

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-04-27T08:05:53Z

Some rights reserved. For more information, please see the item record link above.

Title Groupoids and computational topology

Author(s) Alokbi, Nisreen

Publication
Date 2019-09-09

Publisher NUI Galway

Item record http://hdl.handle.net/10379/15840

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Groupoids and Computational
Topology

PhD thesis

by

Nisreen Alokbi

Supervisor: Professor Graham Ellis

School of Mathematics, Statistics and Applied Mathematics

National University of Ireland, Galway

May 2019

Summary

This thesis contributes to the computational theory of finitely presented groupoids.

It develops, implements and illustrates data types and algorithms aimed at pure and

applied topology. In particular, the thesis designs and implements data types for:

• free groupoids (Data type 2.7.1),

• elements in free groupoids (Data type 2.7.2),

• finitely presented (fp) groupoids (Data type 2.7.3),

• homomorphisms of fp groupoids (Data type 2.7.4).

The thesis designs and implements algorithms for:

• composition of elements in a free groupoid (Algorithm 2.7.1),

• path components of a fp groupoid (Algorithm 2.7.3),

• a finite presentation for the vertex group of a fp groupoid (Algorithm 2.7.2),

• a finite presentation for finite index subgroups of an fp group (Algorithm 2.8.1),

• pushouts of fp groupoids (Algorithm 3.7.1),

• a finite presentation for the fundamental groupoid of a finite, regular CW-

complex (Algorithm 3.5.1),

• the homomorphism of fundamental fp groupoids induced by an inclusion of

finite regular CW-complexes (Section 3.6),

i

Summary ii

• the low-dimensional cup product on the cohomology of a finite regular CW-

complexes (Chapter 5),

• a re-implementation of the Mapper algorithm for obtaining examples of finite

simplicial complexes derived from experimental data (Algorithm 4.4.3),

• a re-implementation of an approximation for the dominant eigenvectors of a

floating point symmetric matrix (for use with the Mapper algorithm) (Algo-

rithm 4.4.1).

The thesis contains illustrations of the above data types and algorithms such as:

• the computation of a finite presentation of the fundamental group of a finite

regular CW-complex based on the groupoid version of the van-Kampen the-

orem. This allows for parallel computation of low-dimensional cup products

(Section 3.6),

• the fundamental groupoid (and group) of simplicial complexes arising, via

Mapper, from gait analysis data (Section 4.6),

• the fundamental groupoid (and group) of simplicial complexes arising from

time-series data (Section 3.8).

Contents

Summary i

Declaration vii

Certification viii

Acknowledgement ix

List of symbols x

List of Figures xi

List of Algorithms xiv

1 Introduction 1

1.1 Aims of the thesis . 1

1.2 Outline of the thesis . 3

1.3 Background . 6

1.3.1 CW-Spaces . 6

1.3.2 Simplicial complexes . 8

1.3.3 (Co)Homology of a CW-complex 9

iii

Contents iv

2 Groupoids and Fp Groupoids 11

2.1 Introduction . 11

2.2 Groupoids . 13

2.3 Groupoid Homomorphisms . 14

2.4 Free groupoids . 15

2.5 Finitely presented groupoids . 19

2.6 Vertex group . 20

2.7 Implementations . 24

2.7.1 Implementation of free groupoids 25

2.7.2 Implementation of fp groupoids 27

2.7.3 Implementation of vertex groups 28

2.7.4 Implementation of groupoid homomorphisms 30

2.8 Presentation of subgroups . 32

2.8.1 Implementation of fp groupoids induced by group actions . . . 38

3 Fundamental Groups, Groupoids and the van Kampen Theorem 40

3.1 Introduction . 40

3.2 Discrete vector fields . 41

3.3 Fundamental group of a topological space 44

3.4 Fundamental groupoid of a space . 45

3.5 Implementation of presentations of fundamental groupoids 47

3.6 van Kampen’s theorem . 56

3.7 Implementation of van Kampen’s theorem 61

Contents v

3.8 Groupoid techniques for time series analysis 65

3.8.1 Time-delay embedding . 65

4 Simplicial Complexes and Mapper 68

4.1 Introduction . 68

4.2 Simplicial complexes . 68

4.3 Mapper . 70

4.4 Implementations of Mapper . 73

4.5 Some illustrations of Mapper . 77

4.6 Gait analysis . 82

5 Distributed Computation of Cup Products 85

5.1 Introduction . 85

5.2 The low dimensional cup product . 86

5.3 Illustration: digital images . 89

5.4 Fundamental groupoids and a distributed algorithm 92

6 Final Example 98

A FpGd functions 102

A.1 Fp Groupoids . 102

A.2 Mapper . 105

B Data sets 107

B.1 dataset321.txt . 107

Contents vi

B.2 permutahedralcomplex.txt . 107

B.3 dataset61.txt . 111

C Codes of FpGd 113

C.1 Groupoid . 113

C.2 Mapper . 156

Index 166

Bibliography 167

Declaration

I, Nisreen Alokbi, certify that the thesis is all my own work and that I have not

obtained a degree in this University or elsewhere on the basis of any of this work.

Nisreen Alokbi

vii

Certification

This is to certify that Nisreen Alokbi has complied with all the requirements for the

submission of this Doctor of Philosophy thesis to the National University of Ireland,

Galway.

Prof Graham Ellis

viii

Acknowledgement

Praise be to God, Lord of the worlds, the Almighty, with whose gracious help it was

possible to be accomplish this task.

I would like to capture this opportunity to express my honest appreciation and deep

gratitude to my supervisor, Prof Graham Ellis, for his guidance and encouragement,

without whose helpful suggestions and advices I would never finish.

To all of my officemates, all of you have provided a friendly and fun environment to

work in, and I have enjoyed a room with all of you.

In addition, I am grateful to staff of the Department of Mathematics / NUI Galway

for their interesting conservations in the common room.

It is my great pleasure to thank my husband Faik Mayah for long-suffering, patience

and understanding which made it possible. I owe a great deal to my childreen,

Sarah, Ali and Hassan who give me much happiness at all times.

It is a great privilege and pleasure to thank my parents for their support, encour-

agements, sacrifices and prayers throughout the years.

Finally, I would like to thank my Government (MOHE), Iraq, for their financial

support.

Galway, May, 2019

Nisreen Alokbi

ix

List of symbols

Z integer numbers t. . . ,´2,´1, 0, 1, 2, . . .u
R real line

Mn n-dimensional manifold

GAP Groups, Algorithms, Programming

HAP GAP package - “Homological Algebra Programming”

FpGd GAP package - “Finitely presented Groupoid”

end of proof

Dn closed unit n-ball

D̊n open unit n-ball

Sn n-sphere

HnpXq n-dimensional homology of CW-space X

HnpXq n-dimensional cohomology of CW-space X

Xn n-skeleton of a CW-space X

C˚pXq cellular chain complex

Ker kernel

Im image

Cset category of sets

Cgrp category of gorups

Ctop category of topologiacl spaces

CR-mod category of R-modules

CVect category of vector spaces

Graphs category of directed graphs

Groupoids category of groupoids

x

Contents xi

F functor

ObjpGq objects of groupoid G
ArrpGq arrows of groupoid G

Γ directed graph

FpΓq free groupoid on Γ

List of Figures

2.1 Generating graph of the groupoid of the presentation 2.6. 23

3.1 Stages of obtaining a small space (on the right) homotopy equivalent

to a given space (on the left) by creating a discrete vector field on the

regular CW-space. 42

3.2 A non-regular CW-structure of a torus (left), and a regular CW-

structure on a torus equipped with an acyclic discrete vector field

(right). 42

3.3 Equivalent paths in PpY, Y0q. 48

3.4 CW-complex endowed homotopy equivalent to the circle S1 with a

vector field (left), the recursion formula 3.6 applied on the 0-cell e0
7

identifying a path from this cell to e0
1 (right). 50

3.5 CW-complex endowed with a vector field (left), the recursion for-

mula 3.7 applied on the 1-cell e1
4 producing a sequence of 1-cells

te1
4, e

1
18, e

1
21, e

1
6u (right). 51

3.6 Admissible discrete vector field on the torus. 53

3.7 3-dimensional pure cubical complex corresponds to the array A given

in Eq. 3.8. 54

3.8 The pure cubical complex is homeomorphic to a torus. 54

3.9 Generating graph of the fundamental groupoid of the torus π1pY, Y0q. 54

xii

List of Figures xiii

3.10 Pure cubical complex of the double torus T 2. 55

3.11 Two subspaces Y1 and Y2 of a space Y “ Y1YY2 with Y0 “ ty0, y1, y2u Ă
Y1 X Y2. 58

3.12 The torus T divided into two pieces A and B such that their inter-

section is nonempty. 62

3.13 A 2-dimensional simplicial complex homeomorphic to the torus with

36 2-cells. Two sub-simplicial sets A and B are indicated by different

colours yellow and blue, respectively. The intersection AXB is non-

empty. 62

3.14 A time series plot of Eq. 3.15 (left), the corresponding time-delay

embedding in 3-dimensional space (right). 66

4.1 n-simplices for n “ 0, 1, 2, 3. 69

4.2 A simplicial complex of dimension 2 representing a triangulation of

the 2-sphere. 69

4.3 Mapper for random data around eight-figure produces a 1-dimensional

simplicial complex capturing the shape of the data. 72

4.4 Image X Ă R2 of spider (left), and the corresponding Mapper output

(right). 73

4.5 Using different filtere functions produce different Mapper for torus,

the filter functions are shown by the colouring of the points for both

cases (top: fpx, y, zq “ z, bottom: fpx, y, zq “ x). 78

4.6 Data set of 1000 points around a cylinder (left), the Mapper returns

1-dimensional simplicial complex (graph of 16 vertices) (right). 79

4.7 Data set of 1000 points around a Möbius strip (left), the Mapper

returns 1-dimensional simplicial complex (graph of 16 vertices) (right). 80

List of Figures xiv

4.8 Data set of 1000 points around a torus (left), the Mapper returns

1-dimensional simplicial complex (graph of 16 vertices) (right). 81

4.9 Data set of 1000 points around a Klein bottle (left), the Mapper

returns 1-dimensional simplicial complex (graph of 12 vertices) (right). 81

4.10 The eigenvalues of the covariance matrix for the data of the walk

number 69:01. 83

4.11 Clips of human motion presented as skeleton with root joint placed

at the hip (left). Mapper of the motion 96:01 (walk forward) (right). . 84

5.1 van Kampen diagram over the presentation xx, y, x1, y1 | xyx “ yxy, x1y1x1 “
y1x1y1, xx1 “ x1x, yy1 “ y1y, xy1 “ y1x, yx1 “ x1yy. 87

5.2 Pure permutahedral complex L representing a link with two compo-

nents (left), an enlarged segment of which is also shown (right). . . . 90

List of Algorithms

2.7.1 Composition of arrows in a free groupoids 27

2.7.2 Vertex Group . 29

2.7.3 Path components of fp groupoid . 29

2.8.1 Presentation of fp groupoid induced by group action. 38

3.2.1 Discrete vector field on a regular CW-complex. 43

3.5.1 Fundamental groupoid of a regular CW-complex 52

3.7.1 Fundamental Groupoid of Regular CW-Map 61

4.4.1 Float Spectrum . 74

4.4.2 cluster . 75

4.4.3 Mapper algorithm, producing a simplicial complex from dataset. . . . 76

xv

Chapter 1

Introduction

1.1 Aims of the thesis

It is well recognised that the fundamental groupoid of a topological space has an

important role to play in the basic theory of algebraic topology concerning funda-

mental groups and covering spaces [16]. It also plays a role in the area of geometric

group theory [56, 15]. For examples of how the fundamental groupoid can simplify

traditional proofs, see for instance [17]. The main aim of this thesis is to develop

computational aspects of groupoids and their use in computational algebra.

Computational algebra is an interdisciplinary area which helps with traditional re-

search problems in mathematics as well as generating new research questions of its

own. In the particular area of group theory, research in computational algebra has

led to the creation of the two substantial computer algebra systems GAP [47] and

Magma [8]. Some attempts have been focussed on applying computational algebra

to questions in topology. The initial topological focus was on problems concerning

calculations in cohomology groups [1, 7, 19, 45, 49, 60, 82], homotopy groups of

spaces [10, 30] and geometric group theory (see [57] for an overview). More recently

the focus has grown to include topics in the area of applied topology. In applied

topology the basic idea is to investigate experimental data by associating cellular

spaces to the data and then computing and studying and interpreting homotopical

invariants of the associated spaces. To date most research in applied topology deals

1

1.1 Aims of the thesis 2

with the most easily computed invariants of a space, namely its homology and co-

homology. However, there has been some work on computing fundamental groups

[31, 10]. Due to the large size of data sets in applied topology, efficiency of the

algorithms is of paramount importance.

The main aim of this thesis is to develop the use of finitely presented groupoids in

computational algebra. It is notable that none of the main computer algebra sys-

tems [GAP], [Magma], [Singular] and [Maple] has functionality for finitely presented

groupoids and do not appear to use fp groupoids in their underlying algorithms.

The Gpd package for GAP does provide basic computations in small finite groupoids.

From the viewpoint of topology or geometric group theory one would like to com-

pute with finitely presented infinite groupoids and to incorporate infinite groupoid

techniques into computational algebra algorithms. There is also a case, which we

make in this thesis, for using finitely presented infinite groupoids in applied topol-

ogy.

A main contribution of this PhD work is a package for computing with finitely pre-

sented groupoids in the GAP system. We expect that the algorithms developed and

implemented for the package should find use in theoretical topology, and geometric

group theory. However, in this thesis we emphasise the role that the package can

play in applied topology.

To make clear why groupoids can be useful, let us consider van Kampen’s theorem

- a standard tool for calculating fundamental groups. One of the most basic objects

in topology is the circle S1. Its fundamental group π1S
1 can not be computed using

the standard version of van Kampen’s theorem. If we consider S1 as a union of two

contractible connected components,

S
1

A B

a

b

A and B, then π1A “ π1B “ 1 and so no algebraic construction produces π1S
1 “ Z

1.2 Outline of the thesis 3

from two copies of the trivial group! However the fundamental groupoids π1pA, ta, buq
and π1pB, ta, buq are non-trivial and are easily computed, and can be combined to

calculate π1S
1 – Z – π1pA, ta, buq ˚π1pAŞ

B,ta,buq π1pB, ta, buq

Applied topological methods have become important for developing algorithms for

problems in data and shape analysis. For instance, topological methods are used

for problems in topology inference [64, 86, 76, 91, 25], manifold reconstruction

[26, 72, 48, 22, 9, 70, 58], Reeb graph construction [87, 85, 37, 78], homology

cycle extractions [6, 24], and shape distance computations [83, 81, 79, 21].

In general, data in applied topology is large and often high-dimensional. Conse-

quently, applied topology should benefit from work in the direction of a parallel

computation to reduce the time and distribute the memory requirements of a com-

putation.

The aim of this thesis is to develop and implement algorithms for finitely presented

groupoids in order to calculate some of the topological invariants of spaces extracted

from large data sets. The general goal is to design and implement algorithms that

input large finite sets S of experimental data from an unknown manifold M and,

using unsupervised learning, attempt to return homotopical invariants of M . One

such algorithm involves Gunnar Carlsson’s procedure. We use Mapper as a tool to

produce a space from data. One goal is to describe how a computer implementation

of the basic theory of finitely presented groupoids can be used to efficiently enhance

the output of Mapper in a way that captures extra low-dimensional homotopy the-

oretic information. In particular, the enhanced output should be able to distinguish

between data sets sampled from homotopy inequivalent spaces such as the cylinder,

torus and Klein bottle. The enhanced output is not intended to distinguish between

data from homotopy equivalent spaces such as the cylinder and Möbius strip [4].

1.2 Outline of the thesis

This thesis has six chapters.

1.2 Outline of the thesis 4

Chapter 1 begins by outlining the aim of the thesis, namely methods for calculat-

ing the fundamental groupoids of spaces and using groupoid techniques in applied

topology. It then reviews in Section 1.3 the standard material that will be used in

the thesis.

Chapter 2 recalls the mathematical concepts of groupoid, finitely presented groupoid,

free groupoid from Philip J. Higgins’s paper [54]. It then goes on to describe our

implementation of these concepts in GAP .

ã Section 2.7 describes our implementations of free groupoids and finitely presented

groupoids. Furthermore, it implements an algorithm for a finite presentation of the

vertex group of a connected finitely presented groupoid.

ã Section 2.8 implements an algorithm for determining the finite presentation for

finite index subgroups of a fp group using groupoid techniques.

Chapter 3 recalls the mathematical concepts of fundamental group, fundamental

groupoid and van Kampen theorem from [11] and [16].

ã Section 3.5 describes our implementations of the fundamental groupoid for a con-

nected regular CW-space.

ã Section 3.6 describes our implementations of the van Kampen theorem.

ã Section 3.8 builds a space from time-series data and then tests our implementa-

tions on this space.

Chapter 4 recalls the definition of the Mapper cluster procedure from [86]. The

Mapper is used as a tool for constructing examples of simplicial complexes from

real-life data.

ã Section 4.4 describes our re-implementation of Mapper and re-implementation

of an approximation for the dominant eigenvector of a floating point matrix that

allows to use the principal components analysis PCA.

ã Section 4.5 explains the limitations of Mapper by applying the procedure to

different sets of data taken from homotopically equivalent spaces.

ã Section 4.6 tests our implementation of Mapper on some experimental data taken

from CMU Graphic Lab [66].

Chapter 5 is devoted to the distributed computation of low dimensional cup prod-

1.2 Outline of the thesis 5

ucts. It builds on a practical algorithm for finding a finite presentation of the

fundamental group π1pX, x0q of an arbitrary finite regular CW-space X.

ã Section 5.2 explains the calculation of the cup product from the presentation of

the fundamental group without need for any further significant computations.

ã Section 5.3 illustrates the method on the integral cohomology ring of a 3-dimensional

digital image.

ã Section 5.4 explains how the van Kampen theorem for fundamental groupoids

[12, 18] yields a distributed version of the fundamental group algorithm of [11],

and hence a distributed method for computing the cup product.

Chapter 6 is devoted to explaining how to distinguish between two data sets, one

sampled from a torus T and the other sampled from a space X obtained from the

sphere S2 by attaching the two ends of two arcs to one point on the sphere.

Appendix A includes a full list of implemented functions in GAP programming lan-

guage, these functions for the FpGd package and Appendix B include samples from

the datasets that used in thesis. Finally, in Appendix C, we put all the codes which

are written for the purpose of this thesis.

Chapter 1: Background

Chapter 2: Fp groupoids

Chapter 3: VKT for

fundamental groupoids

and fundamental groups

Chapter 4:

Mapper

Chapter 5:

Cup products

Chapter 6: Final example

1.3 Background 6

The above diagram aims to give a sketch of the chapters’ dependency.

Most of the datasets that are generated randomly, we store them in text files avail-

able in the package FpGd .

1.3 Background

This section recalls some concepts and definitions needed in this thesis.

1.3.1 CW-Spaces

This section gives a brief review of CW-spaces. In the definition of a CW-space we

use the following notation for the closed unit n-ball, the open unit n-ball and the

unit n-sphere:

Dn “ tx P Rn : ||x|| ď 1u
D̊n “ tx P Rn : ||x|| ă 1u
Sn “ tx P Rn`1 : ||x|| “ 1u

where ||px1, x2, ..., xnq|| “
a
x2

1 ` x2
2 ` ...` x2

n.

Definition 1.3.1. [50] An n-cell is a topological space homeomorphic to D̊n. A

cell is a space which is an n-cell for some n ě 0. An n-cell will be said to have

dimension n.

Definition 1.3.2. [50] A cell-decomposition (or cell-structure) of a topological space

X is a family E “ teα|α P Au of subspaces of X such that each eα is a cell and the

space X is the disjoint union

X “
ğ

αPA
eα.

1.3 Background 7

A cell-decomposition of a space X can have many different dimensions.

The n-skeleton of X is the subspace

Xn “
ğ

iPA
ei,

such that dim(eαq ď n.

Of course, X0 Ă X1 Ă X2 Ă ... and X “ Ů
kě0X

k. A finite n-dimensional CW

complex structure for X expresses X as being built in stages as X0 Ă X1 Ă X2 Ă
... Ă Xn “ X.

The figure below shows a CW decomposition of the sphere, it includes two 0-cells e0
1

and e0
2, two 1-cells e1

1 and e1
2 and two 2-cells e2

1 and e2
2. There are no restrictions on

the number of cells in a cell-decomposition. We can have uncountably many cells in

the cell-decomposition. Any space X has a cell-decomposition where each point of

X is a 0-cell. A finite cell-decomposition is a cell decomposition consisting of finitely

many cells.

e e
e

e
0 0

21
1
1

1
2

e22

e21

Definition 1.3.3. [50] A pair pX, Eq consisting of a Hausdorff space X and a cell-

decomposition E of X is called a CW-space if the following axioms are satisfied

1. For each n-cell e P E there is a map ψe : Dn Ñ X restricting to a homeomor-

phism ψe|D̊n : D̊n Ñ e and taking Sn´1 into Xn´1 .

2. For any cell e P E the closure ē intersects only a finite number of other cells in

E .

3. A subset A Ă X is closed iff AX ē is closed in X for each e P E .

The axioms (2) and (3) are automatically satisfied if E is finite, so they are needed

only when E is infinite. The restrictions ψe|BDn are called the attaching maps.

1.3 Background 8

The letters CW stand for the closure finiteness of axiom (2) and the weak topology

of axiom (3).

Definition 1.3.4. [53] A CW-space is called regular if all its attaching maps are

homeomorphisms.

Definition 1.3.5. [50] A subspace Y of a CW-space X is called a CW-subspace of

X if it is a union of cells in X such that the closure of each cell is also contained in

Y ; therefore, it is also a CW-space.

The n-skeleton Xn is a CW-subspace of X, for every n.

Definition 1.3.6. [38] Let X and Y be CW-spaces, the map f : X Ñ Y is called

cellular if it satisfies fpXnq Ď Y n for all n.

1.3.2 Simplicial complexes

The earliest formulation of homology theory is simplicial homology, based on trian-

gulations of topological spaces called simplicial complexes. The theoretical proper-

ties of this homology have some drawbacks when dealing with general topological

spaces and successive improvements over the past century or so have resulted in a

more general version based on singular homology and general cell complexes.

We use simplicial homology here since it is concrete and easy to adapt for imple-

mentation on a computer.

Definition 1.3.7. [94] A simplicial complex ∆ on a finite set X is a collection of

subsets of X satisfying:

• if σ P ∆ and τ Ă σ then τ P ∆;

• txu P ∆ for each x P X.

The sets σ P ∆ are called simplices and the elements x P X are called vertices.

When |σ| “ n ` 1, we called σ an n-simplex. A 1-simplex is called an edge. The

complex ∆ is said to be finite if the vertex set X is finite, and the complex ∆ is

said to be of dimension k if some simplex contains k ` 1 vertices and no simplex

contains more.

1.3 Background 9

One example of a simplicial complex arises from any collection X “ tXiuiPI of sets

Xi.

Definition 1.3.8. [95] The nerve of a collection X “ tXiuiPI is the simplicial

complex with vertex set V “ X and with simplex set

NervepX q “ tσ Ď X : σ finite and
č

XPσ
X ‰ Hu.

1.3.3 (Co)Homology of a CW-complex

Let X be a finite regular CW-space. The cellular chain complex

C˚pXq “ ¨ ¨ ¨ ÝÑ CnpXq BnÝÑ Cn´1pXq Bn´1ÝÑ ¨ ¨ ¨ B1ÝÑ C0pXq

is constructed by taking CnpXq to be the free abelian group with free generators

corresponding to the n-cells of X, with boundary map

Bnpeni q “
ÿ

j

ren, en´1
j s en´1

j

where ren, en´1
j s denotes the degree of the composition map Γj,

Sn´1 // Xn´1 // Xn´1{Xn´2

��

Sn´1
j

f

OO

Ž
Sn´1
j

//
Γj

where
Ž
Sn´1
j is the wedge sum of spheres. Each sphere corresponds to n´ 1 cells.

For each n, BnBn`1 “ 0 or equivalently Im Bn`1 Ď Ker Bn.

Definition 1.3.9. [23] The n-dimensional homology of a chain complex C˚pXq of

a regular CW-space X is defined as

HnpC˚pXqq “ Ker Bn
Im Bn`1

.

We abbreviate HnpC˚pXqq to HnpXq.

1.3 Background 10

The elements of HnpXq are called homology classes. Each homology class is an

equivalence class of cycles where a cycle is an element of Ker dn.

Fix an abelian groupA, and replace each group Cn by its dual group Cn̊ “HompCn, Aq,
and Bn by its dual homomorphism

dn´1 : C˚n´1 Ñ C˚n ,

to obtain the cochain complex

¨ ¨ ¨ ÝÑ C˚n´1pXq dn´1ÝÑ C˚npXq dnÝÑ C˚n`1pXq ÝÑ ¨ ¨ ¨

The nth cohomology group of X with coefficients in A is

HnpXq “ Ker dn
Im dn´1

Let R be a commutative ring and X be a regular CW-space. Then there is a bilinear

map, called the cup product :

HnpX,Rq ˆHmpX,Rq Ñ Hn`mpX,Rq,

defined by an explicit formula on cochains. The product of cohomology classes u

and v is written as uY v. This product makes the direct sum

H˚pX,Rq “ ‘iH ipX,Rq

into a graded ring, called the cohomology ring of X. It is graded-commutative in

the sense that

uv “ p´1qnmvu

for u in HnpX,Rq and v in HmpX,Rq.

Chapter 2

Groupoids and Fp Groupoids

2.1 Introduction

The mathematical structure that we are studying is a groupoid. This is a special

case of the notion of a category, so we first recall the definition of a category.

Definition 2.1.1. [55, 69] A category C consists of

• a collection of objects denoted by ObjpCq,

• a collection ArrpCq whose members are the morphisms of C. Each morphism

f P ArrpCq has an associated object spfq P ObjpCq called the source of f ,

and an associated object tpfq P ObjpCq called the target of f . Morphisms are

also known as arrows and denoted as f : S Ñ T where S “ spfq, T “ tpfq.
The composite g ˝ f of two morphisms f, g P ArrpCq exists if, and only if,

spgq “ tpfq. This composite is itself a morphism with source spg ˝ fq “ spfq
and target tpg ˝ fq “ tpgq.

• for each A P ObjpCq a distinguished element 1A : A Ñ A of ArrpCq, this

special element is called the identity morphism on A.

These are required to satisfy the following two axioms:

11

2.1 Introduction 12

• Associativity: if f : A Ñ B, g : B Ñ C, and h : C Ñ D then ph ˝ gq ˝ f “
h ˝ pg ˝ fq,

• Identity: if k : AÑ B then k ˝ 1A “ k “ 1B ˝ k

Example 2.1.1. Some examples of categories.

1. The category of sets Cset, whose objects are sets and whose arrows are functions

between those sets.

2. The category of groups Cgrp, whose objects are groups and whose arrows are

group homomorphisms.

3. The category of topological spaces Ctop, whose objects are topological spaces

and whose arrows are continuous maps.

4. The category CR-mod, whose objects are R-modules over a fixed ring R and

whose arrows are all module homomorphisms between R-modules..

5. Any monoid is an example of a category with a single object, where all elements

of the monoid are considered to be morphisms with source and target equal

to this single object.

A functor is a type of mapping between categories analogous to homomorphisms of

monoids.

Definition 2.1.2. [69] Let C and D be categories. A functor F from C to D

• associates to each object A P C an object FpAq P D,

• associates to each morphism f : AÑ B in C a morphism Fpfq : FpAq Ñ FpBq
in D such that the following two conditions hold:

i. Fp1Aq “ 1FpAq for every object A in objpCq,
ii. Fpg ˝ fq “ Fpgq ˝ Fpfq for all morphisms f : A Ñ B and g : B Ñ C in

ArrpCq. In other words, the functor respects composition.

2.2 Groupoids 13

That is, functors must preserve identity morphisms and composition of morphisms.

The cartesian product of two categories C,D, denoted by CˆD, is a category whose

objects are ordered pairs pA,Bq of objects A P ObjpCq, B P ObjpDq and arrows

pA,Bq Ñ pA1, B1q are pairs pf, gq where f P CpA,A1q, g P DpB,B1q with composition

defined by pf, gq ˝ pf 1, g1q “ pf ˝ f 1, g ˝ g1q.

2.2 Groupoids

A groupoid is a special type of category which is a generalization of a group.

Definition 2.2.1. [55] A groupoid G is a category in which for each morphism

f : AÑ B there is a morphism f´1 : B Ñ A such that f ˝ f´1 “ 1B, f
´1 ˝ f “ 1A .

The morphism f´1 is called the inverse of f .

Definition 2.2.2. A groupoid G is called a discrete if each of its arrows has equal

source and target.

Example 2.2.1. Any set S gives rise to a groupoid whose objects are the elements

of S and whose only arrows are the identity arrows 1x : x Ñ x, x P S. This is an

example of a discrete groupoid on S.

Example 2.2.2. The unit groupoid consists of two objects with two identity arrows,

and precisely two non-identity arrows which are inverse to each other. The unit

groupoid plays the role of the “unit interval” in the theory of groupoids.

x1 x2

a

a´1

1x1 1x2

Example 2.2.3. (1) Any group can be considered to be a groupoid with one object.

(2) The category CVect with ObjpCVect) equal to the collection of all n-dimensional real

vector spaces and ArrpCVect) equal to the collection of all isomomorphisms between

such vector spaces is a groupoid.

2.3 Groupoid Homomorphisms 14

Definition 2.2.3. Given a groupoid G, a subgroupoid H of G consists of subsets

ObjpHq Ă ObjpGq and ArrpHq Ă ArrpGq such that:

1. spfq, tpfq P ObjpHq, for each f P ArrpHq,

2. 1A P ArrpHq, for each A P ObjpHq,

3. if f P ArrpHq then f´1 P ArrpHq

4. if f, g P ArrpHq with tpfq “ spgq then g ˝ f P ArrpHq.

2.3 Groupoid Homomorphisms

A groupoid homomorphism is a mapping from one groupoid to another that respects

multiplication, composition, inverses and identity morphisms. The way of creating

groupoid homomorphisms is to give maps for a set of groupoid generators (which

preserves relations).

A formal definition of groupoid homomorphism is given below.

Definition 2.3.1. If G1 and G2 are two groupoids, then a homomorphism between

them, is a functor

F : G1 Ñ G2

consisting of

• a map between the respective sets of objects

Fo : ObjpG1q Ñ ObjpG2q

• a map between the respective sets of arrows

Fa : ArrpG1q Ñ ArrpG2q
f ÞÑ Fapfq

2.4 Free groupoids 15

such that if x “ sourcepfq and y “ targetpfq then Fopxq “ sourcepFapfqq and

Fopyq “ targetpFapfqq.

A homomorphism is a an isomorphism if it is bijective on objects and bijective on

arrows.

Example 2.3.1. A homomorphism between two groupoids with only one object is

the same as a group homomorphism.

We can associate to each groupoid a directed graph (underlying graph) by omitting

the compositions of the morphisms. Thus the language of graph theory is useful in

describing groupoids. The next section starts by recalling the definition of a directed

graph because it is used for defining the free groupoid.

2.4 Free groupoids

Definition 2.4.1. A directed graph Γ “ pV,E, s, tq consists of a set V called the set

of vertices, a set E called the set of edges of Γ and two functions s, t : E Ñ V . The

vertex speq is the source of an edge e P E. The vertex tpeq is the target of an edge

e P E.

A map of directed graphs

pV,E, s, tq ÞÑ pV 1, E 1, s1, t1q

consists of functions

f1 : V Ñ V 1

f2 : E Ñ E 1

such that spf2peqq “ f1pspeqq and tpf2peqq “ f1ptpeqq for all e P E.

2.4 Free groupoids 16

Definition 2.4.2. The disjoint union Γ “ Γ1 \ Γ2 of directed graphs Γ1 and Γ2

with disjoint vertex sets V pΓ1q and V pΓ2q and edge sets EpΓ1q and EpΓ2q is the

directed graph with V pΓq “ V pΓ1q Y V pΓ2q and EpΓq “ EpΓ1q Y EpΓ2q.

Definition 2.4.3. A maximal tree T of a directed graph Γ is a subgraph which

includes every vertex of Γ and contains no cycle.

Let Graphs denote the category whose objects are directed graphs and whose mor-

phisms are maps of directed graphs. Let Groupoids denote the category whose

objects are groupoids and whose morphisms are functors between groupoids. There

is a functor

U : GroupoidsÑ Graphs (2.1)

which simply forgets the partial composition on a groupoid. If G is a groupoid, then

the vertices of UpGq are precisely the objects of G. The directed edges of UpGq are

the arrows of G.

There is a functor

F : GraphsÑ Groupoids (2.2)

where for a directed graph Γ, the groupoid FpΓq is characterized, up to isomor-

phism, by the following universal property.

Universal property of a free groupoid on Γ. There is a map of directed graphs

ι : Γ Ñ UpFpΓqq. For any groupoid G and any map of directed graphs f : Γ Ñ UpGq
there exists a unique groupoid morphism f̄ : FpΓq Ñ G for which the following

diagram commutes in the category of directed graphs.

Γ ι //

f
##

UpFpΓqq
Upf̄q
��

UpGq

We call FpΓq the free groupoid on Γ. The existence of FpΓq is established by an

explicit construction in terms of words xε11 x
ε2
2 ... x

εn
n where ε “ ˘1, xi P EpΓq, and

spxεii q “ tpxεi`1

i`1 q. When the directed graph Γ has just a single vertex we say that

2.4 Free groupoids 17

FpΓq is the free group on the set EpΓq.

Proposition 2.4.1. FpΓq is unique up to isomorphism of groupoids.

Proof. For simplicity we denote UpGq by G for any groupoid G.

Let Γ be a directed graph, and let FpΓq and F 1pΓq be free groupoids on Γ. Let

ι : Γ Ñ FpΓq be a map, and another map ι1 “ Γ Ñ F 1pΓq. By the universal

property of free groupoid there is a unique groupoid morphism ῑ “ FpΓq Ñ F 1pΓq
such that the following digram

Γ ι //

ι1 !!

FpΓq
ῑ
��

F 1pΓq

commutes. Also, the following diagram

Γ ι1 //

ι
!!

F 1pΓq
ῑ1

��

FpΓq

commutes. Now we obtain

...WΓ...

ι
22

ι //

ι1 &&

FpΓq
ῑ
��

1FpΓq

��

...WWG...WW
ῑ1

%%

FpΓq

By uniqueness, ῑ1 ˝ ῑ “ 1FpΓq.

Similarly, ῑ ˝ ῑ1 “ 1F 1pΓq.

Therefore, FpΓq is isomorphic to F 1pΓq.

Definition 2.4.4. A groupoid G is connected if for each pair of objects A and

B P ObjpGq there is at least one arrow w P ArrpGq with the property

spwq “ A and tpwq “ B

2.4 Free groupoids 18

Definition 2.4.5. A component of a groupoid G is a subgroupoid S Ď G such that if

S 1 is any connected subgroupoid of G with ObjpSq Ď ObjpS 1q and ArrpSq Ď ArrpS 1q
then S “ S 1. The components of a groupoid are themselves groupoids.

Definition 2.4.6. The disjoint union G “ G1

ŮG2 of groupoids G1 and G2 with

disjoint object sets ObjpG1q and ObjpG2q and arrow sets ArrpG1q and ArrpG2q is the

groupoid with ObjpGq “ ObjpG1q YObjpG2q and X “ ArrpG1q Y ArrpG2q.

Every groupoid is uniquely expressible as the disjoint union of connected sub-

groupoids, namely, its components.

We sometimes refer to the edges in a directed graph Γ as a set of free generators of

the groupoid FpΓq. The free groupoid F on a set of free generators x consists of all

words

w “ xε11 x
ε2
2 ... x

εn
n , xi P x and εi “ ˘1,

such that spxεjj q “ tpxεj`1

j`1 q, considering two words w1 and w2 different unless their

equality follows from the axiom

w1hh
´1w2 “ w1w2, for h P x.

An arbitrary groupoid D is called free if it is isomorphic to FpΓq for some Γ.

In the context of graph theory, the free groupoid on a directed graph is the groupoid

whose objects are the vertices of the graph and whose morphisms are finite concate-

nations of the edges in the graph and formal inverses to them [14].

Let Γ “ Γ1

Ů
Γ2 be the disjoint union of connected graphs Γ1 and Γ2.

Lemma 2.4.2. FpΓq “ FpΓ1q
ŮFpΓ2q

Proof. This is clear from the construction of a free groupoid in terms of “words”.

Proposition 2.4.3. A groupoid is free if and only if its components are free.

Proof. Suppose F is the free groupoid on a directed graph Γ.

Suppose Γ “ Γ1 \ Γ2 \ ...\ Γn with Γi a connected graph.

Then

FpΓq “ FpΓ1q
ğ
FpΓ2q

ğ
...
ğ
FpΓnq by lemma 2.4.2.

2.5 Finitely presented groupoids 19

Each FpΓiq is a connected component of FpΓq. Hence each connected component

is free.

Conversely, suppose each connected component FpΓiq is free.

Then the groupoid is the union of its components:

FpΓ1q
ğ
FpΓ2q

ğ
...
ğ
FpΓnq

By lemma 2.4.2, this union equals

FpΓ1 \ Γ2 \ ...\ Γnq

Hence, the groupoid is free on the graph

Γ1 \ Γ2 \ ...\ Γn

2.5 Finitely presented groupoids

Let G be a groupoid with object set ObjpGq “ V . LetN be a discrete subgroupoid of

G with the same object set ObjpN q “ V . Thus every arrow ofN is an arrow of G and

N is closed under groupoid composition. The collection of groups tGpv, vq | v P V u
is an example of a discrete subgroupoid of G. We say that a discrete subgroupoid

N is normal in G if N pv, vq is a normal subgroup of Gpv, vq for each v P V . Given a

discrete normal subgroupoid N in G we can form the quotient groupoid G{N which

is characterized up to groupoid isomorphism by the following universal property.

