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Abstract

Marcos Cardinot

Coevolutionary Spatial Game Theory: The Impact of

Abstention and Dynamic Networks on the Evolution of

Cooperation

Since the dawn of evolutionary game theory, the standard models in

evolutionary dynamics have been developed under the assumption of a well-

mixed population where agents (individuals) can interact with all the other

agents in the population (i.e., unstructured population). However, in real-

world scenarios, populations are usually not well-mixed nor unstructured.

In this manner, concepts of graph theory to consider structured populations

in a network form have been extensively applied to evolutionary game the-

ory, giving birth to the so-called spatial evolutionary game theory domain.

Although there has been a lot of research undertaken into spatial evo-

lutionary game theory over the past number of years, the majority of this

research involves the use of static networks in compulsory games such as the

prisoner’s dilemma game. Recent studies have considered coevolutionary

spatial models adopting dynamic networks where both the game strategies

and the network itself are subject to evolution, which, in fact, constitute a nat-

ural upgrade in the field for being more accurate in describing many social

scenarios. For instance, in scenarios involving real biological networks and
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social networks, the number of individuals, their connections and the envi-

ronment are often dynamic. Those studies have been successful in exploring

the effects of coevolution in a compulsory game, where coevolution has been

recognized as a key mechanism to support cooperative behaviour. However,

there has been little success in accounting for the impact of abstention (vol-

untary/optional participation) in such coevolutionary models.

Thus, within the bounds of multi-agent systems and network science,

this thesis aimed to expand the knowledge of evolutionary game theory by

bridging the gap between abstention and dynamic networks in social dilem-

mas. Besides investigating the impact of dynamic networks on the evolution

of cooperation on both compulsory and voluntary games, this work also pro-

vided a novel perspective for understanding the foundations of cyclic domi-

nance behaviour in the context of the voluntary games.
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Chapter 1

Introduction

Advances in computer science and information technology have been con-

tinuously redefining the way we live, interact and work. With the revolution

of the internet and the increasing availability of high computational power in

affordable personal computers, studies on artificial intelligence and its appli-

cations have been gaining increasing attention. Within the area of artificial

intelligence, evolutionary computation arises as a fundamental technique

to solve practical problems by formulating and applying algorithms which

mimic either human cognitive abilities or the behaviour of living adaptive

systems in the execution of a given set of tasks [73, 91].

In this context, advances in artificial intelligence can directly impact

several branches of science, including research in the domain of decision

sciences. That research, in turn, is not only interested in finding an opti-

mal solution for a particular problem but also in understanding the driving

forces behind decision-making. In fact, social decision-making has been ex-

tensively explored since the 1950s with the rise of game theory, which is a

mathematical theory for decision-making in situations of conflict where the

decision of a rational agent (e.g., a person, company or entity) affects the

performance/behaviour of the collective [107, 108]. Despite being primarily
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developed in the context of economics to model economic competition be-

tween entities [176], game theory has been applied across a wide range of

disciplines concerning behavioural and social sciences, such as biology, psy-

chology, anthropology, sociology and political science [141, 132, 43].

While game theory has proven to be successful in modelling a number

of scenarios involving competition such as auctions and bargains, its appli-

cations are limited by the assumption that individuals are rational and self-

ish actors who are always interested in improving their own performances.

However, it is well known that scenarios involving human decision-making

usually include the emergence of altruistic behaviour [127]. Moreover, some

of the most important analytical tools within game theory, such as the Nash

equilibrium, fail in providing significant insights into real-world scenarios,

mainly because it does not consider that individuals might not have com-

plete knowledge of the game state. Interestingly, altruism and cooperation

are also one of the main puzzles in Darwin’s natural selection [40]. After

all, why would an individual reduce its own performance to improve the

performance of someone else? Considering a population of interacting and

reproducing individuals, how can Darwin’s natural selection lead to cooper-

ation?

In order to answer those questions and to understand the so-called

evolution of cooperation, the concepts of game theory and evolutionary the-

ory have been combined, giving rise to evolutionary game theory, which

is another field of research that aims to explain the emergence of altruism

and cooperative behaviour among rational individuals in complex environ-

ments [72, 142].

This chapter introduces the problem statement (Section 1.1) and gives

an overview of the research questions which will be addressed by the work

described in this thesis (Section 1.2). The hypotheses (Section 1.3), the main
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contributions (Section 1.5) and the publications (Section 1.6) of the work are

then outlined. Finally, Section 1.7 gives an overview of the topics discussed

in each subsequent chapter.

1.1 Problem statement

Within the areas of artificial life and agent based simulation, evolutionary

games such as the classical prisoner’s dilemma, and its extensions in the it-

erated form, have garnered much attention and have provided many useful

insights with respect to adaptive behaviours. The prisoner’s dilemma game

has attained this attention due to its succinct representation of the conflict be-

tween individually rational choices and choices that are for the better good.

In summary, this game is played by pairs of agents, who simultaneously de-

cide to either cooperate or defect, receiving a payoff associated with their

pairwise interaction as follows: R for mutual cooperation, P for mutual de-

fection, S for cooperating with a defector and T for successfully defecting

against a cooperator. The dilemma holds when T > R > P > S [132].

However, in many social scenarios that we may wish to model, agents

are often afforded a third option — that of abstaining from the interaction.

Incorporating this concept of abstention extends the prisoner’s dilemma

to a three-strategy game such as the optional prisoner’s dilemma game

(also known as the prisoner’s dilemma with voluntary participation), where

agents can not only cooperate or defect but can also choose to abstain from a

game interaction, receiving the so-called loner’s payoff (L). The dilemma is

maintained when T > R > L > P > S [147, 13]. There have been a number

of recent studies exploring this type of game, which have found that absten-

tion can lead to entirely different outcomes and eventually help cooperators
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to avoid exploitation from defectors [81, 102, 137, 177, 111, 130, 18, 55, 38, 99,

79, 34, 188, 152, 67].

In addition to analysing the evolution of different strategies and differ-

ent outcomes, previous work has also explored the effect of imposing spatial

constraints on agent interactions. Traditionally, studies assume no such con-

straints and agents are free to interact with all other agents in well-mixed

populations [9]. However, many models consider restricting interactions to

neighbourhoods of agents on some pre-defined topology, i.e., the so-called

network reciprocity mechanism, which has gained increasing attention for

its role in supporting cooperative behaviour. These more expressive models

include lattices, scale-free graphs, small-world graphs, cycle graphs, multi-

layer networks and others [127, 125, 155, 94]. In this spatial mechanism, each

agent is represented as a node in the network (graph) and is constrained to

interact only with its neighbours, which are linked by edges in the network.

Studies related to the network reciprocity mechanism constitute the field of

spatial evolutionary game theory [116].

Although there has been a lot of research undertaken into spatial evo-

lutionary game theory over the past number of years, the majority of this

research involves the use of static networks in compulsory games such as the

prisoner’s dilemma game. Recent studies have considered coevolutionary

spatial models adopting dynamic networks where both the game strategies

and the network itself are subject to evolution, which, in fact, constitute a

natural upgrade in the field for being more accurate in describing many so-

cial scenarios [93, 74, 20, 196, 164, 204, 49, 203]. For instance, in scenarios

involving real biological networks and social networks, the number of indi-

viduals, their connections and the environment are often dynamic. Those

studies have been successful in exploring the effects of coevolution in a com-

pulsory game, where coevolution has been recognized as a key mechanism to
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support cooperative behaviour [124]. However, there has been little success

in accounting for the impact of abstention in such coevolutionary models.

Thus, this thesis aims to expand the knowledge of evolutionary game theory

by investigating the impact of dynamic networks on the evolution of cooper-

ation on both compulsory and optional games.

Furthermore, it is known that in many situations involving voluntary

participation, such as in human interactions, the use of abstention as a pure

strategy may not be ideal to capture the social dilemma. In reality, depend-

ing on the context and the type of social relationships we are modelling, ab-

stention can also mean laziness, shyness or lack of proactivity, and all those

emotions, feelings or characteristics may exist within a certain range. For

instance, in the context of a poll of a number of individuals, there might be

some who vote and others who do not. In the latter case, considering all

the non-voters as abstainers might be too simplistic. In reality, there might

be some who abstain because they do not have a view at all and those who

occasionally abstain from convenience, lack of interest or because of some

external event. In this way, the present thesis also aims to extend the concept

of abstaining to scenarios where abstention is seen as a probabilistic attribute

instead of a pure strategy.

1.2 Open research questions

Despite the efforts to understand the conditions necessary for robust coop-

eration to emerge in coevolutionary spatial models, as well as the efforts to

investigate the role of abstention in social dilemmas, the impact of the com-

bination of those two trends in evolutionary game theory has not been well

explored. Thus, in order to fill this gap in the literature, the following re-

search questions will be investigated in this thesis.
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Q1: What is the impact of abstention on the emergence of cooperation in

coevolutionary spatial games?

This central research questions is investigated in Chapter 3. Considering

the introduction of the coevolutionary optional prisoner’s dilemma game

(COPD), the coevolutionary prisoner’s dilemma (CPD) and the traditional

version of those games; the sub-questions include: What is the difference

between the performance of the COPD compared to the CPD and the tradi-

tional version of those games? What is the impact of the link update rules

and its properties on the emergence of cooperation? How many abstainers

would be necessary to guarantee robust emergence of cooperation?

Q2: Can the phenomenon of cyclic competition be observed in a coevolu-

tionary spatial game with voluntary participation?

This central research question is explored in Chapter 4. Sub-questions in-

clude: If cyclic competition cannot be observed, then why does it happen in

the traditional case? Otherwise, what are the necessary conditions to break

the observed scenarios of cyclic dominance?

Q3: What is the role of heterogeneity in coevolutionary spatial games?

Explored in Chapter 5, this central research question involves the follow-

ing sub-question: Considering a weighted network, how do the link weights

evolve over time?
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Q4: Can abstention be modeled as a probability instead of a pure game

strategy?

This central research question is explored in Chapter 6. Sub-questions in-

clude: What is the impact of a probabilistic abstention on the emergence of

cooperation? What is the difference between this game and the traditional

PD and OPD games?

Q5: Does mobility support the evolution of cooperation in the voluntary

prisoner’s dilemma game?

Investigated in Chapter 7, this central research question involves the follow-

ing sub-questions: What is the role of dilution in a population of agents play-

ing the VPD game? Can the cyclic dominance behaviour be observed in a

scenario where agents are allowed to move?

1.3 Hypotheses

Considering the aforementioned central open research questions, this thesis

aims to investigate the following hypotheses:

• Hypothesis 1: The emergence of cooperation is favoured in the presence

of abstainers.

• Hypothesis 2: Coevolution of game strategies and network play a key

role in the sustenance of biodiversity (coexistence) because it allows

agents to also adapt the environment against exploitation from preda-

tory strategies.

• Hypothesis 3: Coevolutionary spatial models increase the heterogeneity

of states, which in turn induces the promotion of cooperation.
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• Hypothesis 4: Probabilistic abstention enhances the mechanisms of net-

work reciprocity by allowing cooperators to reduce the risk of being

exposed to defectors.

• Hypothesis 5: Cooperation and cyclic dominance in the voluntary pris-

oner’s dilemma game are biased by the use of the Fermi-Dirac distribu-

tion function
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1.4 Background literature

This section includes a comprehensive review of the literature relating to

game theory, evolutionary game theory, spatial game theory, and Monte

Carlo simulations. Finally, the concept of abstention in game theory is dis-

cussed.

1.4.1 Game theory

Imagine that you and a colleague have been arrested under the suspicion

of committing a crime. The prosecutor is sure that you both committed the

crime, but due to the lack of evidence, she can only prove the case if she

convinces you to betray your colleague. Thus, considering that you and your

colleague are in separate rooms, she decides to make a deal with you both as

follows:

• If you testify against your colleague and your colleague remains in si-

lence, then you will go free and your colleague will get three years in

prison.

• If you both testify against each other, then each will get two years in

prison.

• If you both remain in silence, then each will get one year in prison.

Note that the only way for you to go free is betraying your colleague.

However, if your colleague also decides to testify against you, then you both

end up in the worst scenario. At the same time, keeping silent is advanta-

geous only if you believe that your colleague will also keep silent. However,

if you believe that your colleague will not testify against you, then it would

be better for you to betray and go free. What would you do in this case?
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This paradox was first proposed by Melvin Dresher and Merrill Flood

in 1950, being later formalized as the prisoner’s dilemma by Albert Tucker

in the early 1950s [172, 54]. The mathematical solution for the paradox is

also well-known, i.e., considering that you and your partner are in separated

rooms and cannot negotiate a collaboration agreement, and considering that

you have no reason to be nice to each other, the decision of betraying is al-

ways the best choice because it ensures that you will always be in the best

scenario (you go free) or at least in a position that is not worse than your

opponent (you both get the same time in prison).

As discussed by Dimand & Dimand [42], the so-called theory of strate-

gic games has been studied since the 1710s when James Waldegrave pro-

posed the earliest min-max solution to a game [54]. The min-max theorem, in

turn, was only proved in 1928 by John von Neumann, which states that ev-

ery finite, zero-sum and two-player game has an optimal mixed strategy [109,

45]. Another key contribution to the theorem was given by John Nash who

extended von Neumann’s work and proved that in a general sum game with

two or more players, there has to be at least one strategy in which none of

the players can benefit from changing their strategies, i.e., the so-called Nash

equilibrium [107, 108]. The min-max theorem is recognized as the fundamen-

tal theorem of game theory, which has been established as a field of research

only after John von Neumann’s contributions to defining the principles of ra-

tional decision making [176], as well as for the works of John Nash in propos-

ing that at least one Nash equilibrium will exist in any finite game [107].

Game theory, in turn, can be formally defined as the mathematical theory to

model conflicting situations where the payoff of each player depends on the

decisions made by the opponents.
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The prisoner’s dilemma and 2× 2 games

The prisoner’s dilemma game is the most well-known game in game the-

ory and is still the most-often studied dilemma in the field for its simplicity

and ability to capture the complexity of establishing cooperation among self-

interested individuals. This game can be generalized as follows: two players

have to simultaneously decide to either cooperate or defect; there are four

payoffs corresponding to the pairwise interaction between the two players,

i.e., reward for mutual cooperation (R), punishment for mutual defection (P),

sucker’s payoff (S) and temptation to defect (T).

Prisoner 2
C D

Prisoner 1 C R,R S,T
D T,S P,P

TABLE 1.1: The prisoner’s dilemma game payoff matrix. Each
player can either cooperate (C) or defect (D). Decisions are
made simultaneously, where R is the reward for mutual coop-
eration, S is the sucker’s payoff, T is the temptation to defect
and P is the punishment for mutual defection. The dilemma

holds when T > R > P > S.

As shown in Table 1.1 for the generalized payoff matrix of the pris-

oner’s dilemma game, the dilemma is maintained when T > R > P >

S [132]. However, since Nowak & May’s seminal work [116], studies have

also been adopting a less-generalized parametrization where R = 1, P =

S = 0 and 2 > T > 1, which is usually referred as the weak version of

the prisoner’s dilemma. In this weak version, P can be equal to S without

destroying the nature of the dilemma, i.e., the dilemma is also maintained

when T > R > P ≥ S.

Despite being the standard game in the field, the prisoner’s dilemma

game is only one example in the class of the so-called 2× 2 games, i.e., the

two-player games which can be defined with a 2× 2 payoff matrix. Other

well-known games include the snow-drift dilemma [144] and the hawk–dove
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game [141], which, in fact, differs from the prisoner’s dilemma only in the

payoff constraints, i.e., T > R > S > P [66]. Those games have been also in-

vestigated in the iterated form, i.e., where the game is played repeated times

with the same opponent [8].

1.4.2 Evolutionary game theory

Analogous to the discussion in Section 1.4.1 for game theory, in order to in-

troduce evolutionary game theory, let’s start with a simple example. Inspired

by the example provided by Easley & Kleinberg for beetles in their book [48],

here we consider a scenario where a colony of ants compete for food. In

this colony, there are two types of ants, L and S, which fundamentally differ

by their body size. The competition always occurs in a pairwise interaction

and the possible scenarios are as follows: the type L is larger and more ag-

gressive; hence it always has an advantage when competing with the type

S. When two ants of the same species compete, both get the same amount

of food. However, given the aggressivity of the type L ants, they spend too

much energy in the competition and end up carrying less food than the case

of a competition between two ants of type S. This scenario can be described

as a game in game theory, where the payoff matrix is defined in Table 1.2.

Ant 2
Small Large

Ant 1 Small 4,4 1,7
Large 7,1 2,2

TABLE 1.2: The payoff matrix of a competing game between
ants with different body sizes.

Despite resembling the prisoner’s dilemma game for having only one

Nash equilibrium, and the stag-hunt game for the social coordination anal-

ogy [156], this game differs because the ants cannot choose which body size

(strategy) to be in each game interaction. Thus, traditional game theory and
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Nash equilibrium fail in providing insights to those scenarios because they

consider that the agent has a choice. However, in many real-world scenarios,

the agent’s fitness is hard-wired to their genes [48]. Thus, started by John

Maynard Smith and G. R. Price [141, 140], evolutionary game theory aims to

solve this problem by applying and combining elementary ideas from evolu-

tionary biology with game theory. In evolutionary game theory, the changing

strategies of individuals occur due to an evolutionary process over long time

scales. The analogous notion of Nash Equilibrium [107, 108] for evolution-

ary game theory is called evolutionary stable strategy (ESS), which refers to

a strategy that cannot be replaced by a competing strategy through natural

selection [142]. Following the work of Smith & Price, another remarkable

contribution to the field was achieved by Peter Taylor & Leo Jonker [167] for

introducing replicator dynamics, which provides a simple mathematical model

to describe the rate at which strategies evolve over time. Evolutionary dy-

namics in evolutionary game theory have been systematically explored over

the past decades by several researchers [65, 186, 72, 71, 113].

In the context of biological interactions, evolutionary game theory has

also been widely explored as a framework to investigate the evolution of

cooperation, which remains as one of the main puzzles in natural selection.

Namely, in evolutionary terms, altruism occurs when an individual reduces

its own performance to improve the performance of another individual.

Highly influential studies in this domain include the work of Robert Axelrod

to explore the mechanism of direct reciprocity in the iterated (or repeated)

prisoner’s dilemma game [8, 9], as well as the work from Martin Nowak who

argues that the evolution of cooperation is subject to five distinct types of

mechanisms, i.e., kin selection, indirect reciprocity, direct reciprocity, group

selection and network reciprocity [114].
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Spatial evolutionary game theory

Since the dawn of evolutionary game theory, the standard models in evo-

lutionary dynamics have been developed under the assumption of a well-

mixed population where agents (individuals) can interact with all the other

agents in the population (i.e., unstructured population). However, in real-

world scenarios, populations are usually not well-mixed nor unstructured.

In this manner, started by Nowak & May in 1992 [116], concepts of graph

theory to consider structured populations in a network form have been ex-

tensively applied to evolutionary game theory, giving birth to the so-called

spatial evolutionary game theory. In those models, each agent is represented as

a node in the network and is constrained to interact only with its immediate

neighbours, which are linked by edges in the network [94].

Research in spatial evolutionary game theory (SEGT) aims to inves-

tigate the effects of spatial structures on the evolution of cooperation [120]

by considering that, in structured populations, cooperators can help or pro-

tect each other from exploitation by forming cooperative network clusters.

This, in turn, constitutes the network reciprocity mechanism, which is one of

the five mechanisms for the evolution of cooperation proposed by Nowak in

2006 [114].

Over the last decades, SEGT has been applied to a number of dif-

ferent topologies including scale-free graphs [160, 190, 136], small-world

graphs [36, 53, 1], cycle graphs [4], multilayer networks [15, 180, 57] and

bipartite graphs [129, 63] which have a considerable impact on the evolu-

tion of cooperation, and also favour the formation of different patterns and

phenomena [125, 155]. However, toroidal lattice grids with Moore or von

Neumann neighbourhoods are still the most often studied topology in the

domain. In general, toroidal lattices are used to ensure that all agents have
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the same number of neighbours. In the von Neumann neighbourhood, each

agent interacts with the four immediate neighbours (i.e., north, east, south

and west), while in the Moore neighbourhood, agents can also interact with

the other four intermediate directions (i.e., northeast, southeast, southwest

and northwest). The difference is that the von Neumann neighbourhood

takes twice as long to cover the same distance diagonally, which in turn

affects the speed in which a strategy can spread in the lattice [66].

Monte Carlo simulation

Studies in graph theory have been providing mathematical background for

network analysis of different topologies [3, 16, 11]. However, despite those

advances in the field, when considering graphs in the context of evolutionary

game theory (Subsection 1.4.2), there is still a lack of generalized mathemat-

ical theories which can solve and predict all the outcomes that could arise

from those models. Therefore, computer simulation is still the leading and

most reliable method to analyse and explore the emergence of cooperation in

structured populations. In particular, Monte Carlo methods are the most im-

portant class of computational algorithms used to solve problems in spatial

evolutionary game theory [14]. Other research efforts in the domain include

the use of mean-field pair approximation [149] and statistical physics tech-

niques to give insights regarding the evolution of cooperation in spatially

organized populations [155, 127].

The standard Monte Carlo (MC) approach in SEGT can be summa-

rized as follows. At each Monte Carlo (MC) time step, each agent (x) is se-

lected once on average to update its strategy. Thus, in one MC step, N agents

are randomly chosen to perform the subsequent procedures: the agent x ac-

cumulates the utility Ux by playing the evolutionary game with all its nearest

active (non-empty) neighbours (Ωx), selects one of them at random (i.e., the
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agent y, which also acquires its utility Uy), and considers copying its strategy

with a probability given by the Fermi-Dirac distribution function:

W =
1

1 + e(Ux−Uy)/K
(1.1)

where K characterizes the amplitude noise to allow irrational decisions. In

the K → 0 limit, the agent x copies the strategy of y if Uy > Ux. On the other

hand, in the K → ∞ limit, the utilities do not affect the agent’s decision who

will swap their strategies as per the flip of a coin [155, 151].

1.4.3 Abstention in game theory

Abstention, or voluntary/optional participation, has been studied in the

context of the prisoner’s dilemma since Batali and Kitcher, in their seminal

work [13], first introduced the optional variant of the game. They proposed

the opt-out or “loner’s” strategy, in which agents could choose to abstain

from playing the game, as a third option, in order to avoid cooperating with

known defectors. Using a combination of mathematical analysis and simu-

lations, they found that populations who played the optional games could

find routes from states of low cooperation to high states of cooperation. Sub-

sequently, as this extension has grown in popularity and renown, optional

participation has been successfully incorporated into models alongside other

cooperation enhancing mechanisms such as punishment [68] and reputation

[121, 56], and has been applied to probabilistic models [190].

The study of optional participation can be broadly separated into two

approaches: one that directly incorporates abstention into the traditional

prisoner’s dilemma game (the loner’s strategy), and another known as con-

ditional cooperation. Models that incorporate the loner’s strategy treat the
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option to abstain as an alternative strategy for agents to employ [13, 79], sep-

arate to the option to cooperate or defect. These models tend to be more

grounded in mathematical models with less of an emphasis on experimen-

tal simulations, which often-times have been shown to produce unexpected

results [67]. On the other hand, conditional cooperation models [7, 85, 77],

also known as conditional disassociation, incorporate abstention into coop-

eration strategies. These models lend themselves more easily to Axelrod-

style tournaments [9]. They tend to focus on exit options or partner-leaving

mechanisms, and often lack a spatial aspect, which has since been shown

to increase the number of abstainer strategies thus increasing the chances of

cooperation evolving [79].

