This task would be more impressive if you could do it outside or in a space with a 

wide variety of objects and the battery would certainly allow this. Depending on the weather 

a short bonus project for additional points may be announced involving this during the lab.  
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