Universal property of a quotient groupoid. There is a morphism of groupoids

φ : G Ñ G{N . For any groupoid Q with object set ObjpQq “ V , and for any

morphism ψ : G Ñ Q that is the identity on V and that sends each element of N
to an identity element, there exists a unique morphism of groupoids ψ1 : G{N Ñ Q

2.6 Vertex group 20

such that the following diagram in the category of groupoids commutes.

G φ
//

ψ
!!

G{N
ψ1

��

Q

Proposition 2.5.1. For discrete N , G{N is unique up to isomorphism of groupoids.

Proof. Similar to the proof of the proposition 2.4.1.

Definition 2.5.1. We say that a set r of arrows in a discrete subgroupoid N nor-

mally generates N if any normal discrete subgroupoid of G containing r also contains

the subgroupoid N .

Let G be a groupoid with vertex set V “ ObjpGq, and let FpΓq be a free groupoid on

a directed graph Γ “ pV, x, s, tq, and suppose that there is a morphism of groupoids

φ : FpΓq� G (2.3)

that is the identity on objects and that is surjective on arrows. By ker φ we mean

the groupoid with vertex set V and with arrows those elements r in FpΓq mapping

to an identity arrow 1sprq in G. The groupoid ker φ is a discrete normal subgroupoid

and Fpxq{ker φ is isomorphic to G. Let r be a set of elements in ker φ that normally

generates ker φ. The data xx | ry is called a free presentation of the groupoid G.

2.6 Vertex group

Let G be a groupoid with object set ObjpGq “ V . For each object (vertex) v P V we

let Gpv, vq denote the group of arrows with source and target equal to v. We refer

to Gpv, vq as the vertex group or isotropy group or object group at v. The vertex

group Gpv, vq actually is a subgroupoid consisting of one object v and all arrows of

the form v Ñ v.

Let G be a connected groupoid, we can define a homomorphism

θ : G Ñ Gpv, vq (2.4)

2.6 Vertex group 21

in the following sense.

Let Γ be the generating graph of G, (i.e. FpΓq “ Gq, and let T be a maximal tree

in Γ. The tree T generates a subgroupoid H of G, which called a tree of groupoid.

The map θ is defined as

θpaq “ v a P ObjpGq
θpwq “ xwy, w P ArrpGq, x, y P H (2.5)

such that tpyq “ spwq, spxq “ tpwq and spyq “ tpxq “ v.

For c, d P H (such that spcq “ tpdq “ u and tpcq “ spdq “ v), the product dc “ 1u.

Its obvious that the map θ maps the whole H onto 1v.

Proposition 2.6.1. The vertex groups of a connected groupoid are all isomorphic.

Proof. Let G be a groupoid with ObjpGq “ V . Let v P V and Gpv, vq is the vertex

group on v. To prove that all vertex groups are isomorphic to Gpv, vq, let us choose

any object w P V , and any arrow x such that spxq “ v and tpxq “ w. The map

h ÞÑ xhx´1 is an isomorphism from the vertex group at Gpv, vq to the vertex group

at Gpw,wq.

Theorem 2.6.2. Let G “ xx | ry be a finitely presented connected groupoid, If Gpv, vq
is the vertex group at v P ObjpGq, then Gpv, vq “ xx1 | r1Y ty, where x1 “ tθpxq : x P
xu and r1 “ tθprq : r P r with expressing θprq as a word xε11 x

ε2
2 ...x

εk
k , xi P x1, εi P ˘1u

and t “ tt : t edge in a maximal tree of Gu.

Proof. Let x “ pV,E, s, tq be a connected directed graph. Let Fpxq denote the free

groupoid on x. An arrow r P ArrpFpxqq is said to be a loop if sprq “ tprq. Let r

denote a set of loops in the groupoid Fpxq. Let R denote the normal subgroupoid

of Fpxq generated by x.

The data xx | ry is a presentation for the quotient groupoid

G “ Fpxq{R.

Let t denote a maximal tree in the graph x. Fix some vertex v P V . Then each

vertex w P V determines a unique simple path ppwq in the tree t with spppwqq “ w

2.6 Vertex group 22

and tpppwqq “ v. In other words, ppwq is a path in t from w to v.

For each arrow a in the groupoid Fpxq let us set

θpaq “ ppspaqq´1 ˚ a ˚ pptpaqq.

Thus θpaq is a loop in the groupoid Fpxq with source and target equal to v.

Now define

x1 “ tθpaq : a is a dircted edge in x and a R tu,
r1 “ tθpaq : a is an arrow in ru.

Note that x1 is a free generating set for the free group Fpv, vq. here we are writing

F “ Fpxq and letting Fpv, vq denote the vertex group at v.

Note that r1 is a subset of Fpv, vq. Let Rpv, vq denote the normal subgroup of

Fpv, vq normally generated by r1.

We can now regard xx1 | r1y as a free presentation for the finitely presented group

Fpv, vq{Rpv, vq.

To prove the theorem we need to see that Fpv, vq{Rpv, vq is isomorphic to the vertex

group Gpv, vq in G.

There is a canonical set theoretic function λ1 : xÑ G. This function induces a group

homomorphism

λ : Fpv, vq Ñ Gpv, vq

The kernel of λ, by definition, consists of all loops in Fpxq at v that can be written

as a product of conjugates of loops in r. So clearly the kernel of λ is normally

generated by r1 and the proof is complete.

Example 2.6.1. Let G be a groupoid whose object set is ta, bu with the following

presentation

xx, y, z, w | y´1x´1z, x´1y´1wzw´1y (2.6)

2.6 Vertex group 23

where

a “ spxq “ tpyq “ tpwq
b “ tpxq “ spyq “ spwq “ spzq “ tpzq

Figure 2.1 shows the generating graph of the groupoid G.

ba

x

y

w

z

Figure 2.1: Generating graph of the groupoid of the presentation 2.6.

In order to find the presentation of the vertex group on the object, say a, we must

determine a tree in the underlying graph UpGq which includes only one edge corre-

sponding to one generator in tx, y, w, zu. Let us pick x and set x̄ to be a generator of

the vertex group Gpa, aq. Now, we must write the other generators as loops starting

and ending at the object a. We obtain

ȳ “ yx,

z̄ “ x´1zx,

w̄ “ wx.

Also, we could do the same for the relators to get

x´1y´1x´1zx “ ȳ´1z̄,

x´1y´1wzw´1 “ ȳ´1w̄z̄w̄´1.

Now the presentation of the vertex group Gpa, aq is

xx̄, ȳ, z̄, w̄ | x̄, ȳ´1z̄, ȳ´1w̄z̄w̄´1y,

2.7 Implementations 24

which can be simplified to the form

xz̄, w̄ | z̄´1w̄z̄w̄´1y.

Corollary 2.6.3. If G is a free groupoid, each of its vertex groups is a free group.

Proof. Let G be a free groupoid on a directed graph Γ. By construction G has

ObjpGq “ V pΓq. If x is the set of directed edges of the graph Γ then G has the

following presentation

G “ xx | Hy

Let T be a maximal tree in the groupoid G.

Let v P ObjpGq and Gv be a vertex group. Applying theorem 2.6.2 yields

Gv “ xxzt | Hy,

where t is the edges set of T , that means Gv is free group.

2.7 Implementations

We develop practical tools in the form of a GAP package, for computing finitely

presented groupoids. The package is called FpGd , it depends on the HAP package

for GAP [3].

In this section we describe the functionality of FpGd aimed at purely algebraic

calculations relating to finitely presented groupoids. In the next Chapter we describe

functionality aimed at the fundamental groupoid of a finite regular CW-space.

To display the generating graphs of a groupoid, sayH, first construct a graphG using

the FpGd function GeneratingGraphOfGroupoid(H) and then use the command

Display to display the graph G.

2.7 Implementations 25

2.7.1 Implementation of free groupoids

The FpGd package uses the following representation of free groupoid.

Data Type 2.7.1. A Free Groupoid is represented by a component object F with the

following components:

• F!.objects is a list of integers, each corresponds to one object in F.

• F!.generators is a list of integers, each represents one generator in F.

• F!.sources is a list of integers belong to F!.objects, they represent the sources

of the generators of F.

• F!.targets is a list of integers belong to F!.objects, they represent the targets of

the generators of F.

The FpGd command FpGdFreeGroupoid(O,Sq) can be used to construct a free groupoid

on an object set O and a set of generators S as well, where

S “ trsi, gi, tis, si, ti P O, gi is integeru,

here si “ spgiq and ti “ tpgiq.
The commands GeneratorsOfGroupoid(), Source(), and Target() can be used to display

the generators of the free groupoid and their sources and targets.

The associated boolean valued function IsFpGdFreeGroupoid(F) returns true when F

is of this data type.

Example 2.7.1. In the following gap session, we create a free groupoid F on three

objects labeled by t8, 11, 95u and generated by three free generators labeled by 1, 2,

and 3. The following figure shows the graph representing generators of the groupoid

F in order source and target of the generators. Also, we show some FpGd functions

like Source and Target that return the source and target of the generators.

2.7 Implementations 26

8

95

11

1

3

2

gap> O:=[8,11,95];;

gap> S:=[[8,1,95],[95,2,95],[95,3,11]];;

gap> F:=FreeGroupoid(O,S);

< free groupoid on the generators [f1 , f2 , f3] >

gap> g:=GeneratorsOfGroupoid(F);

[f1 , f2 , f3]

gap> List(g,x->[Source(x),Target(x)]);

[[8,95], [95,95] ,[95,11]]

gap> IsFpGdFreeGroupoid(F);

true

GAP session 2.7.1

The following representation is the data type that used for arrows a in a free groupoid

F.

Data Type 2.7.2. An arrow in a free groupoid F is represented by a component

object a with the following components:

• a!.list is a list of integers representing the arrow (sequence of composible gen-

erators and their inverses) in F.

• a!.source is an integer representing the source of a which belong to F!.objects.

• a!.target is an integer representing the target of a which belong to F!.objects.

• a!.parent is a component object which is the free groupoid F.

The commands Source(), and Target() can be used also to display the sources and

targets for arrows.

2.7 Implementations 27

The composition of arrows a and b in a free groupoid F is defined as usual using the

asterisk between them. It is based in Algorithm 2.7.1.

Algorithm 2.7.1 Composition of arrows in a free groupoids

Input: Two arrows a and b in a free groupoid G.

Output: The composition a˚b.

1: procedure
2: if a!.target = b!.source then return a˚b
3: else
4: return fail;
5: end if
6: end procedure

2.7.2 Implementation of fp groupoids

The FpGd package uses the following representation of a finitely presented groupoid.

Data Type 2.7.3. A Fp Groupoid is represented by a component object G with the

following components:

• G!.objects is a list of integers, each corresponds to one object in G.

• G!.generators is a list of integers, each represents one generator in G.

• G!.sources is a list of integers belong to G!.objects, they represent the sources

of the generators of G.

• G!.targets is a list of integers belong to G!.objects, they represent the targets

of the generators of G.

• G!.relators is a list, each entry correspond to one relator which is also a list of

integers.

The FpGd command FpGdFpGroupoid(O,S,R) can be used to construct a fp

groupoid on an object set O which is generated by a set of free generators S with a

set of relators R. Also, we can construct a finitely presented groupoid by creating

first a free groupoid F and then define a set of relators rels, so F{rels returns a

fp groupoid. The associated boolean valued function IsFpGdFpGroupoid(G) returns

true when G is of this data type.

The following example shows a free groupoid of a set of objects t5, 9u generated by

three generators.

2.7 Implementations 28

Example 2.7.2. Recall the groupoid in the example 2.6.1. Let us name the objects

and generators as follows

a “ 5, b “ 9,

and

x “ 1, y “ 2, z “ 3, w “ 4.

In the following GAP session, this groupoid is created. It is subject to two relators

to produce a fp groupoid.

The FpGd command RelatorsOfFpGroupoid used to display the relators of the given

fp groupoid.

gap> O:=[5, 9];;

gap> S:=[[5,1,9],[9,2,5],[9,3,9],[9,4,5]];;

gap> F:=FreeGroupoid(O,S);

< free groupoid on the generators [f1 , f2 , f3 , f4] >

gap> g:=GeneratorsOfGroupoid(F);; x:=g[1]; y:=g[2]; z:=g[3];w:=g[4];

gap> rels:=[y^-1*x^-1*z, x^-1*y^-1*w*z*w^-1];;

gap> G:=F/rels;

< fp groupoid on the generators [f1 , f2 , f3 , f4] >

gap> IsFpGdFpGroupoid(G);

true

gap> RelatorsOfFpGroupoid(G);

[f2^-1*f1^-1*f3, f1^-1*f2^-1*f4*f3*f4^-1]

GAP session 2.7.2

2.7.3 Implementation of vertex groups

Let G be a connected groupoid, and let v P ObjpGq. The arrows ai such that

spaiq “ tpaiq “ v are the elements of the vertex group Gpv, vq.
Let T be a maximal tree of the groupoid G. And define τ : ObjpGq Ñ T as follows

τpxq “ w, such that spwq “ v and tpwq “ x.

There is a corresponding path

τ̄pxq “ w̄, such that spw̄q “ x and tpw̄q “ v.

in which the edges appear in reversed order.

Now, if A “ EpUpGqqzT , then according to Theorem 2.6.2, the group Gpv, vq is

generated by

tg “ τ̄ptpaqq a τpspaqq | a P Au

2.7 Implementations 29

and it is subject to the following relators

tτ̄ptprqq r τpsprqq | r is a relator of Gu Y tt | t P T u

We introduce the algorithm 2.7.2 based on the above instruction and we implement

it in GAP .

Algorithm 2.7.2 Vertex Group

Input: A finitely presented groupoid G and one object (vertex) v P ObjpGq.
Output: A finite presentation for the vertex group Gv on the vertex v.

1: procedure
2: The generators tx1, ..., xnu of G can be viewed as the edges of a directed graph
X “ pV,E, s, tq, where s and t are the source and target functions.

3: Construct a rooted tree Tv emanating from v in X.
4: Such a tree determines a function,

τ : V Ñ ppaths in Tv staring at v q
vi ÞÑ ei1ei2 ...eik ,

such that spei1q “ v and tpeikq “ vi,
5: An element in EzTv determines a loop at v, for example if ẽ P EzTv such that
spẽq, tpẽq and v are different, then τpspẽqqẽ τ´1ptpẽqq is the required loop. These
loops correspond to free generators of a free group, say F .

6: Also, each relator of G determines a loop by the same sense as in step 5, and
then rewrite each loop in terms of the elements obtained in step 5.

7: Return the finitely presented group Gv determined by F and the set of relators.
8: end procedure

The FpGd function VertexGrouppG, vq returns a finitely presented group where G is

a fp groupoid and v P ObjpGq.
Example 2.7.3. Recall the groupoid G in example 2.7.2 in order to test the function

VertexGroup. In advance we know the result from example 2.6.1.

gap> V5:=VertexGroup(G,5);

< fp group on the generators [f1, f2] >

gap> RelatorsOfFpGroup(V5);

[f2^-1*f1*f2*f1^-1]

GAP session 2.7.3

Algorithm 2.7.3 Path components of fp groupoid

Input: A finitely presented groupoid G.

Output: A list of path components Gi of G.

2.7 Implementations 30

1: procedure
2: let obj be the object set of G;
3: let gens be the generator set of G;
4: let rels be the relator set of G;
5: classify robj, gens, relss into classes trobjλ, gensλ, relsλsuλPΛ such that

for each λ P Λ, any g P gensλ, the source and target of g are in objλ and
if r P relsλ then r “ 1x with x P objλ.

6: return List(Λ, λÑ FpGroupoid(robjλ, gensλ, relsλs));
7: end procedure

Example 2.7.4. Let G “ xx | ry be an fp groupoid with x “ tx, y, z, u, v, wu and

r “ tzyxz´1xy, vu´1w´1uv´1wu such that spxq “ spzq “ tpyq “ 2, spyq “ tpxq “
tpzq “ 1 and spuq “ spvq “ 3, spwq “ tpuq “ tpvq “ tpwq “ 4. The following figure

show the graph representing the generators of G.

2 1 4 3

z

x

y

v

u

w

gap> obj:=[1,2,3,4];;

gap> gens:=[[2,1,1],[1,2,2],[2,3,1],[3,4,4],[3,5,4],[4,6,4]];;

gap> F:=FreeGroupoid(obj,gens);;

gap> g:=GeneratorsOfGroupoid(F);;

gap> x:=g[1];; y:=g[2];; z:=g[3];; u:=g[4];; v:=g[5];; w:=g[6];;

gap> G:=F/[z*y*x*z^-1*x*y, v*u^-1*w^-1*u*v^-1*w];

<fp groupoid on the generators [f1, f2, f3, f4, f5, f6]>

gap> C:=ComponentsOfFpGroupoid(G);;

gap> Length(C);

2

gap> RelatorsOfFpGroupoid(C[1]);

[f3*f2*f1*f3^-1*f1*f2]

gap> RelatorsOfFpGroupoid(C[2]);

[f5*f4^-1*f6^-1*f4*f5^-1*f6]

GAP session 2.7.4

2.7.4 Implementation of groupoid homomorphisms

The FpGd package uses the following data type for the homomorphism of groupoids.

2.7 Implementations 31

Data Type 2.7.4. A Homomorphism of Groupoids is represented by a component

object H with the following components:

• H!.source is a component object (groupoid) which is the source of the homo-

morphism H.

• H!.target is a component object (groupoid) which is the target of the homo-

morphism H.

• H!.mappingObj is a function whose input is an object in H!.source.

• H!.mappingArr is a function whose input is an arrow in H!.source.

The associated function IsFpGdGroupoidHomomorphism(Y) returns the boolean true

when Y is of this data type.

Example 2.7.5. Consider two fp groupoids G and K, each generated by three

generators x, y, z and a, b, c, respectively. The following figure shows the graphs

that generate G and K.

7512

b

c

ayz x

Now let us define the following groupoid homomorphism,

H : GÑ K

which maps the generators of G as follows

x ÞÑ c,

y ÞÑ a,

z ÞÑ c ˚ b,

see the following GAP session.

2.8 Presentation of subgroups 32

gap> F1:=FreeGroupoid([1,2],[[1,1,2],[1,2,1],[2,3,2]]);; G:=F1/[];;

gap> g:=GeneratorsOfGroupoid(G);; x:=g[1];; y:=g[2];; z:=g[3];;

gap> List(g,x->[Source(x),Target(x)]);

[[1, 2], [1, 1], [2, 2]]

gap> F2:=FreeGroupoid([5,7],[[7,1,7],[5,2,7],[7,3,5]]);; K:=F2/[];;

gap> k:=GeneratorsOfGroupoid(K);; a:=k[1];; b:=k[2];; c:=k[3];;

gap> List(k,x->[Source(x),Target(x)]);

[[7, 7], [5, 7], [7, 5]]

gap> H:=GroupoidMorphismByImages(G,K,[[x, y, z], [c, a, c*b]]);

Objects Mapping : [1, 2] -> [7, 5]

Arrows Mapping : [f1 , f2 , f3] -> [f3 , f1 , f3*f2]

gap> w:=y*x^-1*z*x*y^-1*x^-1*z^-1*x;;

gap> ImageOfArrow(H,w);

f1*f2*f3*f1^-1*f3^-1*f2^-1

GAP session 2.7.5

The FpGd command ImageOfArrow produce the image of and arrow w under the

homomorphism H, as shown in the last line of the GAP session.

2.8 Presentation of subgroups

Definition 2.8.1. An action of a group G on a set S is a mapping G ˆ S Ñ
S, pg, sq ÞÑ gs satisfying gphsq “ ghs for all g, h P G, s P S and the identity element

of the group acts as the identity permutation.

Proposition 2.8.1. Given an action of a group G on a set S we can construct

a groupoid with object set S and with one arrow for each pair pg, sq in G ˆ S.

The source of pg, sq is s and the target of pg, sq is gs. We denote this groupoid by

GpdpG,Sq.

Proof. If ph, gsq and pg, sq are two arrows in GpdpG,Sq, then their composition is

defined as ph, gsqpg, sq “ phg, sq. Let a1 “ pk, hgsq, a2 “ ph, gsq and a3 “ pg, sq be

three arrows in GpdpG,Sq; their composition is associative, i.e. pa1a2qa3 “ a1pa2a3q
since

pa1a2qa3 “ ppk, hgsqph, gsqqpg, sq
“ pkh, gsqpg, sq
“ ppkhqg, sq
“ pkphgq, sq
“ pk, hgsqphg, sq

2.8 Presentation of subgroups 33

“ pk, hgsqpph, gsqpg, sqq
“ a1pa2a3q.

The identity element e of the group G defines the identity arrow (morphism) pe, sq “
1s at each object s P S. The inverse of any arrow a “ pg, sq in the groupoid is the

arrow a´1 “ pg´1, gsq where a´1a “ 1s and aa´1 “ 1gs.

Example 2.8.1. Let S “ t1,2,3u and G be the permutation group generated

by p123q. The groupoid GpdpG,Sq has object set S and 9 generators g1 “
ppq,1q, g2 “ ppq,2q, g3 “ ppq,3q, g4 “ pp123q,1q, g5 “ pp123q,2q, g6 “ pp123q,3q, g7 “
pp132q,1q, g8 “ pp132q,2q, g9 “ pp132q,3q, as shown in the following picture.

1 2

3

g4

g6 g5

g3

g2g1

g8

g7 g9

Proposition 2.8.2. Suppose that a group G acts on a set S and that x is a set

of generators for G. Then the groupoid GpdpG,Sq is generated by the collection of

arrows xˆ S “ tpx, sq : x P x, s P Su.
Proof. An arbitrary arrow pg, sq in GpdpG,Sq can be expressed as

pxε11 , xε22 ...xεnn sqpxε22 , xε33 ...xεnn sq...pxεn´1

n´1 , x
εn
n sqpxεnn , sq

where

g “ xε11 x
ε2
2 ...x

εn
n

and xi P x, εi “ ˘1. If εi “ ´1 then

px´1
i , sq “ pxi, x´1

i sq´1.

Each arrow in GpdpG,Sq is a sequence of arrows in xˆ S.

Let G be a group with subgroup U . Let G{U “ tgU : g P Gu denote the collection

of left cosets gU “ tgu : u P Uu. There is an action of G on the set X “ G{U given

by pg, hUq Ñ ghU for g, h P G. This action gives rise to a groupoid GpdpG,Uq.
Proposition 2.8.3. For a group G and subgroup U the groupoid GpdpG,Uq is con-

nected and all vertex groups are isomorphic to U .

2.8 Presentation of subgroups 34

Proof. The object set of the groupoid GpdpG,Uq is

tU,U1, ..., Unu, where n “ IndexpUq ´ 1.

Since any coset Ui “ yiU for some yi P G, the groupoid is connected.

To prove that all vertex groups are isomorphic to U , let us choose any object Ui

and any element x “ xε11 ...x
εn
n such that xε22 ...x

εn
n U “ Ui. The map h ÞÑ x´1hx is an

isomorphism between the vertex group at U to the vertex group at Ui.

Proposition 2.8.4. Let G “ xx | ry be a finitely presented group with finite index

subgroup U . Then the groupoid G “ GpdpG,Uq is finitely presented as follows. The

objects of G are the left cosets gU . The generators of G are the arrows px, gUq for

x P x. Each relator r “ xε11 x
ε2
2 ... x

εn
n P r and coset gU give rise to a word

pr, gUq “ pxε11 , xε22 ... xεnn gUq...pxεn´1

n´1 , x
εn
n gUqpxεnn , gUq (2.7)

in the groupoid generators. These words pr, gUq are the relators for the groupoid.

Proof. Let F pxq be the free group on x. Let R denote the normal subgroup of F

normally generated by r. It yields

F {R – G “ xx | ry

Let U be a subgroup of the group G and let G{U be the set of left cosets of U in G.

Let G denote the finitely presented groupoid GpdpG,Uq. By definition G is gener-

ated by the set

x1 “ tpx, gUq | x P x, gU P G{Uu.
Let F be the free groupoid generated by x1 (i.e. F “ GpdpF,Uq). So each arrow

a P F can be expressed as

a “ pgi, Sjq,
where Sj P F {U and

gi “ x
εi1
i1
x
εi2
i2
...x

εik
ik
P F

There is a groupoid homomorphism φ : FÑ G such that the kernel of φ consists of

all arrows of the form pgi, gUq for which the source and target is gU . That means

φpgiq “ 1gU and that yields gi P R. It is readily seen that xry “ R.

Example 2.8.2. For G “ xx, y | x2, y2, pxyq3y and U “ xxyy ď G the groupoid

GpdpG,Uq has presentation

xx̄, ȳ, z̄, w̄ | x̄ȳ, z̄w̄, px̄w̄q3, ȳx̄, w̄z̄, pȳz̄q3y (2.8)

2.8 Presentation of subgroups 35

where x̄ “ px, xUq, ȳ “ px, Uq, z̄ “ py, xUq, w̄ “ py, Uq.
Since the group G is generated by x and y and there are only two left cosets

G{U “ t U :“ t1, xy, yxu, xU :“ tx, y, xyxu u (2.9)

then the groupoid GpdpG,Uq has four generators. The relators of this groupoid can

be obtained by using the formula 2.7 and x2 “ 1, y2 “ 1, pxyq3 “ 1 as follows.

px2, Uq “ px, xUqpx, Uq “ x̄ȳ (2.10)

py2, Uq “ py, yUqpy, Uq “ py, xUqpy, Uq “ z̄w̄ (2.11)

ppxyq3, Uq “ px, ypxyq2Uqpy, pxyq2Uqpx, yxyUqpy, xyUqpx, yUqpy, Uq
“ px, xUqpy, Uqpx, xUqpy, Uqpx, xUqpy, Uq
“ ppx, xUqpy, Uqq3 “ px̄w̄q3 (2.12)

px2, xUq “ px, x2Uqpx, xUq “ ȳx̄ (2.13)

py2, xUq “ py, yxUqpy, xUq “ py, Uqpy, xUq “ w̄z̄ (2.14)

ppxyq3, xUq “ px, pyxq3Uqpy, xpyxq2Uqpx, pyxq2Uqpy, xyxUqpx, yxUqpy, xUq
“ px, Uqpy, xUqpx, Uqpy, xUqpx, Uqpy, xUq
“ ppx, Uqpy, xUqq3 “ pȳz̄q3 (2.15)

xyx

.xy...x..

”1”

”y” .yx.

x

x
y

y

x

x

y

y
x

x

y

y

.U.xU

px, Uq

px, xUq

py, Uq

py, xUq

The algorithm for finding a finite presentation of the vertex group of a finitely

presented connected groupoid can be applied to the groupoid GpdpG,Uq arising

from a finitely presented group G and a finitely generated subgroup U in order to

obtain a finite presentation for U .

Example 2.8.3. We will apply this idea to G “ xx, y | x2 “ 1, y2 “ 1, pxyq3 “ 1y
and U “ xxyy to produce the finite presentation for U . From the presentation 2.8 the

vertex group on U is generated by four generators corresponding to the generators of

GpdpG,Uq. Now by looking on the underlying graph in the figure above (right), any

tree in this graph includes only one edge, we can pick any one, say x̄ “ px, xUq “ X.

2.8 Presentation of subgroups 36

Now, we should write other edges as loops at U ,

ȳ “ px, Uq Ñ px, xUqpx, Uq “ Y (2.16)

z̄ “ py, xUq Ñ py, xUqpx, xUq´1 “ Z (2.17)

w̄ “ py, Uq Ñ px, xUqpy, Uq “ W (2.18)

The relators of the groupoid each is equal to 1U , we only need to rewrite these

relators in terms of X, Y, Z and W .

px, xUqpx, Uq Ñ Y (2.19)

py, xUqpy, Uq Ñ ZW (2.20)

ppx, xUqpy, Uqq3 Ñ W 3 (2.21)

Similarly, for the other 3 relators, we obtain Y “ 1,WZ “ 1, Z3 “ 1. From the last

equations, we distinguish that Y “ 1 and Z “ W 3 which implies that W 3 “ 1. The

vertex group at U has the presentation

xX, Y, Z,W | X, Y, Z,W 3y

gap> F:=FreeGroup(2);;

gap> G:=F/[F.1^2,F.2^2,(F.1*F.2)^3];;

gap> Size(G);

6

gap> x:=G.1;; y:=G.2;;

gap> S:=Subgroup(G,[x*y]);;

gap> U:=Image(IsomorphismFpGroup(S));

gap> RelatorsOfFpGroup(U);

[F1^3]

gap> H:=FpGroupoid(G,[x*y]);;

gap> g:=GeneratorsOfGroupoid(H);;

gap> List(g,x->[Source(x),Target(x)]);

[[2, 1], [1, 2], [2, 1], [1, 2]]

gap> RelatorsOfFpGroupoid(H);

[f2*f1, f4*f3, (f4*f1)^3, f1*f2, f3*f4, (f3*f2)^3]

gap> V:=VertexGroup(H,Source(g[1]));

<fp group on the generators [f1, f2, f3, f4]>

gap> RelatorsOfFpGroup(V);

[f2, f4*f3, f4^3, f2, f3*f4, (f3*f2)^3, f1]

GAP session 2.8.3

2.8 Presentation of subgroups 37

V:=SimplifiedFpGroup(V);

< fp group on the generators [f3] >

gap> RelatorsOfFpGroup(V);

[f3^3]

The following example involves a finite index subgroup of some infinite fp group.

Example 2.8.4. Let G be an infinite group with the following presentation

xx, y | xyxpyxyq´1y,

and let H be a subgroup of G generated by the three elements yx´1, y´1x, x3. Let

Ω “ tgH | g P Gu be the set of the distinct left cosets which include exactly three

left cosets, C1 “ H,C2 “ xH and C3 “ x2H. The fp groupoid induced by G and H

is generated by six generators, see the following graph that generates GpG,Hq.

.C1.C2

C3

px,C1q

px,C2q

py, C1q

py, C2q
px,C3q

py, C3q

The relators of the groupoid GpG,Hq can be obtained by using the formula 2.7 as

follws.

pxyxpyxyq´1, Hq “ px, yxpyxyq´1Hqpy, xpyxyq´1Hqpx, pyxyq´1Hq
py´1, pyxq´1Hqpx´1, y´1Hqpy´1, Hq

“ px, x2Hqpy, xHqpx,Hqpy´1, xHqpx´1, x2Hqpy´1, Hq
“ px,C3qpy, C2qpx,C1qpy´1, C2qpx´1, C3qpy´1, C1q

pxyxpyxyq´1, xHq “ px,C1qpy, C3qpx,C2qpy´1, C3qpx´1, C1qpy´1, C2q
pxyxpyxyq´1, x2Hq “ px,C2qpy, C1qpx,C3qpy´1, C1qpx´1, C2qpy´1, C3q

The following GAP session shows the result using our implementation.

2.8 Presentation of subgroups 38

gap> F:=FreeGroup(2);;

gap> x:=F.1;; y:=F.2;;

gap> G:=F/[x*y*x*(y*x*y)^-1];;

gap> L:=LowIndexSubgroupsFpGroup(G,3);;

gap> H:=L[4];;

gap> GeneratorsOfGroup(H);

[f2*f1^-1, f2^-1*f1, f1^3]

gap> K:=FpGroupoid(G,H);;

gap> g:=GeneratorsOfGroupoid(K);;

gap> V:=VertexGroup(K,Source(g[1]));;

gap> W:=SimplifiedFpGroup(V);

<fp group on the generators [f3, f4, f6]>

gap> RelatorsOfFpGroup(W);

[f6*f4^-1*f6^-1*f4^-1, f4*f3*f4*f6^-2*f3]

GAP session 2.8.5

2.8.1 Implementation of fp groupoids induced by group ac-

tions

In order to get the presentation of a subgroup H of a finite fp group G, we need to

create an fp groupoid induced by the group action of G on H. We then evaluate

the vertex group on the subgroup under consideration. This is one of the applica-

tions of the groupoid techniques. We implement Propositions 2.8.2 and 2.8.4 This

implementation follows the Algorithm 2.8.1.

Algorithm 2.8.1 Presentation of fp groupoid induced by group action.

Input: An fp group G and a list L of elements in G that generate a finite index

subgroup H in G.

Output: A finite presentation for the groupoid G “ GpdpG,Hq.
1: procedure
2: obj(Gq “ G{H.
3: set gens(G)“ r s.
4: for x in GeneratorsOfGroup(G) do
5: for c in obj(Gq do
6: add(gens(G),xc)
7: end do
8: end do
9: set rels(Gq “ r s
10: for r in RelatorsOfFpGroup(G) do
11: for c in obj(Gq do
12: add(rels(G),rc)

2.8 Presentation of subgroups 39

13: end do
14: end do
15: return FpGroupoid(obj(Gq, gens(G), rels(G))
16: end procedure

The following example explains this method with dihedral group D8.

Example 2.8.5. Consider the dihedral group of order 8,

D8 “ xx, y | x4, y2, pxyq2y.

Let U be the subgroup of D8 generated by xy. The left cosets are: U “ t1, xyu,
xU “ tx, x2yu, x2U “ tx2, x3yu and x3U “ tx3, yu.
The groupoid G “ GpdpD8, Uq consists of four objects tU, xU, x2U, x3Uu, and a set

of generators tpx, Uq, px, xUq, px, x2Uq, px, x3Uq, py, Uq, py, xUq, py, x2Uq, py, x3Uqu.

xU x2U

x3U.U.

px, Uq

px, x3Uq

px, x2Uq

px, xUq

py, Uq

py, x3Uq

py, x2Uq

py, xUq

The following GAP session shows the result using our implementation.

gap> F:=FreeGroup(2);;

gap> G:=F/[F.1^4, F.2^2, (F.1*F.2)^2];; x:=G.1;; y:=G.2;;

gap> S:=Subgroup(G,[x*y]);;

gap> U:=Image(IsomorphismFpGroup(S));;RelatorsOfFpGroup(U);

[F1^2]

gap> H:=FpGroupoid(G,[x*y]);; g:=GeneratorsOfGroupoid(H);;

gap> V:=VertexGroup(H,Source(g[1]));

gap> RelatorsOfFpGroup(V);

[f5^2]

GAP session 2.8.5

Chapter 3

Fundamental Groups, Groupoids

and the van Kampen Theorem

3.1 Introduction

In the previous chapter, we described our GAP implementation of finitely presented

groupoids and showed some applications in group theory. The fundamental

groupoid of a topological space is an important example of a finitely presented

groupoid. This chapter is devoted to introducing an implementation of the funda-

mental groupoid of a finite regular CW-space. We also implement the van Kampen

theorem for fundamental groupoids due to R. Brown [16]. The van Kampen

theorem yields an efficient algorithm for the distributed computation of finite

presentations of fundamental groupoids and groups of large regular CW-complexs.

We first describe an algorithm for computing a finite presentation of the funda-

mental groupoid of a finite regular CW-space. The algorithm is based on simple

homotopy collapses and uses the notion of discrete vector fields (due to [59] and

[35]) to describe sequences of simple homotopy collapses. The algorithm is able

to produce small presentations for some large CW-complexes arising in applied

topology. In fact, the algorithm only requires the construction of a discrete vector

field on the 3-skeleton of a space.

The chapter ends with a statement and computer implementation of the Seifert-van

Kampen theorem for fundamental groupoids. There are certain advantages to

working with groupoids in the computational setting of the Seifert-van Kampen

theorem.

In the following section, we recall the definition of a discrete vector field and some

important facts that will be used for the construction of the fundamental groupoid.

40

3.2 Discrete vector fields 41

3.2 Discrete vector fields

Definition 3.2.1. [35, 59, 29] A discrete vector field V on a regular CW-space X

is a collection of arrows sÑ t where

1. s, t are cells of X with dimptq “ dimpsq ` 1 and with s lying in the boundary

of t. We say that s and t are involved in the arrow, that s is the source of the

arrow, and that t is the target of the arrow.

2. any cell is involved in at most one arrow.

A cell in X is said to be critical if it is not involved in an arrow.

Definition 3.2.2. [35, 59, 29] Let V be a discrete vector field on a regular CW-

space X. Then a chain ρ of length n from a k-dimensional cell eki to a k-dimensional

cell ekj is a sequence of arrows s0 Ñ t0, s1 Ñ t1, ..., sn´1 Ñ tn´1 Ă V satisfying:

1. eki “ s0 and ekj is in the boundary of tn´1,

2. si`1 lies in the boundary of ti for all 0 ď i ă n´ 1.

A chain ρ is said to be a circuit if s0 lies in the boundary of tn´1.

Definition 3.2.3. [29] A discrete vector field is admissible if there is no circuit and

for every source cell s, the length of any path starting from s is bounded by a fixed

integer λpsq, i.e. there is no chain of infinite length.

The following theorem can be viewed as a statement about simple homotopy equiv-

alences phrased in the language of discrete vector fields. An explanation of this

theorem is provided in [29].

Theorem 3.2.1. [92, 34, 29] If X is a regular CW-space with admissible discrete

vector field then there is a homotopy equivalence

X » Y

where Y is a CW-space whose cells are in one-one correspondence with the critical

cells of X .

Example 3.2.1. We exhibit an easy example about building a discrete vector field

on some given space. Consider the space of Figure 3.1 given by its skeleton (CW-

complex) involving ten 0-cells, thirteen 1-cells and two 2-cells. Then a vector field

(red arrows) is created. We distinguish some special cells (critical cells) indicated

by a different color which are not involved in any arrow. These critical cells make

S1 _ S1 which is homotopy equivalent to the given space.

3.2 Discrete vector fields 42

3.2 Discrete vector fields 36

3.2 Discrete vector fields

Definition 3.2.1. [36, 61, 32] A discrete vector field V on a regular CW-space X

is a collection of arrows s Ñ t where

1. s, t are cells of X with dimptq “ dimpsq ` 1 and with s lying in the boundary

of t. We say that s and t are involved in the arrow, that s is the source of the

arrow, and that t is the target of the arrow.