Optional participation has been also studied in the context of the pub-

lic goods games. First introduced by Hauert & Szabó [67], they considered a

spatially extended public goods game (PGG), where a population of N agents

are arranged and interact on a variety of different geometries, including a

regular lattice. Three pure strategies (cooperate, defect and abstain) are in-

vestigated using an evolutionary approach. Results showed that the spatial

organisation of strategies affected the evolution of cooperation, and in addi-

tion, they found that the existence of abstainers was advantageous to coop-

erators, because they were protected against exploitation.

Voluntary prisoner’s dilemma game

The voluntary prisoner’s dilemma game, also known as the optional pris-

oner’s dilemma [13] and prisoner’s dilemma game with voluntary partici-

pation [147], is an extension of the traditional prisoner’s dilemma game to

include the concept of abstention/optional/voluntary participation. In this

game, players can not only cooperate or defect but also abstain from a game

interaction, obtaining the so-called loner’s payoff (L). The loner’s payoff is
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awarded to both participants if one or both abstain from the interaction (Ta-

ble 1.3).

Prisoner 2
C D A

Prisoner 1
C R,R S,T L
D T,S P,P L
A L L L

TABLE 1.3: The voluntary prisoner’s dilemma game payoff ma-
trix. Each player can either cooperate (C), defect (D) or ab-
stain (A). Decisions are made simultaneously, where R is the
reward for mutual cooperation, S is the sucker’s payoff, T is
the temptation to defect and P is the punishment for mutual
defection, and L is the loner’s payoff. The dilemma holds when

T > R > L > P > S.

The value of L is set such that: (1) it is not greater than R, otherwise

the advantage of not playing will be sufficiently large to ensure that players

will always abstain and (2) it is greater than P, otherwise there are no benefits

to abstaining. In this way, abstention is defined as a strategy which performs

better than groups of defectors but worse than groups of mutually cooper-

ating strategies [67]. The dilemma holds when T > R > L > P > S, and

similarly to the traditional prisoner’s dilemma game, there is also a variant

of this game in the weak form where T > R > L > P ≥ S.
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1.5 Research contributions

The most significant contributions of the present research are outlined below.

These are discussed in further detail in Chapter 8.

• Development of Evoplex, a free and open-source agent-based modelling

platform for spatial evolutionary game theory distributed under a per-

missive license (Chapter 2).

• Designing, development and extensive analysis of a novel coevolution-

ary model to account for the concept of abstention on dynamic net-

works, i.e., a model in which not only the game strategies (i.e., cooper-

ate, defect and abstain) but also the network evolves over time (Chap-

ter 3).

• Extensive analysis on the effects of the concept of abstention on the

emergence of cyclic dominance behaviour (Chapter 4).

• Advances on the understanding of the role of heterogeneity on the

emergence of cooperation in coevolutionary spatial games (Chapter 5).

• Designing, development and analysis of a novel model to extend the

concept of abstention to a probabilistic feature, i.e, abstention seen as a

probability instead of a pure strategy (Chapter 6).

• Paradigm shift on the effects of abstention on evolutionary games by re-

visiting the standard methodology commonly employed in the context

of the prisoner’s dilemma game with voluntary participation (Chap-

ter 7).

• Designing, development and analysis of a novel model to account for

agent mobility and the concept of abstention in a coevolutionary fash-

ion where agents can not only update their strategies but also their po-

sitions over time (Chapter 7).
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1.6 Publications

A number of peer-reviewed papers were published and presented in presti-

gious conferences and journals in the domain.

• Cardinot, M., Gibbons, M., O’Riordan, C., and Griffith, J. (2016). “Sim-

ulation of an optional strategy in the prisoner’s dilemma in spatial and

non-spatial environments”. In International Conference on Simulation of

Adaptive Behavior, pp. 145-156, vol. 9825, Springer. (Parts of this publi-

cation appear in Chapter 1).

• Cardinot, M., O’Riordan, C., Griffith, J., and Perc, M. (2019). “Evoplex:

A platform for agent-based modeling on networks”. SoftwareX, pp.

199-204, vol. 9, Springer (Chapter 2).

• Cardinot, M., O’Riordan, C., and Griffith, J. (2019). “The impact of

coevolution and abstention on the emergence of cooperation”. In Com-

putational Intelligence. Studies in Computer Science, pp. 105-122, vol. 792.

Springer (Chapter 3).

• Cardinot, M., Griffith, J., and O’Riordan, C. (2016). “Cyclic dominance

in the spatial coevolutionary optional prisoner’s dilemma game”. In

24th Irish Conference on Artificial Intelligence and Cognitive Science, pp.

33-44, Dublin, Ireland (Chapter 4).

• Cardinot, M., Griffith, J., and O’Riordan, C. (2018). “A further analysis

of the role of heterogeneity in coevolutionary spatial games”. Physica

A: Statistical Mechanics and its Applications, pp. 116-124, vol. 493,

Elsevier (Chapter 5).

• Cardinot, M., Griffith, J., O’Riordan, C., and Perc, M. (2018). “Cooper-

ation in the spatial prisoner’s dilemma game with probabilistic absten-

tion”. Scientific reports, n. 14531, vol. 8, Nature (Chapter 6).
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• Cardinot, M., O’Riordan, C., Griffith, J., and Szolnoki, A. (2019). “Mo-

bility restores the mechanism which supports cooperation in the volun-

tary prisoner’s dilemma game”. New Journal Physics, n. 073038, vol.

21, IOP (Chapter 7).

• Cardinot, M., O’Riordan, C., and Griffith, J. (2016). “The optional pris-

oner’s dilemma in a spatial environment: coevolving game strategy

and link weights”. In 8th International Joint Conference on Computational

Intelligence, pp. 83-93, vol. 1 ECTA, INSTICC, ScitePress.
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1.7 Thesis structure

This section provides an overview of each chapter in this thesis. The present

chapter includes the justification for this research, the objectives, the hypoth-

esis to be evaluated in this research, and a comprehensive background liter-

ature review on game theory and evolutionary game theory. The rest of the

thesis is organized as follows:

• Chapter 2 includes a description of the software developed to perform

the experiments of this research.

• Chapter 3 presents the experiments considering the coevolutionary op-

tional games, where either the agents’ strategies (optional game) and

the network (dynamic network) evolves over time.

• Chapter 4 discusses the phenomena of cyclic dominance in the pris-

oner’s dilemma game with voluntary participation.

• Chapter 5 discusses the role of heterogeneity in coevolutionary spatial

games.

• Chapter 6 discusses the effects of the concept of optionality when the

agents are placed on a diluted network.

• Chapter 7 explores the concept of abstention itself, extending it as an

extra attribute of each agent, and not as a pure strategy, i.e., presents

the prisoner’s dilemma game with probabilistic abstention.

• Chapter 8 provides a summary of the completed work, revisits the hy-

potheses and outlines a number of possible directions for future work

within the domain.
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Chapter 2

Evoplex: A platform for

agent-based modelling on

networks

The work outlined in this chapter was published in:

Cardinot, M., O’Riordan, C., Griffith, J., and Perc, M. (2019). “Evoplex: A

platform for agent-based modeling on networks”. SoftwareX, pp. 199-204,

vol. 9, Springer.
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Abstract

Agent-based modelling and network science have been used extensively to

advance our understanding of emergent collective behavior in systems that

are composed of a large number of simple interacting individuals or agents.

With the increasing availability of high computational power in affordable

personal computers, dedicated efforts to develop multi-threaded, scalable

and easy-to-use software for agent-based simulations are needed more than

ever. Evoplex meets this need by providing a fast, robust and extensible plat-

form for developing agent-based models and multi-agent systems on net-

works. Each agent is represented as a node and interacts with its neighbors,

as defined by the network structure. Evoplex is ideal for modelling complex

systems, for example in evolutionary game theory and computational social

science. In Evoplex, the models are not coupled to the execution parame-

ters or the visualization tools, and there is a user-friendly graphical interface

which makes it easy for all users, ranging from newcomers to experienced,

to create, analyze, replicate and reproduce the experiments.
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2.1 Motivation and significance

Agent-based modelling (ABM) has been used as a framework to simulate

complex adaptive systems (CAS) in a wide range of domains such as life sci-

ences, ecology and social sciences [26, 51, 61, 17, 123, 88, 33]. Those systems

are composed of a number of interacting agents each of whom have a defined

set of attributes and can exhibit specific behaviors based on their interactions

with the environment and the other agents [105]. Research in this field usu-

ally aims to explore how small changes in individual behavior can both affect

and promote collective behavior throughout the system [145, 100, 58].

Given the flexibility of the ABM approach and the increasing comput-

ing power of cheap personal computers, efforts to develop reusable, flexi-

ble, multi-threaded, scalable and user-friendly software are more than ever

required by the scientific community. However, despite the high number

of existing ABM toolkits and platforms available [110], due to the hetero-

geneity and diversity of the areas of research and application domains, most

researchers still prefer to implement individual and domain-specific, spe-

cialised software from scratch, which is usually not publicly released. Many

researchers write MATLAB or Mathematica based scripts which, although be-

ing complete and well-known scientific platforms, are neither free nor open-

source, which therefore reduces the transparency and re-usability of the de-

veloped models [128].

In fact, implementing a highly specialized solution from scratch is

time-consuming, complex and error-prone. Many projects try to overcome

this by implementing a toolkit or platform for a general purpose problem

domain. For instance, some projects such as NetLogo [169] and GAMA [60]

succeed in providing generic and reusable software; however, they require

the user to learn their specific programming language. A wide range of
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the ABM solutions including MASON [98] and Repast [112] are written in

Java [170], which make them cross-platform and usually faster than some

Python or JavaScript alternatives like Mesa [103] and AgentBase [187]. How-

ever, they usually require modellers to be highly proficient in the language or

they have critical scalability issues. Overall, the main issues with some exist-

ing software include the use of old/deprecated technologies, not following

state of the art in software engineering, developing single-threaded applica-

tions and not being community-friendly.

Furthermore, despite being a common strategy in the field, many

ABM projects start with the promising and challenging intention of devel-

oping powerful software to meet any requirement in the field, from simple

cellular automaton models to complex and realistic geographical informa-

tion science (GIS) models. Unfortunately, this promising approach usually

results in making the code base very complex and hard to both optimise and

maintain. In reality, given the small size of the development teams, there is

no best strategy for all scenarios, and the user choice is usually guided by

their familiarity with the languages or technologies used in the software. In

this way, defining a clear and focused scope can help solve those issues.

Thus, in this chapter we present Evoplex, a cross-platform, free and

open-source software which aims to mitigate the issues outlined by provid-

ing a fast and fully modular ABM platform for implementing and analysing

models which impose an explicit graph-theoretical approach, i.e., the agents

are represented as nodes (or vertices) and edges (or links) represent connec-

tions between agents.
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2.2 Software description

Evoplex is a fast, robust and extensible platform for developing agent-based

models and multi-agent systems on networks. Here, each agent is repre-

sented as a node in the network and is constrained to interact only with its

neighbors, which are linked by edges in the network. Although not limited

to a particular domain, Evoplex is ideal for tackling problems associated with

evolutionary computation, complex adaptive systems, evolutionary game

theory and cellular automata.

As shown in Figure 2.1, the Evoplex workflow is very straightforward

and intuitive. The engine processes projects as inputs. A project is a plain ta-

ble (csv file) where the experiments are listed along the rows, and the inputs

to each experiment are placed along the columns. An experiment is defined

by a set of parameter settings (inputs) necessary to perform one trial (sim-

ulation) and (optionally) the required data outputs, which can be the result

of some statistical function and/or the state of the set of nodes/edges for

each time step. Each experiment can run for one or more trials, i.e., repeat

the same experiment using different pseudo-random generator seeds. The

strategy of having the projects defined in plain text files aims to make it eas-

ier for users to replicate and reproduce their results. Furthermore, it allows

newcomers to interact with the models without requiring any programming

skills.

FIGURE 2.1: Simplified overview of the user workflow.

We provide a user-friendly and interactive graphical user interface
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(GUI) to allow for creating, opening, running and saving projects. Also, the

GUI provides many useful tools including interactive graph and grid views.

Moreover, Evoplex allows several experiments to run at the same time. These

are automatically distributed in parallel across multiple threads.

2.2.1 Software architecture

Evoplex is simple, user-friendly and was built with performance in mind

from the start. It is cross-platform and runs on every major platform, i.e.,

Linux, Microsoft Windows, and MacOS. Evoplex is developed in modern

C++ 14, based on Qt, which is one of the most popular and successful C++

frameworks available to date. Moreover, Evoplex includes CMake scripts to

ease the compilation and setup from its source code.

The Evoplex application bundles three main open-source components:

the EvoplexCore library, the EvoplexGUI library and a collection of plugins

(example models and graph generators). The EvoplexCore library is available

under the Apache 2.0 License, which is permissive, free and commercially

friendly. The EvoplexGUI library is available under the GNU GPLv3 license,

which is also free but is conditioned on making the source code of licensed

works and modifications available.

Following a common practice in software engineering, the Evoplex

architecture is guided by a fully modular approach. The core component,

EvoplexCore, splits its implementation into both private and public Applica-

tion Programming Interfaces (APIs). The private API is intended for internal

use only and is where the simulations will actually occur; it is responsible for

managing the I/O operation, parsing inputs, handling the CPU threads and

memory, loading and creating instances of plugins and others. The public
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API exposes all the tools and services needed to develop a plugin, which can

be either a model or a graph generator.

Figure 2.2 shows a simplified overview of the overall software archi-

tecture, which is composed of four major layers: the kernel (i.e., EvoplexCore

library), the plugins, the data and the applications layers. The current ver-

sion of the Evoplex application layer includes EvoplexGUI, which implements

a graphical user interface on top of EvoplexCore (kernel) to provide a number

of interactive and user-friendly tools. Note that as the kernel is completely

independent of the applications layer, Evoplex can be distributed with dif-

ferent user-interfaces but share the same engine (kernel). For instance, one

may want to implement an EvoplexCLI application to perform simulations via

command-line, or an EvoplexWeb application to provide visualization tools

on a web browser.

FIGURE 2.2: Simplified illustration of the software architecture.
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In Evoplex, every model or graph is a plugin and is compiled inde-

pendently of the main application. The creation of plugins is very straight-

forward and requires a very basic knowledge of C++. Given the Evoplex

approach of not coupling the visualization tools nor inputs/outputs to the

model, the models’ code is usually very simple and short. We provide a few

examples of plugins of easy reuse and customization1. In summary, a plugin

comprises four files: CMakeLists.txt which does not need to be changed by

the modeller and is just a CMake script to ease the compilation process and

make it portable across different compilers and IDEs, the plugin.cpp (source)

and plugin.h (header) files where the modeller implements the model’s algo-

rithm, and metadata.json which holds the definition of all the attributes of the

model.

Moreover, Evoplex uses automated Continuous Integration (CI) to

make sure that the code base works as expected and to allow early detec-

tion of problems. After every new commit, the CI system automatically

builds Evoplex from the source code, executes regression tests, unit-tests and

static code analysis across a range of different versions/distributions of the

supported platforms, i.e., Linux, Microsoft Windows, and MacOS.

2.2.2 Software functionalities

The Evoplex application comes with a user-friendly and intuitive GUI that

allows loading and unloading of plugins at runtime and provides a bunch of

widgets and tools to allow for the creation and running of experiments and

for analysing (or visualizing) their outputs. The main tools and widgets are

described below:
1https://evoplex.org/docs/example-plugins
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• Project View: As shown in Figure 2.3, when opening a project, all ex-

periments are listed in a table which is dynamic and customizable and

allows running, pausing and queuing multiple experiments at the same

time. When running the experiments, Evoplex automatically manages

the available resources to run them as fast as possible (in parallel) and

use as little memory as possible.

• Experiment Designer: This widget is displayed beside the Project View in

Figure 2.3 and allows creating, removing and editing of experiments.

• Nodes Generator: This tool can be accessed in the Experiment Designer

and provides handy functions to ease the generation of the initial set of

nodes.

• Experiment View: This widget is opened when the user double-clicks on

an experiment in the Project View. It allows for the opening of multiple

visualization tools at the same time, which can be set to show different

trials of the same experiment. For instance, given an experiment with

a stochastic model which runs for 10 trials; the user may want to visu-

alize the behavior of the trials side by side to investigate the effects of

randomness over time.

• Graph/Grid View: Evoplex provides both graph (nodes and edges —

Figure 2.4) and grid (cells) views. Those views allow zooming in and

out, exporting nodes/edges as a text file, taking screenshots, selecting

a node to inspect and change the state of its attributes and others. Also,

it allows changing the nodes/edges size and choosing which attribute

and colormap will be represented in the nodes/edges.

Differing from most of the other ABM solutions (e.g., NetLogo [169],

MASON [98] and GAMA [60]), in Evoplex, the widgets are not statically cou-

pled to the model plugin. That is, the model plugin only defines the entities’
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FIGURE 2.3: Screenshot of Evoplex 0.2.1 showing the Project
View and the Experiment Designer tools.

attributes and implements the algorithm to describe the nodes’ (agents) be-

havior for each time step. Then, at runtime and not requiring any program-

ming skill, the users have the freedom to decide which widgets they want to

open and where they want to place them. Also, all widgets can be detached

from the main window, enabling users to open different views in multiple

monitors or attach them at different positions and sizes in the screen.

2.3 Illustrative examples

In order to illustrate the use of Evoplex, we consider an implementation of

the widely known model of a spatial prisoner’s dilemma (PD) game pro-

posed by Nowak & May in 1992 [116]. In the PD game, agents can be either

cooperators or defectors, and receive a fixed payoff based on a pairwise inter-

action. That is, given two agents, if both are cooperators, both get a reward
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FIGURE 2.4: Screenshot of Evoplex 0.2.1 showing the Experi-
ment View docking two instances of the Graph View at different

positions.

R = 1; if both are defectors, both get a punishment P = 0; if a coopera-

tor plays with a defector, the cooperator receives S = 0, and the defector

receives T (temptation to defect) [117].

In this model, agents (nodes) are placed in a square grid, where, in

each round: every node accumulates the payoff obtained by playing the PD

game with all its immediate neighbors and itself; then, each agent copies the

strategy of the best performing agent in its neighborhood, including itself.

Note that the model’s source code is also freely available online2 under the

MIT License terms.

Figure 2.5 shows a screenshot of an experiment created with the Exper-

iment Designer tool, using an implementation of the PD model in Evoplex. To

reproduce this output, run the experiment for one step, open the Grid View

and place a single defector (strategy = 1) in the middle of the grid. Then,

when running the experiment for more steps, it is possible to observe the

2https://github.com/evoplex/model-prisonersDilemma
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emergence of chaotically changing spatial patterns as reported by Nowak &

May [116].

FIGURE 2.5: In this experiment, the model (prisonersDilemma) is
set with a temptation to defect equal to 1.8; the graph is initialised
with a single defector (strategy = 1) at the centre of a 99× 99
squareGrid with periodic boundary conditions, fully populated
with cooperators (strategy = 0), undirected edges and von
Neumann neighborhood; the simulation is fed with a pseudo-
random generator seed equal to 0 (which does not make any
difference in this fully deterministic model), and is set to run for
a maximum of 1000 time steps for only one trial; finally, it also
stores the frequency of each type of strategy over time. In the
Grid View, the colors blue, red, green and yellow corresponds
to cooperators, defectors, new cooperators and new defectors

respectively.

2.4 Impact

Evoplex is intended to address research whose methodology comprises

a simulation-based approach to evolve outcomes of populations of au-

tonomous and interacting agents. It has been used to support research in

a number of areas, including spatial game theory and evolutionary game
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theory [30, 26, 28]. In those scenarios, agents are described in terms of graph

theory, i.e., a graph (network) consisting of a set of nodes (agents) and edges

(agents’ connections).

Despite having a few options of agent-based modelling (ABM) soft-

ware available, none of them are really suitable for this area of research. Be-

yond the issues mentioned in Section 2.1, most of the existing simulators

have very limited performance and are unable to handle the complexity of

the models which are investigated at present, e.g., coevolutionary models

with a large number of agents. Thus, one of the main impacts and contri-

butions of Evoplex to this field of research is to provide an easy-to-use and

high-performance platform for simulating large-scale experiments.

Moreover, another recurring issue with existing ABM software is that

they are designed to run and analyze one experiment at a time. However, re-

search in the field usually needs to explore the outcomes of large populations

for a wide range of parameter settings, which in many cases require many

Monte Carlo steps to converge. In this case, the user needs to modify the

model’s source code or write a script on top of it to automate the execution

of the experiments, which will usually run in a single thread, one at a time.

Some projects like FLAME [89] and OpenMOLE [134] succeeded in allowing

efficient parallel processing, but their use and configuration are not straight-

forward. Thus, in those cases, we observed that for any small interaction

with the model, the user ends up having to change the code/script back and

forth very often, which is both error prone and difficult for non-experienced

users.

Evoplex changes the paradigm of ABM for graphs by allowing nodes

and edges to be independent entities. Thus, given a set of nodes (agents), the
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user can easily investigate how changes in the topology may affect the popu-

lation’s behavior (and vice versa) without touching the source code or chang-

ing the model. Also, the robust and multi-threaded engine combined with

the user-friendly GUI makes it easier for users to share, reproduce, replicate

and analyze the experiments. Evoplex is free, non-profit and is fully open-

source with a permissive license, allowing for both commercial and academic

use.

2.5 Conclusions

We have presented Evoplex, a flexible, fast and multi-threaded platform for

agent-based modelling imposing an explicit graph-theoretical approach. We

discussed that, different to other software, in Evoplex, the models are not

coupled to the execution parameters nor the visualization tools. Also, it pro-

vides a user-friendly GUI which makes it easy for all users, ranging from

newcomers to experienced, to create, analyze, replicate and reproduce exper-

iments. As an open-source project, we encourage users to provide feedback,

share models and contribute to improving the software. Evoplex is an ever-

evolving project, and future work will involve adding support for multilayer

networks, as well as implementing more plugins, and developing more vi-

sualization widgets for the GUI.
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Chapter 3

The Impact of Coevolution and

Abstention on the Emergence of

Cooperation

The work outlined in this chapter was published in:

Cardinot, M., O’Riordan, C., and Griffith, J. (2018). “The impact of coevo-

lution and abstention on the emergence of cooperation”. In Computational

Intelligence. Studies in Computer Science, pp. 105-122, vol. 792. Springer.
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Abstract

This chapter explores the coevolutionary optional prisoner’s dilemma (COPD)

game, which is a simple model to coevolve game strategy and link weights of

agents playing the optional prisoner’s dilemma game, which is also known

as the prisoner’s dilemma with voluntary participation. A number of Monte

Carlo simulations are performed to investigate the impacts of the COPD

game on the emergence of cooperation. Results show that the coevolu-

tionary rules enable cooperators to survive and even dominate, with the

presence of abstainers in the population playing a key role in the protec-

tion of cooperators against exploitation from defectors. We observe that in

adverse conditions such as when the initial population of abstainers is too

scarce/abundant, or when the temptation to defect is very high, cooperation

has no chance of emerging. However, when the simple coevolutionary rules

are applied, cooperators flourish.
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3.1 Introduction

Evolutionary game theory in spatial environments has attracted much inter-

est from researchers who seek to understand cooperative behaviour among

rational individuals in complex environments. Many models have consid-

ered the scenarios where participant’s interactions are constrained by partic-

ular graph topologies, such as lattices [148, 116], small-world graphs [36, 53],

scale-free graphs [160, 190] and, bipartite graphs [63]. It has been shown that

the spatial organisation of strategies on these topologies affects the evolution

of cooperation [32].