2. any cell is involved in at most one arrow.

A cell in X is said to be critical if it is not involved in an arrow.

Definition 3.2.2. [36, 61, 32] Let V be a discrete vector field on a regular CW-

space X. Then a chain ⇢ of length n from a k-dimensional cell ek
i to a k-dimensional

cell ek
j is a sequence of arrows s0 Ñ t0, s1 Ñ t1, ..., sn´1 Ñ tn´1 Ä V satisfying:

1. ek
i “ s0 and ek

j is in the boundary of tn´1,

2. si`1 lies in the boundary of ti for all 0 § i † n ´ 1.

A chain ⇢ is said to be a circuit if s0 lies in the boundary of tn´1.

Example 3.2.1. We prefer to exhibit an easy example about building a discrete

vector field on some given space. Consider the space in the following figure (left)

followed by its skeleton (simplicial complex) including six 0-cells, and seven 1-cells.

Then a vector field (red arrows) is created, we can distinguish some special cells

(critical cells) indicated by di↵erent colors which are not involved in any arrow.

These few special cells make S1 _ S1 which is homotopy equivalent to the given

space.

3.2 Discrete vector fields 36

3.2 Discrete vector fields

Definition 3.2.1. [36, 61, 32] A discrete vector field V on a regular CW-space X

is a collection of arrows s Ñ t where

1. s, t are cells of X with dimptq “ dimpsq ` 1 and with s lying in the boundary

of t. We say that s and t are involved in the arrow, that s is the source of the

arrow, and that t is the target of the arrow.

2. any cell is involved in at most one arrow.

A cell in X is said to be critical if it is not involved in an arrow.

Definition 3.2.2. [36, 61, 32] Let V be a discrete vector field on a regular CW-

space X. Then a chain ⇢ of length n from a k-dimensional cell ek
i to a k-dimensional

cell ek
j is a sequence of arrows s0 Ñ t0, s1 Ñ t1, ..., sn´1 Ñ tn´1 Ä V satisfying:

1. ek
i “ s0 and ek

j is in the boundary of tn´1,

2. si`1 lies in the boundary of ti for all 0 § i † n ´ 1.

A chain ⇢ is said to be a circuit if s0 lies in the boundary of tn´1.

Example 3.2.1. We prefer to exhibit an easy example about building a discrete

vector field on some given space. Consider the space in the following figure (left)

followed by its skeleton (simplicial complex) including six 0-cells, and seven 1-cells.

Then a vector field (red arrows) is created, we can distinguish some special cells

(critical cells) indicated by di↵erent colors which are not involved in any arrow.

These few special cells make S1 _ S1 which is homotopy equivalent to the given

space.

Figure 3.1 Stages of obtaining a small space (on the right) homotopy equivalent
to a given space (on the left) by creating a discrete vector field on the regular
CW-space.

Example 3.2.2. One method for representing a non-regular CW-complex X on

a computer is via a simple homotopy equivalence h : X » Y where Y is regular,

and where the simple homotopy equivalence is represented by a discrete vector field.

An example of a discrete vector field on a regular CW-decomposition of a torus

is illustrated in Figure 3.2, a non-regular CW-structure of a torus, and a regular

CW-structure on a torus equipped with an admissible discrete vector field. It has

one critical 0-cell, two critical 1-cells and one critical 2-cell. Let X be the torus and

Y is a CW-space with one 0-cell, two 1-cells and one 2-cell as illustrated in Figure

3.2 (right). There is a homotopy equivalence h : X Ñ Y . This example is adapted

from [29].

1

2

3

4

1

1

2

3

4

17 6 5

7 6 5

Figure 3.2 A non-regular CW-structure of a torus (left), and a regular CW-
structure on a torus equipped with an acyclic discrete vector field (right).

Definition 3.2.4. An admissible discrete vector field is called maximal if it is not

3.2 Discrete vector fields 43

possible to add an arrow while retaining admissibility.

There are many accounts in the literature of algorithms for constructing admissible

discrete vector fields (see for instance[10, 31, 51, 29]). For connected X some of

these algorithms ensure that precisely one of the 0-cells is critical. There are many

approaches to constructing discrete vector fields, some of which are based on the

following result.

Lemma 3.2.2. Let X be a regular CW-space equipped with an admissible discrete

vector field V . Suppose that there exist two critical cells s, t P X such that: dimptq “
dimpsq`1 and s lies in the boundary of t and any other cell of dimension dimpsq`1

containing s in its boundary is critical. Then the vector field V can be extended by

adding the arrow sÑ t and the resulting discrete vector field is admissible.

A GAP implementation of the construction of the discrete vector field on a given

CW-space is available in HAP [31] which is based on Algorithm 1.5.1 [29].

The first step of the procedure is ordering the cells in some way that ensures any

cell of dimension k is less than all cells of dimension k ` 1. This partial ordering

guarantees that the resulting discrete vector field on a path-connected regular CW-

complex X will have a unique critical 0-cell.

The algorithm 1.5.1 in [29] is modified in this thesis by increasing the number of

the critical 0-cells because the fundamental groupoid of a space is based on a set of

base-points rather than one base-point.

Both algorithms produce an admissible discrete vector field V . The numbers of

critical cells, when it is applied to some CW-complex X, satisfy the following formula

χpXq “
dimpXqÿ

n“0

p´1qn#tcritical cells of V of dimension nu,

where χpXq is the Euler’s characteristic of X.

We implement Algorithm 3.2.1 as a part of the function FundamentalGroupoid. In-

puts to the algorithm are a regular CW-complex X and a set of 0-cells X0 Ă X0. It

constructs a discrete vector field in which X0 becomes the set of critical 0-cells.

Algorithm 3.2.1 Discrete vector field on a regular CW-complex.

Input: A finite regular CW-complex X and a set of 0-cells X0 Ă X0.

Output: A maximal admissible discrete vector field on X, with X0 the set of

critical 0-cells.

1: procedure
2: Partially order the cells of X in any fashion;
3: At any stage of the algorithm each cell will have precisely one of the following

three states: (i) critical, (ii) potentially critical, (iii) non-critical.

3.3 Fundamental group of a topological space 44

4: Initially deem all cells of X to be potentially critical.
5: Deem all of X0 to be critical;
6: while there exists a potentially critical cell do
7: while there exists a pair of potentially critical cells s, t such that:
8:

dimptq “ dimpsq ` 1;

9: s lies in the boundary of t; no other potentially critical cell of dimension
10: dimpsq lies in the boundary of t; do
11: Choose such a pair ps, tq with s minimal in the given partial ordering.
12: Add the arrow sÑ t and deem s and t to be non-critical.
13: end while
14: if there exists a potentially critical cell then
15: Choose a minimal potentially critical cell and deem it to be critical.
16: end if
17: end while
18: end procedure

3.3 Fundamental group of a topological space

A topological space X with some preferred point x0 P X is called a pointed space

and denoted by pX, x0q. The point x0 is called a base point. For pointed spaces

pX, x0q, pY, y0q, we say that a map f : X Ñ Y is pointed if fpx0q “ y0. Two pointed

maps f, g : X Ñ Y are based homotopic if there is a map H : X ˆ r0, 1s Ñ Y with

Hpx, 0q “ fpxq and Hpx, 1q “ gpxq for x P X and Hpx0, tq “ y0 for t P r0, 1s. We

denote by

rX, Y s “ tf : X Ñ Y : fpx0q “ y0u{ » (3.1)

the set of based homotopy classes of pointed maps f : X Ñ Y . We denote the based

homotopy class of a pointed map f by rf s.
Let X be the unit circle S1. The classes defined in 3.1 admit a multiplication

˚ : rS1, Y s ˆ rS1, Y s Ñ rS1, Y s, (3.2)

defined below in Definition 3.3.1.

This defines a group which is called the fundamental group of Y denoted by π1pY q.
The fundamental group π1pX, x0q of a topological space X with base point x0 de-

scribes when two paths starting and ending at x0 can be continuously deformed into

each other. It reflects geometric information about the basic shape or holes of the

space. The fundamental group provides useful information about the space. For

example, one can often show that two spaces are not homeomorphic, by establishing

that their fundamental groups are not isomorphic.

A combinatorial description and an algorithm for finding a presentation for the fun-

3.4 Fundamental groupoid of a space 45

damental group π1pXq of a finite CW-space X is introduced in [29]. The algorithm

is illustrated in [29] on CW-spaces, involving large numbers of cells, that arise from

the complements of protein backbones. The study of protein backbones leads on

naturally to the general study of knot complements and an example is given in [29]

that illustrates the computation of the peripheral system for a knot arising from a

protein backbone.

Definition 3.3.1. Let X be a topological space. Let x, y P X. A path from x to y

is a map

α : r0, 1s Ñ X,

such that

αp0q “ x, and αp1q “ y.

If

α : r0, 1s Ñ X, and β : r0, 1s Ñ X.

are paths from x and y, y to z, respectively, then β ˝α is a path from x to z defined

by

pβ ˝ αqptq “
$
&
%
αp2tq 0 ď t ď 1

2
,

βp2t´ 1q 1
2
ď t ď 1.

(3.3)

In particular, suppose we restrict attention to paths f : r0, 1s Ñ X with the same

initial and ending point fp0q “ fp1q “ x0 P X. Such paths are called loops. The

set of all based homotopy classes rf s of loops f : r0, 1s Ñ X at the basepoint x0 is

denoted π1pX, x0q.
Proposition 3.3.1. [53] π1pX, x0q is a group with respect to the product rαsrβs “
rα ˝ βs.
The group π1pX, x0q is called the fundamental group of the pointed topological space

pX, x0q.

3.4 Fundamental groupoid of a space

Let X be a topological space. We can construct a category denoted by PpXq,
whose objects are the points of X and whose morphisms are all paths in X, with

composition as defined in Eq. 3.3. PpXq is called the path category of X.

Let α : r0, 1s Ñ X be a path in X. We call αp0q the source of α, denoted by

spαq and αp1q is the target of α, denoted by tpαq. Given two paths α and β in X

with tpαq “ spβq, the composition β ˝ α (or β ¨ α) is defined as in Eq. 3.3. It is

straightforward to check that PpXq is a category.

3.4 Fundamental groupoid of a space 46

Let X and Y be topological spaces and f : X Ñ Y a map. If α is a path in X, then

f ˝ α is a path in Y . And if α, β are two paths in X with spαq “ tpβq, then

pf ˝ pα ¨ βqqptq “
$
&
%
pf ˝ αqp2tq 0 ď t ď 1

2
,

pf ˝ βqp2t´ 1q 1
2
ď t ď 1

(3.4)

“ ppf ˝ βq ¨ pf ˝ αqqptq.

Thus the map f gives rise to a functor f̄ : PpXq Ñ PpY q. The assignment f Ñ f̄

is also functorial so we have a functor

P : TopÑ Cat

which assigns each space X in Top (category of topological spaces) its path category

PpXq in Cat (the category of all path categories) and sends each continuous map f

to f̄ .

For x, y P X, let Ppx, yq be the set of paths from x to y. We say that α, β P Ppx, yq
are path homotopic and write α „ β if there is a map

H : r0, 1s ˆ r0, 1s Ñ X

pt, sq ÞÑ Hpt, sq

called a path-homotopy, from α to β satisfying

Hpt, 0q “ α,

Hpt, 1q “ β, t P r0, 1s,

and

Hp0, sq “ x,

Hp1, sq “ y, s P r0, 1s.

Proposition 3.4.1. The relation „ is an equivalence relation on PpXq.
So we can form the quotient category PpXq{„. It has the universal property that ev-

ery functor from PpXq which sends homotopic paths to the same morphism uniquely

factors through PpXq{„.

Definition 3.4.1. Let X be a topological space and V Ă X. The fundamental

groupoid classes of paths

tp : r0, 1s Ñ X with pp0q, pp1q P V u{ „ .

We denote this groupoid by π1pX, V q.

3.5 Implementation of presentations of fundamental groupoids 47

Proposition 3.4.2. Let X be a topological space with V Ă X. Every morphism in

π1pX, V q is an isomorphism.

Proof. Let x, y P V , and p P Ppx, yq. Let q be a path in Ppy, xq given by q :

r0, 1s Ñ X, t ÞÑ pp1´ tq. It is obvious that q ¨ p P Ppx, xq and

q ¨ p : r0, 1s Ñ X

t ÞÑ
$
&
%
pp2tq 0 ď t ď 1

2
,

qp2t´ 1q “ pp2´ 2tq 1
2
ď t ď 1.

Now define the following homotopy map

H : r0, 1s ˆ r0, 1s Ñ X

ps, tq ÞÑ

$
’’’’’&
’’’’’%

x 0 ď t ď s
2
,

ppt´ s{2q s
2
ď t ď 1

2
,

qpt` s
2
q 1

2
ď t ď 1´ s

2
,

x 1´ s
2
ď t ď 1.

The mapping H is continuous and well-defined. Observe that Hp0, ¨q is q ¨ p, Hp1, ¨q
is the identity map on X,Hps, 0q “ x and Hps, 1q “ x. Thus rqs ¨ rps “ idx in

π1pX, V q. Similarly, we can show that rps ¨ rqs “ idy.

3.5 Implementation of presentations of funda-

mental groupoids

Let Y be a regular CW-complex with a set of base-points Y0 Ă Y 0. Suppose the

boundary vertices of a 1-cell e1
i are labelled by e0

i´ and e0
i`

. We deem each edge to

be directed from e0
i´ to e0

i`
.

Definition 3.5.1. A combinatorial path p in Y is a finite sequence

p “ e1
1, e

1
2, ..., e

1
k

of 1-cells such that

e0
i` “ e0

pi`1q´

for i “ 1, 2, .., k ´ 1. The number of 1-cells is called the length of the path.

The 0-cells e0
1´ and e0

k` are called the initial vertex s(p) and final vertex t(p) of the

path p and referred to collectively as endpoints. If the endpoints of some path are

the same then this path is said to be a combinatorial loop.

3.5 Implementation of presentations of fundamental groupoids 48

Notation. We denote by PpY, Y0q the set of all combinatorial paths in Y that start

and end at the 0-cells in Y0.

Let

PpY, Y0q ˆs,t PpY, Y0q “ tpα, βq : α, β P PpY, Y0q, tpβq “ spαqu
The concatenation of combinatorial paths yields a function

PpY, Y0q ˆs,t PpY, Y0q Ñ PpY, Y0q

Definition 3.5.2. Two combinatorial paths p and q in a regular CW-space Y are

called equivalent, denoted by p » q if p and q have the following forms

p “ p1
1, p

1
2, ..., p

1
l , p

1
l`1, ..., p

1
n´k, ..., p

1
n

q “ q1
1, q

1
2, ..., q

1
l , q

1
l`1, ..., q

1
m´k, ..., q

1
m

such that p1
i “ q1

i for 1 ď i ď l and p1
n´i “ q1

m´i for 0 ď i ď k and the rest of

edges pl`1, ...pn´k`1, ql`1, ...q
1
m´k`1 make the boundary of some 2-cell e2

λ in Y , see

the Figure 3.3.

p p p

p p

pp p
1
1 1 1 1 1 1

1 1

2 l n-1 n

n-k-1l+1

n-k

q

q q

l

m-k-1

1

1

1q q q q q1 1111

1

m-1 m2 m-k

l+1

_~e2λ e2λ

Figure 3.3 Equivalent paths in PpY, Y0q.

Definition 3.5.3. The edge-path groupoid of Y is

ωpY, Y0q “ PpY, Y0q{ »

with groupoid multiplication induced by the concatenation of paths in PpY, Y0q.

Theorem 3.5.1. If Y is a regular CW-complex with a set of base-points Y0 then

there is an isomorphism of groupoid

π1pY, Y0q – ωpY, Y0q

Proof will be given after we have introduced the van Kampen Theorem.

Definition 3.5.4. Let Y be a path connected regular CW-space. The regular-

subspace T Ď Y 1 is called a spanning tree of Y 1 if

1. Y 0 Ă T ,

3.5 Implementation of presentations of fundamental groupoids 49

2. there is a unique path between any two 0-cells in T and

3. there is no loop in T .

Let Y be a path connected regular CW-space with a set of base points Y0 and a

spanning tree T . Any 0-cell x P Y 0 determines a unique shortest path

PT pxq “ te1
1, e

1
2, ..., e

1
ku

in T with initial vertex equal to some base point y P Y0 and final vertex equal to x.

There is a corresponding path

P̄T pxq “ te1
k, ..., e

1
2, e

1
1u

in which the edges appear in reversed order, it starts at x and ends at y.

In a regular CW-space Y , any path γ “ te1
1, e

1
2, ..., e

1
ku of length k ě 1 comes with

an associated sequence of 0-cells e0
1´
, e0

1`
, ..., e0

k´
, e0
k`

. The path γ determines a new

path

QT pγq “ PT pe0
1´
q, e1

1, P̄T pe0
1`
q, PT pe0

2´
q, e1

2, P̄T pe0
2`
q, ..., PT pe0

k´
q, e1

k, P̄T pe0
k`
q,

which is a concatenation of paths.

By an orientation on the 1-skeleton Y 1 we mean that for each 1-cell e1 of Y some

arbitrary but fixed ordering has been chosen on the two 0-cells in its boundary. We

let B´e1 denote the first boundary vertex and B`e1 denote the second. Given an

orientation on Y 1 we define

QT pe1q “ PT pB´e1q, e1, PT pB`e1q (3.5)

to be the path obtained by concatenating the three paths PT pB´e1q, e1 and PT pB`e1q.
We denote by rQT pe1qs the equivalence class in the edge-path groupoid ωpY q repre-

sented by QT pe1q. We denote by rrQT pe1qss the equivalence class in the edge-path

groupoid ωpY 1q represented by QT pe1q. By an orientation on the 2-skeleton Y 2 we

mean an orientation on Y 1 and that, additionally, for each 2-cell e2 in Y an ordering

has been placed on all the 1-cells e1
1, ..., e

1
k in its boundary so that ppe2q “ te1

1, ..., e
1
ku

is a path.

Let Y be a finite regular CW-space equipped with an admissible discrete vector field

and an orientation on Y 1. We say that a cell in Y is terminal if it is either critical

or is non-critical and the target of an arrow. We say that the cell is initial if it is

the source of an arrow. Thus each cell is either terminal or initial.

Any 0-cell e0 in Y can be associated with a unique terminal 0-cell Hpe0q by recur-

3.5 Implementation of presentations of fundamental groupoids 50

sively defining

Hpe0q “

$
’’’&
’’’%

e0 if e0 is terminal

Hpe10q if there exist an arrow e0 Ñ e1 with e10 and

e0 the boundary cells of the 1-cells e1.

(3.6)

This recursion simply identifies the unique chain of arrows in the vector field that

starts at e0 and ends at a 1-cell whose boundary contains Hpe0q.
Example 3.5.1. Consider the regular CW-space Y of Figure 3.4 (left) involving 16

0-cells, 24 1-cells and 8 2-cells. This space is homotopy equivalent to the circle S1.

A discrete vector field has been constructed on Y . The function Hpe0q of 3.6 sends,

for instance, the 0-cell e0
7 to the 0-cell e0

1. The recursion is

Hpe0
7q “ Hpe0

6q “ Hpe0
10q “ Hpe0

14q “ Hpe0
13q “ Hpe0

9q “ Hpe0
5q “ e0

1,

see Figure 3.4 (right).

3.5 Implementation of presentation of fundamental groupoid 45

3.5 Implementation of presentation of fundamental groupoid 45
3.5 Implementation of presentation of fundamental groupoid 45

e0
1 e0

2 e0
3 e0

4

e0
5 e0

6 e0
7

e0
8

e0
9

e0
10 e0

11
e0
12

e0
13 e0

14 e0
15 e0

16

e1
1 e1

2 e1
3

e1
4

e1
5 e1

6

e1
7

e1
8 e1

9

e1
10 e1

11 e1
12

e1
13

e1
14

e1
15

e1
16

e1
17

e1
18

e1
19

e1
21

e1
21

e1
22

e1
23

e1
24

Figure 3.3

e0
1

e0
5

e0
9

e0
13 e0

14

e0
6

e0
10

e1
4

e1
18 e1

21

e1
6

Any oriented 1-cell e1 in Y can be associated with a unique path Hpe1q of terminal

1-cells Hpe1q “ te1
1, e

1
2, ..., e

1
nu in Y which starts at the first boundary cell B´e1 of

3.5 Implementation of presentation of fundamental groupoid 45

e0
1 e0

2 e0
3 e0

4

e0
5 e0

6 e0
7

e0
8

e0
9

e0
10 e0

11
e0
12

e0
13 e0

14 e0
15 e0

16

e1
1 e1

2 e1
3

e1
4

e1
5 e1

6

e1
7

e1
8 e1

9

e1
10 e1

11 e1
12

e1
13

e1
14

e1
15

e1
16

e1
17

e1
18

e1
19

e1
21

e1
21

e1
22

e1
23

e1
24

Figure 3.3

e0
1

e0
5

e0
9

e0
13 e0

14

e0
6

e0
10

e1
4

e1
18 e1

21

e1
6

Any oriented 1-cell e1 in Y can be associated with a unique path Hpe1q of terminal

1-cells Hpe1q “ te1
1, e

1
2, ..., e

1
nu in Y which starts at the first boundary cell B´e1 of

Figure 3.3

e0
1 e0

2 e0
3 e0

4

e0
5 e0

6 e0
7

e0
8

e0
9

e0
10 e0

11
e0
12

e0
13 e0

14 e0
15 e0

16

e1
1 e1

2 e1
3

e1
4 e1

5

e1
6

e1
7

e1
8 e1

9

e1
10 e1

11 e1
12

e1
13

e1
14

e1
15

e1
16

e1
17

e1
18

e1
19

e1
20

e1
21

e1
22

e1
23

e1
24

Figure 3.4

e0
1

e0
5

e0
9

e0
13 e0

14

e0
6

e0
10

e0
7

3.5 Implementation of presentation of fundamental groupoid 45
3.5 Implementation of presentation of fundamental groupoid 45

e0
1 e0

2 e0
3 e0

4

e0
5 e0

6 e0
7

e0
8

e0
9

e0
10 e0

11
e0
12

e0
13 e0

14 e0
15 e0

16

e1
1 e1

2 e1
3

e1
4

e1
5 e1

6

e1
7

e1
8 e1

9

e1
10 e1

11 e1
12

e1
13

e1
14

e1
15

e1
16

e1
17

e1
18

e1
19

e1
21

e1
21

e1
22

e1
23

e1
24

Figure 3.3

e0
1

e0
5

e0
9

e0
13 e0

14

e0
6

e0
10

e1
4

e1
18 e1

21

e1
6

Any oriented 1-cell e1 in Y can be associated with a unique path Hpe1q of terminal

1-cells Hpe1q “ te1
1, e

1
2, ..., e

1
nu in Y which starts at the first boundary cell B´e1 of

3.5 Implementation of presentation of fundamental groupoid 45

e0
1 e0

2 e0
3 e0

4

e0
5 e0

6 e0
7

e0
8

e0
9

e0
10 e0

11
e0
12

e0
13 e0

14 e0
15 e0

16

e1
1 e1

2 e1
3

e1
4

e1
5 e1

6

e1
7

e1
8 e1

9

e1
10 e1

11 e1
12

e1
13

e1
14

e1
15

e1
16

e1
17

e1
18

e1
19

e1
21

e1
21

e1
22

e1
23

e1
24

Figure 3.3

e0
1

e0
5

e0
9

e0
13 e0

14

e0
6

e0
10

e1
4

e1
18 e1

21

e1
6

Any oriented 1-cell e1 in Y can be associated with a unique path Hpe1q of terminal

1-cells Hpe1q “ te1
1, e

1
2, ..., e

1
nu in Y which starts at the first boundary cell B´e1 of

Figure 3.3

e0
1 e0

2 e0
3 e0

4

e0
5 e0

6 e0
7

e0
8

e0
9

e0
10 e0

11
e0
12

e0
13 e0

14 e0
15 e0

16

e1
1 e1

2 e1
3

e1
4 e1

5

e1
6

e1
7

e1
8 e1

9

e1
10 e1

11 e1
12

e1
13

e1
14

e1
15

e1
16

e1
17

e1
18

e1
19

e1
20

e1
21

e1
22

e1
23

e1
24

Figure 3.4

e0
1

e0
5

e0
9

e0
13 e0

14

e0
6

e0
10

e0
7

Figure 3.3 CW-complex endowed with a vector field (left), the recursion formula
3.5 applied on the 0-cell e0

7 identifying a path from this cell to e0
1 (right).

e0
1 e0

2 e0
3 e0

4

e0
5 e0

6 e0
7

e0
8

e0
9

e0
10 e0

11
e0
12

e0
13 e0

14 e0
15 e0

16

e1
1 e1

2 e1
3

e1
4 e1

5 e1
6

e1
7 e1

8 e1
9

e1
10 e1

11 e1
12

e1
13

e1
14

e1
15

e1
16

e1
17

e1
18

e1
19

e1
20

e1
21

e1
22

e1
23

e1
24

Figure 3.4

Any oriented 1-cell e1 in Y can be associated with a unique path Hpe1q of terminal

1-cells Hpe1q “ te1
1, e

1
2, ..., e

1
nu in Y which starts at the first boundary cell B´e1 of

e1 and ends at the second boundary cell B`e1 of e1. This association is explained

below. We denote by Hpe1q´1 the reversed path starting at B`e1 and ending at

B´e1. Once we have defined Hpe1q we will be able to define , for any path of 1-cells

p “ tf 1
1 , f 1

2 , ..., f 1
mu in Y , the path Hppq to be the concatenation of the ordered

sequence of paths Hpf 1
1 q✏1 , Hpf 1

2 q✏2 , ..., Hpf 1
mq✏m with signs ✏i “ ˘1 chosen to allow

path concatenation.

For any initial 1-cell e1 we have an associated 2-cell e1 Ñ e2. The boundary of e2

specifies a path f 1
1 , f 1

2 , ..., f 1
m from the vertex B´e1 to the vertex B`e1, We denote

this path by – e1 Ñ. The path involves all 1-cells of the boundary of e2 except the

3.5 Implementation of presentation of fundamental groupoid 45
3.5 Implementation of presentation of fundamental groupoid 45

e0
1 e0

2 e0
3 e0

4

e0
5 e0

6 e0
7

e0
8

e0
9

e0
10 e0

11
e0
12

e0
13 e0

14 e0
15 e0

16

e1
1 e1

2 e1
3

e1
4

e1
5 e1

6

e1
7

e1
8 e1

9

e1
10 e1

11 e1
12

e1
13

e1
14

e1
15

e1
16

e1
17

e1
18

e1
19

e1
21

e1
21

e1
22

e1
23

e1
24

Figure 3.3

e0
1

e0
5

e0
9

e0
13 e0

14

e0
6

e0
10

e1
4

e1
18 e1

21

e1
6

Any oriented 1-cell e1 in Y can be associated with a unique path Hpe1q of terminal

1-cells Hpe1q “ te1
1, e

1
2, ..., e

1
nu in Y which starts at the first boundary cell B´e1 of

3.5 Implementation of presentation of fundamental groupoid 45

e0
1 e0

2 e0
3 e0

4

e0
5 e0

6 e0
7

e0
8

e0
9

e0
10 e0

11
e0
12

e0
13 e0

14 e0
15 e0

16

e1
1 e1

2 e1
3

e1
4

e1
5 e1

6

e1
7

e1
8 e1

9

e1
10 e1

11 e1
12

e1
13

e1
14

e1
15

e1
16

e1
17

e1
18

e1
19

e1
21

e1
21

e1
22

e1
23

e1
24

Figure 3.3

e0
1

e0
5

e0
9

e0
13 e0

14

e0
6

e0
10

e1
4

e1
18 e1

21

e1
6

Any oriented 1-cell e1 in Y can be associated with a unique path Hpe1q of terminal

1-cells Hpe1q “ te1
1, e

1
2, ..., e

1
nu in Y which starts at the first boundary cell B´e1 of

Figure 3.3

e0
1 e0

2 e0
3 e0

4

e0
5 e0

6 e0
7

e0
8

e0
9

e0
10 e0

11
e0
12

e0
13 e0

14 e0
15 e0

16

e1
1 e1

2 e1
3

e1
4 e1

5

e1
6

e1
7

e1
8 e1

9

e1
10 e1

11 e1
12

e1
13

e1
14

e1
15

e1
16

e1
17

e1
18

e1
19

e1
20

e1
21

e1
22

e1
23

e1
24

Figure 3.4

e0
1

e0
5

e0
9

e0
13 e0

14

e0
6

e0
10

e0
7

Figure 3.4 CW-complex endowed homotopy equivalent to the circle S1 with a
vector field (left), the recursion formula 3.6 applied on the 0-cell e0

7 identifying a
path from this cell to e0

1 (right).

Any oriented 1-cell e1 in Y can be associated with a unique path Hpe1q of terminal

1-cells Hpe1q “ te1
1, e

1
2, ..., e

1
nu in Y which starts at the first boundary cell B´e1 of

e1 and ends at the second boundary cell B`e1 of e1. This association is explained

below. We denote by Hpe1q´1 the reversed path starting at B`e1 and ending at

B´e1. Once we have defined Hpe1q we will be able to define , for any path of 1-cells

p “ tf 1
1 , f

1
2 , ..., f

1
mu in Y , the path Hppq to be the concatenation of the ordered

sequence of paths Hpf 1
1 qε1 , Hpf 1

2 qε2 , ..., Hpf 1
mqεm with signs εi “ ˘1 chosen to allow

path concatenation.

3.5 Implementation of presentations of fundamental groupoids 51

For any initial 1-cell e1 we have an associated 2-cell e1 Ñ e2. The boundary of e2

specifies a path f 1
1 , f

1
2 , ..., f

1
m from the vertex B´e1 to the vertex B`e1, We denote

this path by Ð e1 Ñ. The path involves all 1-cells of the boundary of e2 except the

1-cell e1.

We define Hpe1q recursively by

Hpe1q “
$
&
%
e1 if e1 is terminal

HpÐ e1 Ñq if e1 is initial.
(3.7)

Example 3.5.1 (Continued). The function Hpe1q of 3.7 sends, for instance, the

1-cell e1
4 to the 1-cell e1

6. The recursion is

Hpe1
4q “ Hpe1

18q “ Hpe1
21q “ e1

6,

see Figure 3.5 (right).

3.5 Implementation of presentation of fundamental groupoid 45

3.5 Implementation of presentation of fundamental groupoid 45
3.5 Implementation of presentation of fundamental groupoid 45

e0
1 e0

2 e0
3 e0

4

e0
5 e0

6 e0
7

e0
8

e0
9

e0
10 e0

11
e0
12

e0
13 e0

14 e0
15 e0

16

e1
1 e1

2 e1
3

e1
4

e1
5 e1

6

e1
7

e1
8 e1

9

e1
10 e1

11 e1
12

e1
13

e1
14

e1
15

e1
16

e1
17

e1
18

e1
19

e1
21

e1
21

e1
22

e1
23

e1
24

Figure 3.3

e0
1

e0
5

e0
9

e0
13 e0

14

e0
6

e0
10

e1
4

e1
18 e1

21

e1
6

Any oriented 1-cell e1 in Y can be associated with a unique path Hpe1q of terminal

1-cells Hpe1q “ te1
1, e

1
2, ..., e

1
nu in Y which starts at the first boundary cell B´e1 of

3.5 Implementation of presentation of fundamental groupoid 45

e0
1 e0

2 e0
3 e0

4

e0
5 e0

6 e0
7

e0
8

e0
9

e0
10 e0

11
e0
12

e0
13 e0

14 e0
15 e0

16

e1
1 e1

2 e1
3

e1
4

e1
5 e1

6

e1
7

e1
8 e1

9

e1
10 e1

11 e1
12

e1
13

e1
14

e1
15

e1
16

e1
17

e1
18

e1
19

e1
21

e1
21

e1
22

e1
23

e1
24

Figure 3.3

e0
1

e0
5

e0
9

e0
13 e0

14

e0
6

e0
10

e1
4

e1
18 e1

21

e1
6

Any oriented 1-cell e1 in Y can be associated with a unique path Hpe1q of terminal

1-cells Hpe1q “ te1
1, e

1
2, ..., e

1
nu in Y which starts at the first boundary cell B´e1 of

Figure 3.3

e0
1 e0

2 e0
3 e0

4

e0
5 e0

6 e0
7

e0
8

e0
9

e0
10 e0

11
e0
12

e0
13 e0

14 e0
15 e0

16

e1
1 e1

2 e1
3

e1
4 e1

5

e1
6

e1
7

e1
8 e1

9

e1
10 e1

11 e1
12

e1
13

e1
14

e1
15

e1
16

e1
17

e1
18

e1
19

e1
20

e1
21

e1
22

e1
23

e1
24

Figure 3.4

e0
1

e0
5

e0
9

e0
13 e0

14

e0
6

e0
10

e0
7

3.5 Implementation of presentation of fundamental groupoid 45
3.5 Implementation of presentation of fundamental groupoid 45

e0
1 e0

2 e0
3 e0

4

e0
5 e0

6 e0
7

e0
8

e0
9

e0
10 e0

11
e0
12

e0
13 e0

14 e0
15 e0

16

e1
1 e1

2 e1
3

e1
4

e1
5 e1

6

e1
7

e1
8 e1

9

e1
10 e1

11 e1
12

e1
13

e1
14

e1
15

e1
16

e1
17

e1
18

e1
19

e1
21

e1
21

e1
22

e1
23

e1
24

Figure 3.3

e0
1

e0
5

e0
9

e0
13 e0

14

e0
6

e0
10

e1
4

e1
18 e1

21

e1
6

Any oriented 1-cell e1 in Y can be associated with a unique path Hpe1q of terminal

1-cells Hpe1q “ te1
1, e

1
2, ..., e

1
nu in Y which starts at the first boundary cell B´e1 of

3.5 Implementation of presentation of fundamental groupoid 45

e0
1 e0

2 e0
3 e0

4

e0
5 e0

6 e0
7

e0
8

e0
9

e0
10 e0

11
e0
12

e0
13 e0

14 e0
15 e0

16

e1
1 e1

2 e1
3

e1
4

e1
5 e1

6

e1
7

e1
8 e1

9

e1
10 e1

11 e1
12

e1
13

e1
14

e1
15

e1
16

e1
17

e1
18

e1
19

e1
21

e1
21

e1
22

e1
23

e1
24

Figure 3.3

e0
1

e0
5

e0
9

e0
13 e0

14

e0
6

e0
10

e1
4

e1
18 e1

21

e1
6

Any oriented 1-cell e1 in Y can be associated with a unique path Hpe1q of terminal

1-cells Hpe1q “ te1
1, e

1
2, ..., e

1
nu in Y which starts at the first boundary cell B´e1 of

Figure 3.3

e0
1 e0

2 e0
3 e0

4

e0
5 e0

6 e0
7

e0
8

e0
9

e0
10 e0

11
e0
12

e0
13 e0

14 e0
15 e0

16

e1
1 e1

2 e1
3

e1
4 e1

5

e1
6

e1
7

e1
8 e1

9

e1
10 e1

11 e1
12

e1
13

e1
14

e1
15

e1
16

e1
17

e1
18

e1
19

e1
20

e1
21

e1
22

e1
23

e1
24

Figure 3.4

e0
1

e0
5

e0
9

e0
13 e0

14

e0
6

e0
10

e0
7

Figure 3.3 CW-complex endowed with a vector field (left), the recursion formula
3.5 applied on the 0-cell e0

7 identifying a path from this cell to e0
1 (right).

e0
1 e0

2 e0
3 e0

4

e0
5 e0

6 e0
7

e0
8

e0
9

e0
10 e0

11
e0
12

e0
13 e0

14 e0
15 e0

16

e1
1 e1

2 e1
3

e1
4 e1

5 e1
6

e1
7 e1

8 e1
9

e1
10 e1

11 e1
12

e1
13

e1
14

e1
15

e1
16

e1
17

e1
18

e1
19

e1
20

e1
21

e1
22

e1
23

e1
24

Figure 3.4

Any oriented 1-cell e1 in Y can be associated with a unique path Hpe1q of terminal

1-cells Hpe1q “ te1
1, e

1
2, ..., e

1
nu in Y which starts at the first boundary cell B´e1 of

e1 and ends at the second boundary cell B`e1 of e1. This association is explained

below. We denote by Hpe1q´1 the reversed path starting at B`e1 and ending at

B´e1. Once we have defined Hpe1q we will be able to define , for any path of 1-cells

p “ tf 1
1 , f 1

2 , ..., f 1
mu in Y , the path Hppq to be the concatenation of the ordered

sequence of paths Hpf 1
1 q✏1 , Hpf 1

2 q✏2 , ..., Hpf 1
mq✏m with signs ✏i “ ˘1 chosen to allow

path concatenation.