The prisoner’s dilemma (PD) game remains one of the most studied

games in evolutionary game theory as it provides a simple and powerful

framework to illustrate the conflicts inherent in the formation of coopera-

tion. In addition, some extensions of the PD game, such as the optional pris-

oner’s dilemma (OPD) game, have been studied in an effort to investigate

how levels of cooperation can be increased. In the OPD game, participants

are afforded a third option — that of abstaining and not playing and thus ob-

taining the loner’s payoff (L). Incorporating this concept of abstention leads

to a three-strategy game where participants can choose to cooperate, defect

or abstain from a game interaction.

The vast majority of the spatial models in previous work have used

static and unweighted networks. However, in many social scenarios that

we wish to model, such as social networks and real biological networks,

the number of individuals, their connections and environment are often dy-

namic. Thus, recent studies have also investigated the effects of evolutionary

games played on dynamically weighted networks [74, 183, 20, 156, 204, 203]

where it has been shown that the coevolution of both networks and game

strategies can play a key role in resolving social dilemmas in a more realistic
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scenario.

In this chapter we explore the coevolutionary optional prisoner’s

dilemma (COPD) game, which is a simple coevolutionary spatial model

where both the game strategies and the link weights between agents evolve

over time. In this model, the interaction between agents is described by

an OPD game. Previous research on spatial games has shown that when

the temptation to defect is high, defection is the dominant strategy in most

cases. However, it is been discussed that the combination of both optional

games and coevolutionary rules can help in the emergence of cooperation in

a wider range of scenarios [29, 27].

Thus, given the coevolutionary optional prisoner’s dilemma game

(i.e., an OPD game in a spatial environment, where links between agents can

be evolved), the aims of the work are to understand the effect of varying

the parameters T (temptation to defect), L (loner’s payoff), ∆ and δ for both

unbiased and biased environments.

By investigating the effect of these parameters, we aim to:

• Compare the outcomes of the COPD game with other games.

• Explore the impact of the link update rules and its properties.

• Investigate the evolution of cooperation when abstainers are present in

the population.

• Investigate how many abstainers would be necessary to guarantee ro-

bust cooperation.

Results show that cooperation emerges even in extremely adverse sce-

narios where the temptation to defect is almost at its maximum. It can be

observed that the presence of the abstainers are fundamental in protecting
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cooperators from invasion. In general, it is shown that, when the coevolu-

tionary rules are used, cooperators do much better, being also able to dom-

inate the whole population in many cases. Moreover, for some settings, we

also observe interesting phenomena of cyclic competition between the three

strategies, in which abstainers invade defectors, defectors invade coopera-

tors and cooperators invade abstainers.

The chapter outline is as follows: Section 3.2 presents a brief overview

of the previous work in both spatial evolutionary game theory with dynamic

networks and in the optional prisoner’s dilemma game. Section 3.3 gives an

overview of the methodology employed, outlining the optional prisoner’s

dilemma payoff matrix, the coevolutionary model used (Monte Carlo simu-

lation), the strategy and link weight update rules, and the parameter values

that are varied in order to explore the effect of coevolving both strategies and

link weights. Section 3.4 discusses the benefits of combining the concept of

abstention and coevolution. Section 3.5 further explore the effect of using the

COPD game in an unbiased environment. Section 3.6 investigates the robust-

ness of cooperative behaviour in a biased environment. Finally, Section 3.7

summarizes the main conclusions and outlines future work.

3.2 Related work

The use of coevolutionary rules constitute a new trend in evolutionary game

theory. These rules were first introduced by Zimmermann et al. [203], who

proposed a model in which agents can adapt their neighbourhood during

a dynamical evolution of game strategy and graph topology. Their model

uses computer simulations to implement two rules: firstly, agents playing the

prisoner’s dilemma game update their strategy (cooperate or defect) by imi-

tating the strategy of an agent in their neighbourhood with a higher payoff;
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and secondly, the network is updated by allowing defectors to break their

connection with other defectors and replace the connection with a connec-

tion to a new neighbour selected randomly from the whole network. Results

show that such an adaptation of the network is responsible for an increase in

cooperation.

In fact, as stated by Perc and Szolnoki [124], the spatial coevolution-

ary game is a natural upgrade of the traditional spatial evolutionary game

initially proposed by Nowak and May [116], who considered static and un-

weighted networks in which each individual can interact only with its imme-

diate neighbours. In general, it has been shown that coevolving the spatial

structure can promote the emergence of cooperation in many scenarios [183,

20], but the understanding of cooperative behaviour is still one of the central

issues in evolutionary game theory.

Szolnoki and Perc [156] proposed a study of the impact of coevolution-

ary rules on the spatial version of three different games, i.e., the prisoner’s

dilemma, the snow drift and the stag-hunt game. They introduce the concept

of a teaching activity, which quantifies the ability of each agent to enforce its

strategy on the opponent. It means that agents with higher teaching activity

are more likely to reproduce than those with a low teaching activity. Differ-

ing from previous research [204, 203], they also consider coevolution affect-

ing either only the defectors or only the cooperators. They discuss that, in

both cases and irrespective of the applied game, their coevolutionary model

is much more beneficial to the cooperators than that of the traditional model.

Huang et al. [74] present a new model for the coevolution of game

strategy and link weight. They consider a population of 100× 100 agents ar-

ranged on a regular lattice network which is evolved through a Monte Carlo

simulation. An agent’s interaction is described by the classical prisoner’s

dilemma with a normalized payoff matrix. A new parameter, ∆/δ, is defined
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as the link weight amplitude and is calculated as the ratio of ∆/δ. They found

that some values of ∆/δ can provide the best environment for the evolution

of cooperation. They also found that their coevolutionary model can promote

cooperation efficiently even when the temptation of defection is high.

In addition to investigations of the classical prisoner’s dilemma on

spatial environments, some extensions of this game have also been explored

as a means to favour the emergence of cooperative behaviour. For instance,

the optional prisoner’s dilemma game, which introduces the concept of ab-

stention, has been studied since Batali and Kitcher [13]. In their work, they

proposed the opt-out or “loner’s” strategy in which agents could choose to

abstain from playing the game, as a third option, in order to avoid coop-

erating with known defectors. There have been a number of recent studies

exploring this type of game [190, 56, 121, 79, 68]. Cardinot et al. [32] dis-

cuss that, with the introduction of abstainers, it is possible to observe new

phenomena and, in a larger range of scenarios, cooperators can be robust to

invasion by defectors and can dominate.

Although recent work has discussed the inclusion of optional games

with coevolutionary rules [29, 27], this still needs to be investigated in a

wider range of scenarios. Therefore, the present work aims to combine both

of these trends in evolutionary game theory in order to identify favourable

configurations for the emergence of cooperation in adverse scenarios, where,

for example, the temptation to defect is very high or when the initial popula-

tion of abstainers is either very scarce or very abundant.

3.3 Methodology

This section includes a complete description of the optional prisoner’s

dilemma game, the spatial environment and the coevolutionary rules for
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both the strategy and link weights. Finally, we also outline the experimental

set-up.

In the classical version of the prisoner’s dilemma (PD), two agents can

choose either cooperation or defection. Hence, there are four payoffs associ-

ated with each pairwise interaction between the two agents. In consonance

with common practice [29, 74, 116], payoffs are characterized by the reward

for mutual cooperation (R = 1), punishment for mutual defection (P = 0),

sucker’s payoff (S = 0) and temptation to defect (T = b, where 1 < b < 2).

Note that this parametrization refers to the weak version of the prisoner’s

dilemma game, where P can be equal to S without destroying the nature of

the dilemma. In this way, the constraints T > R > P ≥ S maintain the

dilemma.

The optional prisoner’s dilemma (OPD) game is an extended version

of the PD game in which agents can not only cooperate (C) or defect (D) but

can also choose to abstain (A) from a game interaction, obtaining the loner’s

payoff (L = l) which is awarded to both players if one or both abstain. As

defined in other studies [32, 148], abstainers receive a payoff greater than P

and less than R (i.e., P < L < R). Thus, considering the normalized payoff

matrix adopted, 0 < l < 1. The payoff matrix and the associated values are

illustrated in Table 3.1.

In this work, the following parameters are used: an N = 102× 102

regular lattice grid with periodic boundary conditions is created and fully

populated with agents, which can play with their eight immediate neigh-

bours (Moore neighbourhood). We investigate both unbiased (i.e., initially

each agent is designated as C, D or A with equal probability) and biased

(i.e., varying the initial percentage of abstainers) environments. Also, each

edge linking agents has the same initial weight w = 1, which will adaptively

change in accordance with the interaction.
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TABLE 3.1: The optional prisoner’s dilemma game matrix [29].

C D A

C
HHH

HHHR
R HHH

HHHS
T HHH

HHHL
L

D
H
HHH

HHT
S H

HHH
HHP
P H

HHH
HHL
L

A
HH

HHHHL
L HH

HHHHL
L HH

HHHHL
L

(A) Extended game matrix.

Payoff Value
Temptation to defect (T) ]1, 2[
Reward for mutual cooperation (R) 1
Punishment for mutual defection (P) 0
Sucker’s payoff (S) 0
Loner’s payoff (L) ]0, 1[

(B) Payoff values.

Monte Carlo methods are used to perform the coevolutionary optional

prisoner’s dilemma game. In one Monte Carlo (MC) step, each player is

selected once on average. This means that one MC step comprises N inner

steps where the following calculations and updates occur:

• Select an agent (x) at random from the population.

• Calculate the utility uxy of each interaction of x with its eight neigh-

bours (each neighbour represented as agent y) as follows:

uxy = wxyPxy, (3.1)

where wxy is the edge weight between agents x and y, and Pxy corre-

sponds to the payoff obtained by agent x on playing the game with

agent y.
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• Calculate Ux the accumulated utility of x, that is:

Ux = ∑
y∈Ωx

uxy, (3.2)

where Ωx denotes the set of neighbours of the agent x.

• In order to update the link weights, wxy, between agents, compare the

values of uxy and the average accumulated utility (i.e., Ux = Ux/8) as

follows:

wxy =


wxy + ∆ if uxy > Ux

wxy − ∆ if uxy < Ux

wxy otherwise

, (3.3)

where ∆ is a constant such that 0 ≤ ∆ ≤ δ.

• In line with previous research [29, 74, 183], wxy is adjusted to be within

the range

1− δ ≤ wxy ≤ 1 + δ, (3.4)

where δ (0 ≤ δ < 1) defines the weight heterogeneity. Note that when ∆

or δ are equal to 0, the link weight keeps constant (w = 1), which results

in the traditional scenario where only the strategies evolve.

• In order to update the strategy of x, the accumulated utility Ux is recal-

culated (based on the new link weights) and compared with the accu-

mulated utility of one randomly selected neighbour (Uy). If Uy > Ux,

agent x will copy the strategy of agent y with a probability proportional

to the utility difference (Equation 3.5), otherwise, agent x will keep its

strategy for the next step.

p(sx = sy) =
Uy −Ux

8(T − P)
, (3.5)
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where T is the temptation to defect and P is the punishment for mutual

defection.

Simulations are run for 105 MC steps and the fraction of cooperation is

determined by calculating the average of the final 103 MC steps. To alleviate

the effect of randomness in the approach, the final results are obtained by

averaging 10 independent runs. The following scenarios are investigated:

• The benefits of coevolution and abstention.

• Presence of abstainers in the coevolutionary model.

• Inspecting the coevolutionary environment.

• Investigating the properties of the parameters ∆ and δ.

• Varying the number of states.

• Investigating the relationship between ∆/δ, b and l.

• Investigating the robustness of cooperation in a biased environment.

3.4 The benefits of coevolution and abstention

This section presents some of the main differences between the outcomes ob-

tained by the proposed coevolutionary optional prisoner’s dilemma (COPD)

game and other models which do not adopt the concept of coevolution

and/or abstention. In the COPD game, we also investigate how a popula-

tion in an unbiased environment evolves over time.

3.4.1 Presence of abstainers in the coevolutionary model

In order to provide a means to effectively explore the impact of our coevolu-

tionary model, i.e., the coevolutionary prisoner’s dilemma (COPD) game, in
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the emergence of cooperation, we start by investigating the performance of

some of the existing models. Namely, the coevolutionary prisoner’s dilemma

(CPD) game (i.e., same coevolutionary model as the COPD but without the

concept of abstention), the traditional prisoner’s dilemma (PD) game, and

the optional prisoner’s dilemma game.

As shown in Figure 3.1, it can be observed that for both PD and CPD

games, when the defector’s payoff is very high (i.e., b > 1.7) defectors spread

quickly and dominate the environment. On the other hand, when abstainers

are present in a static and unweighted network, i.e., playing the OPD game,

we end up with abstainers dominating the environment. Undoubtedly, in

many scenarios, having a population of abstainers is better than a popula-

tion of defectors. However, it provides clear evidence that all these three

models fail to sustain cooperation. In fact, results show that in this type of

adverse environment (i.e., with a high temptation to defect), cooperation has

no chance of emerging.

Figure 3.2 shows a typical phase diagram for both CPD and COPD

games for a fixed value of δ = 0.8 and l = 0.6 (on the COPD game). It can

be observed that if a given environmental setting (i.e, b, ∆ and δ) produces

a stable population of cooperators in the CPD game, then the presence of

abstainers will not change it. In other words, the COPD game does not affect

the outcome of scenarios in which cooperation is stable in the absence of

abstainers. Thus, the main changes occur in scenarios in which defection

dominates or survives (b > 1.5).

Surprisingly, as shown in Figure 3.2, when considering the coevolu-

tionary optional prisoner’s dilemma (COPD) game for the same environ-

mental settings of Figure 3.1 (i.e., l = 0.6, ∆ = 0.72 and ∆ = 0.72), with

the temptation of defection almost at its peak (i.e., b = 1.9), it is possible to

reach high levels of cooperation.



3.4. The benefits of coevolution and abstention 49

PD
C

PD
(∆

=
0.

72
;

δ
=

0.
8)

O
PD

(l
=

0.
6)

FI
G

U
R

E
3.

1:
C

om
pa

ri
so

n
of

th
e

pr
is

on
er

’s
di

le
m

m
a

(P
D

),
th

e
co

ev
ol

ut
io

na
ry

pr
is

on
er

’s
di

le
m

m
a

(C
PD

)a
nd

th
e

op
ti

on
al

pr
is

on
er

’s
di

le
m

m
a

(O
PD

)
ga

m
es

.
A

ll
w

it
h

th
e

sa
m

e
te

m
pt

at
io

n
to

de
fe

ct
,

b
=

1.
9.

It
ca

n
be

ob
se

rv
ed

th
at

de
fe

ct
or

s
sp

re
ad

qu
ic

kl
y

an
d

do
m

in
at

e
th

e
en

vi
ro

nm
en

tf
or

bo
th

PD
an

d
C

PD
ga

m
es

.
H

ow
ev

er
,w

he
n

ag
en

ts
pl

ay
th

e
O

PD
ga

m
e,

ab
st

en
ti

on
be

co
m

es
th

e
do

m
in

at
in

g
st

ra
te

gy
.



50 Chapter 3. The Impact of Coevolution and Abstention

F
IG

U
R

E
3.2:Typicalphase

diagram
foran

initialbalanced
population

playing
the

coevolutionary
prisoner’s

dilem
m

a
gam

e
(left)and

the
coevolutionary

optionalprisoner’s
dilem

m
a

gam
e

w
ith

loner’s
payoffl

=
0.6

(right),both
w

ith
δ
=

0.8.



3.4. The benefits of coevolution and abstention 51

To summarize, despite the fact that the coevolutionary prisoner’s

dilemma (CPD) game succeeds in the promotion of cooperation in a wide

range of scenarios, it is still not able to avoid the invasion by defectors in

cases where b > 1.5, which does not happen when the abstainers are present

(i.e., COPD game).

3.4.2 Inspecting the coevolutionary environment

In order to further explain the results witnessed in the previous experiments,

we investigate how the population evolves over time for the coevolutionary

optional prisoner’s dilemma game. Figure 3.3 features the time course of

cooperation for three different values of ∆/δ = {0.0, 0.2, 1.0}, which are

some of the critical points when b = 1.9, l = 0.6 and δ = 0.8. Based on these

results, in Figure 3.4 we show snapshots for the Monte Carlo steps 0, 45, 1113

and 105 for the three scenarios shown in Figure 3.3.

We see from Figure 3.4 that for the traditional case (i.e., ∆/δ = 0.0),

abstainers spread quickly and reach a stable state in which single defectors

are completely isolated by abstainers. In this way, as the payoffs obtained

by a defector and an abstainer are the same, neither will ever change their

strategy. In fact, even if a single cooperator survives up to this stage, for the

same aforementioned reason, its strategy will not change either. In fact, the

same behaviour is noticed for any value of b > 1.2 and ∆/δ = 0 (COPD in

Figure 3.2).

When ∆/δ = 0.2, it is possible to observe some sort of equilibrium

between the three strategies. They reach a state of cyclic competition in which

abstainers invade defectors, defectors invade cooperators and cooperators

invade abstainers.
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FIGURE 3.3: Progress of the fraction of cooperation ρc during
a Monte Carlo simulation for b = 1.9 (temptation to defect),

l = 0.6 (loner’s payoff) and δ = 0.8 [29].

FIGURE 3.4: Snapshots of the distribution of the strategy in the
Monte Carlo steps 0, 45, 1113 and 105 (from left to right) for
∆/δ equal to 0.0, 0.2 and 1.0 (from top to bottom). In this Fig-
ure, cooperators, defectors and abstainers are represented by
the colours blue, red and green respectively. All results are ob-
tained for b = 1.9 (temptation to defect), l = 0.6 (loner’s payoff)

and δ = 0.8 [29].
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This behaviour, of balancing the three possible outcomes, is very com-

mon in nature where species with different reproductive strategies remain in

equilibrium in the environment. For instance, the same scenario was ob-

served as being responsible for preserving biodiversity in the neighbour-

hoods of the Escherichia coli, which is a bacteria commonly found in the lower

intestine of warm-blooded organisms. According to Fisher [52], studies were

performed with three natural populations of this bacteria: (i) produces a nat-

ural antibiotic but is immune to its effects, (ii) is sensitive to the antibiotic

but can grow faster than the third population, which (iii) is resistant to the

antibiotic. They observed that when these populations are mixed together,

each of them ends up establishing its own territory in the environment. It

happens because the first population kill off any other bacteria sensitive to

the antibiotic, the second population uses their faster growth rate to displace

the bacteria which are resistant to the antibiotic, and the third population

could use their immunity to displace the first population.

Another interesting behaviour is noticed for ∆/δ = 1.0. In this sce-

nario, defectors are dominated by abstainers, allowing a few clusters of co-

operators to survive. As a result of the absence of defectors, cooperators

invade abstainers and dominate the environment.

3.5 Exploring the coevolutionary optional pris-

oner’s dilemma game

In this section, we present some of the relevant experimental results of the

Monte Carlo simulations of the coevolutionary optional prisoner’s dilemma

game in an unbiased environment. That is, a well-mixed initial population

with a balanced amount of cooperators, defectors and abstainers.
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3.5.1 Investigating the properties of ∆ and δ

This section aims to investigate the properties of the presented model

(Sect. 3.3) in regard to the parameters ∆ and δ. These parameters play a

key role in the evolutionary dynamics of this model because they define the

number of possible link weights that an agent is allowed to have (i.e., they

define the number of states).

Despite the fact that the number of states is discrete, the act of count-

ing them is not straightforward. For instance, when counting the num-

ber of states between 1 − δ and 1 + δ for ∆ = 0.2 and δ = 0.3, we could

incorrectly state that there are four possible states for this scenario, i.e.,

{0.7, 0.9, 1.1, 1.3}. However, considering that the link weights of all edges

are initially set to w = 1, and due to the other constraints (Equations 3.3 and

3.4), the number of states is actually seven, i.e., {0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3}.

In order to better understand the relationship between ∆ and δ, we

plot ∆, δ and ∆/δ as a function of the number of states (numerically counted)

for a number of different values of both parameters (Figure 3.5). It was ob-

served that given the pairs (∆1, δ1) and (∆2, δ2), if ∆1/δ1 is equal to ∆2/δ2,

then the number of states of both settings is the same.

Figure 3.5 shows the ratio ∆/δ as a function of the number of states.

As we can see, although the function is non-linear and non-monotonic, in

general, higher values of ∆/δ have less states.

3.5.2 Varying the number of states

Figure 3.6 shows the impact of the coevolutionary model on the emergence

of cooperation when the ratio ∆/δ varies for a range of fixed values of the
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FIGURE 3.5: The ratio ∆/δ as a function of the number of states.
For any combination of ∆ and δ, the ration ∆/δ will always have

the same number of states.

loner’s payoff (l), temptation to defect (b) and δ. In this experiment, we ob-

serve that when l = 0.0, the outcomes of the coevolutionary optional pris-

oner’s dilemma (COPD) game are very similar to those observed by Huang

et al. [74] for the coevolutionary prisoner’s dilemma (CPD) game. This re-

sult can be explained by the normalized payoff matrix adopted in this work

(Table 3.1). Clearly, when l = 0.0, there is no advantage in abstaining from

playing the game, thus agents choose the option to cooperate or defect [29].

Results indicate that, in cases where the temptation to defect is very

low (e.g, b ≤ 1.34), the level of cooperation does not seem to be affected by

the increment of the loner’s payoff, except when the advantage of abstaining

is very high (e.g, l > 0.8). However, these results highlight that the presence

of the abstainers may protect cooperators from invasion. Moreover, the dif-

ference between the traditional optional prisoner’s dilemma (i.e., ∆/δ = 0.0)

for l = {0.0, 0.6} and all other values of ∆/δ is strong evidence that our

coevolutionary model is very advantageous to the promotion of cooperative
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behaviour.

Namely, when l = 0.6, in the traditional case with a static and un-

weighted network (∆/δ = 0.0), the cooperators have no chance of surviving;

except, of course, when b is very close to the reward for mutual coopera-

tion R, where it is possible to observe scenarios of quasi-stable states of the

three strategies or between cooperators and defectors. In fact, in the tradi-

tional OPD (∆/δ = 0.0), when l > 0.0 and b > 1.2, abstainers are always the

dominant strategy. However, as discussed in previous work [29], when the

coevolutionary rules are used, cooperators do much better, being also able to

dominate the whole population in many cases.