For any initial 1-cell e1 we have an associated 2-cell e1 Ñ e2. The boundary of e2

specifies a path f 1
1 , f 1

2 , ..., f 1
m from the vertex B´e1 to the vertex B`e1, We denote

this path by – e1 Ñ. The path involves all 1-cells of the boundary of e2 except the

3.5 Implementation of presentation of fundamental groupoid 47

3.5 Implementation of presentation of fundamental groupoid 45
3.5 Implementation of presentation of fundamental groupoid 45

e0
1 e0

2 e0
3 e0

4

e0
5 e0

6 e0
7

e0
8

e0
9

e0
10 e0

11
e0
12

e0
13 e0

14 e0
15 e0

16

e1
1 e1

2 e1
3

e1
4

e1
5 e1

6

e1
7

e1
8 e1

9

e1
10 e1

11 e1
12

e1
13

e1
14

e1
15

e1
16

e1
17

e1
18

e1
19

e1
21

e1
21

e1
22

e1
23

e1
24

Figure 3.3

e0
1

e0
5

e0
9

e0
13 e0

14

e0
6

e0
10

e1
4

e1
18 e1

21

e1
6

Any oriented 1-cell e1 in Y can be associated with a unique path Hpe1q of terminal

1-cells Hpe1q “ te1
1, e

1
2, ..., e

1
nu in Y which starts at the first boundary cell B´e1 of

3.5 Implementation of presentation of fundamental groupoid 45

e0
1 e0

2 e0
3 e0

4

e0
5 e0

6 e0
7

e0
8

e0
9

e0
10 e0

11
e0
12

e0
13 e0

14 e0
15 e0

16

e1
1 e1

2 e1
3

e1
4

e1
5 e1

6

e1
7

e1
8 e1

9

e1
10 e1

11 e1
12

e1
13

e1
14

e1
15

e1
16

e1
17

e1
18

e1
19

e1
21

e1
21

e1
22

e1
23

e1
24

Figure 3.3

e0
1

e0
5

e0
9

e0
13 e0

14

e0
6

e0
10

e1
4

e1
18 e1

21

e1
6

Any oriented 1-cell e1 in Y can be associated with a unique path Hpe1q of terminal

1-cells Hpe1q “ te1
1, e

1
2, ..., e

1
nu in Y which starts at the first boundary cell B´e1 of

Figure 3.3

e0
1 e0

2 e0
3 e0

4

e0
5 e0

6 e0
7

e0
8

e0
9

e0
10 e0

11
e0
12

e0
13 e0

14 e0
15 e0

16

e1
1 e1

2 e1
3

e1
4 e1

5

e1
6

e1
7

e1
8 e1

9

e1
10 e1

11 e1
12

e1
13

e1
14

e1
15

e1
16

e1
17

e1
18

e1
19

e1
20

e1
21

e1
22

e1
23

e1
24

Figure 3.4

e0
1

e0
5

e0
9

e0
13 e0

14

e0
6

e0
10

e0
7

3.5 Implementation of presentation of fundamental groupoid 46

e1
4

e1
18 e1

21

e1
6

Any oriented 1-cell e1 in Y can be associated with a unique path Hpe1q of terminal

1-cells Hpe1q “ te1
1, e

1
2, ..., e

1
nu in Y which starts at the first boundary cell B´e1 of

e1 and ends at the second boundary cell B`e1 of e1. This association is explained

below. We denote by Hpe1q´1 the reversed path starting at B`e1 and ending at

B´e1. Once we have defined Hpe1q we will be able to define , for any path of 1-cells

p “ tf 1
1 , f 1

2 , ..., f 1
mu in Y , the path Hppq to be the concatenation of the ordered

sequence of paths Hpf 1
1 q✏1 , Hpf 1

2 q✏2 , ..., Hpf 1
mq✏m with signs ✏i “ ˘1 chosen to allow

path concatenation.

For any initial 1-cell e1 we have an associated 2-cell e1 Ñ e2. The boundary of e2

specifies a path f 1
1 , f 1

2 , ..., f 1
m from the vertex B´e1 to the vertex B`e1, We denote

this path by – e1 Ñ. The path involves all 1-cells of the boundary of e2 except the

1-cell e1.

We define Hpe1q recursively by

Hpe1q “
$
&
%

e1 if e1 is terminal

Hp– e1 Ñq if e1 is initial.
(3.6)

Note that in the recursive definitions of Hpe0q and Hpe1q the recursion will terminate

because of the admissibility condition on the discrete vector field.

Proposition 3.5.3. Let Y be a regular CW-space with Y0 is a set of base points. Let

Y be equipped with an admissible discrete vector field. For any orientation on Y 2,

the edge-path groupoid of Y is generated by the class for critical 1-cells e1 Ä Y 1zT .

Proof.

The algorithm 3.5.1 returns the presentation for the fundamental groupoid of a given

CW-complex Y with a set of 0-cells Y0 Ä Y 0.

Algorithm 3.5.1 Fundamental groupoid of a regular CW-complex

Input: A finite regular CW-complex Y and a set Y0 “ ty0, ..., ydu Ä Y 0 of

basepoints which intersects non-trivially with each connected component of Y .

Figure 3.5

Output: A finitely presented groupoid G isomorphic to ⇡1pY, Y0q.
1: procedure
2: Create the 3-dimensional CW-complex Y 3 by forgetting all cells of Y in dimen-

sions • 4.
3: Specify an orientation on 1-cells and 2-cells in Y 3.
4: Use Algorithm 3.2.1 to produce a maximal discrete vector field on Y 3 in which

each base-point in Y0 is critical and no other 0-cells are critical. (Use an ordering
on cells such that each cell of dimension k is less than any cell of dimension
k ` 1, and for each connected component of Y initially deem one 0-cell in Y0

from this component to be critical. This will ensure that precisely one 0-cell per
connected component will be critical. Having constructed a vector field, arrows
can be omitted if necessary to ensure that every 0-cell in Y0 is critical.)

5: Use the recursive definition in 3.6 to create the function that inputs a path p in
Y 1 and returns the path Hppq involving just terminal cells.

6: Create a free groupoid F with object set ObjpF q “ Y0 and with free generating
set y1, ..., ym corresponding to the critical 1-cells e1

1, ..., e
1
m of Y 3. The discrete

vector field contracts the initial boundary vertex of e1
i to a critical 0-cell in Y0

and this critical 0-cell is the source of yi. Similarly, the target boundary vertex
of e1

i is contracted to a critical 0-cell in Y0 which is taken as the target of yi.
7: Create a finite set R consisting of those words in F corresponding to the loops

HpQT pppe2qqq for critical 2-cells e2. In this context QT pppe2qq is a combinatorial
path beginning at some vertex in Y0 and ending at some vertex in Y0, and need
not be a loop.

8: Return the finitely presented groupoid G determined by F and R.
9: end procedure

Example 3.5.1 (The torus). Figure 3.6 shows a regular CW-structure on the torus

Y “ S1ˆS1. Take Y0 to be the three vertices numbered 1, 4 and 7. A discrete vector

field has been constructed with these three vertices its only critical 0-cells. There are

four critical 1-cells and one critical 2-cell. Following the procedure in Algorithm 3.5.1

Figure 3.5 CW-complex endowed with a vector field (left), the recursion formula
3.7 applied on the 1-cell e1

4 producing a sequence of 1-cells te1
4, e

1
18, e

1
21, e

1
6u (right).

Note that in the recursive definitions of Hpe0q and Hpe1q the recursion will terminate

because of the admissibility condition on the discrete vector field.

Proposition 3.5.2. Let Y be a connected regular CW-space with Y0 a set of base

points. Let Y be equipped with an admissible discrete vector field. For any orien-

tation on Y 2, the edge-path groupoid of Y is generated by the homotopy classes of

paths corresponding to the critical 1-cells.

Proof. Let Y be a regular CW-complex endowed with a discrete vector field V and

let Y0 be a set of base-points containing at least two 0-cells (otherwise the proof

is similar to the proof of the edge-path group, see [29]). That makes the set of

3.5 Implementation of presentations of fundamental groupoids 52

all critical 1-cells Y1 nonempty. Assume Y1 “ te1
1, ..., e

1
mu Ă Y 1. Use the recursion

relation 3.6 to define a set of combinatorial paths Y1 “ tp1, ..., pmu and

pk “ PT pe0
k´
q e1

k PT pe0
k`
q, 1 ď k ď m

where e0
k´

and e0
k`

are the boundary vertices of e1
k. And PT pe0

k`
q is defined as in Eq.

3.5. This set of paths generates the groupoid.

The algorithm 3.5.1 returns the presentation for the fundamental groupoid of a given

CW-complex Y with a set of 0-cells Y0 Ă Y 0.

Algorithm 3.5.1 Fundamental groupoid of a regular CW-complex

Input: A finite regular CW-complex Y and a set Y0 “ ty0, ..., ydu Ă Y 0 of

basepoints which intersects non-trivially with each connected component of Y .

Output: A finitely presented groupoid G isomorphic to π1pY, Y0q.

1: procedure
2: Create the 3-dimensional CW-complex Y 3 by forgetting all cells of Y in dimen-

sions ě 4.
3: Specify an orientation on 1-cells and 2-cells in Y 3.
4: Use Algorithm 3.2.1 to produce a maximal discrete vector field on Y 3 in which

each base-point in Y0 is critical and no other 0-cells are critical. (Use an ordering
on cells such that each cell of dimension k is less than any cell of dimension
k ` 1, and for each connected component of Y initially deem one 0-cell in Y0

from this component to be critical. This will ensure that precisely one 0-cell per
connected component will be critical. Having constructed a vector field, arrows
can be omitted if necessary to ensure that every 0-cell in Y0 is critical.)

5: Use the recursive definition in 3.7 to create the function that inputs a path p in
Y 1 and returns the path Hppq involving just terminal cells.

6: Create a free groupoid F with object set ObjpF q “ Y0 and with free generating
set y1, ..., ym corresponding to the critical 1-cells e1

1, ..., e
1
m of Y 3. The discrete

vector field contracts the initial boundary vertex of e1
i to a critical 0-cell in Y0

and this critical 0-cell is the source of yi. Similarly, the target boundary vertex
of e1

i is contracted to a critical 0-cell in Y0 which is taken as the target of yi.
7: Create a finite set R consisting of those words in F corresponding to the loops
HpQT pppe2qqq for critical 2-cells e2. In this context QT pppe2qq is a combinatorial
path beginning at some vertex in Y0 and ending at some vertex in Y0, and need
not be a loop.

8: Return the finitely presented groupoid G determined by F and R.
9: end procedure

Example 3.5.2 (The torus). Figure 3.6 shows a regular CW-structure on the torus

Y “ S1ˆS1. Take Y0 to be the three vertices numbered 1, 4 and 7. A discrete vector

field has been constructed with these three vertices its only critical 0-cells. There are

four critical 1-cells and one critical 2-cell. Following the procedure in Algorithm 3.5.1

3.5 Implementation of presentations of fundamental groupoids 53

we obtain a presentation for π1pY, Y0q with three objects 1, 4 and 7 and with four

generators x, y, z and w corresponding to the critical edges with boundary vertices

t1, 6u, t2, 3u, t4, 5u and t7, 8u respectively. Generator x has source 1 and target 7;

generator y has source 1 and target 4; generator z has source 4 and target 1; the

generator w has source 7 and target 1. The presentation has a single relator, namely

y´1z´1x´1w´1zywx representing the identity arrow at 1.

The vertex group of π1pY, Y0q at vertex y0 “ 1 is isomorphic to the fundamental

group π1pY, y0q. To extract a presentation for this group π1pY, y0q from the groupoid

presentation we first regard the generating set tx, y, z, wu as a directed graph on

three vertices. We then construct a maximal tree in this graph. For instance, we can

choose the tree consisting of the two edges y and w. We then ‘contract’ the maximal

tree, which in practice means that we set x1 “ wx, z1 “ zy and r1 “ z1´1x1´1z1x1 to

obtain the group presentation π1pY, y0q “ xx1, z1 | z1´1x1´1z1x1 “ 1y.

1 2 3 4 5 1

1 2 3 4 5 1

6

7

8

6

7

8

Figure 3.6 Admissible discrete vector field on the torus.

Definition 3.5.5. An n-dimensional pure cubical complex K is a subspace of n-

dimensional Euclidian space arising as a union of finitely many n-dimensional unit

cubes in Rn whose vertices have integral coordinates. A pure cubical complex can

be created by specifying a n-dimensional array of 0s and 1s.

As an example consider the following 3-dimensional binary array

A “

¨
˚̊
˚̋

»
———–

1 1 1

1 0 1

1 0 1

fi
ffiffiffifl ,

»
———–

0 0 0

0 0 0

0 0 1

fi
ffiffiffifl ,

»
———–

1 1 1

0 0 1

0 0 1

fi
ffiffiffifl

˛
‹‹‹‚ (3.8)

This array corresponds to the following cubical complex.

3.5 Implementation of presentations of fundamental groupoids 54

Figure 3.7 3-dimensional pure cubical complex corresponds to the array A given
in Eq. 3.8.

Example 3.5.3. The following GAP session uses Algorithm 3.5.1 and Algorithm

2.7.2 to compute the fundamental groupoid of the pure cubical complex given in the

Figure 3.8,

1 2 3 1

1 2 3 1

5

4

5

4

Figure 3.8 The pure cubical complex is homeomorphic to a torus.

and then computes the vertex group at some vertex which is the fundamental group

of the torus.

2 5 7f1

f3

f4

f2

Figure 3.9 Generating graph of the fundamental groupoid of the torus π1pY, Y0q.

3.5 Implementation of presentations of fundamental groupoids 55

gap> L:= [[1,2,4],[2,4,6],[2,3,6],[3,6,7],[1,3,7],

[1,4,7],[4,5,6],[5,6,8],[6,7,8],[7,8,9],

[4,7,9],[4,5,9],[1,5,8],[1,2,8],[2,8,9],

[2,3,9],[3,5,9],[1,3,5]];;

gap> Y:=RegularCWComplex(SimplicialComplex(L));;

gap> G:=FundamentalGroupoidOfRegularCWComplex(Y,[2,5,7]);

<fp groupoid on the generators [f1 , f2 , f3 , f4]>

gap> g:=GeneratorsOfGroupoid(G);

[f1, f2, f3, f4]

gap> List(g , x - > [Source(x) , Target(x)]);

[[2 , 5] , [7 , 5] , [5 , 7] , [7 , 7]]

gap> RelatorsOfFpGroupoid(G);

[f1^-1*f3^-1*f4^-1*f3*f2*f4*f2^-1*f1]

gap> Gv:=Vertex_Group(G,7);

<fp group of size infinity on the generators [f1, f2, f3, f4]>

gap> RelatorsOfFpGroup(Gv);

[f2*f1*f2^-1*f1^-1, f3, f4]

gap> Sv:=SimplifiedFpGroupoid(Gv);

<fp group of size infinity on the generators [f1, f2]>

gap> RelatorsOfFpGroup(Sv);

[f2*f1*f2^-1*f1^-1]

GAP session 3.5.3

Example 3.5.4. We can construct a 3-dimensional pure cubical space K involving

three layers of cubes, as shown in the figure 3.10. This is homeomorphic to a double

torus T 2. The construction of this pure cubical space and its fundamental groupoid

π1pK,K0q, K0 “ tv1, v10u is given in the following GAP session. The vertex group is

a finitely presented group with four generators and one relator.

Figure 3.10 Pure cubical complex of the double torus T 2.

3.6 van Kampen’s theorem 56

gap> S:=List([1..3],x->List([1..13],y->List([1..7],z->1)));;

gap> for i in [1..3] do S[i][4][4]:=0; S[i][10][4]:=0; od;;

gap> for i in [2..6] do S[2][2][i]:=0; S[2][6][i]:=0;

S[2][8][i]:=0; S[2][12][i]:=0;

od;;

gap> for i in [3..5] do S[2][i][2]:=0; S[2][i+6][2]:=0;

S[2][i][6]:=0; S[2][i+6][6]:=0;

od;;

gap> S[2][7][4]:=0;;

gap> K:=PureCubicalComplex(S);

Pure cubical complex of dimension 3.

gap> Y:=RegularCWComplex(K);;

gap> G:=FundamentalGroupoidOfRegularCWComplex(Y,[1,10]);

< fp groupoid on the generators [f1, f2, f3, f4 ,f5, f6] >

gap> RelatorsOfFpGroupoid(G);

[f2^-1*f6^-1*f4^-1*f2*f4*f6*f5^-1*f3^-1*f1*f3*f5*f1^-1]

gap> V:=VertexGroup(G,1);

#I there are 4 generators and 1 relator of total length 8

<fp group of size infinity on the generators [f1, f2, f3, f4]>

gap> RelatorsOfFpGroup(V);

[f2^-1*f4^-1*f2*f4*f3^-1*f1*f3*f1^-1]

GAP session 3.5.4

3.6 van Kampen’s theorem

Let G,H,K be groupoids with object sets VG, VH , VK respectively. Suppose that

VK Ă VG and VK Ă VH and that VK “ VG X VH .

Suppose that

φ : KÑ G
ψ : KÑ H

are morphisms of groupoids that are inclusions on object sets.

The pushout groupoid G ˚K H is characterized up to isomorphism by the following

universal property.

3.6 van Kampen’s theorem 57

Universal property of a pushout. There are morphisms of groupoids

G Ñ G ˚K H
HÑ G ˚K H.

For any groupoid morphisms

θ : G Ñ Q,
θ1 : HÑ Q

satisfying

θ ˝ φ “ θ1 ˝ ψ
there is a unique groupoid morphism

G ˚K HÑ Q

such that the following diagram of groupoids commutes.

K ψ
//

φ
��

H

��
θ1

G //

θ
44

G ˚K H

Q

(3.9)

Given free presentations

K – xxK : rKy,
G – xxG : rGy,
H – xxH : rHy

it can be verified that the pushout in 3.9 has vertex set VG Y VH and presentation

G ˚K H – xxG Y xH | rG Y rH Y tφpxqψpxq´1 : x P xKuy (3.10)

As a special case, we have the following definition.

Definition 3.6.1. Let φ : K Ñ G and ψ : K Ñ H be group homomorphisms.

Suppose that we have free presentations G – xx : ry and H – xy : sy and a

set w Ă K that generates K. For each w P w let the image φpwq be represented

by some word wφ in the free group on x and let the image ψpwq be represented by

some word wψ in the free group on y. Then the amalgamated free product G ˚K H

3.6 van Kampen’s theorem 58

is a group defined up to isomorphism by the presentation

G ˚K H – xxY y : r Y sY twφw´1
ψ : w P wuy. (3.11)

The group G ˚K H is also referred to as the pushout of the homomorphisms φ and

ψ. It is called the free product of G and H in the case when K is trivial.

Theorem 3.6.1 (Seifert and van Kampen [16]). Let Y be a path-connected topo-

logical space with base-point y0 P Y . Let A,B Ă Y be open and path-connected

subsets such that: i) Y “ A Y B and ii) the intersection A X B is path-connected

and contains y0. Then there is an isomorphism

π1pY q – π1pAq ˚π1pAXBq π1pBq (3.12)

where the homomorphisms π1pAXBq Ñ π1pAq and π1pAXBq Ñ π1pBq are induced

by the inclusion AXB ãÑ A and AXB ãÑ B.

Theorem 3.6.2. [16, 13] Let Y be a topological space with subspaces Y1, Y2. Let Y̊i

denote the interior of Yi. Let Y0 be a set of points in Y that has non-empty intersec-

tion with each connected component of Y1XY2, with each connected component of Y1,

and with each connected component of Y2. Then the induced square of fundamental

groupoids

π1pY1 X Y2, Y1 X Y2 X Y0q //

��

π1pY2, Y2 X Y0q

��

π1pY1, Y1 X Y0q // π1pY, Y0q

(3.13)

is a pushout in the category of groupoids.

Figure 3.11 shows a space Y with subspaces Y1 and Y2. The intersection of the

subspaces consists of three disjoint pieces. In order to calculate the fundamental

groupoid of Y , one must select at least one point in each piece, say Y0 “ ty0, y1, y2u.

Figure 3.11 Two subspaces Y1 and Y2 of a space Y “ Y1YY2 with Y0 “ ty0, y1, y2u Ă
Y1 X Y2.

3.6 van Kampen’s theorem 59

Lemma 3.6.3. A subgroupoid of a free groupoid is free.

To prove Theorem 3.5.1, let us first give an alternative description of ωpY, Y0q, where

Y is a regular CW-space and Y0 is a subset of its vertices.

The 1-skeleton Y 1 is a graph.

y
0

We can choose an arbitrary orientation on the edges of Y 1,

y
0

to make Y 1 a directed graph.

We let PpY 1q denote the free groupoid on Y 1 (see Chapter 2). Let PpY 1, Y0q denote

the subgroupoid of PpY 1q consisting of those elements with source and target in Y0.

Each 2-cell e in Y has a boundary that determines a circuit ωe in PpY 1q.
Let γ be a simple path in Y 1 from some y0 P Y0 to the start/end vertex of the circuit

ωe.

γ ω
y
0

e

e

Then re “ γ´1ωeγ is an element of PpY 1, Y0q.
The edge path groupoid ωpY, Y0q can be described as the quotient of the groupoid

PpY 1, Y0q by the relators re for e a 2-cell in Y .

If dim(Y q “ 1 then clearly ωpY q is free. [The Lemma 3.6.3 holds essentially

because a subgroup of free group is free.

ωpY, Y0q Ă ωpY q.
If ωpY, Y0q not free then we have a relator

3.6 van Kampen’s theorem 60

y
0

r
v

Then r is a relator for the vertex group at v. But a vertex group in ωpY, Y0q is a

subgroup of a vertex group in ωpY q. So it is free.]

The fundamental groupoid of a space with only one 1-cell is clearly free when the set

of base-points include its boundary vertices. π1pY, Y0q is free. Consider the following

space Y with a set of base-point, Y0 marked by solid black nodes and the space is a

union of two pieces A and B.

A B
Y

Then by using van-Kampen Theorem

π1pY 1, Y0q “ π1pA,AX A0q ˚π1pAXB,AXBXY0q π1pB,B X Y0q

Thus π1pY 1, Y0q is free by induction.

Now, let Y “ X Y e2 is shown in the following

U

X e2 Y

It is obvious to see the inclusion maps in the following diagram

Y 1 Y 1 Y e2

X Y

which lead to the following pushout

π1pY 1, Y0q //

��

π1pY 1 Y e2, Y0q

��

π1pX, Y0q // π1pY, Y0q

(3.14)

3.7 Implementation of van Kampen’s theorem 61

3.7 Implementation of van Kampen’s theorem

In order to implement the van Kampen theorem, we first define the data

type 2.7.4 for a homomorphism of groupoids. Such a homomorphism, say H,

consists of a source Source(H) and target Target(H). Also, it consists of two

functions H!.mappingObj and H!.mappingArr, they map the objects and the arrows

from the source into the corresponding objects and arrows in the target, respectively.

The package HAP includes a function for defining an inclusion mapping of two regular

CW-complexes called a RegularCWMap. Based on Algorithm 3.7.1, the fundamental

groupoid of this mapping is implemented.

Algorithm 3.7.1 Fundamental Groupoid of Regular CW-Map

Input: Regular CW-Map f : X Ñ Y , and a set of base-points X0 Ă X0.

Output: Groupoid morphism π1pfq : π1pX,X0q Ñ π1pY, Y0q where Y0 “ fpX0q.

1: procedure
2: Calculate the fundamental groupoids G “ π1pX,X0q and H “ π1pY, fpX0qq, by

which the maximal discrete vector fields are constructed on X and Y .
3: Let g and h be sets of generators of G and H, respectively.
4: The discrete vector field on any regular CW-complex determines a function
γ “ γpe1q for any 1-cell e1, such function returns a path joining two critical
0-cells.

5: For each critical 1-cell e1
i in X, there is a path pi “ γpe1

i q joining two critical
0-cells in X0. Each critical 1-cell e1

i corresponds to one generator gi P g.
6: Find the images qi “ fppiq for each critical 1-cell in X, which is also a path in
Y joining two critical 0-cells.

7: The path qi may pass through a sequence of critical 1-cells rẽ1
i1
, .., ẽ1

ij
s in Y . Then

it determines a sequence of generators of H, say rhε1i1 , ..., hεjij s, where εr P t´1,`1u
depending on the orientation of ẽ1.

8: The product ai “ hε1i1 ...h
εj
ij

, where εr P t´1,`1u is an arrow in H and it is the
image of gi. Let a denote to the set of such product for all qi.

9: return Groupoid morphism given on generators by the function g Ñ a
10: end procedure

Let Y be a regular CW-space, and let A and B be subspaces of Y . Then we can con-

struct the inclusion maps i : A ãÑ Y and j : B ãÑ Y , with the help of the HAP func-

tion RegularCWMap. Let Y0 be a set of base-points, Y0 Ă AXB. The FpGd function

FundamnetalGroupoidOfRegularCWMap can be used to produce a pair of groupoid

homomorphisms f : π1pA,AX Y0q Ñ πpY, Y0q and g : π1pB,B X Y0q Ñ πpY, Y0q.
We implement the pushout 3.13. The FpGd function PushoutOfFpGroupoid inputs

a pair of groupoid homomorphisms and returns their pushout. So, PushoutOfFp-

Groupoid(f, g) will return the presentation of the fundamental groupoid π1pY, Y0q.

3.7 Implementation of van Kampen’s theorem 62

Example 3.7.1. For testing our implementation of the van Kampen theorem, we

let T be a 2-dimensional simplicial complex homeomorphic to the torus with 36

2-cells. We divide the torus T into two pieces A and B as shown in the figure 3.12

with AXB ‰ H.

A B

U

Figure 3.12 The torus T divided into two pieces A and B such that their inter-
section is nonempty.

In the first step of the following GAP session, we read the simplicial complex of the

torus T “ AYB. The simplicial complexes of the three pieces A,B and AXB are

stored in the file “data321.txt”, see Appendix B.1. Figure 3.13 shows the simplicial

complex T which is a union of A and B.

1 1

11

2 3 4 5 6

7

8

7

8

2 3 4 5 6

9 10 11 12 13

14 15 16 17 18

A

B

Figure 3.13 A 2-dimensional simplicial complex homeomorphic to the torus with
36 2-cells. Two sub-simplicial sets A and B are indicated by different colours yellow
and blue, respectively. The intersection AXB is non-empty.

3.7 Implementation of van Kampen’s theorem 63

In the second line, the mappings i and j are the inclusion maps from A X B to A

and from A X B to B, respectively. The list V “ t1, 3u contains a single 0-cell in

each component of A X B, the 0-cells 1 and 3 are corresponding to the vertices 7

and 10 in Figure 3.13.

gap> Read("data321.gi");

gap> i:=RegularCWMap(A,AB);;

> j:=RegularCWMap(B,AB);;

gap> pnt:=[1..Source(i)!.nrCells(0)];;

gap> p:=PiZero(Source(i))[2];;

gap> V:=SSortedList(List(pnt,p));

[1, 3]

GAP session 3.7.1

Now, let f and g be two the induced groupoid homomorphisms

f “ π1pAXB, V q Ñ π1pA, fpV qq
g “ π1pAXB, V q Ñ π1pB, gpV qq

The images of the generators of the groupoid Sourcepfq “ π1pAXB, V q under f are

words in the free groupoid of Target(fq “ π1pA, fpV qq and they are words in the

free groupoid of Target(gq “ π1pB, gpV qq under g, as shown in the GAP session.

gap> f:=FundamentalGroupoidOfRegularCWMap(i,V);

Objects Mapping : [1, 3] -> [1, 4]

Arrows Mapping : [f1 , f2] -> [f2 , f1*f2*f1^-1]

gap> g:=FundamentalGroupoidOfRegularCWMap(j,V);

Objects Mapping : [1, 3] -> [7, 9]

Arrows Mapping : [f1 , f2] -> [f1 , f2^-1*f1*f2]

The following table shows the free generating graph of the groupoids

π1pA, fpV qq, π1pB, gpV qq and π1pAB, V q

The source and target of each generator can be seen using the FpGd functions Source

and Target. They are illustrated in the following GAP session and displayed in the

above table as graphs.

3.7 Implementation of van Kampen’s theorem 64

gap> List(GeneratorsOfGroupoid(Source(f)),x->[Source(x),Target(x)]);

[[1, 1], [3, 3]]

gap> List(GeneratorsOfGroupoid(Target(f)),x->[Source(x),Target(x)]);

[[1, 4], [1, 1]]

gap> List(GeneratorsOfGroupoid(Target(g)),x->[Source(x),Target(x)]);

[[7, 7], [9, 7]]

Now, we are ready to calculate the pushout of the homomorphisms f and g. The

function PushoutOfFpGroupoids(f,g) return the fundamental groupoid of the torus.

gap> C:=PushoutOfFpGroupoids(f,g);

<fp groupoid on the generators [f1 , f2 , f3 , f4]>

gap> gensC:=GeneratorsOfGroupoid(C);;

gap> List(gensC,x->[Source(x),Target(x)]);

[[1, 3], [1, 1], [1, 1], [3, 1]]

gap> RelatorsOfFpGroupoid(C);

[f2^-1*f3, f1*f2^-1*f1^-1*f4^-1*f3*f4]

The generating graph of the fundamental groupoid of the torus is

The final step is calculating the vertex group at some vertex. We choose the vertex

1 which is the source of the first generator f1 of the groupoid C. The vertex group

is generated by two generators f2 and f4. The set of relators in last line in the GAP

session for the vertex group contains only one relators f´1
2 f´1

4 f2f4, which is exactly

a presentation for the torus.

gap> V:=VertexGroup(C,Source(gensC[1]));

<fp group of size infinity on the generators [f1, f2, f3, f4]>

gap> RelatorsOfFpGroup(V);

[f2^-1*f3, f2^-1*f4^-1*f3*f4, f1]

gap> U:=SimplifiedFpGroup(V);

<fp group of size infinity on the generators [f2, f4]>

gap> RelatorsOfFpGroup(U);

[f2^-1*f4^-1*f2*f4]

3.8 Groupoid techniques for time series analysis 65

3.8 Groupoid techniques for time series analysis

A time series is a sequence of records (data points) in successive order over a

specified period of time. Identifying the patterns that form trends, cycles, and

variances is important in order to understand such records which is usually involve

large amounts of data. Time series analysis aims to understand patterns evolving

over time and use these patterns to predict future behaviour, for instance monthly

sales, heart arrhythmias, stock prices and so on.

Persistent homology can be a powerful topological approach for analysing large data

sets. Topological tools, such as barcodes and Betti numbers of the spaces can be

employed on cloud data to extract various features. Time-delay coordinate embed-

ding has mostly been used in the analysis of time series. Time-delay embedding of

a time series might recover the underlying dynamics of a system in most cases [33].

The delay coordinate embedding technique has many applications and it is useful

for analysing the time series. The idea of using the time-delay embedding is ap-

proximating the data sets by simplicial complexes and by analysing their persistent

homology. In most cases the size of data is big and then constructing such sim-

plicial complexes is required large memory for computing. We think the groupoid

technique is required for this purpose. In this section, we will show how the sim-

plicial complexes can arise from time-series and then calculating the fundamental

group(oid) of such complexes using the time-delay embedding method.

3.8.1 Time-delay embedding

The time-delay embedding is a method can be used for constructing a point cloud

from time series and extracting their periodic behaviour. The mathematical foun-

dation of the delay-coordinate embedding method which embeds a scalar time

series into an d-dimensional space, see for instance [75, 88]. For a time series

txiu, i “ 1, 2, ..., a representation of the delay coordinate embedding in Rd can be

described as follows:

Xi “ pxi, xi`j, xi`2j, ..., xi`pd´1qjq,
where j is the index delay and d is the embedding dimension. If the sampling

time is Ts, then the delay time τ is connected to the index delay j by the equality

τ “ j ¨ Ts.
A good source of examples of time delay embeddings used in real-world data sets is

available in [63].

Consider the following time series

yt “ At sinpϕt ` t ωtq (3.15)

3.8 Groupoid techniques for time series analysis 66

where At is the amplitude, ωt is the frequency, and ϕt the phase.

Figure 3.14 A time series plot of Eq. 3.15 (left), the corresponding time-delay
embedding in 3-dimensional space (right).

A time-delay embedding of the time series tyiu is a lift to a time series φi defined as

follows

φptq “ pyt, yt`τ , ..., yt`pd´1qτ q
Figure 3.14 (left) shows the corresponding delay embedding of the time series given

by Eq. 3.15. And the corresponding time-coordinate embedding in 3-dimensional

space on the right, it is homotopically equivalent to the circle because we designed

the time-series using Equation 3.15 which is a sine function and its magnitude At “
´ exppcosptqq.

Example 3.8.1. Consider the time-series given by the following function

fptq “ 3 cosptq ` 2 cospπtq, (3.16)

using time-delay embedding in the 3-dimensional space (d “ 3) and delay time τ “ 3

will produce a set of points

P “ tpfptq, fpt` 3q, fpt` 6qq | t “ 0, 1, 2, ...u (3.17)

The data are rotated about the line spanning by the dominant eigenvector u “
p0.7, 0.02,´0.7q of the covariance matrix of the data set P . The rotational matrix

used here is

R “ pcos θptqq I ` psin θptqq rusˆ ` p1´ cos θptqq pub uq,

where rusˆ is the cross product matrix of u, b is the tensor product, and θptq “
cos2ptq.
The following GAP session shows how to produce a time-series tsiu using equation

3.16 and then form a set of points p using the time-delay embedding 3.17.

3.8 Groupoid techniques for time series analysis 67

gap> f:=function(t) return 3*Cos(t)+2*Cos(22/7*t); end;

gap> s:=List([0..800],x->f(x*22/35.0));;

gap> P:=List([1..264],i->[s[1+3*i],s[1+3*(i+1)],s[1+3*(i+2)]]);;

GAP session 3.8.1

Now rotate the points P T
i by an angle θ “ π

2
p1` cosptqq about the vector

u “

¨
˚̋

0.7

0.02

´0.7

˛
‹‚“

¨
˚̋
a

b

c

˛
‹‚

using the following matrix

R “

»
—–

cos θ ` a2 p1´ cos θq ab p1´ cos θq ´ c sin θ ac p1´ cos θq ` b sin θ

ba p1´ cos θq ` c sin θ cos θ ` b2 p1´ cos θq bc p1´ cos θq ´ a sin θ

ca p1´ cos θq ´ b sin θ cb p1´ cos θq ` a sin θ cos θ ` c2 p1´ cos θq

fi
ffifl.

to obtain a data set Q,

Q “ tR pT | p P P u

gap> dx:=EuclideanApproximatedMetric;;

gap> M:=VectorsToSymmetricMatrix(Q,dx);;

gap> G:=SymmetricMatrixToGraph(M,19/10);;

gap> K:=CliqueComplex(G,2);

Simplicial complex of dimension 2.

gap> Y:=RegularCWComplex(K);

Regular CW-complex of dimension 2

gap> H:=FundamentalGroupoidOfRegularCWComplex(Y,[1,99]);

<fp groupoid on the generators [f1, f2, f3]>

gap> V:=VertexGroup(H,1);

<fp group of size infinity on the generators [f2, f3]>

gap> RelatorsOfFpGroup(V);

[f2^-1*f3^-1*f2*f3]

The presentation of the vertex group suggests that the data set is sampled from a

torus.

Chapter 4

Simplicial Complexes and Mapper

4.1 Introduction

Topological data analysis (TDA) is a growing area of research that attempts to

use topological ideas to gain insight into large, and often high dimensional, data

sets. Many mathematicians and computer scientists are contributing to TDA, such

as Carlsson [20], Edelsbrunner and Harer [27], Ghrist [39], King, Knudson and

Mramor [65] Oudot [77] and Zomorodian [94, 96].

In this chapter we discuss one technique from TDA, namely Mapper clustering [20].

This technique is a method for representing large data sets as simplicial complexes.

In the main successful applications to date [93, 5, 86] data is represented by 1-

dimensional simplicial complexes, i.e. graphs. However, in this chapter we are more

interested in attempting to represent data by simplicial complexes of dimensions

ą 1, and then using the techniques of previous chapters to investigate the low-

dimensional homotopy (fundamental group) of these simplicial complexes.

4.2 Simplicial complexes

Let X be a set consisting of k points x1, x2, ..., xk P Rn. An affine combination is any

summation of these points
řk
i“1 µixi such that

řk
i“1 µi “ 1. The affine combinationřk

i“1 µixi is called a convex combination of xi if the coefficients µi are all non-

negative.

The convex hull is the set of all possible convex combinations of xi, denoted by

ConvpXq “
#

kÿ

i“1

µixi P Rn | µi ě 0,
kÿ

i“1

µi “ 1

+

Definition 4.2.1. [29] The standard n-simplex

∆n “ Convte1, ..., en`1 P Rn`1u

68

4.2 Simplicial complexes 69

is the convex hull of the n` 1 standard basis vectors of Rn`1.

Definition 4.2.2. [29] A subspace X of a CW-space Y is said to be a CW-subspace

if X is a CW-space whose cells are cells of Y . A CW-subspace of ∆n is called a

finite simplicial space.

A formal definition a the simplicial complex is already delivered in Section 1.3, see

Definition 1.3.7.

We can construct a finite simplicial space |K| from any finite simplicial complex K

by first choosing a bijection φ : V
–ÝÑ te1, ..., e|V |u between the vertex set of K and

the standard basis vectors of R|V |, and then taking |K| to be the union of the convex

hulls Convpφpσqq for each σ P K. The simplicial space |K| is said to be a geometric

realization of K.

The boundaries (faces) of an n-simplex are defined as the n´1 subsets of cardinality

n. For example the 3 boundaries of the 2-simplex r1, 2, 3s are r1, 2s, r2, 3s, r1, 3s. Each

boundary of an n-simplex is an pn ´ 1q-simplex. The union of the n-dimensional

simplices of every simplex in a simplicial complex K gives the n-skeleton of K.

Figure 4.1 n-simplices for n “ 0, 1, 2, 3.

A collection of standard simplices glued to each other produce a simplicial space. .

The collection can easily grow large. The dimension of a simplicial complex K is the

maximum dimension of its simplices. The underlying space, say Y , is the union of

its standard simplices together with the topology inherited from Rn. A polyhedron is

the underlying space of a simplicial complex. A triangulation of a topological space

X is a simplicial complex K together with a homeomorphism between X and |K|.
Figure 4.2 shows a simplicial complex with 8 vertices, 12 triangles which represents

a 2-sphere.

Figure 4.2 A simplicial complex of dimension 2 representing a triangulation of the
2-sphere.

4.3 Mapper 70

Building such simplicial complexes is not so convenient for manual (hand) calcula-

tions but close to ideal for computer implementations. The package HAP provides

an easy way to build simplicial complexes. This package uses the following data

type for finite simplicial complexes.

Data Type 4.2.1. [28] A finite simplicial complex is represented as a component

object K with the following components:

• K!.vertices is a list whose elements are distinct and represent the vertices of a

simplicial complex. It must be possible to test u ă v for any two elements u, v

in the list where ă is some fixed total order.