It is noteworthy that the curves in Figure 3.6 are usually non-linear

and/or non-monotonic because of the properties of the ratio ∆/δ in regard

to the number of states of each combination of ∆ and δ (Sect. 3.5.1).

3.5.3 Investigating the relationship between ∆/δ, b and l

To investigate the outcomes in other scenarios, we explore a wider range

of settings by varying the values of the temptation to defect (b), the loner’s

payoff (l) and the ratio ∆/δ for a fixed value of δ = 0.8.

As shown in Figure 3.7, cooperation is the dominant strategy in the

majority of cases. Note that in the traditional case, with an unweighted and

static network, i.e., ∆/δ = 0.0, abstainers dominate in all scenarios illustrated

in this ternary diagram. In addition, it is also possible to observe that certain

combinations of l, b and ∆/δ guarantee higher levels of cooperation. In these

scenarios, cooperators are protected by abstainers against exploitation from

defectors.

Complementing previous findings [29], another observation is that de-

fectors are attacked more efficiently by abstainers as we increase the loner’s
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FIGURE 3.6: Relationship between cooperation and the ratio
∆/δ when the loner’s payoff (l) is equal to 0.0 (top) and 0.6 (bot-

tom) [29].

payoff (l). Simulations reveal that, for any scenario, if the loner’s payoff is

greater than 0.7 (l > 0.7), defectors have no chance of surviving. However,

the drawback of increasing the value of l is that it makes it difficult for co-

operators to dominate abstainers, which might produce a quasi-stable pop-

ulation of cooperators and abstainers. It is noteworthy that it is a counter-

intuitive result from the COPD game, since the loner’s payoff is always less

than the reward for mutual cooperation (i.e., L < R), even for extremely high

values of L. This scenario (population of cooperators and abstainers) should

always lead cooperators to quickly dominate the environment.
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In fact, it is still expected that, in the COPD game, cooperators dom-

inate abstainers, but depending on the value of the loner’s payoff, or the

amount of abstainers in the population at this stage, it might take several

Monte Carlo steps to reach a stable state, which is usually a state of coopera-

tion fully dominating the population.

An interesting behaviour is noticed when l = [0.45, 0.55] and b > 1.8.

In this scenario, abstainers quickly dominate the population, making a clear

division between two states: before this range (defectors hardly die off) and

after this range (defectors hardly survive). In this way, a loner’s payoff value

greater than 0.55 (l > 0.55) is usually the best choice to promote cooperation.

This result is probably related to the difference between the possible utilities

for each type of interaction, which still needs further investigation in future.

Although the combinations shown in Figure 3.7 for higher values of b

(b > 1.8) are just a small subset of an infinite number of possible values, it

is clearly shown that a reasonable fraction of cooperators can survive even

in an extremely adverse situation where the advantage of defecting is very

high. Indeed, our results show that some combinations of high values of l

and δ, such as for δ = 0.8 and l = 0.7, can further improve the levels of

cooperation, allowing for the full dominance of cooperation.

3.6 Investigating the robustness of cooperation in

a biased environment

The previous experiments revealed that the presence of abstainers together

with simple coevolutionary rules (i.e., the COPD game) act as a powerful

mechanism to avoid the spread of defectors, which also allows the domi-

nance of cooperation in a wide range of scenarios. However, the distribution



3.6. Investigating the robustness of cooperation 59

FI
G

U
R

E
3.

7:
Te

rn
ar

y
di

ag
ra

m
s

of
di

ff
er

en
tv

al
ue

s
of

b
(t

em
pt

at
io

n
to

de
fe

ct
),

l(
lo

ne
r’

s
pa

yo
ff

)a
nd

∆
/

δ
fo

r
δ
=

0.
8

[2
9]

.



60 Chapter 3. The Impact of Coevolution and Abstention

of the strategies in the initial population used in all of the previous experi-

ments was uniform. That is, we have explored cases in which the initial pop-

ulation contained a balanced amount of cooperators, defectors and abstain-

ers. Thus, in order to explore the robustness of these outcomes in regard to

the initial amount of abstainers in the population, we now aim to investigate

how many abstainers would be necessary to guarantee robust cooperation.

Figure 3.8 features the fraction of each strategy in the population (i.e.,

cooperators, defectors and abstainers) over time for fixed values of b = 1.9,

∆ = 0.72 and δ = 0.8. In this experiment, several independent simulations

were performed, in which the loner’s payoff (l) and the number of abstainers

in the initial population were varied from 0.0 to 1.0 and from 0.1% to 99.9%,

respectively. Other special cases were also analyzed, such as placing only

one abstainer into a balanced population of cooperators and defectors, and

placing only one defector and one cooperator in a population of abstainers.

For the sake of simplicity, we report only the values of l = {0.2, 0.6, 0.8}

for an initial population with one, 5%, 33% and 90% abstainer(s), which are

representative of the outcomes at other values also. Note that, for all these

simulations, the initial population of cooperators and defectors remained in

balance. For instance, an initial population with 50% of abstainers, will con-

sequently have 25% of cooperators and 25% of defectors.

Experiments reveal that the COPD game is actually extremely robust

to radical changes in the initial population of abstainers. It has been shown

that if the loner’s payoff is greater than 0.55 (l > 0.55), then one abstainer

might alone be enough to protect cooperators from the invasion of defectors

(see Figures 3.8a, 3.8b and 3.8c). However, this outcome is only possible if

the single abstainer is in the middle of a big cluster of defectors.

This outcome can happen because the payoff obtained by the abstain-

ers is always greater than the one obtained by pairs of defectors (i.e., L < P).
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FIGURE 3.8: Time course of each strategy for b = 1.9, ∆ =
0.72, δ = 0.8 and different values of l (from left to right,
l = {0.2, 0.6, 0.8}). The same settings are also tested on popu-
lations seeded with different amount of abstainers (i.e, from top
to bottom: 1 abstainer, 5% of the population, 1/3 of the popula-

tion, 90% of the population).
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Thus, in a cluster of defectors, abstention is always the best choice. How-

ever, as this single abstainer reduces the population of defectors, which con-

sequently increases the population of abstainers and cooperators in the pop-

ulation, defection may start to be a good option again due to the increase

of cooperators. Therefore, the exploitation of defectors by abstainers must

be as fast as possible, otherwise, they might not be able to effectively attack

the population of defectors. In this scenario, the loner’s payoff is the key

parameter to control the speed in which abstainers invade defectors. This ex-

plains why a single abstainer is usually not enough to avoid the dominance

of defectors when l < 0.55.

In this way, as the loner’s payoff is the only parameter that directly

affects the evolutionary dynamics of the abstainers, intuition might lead one

to expect to see a clear and perhaps linear relationship between the loner’s

payoff and the initial number of abstainers in the population. That is, given

the same set of parameters, increasing the initial population of abstainers or

the loner’s payoff would probably make it easier for abstainers to increase or

even dominate the population. Despite the fact that it might be true for high

values of the loner’s payoff (i.e., l ≥ 0.8, as observed in Figure 3.8), it is not

applicable to other scenarios. Actually, as it is also shown in Figure 3.8, if the

loner’s payoff is less than 0.55, changing the initial population of abstainers

does not change the outcome at all. When 0.55 ≤ l < 0.8, a huge initial

population of abstainers can actually promote cooperation best.

As discussed in Section 3.5.3, populations of cooperators and abstain-

ers tend to converge to cooperation. In this way, the scenario showed in

Figure 3.8 for l = 0.8 will probably end up with cooperators dominating the

population, but as the loner’s payoff is close to the reward for mutual co-

operation, the case in Figure 3.8i will converge faster than the one shown in

Figure3.8l.
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Another very counter-intuitive behaviour occurs in the range l =

[0.45, 0.55] (this range may shift a little bit depending on the value of b),

where the outcome is usually of abstainers quickly dominating the popu-

lation (Sect.3.5.3). In this scenario, we would expect that changes in the

initial population of abstainers would at least change the speed in which

the abstainers fixate in the population. That is, a huge initial population of

abstainers would probably converge quickly. However, it was observed that

the convergence speed is almost the same regardless of the size of the initial

population of abstainers.

In summary, results show that an initial population with 5% of ab-

stainers is usually enough to make reasonable changes in the outcome, in-

creasing the chances of cooperators surviving or dominating the population.

3.7 Conclusions and future work

This chapter studies the impact of a simple coevolutionary model in which

not only the agents’ strategies but also the network evolves over time. The

model consists of placing agents playing the optional Prisoner’s dilemma

game in a dynamic spatial environment, which in turn, defines the coevolu-

tionary optional Prisoner’s dilemma (COPD) game [29].

In summary, based on the results of several Monte Carlo simulations,

it was shown that the COPD game allows for the emergence of cooperation

in a wider range of scenarios than the coevolutionary Prisoner’s dilemma

(CPD) game [74], i.e., the same coevolutionary model in populations which

do not have the option to abstain from playing the game. Results also showed

that COPD performs much better than the traditional version of these games,

i.e., the prisoner’s dilemma (PD) and the optional prisoner’s dilemma (OPD)

games, where only the strategies evolve over time in a static and unweighted
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network. Moreover, we observed that the COPD game is actually able to

reproduce outcomes similar to other games by setting the parameters as fol-

lows:

• CPD: l = 0.

• OPD: ∆ = 0 (or δ = 0).

• PD: l = 0 and ∆ = 0 (or δ = 0).

Also, it was possible to observe that abstention acts as an important

mechanism to avoid the dominance of defectors. For instance, in adverse sce-

narios such as when the defector’s payoff is very high (b > 1.7), for both PD

and CPD games, defectors spread quickly and dominated the environment.

On the other hand, when abstainers were present (COPD game), cooperation

was able to survive and even dominate.

Furthermore, simulations showed that defectors die off when the

loner’s payoff is greater than 0.7 (l > 0.7). However, it was observed that

increasing the loner’s payoff makes it difficult for cooperators to dominate

abstainers, which is a counter-intuitive result, since the loner’s payoff is al-

ways less than the reward for mutual cooperation (i.e., L < R), this scenario

should always lead cooperators to dominance very quickly. In this scenario,

cooperation is still the dominant strategy in most cases, but it might require

several Monte Carlo steps to reach a stable state.

Results revealed that the COPD game also allows scenarios of cyclic

dominance between the three strategies (i.e., cooperation, defection and ab-

stention), indicating that, for some parameter settings, the COPD game is

intransitive. That is, the population remains balanced in such a way that

cooperators invade abstainers, abstainers invade defectors and defectors in-

vade cooperators, closing a cycle.
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We also explored the robustness of these outcomes in regard to the ini-

tial amount of abstainers in the population (biased population). In summary,

it was shown that, in some of the scenarios, even one abstainer might alone be

enough to protect cooperators from the invasion of defectors, which in turn

increases the chances of cooperators surviving or dominating the population.

We conclude that the combination of both of these trends in evolutionary

game theory may shed additional light on gaining an in-depth understand-

ing of the emergence of cooperative behaviour in real-world scenarios.

Future work will consider the exploration of different topologies and

the influence of a wider range of scenarios, where, for example, agents could

rewire their links, which, in turn, adds another level of complexity to the

model. Future work will also involve applying our studies and results to

realistic scenarios, such as social networks and real biological networks.
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Chapter 4

Cyclic Dominance in the Spatial

Coevolutionary Optional

Prisoner’s Dilemma Game

The work outlined in this chapter was published in:

Cardinot, M., Griffith, J., and O’Riordan, C. (2016). “Cyclic dominance in

the spatial coevolutionary optional prisoner’s dilemma game”. In 24th Irish

Conference on Artificial Intelligence and Cognitive Science, pp. 33-44, Dublin,

Ireland.
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Abstract

This chapter studies scenarios of cyclic dominance in a coevolutionary spa-

tial model in which game strategies and links between agents adaptively

evolve over time. The optional prisoner’s dilemma (OPD) game is employed.

The OPD is an extended version of the traditional prisoner’s dilemma where

players have a third option to abstain from playing the game. We adopt an

agent-based simulation approach and use Monte Carlo methods to perform

the OPD with coevolutionary rules. The necessary conditions to break the

scenarios of cyclic dominance are also investigated. This work highlights

that cyclic dominance is essential in the sustenance of biodiversity. More-

over, we also discuss the importance of a spatial coevolutionary model in

maintaining cyclic dominance in adverse conditions.
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4.1 Introduction

Competition is one of the most fundamental concepts in the study of the

interaction between individuals in an ecosystem. Competition occurs when

there is a contest for resources, such as food, mates or territories. Competition

also favours a selection process, which reaches its peak with the dominance

of better-adapted individuals and the extinction of less-adapted individuals.

In many cases, rather than one individual dominating, the system can reach

an equilibrium where individuals can coexist [84].

Scenarios of coexistence may occur when two or more individuals, or

species, form a cycle of dominance. For instance, considering a population

of three species: X, Y and Z; cyclic dominance occurs when X dominates

Y, Y dominates Z, and Z dominates X, forming a closed loop, which is also

known as an intransitivity [165].

In nature, cyclic dominance plays a key role in the sustenance of bio-

diversity. For example, the male side-blotched lizard shows an intransitive

behaviour when guarding their mates. This kind of lizard can be divided

into three categories based on their throat colours:

• Blue-throated males guard small territories with a single female. They

are efficient in defending their mate from yellow-throated lizards.

• Yellow-throated males do not guard territories at all, but they move

around in search of mates.

• Orange-throated males guard larger territories, keeping harems of

females. Consequently, as they have to split their efforts defending sev-

eral territories, they are less efficient in defending them from yellow-

throated lizards. However, they are more aggressive and can steal

mates from blue-throated lizards.
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Therefore, a cyclic competition exists because the blue-throated males beat

the yellow-throated males, the yellow-throated males beat the orange-

throated males, and the orange-throated males beat the blue-throated males

[139].

It is noteworthy that as the number of species, or the population size,

increases, the collective behaviours of a system subject to these sort of sce-

narios may become much harder to analyse and predict. In this way, frame-

works like evolutionary game theory, which employs game theory to evolve

populations of rational agents, have been widely applied by researchers as it

provides many useful insights to explain such a complex scenario [142].

Particularly, games such as the Rock-Paper-Scissors game [194, 106, 37,

133, 87] and the prisoner’s dilemma game [193, 79, 166, 147] have been stud-

ied in the context of cyclic competition. In these games, a participant’s inter-

actions are generally constrained by particular graph topologies [116], where

it has been shown that the spatial organisation of strategies may also affect

the outcomes [32]. Recent studies have also explored dynamically weighted

networks, where it has been shown that the coevolution of both the game

strategies and the spatial environment can further help in understanding

real-world systems [29, 74, 183, 41, 203].

In this chapter, we employ extensive agent-based Monte Carlo simu-

lations to perform the coevolutionary optional prisoner’s dilemma game in a

population of agents placed on a lattice grid where, game strategies, and the

edges linking agents, adaptively evolve over time. We aim to investigate:

• scenarios of cyclic dominance in the optional prisoner’s dilemma, and

• the necessary conditions needed to break the scenarios of cyclic domi-

nance.

Specifically, the experiments performed are:
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• Finding scenarios of cyclic dominance.

• Exploring the sustenance of coexistence after the extinction of one strat-

egy.

• Investigating the robustness of the coexistence of three strategies when

some portion of the strategies mutate into another strategy.

• Investigating the impact of the coevolutionary rules in the sustenance

of coexistence.

The chapter outline is as follows: Section 4.2 presents a brief overview

of the previous work in cyclic dominance in the context of evolutionary and

coevolutionary game theory. Section 4.3 introduces the optional prisoner’s

dilemma game, describes the coevolutionary model adopted, and outlines

the experimental set-up. In Section 4.4, some scenarios of cyclic competition

between three strategies are investigated. Section 4.5 explores the necessary

conditions to break the cyclic competition. Lastly, Section 4.6 summarizes the

main results and outlines future work.

4.2 Related work

Started by John Maynard Smith, evolutionary game theory has been studied

since the 1980s where ideas from evolutionary theory have been applied to

game theory. Game theory models situations of conflict between rational

agents, i.e., individual players make decisions, in which the outcome will

depend on the other players’ decisions [142].

Evolutionary game theory has been used as an important framework

to explore and study the phenomena of cyclic competition, or intransitivity,

which can be found in many real-world systems in different domains such as

biology [133, 87] and physics [90, 37]. Moreover, it has been widely studied
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at a higher level of abstraction, providing insights into the understanding of

oscillatory and stochastic systems [194, 106].

Despite the fact that cyclic competition has been observed in two-

strategy games [166], it is more likely to happen in games involving three

or more strategies [165]. The rock-paper-scissors (RPS) game remains one of

the most oft-studied games in scenarios of cyclic dominance due to its in-

transitive nature, in which the loop of preference between pairs of strategies

is very straightforward — paper covers rock, rock crushes scissors and scis-

sors cuts paper [201, 86]. It is noteworthy that such an intransitive behaviour

has also been noticed in other evolutionary games such as the optional pris-

oner’s dilemma game [79, 147] and the voluntary public goods game [68].

However, they have been much less explored in this specific context of cyclic

dominance.

For instance, Yu et al. [193] proposed a study of the influence of the

population size and the level of individual rationality on the evolutionary

dynamics of the voluntary prisoner’s dilemma (VPD) game, which is very

similar to the optional prisoner’s dilemma (OPD) game, in which a third

type of strategy is considered. In their chapter, scenarios of cyclic dominance

in the VPD game are discussed. It was shown that these scenarios prevent

the full dominance of a specific strategy in the population.

Recent studies have also explored the use of coevolutionary rules in

game theory. First introduced by Zimmermann et al. [203], those rules pro-

pose a new model in which agents can adapt their neighbourhood during

a dynamical evolution of graph topology and game strategy. As discussed

by Perc and Szolnoki [124], the coevolutionary games constitute a natural

upgrade of the well-know spatial evolutionary games [116], where dynamic

spatial environments are taken into consideration. In fact, the coevolution of
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strategies and spatial environment has given ground to a new trend in evo-

lutionary game theory due to its wider applicability in the understanding of

more realistic scenarios [74, 183].

The inclusion of coevolutionary rules in the optional prisoner’s dilemma

game has been recently proposed by Cardinot et al. [29], who identified that

coevolutionary rules may favour the emergence of cyclic competition. How-

ever, many questions remain unanswered, such as its robustness against

frozen states, i.e., when strategies become extinct because of some distur-

bance in the system.

4.3 Methodology

In this section, we will describe the optional prisoner’s dilemma game, the

Monte Carlo methods and the coevolutionary rules adopted. Finally, the spa-

tial environment and the experimental set-up are outlined.

4.3.1 The optional prisoner’s dilemma

The optional prisoner’s dilemma (OPD) game is an extension of the classical

version of the prisoner’s dilemma (PD) game. This extension incorporates

the concept of abstinence, where agents can abstain from playing the game.

It leads to a three-strategy game in which agents can not only defect or co-

operate, as in the classical PD, but can also choose to abstain from a game

interaction. Consequently, there are nine payoffs associated with each pair-

wise interaction between strategies. However, as defined in other studies [32,

68], in this work we also assume that if one or both players abstain, both will

obtain the same payoff, which is called the loner’s payoff (L). Hence, as il-

lustrated in Table 4.1, the OPD game is actually characterised by five payoffs,



74 Chapter 4. Cyclic dominance in the COPD game

where the other four payoffs are known as the reward for mutual cooperation

(R), punishment for mutual defection (P), sucker’s payoff (S) and temptation

to defect (T).

TABLE 4.1: The optional prisoner’s dilemma game matrix.

C D A
C R,R S,T L
D T,S P,P L
A L L L

In order to establish the dilemma of the OPD, it is important to con-

sider that the loner’s payoff (L) obtained by abstainers is greater than P and

less than R, and that the traditional constraints of the prisoner’s dilemma

still hold, i.e., T > R > P > S. Thus, in this extension the dilemma arises

when the payoff values are ordered such that T > R > L > P > S. In conso-

nance with common practice [193, 74, 116], as the evolutionary rule depends

on the payoff differences between agents, the payoff values can be rescaled

to R = 1, P = 0, S = 0, T = b and L = l, where 1 < b < 2 and 0 < l < 1,

which, in turn, maintain the dilemma.

4.3.2 Monte Carlo simulation

This work considers a population of N agents placed on a square lattice with

periodic boundary conditions, i.e., a torus topology (upper-bottom and left-

right borders must match each other exactly). In this lattice, each agent in-

teracts only with its eight immediate neighbours (Moore neighbourhood) by

playing the optional prisoner’s dilemma game with coevolutionary rules. In

our experiments, initially, each agent is designated as an abstainer (A), co-

operator (C) or defector (D) with equal probability. Each edge linking agents

has the same weight w = 1, which will adaptively change in accordance with

the agents’ interactions.
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Monte Carlo simulations are performed to investigate the dynamics

of the coevolution of both game strategy and link weights. In one Monte

Carlo (MC) step, each player is selected once on average, that is, one MC

step comprises N inner steps where the following calculations and updates

occur: an agent (x) is randomly selected from the population; its utility uxy =

wxyPxy is calculated for each of its eight neighbours (represented as y), where

wxy is the link weight between agents x and y, and Pxy corresponds to the

payoff obtained by agent x on playing the game with agent y; the average

accumulated utility, i.e. Ux = ∑ uxy/8, is calculated and used to update the

link weights (Eq. 4.1); as the link weights have been updated, the utilities

must be recalculated; finally, strategies are updated based on the comparison

of the accumulated utilities Ux and Uy (obtained from a randomly selected

neighbour) (Eq. 4.2).

As shown in Equation 4.1, the link weight (wxy) between agents is

updated by comparing the utility (uxy) and the average accumulated utility

(Ux),

wxy =


wxy + ∆ if uxy > Ux

wxy − ∆ if uxy < Ux

wxy otherwise

, (4.1)

where ∆ is a constant such that 0 ≤ ∆ ≤ δ, where δ (0 < δ ≤ 1) defines the

weight heterogeneity. Moreover, as done in previous research [29, 74, 183],

the link weight wxy is also adjusted to be within the range of 1− δ to 1 + δ.

In this way, when ∆ = 0 or δ = 0, the link weight keeps constant (w = 1),

which results in the traditional scenario where only the strategies evolve.

In order to update the strategy of the agent x, the accumulated utilities

Ux and Uy are compared such that, if Uy > Ux, agent x will copy the strategy

of agent y with a probability proportional to the utility difference (Eq. 4.2),
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otherwise, agent x will keep its strategy for the next step.

p(sx = sy) =
Uy −Ux

8(T − P)
, (4.2)

where T is the temptation to defect and P is the punishment for mutual de-

fection [29, 74].

4.3.3 Experimental set-up

In this work, the population size is constant, N = 102× 102, in all simula-

tions, which are run for 106 Monte Carlo steps. In order to alleviate the effect

of randomness in the approach, each specific experimental set-up is run 10

times.

Initially, we identify scenarios of intransitivity in the optional pris-

oner’s dilemma game, i.e., the values of b, l and ∆ which promote the co-

existence of the three strategies (Sec. 4.4). After that, the stable population is

tested to find the necessary conditions to break the equilibrium. To do this,

the following experiments are performed: investigating the outcomes of pop-

ulations with only two types of strategies (Sec. 4.5.1); exploring the effects of

different mutation rates (Sec. 4.5.2); and investigating the importance of the

coevolutionary model in the sustenance of cyclic competition (Sec. 4.5.3).

4.4 Cyclic competition with three strategies

Given an initial population with the same number of abstainers, cooperators

and defectors uniformly distributed, we start by investigating some param-

eter settings in which a state of cyclic competition can be observed. Specif-

ically, we look for combinations of the loner’s payoff l, the temptation to
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defect b, and the link amplitude ∆/δ, which promote an equilibrium be-

tween the three strategies. This experiment is based on the work described

by Huang et al. [74], where it is shown that some parameters settings may

promote cyclic dominance. However, it is noteworthy that this phenomenon

is not discussed in their paper and their methods consider only the classical

prisoner’s dilemma.

In the traditional case of the optional prisoner’s dilemma game, i.e.,

for a static and unweighted network (∆ = 0.0), results show that abstainers

or defectors dominate in most scenarios and the dominance is closely related

to the payoff values.

In comparison, the population rarely reaches a state of cyclic competi-

tion between the three strategies. In fact, it was only noticed when the temp-

tation to defect is in the range b = [1.1, 1.2]. Certainly, it is more likely to

happen in this scenario because there is no big advantage in choosing a spe-

cific strategy and consequently the strategies tend to remain in equilibrium.

However, this behaviour is not very stable.

When it comes to the cases of ∆ > 0.0, results show that a wide num-

ber of different parameter settings can spontaneously promote the intran-

sitive behaviour, in which cooperators, defectors and abstainers remain in

equilibrium. For instance, Figure 4.1 shows the progress, over the Monte

Carlo time steps, of each strategy for ∆/δ = 0.3, δ = 0.8, l = 0.5 and b = 1.9.

We can observe that agents quickly organise in the population in a way that

the fraction of each strategy remains about 33%(±7%).

In order to investigate what spatial patterns emerge in this scenario,

we also took some snapshots of the population at different Monte Carlo steps.

Particularly, the MC steps 0 and 106 are illustrated in Figure 4.2.

An interesting phenomenon in this simulation is that abstainers tend
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FIGURE 4.1: Progress of the fraction of cooperators, defectors
and abstainers during a Monte Carlo simulation for ∆/δ = 0.3,
δ = 0.8, l = 0.5 (loner’s payoff) and b = 1.9 (temptation to
defect). It is observed that agents quickly reach a state where

the fraction of each strategy remains in balance.

to form bigger clusters by dominating defectors. However, abstainers en-

sure that a small fraction of defectors remain in its surrounding area as a

mechanism to protect them against an invasion of cooperators. Defectors,

in turn, attempt to encircle cooperators, disconnecting them from abstainers,

as a way to isolate and easily dominate them. These dynamics explain the

reason why the population is never fully dominated by any one strategy.

4.5 Breaking the cyclic competition: extinction of

species

In real-world systems, species may become extinct due to a variety of causes

such as climate change, habitat degradation, diseases, genetic factors, etc.

This sort of scenario is also present in many other domains, for example, in

business with the extinction of companies caused by a pricing war.
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(A) MC step 0 (B) MC step 106

FIGURE 4.2: Snapshots of the distribution of the strategy in the
Monte Carlo simulation for ∆/δ = 0.3 δ = 0.8, l = 0.5 (loner’s
payoff) and b = 1.9 (temptation to defect). In this Figure, coop-
erators, defectors and abstainers are represented by the colours

blue, red and green respectively.

In other cases, species may mutate in order to avoid extinction. For

example, in the case of the common side-blotched lizards, it is known that

yellow-throated males can, in specific instances, mutate into blue-throated

males and once they transform, it cannot be reverted. Moreover, the yellow-

throated male is the only species able to undergo mutation [139].

Inspired by the behaviour of some species in nature such as the side-

blotched lizards and the Escherichia Coli bacteria, we investigate scenarios

in which a species can mutate and we investigate the effect that this phe-

nomenon can have on the population and its evolutionary mechanisms.

These set of experiments aim to explore what are the necessary conditions to

maintain the cyclic competition between the three strategies, even in adverse

scenarios in which the fraction of agents of a given strategy is reduced in the

population, up to its complete extinction.
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4.5.1 Two species

For the experiments involving only two strategies, or species, we use the

evolved population (strategies and spatial structure) obtained in our first ex-

periment (Sec. 4.4), i.e., the outcome of 106 Monte Carlo steps. All other pa-

rameter settings are kept the same (∆/δ = 0.3, δ = 0.8, l = 0.5 and b = 1.9).

Before the simulation, we replace all individuals of a strategy by an-

other, obtaining a population of two strategies. It was found that a state of

cyclic competition between only two strategies cannot be reached and that

the outcomes are always a full dominance of a specific strategy. The results

can be summarised as follows:

• With an initial population of C and A, C will dominate.

• With an initial population of D and A, A will dominate.

• With an initial population of C and D, D will dominate.

As well as mimicking outcomes that we observe in nature, these re-

sults highlight the importance of cyclic competition in the sustenance of bio-

diversity. For instance, in our abstract model, the state of complete domi-

nance of a strategy does not necessarily incur advantages. In other words,

some species may prefer to live in smaller numbers in the environment in or-

der to give more opportunity for prey to develop. Thus, although defectors

prefer to stay away from abstainers, a population fully occupied by defectors

lacks resources (P = 0). Thus, defectors need abstainers to keep the coopera-

tors alive, which in turn will enable defectors to increase their payoffs.
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4.5.2 Three species

Following the same procedures performed for the pairwise simulation

(Sec. 4.5.1), and for the same parameter settings, we now explore the be-

haviour of a population with three strategies, or species, after an adverse

scenario occurs in which most of the agents of a particular strategy undergo

mutation.

This analysis is important in order to understand the necessary con-

ditions for a population to maintain the stable coexistence of strategies in

cyclic competition. Thus, considering that the initial population has 1/3 of

each strategy, we run several Monte Carlo simulations varying the mutation

rate from 1 to 99 percent. Surprisingly, results show that the state of cyclic

competition is very robust and for all simulations the population quickly re-

turns to the equilibrium of about 1/3 of each strategy with the same spatial

pattern as shown in Figure 4.2.

In order to further explain the results witnessed in these experiments,

in which the vast majority of our simulations with extremely high mutation

rates, i.e. 99.9%, converged to the equilibrium; we decided to analyse cases

where only one agent of a specific strategy does not mutate in the population

(i.e., maximum mutation rate). This scenario, in turn, is illustrated in Fig-

ure 4.3, which shows the snapshots of the mutated population at the initial

Monte Carlo step.

Results show that only one individual of a species needs to be kept

in the population in order for the cyclic competition to remain. All scenar-

ios in Figure 4.3 quickly reverted back to the spatial pattern illustrated in

Figure 4.2. However, it is only possible if the single agent is linked with a

sufficient number of subordinate agents. Namely, a cooperator must have

abstainers in its neighbourhood; similarly abstainers must have defectors,
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(A) D into C (B) A into D (C) C into A

(D) D into A (E) A into C (F) C into D

FIGURE 4.3: Initial population after mutation of strategies.
All scenarios recover the balance between the three strategies,
showing a spatial pattern similar to the one illustrated in Fig-
ure 4.2. In this Figure, cooperators, defectors and abstainers are

represented by the colours blue, red and green respectively.

and defectors must have cooperators. This condition explains the robustness

of our previous experiment, in which the balance was recovered even when

99% of the agents of a strategy were mutated. In this situation, as we have

a population of 10404 agents, the chances of at least one of 104 agents being

connected to a satisfactory number of subordinated strategies is very high.

It can be seen that when mutating Ds into Cs, we unbalance the final

population to about 2/3 Cs and 1/3 As. We observe that this difference is

not too relevant for the final outcome and that the key role in sustaining the

cyclic competition is in the hands of the single agent (D in this example).

Results show that balance between the three strategies is always recovered

when the single agent is completely surrounded by its subordinate strategy.
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For instance, a single defector surrounded by cooperators will never be re-

placed by a cooperator because its utility will be greater than the utility of

any neighbour.

When the mutation occurs from a dominant to a subordinate strat-

egy such as, from defector to cooperator, abstainer to defector or cooperator

to abstainer, the chances of the single agent being kept in the middle of a

suitable cluster (subordinate strategy) are very high. This scenario can be

observed in Figures 4.3a, 4.3b and 4.3c. However, in the opposite case it is

not generally possible because, during the evolutionary dynamics, a subor-

dinate strategy will almost never survive alone in the middle of a cluster of a

dominant strategy.

Therefore, the special aforementioned cases are not as stable as the

case in which the single agent is surrounded by subordinated neighbours. Its

stability will depend on the number of links with subordinated strategies and

the respective values of the link weights. In our experiments, it was observed

that when the single agent is a defector, the cyclic competition is recovered

more often when the number of cooperators in the neighbourhood is greater

than or equal to four (Fig. 4.3d). When the single agent is an abstainer, at

least five of the eight neighbours need to be defectors (Fig. 4.3e).

Finally, as shown in Figure 4.3f, it is usually impossible to sustain

cyclic competition when the single agent kept after mutation is a cooperator.

It happens because cooperators are very sensitive to the presence of defec-

tors and, in this sort of scenario, they need at least one partner to be able to

be rewarded for mutual cooperation (R). Thus, better results are obtained as

the number of cooperators kept together increases.



84 Chapter 4. Cyclic dominance in the COPD game

4.5.3 Destroying the environment

Previous experiments discussed in Sections 4.5.1 and 4.5.2 have considered

the mutation of species (strategies) applied to an already coevolved popula-

tion (species and spatial environment). Namely, strategies are transformed,

but the spatial environment is still the same.

In this section we are interested in exploring the impacts of changing

the spatial environment at the mutation step such that all link weights be-

tween agents are reset back to w = 1 as existed in the initial settings of the

first experiment (Sec. 4.4).

Results show that the robustness witnessed in previous simulations, in

which only one species was needed to recover the balance between the three

species, is actually only possible because the spatial environment is kept un-

changed. The coevolutionary rules adopted enables agents to constantly

strengthen beneficial connections and weaken harmful ones, adapting the

environment to fit individual needs. Hence, in the previous experiments, as

the non-mutated agent is probably the most adapted in the neighbourhood,

its strategy spreads quickly, allowing the population to recover the balance.

This finding highlights the importance of the coevolutionary model in

allowing agents to adapt the environment to sustain the diversity of strate-

gies.

4.6 Conclusions and future work

In this chapter, we have investigated the phenomenon of cyclic dominance

in a coevolutionary optional prisoner’s dilemma, in which both game strate-

gies and edges linking agents adaptively evolve over time. An agent-based

Monte Carlo simulation approach was adopted to perform the evolutionary
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game in a population of agents placed on a lattice grid with a Moore neigh-

bourhood.

Despite the fact that the rock-paper-scissors game remains one of the

most oft-studied games in scenarios of cyclic dominance, in this chapter, we

showed that the same behaviour can also be noticed in the optional pris-

oner’s dilemma game, which allows the investigation of more complex sce-

narios that may lead to a variety of outcomes.

Results show that cyclic dominance between the three strategies can

emerge spontaneously in a wide range of parameter settings, i.e., l, b, ∆ and

δ, including the traditional case (∆ = 0.0) for an unweighted and static net-

work. However, it was observed that populations of only two strategies can

quickly lead to dominance of one strategy, which may lead to a much lower

performance.

Experiments revealed that the equilibrium between the three strate-

gies is maintained even in adverse scenarios, in which the mutation rate is

extremely high. It was observed that having only one agent of a strategy

is often enough to enable the population to revert back to a balanced state.

However, this single agent must be surrounded by subordinated agents, i.e.,

cooperators surrounded by abstainers, abstainers surrounded by defectors

and defectors surrounded by cooperators.

Moreover, it was shown that the coevolutionary spatial method

adopted plays a key role in the sustenance of coexistence because it allows

agents to also adapt the environment, which is reasonable in more realistic

scenarios. For instance, in real life, a population is often changing the envi-

ronment over time in order to improve their performance and welfare. Thus,

in adverse scenarios, it is much easier for an individual to overcome and

survive in such an evolved environment.
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Future work will involve the mathematical analysis of the necessary

conditions to sustain the coexistence of three competing strategies of the op-

tional prisoner’s dilemma game, allowing us to further explain the results

obtained by Monte Carlo simulations.
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Chapter 5

A Further Analysis of The Role of

Heterogeneity in Coevolutionary

Spatial Games

The work outlined in this chapter was published in:

Cardinot, M., Griffith, J., and O’Riordan, C. (2018). “A further analysis of the

role of heterogeneity in coevolutionary spatial games”. Physica A: Statistical

Mechanics and its Applications, pp. 116-124, vol. 493, Elsevier.
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Abstract

Heterogeneity has been studied as one of the most common explanations of

the puzzle of cooperation in social dilemmas. A large number of papers have

been published discussing the effects of increasing heterogeneity in struc-

tured populations of agents, where it has been established that heterogeneity

may favour cooperative behaviour if it supports agents to locally coordinate

their strategies. In this chapter, assuming an existing model of a heteroge-

neous weighted network, we aim to further this analysis by exploring the

relationship (if any) between heterogeneity and cooperation. We adopt a

weighted network which is fully populated by agents playing both the pris-

oner’s dilemma or the optional prisoner’s dilemma games with coevolution-

ary rules, i.e., not only the strategies but also the link weights evolve over

time. Surprisingly, results show that the heterogeneity of link weights (states)

on their own does not always promote cooperation; rather cooperation is ac-

tually favoured by the increase in the number of overlapping states and not

by the heterogeneity itself. We believe that these results can guide further re-

search towards a more accurate analysis of the role of heterogeneity in social

dilemmas.
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5.1 Introduction

Issues regarding the emergence of cooperation and altruism in structured

populations have puzzled scientists in a large range of domains. In this con-

text, methods of statistical physics combined with concepts of both graph

theory and evolutionary game theory [113, 142] have been used as simple

and powerful tools to describe and analyse the conflict of interest between in-

dividuals and groups [127]. In those models, agents are arranged on graphs

in such a way that their interactions are restricted to their immediate neigh-

bours [118, 94]. Over the last two decades, it has been shown that differ-

ent topologies such as lattices [116], scale-free graphs [160, 190, 136], small-

world graphs [36, 53], cycle graphs [4], star-like graphs [168] and bipartite

graphs [129, 63] have a considerable impact on the evolution of coopera-

tion, which also favours the formation of different patterns and phenom-

ena [155, 125]. However, the vast majority of these studies adopt static net-

works, which are not suitable for modelling scenarios in which both the game

strategies and the network itself are subject to evolution [195, 197, 198, 156,

204, 203]. Thus, the use of dynamic networks represents a natural upgrade

of the traditional spatial games [124].

The prisoner’s dilemma (PD) is still the most often used game in this

field. In this game, an agent can either cooperate (C) or defect (D), obtaining

a payoff that depends on the other’s agent choice [132]. However, in many

scenarios, agents have the freedom to decide whether to participate in the

game. Games such as the optional prisoner’s dilemma (OPD) [147, 13] and

the voluntary public goods game [97, 68] incorporate this concept of volun-

tary participation by adding a third strategy to the game, allowing agents

to not only cooperate or defect but also to abstain (A) from a game interac-

tion. Research has shown that the presence of abstainers in the population

can actually protect cooperators against exploitation [32, 67].
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Studies on weighted networks have attracted much attention as such

networks enable the representation of the strength of each connection, which

is essential information in a wide range of real-world scenarios including bi-

ological networks and social media. Recently, both the prisoner’s dilemma

and the optional prisoner’s dilemma games have been explored in the con-

text of dynamic weighted networks, which lead to a coevolutionary scenario

where not only the game strategies, but also the link weights, evolve over

time [28, 27, 74, 20, 93]. Moreover, it has been shown that the use of dynamic

weighted networks can increase heterogeneity of states (i.e., the number of

possible utilities in the network), which in turn induces the promotion of

cooperation. In fact, previous work has also discussed the effects of hetero-

geneity on the evolution of cooperation [50, 76, 5, 126, 185, 157, 163, 158, 136],

however, the specific conditions that increase the diversity of link weights in

the dynamic weighted networks remain unclear. Also, a number of ques-

tions regarding the evolutionary dynamics of the network itself remain to be

answered, such as:

• How the link weights between agents evolve over time?

• How two parameters of the model (∆ and δ) affect the link weight vari-

ance?

• Is there an optimum value of the two parameters ∆ and δ?

• Why higher values of δ promote cooperation best?

• Why the coevolutionary optional prisoner’s dilemma game performs

better than the coevolutionary prisoner’s dilemma game in adverse sce-

narios?

• Does the value of ∆ affect the convergence speed in scenarios of full

dominance of cooperation?
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Thus, this work aims to answer these questions by analysing the

micro-macro behaviour of a population of agents playing both the coevo-

lutionary prisoner’s dilemma (CPD) and the coevolutionary optional pris-

oner’s dilemma (COPD) game, i.e., the classical PD and OPD games in a

dynamic weighted network. The remainder of this chapter is organized as

follows. Section 5.2 describes the Monte Carlo simulation and the coevolu-

tionary games adopted. Section 5.3 features the results. Finally, Section 5.4

summarizes our findings and outlines future work.

5.2 Methodology

This work adopts a weighted lattice grid with periodic conditions (i.e., a

toroid) fully populated with N = 102× 102 agents playing a coevolutionary

game. Each agent on site x interacts only with its eight immediate neigh-

bours (i.e., k = 8, Moore neighbourhood). Both the coevolutionary pris-

oner’s dilemma (CPD) game [74] and the coevolutionary optional prisoner’s

dilemma (COPD) game [28] are considered.

Initially, each edge linking agents has the same weight w = 1, which

will adaptively change according to their interaction. Also, each agent (x)

is initially assigned to a strategy with equal probability. For the CPD game,

each agent can be designated either as a cooperator (sx = C) or defector

(sx = D), while in the COPD game, agents can also be designated as abstainer

(sx = A). Thus, strategies (sx = C, D, A) can be denoted by a unit vector

respectively as follows:

C =


1

0

0

 , D =


0

1

0

 , A =


0

0

1

 . (5.1)
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The games are characterized by the payoff obtained according to the

pairwise interaction of agent x and its neighbour y. Accordingly, the agent x

may receive a reward πxy(C, C) = R for mutual cooperation; a punishment

πxy(D, D) = P for mutual defection; πxy(D, C) = T for successful defection

(i.e., there is a temptation to defect); πxy(C, D) = S for unsuccessful coop-

eration (well-known as the sucker’s payoff); or the loner’s payoff (L), which

is obtained when one or both agents abstain (i.e., πxy(A, C) = πxy(A, D) =

πxy(C, A) = πxy(D, A) = πxy(A, A) = L). We adopt a weak version of both

games, where the payoff R = 1, T = b (1 < b < 2), L = l (0 < l < 1) and

S = P = 0 without destroying the nature of the dilemma [116]. Thus, the

payoff matrix πππ is given by:

πππ =


1 0 l

b 0 l

l l l

 , (5.2)

where:

πxy(sx, sy) = sT
x πππsy. (5.3)

The utility uxy of agent x with its neighbour y is calculated as follows:

uxy = wxyπxy, (5.4)

where wxy represents the symmetric link weight of their interaction, i.e.,

wxy = wyx.

A number of Monte Carlo (MC) simulations are carried out to explore

the micro-macro behaviour of both the strategies and the weighted network

itself. Each MC simulation comprises the following elementary steps. First

an agent x is randomly selected to play the coevolutionary game with its
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k = 8 neighbours, obtaining an accumulated utility expressed as:

Ux = ∑
y∈Ωx

uxy, (5.5)

where Ωx denotes the set of neighbours of the agent x. Second, the agent

x updates all the link weights in Ωx by comparing each utility uxy with the

average accumulated utility (i.e., Ux = Ux/k) as follows:

wxy =


wxy + ∆ if uxy > Ux,

wxy − ∆ if uxy < Ux,

wxy otherwise,

(5.6)

where ∆ is a constant such that 0 ≤ ∆ ≤ δ. In line with previous work

[28, 74, 183], the link weight is corrected to satisfy 1 − δ ≤ wxy ≤ 1 + δ,

where δ (0 ≤ δ < 1) defines the weight heterogeneity. Note that when ∆ =

0 or δ = 0, the link weight remains constant (w = 1), which decays in the

classical scenario for static networks, i.e., only the strategies evolve. Finally,

the agent x updates its strategy by comparing its current accumulated utility

Ux (i.e., considering the updated weights) with the accumulated utility of

one randomly selected neighbour (Uy) such that, if Uy > Ux agent x copies

sy with a probability proportional to the utility difference as follows:

p(sx ← sy) =
Uy −Ux

k(T − P)
, (5.7)

otherwise, agent x keeps its strategy for the next step.

In one Monte Carlo step (MCS), each agent is selected once on aver-

age, which means that the number of inner steps in each MCS is equal to

the population size. Simulations are run for a sufficiently long thermaliza-

tion time (106 MCS). Furthermore, to alleviate the effect of randomness and
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to ensure proper accuracy in the approach, the final results are obtained by

averaging 10 independent runs. It is noteworthy that due to the introduction

of the weight factor (w) and the quenched heterogeneities via δ, the model is

prone to evolve into frozen patterns which represent quenched spatial ran-

domness where a Griffiths phase [59] can emerge. As has been discussed in

previous studies [126, 44], the evolutionary dynamics in these scenarios tend

to be very slow, which introduces some technical difficulties in classifying

the final stationary state. This is because the transition of the clusters of the

subordinate strategy into the dominant strategy requires that a large num-

ber of the subordinate agents swap their strategies in a short period of time,

which is an occurrence that is very difficult.

5.3 Results

In this section, we present some of the relevant experimental results obtained

when simulating a population of agents playing both the prisoner’s dilemma

and the optional prisoner’s dilemma game on weighted networks.

5.3.1 Exploring the coevolutionary rules

As discussed in previous research [28], one interesting property of the ratio

∆/δ is that for any combination of both parameters ∆ and δ, if their ratio is

the same, then the number of states is also the same. For instance, the pairs

(∆ = 0.02, δ = 0.2) and (∆ = 0.08, δ = 0.8) have both 21 possible link

weights (states).

Despite the fact that the interval between the maximum and minimum

link weights increases as we increase δ, intuition may lead us to believe that

given two scenarios with the same payoff matrix (i.e., Eq. 5.2 for the same
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temptation to defect and loner’s payoff) and the same number of states (i.e.,

the same ratio ∆/δ), the outcome would be the same. Surprisingly, previous

research has shown that it is not true [28, 74]. Actually, it has been discussed

that higher values of δ promote cooperation best, even if the number of states

remains the same. Figure 5.1 illustrates this scenario, where the average frac-

tion of cooperation of the last 103 steps for a wider range of settings (i.e., the

ratio ∆/δ, the loner’s payoff l and the temptation to defect b) are considered

for different values of δ (i.e., δ = {0.2, 0.4, 0.8}). In fact, the outcomes of the

different scenarios are very different to each other and we can observe that as

δ increases, the number of cases in which cooperation is the dominant strat-

egy also increases. This phenomenon is still unexplained and exploring the

properties that cause this discrepancy may lead to a complete understand-

ing of the presented coevolutionary model. In any case, it is noteworthy that

even for small values of δ, the coevolutionary optional prisoner’s dilemma

(COPD) game is still much more beneficial for the emergence of coopera-

tion than the traditional OPD [32] or the coevolutionary prisoner’s dilemma

(CPD) [74].