• K!.simplices(k,i) is a function which returns the list of vertices in the ith k-

simplex. The order of the vertices in the returned list is important and is

chosen to be in increasing order.

• K!.nrSimplices(k) is a function which returns the number of k-dimensional sim-

plices.

• K!.enumeratedSimplex(x) is a function which inputs a list x of vertices, in in-

creasing order, representing a k-simplex and returns the position of this sim-

plex in the list of all k-simplices.

• K!.properties is a list of pairs such as [“dimension”, 2].

4.3 Mapper

Given a data set (or cloud of data) sampled from some high dimensional space,

topological data analysis focuses on recovering topological information of an un-

known space from which the dataset is sampled. This information is obtained mainly

using algorithms for computing some algebraic homotopy invariants.

Mapper requires a finite data set, say S sampled from an unknown metric space X

and a function f from X onto some parameter space Z. For instance Z “ R,R2, or

an interval ra, bs in the real line or the unit circle S1 in the plane or any subspace of

the plane. The function f is called a filter function for the data set S. This function

in most cases reflects geometric properties of S. The following are examples of filter

functions that reflect interesting geometric properties of the cloud data S:

• Density: Any density estimator on the cloud data S produce a non-negative

function such that

fεpsq “ Cε
ÿ

s1PS
exp

ˆ
´dps, s

1q2
ε

˙
,

4.3 Mapper 71

where Cε is constant, d is Euclidean metric and ε ą 0. The function fεpsq gives

useful information about the cloud data S.

• Data depth: This notion refers to any attempt to quantify the notion of near-

ness to the centre of the cloud data S. The eccentricity function is commonly

used as a data depth function, which gives a filter function of the following

form

Eppsq “ 1

|S|

˜ÿ

s1PS
dps, s1qp

¸1{p
,

where |S| is the size of S. This filter function is a useful choice since it does

not require any specific knowledge about the data.

• Principal-component analysis PCA: The idea of PCA is to treat a data set

tv1, v2, ..., vnu P Rd with zero mean 1
n
pv1 ` v2 ` ...` vnq as a matrix S P Rdˆn,

and find the eigenvectors for the covariance matrix M “ STS. We choose

the k largest eigenvalues of M with eigenvectors e1, e2, ..., ek P Rd and set

A P Rkˆd to be the matrix whose ith row is ei for 1 ď i ď k. Then we have a

filter function

f : Rd Ñ Rk

v ÞÑ Av

If no prior knowledge of the space X is available then one can always choose a

point x0 P S that minimizes b “ MaxxPSdXpx0, xq. More precisely, the function

f |S : S Ñ Z is assumed to be the filter function fpsq “ dpx0, sq. We refer to such an

f as an intrinsic filter function and note that, since x0 is not necessarily unique,

the data set S may give rise to more than one intrinsic filter function. The main

purpose of this function is dividing the data into subsets, not necessary to be disjoint.

Mapper requires a user defined finite open cover U “ tUpupPP of Z. It also inputs a

user defined procedure cluster for clustering any finite subsets Ũ Ă X into a number

of distinct clusters Vi which yield a partition Ũ “ V1 \ V2 \ ...\ Vn.

Any clustering algorithm, such as single-linkage, complete-linkage, hierarchical and

k-means clustering, can be use to find the path connected components. These

algorithms can be found in the textbooks of data classification, we recommend the

reader to find them in [61, 2].

The Mapper procedure outputs a finite simplicial complex K which is intended to

serve as a model for X. The distance dXpx, yq must be known for all x, y P S

but no further details of the metric space X are required in the construction of K.

For simplicity, we assume that the user has specified a finite subset P Ă Z and a

sufficiently large constant r ą 0, and that the open cover U is defined by setting

4.3 Mapper 72

Up “ tz P Z : dZpz, pq ă ru. As part of the Mapper procedure each finite subset Ũp “
tx P S : fpxq P Upu Ď S is determined and partitioned Ũp “ Vp,1 \ Vp,2 \ ... \ Vp,np

using the procedure cluster.

The simplicial complex K is then defined to be the nerve of the cover V of S.

K “ NerveptVp,iupPP,1ďiďnpq.

We say this Mapper procedure in the ideal situation is Mapper of S with filter

f , cover V and clustering function cluster. The output can be viewed as an

approximate model of the homotopy type of the space X from which S is sampled.

Theorem 3.2.1 provides an heuristic justification for viewing the output as such a

model.

Note that K has one k-simplex for each subset σ Ă V of size k`1 with
Ş
V Pσ V ‰ H.

The above description of the Mapper clustering procedure can be encoded as a GAP

function

MapperpS, P, f, dX , ε, dZ , r, clusterq
which returns the simplicial complex K. Here dX and dZ denote the metrics on X

and Z.

In many applications one chooses P, r and f so that the resulting simplicial complex

K is 1-dimensional. Graph visualization software such as [36] can then be used to

investigate K. Each vertex V of K corresponds to a finite subset of S and the size

of this subset can be represented by varying the size of nodes in the visualization of

the graph. Information about f could be incorporated into the visualization using

colours, see Figure 4.3.

* *
*

*
* *

** * *
*
*
*
*
*
*
*
*
*
*
*
*
*

*
* **
*

*
*

*
** **

*
*
* *

*
*
*
*

*

* * *

**

**
**

* ***
*
*
*
*
*
*
*
*
*
*
**

*
*
**

*
*

*
*

*
* ** *

*
*
**

*
**
*

*

* *

*
*

*
*

*
*

*
*

* * *
*

*
*
*

*
*
* *
*
*
*
*

*
*
*

*
* **
* **
*

*

*
*
*

*
*

*
**

*
* * *

*
*

*
*

* *

*
*

*
*
*
**

* * *
**
*

*
**
*
*

*
*

* * *
* *

*
**

*
**
*
*
**

*
*** **

* **

* *
*

*
* *

** * *
*
*
*
*
*
*
*
*
*
*
*
*
*

*
* **
*

*
*

*
** **

*
*
* *

*
*
*
*

*

* * *

**

**
**

* ***
*
*
*
*
*
*
*
*
*
*
**

*
*
**

*
*

*
*

*
* ** *

*
*
**

*
**
*

*

* *

*
*

*
*

*
*

*
*

* * *
*

*
*
*

*
*
* *
*
*
*
*

*
*
*

*
* **

*

*

*
*
*

*
*

*
**

*
* * *

*
*

*
*

* *

*
* ** *
**

* * *
**
*

*
**
*
*

*
*

* * *
* *

*

*
*
**

*
*** **

* **

* *
*

*
* *

** * *
*
*
*
*
*
*
*
*
*
*
*
*
*

*
* **
*

*
*

*
** **

*
*
* *

*
*
*
*

*

* * *

**

**
**

* ***
*
*
*
*
*
*
*
*
*
*
**

*
*
**

*
*

*
*

*
* ** *

*
*
**

*
**
*

*

* *

*
*

*
*

*
*

*
*

* * *
*

*
*
*

*
*
* *
*
*
*
*

*
*
*

*
* **

*

*

*
*
*

*
*

*
**

*
* * *

*
*

*
*

* *

*
* ** *
**

* * *
**
*

*
**
*
*

*
*

* * *
* *

*

*
*
**

*
*** **

* **

Figure 4.3 Mapper for random data around eight-figure produces a 1-dimensional
simplicial complex capturing the shape of the data.

Our implementation omits this option of colouring the vertices. For instance see

Figure 4.4, the data is a set of 1000 points sampled randomly from a picture of

4.4 Implementations of Mapper 73

Figure 4.4 Image X Ă R2 of spider (left), and the corresponding Mapper output
(right).

spider. The Mapper returns a 1-dimensional simplicial complex (graph) of 79 nodes.

The graph is a tree with nine long branches corresponding to the eight legs and the

abdomen of the spider.

One method of clustering a set Ũ involves choosing a fixed parameter ε ą 0, forming

the graph GpŨ , εq with vertex set equal to Ũ and with vertices x, x1 P Ũ connected by

an edge if dXpx, x1q ď ε, and then taking all vertices in a single connected component

of GpŨ , εq to constitute a cluster. We refer to this naive method as graph clustering.

It can be encoded as a function

clusterpŨ , ε, dXq.

There are various heuristic approaches for determining a suitable value for ε in terms

of U and dX , and so the parameter ε can be omitted from the input if desired. One

heuristic is described in Chapter 5.

4.4 Implementations of Mapper

Consider a set S “ ts1, s2, ..., snu of points in Rd. Mapper requires the data S to

be entered in a matrix form, so the data S is a n ˆ d matrix. And f : S Ñ Z is

a function that maps S into a parameter space Z. PCA is used widely as a filter

function, so let us explain the method and how it is implemented. First treat the

set S as a matrix of the following form

X “

»
—–

| | |
s1-µ s2-µ ... sn-µ

| | |

fi
ffifl .

4.4 Implementations of Mapper 74

The covariance matrix is

M “ 1

n
XTX,

where µ is the mean of S (centre of gravity). The following GAP function

VectorsToCovarianceMatrix inputs the data set S and returns the covariance ma-

trix M .

gap> VectorsToCovarianceMatrix:=function(S)

> local n, a, A, V;

> n:=Length(TransposedMat(S)[1]);

> a:=S-List([1..n],i->1)*S/n;

> A:=TransposedMat(a)*a;

> V:=A/n;

> return V;

> end;

The next step in PCA is calculating the eigenvalues and their corresponding eigen-

vectors of the covariance matrix M . The power method is used to find the first

dominant eigenvalue and the corresponding eigenvector and then we use this method

with deflation to find other eigenvalues and eigenvectors. We implement Algorithm

4.4.1 in GAP to find the set of eigenvalues and the corresponding eigenvectors of a

symmetric matrix. The function FloatSpectrum inputs a symmetric matrix M and

a natural number n and returns a list of eigenvalues and list of the corresponding

eigenvectors of M . The eigenvectors are ordered according to the absolute value of

their eigenvalues, from the largest to smallest. We have also implement the Jacobi

algorithm [84] in GAP , but it is not used in this example.

Algorithm 4.4.1 Float Spectrum

Input: a symmetric matrix M of dimension nˆ n and real number ε.

Output: List L “ re, V s, where e is a list of eigenvalues and V is a list of

eigenvectors.

1: procedure
2: Choose a random vector v0 P Rn

3: v1 :“M v0;
4: i:=2;
5: while ||vi´1 ´ vi´2|| ą ε do
6: i:=i+1;
7: wi “Mvi´1

8: vi “ wi

||wi||
9: end do
10: x “ vi;
11: e “ r s, and V “ r s;
12: for j “ 1..n do

4.4 Implementations of Mapper 75

13: λ “ pxTMxq{||x||;
14: add(e, λ);
15: add(V, x);
16: M “M ´ λvTv
17: repeat steps 3-9 to get new λ and x;
18: end do
19: return re, V s;
20: end procedure

The k principal components are the eigenvectors corresponding to the k largest eigen-

values. Now, construct a new matrix A, whose rows are the k principal components.

The filter function f is

f : S Ñ Z “ Rk

s ÞÑ Aps´ µq

Let P “ tp1, p2, ..., pku Ă Z be a set of points with open cover U “
tUi | Ui is open ball whose centre pi with radius ru of the space Z. So the func-

tion f , the cover U and some metric function dZ will subdivide the data set S into

parts by the sense x P Ũj “ f´1pUjq if dZpfpxq, pjq ď r.

A clustering function C is required in the Mapper procedure to break each set Ũj

into parts called clusters. The clustering function inputs a set of point Ũj and a real

number ε to returns subsets of Ũj that never share common points.

The FpGd function cluster inputs a data set Ũ , a metric function d and some real

number (threshold value) ε and returns a family of subsets of S called clusters. The

implementation is based on the following Algorithm 4.4.2.

Algorithm 4.4.2 cluster

Input: A data set Ũ , a metric function d and a real number ε.

Output: A family of subsets of Ũ .

1: procedure
2: Consider each x P Ũ as a vertex for a graph, say G.
3: Two vertices x and y in the vertex set of G are connected by an edge when
dpx, yq ď ε.

4: if G is connected graph
5: then return Ũ
6: else return rŨ1, Ũ2, ..., Ũns, where Ũi, 1 ď i ď n is a set of vertices of a connected

component subgraph in G and Ũ “ Ť
1ďiďn Ũi.

7: end if
8: end procedure

The following Algorithm 4.4.3 is reimplemented in GAP . The function

GeneralMapper inputs data set S, a metric function dS, a filter function f , a metric

4.4 Implementations of Mapper 76

function dZ , a set of uniform points P , a real number r and a clustering function C
which is also required to define a another real number ε.

Algorithm 4.4.3 Mapper algorithm, producing a simplicial complex from dataset.

Input:

• a dataset S,

• a filter function f : X Ñ Z, where X is a metric space pX, dSq and Z is a

parametric space defined with some metric function dZ ,

• a set of uniform points P “ tp1, ..., pnu Ă Z, and a real value r,

• a clustering function C “ CpU, dS, εq.

Output: A simplicial complex K.

1: procedure
2: create an open cover U “ tUiu1ďiďn for Z such that pi is the centre of the open

ball Ui.
3: map the set S into Z using the filter function f .
4: find the family of preimages W “ tWi “ f´1pUiqu1ďiďn;
5: use C to define the family of subsets V “ tVi,α “ CpWi, dS, εSqu1ďiďn.
6: return the nerve of cover, NervepVq.
7: end procedure

In case of using a filter function that maps the data set to 1-dimensional space, the

output of Mapper is a graph. To display the graph that corresponds to the output

of Mapper, we use the HAP command Display. This command allows the user to

visualise the Mapper of some data set as a graph containing vertices joined by edges.

Mapper employs the program GraphViz [32] to create a geometric realization of the

graph encoded in the adjacency matrix.

The number of vertices is the same number of clusters and the size of each vertex

reflects the ratio of the size of the cluster to the size of the data set. Two vertices

are joint by an edge when the corresponding clusters share any common data points.

In the following example, we will show that Mapper can produce different simplicial

complexes or the same data set when the user use different choices for the filter

functions. Using an appropriate filter function will lead to a simplicial complex

capturing the shape of the data.

Example 4.4.1. First, let us generate 1000 3-dimensional points on a torus dis-

tributed randomly, the outer radius a “ 18 and the inner radius b “ 6, see the

following GAP session . The GAP package “float” should be loaded first.

4.5 Some illustrations of Mapper 77

gap> n:=1000;; a:=18;; b:=6;;

gap> rand:=function(i)

> return 2*3.14*Random([1..1000])/1000;

> end;;

gap> points:=[];;

gap> for i in [1..n] do

> s:=rand(i); t:=rand(i);

> x:= a+b+(a+b*Cos(s))*Cos(t);

> y:= a+b+(a+b*Cos(s))*Sin(t);

> z:= b*(1+Sin(s));

> points[i]:=[x,y,z];

> od;

GAP session 4.4.1

Now, create a set of uniform points P and give values for r the radius of the open

balls that cover the parametric space and ε the threshold values for the clustering

function. And define the filter function that project the points to z-axis.

gap> P:=[0..100]; P:=List(P, i->[i]);;

gap> r:=3/4;;

gap> epsilon:=12;;

gap> d:=EuclideanApproximatedMetric;;

gap> f1:=function(x) return x[3]; end;;

gap> M1:=GeneralMapper(points,P,f1,d,epsilon,d,r,cluster);;

gap> Display(GraphOfSimplicialComplex(M1));

The Mapper output is a simplicial complex shown in figure 4.5 (up) which doesn’t

match the torus. Now keep all values, only change the filter function to be the

projection of the data to the x-axis. The Mapper output is shown in the same figure

(down), in this case we obtained a circle which is the desired simplicial complex.

gap> f2:=function(x) return x[1]; end;;

gap> M2:=GeneralMapper(points,P,f2,d,epsilon,d,r,cluster);;

gap> Display(GraphOfSimplicialComplex(M2));

4.5 Some illustrations of Mapper

To illustrate Mapper clustering we choose a set S of 1000 random points selected

from a uniform distribution on the square X “ r0, 1000sˆr0, 1000s. Four quotients of

X, namely the cylinder, the Möbius strip, the torus and the Klein bottle are shown

in Figures 4.6, 4.7, 4.8, 4.9 and are obtained from the square X by identifying

4.5 Some illustrations of Mapper 78

Figure 4.5 Using different filtere functions produce different Mapper for torus,
the filter functions are shown by the colouring of the points for both cases (top:
fpx, y, zq “ z, bottom: fpx, y, zq “ x).

opposite sides in the usual manner. The standard Euclicean metric on X induces

distinct metrics on each of the four quotients. In the following example, we deal

with this in detail.

Example 4.5.1. Let points be a set of 1000 points in the square X “ r0, 1000s ˆ
r0, 1000s, see the following GAP session.

gap> n:=1000; a:=1; b:=1;

gap> x:=List([1..n],i->Random([0..n*a]));;

gap> y:=List([1..n],i->Random([0..n*b]));;

gap> points:=List([1..n],i->[x[i],y[i]]);;

GAP session 4.5.1

Now, let us define a metric function, called cylinder metric to identify the point

p0, yq with p1, yq in X, for all y P r0, 1s.

4.5 Some illustrations of Mapper 79

gap> cylinder_metric:=function(x,y)

> local L,d;

> L:=[[x,y],[x,[a*n+y[1],y[2]]],[y,[a*n+x[1],x[2]]]];

> d:=List(L,z-> EuclideanApproximatedMetric(z[1],z[2]));

> return Minimum(d);

> end;

The graph of Figure 4.6 (left) was obtained by applying our Mapper implementation

to S with dX equal to the induced metric on the cylinder, with an intrinsic filter

function f : X Ñ Z “ r0, 5000s and with a set P of 50 points chosen (automatically)

so that the Ũp have roughly equal size. The cycle in the graph of Figure 4.6 (right)

represents an homology 1-cycle on the torus.

gap> P:=50*[0..100];; P:=List(P, i->[i]);;

gap> r:=45;;

gap> epsilon:=150;;

gap> f:=function(x) return AbsoluteValue(x[1]-500); end;;

gap> dx:=cylinder_metric;;

gap> dz:=EuclideanApproximatedMetric;;

gap> M:=GeneralMapper(points,P,f,d,epsilon,d,r,cluster);;

gap> Display(GraphOfSimplicialComplex(M));

Figure 4.6 Data set of 1000 points around a cylinder (left), the Mapper returns
1-dimensional simplicial complex (graph of 16 vertices) (right).

Graphs almost identical to that of Figure 4.6 (right) are obtained when the Möbius

metric dX is replaced by the metric on the cylinder. The Möbius metric is defined

to identify the points p0, yq with p1, 1´ yq in X, for all y P r0, 1s.

4.5 Some illustrations of Mapper 80

gap> mobius_metric:=function(x,y)

> local L,d;

> L:=[[x,y],[x,[a*n+y[1],b*n-y[2]]],[y,[a*n+x[1],b*n-x[2]]]];

> d:=List(L,z->EuclideanApproximatedMetric(z[1],z[2]));

> return Minimum(d);

> end;

gap> dx:=mobius_metric;;

gap> M:=GeneralMapper(points,P,f,d,epsilon,d,r,cluster);

gap> Display(GraphOfSimplicialComplex(M));

Figure 4.7 Data set of 1000 points around a Möbius strip (left), the Mapper
returns 1-dimensional simplicial complex (graph of 16 vertices) (right).

Now, let us define the torus metric, by which the point p0, yq are identified with

p1, yq and the point px, 0q identified with px, 1q for all x, y P r0, 1s.

gap> torus_metric:=function(x,y)

> local X,Y,XY,d;

> X:=[[a*n+x[1],x[2]],[x[1],b*n+x[2]]];

> Y:=[[a*n+y[1],y[2]],[y[1],b*n+y[2]]];

> XY:=[[x,y],[x,Y[1]],[x,Y[2]],[y,X[1]],[y,X[2]]];

> d:=List(XY,z->EuclideanApproximatedMetric(z[1],z[2]));

> return Minimum(d);

> end;

gap> dx:=torus_metric;;

gap> M:=GeneralMapper(points,P,f,d,epsilon,d,r,cluster);;

gap> Display(GraphOfSimplicialComplex(M));

Finally, let us define a Klein metric to identify the point p0, yq with p1, 1 ´ yq and

px, 0q with px, 1q for all x, y P r0, 1s.

4.5 Some illustrations of Mapper 81

Figure 4.8 Data set of 1000 points around a torus (left), the Mapper returns
1-dimensional simplicial complex (graph of 16 vertices) (right).

gap> klein_metric:=function(x,y)

> local X,Y,XY,d;

> X:=[[a*n+x[1],x[2]],[a*n-x[1],b*n+x[2]]];

> Y:=[[a*n+y[1],y[2]],[a*n-y[1],b*n+y[2]]];

> XY:=[[x,y],[x,Y[1]],[x,Y[2]],[y,X[1]],[y,X[2]]];

> d:=List(XY,z->EuclideanApproximatedMetric(z[1],z[2]));

> return Minimum(d);

> end;

gap> epsilon:=75;;

gap> dx:=klein_metric;;

gap> M:=GeneralMapper(points,P,f1,d,epsilon,d,r,cluster);

gap> Display(GraphOfSimplicialComplex(M));

Figure 4.9 Data set of 1000 points around a Klein bottle (left), the Mapper returns
1-dimensional simplicial complex (graph of 12 vertices) (right).

Mapper remaining unchanged when the input any one of these data. Thus, while

this application of Mapper manages to represent certain geometric features of the

data, it fails to distinguish between data sampled from uniform distributions on

four geometrically and topologically distinct spaces.

4.6 Gait analysis 82

4.6 Gait analysis

We now illustrate our (unenhanced) implementation of Mapper on data from gait

analysis. The example is based on [90]. The periodic motions are plentiful in

human and animal behaviour. The human gait (or robot locomotion) is an example

of periodic motion. Human motion, specifically walking, has been studied widely in

recent decades. Motion capture databases that are available in [66] provide a rich

source of motion patterns which can be used to animate characters in computer

games and movies. This kind of data has been used to create a controller for

a simulated human character and allowing it to walk based on the sequences of

recorded motion captures [74].

There is a lot of mathematical work on gait analysis in the literature. Some of

this work is about investigating the periodicity and detecting the kinds of motion.

For instance, Mikael Vejdemo-Johansson and et al applied a persistent cohomology

based method in a graphic application to recover circular coordinates of motions

[90]. They proposed a framework for dealing with a motion and detecting the

motion pattern by using persistent cohomology. The work is based initially on

[67, 89] in which they applied a topological signature on a persistence diagram to

the problem using gait data.

In this section, we use Mapper for real data of motion such as walking and gait or

any motion. The periodicity can be detected without marking of the period start

and end points. The method only required two parameters and two functions, one

serve as a PCA and the other one determines the clusters according to the closeness

of the points.

Motion databases such as [66] provide a rich source of motion patterns. Each motion

can be consider as a trajectory in the object’s configuration space. They model the

configuration space by a root joint which is located at the hip in the skeleton, the

translations along x, y, and z and Euler angle rotations around x, y and z, together

with 56 additional joint angles of the various attached joints.

The data used in this section was obtained from mocap.cs.cmu.edu [66]. The data

is stored in different format such as asf, amc and vsk files. We pick the data indexed

by 01 in group 69, it is for forward walking. It contains 469 records. In each second

they read 62 records. The motion 69:01 is used here as an experimental science

data, three clips of human motion appear in Figure 4.11 (left). We use this data as

an example to test our implementation of Mapper procedure. To read this kind of

file, we wrote a GAP function called ReadAMCfileAsPatternMatrex to convert the

text file into a data file. The function returns a matrix of dimension nˆ 63, where

n is the number of records. For the motion 69:01 under consideration, we have 469

records.

In the first step of the following GAP session, we read the file 69 01.amc and we call

4.6 Gait analysis 83

the data set by S. Then we remove the first column that represents the time. Now S

is a matrix of dimension 469ˆ 62. To apply PCA, we first calculate the covariance

matrix M of the data S using the function VectorsToCovarianceMatrix. Then

find the eigenvalues of M using the function FloatSpectrum which return a list of

eigenvalues ordered from the large to the small.

gap> S:=ReadAMCfileAsPatternMatrex("69_01.amc");;

gap> S:=S{[2..Length(S)]};;

gap> M:=VectorsToCovarianceMatrix(S);;

gap> L:=FloatSpectrum(M);

GAP session 4.6

The first six eigenvalues are

616.060, 283.985, 217.461, 155.580, 76.547, 39.603, ...

other eigenvalues become small and are shown in the figure 4.10.

Figure 4.10 The eigenvalues of the covariance matrix for the data of the walk
number 69:01.

Since the first eigenvalue is much greater than the others, that means its corre-

sponding eigenvector is dominant and the direction along which the data set has

the maximum variance. Now we will project our data to the line spanning by this

vector.

First, create a set of uniform points P lie on the line spanned by v, and choosing

suitable r and ε as shown in the GAP session and applying Mapper will return a

simplicial complex with 41 clusters as shown in figure 4.11.

4.6 Gait analysis 84

gap> v:=L[2][1];;

gap> dx:=EuclideanApproximatedMetric;;

gap> v:=v/dx(v,List(v,i->0));

gap> f:=function(x) return (x * v / v ^ 2) * v; end;;

gap> P:=List(3*[-20..20],x->x*v);; P:=List(P,i->[i]);;

gap> r:=29/10;

29/10

gap> epsilon:=50;;

gap> K:=GeneralMapper(SS,P,f,dx,epsilon,dx,r,cluster);;

Simplicial complex of dimension 1.

gap> GraphOfSimplicialComplex(K);

Graph on 41 vertices.

gap> Display(G);

Figure 4.11 Clips of human motion presented as skeleton with root joint placed
at the hip (left). Mapper of the motion 96:01 (walk forward) (right).

The periodicity in this motion has been shown in the [74], the output of the Mapper

in Figure 4.11 (left) is also show that this motion is periodic.

Chapter 5

Distributed Computation of Cup

Products

5.1 Introduction

The additive structure of the low-dimensional homology and cohomology of a space

is the mainstay of applied computational topology due to its ease of computation

and interpretation. The goal of this chapter is to advertize that the multiplicative

structure on low-dimensional cohomology is also easy to compute and interpret.

The chapter builds on a practical algorithm for finding a finite presentation of the

fundamental group π1pX, x0q of an arbitrary finite regular CW-space X which was

illustrated in [31] and described in detail in [11]. In Section 5.2 we explain how,

from such a presentation, one can directly read off the cup product

Y : H1pX,Zq ˆH1pX,Zq Ñ H2pX,Zq (5.1)

without need for any further significant computations since this product is essentially

an invariant of π1pX, x0q. In Section 5.3 we illustrate the method on the integral

cohomology ring of a 3-dimensional digital image. Previous papers [42, 44, 40, 41]

have described different approaches to computing the cohomology ring, over Z{2Z,

of cubical and simplicial spaces arising from 3-dimensional digital images; these pa-

pers are based on techniques in [80, 43, 62]. In Section 5.4 we explain how the van

Kampen’s theorem for fundamental groupoids [12, 18] yields a distributed version

of the fundamental group algorithm of [11], and hence a distributed method for com-

puting (5.1). This chapter is published in Homology, Homotopy and Applications

(HHA) [4].

85

5.2 The low dimensional cup product 86

5.2 The low dimensional cup product

Let C˚X denote the cellular chain complex of a finite regular CW-space X, and

let HkpX,Zq “ HkpHomZpC˚X,Zqq denote the cellular cohomology group (see [52]

for details). Recall that the cohomology ring structure is derived from the diagonal

map ∆: X Ñ X ˆX, x ÞÑ px, xq and induced diagonal homomorphism

Hkp∆,Zq : HkpX ˆX,Zq Ñ HkpX,Zq (5.2)

together with a bilinear cross product function

HmpX,Zq ˆHnpX,Zq Ñ Hm`npX ˆX,Zq (5.3)

for k,m, n ě 0. The ring multiplication H˚pX,Zq ˆ H˚pX,Zq Ñ H˚pX,Zq is

obtained by composing (5.2) with (5.3) for k “ m ` n and extending bilinearly

over H˚pX,Zq. For an arbitrary regular CW-space the diagonal homomorphism

(5.2) can be a challenge to implement efficiently on a computer. In contrast,

an efficient implementation of (5.3) is straightforward. To implement (5.2) one

can use the Alexander-Whitney diagonal approximation formula in the case of

simplicial spaces, and Serre’s analogue of this for cubical spaces. Details of the

cubical analogue can be found in [71], and details on practical implementations

of these two formulae can be found in [42, 44, 40, 41, 80, 43, 62]. In this

section we assume that X is an arbitrary connected regular finite CW-space and

observe that for k “ 2 the homomorphism (5.2), and hence the cup product (5.1),

can be read directly from a group presentation P “ xx | ry for the fundamen-

tal group π1X. One algorithm for computing such a presentation is described in [11].

The presentation P “ xx | ry for π1X is produced by first constructing an admissible

discrete vector on the 3-skeleton of X such that only one of the 0-cells is critical. By

Theorem 3.2.1 there is then a homotopy equivalence X » Y where Y is a non-regular

CW-space with a single 0-cell. The 2-skeleton of Y corresponds to the presentation

P “ xx | ry. The generators in x correspond to the critical 1-cells of X and to the

1-cells of Y . The relators in r correspond to the critical 2-cells in X and to the

2-cells in Y . We shall denote the 2-skeleton Y 2 by KpPq since this is precisely the

2-complex associated to the presentation P in geometric group theory.

On the computer we store Y by storing the face lattice of the regular CW-space X

together with a list of those pairs of non-critical cells ps, tq that constitute the discrete

vector field on X. This data can be used to realize a chain homotopy equivalence

h˚ : C˚X
»ÝÑ C˚Y on the computer; this in turn could be used to compute an

isomorphism HkpX,Zq – HkpY,Zq if desired. So we focus on computing the cup

product Y : H1pY,Zq ˆH1pY,Zq Ñ H2pY,Zq.

5.2 The low dimensional cup product 87

x0

y0
x0

y0

x0

y0

x

y

x

y

x

y

xx0

yy0

y

x0

y0

x

x0

y

x

y0

Figure 1: van Kampen diagram over the presentation hx, y, x0, y,0 | xyx = yxy, x0y0x0 =
y0x0y0, xx0 = x0x, yy0 = y0y, xy0 = y0x, yx0 = x0yi.

Given a presentation P = hx | ri of a group G, let x0 = {x0 : x 2 x} be an isomorphic copy of
the set x. Let F (x[x0) be the free group on the disjoint union x[x0 and let ◆1, ◆2 : F (x) ,! F (x[x0)
be the inclusion homomorphisms defined by ◆1(x) = x and ◆2(x) = x0 for x 2 x. We define the
presentation

P ⇥ P = hx [x0 | ◆1(r), ◆2(r), ◆1(x)◆2(y) = ◆2(y)◆1(x) (x, y 2 x, r 2 r)i > (4)

for the direct product G ⇥ G. In this context we define the diagonal group homomorphism
� : F (x) ! F (x [x0) by �(x) = ◆1(x)◆2(x) for x 2 x.

The following lemma is an easy excercise. In its statement we use the notation x <✏ y to mean
x < y if ✏ = +1 and y < x if ✏ = �1.

Lemma 2.2. For any presentation P = hx | ri and any reduced word w = x✏1
1 x✏2

2 . . . x✏n
n 2 R =

hriF (x), where ✏i = ±1 and xi 2 x, there is a van Kampen diagram D over P ⇥P whose boundary
spells the word �(w) for some choice of initial vertex and orientation. The diagram D consists of
precisely one 2-cell e2

w with boundary word ◆1(w), one 2-cell e2
w0 with boundary word ◆2(w) and, for

each 1 i <✏i j n, one 2-cell e2
ij whose boundary spells the relator ◆1(xi)◆2(xj)◆1(xi)

�1◆2(xj)
�1.

The van Kampen diagram D of Lemma 2.2 is typically non-reduced in the sense that there may
be two CW-subspaces D1, D2 ⇢ D containing no common 2-cell whose union D1[D2 is connected,
simply-connected and has boundary that spells a word representing the trivial element in the free
group of the presentation P. A van Kampen diagram is said to be reduced if it contains no such
subspaces D1, D2. It is possible to transorm any van Kampen diagram D into a reduced diagram
D0 such that the boundary words of D and D0 represent the same element in the free group of P.
The details of this transformation are not required for our cup product algorithm.

Example 2.1. Consider the presentation P = hx, y | xyxy�1x�1y�1i and word w = xyxy�1x�1y�1

2 F ({x, y, z}). A reduced van Kampen diagram over P ⇥ P with boundary word �(w) is shown
in Figure 1. ⌅

Lemma 2.2 describes a cellular diagonal approximation � : K(P) ! K(P) ⇥ K(P) which, in
turn, induces a diagonal chain approximation

�⇤ : C⇤(K(P)) ! C⇤(K(P ⇥ P)) ⇠= C⇤(K(P)) ⌦ C⇤(K(P)). (5)

Using e0, e1
x, e2

r (x 2 x, r 2 r) to denote free abelian chain group generators, the chain map (5) is
given in degrees 0, 1 by

�0(e
0) = e0, (6)

3

Figure 5.1 van Kampen diagram over the presentation xx, y, x1, y1 | xyx “
yxy, x1y1x1 “ y1x1y1, xx1 “ x1x, yy1 “ y1y, xy1 “ y1x, yx1 “ x1yy.

The following notion, due to van Kampen and illustrated in Figure 5.1, is an aid

to visualizing the diagonal homomorphism (5.2) for k “ 2. Recall that a word in

a free group is cyclically reduced if no conjugate of it is a shorter word, and that a

presentation is cyclically reduced if all of its relators are. In this section we assume

that presentations are cyclically reduced.

Definition 5.2.1. A van Kampen diagram over a cyclically reduced group presen-

tation P “ xx | ry is a finite, planar, connected and simply connected CW-space

D Ă R2 with each 1-cell labelled by an arrow and a generator in x in such a way

that: for each 2-cell e2 in D, the sequence of oriented and labelled 1-cells in the

boundary Be2, for some choice of initial vertex and some choice of orientation, spells

a relator word in r Ă F pxq.
It is not difficult to see that for any initial vertex in the boundary of a van Kampen

diagram D over P “ xx | ry, and for either orientation on the boundary of the

diagram, the labelled 1-cells of the boundary spell a word in R “ xryF pxq where R

is the normal closure in F pxq of the subgroup generated by r. The converse is also

true: any non-trivial word in R is the boundary of a van Kampen diagram over P .

We are interested in a very easy and very particular case of this converse statement.

Given a presentation P “ xx | ry of a group G, let x1 “ tx1 : x P xu be an isomorphic

copy of the set x. Let F pxY x1q be the free group on the disjoint union xY x1 and

let ι1, ι2 : F pxq ãÑ F px Y x1q be the inclusion homomorphisms defined by ι1pxq “ x

and ι2pxq “ x1 for x P x. We define the presentation

P ˆ P “ xxY x1 | ι1prq, ι2prq, ι1pxqι2pyq “ ι2pyqι1pxq px, y P x, r P rqy

5.2 The low dimensional cup product 88

for the direct product G ˆ G. In this context we define the diagonal group homo-

morphism ∆: F pxq Ñ F pxY x1q by ∆pxq “ ι1pxqι2pxq for x P x.

In the following lemma we use the notation i ăε j to mean i ă j if ε “ `1 and i ě j

if ε “ ´1.

Lemma 5.2.1. For any presentation P “ xx | ry and any reduced word w “
xε11 x

ε2
2 . . . x

εn
n P R “ xryF pxq, where εi “ ˘1 and xi P x, there is a van Kampen

diagram D over P ˆP whose boundary spells the word ∆pwq for some choice of ini-

tial vertex and orientation. The diagram D consists of precisely one 2-cell e2
w with

boundary word ι1pwq, one 2-cell e2
w1 with boundary word ι2pwq and, for each 1 ď i ăεi

j ď n, one 2-cell e2
ij whose boundary spells the relator ι1pxiqι2pxjqι1pxiq´1ι2pxjq´1.

The van Kampen diagram D of Lemma 5.2.1 is typically non-reduced in the sense

that there may be two CW-subspaces D1,D2 Ă D containing no common 2-cell

whose union D1 YD2 is connected, simply-connected and has boundary that spells

a word representing the trivial element in the free group of the presentation P . A

van Kampen diagram is said to be reduced if it contains no such subspaces D1,D2.

It is possible to transform any van Kampen diagram D into a reduced diagram D1
such that the boundary words of D and D1 represent the same element in the free

group of P . The details of this transformation are not required for our cup product

algorithm.

Example 5.2.1. Consider the presentation P “ xx, y | xyxy´1x´1y´1y and word

w “ xyxy´1x´1y´1 P F ptx, yuq. A reduced van Kampen diagram over P ˆ P with

boundary word ∆pwq is shown in Figure 5.1.

Lemma 5.2.1 describes a cellular diagonal approximation ∆: KpPq Ñ KpPqˆKpPq
which, in turn, induces a diagonal chain approximation

∆˚ : C˚pKpPqq Ñ C˚pKpP ˆ Pqq – C˚pKpPqq b C˚pKpPqq. (5.4)

Using e0, e1
x, e

2
r (x P x, r P r) to denote free abelian chain group generators, the chain

map (5.4) is given in degrees 0, 1 by

∆0pe0q “ e0,

∆1pe1
xq “ e1

x ` e1
x1 .

In degree 2 it is defined for each r “ xε11 x
ε2
2 . . . x

εn
n P r by

∆2pe2
rq “ e2

r ` e2
r1 `

ÿ

1ďiăjďn
e2
ij. (5.5)

The cup product on H˚pKpPq,Zq is determined by the chain map (5.4) which, in

turn, can be read off directly from the presentation P using Lemma 5.2.1. We

5.3 Illustration: digital images 89

emphasize that one can apply this Lemma algebraically – there is no need to exhibit

an actual van Kampen diagram in order to apply formula (5.5).