As is also shown in Figure 5.1, we investigate the influence of the ra-

tio ∆/δ in the link weight variance (i.e., link weight heterogeneity) at the

last Monte Carlo steps. Note that as the link weight (w) is always within

the range [1− δ, 1 + δ], the maximum link weight variance is defined by δ2.

These experiments reveal that the link weight variance is not uniform for all

environmental settings. Also, although higher values of δ promote higher

heterogeneity, we can see that the correlation between cooperation and het-

erogeneity is not necessarily true for all values of δ. For instance, the link

weight variance for δ = 0.8 is usually maximum when cooperation is the

dominant strategy. However, this does not hold for both δ = 0.4 and δ = 0.2.
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Figure 5.2 shows the typical distributions of the pairs of strategies (i.e.,

the edges) in the stationary or quasi-stationary states. In these snapshots we

use colors to differentiate the types of edges and opacity to differentiate the

link weights, where, for each scenario, a transparent edge means that the

weight is at minimum (i.e., w = 1 − δ) and a bright edge means that the

weight is at maximum (i.e., w = 1 + δ). As expected, considering that l > 0,

the pattern all D (Fig. 5.2a) is only possible in the CPD game. Moreover, for

the CPD game, it is also possible to observe the patterns all C (Fig. 5.2b) and

C+D (Fig. 5.2d). For the COPD game, all other patterns are also possible,

i.e., all A (Fig. 5.2c), C+A (Fig. 5.2e) and C+D+A (Fig. 5.2f) phases can also be

observed. Of course, the size of the clusters and the average link weight at

the stationary state will depend on the parameter settings. However, for any

scenario, it was observed that the population always evolves to one of these

patterns. Further analysis on the effects of varying the parameter settings

have been shown in previous studies [28, 27, 74].

Another interesting result is that, although previous research has

claimed that “intermediate link weight amplitude can provide best envi-

ronment for the evolution of cooperation” [74], our experiments reveal that

there is no global optimal value of ∆/δ (defined by Huang et al. [74] as

the link weight amplitude) nor δ for all environmental settings. Moreover,

despite the fact that high δ usually leads to more cooperation, it does not

mean that high δ is always the best option. Fig. 5.3, for example, illustrates a

scenario in which high δ is actually a bad choice. In fact, as already expected

(Section 5.2), in many cases it is possible to observe that the population

evokes the existence of Griffiths-like phases, which makes it very difficult

for the system to converge to a stationary state. For instance, the popula-

tion evolves into a frozen pattern in the scenarios shown in Fig. 5.2d and

Fig. 5.2e; moreover, the curves for {∆ = 0.45, δ = 0.5}, {∆ = 0.63, δ = 0.7}
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FIGURE 5.3: Time course of the fraction of cooperation for dif-
ferent values of ∆ and δ when b = 1.9 (temptation to defect),
l = 0.8 (loner’s payoff) and ∆/δ = 0.9. Contrary to what
Fig. 5.1 may suggest, here we see that high δ is not always the

best option to promote cooperation.

and {∆ = 0.81, δ = 0.9} in Fig. 5.3 are also evidence of the same technical

difficulties in classifying the stationary state. Note that, in some scenarios,

the presence of the cyclic dominance for the COPD (i.e., coexistence of the

three strategies as observed in Fig. 5.2f) may eliminate the emergence of the

frozen patterns when the population has only two strategies, i.e., C+D or

C+A. This phenomenon has been discussed in the literature of evolution-

ary games [127, 126, 44]. Furthermore, the dynamical behaviour observed in

Fig. 5.3 illustrates the nature of enhanced network reciprocity [114] promoted

when δ > 0.1. In these scenarios, we can see that defectors are dominated

by abstainers, allowing a few clusters of cooperators to survive; as a result of

the absence of defectors, cooperators invade most (or all) of the abstainers in

the population, which explains the initial drop, and the subsequent recovery,

of the fraction of cooperators in Fig. 5.3. Similar behaviour has also been

observed in previous work [157].

These results motivate the search for a better understanding of the

evolutionary dynamics of the link weights. In the following sections, we will

discuss how the link weights evolve over time.
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5.3.2 Understanding how the link weights evolve

In order to better understand how the link weights between agents evolve

over time, we investigate the distribution of link weights for different values

of b (temptation to defect), ∆ and δ, for both the coevolutionary prisoner’s

dilemma (CPD) [74] and the coevolutionary optional prisoner’s dilemma

(COPD) [28] games, where the latter also involves the variation of the loner’s

payoff (l).

Figure 5.4 shows the distribution of link weights for each type of agent

interaction when b = 1.6, l = 0.2, ∆ = 0.2 and δ = 0.8 which is representa-

tive of the outcomes of other values as well. As discussed previously, we

know that the ratio ∆/δ can be used to determine the number of link weights

that an agent is allowed to have, which is actually evidenced when the link

weight distribution is plotted over time. Despite the fact that the percentage

of each type of link varies according to factors such as the total number of

states and the value of b and l (for the COPD game), which will consequently

affect the final outcome, it was observed (as shown in Figure 5.4) that for any

ratio ∆/δ the initial dynamics of all types of links is exactly the same for both

games, that is:

• Observation 1 Defector-Defector (DD) tends to move to states of lowest

link weight.

• Observation 2 Cooperator-Defector (CD) and Defector-Cooperator

(DC) move to the extremes, keeping a small amount of intermediate

states.

• Observation 3 Cooperator-Cooperator (CC) tends to move to states of

highest link weight, but will also occupy the state of lowest link weight

as the DCs and ACs will eventually become CCs.
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• Observation 4 Abstainers (AC, AD, CA, DA or AA) move to the ex-

tremes.

Considering that utility is obtained by the product of link weight and

payoff (Eq. 5.4), and that the payoff of DD and CD is equal to zero (Eq. 5.2),

the utility (uxy) associated with these link types will always be equal to zero,

which is always the worst case as uxy ≥ 0.0. In this way, these agents will

always be punished by ∆ (Eq. 5.6) and consequently, occupy states of lowest

link weight (Observation 1).

Also, note that CD and DC are unstable configurations as the first will

always get uxy = 0.0 and the second is prone to get higher utilities as the

temptation to defect (b) is always the highest payoff (Eq. 5.2). Thus, these

agents are constantly receiving ±∆, which explains the phenomenon of hav-

ing a small number of them along the intermediate states (Observation 2).

Although the payoff obtained by mutual cooperators (CC) is smaller

than the one obtained by a defector-cooperator interaction (DC), i.e., T > R,

the mutual cooperators are much more stable than DCs as both agents always

get the same payoff (i.e., R). That is exactly the reason why these agents tend

to a maximum link weight (Observation 3). Also, note that as the link weight

is updated based on the comparison of the local utility of each connection

with the average utility of the eight neighbours, when a cluster of nine co-

operators is formed (i.e., one cooperator surrounded by eight cooperators),

their links will remain in equilibrium, where the average link weight will

tend to the value of R. In this way, for most scenarios of full dominance of

cooperation, approximately half of the links will have a minimum weight

and the other half will have a maximum weight.
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It is noteworthy that we count all types of Abstainer’s connections

(AC, CA, AD, DA and AA) together because in the optional prisoner’s

dilemma game, when a agent abstains, both agents receive the same pay-

off (l). In this way, the main reason why abstainers move to the extremes in

Figure 5.4 is that DD and CD agents (uxy = 0.0) tend to abstain to increase

their local utility (uxy > 0.0) becoming ADs, which consequently are allo-

cated in states of lowest link weight. For the same reason, abstention might

be the best option in mixed clusters of C’s and D’s, where the chances of

getting uxy = 0.0 increases, then the agents may tend to abstain, eventually

going to states of highest link weight (Observation 4).

Moreover, we point out that, as we force all link weights to be within

the range 1− δ to 1 + δ, the phenomenon of having more agents occupying

the maximum and minimum states is clearly expected. However, the obser-

vation of the initial dynamics of both games being the same for any combina-

tion of the parameters (i.e., b, l, ∆ and δ) is a counter-intuitive result, which in

turn shows that the observations discussed above are valid for both models.

5.3.3 Investigating the role of heterogeneity

The reason why higher values of δ promote cooperation best remains one

of the central open questions in this model. Based on the results discussed

in previous sections, we know that the link weights usually evolve hetero-

geneously, which makes the effective payoff matrix unpredictable, adding a

new layer of complexity to the model. For instance, in the traditional pris-

oner’s dilemma game, any defector who plays with a cooperator will always

get the value of the constant b; however in the coevolutionary model, this

is unpredictable and heterogeneous as each defector-cooperator interaction

might be in a different state.
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Considering that the boundary states and the set of possible link

weights is determined by the parameters ∆ and δ, we can calculate all the

possible utilities for each type of edge (i.e., CD, DC, DD, CC and A), which

may allow us to better understand how the parameter settings affect the

interplay between the evolution of strategies and their possible utilities. In

this way, Figure 5.5 shows the shape of all possible utilities for four different

scenarios, all for the same temptation to defect (b = 1.6) and the same num-

ber of states (∆/δ = 0.2, i.e., 11 states). Monte Carlo simulations revealed

that cooperation is the dominant strategy in the scenarios of Fig. 5.5b-d; and

that abstention dominates in Fig. 5.5a.

In fact, when we plot the possible utilities side by side (Fig. 5.5) we

can see that the outcomes obtained through Monte Carlo simulations were

actually expected. For instance, in Fig. 5.5a, the DC connections will always

be the most profitable option in the initial steps, which in turn make the pop-

ulation of cooperators die off. After that, with the lack of cooperators in the

population, DC is not possible anymore and abstention starts to be the best

option as its payoff is always greater than the punishment for mutual defec-

tion (i.e., lwa > 0).

However, notice that when the value of δ is increased (i.e., Fig. 5.5b),

the overlap between the possible utilities for each type of connection also in-

creases. In this case, we see that DC is the best option only in 5/11 of the

cases, which enable cooperators to survive and as DC tends to minimum,

CC will tend to maximum and abstention is sometimes better than DC (Sec-

tion 5.3.2). Thus, the dominance of cooperators is also expected. We can also

observe that due to the huge overlap of DCs and CCs, even if the loner’s pay-

off is very low, i.e., Fig. 5.5d, or if abstention does not exist (i.e., CPD game),

cooperation would still be expected.
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Moreover, Fig. 5.5c illustrates interesting evidence of how abstention

can support cooperation. The only difference between this scenario and

Fig. 5.5a is the value of l. At a first glance, intuition may lead us to believe

that if Fig. 5.5a with l = 0.2 resulted in full dominance of abstainers, increas-

ing the value of l would just make the option to abstain more profitable,

which consequently would not change the outcome. Surprisingly, this does

not occur. Actually, abstainers only dominate the whole population when

the population of cooperators is decimated. In this way, despite the fact that

DC is still the best option and that the population of cooperators tend to

decrease, they will not die off. Then, when the population of defectors be-

come too high, they will prefer to turn into abstainers and with the increase

of abstention, mutual cooperation will now be the best option, which allows

abstainers to fully dominate the environment.

Thus, results show that if any of the possible DC, CC and A utilities

do not overlap, then abstention will be the dominant strategy for the COPD

game and defection will be the dominant strategy for the CPD game, except

of course, when b is too low (i.e. b < 1.1), which usually promotes the coex-

istence of the available strategies. In general, we can observe that the greater

the overlap between DC and CC utilities or/and CC and A utilities, then the

more chances cooperators have to survive and dominate.

Notice that both the loner’s payoff (l) and the link weights (which are

controlled by the parameters ∆ and δ) are actually mechanisms to weaken

the benefits of defecting (i.e., effective utility of DC). As the parameter δ will

act in the expansion of the utility boundaries, the greater the value of δ, the

greater are the number of cases in which CC overlaps DC, which in turn pro-

mote cooperation best. The same scenario occurs when CC and A overlap,

which will work as an extra mechanism to strengthen cooperators. That is,

when the overlap of DC and CC is scarce or absent, overlapping CC and A
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can help cooperators to survive. This also explains why COPD is better than

CPD in adverse scenarios [28].

The drawback of a large overlap of utilities is that the population may

evolve into a frozen pattern in which a Griffiths-like phase can occur. In these

scenarios, it might be very difficult to reach the full dominance of coopera-

tive behaviour (Fig. 5.3). Thus, higher values of δ may promote cooperation

best in a wider range of scenarios, but it might evoke the presence of frozen

patterns of C+A. It is noteworthy that as the utility overlaps are also depen-

dent of the values of b and l, all parameter settings may, in fact, influence the

emergence of these frozen patterns.

5.4 Conclusions

This work investigates the role of heterogeneity in a population of agents

playing the prisoner’s dilemma (PD) game and the optional prisoner’s

dilemma (OPD) game on a weighted square network with boundary con-

ditions. coevolutionary rules are adopted, enabling both the game strategies

and the network to evolve over time, leading to the so-called coevolution-

ary prisoner’s dilemma (CPD) and the coevolutionary optional prisoner’s

dilemma (COPD) games respectively. A number of Monte Carlo simulations

are performed in which each agent is initially assigned to a strategy with

equal probability (i.e., random initial distribution of strategies). Echoing

the findings of previous research [28], we show that independently of the

link weight heterogeneity, the COPD game is still much more beneficial for

the emergence of cooperation than the traditional OPD or the CPD games.

Moreover, although previous research has claimed the opposite [74], we

show that there is no global optimal value of the parameters ∆ and δ for all

environmental settings.
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Experiments revealed that the correlation between the emergence of

cooperation and heterogeneity does not hold for all scenarios, indicating that

heterogeneity itself does not favour cooperation. Actually, it was observed

that the higher the heterogeneity of states, the greater the chance of over-

lapping states, which is the actual mechanism for promoting cooperation.

Namely, when considering the COPD game, if any of the possible Defector-

Cooperator (DC), Cooperator-Cooperator (CC) and Abstention (A) utilities do not

overlap, then abstainers dominate the environment; while for the CPD game,

defection will be the dominant strategy. In general, we observed that the

greater the overlap between DC and CC utilities or/and CC and A utilities,

the more chances cooperators have to survive and dominate.

Finally, we highlight that both the loner’s payoff and the link weights

are actually mechanisms that weaken the benefits of defecting. In addi-

tion, abstention also works as an extra mechanism to strengthen coopera-

tors, which explains why COPD is better than CPD in adverse scenarios. We

believe that it might be possible to analytically define, through the analy-

sis of utility overlap, which is the best value of δ for a given payoff matrix.

Also, considering this model for regular graphs, it might be interesting to

consider pair approximation techniques to describe the evolutionary dynam-

ics of weighted networks [10, 119]. To conclude, this chapter provides a novel

perspective for understanding cooperative behaviour in a dynamic network,

which resembles a wide range of real-world scenarios. We hope this chapter

can serve as a basis for further research on the role of utility overlap to ad-

vance the understanding of the evolution of cooperation in coevolutionary

spatial games.
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Chapter 6

Cooperation in the spatial

prisoner’s dilemma game with

probabilistic abstention

The work outlined in this chapter was published in:

Cardinot, M., Griffith, J., O’Riordan, C., and Perc, M. (2018). “Cooperation in

the spatial prisoner’s dilemma game with probabilistic abstention”. Scientific

reports, n. 14531, vol. 8, Nature.
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Abstract

Research has shown that the addition of abstention as an option transforms

social dilemmas to rock-paper-scissor type games, where defectors dominate

cooperators, cooperators dominate abstainers (loners), and abstainers (lon-

ers), in turn, dominate defectors. In this way, abstention can sustain cooper-

ation even under adverse conditions, although defection also persists due to

cyclic dominance. However, to abstain or to act as a loner has, to date, always

been considered as an independent, third strategy to complement traditional

cooperation and defection. Here we consider probabilistic abstention, where

each player is assigned a probability to abstain in a particular instance of the

game. In the two limiting cases, the studied game reverts to the prisoner’s

dilemma game without loners or to the optional prisoner’s dilemma game.

For intermediate probabilities, we have a new hybrid game, which turns out

to be most favorable for the successful evolution of cooperation. We hope

this novel hybrid game provides a more realistic view of the dilemma of op-

tional/voluntary participation.
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6.1 Introduction

Over the last decades, the prisoner’s dilemma game has been adopted in a

variety of studies which seek to explore and resolve the dilemma of cooper-

ation [127, 142, 8]. These studies include the use of the network reciprocity

mechanism [114], which has gained increasing attention for its support of co-

operative behaviour. In this mechanism, each agent is represented as a node

in the network (graph) and is constrained to interact only with its neigh-

bours, which are linked by edges in the network [118, 94]. Research con-

cerning network reciprocity includes the use of different topologies such as

lattices [116], scale-free graphs [160, 190, 136], small-world graphs [36, 53, 1],

cycle graphs [4], multilayer networks [15, 180, 57] and bipartite graphs [129,

63] which have a considerable impact on the evolution of cooperation, and

also favour the formation of different patterns and phenomena [125, 155].

Moreover, approaches adopting coevolutionary networks, where both game

strategies and the network itself are subject to evolution have also been in-

vestigated [26, 93, 74, 20, 196, 124, 164, 204, 49, 203].

In essence, evolutionary game theory and its most-often used game,

the prisoner’s dilemma (PD) game, provides a simple and powerful frame-

work to study the conflict between choices that are beneficial to an individ-

ual and those that are good for the whole community. The game is played by

pairs of agents, who simultaneously decide to either cooperate (C) or defect

(D), receiving a payoff associated with their pairwise interaction as follows:

R for mutual cooperation, P for mutual defection, S for cooperating with a

defector and T for successfully defecting a cooperator. The dilemma holds

when T > R > P > S [132]. In addition to theoretical research, there is also a

lot of work using experimental games. The experimental prisoner’s dilemma

has been used by several researchers to find mechanisms to promote cooper-

ative behaviour, including the benefit-to-cost ratio of cooperation [23], group
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size [12, 22], dynamic spatial structure [131, 146], just to name a few exam-

ples.

Despite the overwhelming amount of scenarios that can be described

as a PD game, it has been discussed that in many scenarios agents’ interac-

tions are not compulsory, and in those cases, the PD game would not be suit-

able. Thus, extensions of this game such as the optional prisoner’s dilemma

(OPD) game, also known as the prisoner’s dilemma game with voluntary

participation, have been explored in order to allow agents to abstain from

a game interaction, that is, do not play the game and receive the so-called

loner’s payoff (L), which is the same regardless of the other agent’s strategy

(i.e., if either one or both agents abstain, both agents will get L). The dilemma

is maintained when T > R > L > P > S [147, 13]. Studies reveal that the

concept of abstaining can lead to entirely different outcomes and eventually

help cooperators to avoid exploitation from defectors [28, 81, 102, 137, 177,

111, 130, 18, 55, 38, 27, 99, 79, 32, 34, 188, 152, 67]. Of relevance for our

research is also the literature on games with an exit strategy. For example,

research has been done on the dictator game with an exit strategy [92, 21].

However, we believe that in many situations involving voluntary par-

ticipation, such as in human interactions, the use of abstention as a pure strat-

egy may not be ideal to capture the social dilemma. In reality, depending on

the context and the type of social relationships we are modelling, abstention

can also mean laziness, shyness or lack of proactivity, and all those emotions,

feelings or characteristics may exist within a certain range. Thus, we propose

that in a round of interactions, some agents might be interested in interacting

with all of its neighbours (i.e., never abstain), while others may be willing to

interact with only a few of them and abstain from interacting with others.

To give another example, in the context of a poll of a number of individuals,
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there might be some who vote and others who do not. In the latter case, con-

sidering all the non-voters as abstainers might be too simplistic. In reality,

there might be some who abstain because they do not have a view at all and

those who occasionally abstain from convenience, lack of interest or because

of some external event. In this way, we believe that abstention should be seen

and explored as an extra attribute of each agent, and not as a pure strategy.

Given this motivation, in this chapter, we introduce a prisoner’s

dilemma with probabilistic abstention (PDPA), which is a hybrid of two

well-known games in evolutionary game theory: the PD and the OPD game

(also known as the PD game with voluntary participation). As occurs in the

PD game, in the hybrid game each agent can choose either to cooperate or

defect. The only difference is that in the PDPA game, in addition to the game

strategy, each agent is defined by a value α = [0, 1] to denote a probability of

abstaining from any interaction.

This work aims to investigate the differences between the PDPA game

and the classic PD and OPD games. A number of Monte Carlo simulations

are performed to investigate the effects of α in the evolution of cooperation.

In order to have a more complete analysis of the evolutionary dynamics, both

synchronous and asynchronous updating rules [66, 115, 75] are explored.

6.2 Methods

This work considers the prisoner’s dilemma game with probabilistic absten-

tion (PDPA), which is an evolutionary theoretical-game with two pure com-

peting strategies: cooperate (C) and defect (D). In this game, each agent is

characterized by two different attributes: game strategy s and the probability

of abstaining α, which determines how likely it is that an agent will interact

in each pairwise play. When an agent abstains from a game interaction, both
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agents acquire the same loner’s payoff L. In this way, α is a number from

zero to one where α = 0 denotes an agent who never abstains (always plays

the game), and α = 1 denotes an agent who always abstains (never plays

the game). When both agents play the game, their payoffs follow the same

structure of the classic prisoner’s dilemma game, i.e., the reward for mutual

cooperation R = 1, punishment for mutual defection P = 0, T for the temp-

tation to defect and the sucker’s payoff S = 0. To ensure the proper nature of

the dilemma, 1 < T < 2 and 0 < L < 1 [147].

Without loss of generality, we discretize the values of α to |α| = 2κ in

equal intervals, where κ is the agent’s degree. We adopt a regular square

lattice grid with periodic boundary conditions (i.e., a toroid) fully popu-

lated with N = 102 × 102 agents playing the PDPA game. Each agent in-

teracts with its four immediate neighbours (von Neumann neighborhood)

and is initially assigned a strategy s = {C, D} and a probability of abstaining

α = {0, 0.125, 0.250 · · · 0.750, 0.875, 1.0}with equal probability. The evolution

process is performed through a number of Monte Carlo (MC) simulations[31]

in both synchronous and asynchronous fashion as follows [66]:

• Synchronous updating: at each time step, all agents x in the population

play the game once with each of their four neighbours y acquiring the

payoff pxy for each interaction. After that, for the current time step,

each agent copies the strategy and the value of α of the best performing

agent in the neighbourhood. In case of ties, or if x is the best in the

neighbourhood, its strategy and α remains the same.

• Asynchronous updating: at each time step, each agent is selected once

on average to play the game and update its strategy and α immediately.

That is, in one time step, N agents are randomly selected to perform the

following elementary procedures: the agent x plays the game with all

neighbours y, acquiring the payoffs pxy for each play (i.e., obtaining
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the utility of ux = ∑ pxy); one randomly chosen neighbour of x (y)

also acquires its payoffs pyz by playing with all its neighbours z (i.e.,

obtaining the utility of uy = ∑ pyz); finally, if uy > ux, agent x copies

the strategy and the value of α from its neighbour y with a probability:

W =
1

1 + e(ux−uy)/(κK)
, (6.1)

where K = 0.1 denotes the amplitude of noise [155].