The inclusion KpPq ãÑ Y and homotopy equivalence Y
»Ñ X induce a ring

homomorphism H˚pX,Zq Ñ H˚pKpPq,Zq which restricts to an isomorphism

HkpX,Zq –ÝÑ HkpKpPq,Zq for k “ 0, 1 and inclusion H2pX,Zq ãÑ H2pKpPq,Zq.
We can thus compute the cup product (5.1) by using Lemma 5.2.1 to compute the

cup product in the bottom row of the following commutative diagram.

H1pπ1X,Zq ˆH1pπ1X,Zq Y //

–
��

H2pπ1X,Zq� _

��

H1pX,Zq ˆH1pX,Zq Y //

–
��

H2pX,Zq� _

��

H1pKpPq,Zq ˆH1pKpPq,Zq Y // H2pKpPq,Zq

By attaching cells to X in dimensions ě 3 we can construct a cellular inclusion

X ãÑ Bpπ1Xq into a space Bpπ1Xq with trivial homotopy groups πnpBpπ1Xqq “ 0

for n ě 2 and with the inclusion inducing an isomorphism π1X – π1pBpπ1Xqq. The

induced ring homomorphism H˚pπ1X,Zq “ H˚pBpπ1Xq,Zq Ñ H˚pX,Zq shows that

the cup product (5.1) is induced from the cohomology of the group π1X and hence

can be calculated from any presentation P for π1X.

5.3 Illustration: digital images

Let T be the free abelian group of rank n with a specified free action on Rn as

translations. Thus the elements t P T are distinct translations Rn Ñ Rn, x ÞÑ tpxq.
A fundamental domain for this action is

V “ tx P Rn : ||x|| ď ||x´ tp0q|| for all t P T u

where || || is the Euclidean metric and 0 denotes the zero vector in Rn. This domain

V is an intersection of finitely many half-spaces or, equivalently, the convex hull of

a finite collection of vertices. We define a digital image to consist of a subset S Ă T .

For each t P S we say that tV “ ttpxq : x P V u is a voxel of the digital image S.

We define the geometric realization of S to be the union of the voxels of S.

If the elements of a free generating set for T act on Rn as the unit translations along

the standard axes then V is an n-dimensional cube. The geometric realization of a

digital image in this case is called a pure cubical complex. But there are other use-

ful choices of action. If we identify Rn with the hyperplane Rn “ tpx1, . . . , xn`1q P
Rn`1 : x1`¨ ¨ ¨`xn`1 “ 0u and take the free generators of T to act as x ÞÑ x`vi for

v1 “ p´n, 1, 1, . . . , 1, 1q, v2 “ p1,´n, 1, . . . , 1, 1q, . . . , vn “ p1, 1, 1, . . . ,´n, 1q then V

5.3 Illustration: digital images 90

Figure 2: Pure permutahedral complex L representing a link with two components.

6982671 cells. The session computes

Hn(M, Z) =

8
<
:

Z, n = 0,
Z � Z, n = 1, 2,
0, n � 3,

and a presentation for G = ⇡1M using the algorithm of [1].

gap> Read("permutahedralcomplex.txt");

gap> Size(M);

257851

gap> XM:=RegularCWComplex(ZigZagContractedComplex(M));

Regular CW-complex of dimension 3

gap> List([0..3],n->Cohomology(XM,n));

[[0], [0, 0], [0, 0], []]

gap> G:=FundamentalGroup(XM);

<fp group of size infinity on the generators [f1, f2, f3]>

The following continuation of the GAP session uses the method described in Section 2 to compute
the cup product ↵ [� = 6(�� + �) where ↵,� are free generators of H1(M, Z) and �, � are free
generators of H2(M, Z).

gap> cup:=CupProduct(G);

function(a, b) ... end

gap> cup([1,0],[0,1]);

[-6, 6]

It is well known that the cup product ↵ [� can be interpreted in terms of the linking number
Lk(K1, K2) where Ki are the two components in the link of Figure 2 (see for instance [23]).

4 Fundamental groupoids and a distributed algorithm

Let us analyse the computation of the previous section to see how it might be distributed over
several computers. The computation begins with the representation of the link L as a pure

5

Figure 5.2 Pure permutahedral complex L representing a link with two components
(left), an enlarged segment of which is also shown (right).

is the n-dimensional permutahedron. In this case the geometric realization of a dig-

ital image is called a pure permutahedral complex. An advantage to permutahedral

complexes is that their boundary is a manifold; this is not necessarily so for pure

cubical complexes. The term lattice space is used in [31] to refer to the geometric

realizaton of an arbitrary digital image.

Example 5.3.1. The pure permutahedral complex L in Figure 5.2 represents a link

with two components, one component winding around the other. To investigate

the link we embed it into the interior of a contractible pure permutahedral complex

R and form the complement M “ RzL̊ of the interior of L. The following GAP

session loads such a complex M from the file permutahedralcomplex.txt available

in Appendix B.2. The pure permutahedral complex M has 257851 voxels. As a

CW-space it has 6982671 cells. The session first constructs a smaller homotopy

equivalent pure permutahedral complex XM » M with just 3728 voxels and, as a

CW-space, 156127 cells. The space XM is constructed using a zig-zag deformation

retract technique based on simple homotopy collapses which is described explicitly

in [31]. The session then uses XM to compute

HnpM,Zq “

$
’&
’%

Z, n “ 0,

Z‘ Z, n “ 1, 2,

0, n ě 3,

and a presentation for G “ π1M using the algorithm of [11].

5.3 Illustration: digital images 91

gap> Read("permutahedralcomplex.txt");

gap> Size(M); # number of 3-d voxels

257851

gap> XM:=RegularCWComplex(ZigZagContractedComplex(M));

Regular CW-complex of dimension 3

gap> Size(XM); # number of CW cells

156127

gap> List([0..3],n->Cohomology(XM,n));

[[0], [0, 0], [0, 0], []]

gap> G:=FundamentalGroup(XM);

<fp group of size infinity on the generators [f1, f2, f3]>

GAP session 5.3.1

The following continuation of the GAP session uses the method described in Section

5.2 to compute the cup product α Y β “ 6p´γ ` δq where α, β are free generators

of H1pM,Zq and γ, δ are free generators of H2pM,Zq.

gap> cup:=CupProduct(G);

function(a, b) ... end

gap> cup([1,0],[0,1]);

[-6, 6]

It is well known that the cup product αYβ can be interpreted in terms of the linking

number LkpK1, K2q where Ki are the two components in the link of Figure 5.2 (see

for instance [73]).

We mention that to any lattice space M one can associate a homotopy equivalent

simplicial complex SM simply by taking the nerve of its collection of voxels; we

let XSM denote SM regarded as a CW-space. The following continuation of the

GAP session shows that for our example above this construction leads to a smaller

CW-space than the one above involving permutahedral cells; the CW-space XSM

has 31013 cells compared to the 156127 cells of XM . So it would have been slightly

advantageous to work with XSM rather than XM .

gap> Size(XM);

156127

gap> XSM:=RegularCWComplex(Nerve(ZigZagContractedComplex(M)));

Regular CW-complex of dimension 3

gap> Size(XSM);

31013

5.4 Fundamental groupoids and a distributed algorithm 92

Indeed, one could have reduced the size of the problem further by applying a se-

quence of simple homotopy collapses to obtain deformation retracts XM1 Ď XM

and XSM1 Ď XSM . The following commands

gap> XM1:=ContractedComplex(XM);;

gap> Size(XM1);

78341

gap> XSM1:=ContractedComplex(XSM);;

gap> Size(XSM1);

25185

produce CW-spaces XM1, XSM1 with 78341 cells and 25185 cells respectively.

The simplicial complex SM provides a method for computing cup products in all

dimensions when dealing with higher-dimensional M : one can use the Alexander-

Whitney diagonal approximation on the cellular chain complex C˚pSMq. For prac-

tical computations one would construct an admissible discrete vector field on SM

to produce a homotopy equivalence to a smaller non-regular CW-space Y and incor-

porate the induced chain homotopy equivalences C˚pSMq »
Õ C˚Y into the compu-

tation. For the low-dimensional cup product p5.1q this approach tends to be slower

than that described above. The following continuation of the GAP session computes,

for our 3-dimensional example, a chain complex C˚Y with C0Y “ Z, C1Y “ Z3,

C2Y “ Z3, CnY “ 0 for n ě 3 and so it is certainly quite practical to work with the

chain equivalences C˚pSMq Õ C˚Y in this example.

gap> CY:=ChainComplex(XSM);

Chain complex of length 3 in characteristic 0 .

gap> List([0..3],CY!.dimension);

[1, 3, 3, 0]

5.4 Fundamental groupoids and a distributed al-

gorithm

Let us analyse the computation of the previous section to see how it might be dis-

tributed over several computers. The computation begins with the representation of

the link L as a pure permutahedral complex consisting of 864 voxels. The comple-

ment M “ RzL̊ is then constructed as a pure permutahedral complex with 257851

voxels. The voxels of M are stored as a list of points in R3. There are then three

steps to computing the cohomology cup product on M , the first and second of which

consume the most time and memory.

5.4 Fundamental groupoids and a distributed algorithm 93

1. A zig-zag homotopy contraction (details of which are given in [31]) is per-

formed to compute a pure permutahedral complex M 1 which is homotopy

equivalent to M and which involves only 3728 voxels.

2. The complex M 1 is realized as a regular CW-space X “ XM involving 156127

cells in dimensionsď 3. A maximal admissible discrete vector field is computed

on X and the critical 1-cells and 2-cells are used to construct a presentation

P for π1X – π1M .

3. The cup product α Y β is read off directly from P .

It is difficult to make meaningfully precise statements about the complexity of Steps

1–3. Step 2 involves the computation of a discrete vector field on a regular CW-

space X. One could always deem every cell of X to be critical, in which case

there is nothing to compute. At the other extreme one could aim for a vector field

involving a minimal number of critical cells – but the construction of such a vector

field is known to be an NP hard problem (see for instance [68]). In Step 1 the zig-

zag homotopy reduction procedure is based on repeated applications of procedures

which can be regarded as producing discrete vector fields on a lattice complex and

so the comments for Step 2 also apply to Step 1. In Step 3 the 1- and 2- dimensional

cohomology groups of a cochain complex need to be computed using some version of

a Smith Normal Form algorithm and here again it is possible to produce examples

where small input data can yield lengthy computations. Rather than attempt to

make any precise complexity statement we simply provide the running times (on a

Linux laptop with Intel(R) Core(TM) i7-3610QM CPU @ 2.30GHz) for each of the

three steps applied to the example of Section 5.3: Step 1 took 5.7 seconds; Step 2

took 5.4 seconds; Step 3 took 0.004 seconds.

Step 1 involves repeatedly applying a basic homotopy deformation procedure which

inputs a pure lattice complex M and outputs a homotopy equivalent pure lattice

complex M 1 with potentially fewer voxels. The basic deformation procedure is ap-

plied until no size reduction occurs. The initial application of the procedure takes

1.1 seconds to reduce the number of voxels from 257851 to 25719 – a 90 percent

reduction in size. The basic procedure has to be applied a total of six times in order

to achieve a complex with 3728 voxels – a 98 percent reduction in size. So in this

example Step 1 is best speeded up simply by applying the basic procedure only once

rather than six times.

We thus focus on Step 2, with the aim of performing a distributed computation of

a presentation P for π1X.

We start by supposing that in Step 2 we have some expression for M 1 “ AYB as a

union of two pure permutahedral complexes A,B whose intersection AXB is also a

pure permutahedral complex. (For instance, we could choose two suitable integers

l ă r P Z and let A consist of those voxels of M 1 whose centre has x-coordinate ă r,

5.4 Fundamental groupoids and a distributed algorithm 94

and B consist of those voxels whose centre has x-coordinate ą l.) For the moment

let us make an assumption which is mathematically convenient but which is not so

realistic for many applied settings: assume that the spaces A, B and AX B are all

connected.

Given three computers PC1, PC2, PC3 each directly connected to a parent computer

we can send, from the parent computer, the data describing the pure permutahedral

complex A to PC1, the data describing B to PC2, and the data describing A X B

to PC3. We can then simultaneously construct the face lattices for A, B, A X B

and represent these spaces as regular CW-spaces XA, XB, XAXB on PC1, PC2, PC3

respectively. Then we can simultaneously compute maximal discrete vector fields

on the 3-skeleta of XA and XB, and on the 2-skeleton of XAXB. Because of the

connectivity assumptions the computation can be done so that in each case only

one 0-cell is critical. We can then read off on PC1 the presentation PA “ xxA | rAy
for π1pXAq, and read off on PC2 the presentation PB “ xxB | rBy for π1pXBq. On

PC3 we have that the critical 1-cells of XAXB correspond to a generating set xAXB
for π1pXAXBq. The identities of these critical 1-cells on XAXB can be sent from PC3

to both PC1 and PC2. Then, on PC1 we can use the discrete vector field on XA to

compute the homomorphism of free groups fA : F pxAXBq Ñ F pxAq induced by the

inclusion XAXB ãÑ XA while, simultaneously on PC2, we can use the discrete vector

field on XB to compute the corresponding homomorphism fB : F pxAXBq Ñ F pxBq.
Here F pxAq denotes the free group on xA. The presentations for π1A, π1B, π1pAXBq
and the homomorphisms fA, fB can now all be sent to the parent. The presentation

PAYB “ xxA, xB | rA, rB, fApxq “ fBpxq px P xAXBqy for the amalgamated product

π1A ˚π1pAXBq π1B can now be computed on the parent. By van Kampen’s theorem

PAYB is a presentation for the fundamental group π1X “ π1pAYBq. The following

is a flow chart of the parallel computation.

5.4 Fundamental groupoids and a distributed algorithm 95

This distributed computation of a presentation for π1X is correct because the classi-

cal theorem of van Kampen can be invoked thanks to the connectivity assumptions

on A,B,A X B. The distributed computation is practical because: (i) the digital

images A,B,A Y B can be efficiently transmitted between computers simply by

transmitting the lists of their voxel centres (there is no need to transmit the CW

face lattice); (ii) the homotopy-theoretic information described by the critical cells

of the CW-spaces XA, XB, XAXB in dimensions ď 2 can be encoded as group pre-

sentations and then efficiently transmitted between computers. The method, under

the connectivity assumptions, is implemented in the current version of HAP [28].

But one only has to think of a digital image representing a torus in R3 to realize

that many of the most natural decompositions M “ AYB of a digital image M will

5.4 Fundamental groupoids and a distributed algorithm 96

have disconnected intersection AXB. To overcome this difficulty we pay attention

to Alexander Grothendieck [46]:

Ceci est lié notamment au fait que les gens s’obstinent encore, en calcu-

lant avec des groupes fondamentaux, à fixer un seul point base, plutôt

que d’en choisir astucieusement tout un paquet qui soit invariant par les

symétries de la situation, lesquelles sont donc perdues en route. Dans

certaines situations (comme des théorèmes de descente à la Van Kampen

pour groupes fondamentaux) il est bien plus élégant, voire indispensable

pour y comprendre quelque chose, de travailler avec des groupöıdes fon-

damentaux par rapport à un paquet de points base convenable . . .

The above description of a distributed computation of a presentation for the fun-

damental group π1pX, x0q of a regular CW-space X “ XA Y XB, under severe

connectivity assumptions, extends to a computation of a presentation for the funda-

mental groupoid π1pX,X0q where the connectivity assumptions are relaxed to the

requirement that the set X0 has non-empty intersection with each connected com-

ponent of XAXB, each connected component of XA, and each connected component

of XB.

If a regular CW-space X is connected then there is a simple procedure, given in

[54], for extracting a presentation P for π1pX, x0q from a presentation for π1pX,X0q.
This provides a practical method for distributing the computation of P over several

computers.

The above distributed computation extends to regular CW-spaces X “ X1 YX2 Y
¨ ¨ ¨ Y Xn arising as the union of CW-subspaces Xi for 1 ď i ď n. Let X0 denote

a subset of the 0-skeleton X0 that has non-empty intersection with each connected

component of Xi XXj and non-empty intersection with each connected component

of Xi XXj XXk for all 1 ď i, j, k ď n. There is a diagram of groupoid morphisms

ğ

1ďiăjďn
π1pXi XXj, X0 XXi XXjq α

Ñ
β

ğ

1ďiďn
π1pXi, X0 XXiq γÑ π1pX,X0q (5.6)

where
Ů

denotes disjoint union in the category of groupoids; α is induced by the

inclusion XiXXj ãÑ Xi; β is induced by the inclusion XiXXj ãÑ Xj; γ is induced by

the inclusion Xi ãÑ X. The generalization of van Kampen’s theorem given in [18]

implies that in (5.6) the morphism γ is the coequalizer of α and β in the category of

groupoids. Thus to compute a presentation for π1pX,X0q one needs only compute

presentations for each π1pXi, X0 XXiq and the images under α and β of generators

for each π1pXiXXj, X0XXiXXjq. One can achieve this by first choosing a set X0

of vertices that has non-empty intersection with each connected component of all

double and triple intersections. Then compute admissible discrete vectors fields on

the 2-skeleta of Xi XXj for all 1 ď i ă j ď n such that all vertices in X0 XXi XXj

5.4 Fundamental groupoids and a distributed algorithm 97

are critical. Also compute admissible discrete vector fields on the 3-skeleta of the Xi

such that all vertices in X0 XXi are critical. From the vector fields on the Xi XXj

and Xi one can construct the coequalizer (5.6) as a diagram of finitely presented

groupoids and thus obtain a presentation for π1pX,X0q.

It is instructive to give an example showing the necessity for X0 to have non-empty

intersection with each connected component of three-fold intersections. Let X be

the simplicial graph with vertex set X0 “ t1, 2, 3, 4, 5u and edges t1, 4u, t2, 4u, t3, 4u,
t1, 5u, t2, 5u, t3, 5u. For 1 ď i ď 3 let Xi be the subgraph consisting of all vertices

except i and those edges not incident with i. Let X0 “ t1, 2, 3u. In this case, for

each 1 ď i ă j ď 3 the groupoid π1pXiXXj, X0XXiXXjq consists of a single object

and a single identity arrow. It follows that for X “ X1YX2YX3 the diagram (5.6)

is not a coequalizer diagram.

Chapter 6

Final Example

In this final chapter we give an example that summarizes and illustrates the aims

of the thesis. We start with a data set S of n “ 1700 points in R3 which is stored

in the text file “data61.txt”, see Appendix B.3. We construct a filter function

f : R3 Ñ R2

by using our GAP implementation of principal component analysis and project onto

the hyperplane spanned by the two principal components.

gap> Read("data61.txt");

gap> Length(S);

1700

gap> M:=VectorsToCovarianceMatrix(S)*1.0;

[[8.70847, -0.283718e-3, -0.354466e-1],

[-0.283718e-3, 8.71985, -0.527455e-1],

[-0.354466e-1, -0.527455e-1, 1.62771]]

gap> eig:=FloatSpectrum(M,100);;

gap> eig[1];

[8.72024229079632, 8.70864740941752, 1.62714029978615]

gap> A:=[eig[2][1],eig[2][2]];

[[0.999986, 0.00169704, -0.00501849],

[-0.00173429, 0.999971, -0.00742788]]

gap> f:=function(x) return A*x; end;

function(x) ... end

GAP session 6

Next we use our GAP implementation of the Mapper clustering algorithm to produce

a simplicial complex K representing the data S and f .

The simplicial complex K requires the choice of an open cover of R2. For this we

took of square grid of 92 “ 81 points lying close to the image fpSq.
98

99

gap> P:=Cartesian(List([0..8],x->1/2+x),List([0..8],y->1/2+y));;

gap> r:=95/100;;

gap> epsilon:=2;;

gap> dx:=EuclideanApproximatedMetric;;

gap> dz:=EuclideanApproximatedMetric;;

gap> K:=GeneralMapper(S,f,P,dx,epsilon,dz,r,cluster);

Simplicial complex of dimension 3.

The constructed simplicial complex K has dimension 3. To investigate the topology

of K we computed homology groups .

H0pKq “ Z

H1pKq “ Z‘ Z

H2pKq “ Z

gap> Homology(K,0);

[0]

gap> Homology(K,1);

[0, 0]

gap> Homology(K,2);

[0]

There are two likely candidates for the homology type of K. We might have K »
S1 ˆ S1.

or we might have K » S2 _ S1 _ S1.

.

.

To investigate these two possibilities we construct a presentation for the fundamental

group π1pKq. For the given example it is, in fact, possible to compute a presentation

100

for π1pKq directly from a discrete vector field on K. However, in general a compu-

tation of π1pKq can require lots of CPU time and memory and so there is merit in

computing a presentation π1pKq in a distributed fashion using the van Kampen’s

theorem for fundamental groupoids . To do this for a ą b we could consider

Rďa “ tpx, yq P R2 : x ď au,
Rěb “ tpx, yq P R2 : x ě bu.

Now we can form

Sa “ ts P S : fpsq P Rďau,
Sb “ ts P S : fpsq P Rěbu.

We now could use our GAP implementation of Mapper to construct simplicial com-

plexes Ka, Kb representing the data pSa, fq and pSb, fq.
Let V, V a, V b, denote the vertex sets for K,Ka, Kb. Note that, by construction,

V a Ă V, V b Ă V and V “ V a Y V b. In fact by choosing a, b appropriately, we get

K “ Ka YKb

So now could apply the van-Kampen theorem and our GAP implementation of fp

groupoids to Ka, Kb, Ka XKb in order to obtain a presentation for π1pKq.

To illustrate the required GAP commands in a succinct fashion, we now show how

to apply our fp groupoid implementations directly on K (rather than on Ka, Kb).

The following commands compute a finite presentation for the fundamental groupoid

π1pK, tx, y, zuq

for (an arbitrary choice of) vertices x, y, z P K.

gap> Y:=SimplicialComplexToRegularCWComplex(K);

Regular CW Complex of dimension 3;

gap> V:=[1, 27, 43];;

gap> G:=FundamentalGroupoidOfRegularCWComplex(Y,V);

< fp groupoid on the generators [f1 , f2 , f3 , f4] >

gap> gens:=GeneratorsOfGroupoid(G);;

gap> List(gens, x-> Source(x), Target(x));

[[1, 43], [27, 1], [43, 1], [1, 27]]

101

Now we use our GAP implementation of the vertex group to find a presentation for

the group π1pKq. Since H0pKq “ Z, we know that K is connected and the choice

of base point is not important.

gap> v:=Source(gens[1]);

27

gap> Gv:=VertexGroup(G,v);

<fp group of size infinity on the generators [f3, f4]>

gap> RelatorsOfFpGroup(Gv);

[f3*f4*f3^-1*f4^-1]

We obtain the presentation

π1pKq “ xx, y | xyx´1y´1y

In this example we are able to see, directly from the presentation, that

π1pKq – Zˆ Z

However, one can not so easily identify the homotopy type from the group.

But we can use our GAP implementation of cup products to identify the cup product

Y : H1pK,Zq ˆH1pK,Zq Ñ H2pK,Zq (6.1)

gap> cup:=CupProduct(Gv);

function(a, b) ... end

gap> cup([1,0], [0,1]);

[-1]

This shows that the cup product 6.1 is non-zero.

We know that the cup product for S2 _ S1 _ S1 is trivial so this suggests that K

may have the homotopy type of a torus.

Appendix A

FpGd functions

A.1 Fp Groupoids

FreeGroupoid

FpGdFreeGroupoid(objs,gens):: List, List Ñ FreeGroupoid

Input a list objs of integers represent the objects of the groupoid and a list

gens“ rrs1, g1, t1s, ..., rsn, gn, tnss of triples of integers for the generators with

their sources si and targets ti, and returns a free groupoid on objs and gen-

erated by gens, where si, ti P obj.

FpGroupoid

FpGdFpGroupoid(objs,gens,rels):: List, List, List Ñ FpGroupoid

FpGdFpGroupoid(G,S):: Group, Group Ñ FpGroupoid

Input a list objs of integers represent the objects of the groupoid, a list gens“
rrs1, g1, t1s, ..., rsn, gn, tnss of triples of integers for the generators with their

sources si and targets ti and a list rels“ rr1, ..., rms, where ri “ rgi1 , ..., gins,
gik P t˘g1, ...,˘gnu and returns a fp groupoid on the objects objs and gen-

erated by gens subject to a finite set of relations rels that these generators

satisfy.

Finitely presented groupoids can also obtained by factoring a free groupoid F

by a set of relators rels.

Input a Group G and a subgroup S of G, returns a finitely presented groupoid

GpdpG,Sq induced by the group action of G on the left cosets G{S.

102

A.1 Fp Groupoids 103

FpGdProduct

FpGdProduct(L):: List Ñ FreeGroupoidElm

FpGdProduct(L):: List Ñ FpGroupoidElm

Input a list L“ rg1, ..., gns of composed generators of some free groupoid and

return their product.

Input a list L“ rg1, ..., gns of composed generators of some fp groupoid and

return their product.

GeneratorsOfGroupoid

GeneratorsOfGroupoid(F):: FreeGroupoid Ñ List

GeneratorsOfGroupoid(G):: FpGroupoid Ñ List

Input a free groupoid F and returns a list of the generators of F.

Input a fp groupoid G and returns a list of the generators of G.

RelatorsOfFpGroupoid

RelatorsOfFpGroupoid(G):: FpGroupoid Ñ List

Input a fp groupoid G and returns a list of arrows represents the relators of G.

FreeGroupoidOfFpGroupoid

FreeGroupoidOfFpGroupoid(G):: FpGroupoid Ñ FreeGroupoid

Input a fp groupoid G and returns the underlying free groupoid G. This is the

groupoid generated by the free generators of G.

IsConnectedFpGroupoid

IsConnectedFpGroupoid(G):: FpGroupoid Ñ Boolean

Input fp groupoid G and returns true if G is connected, otherwise returns

false.

ComponentsOfFpGroupoid

ComponentsOfFpGroupoid(G):: FpGroupoid Ñ List

Input a fp groupoid G and returns a list of connected groupoids, such that the

disjoint union of these connected groupoids is G.

FundamentalGroupoid

FundamentalGroupoid(Y,V):: RegCWComplex, List Ñ FpGroupoid

FundamentalGroupoid(f,V):: RegCWMap, List Ñ GroupoidMorphism

Input a regular CW-complex Y and a list V Ă Y0 and returns an fp groupoid of

Y.

Input a regular CW-map f : X Ñ Y and a list V Ă X0 and returns the funda-

mental groupoid π1pfq : π1pX, V q Ñ π1pY, fpV qq.

A.1 Fp Groupoids 104

VertexGroup

VertexGroup(G,v):: FpGroupoid, Int Ñ FpGroup

Input fp groupoid G and an integer v and returns an fp group Gpv, vq repre-

sents the vertex group of G at v.

FpGroupToFpGroupoid

FpGroupToFpGroupoid(G):: FpGroup Ñ FpGroupoid

Input an fp group G and returns a presentation of groupoid on one object.

UnionOfGroupoids

UnionOfGroupoids(G,H):: FreeGroupoid, FreeGroupoidÑFreeGroupoid

UnionOfGroupoids(G,H):: FpGroupoid, FpGroupoid Ñ FpGroupoid

Input two free groupoids G and H and returns a free groupoid F on the objects

objs(G) Y objs(H) and generated by gens(G) Y gens(H).

Input two fp groupoids G and H and returns an fp groupoid F on the objects

objs(G) Y objs(H), generated by gens(G) Y gens(H) and it subjects to the

relators rels(G) Y rels(H).

GroupoidMorphismByImages

GroupoidMorphismByImages(G,H,gens,imgs):: Groupoid, Groupoid,

List, List Ñ GroupoidMorphism

Input two groupoids G and H and two lists gens and imgs of the generators of G

and arrows in H, respectively. It returns the groupoid morphism for which the

source is G and the range is H. The groupoid morphism maps the members of

gens to their images in H.

ImageOfArrow

ImageOfArrow(f,a):: GroupoidMomorphism, GroupoidElmÑGroupoidElm

Input groupoid morphism f: GÑ H and an arrow a in the gorupoid G returns

the image fpaq in the groupoid H.

PushoutOfFpGroupoids

PushoutOfFpGroupoids(f,g):: GroupoidMorphism, GroupoidMorphism Ñ
FpGroupoid

Input two groupoid morphisms f : π1pX, V q Ñ π1pY, fpV qq and g : π1pX, V q Ñ
π1pZ,gpV qq and returns the pushout π1pY,fpV qq ˚π1pX,V q π1pZ,gpV qq.

A.2 Mapper 105

Source

Source(w):: GroupoidElm Ñ Int

Source(F):: GroupoidMorphism Ñ Groupoid

Input a groupoid arrow w and returns an integer represents the source of w.

Input a groupoid morphism F : GÑ H returns the groupoid G.

Target

Traget(w):: GroupoidElm Ñ Int

Target(F):: GroupoidMorphism Ñ Groupoid

Input a groupoid arrow w and returns an integer represents the taget of w.

Input a groupoid morphism F : GÑ H returns the groupoid H.

Display

Display(M):: List Ñ Void

Display a graph G for which, M is the adjacency matrix.

A.2 Mapper

VectorsToCovarianceMatrix

VectorsToCovarianceMatrix(L):: List Ñ Matrix

Input a list L “ rp1, p2, ..., pns, where pk “ rpk1 , pk2 , ..., pkds is a list of real

numbers, and returns a symmetric dˆ d matrix M called the covariance matrix

of L.

FloatSpectrum

FloatSpectrum(M,n):: Matrix, Int Ñ List

FloatSpectrum(M,n,S):: Matrix, Int, String Ñ List

Input a symmetric matrix M and an integer n and returns a list rL1, L2s, where

L1 is a list of the eigenvalues of M in descending order and L2 is a list of the

corresponding eigenvectors.

Input a symmetric matrix M, an integer n and a string “Jacobi” and returns a

list rL1, L2s, where L1 is a list of the eigenvalues of M in descending order and L2

is a list of the corresponding eigenvectors based on Jacobi eigenvalue algorithm.

cluster

cluster(S, e, d):: List, float, function Ñ List

Input a list S “ rp1, p2, ..., pns, where pk “ rpk1 , pk2 , ..., pkds is a list of real

numbers, real number e and a metric function d : Rd ˆ Rd Ñ R and returns a

list rS1, S2, ..., Sms such that for any i, j P t1, 2, ...,mu, SiXSj “ H, i.e. if x P Si
and y P Sj then dpx, yq ą e.

A.2 Mapper 106

GeneralMapper

GeneralMapper(S, P, f, dx, a, dz, b, c):: List, List, function,

function, Rat, function, Rat, function Ñ Simplicial Complex

Input a list S, a list P , a function f , a function dx, a real number a, a function

dz, a real number b and a function c and returns a simplicial complex K.

ReadAMCfileAsPatternMatrix

ReadAMCfileAsPatternMatrix(str):: String Ñ List

Reads a AMC file identified by a string str such as “file.amc” or “path/file.amc”

and returns a list L. The list L represents a matrix of 62 columns, the entries

are rational numbers.

Appendix B

Data sets

B.1 dataset321.txt

A:=[

[2,3,9],[3,9,10],[9,10,14],[10,14,15],[2,14,15],[2,3,15],

[3,4,10],[4,10,11],[10,11,15],[11,15,16],[3,15,16],[3,4,16],

[4,5,11],[5,11,12],[11,12,16],[12,16,17],[4,16,17],[4,5,17],

[5,6,12],[6,12,13],[12,13,17],[13,17,18],[5,17,18],[5,6,18],

];

B:=[

[1,2,7],[2,7,9],[7,8,9],[8,9,14],[1,8,14],[1,2,14],

[2,3,9],[3,9,10],[9,10,14],[10,14,15],[2,14,15],[2,3,15],

[5,6,12],[6,12,13],[12,13,17],[13,17,18],[5,17,18],[5,6,18],

[1,6,13],[1,7,13],[7,13,18],[7,8,18],[6,8,18],[1,6,8]

];

AB:=[

[2,3,9],[3,9,10],[9,10,14],[10,14,15],[2,14,15],[2,3,15],

[5,6,12],[6,12,13],[12,13,17],[13,17,18],[5,17,18],[5,6,18]

];

B.2 permutahedralcomplex.txt

The text file permutahedralcomplex.txt include a binary array A of size 84ˆ77ˆ
40. As a sample, Ar44, :, :s is below.

[

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

107

B.2 permutahedralcomplex.txt 108

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

B.2 permutahedralcomplex.txt 109

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

B.2 permutahedralcomplex.txt 110

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

B.3 dataset61.txt 111

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

];

B.3 dataset61.txt

The text file dataset61.txt is stored in our package FpGd [3], it is a set of 1700 3-

dimensional points. The list S below include the first 100 points in dataset61.txt.