In our experiments, all Monte Carlo simulations are run for 105 steps,

which is a sufficiently long thermalization time to determine the stationary

states. Furthermore, to ensure proper accuracy and alleviate the effect of

randomness in the approach, the final results are obtained by averaging 100

independent runs.

It is noteworthy that the PDPA game allows us to perform both classic

games (PD and OPD). That is, by setting all agents to have α = 0, we ensure

that they will always play the game, which is essentially the same as consid-

ering the classic PD game. Similarly, by setting agents to have α = {0, 1} we

ensure that some agents will purely abstain, while others will play the game,

which is the same as considering the OPD game.

6.3 Results

In order to increase the understanding of the outcomes associated with the

hybrid game proposed in this chapter (i.e., the prisoner’s dilemma game

with probabilistic abstention – PDPA), in the following experiments we

adopt ε = (1 − s)(1 − α) to denote the effective cooperation rate of an

agent, where s = {0, 1} and α = [0, 1] correspond to the agent’s strategy

and its probability of abstaining from a game interaction respectively. Note
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that here s = 0 means cooperator, s = 1 means defector, α = 0 indicates

that the agent never abstains and α = 1 indicates that the agent always

abstains. In this way, we can have two types of agents for each strategy:

the pure-cooperators and the pure-defectors (i.e., the agents who always

play the game, α = 0); and the agents who sporadically play the game

(i.e., the sporadic-cooperators and sporadic-defectors, 0 < α < 1). Thus,

the value of ε is very important to easily distinguish between a cooperator

who always abstains (i.e., {s = 0, α = 1} =⇒ ε = 0), from the sporadic-

cooperators (i.e., {s = 0, α = (0, 1)} =⇒ ε > 0), and the pure-cooperators

(i.e., {s = 0, α = 0} =⇒ ε = 1).

We start by comparing the outcomes of the PDPA game with those

obtained for the classic prisoner’s dilemma (PD) and optional prisoner’s

dilemma (OPD) games for both synchronous and asynchronous updating

rules (Figure 6.1). We test a number of randomly initialized populations of

agents playing the PDPA game with three different setups:

• α = 0 for all agents (equivalent to the PD game);

• α is either 0 or 1 with equal probability (equivalent to the OPD game);

• α = [0, 1] uniformly distributed.

For all setups, we investigate the relationship between the fraction of effec-

tive cooperation ε and the probability of abstaining α for different values of

the temptation to defect T and the loner’s payoff L.

As shown in Figure 6.1, for the synchronous rule, it is possible to ob-

serve that the PDPA sustains higher levels of cooperation even for large val-

ues of the temptation to defect T. The difference between the outcomes of

the synchronous and asynchronous versions in the classic games occur as ex-

pected: cooperation has more chance of surviving when the updating rules
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are synchronous, with less stochasticity and more awareness of the neigh-

bourhood’s behaviour, i.e., the agent knows who is the best player in its

neighbourhood. Surprisingly, results indicate that when the PDPA is con-

sidered, this enhancement also holds for the asynchronous updating model,

which is a well-known adverse scenario for both classic games [75]. In gen-

eral, it is clear that irrespective of the updating rule, the PDPA game is most

beneficial for the evolution of cooperation. Moreover, when comparing the

OPD with the PDPA game, we see a correlation between their levels of ab-

stention, showing that abstention may act as an important mechanism to

maintain cooperation and avoid defector’s dominance, which is also sup-

ported by Figure 6.2, which features the time course of the fraction of ε and

α for both updating rules of agents playing the PDPA game for three values

of the temptation to defect (i.e., T = {1.1, 1.4, 1.9}).

Given the nature of the classic PD and OPD games, it is known that in

a well-mixed population, defection and abstention are usually the dominant

strategies respectively. As discussed in previous work [26, 157], this happens

because cooperators need to form clusters to be able to protect themselves

against exploitation from defectors, and if we consider a randomly initial-

ized population, it takes a few steps for cooperators to cluster. Meanwhile,

the defection rate increases quickly in the initial steps until the agents reach

a stage where defectors have more chance of finding another defector than

a cooperator. Consequently, defection starts to be a bad strategy and if ab-

stention is an option, the agents prefer to abstain; otherwise defectors will

hardly become cooperators as they do not have the incentive to change their

strategies. Interestingly, as shown in Figure 6.2, a similar pattern can be ob-

served in the PDPA game, i.e., in the initial steps, the rate of pure-defectors

(α = 0) increases more quickly, causing the sporadic-cooperators (α > 0)

to have a better performance. Then, with the increase of the pure-defectors,
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sporadic-defectors (α > 0) start to be a better choice. At this point, with less

pure-defectors in the population, cooperators with smaller values of α start

to perform better, producing a wave towards the decrease of α. This simple

mechanism explains the initial bell-shaped curve in the average fraction of α

in Figure 6.2.

In order to further investigate the results obtained for the PDPA game,

some typical distributions of the strategies, probability of abstaining α, and

the effective cooperation rate ε are shown in Figure 6.3. In addition to the

similarities with the classic games, other interesting phenomena can be ob-

served in the PDPA game, such as robust coexistence of cooperation and de-

fection for different values of T and L. Results show that agents who always

refuse to interact (α = 1) are wiped out in most scenarios when T < 1.9 and

L < 0.8. That is, agents who interact at least once will usually have a better

performance. Moreover, it was observed that irrespective of the high hetero-

geneity of values of α in the initialization, the population usually converges

to two values of α for the synchronous model, and three distinct values of α

for the asynchronous model. However, the higher heterogeneity of states in

the initial steps plays a key role in increasing the performance of cooperators

in the PDPA game. This happens because the intermediate values of α help to

reduce the exposure of cooperators to the risk of being exploited by defectors

too quickly.

Finally, Figure 6.4 shows the average fraction of ε and α on the plane

T − L (i.e., temptation to defect vs loner’s payoff) for both PDPA and OPD

games, with synchronous and asynchronous updating rules. It is possible to

observe that the PDPA acts like an enhanced version of the OPD game. In

addition, its performance with the asynchronous updating rules is remark-

able; we see that when the concept of optionality is given in levels, i.e., the

introduction of the probability of abstaining α, the population succeeds in
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controlling the dominance of abstention behaviour, which maintains the di-

versity of strategies and also helps to promote cooperation.

Furthermore, as discussed previously, despite being more effective in

promoting cooperation than the classic games, we observed that cooperation

is the dominant strategy only if T is relatively small in a synchronous up-

dating fashion. In summary, for both updating rules, the possibility of not

interacting with all neighbours (α > 0) helps cooperators to decrease the risk

of being exposed to defectors in the initial steps (when most of them could

not yet cluster), which consequently allows them to survive even when T is

very high. However, this possibility also hampers them from dominating the

environment afterwards, which results in the promotion of a robust state of

coexistence of both strategies.

6.4 Discussion

We have studied a novel evolutionary game called the prisoner’s dilemma

with probabilistic abstention (PDPA), which is essentially the merger of two

well-known games: the prisoner’s dilemma (PD) game and the optional pris-

oner’s dilemma (OPD) game. A number of Monte Carlo simulations with

both synchronous and asynchronous updating rules were carried out, where

it was shown that the PDPA game is much more beneficial for promoting

cooperation than the classic PD and OPD games.

It was discussed that in most evolutionary scenarios (i.e., T < 1.9 and

L < 0.8), the agents who interact at least once (α < 1) usually have a better

performance. This indicates that intermediate values of α are a better option

for promoting both cooperative behaviour and diversity of strategies (cyclic

dominance) in the population. Moreover, results suggest that the higher het-

erogeneity of states in the initial steps play a key role in slowing down the
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evolution of defection, which increases the chance of the formation of coop-

erative clusters. It is noteworthy that the precise role of heterogeneity in the

PDPA game needs to be further explored. To conclude, it was observed that

PDPA is, in fact, an enhanced version of the OPD game, which provides a

more realistic representation of the concept of voluntary/optional participa-

tion.
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Chapter 7

Mobility restores the mechanism

which supports cooperation in the

optional prisoner’s dilemma game

The work outlined in this chapter was published in:

Cardinot, M., O’Riordan, C., Griffith, J., and Szolnoki, A. (2019). “Mobility

restores the mechanism which supports cooperation in the voluntary pris-

oner’s dilemma game”. New Journal Physics, n. 073038, vol. 21, IOP.

Note: This chapter adopts the voluntary prisoner’s dilemma game terminology,

which is synonymous to the optional prisoner’s dilemma game.
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Abstract

It is generally believed that in a situation where individual and collective in-

terests are in conflict, the availability of optional participation is a key mech-

anism to maintain cooperation. Surprisingly, this effect is sensitive to the use

of microscopic dynamics and can easily be broken when agents make a fully

rational decision during their strategy updates. In the framework of the cele-

brated prisoner’s dilemma game, we show that this discrepancy can be fixed

automatically if we leave the strict and frequently artifact condition of a fully

occupied interaction graph, and allow agents to change not just their strate-

gies but also their positions according to their success. In this way, a diluted

graph where agents may move offers a natural and alternative way to han-

dle artifacts arising from the application of specific and sometimes awkward

microscopic rules.
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7.1 Introduction

Despite extensive research efforts, the evolution of cooperation remains a

puzzle in a wide range of domains [127, 142]. In this context, two-strategy

games such as the prisoner’s dilemma (PD) game have been widely stud-

ied for many years from different perspectives with mechanisms [114] such

as group selection [125] and network reciprocity [155, 94, 116] investigated.

Traditionally, the agents’ interactions in those games are compulsory, i.e., the

agent has to opt between cooperation or defection, where the dilemma arises

because individual selfishness leads to a collective disaster [8, 132]. How-

ever, in many real-world scenarios, the agents’ participation in the game is

voluntary (optional). Thus, in order to account for the concept of volun-

tary participation (abstention), researchers have been exploring the volun-

tary prisoner’s dilemma (VPD) game, also known as the optional prisoner’s

dilemma game, which extends the PD to a three-strategy game where agents

can also choose to abstain from playing the game [147, 13, 122]. In particular,

abstention has attracted attention both for acting as a mechanism to support

cooperation and for promoting cyclic behaviour [30, 82, 80, 62, 79, 67]. The

cyclic dominance behaviour is often studied within the bounds of the rock-

paper-scissors game, which, different to the VPD game, imposes the cyclic

dominance in the payoff matrix [165, 27, 162, 153, 150, 47].

In addition to the discussion about the game strategies, studies con-

cerning agent mobility are also of interest because, in many real ecologi-

cal systems, individuals are usually on the move to improve their perfor-

mance [133]. In this sense, research has shown that in a spatial environment,

mobility and percolation thresholds have a critical impact on the sustenance

of biodiversity in nature [165, 192, 191, 35, 179, 182, 96]. Interestingly, despite

a large number of papers discussing the effects of mobility in the prisoner’s

dilemma [174, 173, 138, 202, 6, 171], the rock-paper-scissors [133, 161, 178]
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and the optional public goods games [175, 200, 189], the impact of mobility

in the context of the VPD game is still almost unknown. Indeed, some effort

has also been made to explore contingent movement strategies modelling

the so-called “win-stay, lose-move” rule, which, as also argued by Szabó and

Fáth [155], might capture the concept of abstention in the sense that agents

abstain by moving away from their opponents [2, 64, 104, 24]. Although this

is a valid way to account for voluntary participation, we highlight that in

many scenarios there must be a cost (payoff) associated with the act of not

playing the game, i.e., abstention defined in terms of the set of game strate-

gies rather than the movement strategies. In other words, defining abstention

as a strategy rather than a movement ensures that all agents have the right

to abstain from a game interaction, independently of having a way to walk

away (space permitting) or not.

Despite the very recent introduction of the VPD game in a diluted net-

work with a purely random mobility scenario [19], many questions regarding

the impact of mobility, in both the sustenance of biodiversity and the poten-

tial for widespread cooperation, remain unanswered. For instance, given the

recent advances in the understanding of coevolutionary models [26, 159, 29,

74, 124, 199, 95], what happens to the population when considering agent

mobility in a coevolutionary fashion? Thus, without loss of generality, this

research introduces the VPD game with a coevolutionary model where not

only the agents’ strategies but also their movement is subject to the evolu-

tionary process, which provides a more realistic representation of mobility

within the domain of voluntary/optional participation.

Furthermore, we investigate the foundations of the emergence of

cyclic dominance for the VPD game in both the fully populated (without

mobility) and diluted networks. We discuss that the emergence of the cyclic

dominance behaviour, which is commonly associated with the VPD game,
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is very sensitive to the chosen imitation rule. Results show that when using

other imitation rules, the cyclic dominance can be broken easily, but this

difference diminishes when we use a more general diluted model where

mobility can repair the missing chain that is necessary to support cyclic

dominance.

The remainder of the chapter is organised as follows. Section 7.2 de-

scribes the model and the experimental settings. Section 7.3 presents the re-

sults of the extensive Monte Carlo simulations, which allow us to unveil the

reason why mobility and optionality favour cooperation and cyclic domi-

nance. Finally, Section 7.4 outlines the main conclusions.

7.2 Methods

In order to account for the features of the concept of voluntary participation

(abstention) and agent mobility, we consider a set of N rational agents play-

ing the voluntary prisoner’s dilemma game (also known as the optional pris-

oner’s dilemma game) on a M×M diluted square lattice network with von

Neumann neighbourhood and periodic boundary conditions, i.e., a toroid

where sites are either empty or occupied by an agent. In this way, to de-

scribe the lattice occupation, we define the lattice’s density as ρ = N/M2

(0 < ρ < 1), where ρ = 1 means that the lattice is fully populated.

In the voluntary prisoner’s dilemma (VPD) game, agents can be des-

ignated as a cooperator (C), defector (D) or abstainer (A). Considering a

pairwise interaction, the payoffs are defined as follows: D gets P = 0 for

mutual defection, C gets R = 1 for mutual cooperation, T = b for defection

against a cooperator, and S = 0 for cooperation against a defector. Regard-

less of whether one or two agents abstain, both agents get the loner’s payoff
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L = σ, where R > L > P. Note that we adopt a weak version of the game,

where T > R > L > P ≥ S maintains the nature of the dilemma [116, 147].

We consider a randomly initialized population in which N/3 of each

strategy (C, D and A) is distributed at random in the network. Following

the standard procedures of an asynchronous Monte Carlo (MC) simulation

in this context [31, 66], at each MC time step, each agent (x) is selected once

on average to update its strategy and position immediately. Thus, in one MC

step, N agents are randomly chosen to perform the subsequent procedures:

if the agent x has no neighbours, it moves to one of the four nearest empty

sites (von Neumann neighbourhood) at random; otherwise, the agent x ac-

cumulates the utility Ux by playing the VPD game with all its nearest active

(non-empty) neighbours (Ωx), selects one of them at random (i.e., the agent

y, which also acquires its utility Uy), and considers copying its strategy with

a probability given by the Fermi-Dirac distribution function:

W =
1

1 + e(Ux−Uy)/K
(7.1)

where K = 0.1 characterizes the amplitude noise to allow irrational deci-

sions [155, 151]. In this research, we also consider the scenario in which

agents do not make irrational choices in the strategy updating process (Equa-

tion 7.1), i.e., the agent x only considers copying y if Uy > Ux.

After the agent x updates its strategy, Ux is recalculated, and x con-

siders moving to a random empty site (if any) in its neighbourhood with

probability:

W =
1

1 + e(ux−vx)/K
(7.2)

where K = 0.1, ux = Ux/kx is the agent x’s average utility, kx is the number of

active neighbours in x’s neighbourhood, and vx = (ux + ∑y∈Ωx uy)/(kx + 1)

is the average utility of x’s neighbourhood including itself. Thus, the agents
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that are performing worse (better) than their neighbours have more (less)

incentive to move.

Note that to make this research comparable with previous works, we

consider the absolute payoff during the strategy imitation process (Equa-

tion 7.1). Nevertheless, it is noteworthy that our key results remain un-

changed qualitatively if we apply a degree-normalized payoff in this func-

tion. However, in the case of mobility, the application of an absolute payoff

in Equation 7.2 would cause an artifact effect. More precisely, it would re-

sult in the erosion of a cooperative cluster because agents at the periphery,

who have fewer neighbours, would always be unsatisfied and move, i.e., the

mentioned cluster would shrink gradually.

In order to avoid finite size effects, results are obtained for different

network sizes, ranging from M = 200 to M = 1000. Simulations are run for

a sufficiently long relaxation time (105 or 106 MC steps), where the final level

of each strategy is obtained by averaging the last 104 MC steps.

7.3 Results

In this section, we present some of the relevant experimental results obtained

when simulating a population of agents playing the voluntary prisoner’s

dilemma (VPD) game on diluted square lattice networks, i.e., a coevolu-

tionary model where not only the agents’ strategies but also their positions

evolve over time. Firstly, we consider the case in which the population is

fully populated, i.e., density ρ = 1, and we demonstrate that the emergence

of cyclic dominance in the VPD game is sensitive to the chosen dynamical

rule because by using other imitation rules the cyclic dominance can be bro-

ken easily. Secondly, we investigate the case in which ρ < 1 (diluted net-

work), where we show that mobility and dilution can repair the mechanisms
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necessary for supporting cyclic dominance. Thirdly, we further investigate

the micro-level evolutionary dynamics for a diluted network both with and

without mobility.

7.3.1 Fully populated network (ρ = 1): fragile cyclic domi-

nance

In order to validate our coevolutionary model and provide grounds to ex-

plore the effects of mobility on a diluted square lattice, we start by investi-

gating how the population evolves when there is no space for the agents to

move. Figure 7.1 (upper panel) features the time course of the average fre-

quency of each pure strategy, i.e., cooperation, defection and abstention, for

a density ρ = 1, temptation to defect b = 1.4, and the loner’s payoff σ = 0.5.

The lower panel of Figure 7.1 shows the typical spatial patterns of the strate-

gies at different Monte Carlo steps. Note that as ρ = 1, the model collapses to

the traditional and well-known scenario in which only the strategies evolve.

As expected, the results are qualitatively the same as those reported in pre-

vious studies [147, 19]. In this case the three strategies coexist because of the

emergence of cyclic dominance behaviour where defectors beat cooperators,

cooperators beat abstainers, and abstainers beat defectors [165, 27, 69].

To gain deeper insights into the mechanisms which underlie the

cyclic dominance behaviour in the context of a spatial voluntary prisoner’s

dilemma game, we perform the same experiments as above but for the case

in which an agent (x) only considers copying the opponent’s strategy if the

opponent (y) is performing better than itself, i.e., applies the Fermi-Dirac

distribution function (Equation 7.1) if and only if the utility of y is greater

than the utility of x, Uy > Ux. Interestingly, Figure 7.2 shows that when this
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FIGURE 7.1: Time course of the average frequency of cooper-
ation (blue), defection (red) and abstention (green) for a fully
populated network (density ρ = 1) with N = 4002 agents,
temptation to defect b = 1.4, and loner’s payoff σ = 0.5 (top
panel). Typical evolution of spatial distribution of the strate-
gies (bottom panel). Results are obtained for the case in which
agents are allowed to make irrational decisions, i.e., applies the
noisy Fermi-Dirac imitation rule (Eq. 7.1) for any value of Uy

and Ux.

simple modification in microscopic dynamics is imposed, the cyclic domi-

nance behaviour is broken and the population converges to a frozen state

where only defection and abstention are present, but the cooperator strategy

becomes extinct. Note that the idea of employing different imitation rules

such as Equation 7.1 for both rational and irrational decisions have been

systematically investigated in previous studies for two-strategy games [6,

118, 135], and it is well-known that different imitation rules, as well as the

adoption of different values of K (amplitude noise) in the Fermi-Dirac rule

may affect the outcome [151]. However, there is an unexplored gap in the

literature regarding the possible consequences of the adoption of the Fermi-

Dirac rule in the context of the VPD game, and our results suggest that the
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cyclic behaviour commonly associated with the VPD game may be related to

the use of this function, which also supports strategy change when the utility

values are equal.

FIGURE 7.2: Time course of the average frequency of cooper-
ation (blue), defection (red) and abstention (green) for a fully
populated network (density ρ = 1) with N = 4002 agents,
temptation to defect b = 1.4, and loner’s payoff σ = 0.5 (top
panel). Typical evolution of spatial distribution of the strate-
gies (bottom panel). Results are obtained for the case in which
agents make rational decisions only, i.e., applies the Fermi-
Dirac imitation rule (Eq. 7.1) if and only if Uy > Ux. As com-
pared to Fig. 7.1, note that cyclic dominance is quickly broken
and cooperators die out soon because of the slight change in the

imitation rule.

Figure 7.3 depicts the average frequency of the three strategies (C, D

and A) in the full b − σ plane when agents are allowed to make irrational

(top panels) and rational (bottom panels) decisions. Note that while cyclic

dominance is maintained for almost any combinations of b and σ values in

the traditional case (top), the same does not occur when the imitation rule

is slightly changed (bottom). Thus, contrary to previous observations, our

results highlight that the use of noisy imitation, dictated by Equation 7.1, is



7.3. Results 135

an essential condition for promoting cyclic behaviour in the context of the

VPD game. The reason for this discrepancy can be summarized as follows:

• Considering a random initial population (see the early MC steps in Fig-

ures 7.1 and 7.2), the typical trajectory predicts the advantage of defec-

tors which is then followed by the rise of abstainers on both cases.

• Next, checking (or not) for the Uy > Ux condition can be decisive to al-

low (or not) the subsequent rise of cooperators, which in turn supports

the cyclic dominance phenomenon seen in Figure 7.1.

• At a micro level, if one cooperator/defector (x) is mostly surrounded

by abstainers (y), its utility Ux will be mostly equal to Uy. Remember

that in the voluntary prisoner’s dilemma game, if one or two agents

abstain (A), both will get the same loner’s payoff σ, i.e., for any pair of

strategies CA, AC, DA, AD, AA both agents get an identical σ value.

Thus, if we impose the Uy > Ux condition, as the utilities of x and y are the

same, the population is not able to curb the spreading of abstainers, which

consequently produces the pattern observed in Figure 7.2, i.e., a few isolated

defectors stuck in a sea of abstainers. Otherwise, if Equation 7.1 is applied for

any value of Ux−Uy, as the number of abstainers increase, W will be approx-

imately equal to 0.5 for most agents, which is one of the main mechanisms to

keep the three strategies alive as observed in Figure 7.1.

7.3.2 Diluted network (ρ < 1): recovering cyclic dominance

and promoting cooperation

As we already argued, a fully occupied interaction graph seems to be a spe-

cific rather than a generally valid real life situation, hence this section dis-

cusses the coevolutionary cases for a diluted lattice network where not only
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the strategies but also the agents’ positions evolve over time.

At a macro-level, we start by analysing the influence of the density

ρ on the evolutionary process for the noisy Equation 7.1 (i.e., agents are al-

lowed to make irrational decisions) after a sufficiently long relaxation time.

In line with previous research for two-strategy games such as the prisoner’s

dilemma game [174, 138, 70], experiments with our coevolutionary model

reveal that mobility and dilution also play a key role in promoting coopera-

tion in the VPD game. Figure 7.4 shows the average frequency of the three

strategies in the full b− σ plane for some representative densities. As com-

pared to the traditional case (ρ = 1.0 regime i.e., Figure 7.3 top), we observe

that the cyclic dominance behaviour still emerges for most b− σ settings for

ρ ≥ 0.59. Interestingly, results show that scenarios of full cooperation arise

monotonously when ρ < 0.59, i.e., the more diluted the network is, the easier

it is for cooperators to dominate the population. However, when the density

is too low (ρ < 0.10) the cooperators become too vulnerable to invasion by

abstainers due to the increasing difficulty of forming clusters. Also, exper-

iments show that 0.10 ≥ ρ > 0.05 quickly produces very unstable C + A

states which either converge to full C or full A. Notably, this behavior cannot

be seen directly from the heat map because the average of full C and full A

destinations results in around 0.5 density for both strategies. The latter may

also suggest a coexistence of these strategies, but as we stressed, not in the

present case because either C or A prevails at these global concentration val-

ues. Furthermore, when ρ ≤ 0.05 cooperators always die out and abstainers

dominate in all scenarios.

Note that the percolation threshold (ρp) for this square lattice network

with von Neumann neighbourhood is approximately equal to 0.59 [101, 143].

Thus, this result is of particular interest because cooperation is favoured

when the density is below the percolation threshold, which is known to be
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an adverse situation for maintaining cooperation [191, 179, 182]. Moreover,

results in Figure 7.4 also highlight the importance of exploring the outcomes

of the VPD game across the whole loner’s payoff (σ) spectrum, and not only

for a specific σ = 0.3 value, as was used earlier [147, 19].

Considering the discrepancy observed in Figure 7.3 for ρ = 1, we now

repeat the same experiments as above but for the case where an agent only

applies Equation 7.1 if the opponent is performing better than itself, i.e., the

case of a fully rational imitation rule. Surprisingly, Figure 7.5 shows that the

previously observed difference for both imitation rules diminishes when we

consider a diluted network (ρ < 1) with mobile agents. More importantly,

results show that when 1 > ρ > ρp the mechanisms which support cyclic

dominance in the traditional case (i.e., for the noisy Equation 7.1 and ρ = 1)

are recovered for a wide range of b − σ scenarios. In fact, results for both

imitation rules and ρ < 1 are qualitatively the same for most settings. How-

ever, as seen in figures 7.4 and 7.5, when the density is below the percolation

threshold ρ < ρp, it is possible to observe a small shift of ρ ≈ 0.05 in the

boundaries of the region in which full C occurs. For instance, results for

ρ = 0.15 in Figure 7.4 are similar to those when ρ = 0.10 in Figure 7.5. Note

that the bistable outcomes, where the population either converges to a full C

or a full A state, observed for ρ ≈ 0.10 in the first case happens at ρ ≈ 0.05 in

the later case.

7.3.3 Micro-level analysis of the effects of dilution and mo-

bility

In order to further explore the aforementioned phenomena, we extend our

analysis of the evolutionary process to a micro perspective. Figure 7.6 shows

the average time course of the three strategies for a fixed temptation to defect
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b = 1.65 and loner’s payoff σ = 0.55, which is representative of the outcomes

of other parameters as well. For this scenario, when ρ = 1, cyclic dominance

is maintained for the traditional case with the noisy imitation rule, but it is

easily shattered when considering a rational rule. However, the difference

diminishes when ρ < 1.

Results show that the profile of the curves for the initial 102 MC steps

are very similar to scenarios which support cyclic dominance, i.e., an initial

drop followed by a quick recovery of the frequency of cooperators. This phe-

nomenon has also been observed in previous work for dynamic networks [26,

157], where it was discussed that defectors are quickly dominated by abstain-

ers, allowing a few clusters of cooperators to remain in the population, then

with the lack of defectors, those cooperative clusters expand by invading the

abstainers. Note that it also explains the reason that higher values of σ are

more beneficial in promoting cooperation (as seen in Figures 7.3, 7.4 and 7.5),

i.e., abstainers have to be strong enough to protect cooperators against inva-

sion from defectors in the initial steps. Moreover, Figure 7.6 (right) shows a

clear correlation between the density ρ and the speed of the initial inflation

of abstention.

In order to distinguish between the impact of mobility and dilution on

the emergence of cooperative behaviour and cyclic dominance, we have also

investigated the case in which the agents are not allowed to move. That is,

the same model described in Section 7.2, but without the movement updat-

ing process. As shown in Figure 7.7, when ρ ≤ ρp the frequency in which the

agents change their strategies is extremely low, i.e., the population quickly

reaches a frozen pattern which is very dependent on the initial configuration.

Also, in line with preceding research [179, 182], we observe that when con-

sidering the traditional noisy imitation rule (Figure 7.7 top), dilution alone

can improve the level of cooperation, where the optimal value of ρ is always



142 Chapter 7. Mobility and the optional prisoner’s dilemma game

F
IG

U
R

E
7.6:Tim

e
course

ofthe
average

frequency
ofcooperation

(left),defection
(center)and

abstention
(right)fordifferent

densities
ρ,tem

ptation
to

defectb
=

1.65,and
loner’s

payoff
σ
=

0.55.R
esults

for
the

noisy
im

itation
rule

on
the

top,and
the

rationalim
itation

rule
on

the
bottom

.N
ote

thatthe
difference

betw
een

both
rules

dim
inishes

w
hen

ρ
<

1.



7.3. Results 143

above the percolation threshold (1 > ρ > ρp). In another perspective, the

emergence of cyclic dominance behaviour is diminished when the agents do

not move (e.g., compare the top panels of the Figures 7.6 and 7.7).

Interestingly, different phenomena occur when we consider the fully

rational imitation rule (Figure 7.7 bottom). Note that dilution alone is not

able to fix the evolutionary mechanisms which support either the emergence

of cyclic dominance and the evolution of cooperation. In other words, results

show that mobility plays a key role in diminishing the difference on the out-

comes of both imitation rules (as seen in Figure 7.6 for ρ < 1). Moreover, it

is noteworthy that mobility allows for the full dominance of cooperation for

lower values of ρ, as well as the robust emergence of cyclic dominance for a

wider range of scenarios.

To advance the understanding of mobility and dilution in the context

of the VPD game, we also analyse the spatio-temporal dynamics of the strate-

gies for both the noisy and the rational imitation rules. Figure 7.8 provides

an animation for a prepared initial state where the strategies are arranged in

stripes. This prepared configuration allows us to separate cooperators from

defectors, making it easier to observe the mechanisms which are responsible

for breaking the cyclic chain where A beats D, D beats C and C beats A. In

summary, results show that the key difference between the dynamical rules

is that, when applying the fully rational rule, defectors in the middle of ab-

stainers do not have the incentive to become abstainers. Hence, as discussed

in Section 7.3.1, the rational rule produces frozen D + A states (as seen in

Figure 7.2) which cannot be observed in the noisy Fermi-Dirac case. As a

consequence, the isolated defectors trapped in the sea of abstainers inhibit

the formation of larger cooperative clusters, which in turn breaks the cyclic

chain. However, when mobility is introduced for ρ < 1, the D + A states are
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not a stable phase anymore. Here, there is a small stir which causes a ran-

dom drift of defectors. Consequently, when two defectors meet they become

vulnerable against invasion from abstainers. This process would lead to a

homogeneous A phase, but the latter is sensitive to the attack of cooperators.

In this way, abstainers are now able to support the emergence of coopera-

tion, which in turn restores the mechanism to maintain the coexistence of all

competing strategies.

Furthermore, regarding the phenomenon of cyclic dominance ob-

served when ρ < 1.0, although using a different scenario and methodology,

our results are compatible with previous research concerning mobility in the

rock-paper-scissors game, where it is discussed that mobility can jeopardise

cyclic dominance [133, 83]. However, in the context of the VPD game, the

enhancement of cooperation for ρ < ρp is counter-intuitive because it di-

minishes the cooperators’ ability to form larger clusters [19]. Besides, results

show that when the agents are allowed to abstain, the population of mobile

agents will never converge to full defection. Finally, it is noteworthy that

results also echo the findings of previous research concerning the PD and

VPD games on weighted networks [26, 29, 74], i.e., a coevolutionary model

in which the link weights are also subject to evolution. In parallel, the ability

of avoiding interactions either by weakening the link weight or by moving to

another position acts as an important mechanism to strengthen cooperators

against exploitation.

7.4 Discussion and conclusions

This work investigates the role of mobility and dilution in a population of

agents playing the voluntary prisoner’s dilemma (VPD) game, also known

as the optional prisoner’s dilemma game, in a diluted square lattice network.
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FIGURE 7.8: Snapshots of the spatial evolution of cooperation
(blue), defection (red) and abstention (green) in the final sta-
tionary state with different scenarios. All simulations run for
the same loner’s payoff σ = 0.55, and temptation to defect
b = 1.65. Results for the noisy imitation rule on the top, and
the fully rational imitation rule on the bottom. An animation of

the evolution of the strategies is provided [25].

We propose a coevolutionary model where both the agents’ strategy and po-

sition are subject to evolution. In this model, in addition to the commonly

applied imitation rules for the strategies [147], we also adopt a mobility rule

in which agents who are performing worse (better) than their neighbours

have more (less) chance to move. Thus, without loss of simplicity, this coevo-

lutionary and asynchronous model is more realistic than the previous ones

which consider random mobility with synchronous updating rules [19].

Research in this domain has claimed that the addition of abstention

in the prisoner’s dilemma game leads to a rock-paper-scissors type game,

in which cooperation dominates abstention, abstention dominates defection,

and defection, in turn, dominates cooperation, which describes the so-called

cyclic dominance behaviour [165]. Interestingly, the present study shows
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that, in the context of the traditional VPD game for a fully populated net-

work [147], the emergence of cyclic behaviour is biased by the use of the

Fermi-Dirac distribution function (sigmoid) in the strategy adoption process.

This sigmoid function is often employed to allow for irrational or unjusti-

fied decisions where agents occasionally copy the strategy of a worse or an

equally performing neighbour [155, 151, 154, 46, 78]. We show that when

agents make fully rational decisions such as only copying the strategy of bet-

ter performing neighbours, the outcome changes drastically, making cyclic

behaviour unsustainable in most cases. However, the present study shows

that the mechanism that supports cyclic behaviour is fixed when agents are

allowed to move due to a diluted interaction space.

In fact, the noisy strategy updating rule has been applied to avoid

artifact or frozen outcomes. However, in the present study we show that it

is also possible to avoid such frozen states in a more realistic way, where,

for instance, agents are allowed to move and change their connections over

time. Hence, a deterministic rule can be as efficient as the noisy Fermi-Dirac

function if we assume a partly diluted system. Furthermore, by means of

robust and systematic Monte Carlo simulations, results show that mobility

plays a crucial role in promoting cooperation in the VPD game for a wide

range of values of the temptation to defect b, and loner’s payoff σ, including

for scenarios of high b and density below the percolation threshold ρ < ρp,

which are known to be adverse for maintaining cooperative behaviour [191,

179, 182].

To conclude, this chapter aims to bridge the gap between agent mobil-

ity and the concept of voluntary/optional participation in social dilemmas.

In addition, it provides a novel perspective for understanding the founda-

tions of cyclic dominance behaviour in the context of the prisoner’s dilemma

game with voluntary participation (VPD game). We hope this work can serve
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as a basis for further research on the role of abstention to advance the under-

standing of the evolution of cooperation in coevolutionary spatial games.
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Chapter 8

Conclusion

As stated in the introduction, this thesis aims to advance the understanding

of the role and impact of abstention in a population of interacting rational

agents. Hence, within the bounds of evolutionary game theory, multi-agent

systems and network science, the voluntary prisoner’s dilemma game has

been applied as the main framework to model the social dilemma of cooper-

ation and abstention.

This chapter provides a summary of the main findings discussed in

the previous chapters of this thesis (Section 8.1). Moreover, it revisits the hy-

potheses postulated in Chapter 1 (Section 8.2), and outlines some of the main

limitations of this research (Section 8.3). Finally, the concluding remarks (Sec-

tion 8.4) and some directions for future work and are presented (Section 8.5).

8.1 Summary of thesis achievements

As part of the methodology to conduct the experiments proposed in chap-

ters 3–7, Chapter 2 presented Evoplex, which is software produced as part of

this thesis. Evoplex is a flexible, fast and multi-threaded platform for agent-

based modelling imposing an explicit graph-theoretical approach. Evoplex,

differs from other software, in that the model is not coupled to the execution
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parameters nor the visualization tools. Also, it provides a user-friendly GUI

which makes it easy for all users, ranging from newcomers to experienced,

to create, analyze, replicate and reproduce experiments.

In the context of the role and impact of abstention in a population of

interacting rational agents, each experimental chapter of this thesis explored

a different gap found in the literature. Namely, Chapter 3 investigated the

effects of evolutionary games played on a dynamically weighted network,

where it was discussed that the coevolution of both game strategies and net-

work can play a key role in maintaining cooperative behaviour.

Chapter 4 further explored the phenomenon of cyclic dominance ob-

served in Chapter 3 and discussed that the equilibrium between the three

strategies can be maintained even in adverse scenarios, in which the re-

placement rate of the individuals is extremely high. Also, the experiments

showed that the coexistence (biodiversity) is more robust in this coevolution-

ary model because the adoption of a dynamic network introduces another

evolutionary mechanism to the system, which in turn allows the agents to

adapt the environment and protect them against exploitation.

Giving the findings discussed in the chapters 3 and 4, as well as the

state-of-the-art of coevolutionary spatial games, it is well known that recent

studies in this field has been claiming that increasing heterogeneity favours

cooperative behaviour, which in turn is one of most common explanations of

the puzzle of cooperation in social dilemmas. In other words, this statement

is equivalent to saying that social diversity favours cooperation. However,

despite being valid for many scenarios, experiments in Chapter 5 revealed

that this claim was too vague to really explain the observed emergence of co-

operative behaviour. In this way, Chapter 5 aimed to further investigate the

role of heterogeneity in coevolutionary spatial games for both the compul-

sory and the optional games. This chapter discussed that heterogeneity itself
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is not enough to promote cooperation. In fact, it was found that promotion of

cooperation is actually induced by the increase in the number of overlapping

states.

While investigating the role of the concept of optionality in chap-

ters 3, 4 and 5, it was found that in many situations involving voluntary

participation, such as in human interactions, the use of abstention as a pure

strategy may not be ideal to capture the social dilemma. In reality, depend-

ing on the context and the type of social relationships we are modelling,

abstention can also mean laziness, shyness or lack of proactivity, and all

those emotions, feelings or characteristics may exist within a certain range.

In this way, to capture those scenarios, Chapter 6 introduced a novel evo-

lutionary game called the prisoner’s dilemma with probabilistic abstention

to further explore the concept of abstention itself, extending it as an extra

attribute of each agent (α), and not as a pure strategy. Despite representing

a natural upgrade of the concept of abstention, interestingly, results showed

that the proposed game is much more beneficial for promoting cooperation

than the traditional prisoner’s dilemma and voluntary prisoner’s dilemma

games. In summary, it was discussed that the possibility of not interacting

with all neighbours (i.e., α > 0) helps cooperators to decrease the risk of be-

ing exposed to defectors in the initial steps (when most of them could not yet

cluster), which consequently allows them to survive even when temptation

to defect is very high.

In addition to the discussion about the concept of optionality and dy-

namic networks in chapters 3–6, it was discussed that studies concerning

agent mobility are also of interest because, in many real ecological systems,

individuals are usually on the move to improve their performance. Thus, in

order to bridge the gap between agent mobility and the concept of volun-

tary/optional participation in social dilemmas, Chapter 7 proposed a novel
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coevolutionary model where both the agents’ strategy and position are sub-

ject to evolution. Similarly to the case in which agent’s are placed on a fully

populated dynamic network (without mobility) discussed in chapters 3– 5,

it was found that dilution and mobility in conjunction with abstention can

serve as a key mechanism to not only promote cooperative behaviour but

also to sustain social diversity in a wide range of scenarios.

Finally, beyond the discussion on dilution and mobility, Chapter 7 also

revisits the role of the Fermi-Dirac distribution function in the strategy adop-

tion process, which in turn provides a novel perspective for understanding

the foundations of cyclic dominance behaviour in the context of the volun-

tary prisoner’s dilemma game. Surprisingly, results showed that the phe-

nomenon of cyclic dominance observed for this game is sensitive to the use

of microscopic dynamics and can easily be broken when agents make a fully

rational decision during their strategy updates. In particular, it was shown

that this discrepancy can be fixed automatically if we leave the strict and fre-

quently artifact condition of a fully occupied interaction network, and allow

agents to change not just their strategies but also their positions according to

their success. In this way, a diluted network where agents may move offers

a natural and alternative way to handle artifacts arising from the application

of specific and sometimes awkward microscopic rules.

8.2 Revisiting the hypotheses

Hypothesis 1: The emergence of cooperation is favoured in the presence of

abstainers

The impact of abstention is explored in all experimental chapters of this the-

sis (i.e., chapters 3– 7), where it has been shown that abstention not only plays
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a key role in resolving the dilemma of cooperation, but also allows for mod-

elling more accurate representations of social dilemmas, because, in many

real world scenarios, agents are usually afforded an option of not participat-

ing in an instance of the game.

Hypothesis 2: Coevolution of game strategies and network play a key role

in the sustenance of biodiversity (coexistence) because it allows agents to

also adapt the environment against exploitation from predatory strategies

Results in chapters 3 and 4 showed that abstention itself only supports the

emergence of cooperative behaviour for a very limited set of evolutionary

scenarios. In practice, when considering the traditional model for an static

network, in most cases the system either converges to full dominance by ab-

stainers, or a full dominance by defectors.

In this scenario, it has been shown that the coevolutionary model

proposed in Chapter 3 outperforms the traditional models (i.e., the pris-

oner’s dilemma and the voluntary prisoner’s dilemma games, where only

the strategies evolve over time in a static and unweighted network), allow-

ing cooperation to emerge even in extremely adverse scenarios where the

temptation to defect is almost at its maximum.

Hypothesis 3: Coevolutionary spatial models increase the heterogeneity of

states, which in turn induces the promotion of cooperation

Although recent studies in coevolutionary spatial game theory corroborate

this hypothesis, which in other words is equivalent to saying that social di-

versity favours cooperation, interestingly, this hypothesis has proven to not

be valid in Chapter 5. This chapter discusses that this claim might be too

vague to really explain the observed emergence of cooperative behaviour
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on those coevolutionary models. In fact, results showed that cooperation is

favoured by the presence of overlapping utilities and not by the heterogene-

ity itself. Thus, it is more accurate to state that social diversity may favour

cooperation when different types of individuals have the chance of getting

the same utility.

Hypothesis 4: Probabilistic abstention enhances the mechanisms of network

reciprocity by allowing cooperators to reduce the risk of being exposed to

defectors

Chapter 6 introduced a prisoner’s dilemma with probabilistic abstention

(PDPA), which is a hybrid of two well-known games in evolutionary game

theory: the prisoner’s dilemma (PD) and the voluntary prisoner’s dilemma

(VPD) games. As occurs in the PD game, in the hybrid game, each agent

can choose either to cooperate or defect. The only difference is that in the

PDPA game, in addition to the game strategy, each agent is defined by a

value α = [0, 1] to denote a probability of abstaining from any interaction.

Results showed that the possibility of not interacting with all neighbours is

favourable for the evolution of cooperation as it helps cooperators to decrease

the risk of being exposed to defectors in the initial steps. Metaphorically, it is

equivalent to saying that sometimes “sitting on the fence” is a good way for

cooperators to protect themselves against exploitation.

Hypothesis 5: Cooperation and cyclic dominance in the voluntary prisoner’s

dilemma game are biased by the use of the Fermi-Dirac distribution function

Research in this domain has claimed that the addition of abstention in the

prisoner’s dilemma game leads to a rock-paper-scissors type game, in which
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cooperation dominates abstention, abstention dominates defection, and de-

fection, in turn, dominates cooperation, which describes the so-called cyclic

dominance behaviour. In this context, Chapter 7 discussed that the emer-

gence of cyclic behaviour is biased by the use of the Fermi-Dirac distribution

function (sigmoid) in the strategy adoption process. This sigmoid function is

often employed to allow for irrational or unjustified decisions where agents

occasionally copy the strategy of a worse or an equally performing neigh-

bour.

However, results in Chapter 7 showed that when agents make entirely

rational decisions such as only copying the strategy of better performing

neighbours, the outcome changes drastically, making cyclic behaviour un-

sustainable in most cases. Interestingly, it was shown that the mechanism

that supports cyclic behaviour is fixed when agents are allowed to move due

to a diluted interaction space.

8.3 Limitations

Despite the ongoing advances in the application of evolutionary game theory

in the investigation of complex social dilemmas, such as the ones explored

in this thesis, it is well known that game theory, evolutionary game theory

and agent-based modelling might not be accurate enough to represent all

the variants of a real and highly complex adaptive system. However, it is

noteworthy that this limitation does not discard evolutionary game theory

from being one of the most important, solid and well-explored frameworks

to investigate the puzzle of cooperation in social dilemmas.

Another known limitation of this work includes the lack of mathemat-

ical analysis on the role of abstention and coevolution on the emergence of

cooperation and social diversity. However, considering the several layers of
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complexity involved in the models proposed in this thesis, this challenge was

(partially) overcome by intensive use of sophisticated computational tech-

niques to simulate populations of interacting agents in a large scale. More-

over, in order to avoid finite-size effects, results were obtained for different

network sizes, and simulations were run for a sufficiently long relaxation

time (e.g., 105 or 106 Monte Carlo steps). Also, to ensure proper accuracy

and alleviate the effect of randomness in the approach, the final results are

obtained by averaging a number of independent runs (e.g., 102 to 103 de-

pending on the scenario).

8.4 Future work

This thesis discussed the impact of abstention on the evolution of cooperation

and its effects on increasing and sustaining social diversity in a population of

rational agents. Despite the advances in exploring more complex scenarios,

there are a number of potential future avenues of research stemming from

this thesis, including the following:

• Exploration of different topologies and the influence of a wider range

of scenarios, where, for example, agents could rewire their links, which

in turn, adds another level of complexity to the model. Other potential

avenues include exploring the impacts of abstention in interdependent

and multilayer networks [181, 184], and co-evolutionary models taking

into account the information from past interactions [39].

• Applying our studies and results to realistic scenarios, such as social

networks and real biological networks.

• Mathematical analysis of the necessary conditions to sustain the coexis-

tence of three competing strategies of the voluntary prisoner’s dilemma
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game, allowing us to further explain the results obtained by Monte

Carlo simulations.

8.5 Concluding remarks

To conclude, the goal of this thesis was to bridge the gap between abstention

and dynamic networks in social dilemmas. We believe that the combination

of both of these trends in evolutionary game theory may shed additional

light on gaining an in-depth understanding of the emergence of cooperative

behaviour in real-world scenarios. Besides, this thesis provides a novel per-

spective for understanding the foundations of cyclic dominance behaviour

in the context of the prisoner’s dilemma game with voluntary participation

(VPD game). We hope this work can serve as a basis for further research

on the role of abstention to advance the understanding of the evolution of

cooperation in coevolutionary spatial games.
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