S:=[[237/200,189/40,121/40],[1749/200,179/20,3/2],[33/4,9/4,59/20],

[1111/200,363/40,41/25],[-3/40,267/200,17/10],[121/20,807/200,469/

B.3 dataset61.txt 112

200],[249/200,114/25,1/20],[1737/200,357/40,163/200],[166/25,241/

40,3/40],[27/100,267/40,-3/40],[357/40,137/50,251/100],[869/100,

319/40,-1/40],[1483/200,1227/200,3],[41/8,7/8,3],[61/20,149/25,141

/50],[19/4,277/40,3],[767/200,1341/200,59/20],[-1/20,1029/200,211/

200],[1793/200,161/20,-1/40],[179/20,34/5,209/200],[39/20,39/10,3/

40],[118/25,363/40,6/25],[1753/200,433/50,121/40],[299/50,357/40,

9/4],[241/40,467/100,369/200],[-13/200,1307/200,59/20],[781/200,

1669/200,3],[151/40,329/40,119/40],[313/100,349/40,-3/40],[179/20

,69/40,99/200],[127/40,359/40,83/40],[109/20,243/40,51/100],[-1/40

,267/200,137/50],[1111/200,71/50,-1/40],[3/40,209/25,3/40],[157/50,

61/50,1/40],[571/100,237/40,1],[9,563/200,33/40],[1/20,37/10,101/

40],[62/25,767/200,-1/40],[57/40,-1/40,13/100],[97/40,71/20,-1/20],

[239/40,541/100,123/40],[289/40,41/5,119/40],[0,183/50,141/50],

[216/25,1193/200,-1/40],[1637/200,1101/200,123/40],[179/20,57/

40,21/20],[189/50,-1/20,311/200],[759/200,-1/20,561/200],[-3/40,

27/10,19/40],[3/40,1233/200,129/200],[79/40,57/20,59/20],[1541/

200,1/40,213/200],[-1/40,771/200,223/100],[359/200,3/40,289/200]

,[41/20,249/40,3/40],[193/40,353/40,119/40],[309/40,203/40,3/40],

[151/40,329/40,1/40],[191/40,41/5,1/20],[191/40,9/40,1/40],[481/200

,381/100,1/20],[237/40,591/200,19/200],[121/20,1069/200,43/25],

[207/100,683/100,3],[133/20,359/40,73/50],[121/40,0,46/25],[1411/

200,1731/200,119/40],[33/40,9/4,1/20],[1461/200,-9/200,59/20],[29/

5,117/40,219/200],[1793/200,99/40,-3/40],[7/20,219/25,3/40],[3/8,

103/40,-1/40],[1793/200,247/40,121/40],[619/200,119/40,181/100],

[803/100,216/25,61/20],[1143/200,237/40,99/200],[353/40,289/40,

123/40],[101/40,541/100,119/40],[2/25,9,81/200],[123/200,1147/200,

-1/20],[29/40,361/40,361/200],[263/40,157/200,1/20],[411/200,363/40

,221/100],[1/40,347/100,1/20],[319/40,1/4,59/20],[179/20,117/20,41/

20],[89/40,27/40,3],[1607/200,67/50,119/40],[1783/200,363/40,447/

200],[771/100,1129/200,-1/20],[-3/40,603/200,393/200],[1727/200,

21/50,61/20],[166/25,1731/200,-3/40],[83/25,1231/200,117/40],[15/

4,663/100,3],[13/8,-3/40,199/200],[623/200,-1/40,13/20]];

Appendix C

Codes of FpGd

C.1 Groupoid

###

Functions & Methods

###

#0

#F IdentityGroupoidElm

##

##

##

InstallMethod(IdentityGroupoidElm,

"Method for Identity Element of Free Groupoid",

[IsFpGdFreeGroupoid,IsInt],

function(G,obj)

local a, rec_a, A;

a:=[];

rec_a:=rec(list:=[], source:=obj, target:=obj, parent:=G);

A:=Objectify(FpGdFreeGroupoidElm,rec_a);

return A;

end);

#

###

#0

#F =

##

##

113

C.1 Groupoid 114

##

InstallMethod(\=,"for two words in Free Groupoid", IsIdenticalObj,

[IsFpGdFreeGroupoidElm, IsFpGdFreeGroupoidElm], 0,

function(w1,w2)

return

w1!.source = w2!.source and

w1!.target = w2!.target and

w1!.list = w2!.list;

end);

#

###

InstallTrueMethod(IsMultiplicativeElement,IsFpGdFreeGroupoidElm);

#

###

#0

#F SimplifyList

##

##

##

SimplifyList:=function(w)

local l, n, v,i,w_new,x, j;

l:=Length(w);

if l=0 then

return [];

else

w_new:=ShallowCopy(w);

n:=Int(l/2);

for j in [1..n] do

v:=ShallowCopy(w_new);

i:=0;

for x in List([1..Length(v)-1],i->v[i]) do

i:=i+1;

if x=-v[i+1] then

Unbind(v[i]);

Unbind(v[i+1]);

fi;

od;

w_new:=Filtered(v,a->IsBound(a));

C.1 Groupoid 115

od;

return w_new;

fi;

end;

#

###

#0

#F *

##

##

##

InstallMethod

(*,

"for two free groupoid elements in ’IsFpGdFreeGroupoidElm’ ",

[IsFpGdFreeGroupoidElm, IsFpGdFreeGroupoidElm],

function(w1 , w2)

local w, F ;

if not (w1!.target = w2!.source) then

Print("Words are not composable. \n");

return fail;

else

F:=w1!.parent;

w:=SimplifyList(Concatenation(w1!.list,w2!.list));

return Objectify(FpGdFreeGroupoidElm,

rec(list:=w, source:=w1!.source, target:=w2!.target, parent:=F));

fi;

end

);

#

###

#0

#F FpGdProduct

##

##

##

InstallGlobalFunction(FpGdProduct, [IsFpGdFreeGroupoidElm],

function(w)

local k,L,i;

k:=Length(w);

C.1 Groupoid 116

L:=w[1];

for i in [2..k] do

L:=w[i]*L;

od;

return L;

end);

#

###

#0

#F ^

##

##

##

InstallMethod

(\^,

"for one free groupoid element in ’IsFpGdFreeGroupoidElm’ ",

[IsFpGdFreeGroupoidElm, IsInt],

function(g,n)

local r,L, ginvList;

L:=g!.list;

r:=Length(L);

if (n=-1) then

if (r=1) then

return Objectify(FpGdFreeGroupoidElm,

rec(list:=-g!.list, source:=g!.target, target:=g!.source,

parent:=g!.parent));

else

ginvList:=List([1..r],i->-L[r-i+1]);

return Objectify(FpGdFreeGroupoidElm,

rec(list:=ginvList, source:=g!.target, target:=g!.source,

parent:=g!.parent));

fi;

elif (n=1) then

if (r=1) then

return Objectify(FpGdFreeGroupoidElm,

rec(list:=g!.list, source:=g!.source, target:=g!.target,

parent:=g!.parent));

else

ginvList:=List([1..r],i->L[r-i+1]);

return Objectify(FpGdFreeGroupoidElm,

C.1 Groupoid 117

rec(list:=ginvList, source:=g!.source, target:=g!.target,

parent:=g!.parent));

fi;

else return fail;

fi;

end);

#

###

#0

#F GeneratorsOfGroupoid

##

##

##

InstallOtherMethod(GeneratorsOfGroupoid, [IsFpGdFreeGroupoid],

function(G)

local g, gens, k, i, s, t, a, A;

g:=G!.generators;

s:=G!.sources;

t:=G!.targets;

k:=Length(g);

a:=[];

A:=[];

gens:=[];

for i in [1..k] do

a[i]:=rec(list:=[g[i]], source:=s[i], target:=t[i], parent:=G);

A[i]:=Objectify(FpGdFreeGroupoidElm,a[i]);

Add(gens,A[i]);

od;

return gens;

end);

#

###

#0

#F FreeGroupoid

##

##

##

InstallGlobalFunction(FreeGroupoid,

function(arg)

local l,k,L,s,t,g,o,Rec,Name;

C.1 Groupoid 118

o:=arg[1];

L:=arg[2];

k:=Length(L);

l:=Length(arg);

if l > 2 then

Name:=arg[3];

else

Name:="G";

fi;

if Length(SSortedList(L)) <> k then

Print ("error,"," ","some generators are duplicated", "\n");

return fail;

else

s:=List([1..k],i->L[i][1]);

g:=List([1..k],i->L[i][2]);

t:=List([1..k],i->L[i][3]);

Rec:=rec(objects:=o, generators:=g, sources:=s, targets:=t,

name:=Name);

return Objectify(FpGdFreeGroupoid,Rec);

fi;

end);

#

###

#0

#F GeneratorsOfGroupoid

##

##

##

InstallOtherMethod(GeneratorsOfGroupoid, [IsFpGdFpGroupoid],

function(G)

local g, gens, k, i, s, t, a, A;

g:=G!.generators;

s:=G!.sources;

t:=G!.targets;

k:=Length(g);

a:=[];

A:=[];

gens:=[];

for i in [1..k] do

a[i]:=rec(list:=[g[i]], source:=s[i], target:=t[i], parent:=G);

C.1 Groupoid 119

A[i]:=Objectify(FpGdFpGroupoidElm,a[i]);

Add(gens,A[i]);

od;

return gens;

end);

#

###

#0

#F FpGroupoid

##

##

##

InstallMethod(FpGroupoid,

function(arg)

local l,k,L,s,t,g,o,r,Rec,Name;

o:=arg[1];

L:=arg[2];

k:=Length(L);

r:=arg[3];

l:=Length(arg);

if l > 3 then

Name:=arg[4];

else

Name:="G";

fi;

if Length(SSortedList(L)) <> k then

Print ("error,"," ","some generators are duplicated", "\n");

return fail;

else

s:=List([1..k],i->L[i][1]);

g:=List([1..k],i->L[i][2]);

t:=List([1..k],i->L[i][3]);

Rec:=rec(objects:=o, generators:=g, sources:=s, targets:=t,

relators:=r, name:=Name);

return Objectify(FpGdFpGroupoid,Rec);

fi;

end);

#

###

#0

C.1 Groupoid 120

#F FpGroupoid

##

##

##

InstallOtherMethod(FpGroupoid,

function(G,L)

local U,RC,LC,gens,Gens,Gens_inv,W,sep,rels,R,x,C,Rels,r,Y,ftr,K,i,

j,b,ff,y,p,WW,find1,find2,find3,find4,RELS;

if IsList(L) then

U:=Subgroup(G,L);

else

U:=L;

fi;

RC:=RightCosets(G,U);

LC:=List(RC,x->x!.Representative);

gens:=GeneratorsOfGroup(G);

W:=[];

for i in [1..Length(gens)] do

for j in [1..Length(LC)] do

Add(W,[LC[j],gens[i],LC[j]*gens[i]]);

od;

od;

###################### begin 1 #######################

find1:=function(x) local k,i;

k:=0;

for i in [1..Length(RC)] do

if x in RC[i] then

k:=i; break;

fi;

od;

return k;

end;

###################### end 1 #########################

###################### begin 1 #######################

find2:=function(x)

local i,j,k,z;

j:=1;

for i in [1..Length(gens)] do

j:=j+1;

C.1 Groupoid 121

if PrintString(gens[i]*x^-1)=PrintString(Identity(G)) then

k:=i; break; fi;

od;

if j>Length(gens) then

i:=0;

for z in List(gens,y->y^-1) do

i:=i+1;

if PrintString(z*x^-1)=PrintString(Identity(G)) then

k:=-i; break; fi;

od;

fi;

return k;

end;

###################### end 1 #########################

Gens:=List([1..Length(W)],x->[find1(W[x][1]),find2(W[x][2]),

find1(W[x][3])]);

Gens_inv:=List(Gens,m->[m[3],-m[2],m[1]]);

###################### begin 1 #######################

sep:=function(G,w)

local g,ww,W,x,U,j,i,F,gens,f,N;

F:=FreeGroupOfFpGroup(G);

gens:=GeneratorsOfGroup(F);

g:=Concatenation(gens,List(gens,x->x^-1));

ww:=StructuralCopy(w);

W:=[];

while not Length(ww)=0 do

for x in g do

if Length(x^-1*ww)+1=Length(ww) then

Add(W,x);

ww:=x^-1*ww;

fi;

od;

od;

U:=List([1..Length(W)],i->[]);

Add(U[1],W[1]);

j:=1;

for i in [2..Length(w)] do

if W[i]=W[i-1] then

Add(U[j],W[i]);

else

C.1 Groupoid 122

Add(U[j+1],W[i]);

j:=j+1;

fi;

od;

N:=Flat(Filtered(U,x->not x=[]));

f:=GroupHomomorphismByImages(F,G,gens,GeneratorsOfGroup(G));

return List(N,x->Image(f,x));

end;

####################### end 1 ########################

rels:=RelatorsOfFpGroup(G);

R:=List(rels,r->sep(G,r));

R:=List(R,L->Reversed(L));

R:=List(R,r->List(r,x->find2(x)));

RELS:=List([1..Length(LC)*Length(R)],i->[]);

###################### begin 1 #######################

find3:=function(x)

local p;

if x in List(Gens,y->y{[1,2]}) then

p:=Position(List(Gens,y->y{[1,2]}),x);

return Gens[p][3];

else

p:=Position(List(Gens_inv,y->y{[1,2]}),x);

return Gens_inv[p][3];

fi;

end;

###################### end 1 #######################

i:=0;

for y in [1..Length(LC)] do

for r in R do

i:=i+1;

for x in r do

Add(RELS[i],[y,x,find3([y,x])]);

y:=find3([y,x]);

od;

od;

od;

###################### end 1 #######################

find4:=function(x)

C.1 Groupoid 123

if x in Gens then

return Position(Gens,x);

else

return -Position(Gens_inv,x);

fi;

end;

###################### end 1 #######################

RELS:=List(RELS,L->List(L,x->find4(x)));

return FpGroupoid[[1..Length(LC)],Gens,RELS];;

end);

#

###

#0

#F IdentityGroupoidElm

##

##

##

InstallOtherMethod(IdentityGroupoidElm,

"Method for Identity Element of Fp Groupoid",

[IsFpGdFpGroupoid,IsInt],

function(G,obj)

local a, rec_a, A;

a:=[];

rec_a:=rec(list:=[], source:=obj, target:=obj, parent:=G);

A:=Objectify(FpGdFpGroupoidElm,rec_a);

return A;

end);

#

##

InstallTrueMethod(IsMultiplicativeElement,IsFpGdFpGroupoidElm);

###

#0

#F *

##

##

##

InstallOtherMethod

C.1 Groupoid 124

(*,

"for two Fp groupoid elements in ’IsFpGdFpGroupoidElm’ ",

[IsFpGdFpGroupoidElm, IsFpGdFpGroupoidElm],

function(w1 , w2)

local w, F ;

if not (w1!.target = w2!.source) then

Print("Words are not composable. \n");

return fail;

else

F:=w1!.parent;

w:=SimplifyList(Concatenation(w1!.list,w2!.list));

return Objectify(FpGdFpGroupoidElm,

rec(list:=w, source:=w1!.source, target:=w2!.target, parent:=F));

fi;

end

);

#

###

#0

#F ^

##

##

##

InstallOtherMethod

(\^,

"for one Fp groupoid element in ’IsFpGdFpGroupoidElm’ ",

[IsFpGdFpGroupoidElm, IsInt],

function(g,n)

local r,L, ginvList;

L:=g!.list;

r:=Length(L);

if (n=-1) then

if (r=1) then

return Objectify(FpGdFpGroupoidElm,

rec(list:=-g!.list, source:=g!.target, target:=g!.source,

parent:=g!.parent));

else

ginvList:=List([1..r],i->-L[r-i+1]);

return Objectify(FpGdFpGroupoidElm,

rec(list:=ginvList, source:=g!.target, target:=g!.source,

C.1 Groupoid 125

parent:=g!.parent));

fi;

elif (n=1) then

if (r=1) then

return Objectify(FpGdFpGroupoidElm,

rec(list:=g!.list, source:=g!.source, target:=g!.target,

parent:=g!.parent));

else

ginvList:=List([1..r],i->L[r-i+1]);

return Objectify(FpGdFpGroupoidElm,

rec(list:=ginvList, source:=g!.source, target:=g!.target,

parent:=g!.parent));

fi;

else

return fail;

fi;

end);

#

###

#0

#F RelatorsOfFpGroupoid

##

##

##

InstallGlobalFunction(RelatorsOfFpGroupoid,

function(G)

local rels,t,gens, ListToWord,Rels, r;

rels:=G!.relators;

t:=Length(rels);

gens:=GeneratorsOfGroupoid(G);

###

ListToWord:=function(L,Gens)

local Lnew, LL, K, i, j, g, k;

g:=Concatenation(Gens,List(Gens,x->x^-1));

Lnew:=Filtered(g,x->x!.list[1] in L);

LL:=[];

for k in L do

for j in [1..Length(Lnew)] do

if Lnew[j]!.list[1]=k then

Add(LL,Lnew[j]);

C.1 Groupoid 126

fi;

od;

od;

K:=LL[1];

for i in [2..Length(LL)] do

K:=K*LL[i];

od;

return K;

end;

###

Rels:=List([1..t],i->ListToWord(rels[i],gens));

if "parent" in NamesOfComponents(G) then

for r in Rels do

r!.parent:=G!.parent;

od;

fi;

return Rels;

end);

#

###

#0

#F FreeGroupoidOfFpGroupoid

##

##

##

InstallGlobalFunction(FreeGroupoidOfFpGroupoid, function(G)

local objs, gens, s, t, N, R;

objs:= G!.objects;

gens:=G!.generators;

s:=G!.sources;

t:=G!.targets;

N:=G!.name;

R:=rec(objects:=objs,generators:=gens,sources:=s,targets:=t,name:=N);

return Objectify(FpGdFreeGroupoid,R);

end);

#

###

#0

#F TreeOfFpGroupoid

C.1 Groupoid 127

##

##

##

InstallMethod(TreeOfFpGroupoid,"Method for Tree of Fp Groupoid",

[IsFpGdFpGroupoid, IsInt],

function(G,v)

local g,T, V, objs, gens, ftr;

T:=[]; V:=[v];

gens:=GeneratorsOfGroupoid(G);

ftr:=Filtered(gens,x->not Source(x)=Target(x));

objs:=G!.objects;

if not v in objs then

Print("The vertex should be an object of the Groupoid. \n");

return fail;

else

while Length(T)<Length(objs)-1 do

for g in ftr do

if g!.source in V then

if not g!.target in V then

Add(V,g!.target);

Add(T,g);

fi;

fi;

if g!.target in V then

if not g!.source in V then

Add(V,g!.source);

Add(T,g^-1);

fi;

fi;

od;

od;

return T;

fi;

end);

#

###

#0

#F IdentityFpGroupoidElm

C.1 Groupoid 128

##

##

##

InstallOtherMethod(IdentityFpGroupoidElm,

"Method for Identity Element of Fp Groupoid",

[IsFpGdFpGroupoid,IsInt],

function(G,obj)

local a, rec_a, A;

a:=[];

rec_a:=rec(list:=[], source:=obj, target:=obj, parent:=G);

A:=Objectify(FpGdFpGroupoidElm,rec_a);

return A;

end);

#

###

#0

#F =

##

##

##

InstallOtherMethod(\=,"for two words in Fp Groupoid", IsIdenticalObj,

[IsFpGdFpGroupoidElm, IsFpGdFpGroupoidElm], 0, function(w1,w2)

return

w1!.source = w2!.source and

w1!.target = w2!.target and

w1!.list = w2!.list;

end);

#

###

#0

#F ComponentsOfFpGroupoid

##

##

##

InstallMethod(ComponentsOfFpGroupoid,

"function for components of Fp Groupoid", [IsFpGdFpGroupoid],

function(G)

local gens,L,C,i,j,g,M,k,N,NN, W, r, Q,SubGroupoid,NeighbouredGenerators;

NeighbouredGenerators:=function(g1,g2)

if g1!.source=g2!.target or g2!.source=g1!.target or

C.1 Groupoid 129

g1!.source=g2!.source or g2!.target=g1!.target

then return true; else return false;

fi;

end;

gens:=GeneratorsOfGroupoid(G);

L:=Length(gens);;

C:=List([1..L],i->[gens[i]]);;

for i in [1..L-1] do

for j in [i+1..L] do

if NeighbouredGenerators(gens[i],gens[j]) then

Add(C[i],gens[j]);

fi;

od;

od;

g:=function(R,r) if Position(R,r)=fail then return 0; else return

Position(R,r); fi; end;

M:=List([1..L],i->[]);;

for k in [1..L] do

M[k]:=List([1..L],i->g(C[k],gens[i]));

od;

N:=List([1..L],i->[]);;

for i in [1..L] do

for j in [1..L] do

if not M[i][j]=0 then

N[i][j]:=j;

else

N[i][j]:=[];

fi;

od;

od;

for i in [1..L-1] do

for j in [i+1..L] do

if not Filtered(Intersection(N[i],N[j]), k -> not k=[])=[] then

N[i]:=Union(N[i],N[j]); N[j]:=[];

fi;

od;

od;

NN:=SSortedList(N);;

W:=[];;

r:=0;;

C.1 Groupoid 130

for i in [1..Length(NN)] do

if not NN[i]=[] then r:=r+1; W[r]:=NN[i]; fi;

od;

W:=List([1..Length(W)], i-> Filtered(W[i], k -> not k=[]));

Q:=List([1..Length(W)],i->List([1..Length(W[i])],j->gens[W[i][j]]));

###

SubGroupoid:=function(G,Gens)

local Rec, Rels, objs, gens, sours, targs, rels, r, g, N,k;

Rels:=RelatorsOfFpGroupoid(G);

objs:= SSortedList(Flat (List(Gens, g -> [g!.source,g!.target])));

gens:=List(Gens, g -> g!.list[1]);

sours:=List(Gens, g -> g!.source);

targs:=List(Gens, g -> g!.target);

rels:=[];

for r in Rels do

if not Intersection(r!.list,gens)=[] then Add(rels,r!.list); fi;

od;

Rec:=rec(objects:=objs, generators:=gens, sources:=sours,

targets:=targs, relators:=rels, name:="G");

return

Objectify(FpGdFpGroupoid,StructuralCopy(Rec));

end;

##

return List([1..Length(Q)],i->SubGroupoid(G,Q[i]));

end);

#

###

#0

#F IsConnectedFpGroupoid

##

##

##

InstallMethod(IsConnectedFpGroupoid,

"method for connectivity of Fp Groupoid",

[IsFpGdFpGroupoid],

function(G)

if Length(ComponentsOfFpGroupoid(G))=1 then return true; else

return false; fi;

end);

#

C.1 Groupoid 131

###

#0

#F RelatorToGroupWord

##

##

##

InstallMethod(RelatorToGroupWord,

"method for connectivity of Groupoid",

[IsFpGdFpGroupoid, IsFpGdFpGroupoidElm, IsInt],

function(G,w,v)

local T,L,s,e;

s:=w!.source;

T:=TreeOfFpGroupoid(G,v);

L:=Length(T);

if s=v then return w;

else

while not w!.source=v do

for e in T do

s:=w!.source;

if e!.target=s then

w:=e*w*e^-1;

fi;

od;

od;

return w;

fi;

end);

#

###

#0

#F VertexGroup

##

##

##InstallMethod(VertexGroup, "method for finding vertex group",

[IsFpGdFpGroupoid, IsInt],

function(G,v)

local T,Tinv,gens,ftr,fun,rels,W1,W2,x,RM,L1,LL1,prod,R,F,M,f,K,

H,LL,L2,h,ff,s1,s2,s12,i,j;

T:=TreeOfFpGroupoid(G,v);

C.1 Groupoid 132

Tinv:=List(T,x->x^-1);

gens:=GeneratorsOfGroupoid(G);

ftr:=Filtered(gens,x->not x in Concatenation(T,Tinv));

###

fun:=function(p) # return path from v to p.

local A,xx,TT,y;

A:=[];

xx:=Filtered(T,x->Target(x)=p)[1];

if Source(xx)=v then return xx; fi;

TT:=StructuralCopy(T);

while not Source(xx)=v do

for y in TT do

if Target(y)=p then

Add(A,y);

p:=Source(y);

Unbind(TT[Position(TT,y)]);

xx:=y;

fi;

od;

od;

A:=List([0..Length(A)-1],i->A[Length(A)-i]);

return FpGdProduct(A);

end;

###

W1:=[];

for x in ftr do

if Source(x)=v and Target(x)=v then Add(W1,x); fi;

if Source(x)=v and not Target(x)=v then Add(W1,

x*fun(Target(x))^-1); fi;

if Target(x)=v and not Source(x)=v then Add(W1,

fun(Source(x))*x); fi;

if not Source(x)=v and not Target(x)=v then

Add(W1,fun(Source(x))*x*fun(Target(x))^-1);

fi;

od;

W2:=[];

R:=RelatorsOfFpGroupoid(G);

for x in R do

if Source(x)=v and Target(x)=v then Add(W2,x); fi;

C.1 Groupoid 133

if Source(x)=v and not Target(x)=v then

Add(W2,x*fun(Target(x))^-1); fi;

if Target(x)=v and not Source(x)=v then

Add(W2,fun(Source(x))*x); fi;

if not Source(x)=v and not Target(x)=v then

Add(W2,fun(Source(x))*x*fun(Target(x))^-1);

fi;

od;

L1:=List(W1,x->x!.list);

L2:=List(W2,x->x!.list);

F:=FreeGroup(Length(gens));

H:=FreeGroup(Length(gens));

f:=GeneratorsOfGroup(F);

h:=GeneratorsOfGroup(H);

LL:=List([1..Length(gens)],x->[x]);

LL1:=[];

for x in LL do

if not x[1] in List(Flat(L1),y->AbsoluteValue(y)) then

Add(LL1,x); fi;

od;

if Length(LL1)<Length(L1)+Length(L1) then

for x in LL do

if not x in Concatenation(L1,LL1) then

Add(LL1,x);

if Length(LL1)=Length(gens)-Length(L1) then break; fi;

fi;

od;

fi;

prod:=function(L) if Length(L)>1 then return FpGdProduct(L); else

return L[1]; fi; end;

#L1:=Concatenation(L1,LL1);

ff:=function(M,x) if x in M then return Position(M,x); else

return Position(List(M,x->x^-1),x); fi; end;

C.1 Groupoid 134

s1:=List(T,x->ff(gens,x));

s2:=Difference([1..Length(gens)],s1);

s12:=[];

for i in s1 do

s12[i]:=h[i];

od;

j:=0;

for i in s2 do

j:=j+1;

s12[i]:=prod(List(L1[j],x->h[AbsoluteValue(x)]^SignInt(x)));

od;

K:=GroupHomomorphismByImages(F,H,f,s12);

M:= List (L2, L-> prod(List(L , x -> h[AbsoluteValue(x)]^

SignInt(x))));

rels := Concatenation(List (M , x-> PreImage(K,x)) ,

List(s1,x-> f[x]));

return F/rels;

end);

#

###

#0

#F Source

##

##

##

InstallOtherMethod(Source,

"source of of an arrow of a Fp Groupoid",

[IsFpGdFreeGroupoidElm],

function(f) return f!.source;

end);

#

###

#0

#F Target

##

##

##

InstallOtherMethod(Target,

"target of of an arrow of a Fp Groupoid",

[IsFpGdFreeGroupoidElm],

C.1 Groupoid 135

function(f) return f!.target;

end);

#

###

#0

#F Source

##

##

##

InstallOtherMethod(Source,

"source of of a generator of a Free Groupoid",

[IsFpGdFpGroupoidElm],

function(f) return f!.source;

end);

#

###

#0

#F Target

##

##

##

InstallOtherMethod(Target,

"target of of a generator of a Free Groupoid",

[IsFpGdFpGroupoidElm],

function(f) return f!.target;

end);

#

###

#0

#F Length

##

##

##

InstallOtherMethod(Length,

"length of of an alement of a Groupoid",

[IsFpGdFpGroupoidElm],

function(f) return Length(f!.list);

end);

#

###

C.1 Groupoid 136

#0

#F Length

##

##

##

InstallOtherMethod(Length,

"length of of an element of a Groupoid",

[IsFpGdFreeGroupoidElm],

function(f) return Length(f!.list);

end);

#

###

#0

#F

##

##

##

InstallOtherMethod

(\/, " ",

[IsFpGdFreeGroupoid, IsList],

function(F , L)

local Rels, N, G;

Rels:=List([1..Length(L)],i->L[i]!.list);

if L=[] then G:=Objectify(FpGdFpGroupoid,

rec(objects:=F!.objects,

generators:=F!.generators,

sources:=F!.sources,

targets:=F!.targets,

relators:=Rels,

name:="G"));

else

N:=L[1]!.parent;

Rels:=List([1..Length(L)],i->L[i]!.list);

G:= Objectify(FpGdFpGroupoid,

rec(objects:=F!.objects,

generators:=F!.generators,

sources:=F!.sources,

targets:=F!.targets,

relators:=Rels,

name:=N!.name));

C.1 Groupoid 137

G!.parent:=N;

fi;

return G;

end);

#

###

#0

#F in

##

##

##

InstallOtherMethod(\in , "for groupoid elements" , [IsObject, IsObject],

function (g,G)

local N;

if IsFpGdFreeGroupoidElm(g) or IsFpGdFpGroupoidElm(g)

then

N:=g!.parent;

if N=G then

return true;

else

return false;

fi;

else

return false;

fi;

end);

#

###

#0

#F in

##

##

##

InstallOtherMethod(\in , "for free groupoid elements" ,

[IsFpGdFpGroupoidElm , IsFpGdFpGroupoid] ,

function (g,G)

local N;

if IsFpGdFpGroupoidElm(g) then

N:=g!.parent;

if N=G then

C.1 Groupoid 138

return true;

else

return false;

fi;

else

return false;

fi;

end);

#

###

#0

#F =

##

##

##

InstallOtherMethod(\= , "for two free groupoids" ,

[IsFpGdFreeGroupoid, IsFpGdFreeGroupoid],

function (F1,F2)

if F1!.objects = F2!.objects and

F1!.generators = F2!.generators and

F1!.sources = F2!.sources and

F1!.targets = F2!.targets then

return true;

else

return false;

fi;

end);

#

###

#0

#F =

##

##

##

InstallOtherMethod(\= , "for two fp groupoids" ,

[IsFpGdFpGroupoid, IsFpGdFpGroupoid],

function (G1,G2)

if G1!.objects = G2!.objects and

G1!.generators = G2!.generators and

G1!.sources = G2!.sources and

C.1 Groupoid 139

G1!.targets = G2!.targets and

G1!.relators = G2!.relators then

return true;

else

return false;

fi;

end);

#

###

#0

#F FundamentalGroupoidOfRegularCWComplex

##

##

##

InstallMethod(FundamentalGroupoidOfRegularCWComplex,

"method for finding fundamental groupoid",

[IsHapRegularCWComplex, IsList],

function(Y,V)

local st,F,critical_cells,vf,kappa1,u,VF,2bounds,Deform,gens,RELS,

Rels,x,y,P,G,c_cells,vfield,verCrt,edgCrt,facCrt,edgTar,facTar,verSor,

edgSor,test,z;

#####################################

#

critical_cells:=function(Y,V)

local cc,vf,vf1,vf2,0c,0c0,1c,1c1,x,y,CC,cc0,cc1,cc2;

Y!.criticalCells:=fail;

Y!.vectorField:=fail;

cc:=CriticalCells(Y);

vf:=Y!.vectorField;

vf2:=SortedList(Filtered(vf[2],x->IsInt(x)));

0c:=Union(List(Y!.boundaries[2],x->x{[2,3]}));

0c0:=Difference(0c,V);

1c:=Union(List(Y!.boundaries[3],x->x{[2,3,4]}));

1c1:=Difference(1c,vf2);

vf1:=[];

for x in 0c0 do

for y in 1c1 do

if x in Y!.boundaries[2][y]{[2,3]} then

vf1[y]:=x;

break;

C.1 Groupoid 140

fi;

od;

1c1:=1c1{Difference([1..Length(1c1)],[Position(1c1,y)])};

od;

Y!.vectorField:=[vf1,vf[2]];

cc0:=List(V,x->[0,x]);

cc1:=List(Difference(1c,

Union(List(Filtered(vf1,x->IsInt(x)),y->

Position(vf1,y)) ,Filtered(vf2,x->IsInt(x))))

,z->[1,z]);

cc2:=Filtered(cc,x->x[1]=2);

CC:=Union(cc0,cc1,cc2);

Y!.criticalCells:=Filtered(CC,x->not x=[]);

return true;

end;

#

#####################################

critical_cells(Y,V);;

vfield:=Y!.vectorField;

c_cells:=Y!.criticalCells;

verCrt:=List(Filtered(c_cells,x->x[1]=0) , y->y[2]);;

edgCrt:=List(Filtered(c_cells,x->x[1]=1) , y->y[2]);;

facCrt:=List(Filtered(c_cells,x->x[1]=2) , y->y[2]);;

edgTar:=List(Filtered(vfield[1],x->IsInt(x)),y->Position(vfield[1],y));;

facTar:=List(Filtered(vfield[2],x->IsInt(x)),y->Position(vfield[2],y));;

verSor:=List(edgTar,x->[vfield[1][x],x]);;

edgSor:=List(facTar,x->[vfield[2][x],x]);;

vf:=[[verCrt,edgCrt,facCrt],[edgTar,facTar],[verSor,edgSor]];;

#####################################

#

kappa1:=function(1c)

local 1c_targ,1c_sour,1c_Targ,1c_Sour,bool,ee,path;

1c_targ:=Y!.boundaries[2][1c][2];;

1c_sour:=Y!.boundaries[2][1c][3];;

path:=[[],[]];;

if not 1c_targ in vf[1][1] then

bool:=true;

C.1 Groupoid 141

while bool=true do

ee:=Filtered(vf[3][1],x->x[1]=1c_targ)[1][2];

1c_Targ:=Y!.boundaries[2][ee][2];

if 1c_Targ=1c_targ then

1c_targ:=Y!.boundaries[2][ee][3];

Add(path[1],ee);

else

1c_targ:=1c_Targ;

Add(path[1],ee);

fi;

if 1c_targ in vf[1][1] then

bool:=false;

fi;

od;

fi;

if not 1c_sour in vf[1][1] then

bool:=true;

while bool=true do

ee:=Filtered(vf[3][1],x->x[1]=1c_sour)[1][2];

1c_Sour:=Y!.boundaries[2][ee][3];

if 1c_Sour=1c_sour then

1c_sour:=Y!.boundaries[2][ee][2];

Add(path[2],ee);

else

1c_sour:=1c_Sour;

Add(path[2],ee);

fi;

if 1c_sour in vf[1][1] then bool:=false; fi;

od;

fi;

if not path[2]=[] then

path[2]:=List([0..Length(path[2])-1],x->

path[2][Length(path[2])-x]);

fi;

if not 1c in path[2] and not 1c in path[1] then

Add(path[2],1c);

fi;

path:=Concatenation(path[2] , path[1]);

return [1c_sour,1c_targ,path];

end;

C.1 Groupoid 142

#

#####################################

Y!.path:=function(1cell) return kappa1(1cell)[3]; end;

st:=List(vf[1][2],x->kappa1(x));;

F:=FreeGroupoid(V,List([1..Length(vf[1][2])],x->[st[x][1],x,st[x][2]]));

gens:=GeneratorsOfGroupoid(F);

VF:=Y!.vectorField;;

u:=[[],[]];

for x in SortedList(VF[1]) do

u[1][x]:=Position(VF[1],x);

od;

for x in SortedList(VF[2]) do

u[2][x]:=Position(VF[2],x);

od;

Y!.inverseVectorField:=u;;

#

#####################################

#

P:=SSortedList(List(Y!.orientation[1],Sum));;

if P=[0] then Y!.homotopyOrientation:=Y!.orientation{[1,2,3]};

else

P:=TruncatedRegularCWComplex(Y,2);;

P!.orientation:=fail;

OrientRegularCWComplex(P);

Y!.homotopyOrientation:=P!.orientation;

fi;

Unbind(P);

#

#####################################

2bounds:=List(vf[1][3],x->[Y!.boundaries[3][x],

Y!.homotopyOrientation[3][x]]);;

Apply(2bounds,x->[x[1]{[2..Length(x[1])]},x[2]]);

Apply(2bounds,x->List([1..Length(x[1])],i->x[1][i]*x[2][i]));

#####################################

#

Deform:=function(n,kk)

C.1 Groupoid 143

local sgnn,x,f,k,sgnk,cnt,bnd,def,sn,tog,def1,def2,DCSrec,dim;

dim:=Dimension(Y);

DCSrec:=List([1..dim+1],i->[]);;

k:=AbsInt(kk);

sgnk:=SignInt(kk);

if [n,k] in Y!.criticalCells then

return [kk];

fi;

if n>0 then

if IsBound(Y!.vectorField[n][k]) then

return [];

fi;

fi;

if IsBound(DCSrec[n+1][k]) then

if sgnk=1 then

return DCSrec[n+1][k];

else

return -DCSrec[n+1][k];

fi;

fi;

f:=Y!.inverseVectorField[n+1][k];

bnd:=Y!.boundaries[n+2][f];

sn:=Y!.orientation[n+2][f];

def:=[]; def1:=[];def2:=[];

for x in [2..Length(bnd)] do

if not bnd[x]=k then

Add(def1,sn[x-1]*bnd[x]);

else sgnn:=sn[x-1];

break;

fi;

od;

cnt:=x+1;

for x in [cnt..Length(bnd)] do

Add(def2,sn[x-1]*bnd[x]);

od;

if sgnn=1 then def:=-Concatenation(def1,def2);

else

def:=Concatenation(def2,def1);

fi;

Apply(def,x->Deform(n,x));

C.1 Groupoid 144

def:=Flat(def);

Apply(def,x->[x,0]);

def:=AlgebraicReduction(def);

Apply(def,x->x[1]);

DCSrec[n+1][k]:=def;

if sgnk=1 then return

def;

else return

-def;

fi;

end;

#

#####################################

Apply(2bounds,x->List(x,a->Deform(1,a)));

2bounds:=Filtered(2bounds,x->not x=[]);

2bounds:=List(2bounds,L->Filtered(L,x->not x=[]));

#2bounds:=Filtered(List(2bounds,L->Flat(L)),x->not x=[]);

RELS:=List(2bounds,L->List(L,x->[]));

for x in 2bounds do

for z in x do

for y in z do

Add(RELS[Position(2bounds,x)][Position(x,z)],

gens[Position(vf[1][2],AbsInt(y))]^(SignInt(y)));

od;

od;

od;

RELS:=List(RELS,L->List([0..Length(L)-1],i->L[Length(L)-i]));

#

#####################################

test:=function(L)

local k,v,BOOL,i;

k:=Length(L);

v:=Target(L[k]);

BOOL:=true;

C.1 Groupoid 145

for i in Reversed([1..k-1]) do

if Source(L[i])=v then

v:=Target(L[i]);

else

BOOL:=false;

break;

fi;

od;

return BOOL;

end;

RELS:=List(RELS,L->Flat(List(L,N->Filtered(List(

PermutationsList([1..Length(N)]),M->List(M,i->N[i])),x->test(x))[1])));

if RELS=List(RELS,x->[]) then

Rels:=[];

else

Rels:=Filtered(RELS,L->not L=[]);

Rels:=List(Rels,L->FpGdProduct(L));

fi;

G:=F/Rels;

return G;

end);

#

###

#0

#F UnionOfGroupoids

##

##

##

InstallGlobalFunction(UnionOfGroupoids,

"method for defining union of two groupoids",

function(G1,G2)

local f,o,g1,g2,g12,r1,r2,R1,R2,rels;

################

f:=function(L,LL,n,m)

local K,J,x;

J:=[n..n+m-1];

K:=[];

C.1 Groupoid 146

for x in L do

if x>0 then Add(K,J[Position(LL,x)]); else Add(K,(-1)*

J[Position(LL,AbsoluteValue(x))]);

fi;

od;

return K;

end;

################

o:=Union(G1!.objects,G2!.objects);

g1:=GeneratorsOfGroupoid(G1);

g2:=GeneratorsOfGroupoid(G2);

g12:=Concatenation(g1,g2);

if IsFpGdFpGroupoid(G1) and IsFpGdFpGroupoid(G2) then

r1:=G1!.relators;

R1:=List(r1, x-> f(x,Concatenation(List(g1,x->x!.list)),1,Length(g1)));

r2:=G2!.relators;

R2:=List(r2, x-> f(x,Concatenation(List(g2,x->x!.list)),

Length(g1)+1,Length(g2)));

rels:=Concatenation(R1,R2);

return FpGroupoid(o,List([1..Length(g12)],x->

[Source(g12[x]),x,Target(g12[x])]),rels);

else

return FreeGroupoid(o,List([1..Length(g12)],x->

[Source(g12[x]),x,Target(g12[x])]));

fi;

end);

#

###

#0

#F FpGroupToFpGroupoid

##

##

##

InstallGlobalFunction(FpGroupToFpGroupoid,

"method for changing Fp Group to be Fp Groupoid",

function(arg)

local G,v,F, gensF, rels, L, Rels, Objs, Gens, O, Rel2List;

if Length(arg)>1 then G:=arg[1]; v:=arg[2]; else G:=arg[1]; fi;

F:=FreeGroupOfFpGroup(G);

gensF:=GeneratorsOfGroup(F);

C.1 Groupoid 147

rels:=RelatorsOfFpGroup(G);

L:=Concatenation(List([1..Length(gensF)],i->[gensF[i],gensF[i]^-1]));

########################

Rel2List:=function(R,L)

local l1,l2,K,C,i,j,k,A;

l1:=Length(R);

l2:=Length(L);

K:=Concatenation(List([1..l2/2],i->[-i,i]));

C:=[];

k:=1;

A:=[];

A[1]:=StructuralCopy(R);

for i in [1..l1] do

for j in[1..l2] do

if Length(L[j]*A[k])=Length(A[k])-1

then k:=k+1;

A[k]:=L[j]*A[k-1];

Add(C,K[j]);

fi;

od;

od;

return C;

end;

######################

Rels:=List([1..Length(rels)],i->Rel2List(rels[i],L));

Gens:=[1..Length(gensF)];

if Length(arg)>1 then

return FpGroupoid([v],List(Gens,x->[v,x,v]),Rels);

else

return FpGroupoid([1],List(Gens,x->[1,x,1]),Rels);

fi;

end);

#

###

#0

#F GroupoidMorphismByImages

##

##

##

InstallGlobalFunction(GroupoidMorphismByImages,

C.1 Groupoid 148

"method for defining groupoid morphism",

function(arg)

local G,H,Smo,Tmo,Sma,Tma,gens,MapObj,MapArr,L,K,Word2List;

if Length(arg)>3 then

G:=arg[1];

H:=arg[2];

Smo:=arg[3][1];

Tmo:=arg[3][2];

Sma:=arg[4][1];

Tma:=arg[4][2];

else

G:=arg[1];

H:=arg[2];

Sma:=arg[3][1];

Tma:=arg[3][2];

fi;

gens:=GeneratorsOfGroupoid(G);

###################

MapObj:=function(x)

return Tma[Position(Sma,x)];

end;

###################

L:=Sma;

Append(L, List (L,x->x^-1));

K:=Tma;

Append(K, List (K,x->x^-1));

###################

Word2List:=function(w)

local i,j, LfromW;

LfromW:=[];

j:=0;

for i in w!.list do

j:=j+1;

if i>0 then

LfromW[j]:=gens[i];

else

LfromW[j]:=gens[-i]^-1;

fi;

od;

C.1 Groupoid 149

return LfromW;

end;

###################

MapArr:=function(w)

local Lw,k,x,i;

Lw:=Word2List(w);

k:=Length(Lw);

if k=1 then

x:=Lw[1];

return K[Position(L,x)];

else

x:=K[Position(L,Lw[1])];

for i in [2..k] do

x:=x*K[Position(L,Lw[i])];

od;

return x;

fi;

end;

if Length(arg)>3 then

return Objectify(GroupoidMorphism,rec(source:=G,target:=H,

mappingObj:=MapObj,mappingArr:=MapArr,name:="N"));

else

return Objectify(GroupoidMorphism,rec(source:=G,target:=H,

mappingArr:=MapArr,name:="N"));

fi;

end);

#

###

#0

#F Source

##

##

##

InstallOtherMethod(Source,

"source of of a groupoid morphim",

[IsGroupoidMorphism],

function(f) return f!.source;

end);

#

###

C.1 Groupoid 150

#0

#F Target

##

##

##

InstallOtherMethod(Target,

"target of of a groupoid morphim",

[IsGroupoidMorphism],

function(f) return f!.target;

end);

#

###

#0

#F ImageOfArrow

##

##

##

InstallGlobalFunction(ImageOfArrow,

"image of of an arrow under a groupoid morphism",

function(arg)

local a, f, x;

f:=arg[1];

x:=arg[2];

a:=f!.mappingArr;

return a(x);

end);

#

###

#0

#F FundamentalGroupoidOfRegularCWMap

##

##

##

InstallGlobalFunction(FundamentalGroupoidOfRegularCWMap,

"method for defining the groupoid functor",

function(map,V)

local S,T,f,GS,gensS,GT,gensT,VV,L,cc,1c,path,Deform,PATHS,x,i,

prod,CC,1C,v,f1c,B,y,f_path,dom,codom,g,rev;

S:=Source(map);

C.1 Groupoid 151

T:=Target(map);

f:=map!.mapping;

VV:=List(V , y -> f(0,y));

GS:=FundamentalGroupoidOfRegularCWComplex(S,V);

GT:=FundamentalGroupoidOfRegularCWComplex(T,VV);

gensS:=GeneratorsOfGroupoid(GS);

gensT:=GeneratorsOfGroupoid(GT);

cc:=S!.criticalCells;

1c:=List(Filtered(cc,x->x[1]=1),y->y[2]);

path:=List(1c , x-> S!.path(x));

f_path:=List(path , x-> List(x,y-> f(1,y)));

#####################################

#

Deform:=function(Y,n,kk)

local sgnn,x,f,k,sgnk,cnt,bnd,def,sn,tog,def1,def2,DCSrec,dim,rev;

dim:=Dimension(Y);

DCSrec:=List([1..dim+1],i->[]);;

k:=AbsInt(kk);

sgnk:=SignInt(kk);

if [n,k] in Y!.criticalCells then

return [kk];

fi;

if n>0 then

if IsBound(Y!.vectorField[n][k]) then

return [];

fi;

fi;

if IsBound(DCSrec[n+1][k]) then

if sgnk=1 then

return DCSrec[n+1][k];

else return -DCSrec[n+1][k];

fi;

fi;

f:=Y!.inverseVectorField[n+1][k];

C.1 Groupoid 152

bnd:=Y!.boundaries[n+2][f];

sn:=Y!.orientation[n+2][f];

def:=[]; def1:=[];def2:=[];

for x in [2..Length(bnd)] do

if not bnd[x]=k then

Add(def1,sn[x-1]*bnd[x]);

else

sgnn:=sn[x-1]; break;

fi;

od;

cnt:=x+1;

for x in [cnt..Length(bnd)] do

Add(def2,sn[x-1]*bnd[x]);

od;

if sgnn=1 then

def:=-Concatenation(def1,def2);

else

def:=Concatenation(def2,def1);

fi;

Apply(def,x->Deform(Y,n,x));

def:=Flat(def);

Apply(def,x->[x,0]);

def:=AlgebraicReduction(def);

Apply(def,x->x[1]);

DCSrec[n+1][k]:=def;

if sgnk=1 then

return def;

else

return -def;

fi;

end;

#

#####################################

Apply(f_path,x-> List(x, a->Deform(T,1,a)));

rev:=function(L) return List([0..Length(L)-1],i->L[Length(L)-i]); end;

Apply(f_path,rev);

Apply(f_path,Flat);

C.1 Groupoid 153

f1c:=List(Filtered(T!.criticalCells,x->x[1]=1),y->y[2]);

B:= List(f_path, x-> List(x, y-> gensT[Position(f1c,AbsInt(y))]^

(SignInt(y))));

dom:=List(gensS,x->Source(x));

codom:=List(dom,x->f(0,x));

g:=function(L,0c)

local k,i,LL;

k:=Length(L);

LL:=[];

for i in [0..k-1] do

if Source(L[k-i])=0c

then

LL[k-i]:=L[k-i];

0c:=Target(L[k-i]);

else

LL[k-i]:=L[k-i]^-1;

0c:=Target(L[k-i]);

fi;

od;

return LL;

end;

B:=List([1..Length(B)],i->g(B[i],codom[i]));

prod:=function(L) if Length(L)>1 then return FpGdProduct(L);

else return L[1]; fi; end;

PATHS:=List(B,x->prod(x));

return GroupoidMorphismByImages(GS,GT,[gensS,PATHS]);

end);

#

###

#0

#F PushoutOfFpGroupoids

##

##

##

C.1 Groupoid 154

InstallMethod(PushoutOfFpGroupoids, [IsGroupoidMorphism,IsGroupoidMorphism],

function(f,g)

local P, rels, FhomP, FFhomP, GhomP, GGhomP, FGhomP, F, FF, G, GG,

FG, U, W, gensF, gensFF, gensG, gensGG, gensP, x, gg,tot,

UF,UG,mappingOBJ;

F:=Target(f);

FF:=FreeGroupoidOfFpGroupoid(F);

G:=Target(g);

GG:=FreeGroupoidOfFpGroupoid(G);

FG:=Source(f);

gensFF:=GeneratorsOfGroupoid(FF);

gensF:=GeneratorsOfGroupoid(F);

gensGG:=GeneratorsOfGroupoid(GG);

gensG:=GeneratorsOfGroupoid(G);

U:=FG!.objects;

#####################

mappingOBJ:=function(f,x)

local S,T,gensS,gensT,gS;

S:=Source(f);

T:=Target(f);

gensS:=GeneratorsOfGroupoid(S);

gensT:=GeneratorsOfGroupoid(T);

gS:=Filtered(gensS,y->Source(y)=x)[1];

return Source(f!.mappingArr(gS));

end;

#####################

UF:=List(U,x->mappingOBJ(f,x));

UG:=List(U,x->mappingOBJ(g,x));

W:=[];

tot:=[1..Length(gensF)+Length(gensG)];

Append(W,List([1..Length(gensF)], x -> [U[Position(UF,gensF[x]!.source)],

x,U[Position(UF,gensF[x]!.target)]]));

Append(W,List([1..Length(gensG)],x->[U[Position(UG,gensG[x]!.source)],

x+Length(gensF),U[Position(UG,gensG[x]!.target)]]));

P:=FreeGroupoid(U , W);

gensP:=GeneratorsOfGroupoid(P);

FFhomP:=GroupoidMorphismByImages(FF,P,[gensFF,

gensP{[1..Length(FF!.generators)]}]);

FhomP:=GroupoidMorphismByImages(F,P,[gensF,

gensP{[1..Length(FF!.generators)]}]);

C.1 Groupoid 155

GGhomP:=GroupoidMorphismByImages(GG,P,[gensGG,

gensP{[1+Length(FF!.generators)..Length(gensP)]}]);

GhomP:=GroupoidMorphismByImages(G,P,[gensG,

gensP{[1+Length(FF!.generators)..Length(gensP)]}]);

gg:=GroupoidMorphismByImages(FG,G,

[GeneratorsOfGroupoid(FG),List(GeneratorsOfGroupoid(Source(g)),

x->ImageOfArrow(g,x))]);

rels:=[];

Append(rels, List(RelatorsOfFpGroupoid(F),x->ImageOfArrow(FFhomP,x)));

Append(rels, List(RelatorsOfFpGroupoid(G),x->ImageOfArrow(GGhomP,x)));

for x in GeneratorsOfGroupoid(FG) do

Add(rels,(ImageOfArrow(GhomP, ImageOfArrow(gg,x)))*

(ImageOfArrow(FhomP, ImageOfArrow(f,x)))^-1);

od;

return P/rels;

end);

#

###

#0

#F TestFpGd

##

##

##

InstallGlobalFunction(TestFpGd,

function()

local 2simplices,K,Y,G,V,V1,rels,Bool,Rels,L,g,resl,gens;

2simplices:=[[1,2,4],[2,4,8],[2,3,8],[3,8,9],[1,3,9],[1,4,9],[4,5,8],

[5,6,8],[6,8,9],[6,7,9],[4,7,9],[4,5,7],[1,5,6],[1,2,6],[2,6,7],[2,3,7],

[3,5,7],[1,3,5]];;

K:=SimplicialComplex(2simplices);

Y:=RegularCWComplex(K);

G:=FundamentalGroupoidOfRegularCWComplex(Y,[1,8]);

Rels:=RelatorsOfFpGroupoid(G);

gens:=GeneratorsOfGroupoid(G);

C.2 Mapper 156

L:=List(gens,x->[Source(x),Target(x)]);

V1:=VertexGroup(G,1);;

V:=SimplifiedFpGroup(V1);;

g:=GeneratorsOfGroup(FreeGroupOfFpGroup(V));

rels:=RelatorsOfFpGroup(V);

if

L = [[1, 1], [1, 8], [1, 1]]

and

Rels = [gens[2]^-1*gens[1]*gens[3]*gens[1]^-1*gens[3]^-1*gens[2]]

and

rels = [g[2]^-1*g[1]^-1*g[2]*g[1]]

then

Print("\n\n FpGd seems to be working fine. \n");

else

Print("\n\n There are some problems with FpGd. \n");

fi;

end);

C.2 Mapper

###

#0

#F cluster

##

##

##

InstallGlobalFunction(cluster, function(S,f,r)

local clusters, Y, P, C, b, i, j;

if Length(S)=0 then

return S;

fi;

b:=[];

b[1]:=List(S,x->[1,0]);

b[2]:=[];

C.2 Mapper 157

for i in [1..Length(S)] do

for j in [i+1..Length(S)] do

if f(S[i],S[j])<=r then

Add(b[2],[2,i,j]);

fi;

od;

od;

if Length(b[2])>0 then b[3]:=[]; fi;

Y:=RegularCWComplex(b);;

P:=PiZero(Y);

C:=Classify([1..Length(S)],P[2]);

clusters:=List(C,x->S{x});

return clusters;

end);

#

###

#0

#F cluster_alte

##

##

##

InstallGlobalFunction(cluster_alte, function(S,dS,epsilon)

local SS,i,kk,l,t,K,k,ll,G,HausdorffDistance;

l:=Length(S);

if IsList(S[1]) then

ll:=Length(S[1]);

fi;

##################

G:=function(arg,F,d,epsilon)

local I,n,j,i,l;

l:=Length(arg);

if IsList(arg[1])=false then

I:=List([1..l],i->[arg[i]]);

else

I:=arg;

fi;

n:=0;

for j in [1..l-1] do

for i in [j+1..l] do

if F(I[j],I[i],d)<>fail and

C.2 Mapper 158

F(I[j],I[i],d)<=epsilon then

I[j]:=Concatenation(I[j],I[i]);

I[i]:=[];

fi;

od;

od;

return Filtered(I,x->not x=[]);

end;

#################

HausdorffDistance:=function(N,M,d)

local n,m,x,y,N1,M1;

if (N=[] or M=[]) then return fail;

else

if Length(N)<Length(M) then

N1:=N;

M1:=M;

else

N1:=M;

M1:=N;

fi;

n:=Length(N1); m:=Length(M1);

if m=1 then

return AbsoluteValue(N1[1]-M1[1]);

elif m=1 and Length(N)>1 then

return d(N1,M1);

else

return Minimum(Flat(List([1..n],j->

List([1..m],i->d(N1[j],M1[i])))));

fi;

fi;

end;

#################

SS:=[];

SS[1]:=S;

SS[2]:=G(SS[1],HausdorffDistance,dS,epsilon);

i:=2;

while Length(SS[i-1])>Length(SS[i]) do

i:=i+1;

SS[i]:=G(SS[i-1],HausdorffDistance,dS,epsilon);

od;

C.2 Mapper 159

if IsList(S[1])=false then

return SS[i];

else

k:=SS[i];

kk:=Length(SS[i]);

t:=List([1..kk],j->Length(k[j]));

K:=List([1..kk],r->List([0..t[r]/ll-1],j->List([1+j*ll..(1+j)*ll],

i->k[r][i])));

return K;

fi;

end);

#

###

#

FloatSpectorm_1:=function(arg)

local M,n,k,fun,K,a,b,N,A;

M:=arg[1];

n:=arg[2];

k:=Length(M);

####################

fun:=function(N)

local v,i,L,S,M,w;

v:=List([1..k],x->1);

for i in [1..n] do

S:=List(N*v,x->x^2);

M:=1/Sum(S)^0.5;

v:=M*N*v;

od;

w:=Sum(List(v,x->x^2))^0.5;

L:=[(v*N*v)/w,v/(v[Length(v)])];

return L;

end;

####################

N:=M;

a:=fun(N);

K:=[[a[1]],[a[2]]];

for i in [2..k] do

a:=[K[1][Length(K[1])],K[2][Length(K[2])]];

A:=Sum(List(a[2],x->x^2))^0.5;

b:=List(a[2]/A,x->[x]);

C.2 Mapper 160

N:=N-(a[1]*(b*TransposedMat(b)));

a:=fun(N);

Add(K[1],a[1]);

Add(K[2],a[2]);

od;

return K;

end;

#

###

#

FloatSpectorm_2:=function(arg)

Jacobi_Eigen:=function(a,it_max)

local M,m,n,v,d,bw,zw,it_num,rot_num_U,i,j,thresh,p,q,

gapq,termp,termq,theta,t,c,s,tau,h,g;

M:=arg[1];

m:=arg[2];

n:=Length(a);

v:=(List([1..n],i->List([1..n],j->1)))^0;

d:=List([1..n],i->a[i][i]);

bw:=List(d,x->x);

zw:=List(d,x->0);

it_num:=0;

rot_num:=0;

U:=List([1..n],i->List([1..n],j->0.0));

for i in [1..n] do

for j in [i..n] do

U[i][j]:=1.0*a[i][j]^2;

od;

od;

while it_num < it_max do

it_num := it_num + 1;

thresh := Sqrt(Sum(List(U,x->Sum(x))))/(4.0 * n);

if thresh = 0.0 then

break;

fi;

for p in [1 .. n] do

for q in [p + 1 .. n] do

gapq := 10.0 * AbsoluteValue (a[p][q]);

C.2 Mapper 161

termp := gapq + AbsoluteValue (d[p]);

termq := gapq + AbsoluteValue (d[q]);

if (4 < it_num and

termp = AbsoluteValue(d[p]) and

termq = AbsoluteValue(d[q]))

then

a[p][q] := 0.0;

elif thresh <= AbsoluteValue(1.0*a[p][q]) then

h := d[q] - d[p];

term := AbsoluteValue(h) + gapq;

if term = AbsoluteValue(1.0*h) then

t := a[p][q] / h;

else

theta := 0.5 * h / a[p][q];

t := 1.0 / (AbsoluteValue(theta) +

(1.0 + theta * theta)^0.5);

if theta < 0.0 then

t := - t;

fi;

fi;

c := 1.0 / (1.0 + t * t)^0.5;

s := t * c;

tau := s / (1.0 + c);

h := t * a[p][q];

zw[p] := zw[p] - h;

zw[q] := zw[q] + h;

d[p] := d[p] - h;

d[q] := d[q] + h;

a[p][q] := 0.0;

for j in [1..p - 1] do

g := a[j][p];

h := a[j][q];

a[j][p] := g - s * (h + g * tau);

a[j][q] := h + s * (g - h * tau);

od;

for j in [p + 1..q - 1] do

C.2 Mapper 162

g := a[p][j];

h := a[j][q];

a[p][j] := g - s * (h + g * tau);

a[j][q] := h + s * (g - h * tau);

od;

for j in [q + 1..n] do

g := a[p][j];

h := a[q][j];

a[p][j] := g - s * (h + g * tau);

a[q][j] := h + s * (g - h * tau);

od;

for j in [1..n] do

g := v[j][p];

h := v[j][q];

v[j][p] := g - s * (h + g * tau);

v[j][q] := h + s * (g - h * tau);

od;

rot_num := rot_num + 1;

fi;

od;

od;

bw := bw + zw;

d := bw;

zw := 0.0*zw;

od;

return [d,v];

end;

end;

#

###

#0

#F FloatSpectrum

##

##

##

InstallGlobalFunction(FloatSpectrum,function(arg)

local k;

C.2 Mapper 163

k:=Length(arg);

if k=2 then return FloatSpectrum_1(arg); fi;

if k=3 then return FloatSpectrum_2(arg); fi;

end);

#

###

#0

#F Mapper

##

##

##

InstallGlobalFunction(Mapper,

function(S,f,n,dS,dZ,epsilon_S,epsilon_Z,Clusters)

local k,l,c,S0,L,m,M,h, P, s, i, Preimagesf, clusters, W, Mapper,

IdentifyingSetOfUniformPoints, R, e;

k:=Length(S);

l:= Length(TransposedMat(S));

c:=CenterOfGravity(S);

S0:=List(S,x->x-c);

#################

IdentifyingSetOfUniformPoints:=function(S0,n)

local k,CM,v,w,PS0,Lps0,M,a,h,A;

k:=Length(S0);

CM:=VectorsToCovarianceMatrix(S0);

v:=SpectrumFloat(CM)[1];

w:=v/EuclideanMetric(v,List(v,i->0));

PS0:=List(S0,x->OrthogonalProjection(x,w));

Lps0:=List(PS0,x->EuclideanMetric(x,List(PS0[1],i->0)));

M:=Maximum(Lps0);

a:=Int(Round(M));

h:=2*a/n;

A:=List([0..n],i->-a+i*h);

return [PS0,List(A,x->x*w)];

end;

##################

R:=IdentifyingSetOfUniformPoints(S,n);

if f=OrthogonalProjection then

P:=R[2];

h:=dZ(P[1],P[2]);

else

C.2 Mapper 164

L:=List(S0,x->f(x));

m:=Minimum(L);

M:=Maximum(L);

h:=(M-m)/n;

P:=List([0..n],i->m+i*h);

fi;

#################

Preimagesf:=List(P,x->[]);

e:=0;

for s in S do

e:=e+1;

for i in [1..Length(P)] do

if f=OrthogonalProjection then

if dZ(R[1][e],P[i]) < (h/2)*(1+epsilon_Z) then

Add(Preimagesf[i],s);

fi;

else

if dZ(f(s),P[i]) < (h/2)*(1+epsilon_Z) then

Add(Preimagesf[i],s);

fi;

fi;

od;

od;

Preimagesf:=Filtered(Preimagesf,x->not x=[]);

clusters:=[];

for i in [1..Length(Preimagesf)] do

clusters[i]:=Clusters(Preimagesf[i],dS,epsilon_S);

od;

W := Concatenation(clusters);

Mapper := NerveOfCover(W, 20);

Mapper!.clustersizes := List(W, Size);

return Mapper;

end);

#

###

#0

#F ReadAMCfileAsPatternMatrex

##

##

##

C.2 Mapper 165

InstallGlobalFunction(ReadAMCfileAsPatternMatrex,

function(dir)

local instr,f,A,J,i,j,K,T,s,d,k,TexToList,S;

instr:=InputTextFile(dir);

f:=true;

A:=[]; J:=[]; i:=0; j:=0;

while not f=fail do

j:=j+1;

f:=ReadLine(instr);

Add(A,f);

if f=Concatenation(String(1+i),"\n") then

i:=i+1; Add(J,j);

fi;

od;

d:=function(f) return f{[1..Length(f)-1]}; end;

A:=List([4..Length(A)-1],i->d(A[i]));;

k:=Int(Length(A)/30);

A:=List([0..k-1],i-> List([1+i*30..(1+i)*30],j->A[j]));;

###

TexToList:=function(x)

local l,i, j, I, Y;

l:=Length(x);

I:=[];

for i in [1..l] do

if x{[i]}=" " or x{[i]}="\r" then Add(I,i); fi;

od;

Y:=[];

for j in [1..Length(I)-1] do

Add(Y,Float(x{[I[j]+1..I[j+1]-1]}));

od;

return Y;

end;

###

S:= List([1..Length(A)],j-> Flat(List([1..Length(A[j])] ,

i->TexToList(A[j][i]))));;

for i in [1..Length(S)] do

S[i]:=Concatenation([i*1.0],S[i]);

od;

return S;

end);

C.2 Mapper 166

###################### THE END ##########################

Bibliography

[1] A. Adem. Recent devolopments in the cohomology of finite groups. Notices

AMS, 44:806–812, 1997. Available online at http://www.ams.org/notices/

199707/199707-toc.html. (Cited on page 1.)

[2] C. Charn Aggarwal. A general theory of polyhedral sets. CRC Press, Taylor

and Francis Group, 2015. (Cited on page 71.)

[3] N. Alokbi. FpGd – Finitely Presented Groupoid (GAP package), 2019. https:

//github.com/nalokbi/FpGd. (Cited on pages 24 and 111.)

[4] N. Alokbi and G. Ellis. Distributed computation of low-dimensional cup prod-

ucts. Homology, Homotopy and Applications, 20(2):41–59, 2018. (Cited on

pages 3 and 85.)

[5] J. Arnold, L. M. Nicolau, and G. Carlsson. Topology based data analysis identi-

fies a subgroup of breast cancers with a unique mutational profile and excellent

survival. Proceedings of the National Academy of Sciences of the United States

of America PNAS, 108(17):7265–7270, 2011. (Cited on page 68.)

[6] W. F. Basener. “Module Presentations for use with Topology and Its Appli-

cations.” Topology and Its Applications. Ed. William F. Basener. National

Science Foundation, 17 June . Web. 17 Aug. 2004. (Cited on page 3.)

[7] M. Bishop. The GAP package CRIME, available from http://www.

gap-system.org/Packages/crime.html). (Cited on page 1.)

[8] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The

user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational al-

gebra and number theory (London, 1993),https://www.sciencedirect.com/

science/article/pii/S074771719690125X. (Cited on page 1.)

[9] C. Bregler and S. M. Omohundro. Nonlinear manifold learning for visual speech

recognition. Proc. 5th Internat. Conf. Comput. Vision, 4(3):494–499, 1995.

(Cited on page 3.)

167

http://www.ams.org/notices/199707/199707-toc.html
http://www.ams.org/notices/199707/199707-toc.html
https://github.com/nalokbi/FpGd
https://github.com/nalokbi/FpGd
http://www.gap-system.org/Packages/crime.html
http://www.gap-system.org/Packages/crime.html
https://www.sciencedirect.com/science/article/pii/S074771719690125X
https://www.sciencedirect.com/science/article/pii/S074771719690125X

Bibliography 168

[10] P. Brendel, P. D lotko, G. Ellis, M. Juda, and M. Mrozek. Computing fun-

damental groups from point clouds. Appl. Algebra Eng. Commun. Comput.,

26(1-2):27–48, 2015. (Cited on pages 1, 2, and 43.)

[11] P. Brendel, P. D lotko, G. Ellis, M. Juda, and M. Mrozek. Computing fun-

damental groups from point clouds. Appl. Algebra Engrg. Comm. Comput.,

26(1-2):27–48, 2015. (Cited on pages 4, 5, 85, 86, and 90.)

[12] R. Brown. Groupoids and van Kampen’s theorem. Proc. London Math. Soc.

(3), 17:385–401, 1967. (Cited on pages 5 and 85.)

[13] R. Brown. Elements of modern topology. McGraw-Hill Book Co., New York,

1968. (Cited on page 58.)

[14] R. Brown. From groups to groupoids: A brief survey. Bull. London Math. Soc.,

19:113–134, 1987. (Cited on page 18.)

[15] R. Brown. Topology: a geometric account of general topology, homotopy types,

and the fundamental groupoid. Ellis Horwood, Chichester, 1988. (Cited on

page 1.)

[16] R. Brown. Topology and groupoids. 2006. Third edition of Elements of modern

topology [McGraw-Hill, New York, 1968], http://groupoids.org.uk. (Cited

on pages 1, 4, 40, and 58.)

[17] R. Brown, P.J. Higgins, and R. Sivera. Nonabelian algebraic topology: filtered

spaces, crossed complexes, cubical homotopy groupoids, volume 15. EMS Tracts

in Mathematics, 2011. (Cited on page 1.)

[18] R. Brown and A.R. Salleh. A van Kampen theorem for unions of nonconnected

spaces. Arch. Math. (Basel), 42(1):85–88, 1984. (Cited on pages 5, 85, and 96.)

[19] J. Carlson. http://www.math.uga.edu/lvalero/cohointro.html. (Cited on

page 1.)

[20] G. Carlsson. Topology and data. Bulletin of the American Mathematical Soci-

ety, 46(2):255–308, 2009. (Cited on page 68.)

[21] Fr d ric Chazal, D. Cohen-Steiner, L. J. Guibas, F. M moli, and S. Y. Oudot.

Gromov-Hausdorff Stable Signatures for Shapes using Persistence. Computer

Graphics Forum, 28(5):1393–1403, July 2009. (Cited on page 3.)

[22] S. W. Cheng, T. K. Dey, and E. A. Ramos. Manifold reconstruction from point

samples. Proc. of ACM SIAM Symposium on Discrete Algorithms, 2005. (Cited

on page 3.)

http://groupoids.org.uk
http://www.math.uga.edu/lvalero/cohointro.html

Bibliography 169

[23] James Frederic Davis and Paul Kirk. Lecture Notes in Algebraic Topology.

American Mathematical Soc., 2001. (Cited on page 9.)

[24] S. Derdar, M. Allili, and D. Ziou. Topological feature extraction using algebraic

topology. Vision Geometry XV. Edited by Latecki, 6499:64990G, January 2007.

(Cited on page 3.)

[25] T. K. Dey, F. Fan, and Y. Wang. Graph induced complex on point data.

Computational Geometry, 48(8):575–588, 2015. (Cited on page 3.)

[26] T. K. Dey and S S. Goswami. Provable surface recon- struction from noisy

samples. Computational Geometry: Theory and Application, 35(1-2):124–141,

2006. (Cited on page 3.)

[27] H. Edelsbrunner and J.L. Harer. Computational topology. Computational

Topology, AMS, 2010. (Cited on page 68.)

[28] G. Ellis. HAP – Homological Algebra Programming, Version 1.10.13,

2013. http://www.gap-system.org/Packages/hap.html. (Cited on pages 70

and 95.)

[29] G. Ellis. An invitation to Computational Homotopy. 2018. (Cited on pages 41,

42, 43, 45, 51, 68, and 69.)

[30] G. Ellis and Fintan Hegarty. Computational homotopy of finite regular cw-

spaces. Journal of Homotopy and Related Structures, 9(1):25–54, Apr 2014.

(Cited on page 1.)

[31] G. Ellis and Fintan Hegarty. Computational homotopy of finite regular CW-

spaces. J. Homotopy Relat. Struct., 9(1):25–54, 2014. (Cited on pages 2, 43,

85, 90, and 93.)

[32] Gansner E. Koutsofios L. North S.C. Ellson, J. and G. Woodhull. Graphviz—

open source graph drawing tools. graph drawing. pages 483–484, 2002. (Cited

on page 76.)

[33] S. Emrani, T. Gentimis, H. Krim IEEE Signal Processing Letters, and 2014.

Persistent homology of delay embeddings and its application to wheeze detec-

tion. ieeexplore.ieee.org. (Cited on page 65.)

[34] Robin Forman. Morse theory for cell complexes. Advances in Mathematics, 134

(1), 1998. (Cited on page 41.)

[35] Robin Forman. A user’s guide to discrete morse theory. Sém. Lothar. Combin,

48, 2002. (Cited on pages 40 and 41.)

http://www.gap-system.org/Packages/hap.html

Bibliography 170

[36] E.R. Gansner and S.C. North. An open graph visualization system and its

applications to software engineering. SOFTWARE - PRACTICE AND EXPE-

RIENCE, 30(11):1203–1233, 2000. (Cited on page 72.)

[37] X. Ge, I.I. Safa, M. Belkin, and Y. Wang. Data skeletonization via reeb graphs.

NIPS’11 Proceedings of the 24th International Conference on Neural Informa-

tion Processing Systems, (24):837–845, 2011. (Cited on page 3.)

[38] Ross Geoghegan. Topological Methods in Group Theory. Springer Sci-

ence+Business Media, LLC, 2008. (Cited on page 8.)

[39] R. Ghrist. Elementary Applied Topology. 2014. ISBN: 978-1502880857. (Cited

on page 68.)

[40] R. Gonzalez-Diaz, M.J. Jimenez, and B. Medrano. Cohomology ring of 3D

cubical complexes. Springer Lecture Notes in Computer Science, 5852:139–150,

2009. (Cited on pages 85 and 86.)

[41] R. Gonzalez-Diaz, J. Lamar, and R. Umble. Cup products on polyhedral ap-

proximations of 3D digital images. In Combinatorial image analysis, volume

6636 of Lecture Notes in Comput. Sci., pages 107–119. Springer, Heidelberg,

2011. (Cited on pages 85 and 86.)

[42] R. Gonzalez-Diaz, J. Lamar, and R. Umble. Computing cup products in Z2-

cohomology of 3D polyhedral complexes. Found. Comput. Math., 14(4):721–

744, 2014. (Cited on pages 85 and 86.)

[43] R. González-Dı́az and P. Real. Computation of cohomology operations of fi-

nite simplicial complexes. Homology Homotopy Appl., 5(2):83–93, 2003. Alge-

braic topological methods in computer science (Stanford, CA, 2001). (Cited on

pages 85 and 86.)

[44] R. González-Dı́az and P. Real. On the cohomology of 3D digital images. Discrete

Appl. Math., 147(2-3):245–263, 2005. (Cited on pages 85 and 86.)

[45] D. Green. http://www.math.uni-wuppertal.de/green/Cohov2/. (Cited on

page 1.)

[46] A. Grothendieck. Esquisse d’un programme. In Geometric Galois actions, 1,

volume 242 of London Math. Soc. Lecture Note Ser., pages 5–48. Cambridge

Univ. Press, Cambridge, 1997. With an English translation on pp. 243–283.

(Cited on page 96.)

[47] The GAP Group. GAP : Groups, Algorithms, and Programming, Version 4.5.6,

2013. http://www.gap-system.org. (Cited on page 1.)

http://www.math.uni-wuppertal.de/green/Coho v2/
http://www.gap-system.org

Bibliography 171

[48] Leonidas J Guibas and Steve Y Oudot. Reconstruction Using Witness Com-

plexes. Discrete and Computational Geometry, 40(3):325–356, October 2008.

(Cited on page 3.)

[49] P. Guillot. http://irma.math.unistra.fr/~guillot/. (Cited on page 1.)

[50] Soren Hansen. Lecture notes on algebraic topology, 2005. http://www.math.

ksu.edu/~hansen/CWcomplexes.pdf). (Cited on pages 6, 7, and 8.)

[51] S. Harker, K. Mischaikow, M. Mrozek, and V. Nanda. Discrete morse theoretic

algorithms for computing homology of complexes and maps. Found. Comput.

Math., 14(1):151–184, 2014. (Cited on page 43.)

[52] A. Hatcher. Algebraic topology. Cambridge University Press, Cambridge, New

York, 2002. Autre(s) tirage(s) : 2003,2004,2005,2006. (Cited on page 86.)

[53] Allen Hatcher. Algebraic topology. Cambridge University Press, New York, NY,

USA, 2010. (Cited on pages 8 and 45.)

[54] P. J. Higgins. Presentations of groupoids, with applications to groups. Proc.

Cambridge Philos. Soc., 60:7–20, 1964. (Cited on pages 4 and 96.)

[55] P. J. Higgins. Categories and groupoids, 1971. (Cited on pages 11 and 13.)

[56] P.J. Higgins. On the cohomology of 3d digital images. Mathematical Studies,

Volume 32. Van Nostrand Reinhold Co. London (1971); Reprints in Theory

and Applications of Categories, No. 7 (2005) pp 1-195. (Cited on page 1.)

[57] D. F. Holt, B. Eick, and E. A. O’Brien. Handbook of computational group

theory. Chapman and Hall/CRC, 2005. (Cited on page 1.)

[58] J. B. J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geomet-

ric framework for nonlinear dimensionality reduction. Science, 5500(3), 2000.

(Cited on page 3.)

[59] D. Jones. A general theory of polyhedral sets, 1988. (Cited on pages 40 and 41.)

[60] D. Joyner. A primer on computational group homology and cohomology in GAP

and SAGE. Algebra and Discrete Mathematics, Aspects of Infinite Groups: A

Festschrift in Honor of of Anthony Gaglione, Volume 1, 2008. (Cited on page 1.)

[61] Anil Jain K. and C. Richarad Dubes. Algorithms for clustering data, 1988.

(Cited on page 71.)

[62] T. Kaczynski and M. Mrozek. The cubical cohomology ring: an algorithmic

approach. Found. Comput. Math., 13(5):789–818, 2013. (Cited on pages 85

and 86.)

http://irma.math.unistra.fr/~guillot/
http://www.math.ksu.edu/~hansen/CWcomplexes.pdf
http://www.math.ksu.edu/~hansen/CWcomplexes.pdf

Bibliography 172

[63] H. Kantz and T. Schreiber. Nonlinear Time Series Analysis. Cambridge Uni-

versity Press, 2003. (Cited on page 65.)

[64] J. Kilner and K. J. Friston. Topological inference for EEG and MEG data.

Annals of Applied Statistics, 4(3):1272–1290, 2010. (Cited on page 3.)

[65] Henry King, Kevin Knudson, and Neža Mramor. Generating discrete morse

functions from point data. Experimental Mathematics, 14(4):435–444, 2005.

(Cited on page 68.)

[66] CMU Graphics Lab. “CMU graphics lab motion capture database.”, 2012. http:

//mocap.cs.cmu.edu/. (Cited on pages 4 and 82.)

[67] J. Lamar-Len, E. Garca-Reyes, , and R. Gonzalez-Diaz. Human gait identi-

fication using persistent homology, in progress in pattern recognition. Image

Analysis, Computer Vision, and Applications, 7441:244–251, 2012. (Cited on

page 82.)

[68] T. Lewiner, H. Lopes, and G. Tavares. Optimal discrete Morse functions for

2-manifolds. Comput. Geom., 26(3):221–233, 2003. (Cited on page 93.)

[69] Saunders MacLane. Categories for the Working Mathematician. Springer-

Verlag, New York, 1971. Graduate Texts in Mathematics, Vol. 5. (Cited on

pages 11 and 12.)

[70] T. Martinetz and K. Schulten. Topology preserving networks. Neural Networks,

7:507–522, 1994. (Cited on page 3.)

[71] W.S. Massey. A basic course in algebraic topology, volume 127 of Graduate

Texts in Mathematics. Springer-Verlag, New York, 1991. (Cited on page 86.)

[72] B. Mederos, N. Amenta, L. Velho, and L. H. de Figueiredo. Surface recon-

struction for noisy point clouds. In Proc. 3rd Sympos. on Geometry Processing,

pages 53––62, 2005. (Cited on page 3.)

[73] M. Morishita. Knots and primes. Universitext. Springer, London, 2012. An

introduction to arithmetic topology. (Cited on page 91.)

[74] U. Muico, Y. Lee, J. Popovi’c, and Z. Popovi’c. Contact-aware nonlinear control

of dynamic characters. Applicable Algebra in Engineering, Communication and

Computing, 81:1–9, 2009. (Cited on pages 82 and 84.)

[75] J. D. Farmer N. H. Packard, J. P. Crutchfield and R. S. Shaw. Geometry from

a time series. Physical Review Letters, 45(9):712, 1980. (Cited on page 65.)

http://mocap.cs.cmu.edu/
http://mocap.cs.cmu.edu/

Bibliography 173

[76] M. Nicolau, A. Levine, and G. G. Carlsson. Topology based data analysis

identifies a subgroup of breast cancers with a unique mutational profile and ex-

cellent survival. Proc. Natl. Acod. Sci. USA, 108(17):7265––7270, 2011. (Cited

on page 3.)

[77] S.Y. Oudot. Persistence theory: From quiver representations to data analysis.

AMS Mathematical Surveys and Monographs, 2015. (Cited on page 68.)

[78] I.H. Park and C. Li. Dynamic ligand-induced-fit simulation via enhanced con-

formational samplings and ensemble dockings: a survivin example. J. Phys.

Chem., B(114):5144––5153, 2010. (Cited on page 3.)

[79] N. Peinecke, F-E. Wolter, and M. Reuter. Laplace spectra as fingerprints for

image recognition. Computer-Aided Design, 39(6):460–476, June 2007. (Cited

on page 3.)

[80] P. Pilarczyk and P. Real. Computation of cubical homology, cohomology,

and (co)homological operations via chain contraction. Adv. Comput. Math.,

41(1):253–275, 2015. (Cited on pages 85 and 86.)

[81] M. Reuter, F-E. Wolter, and N. Peinecke. Laplace-spectra as fingerprints for

shape matching. ACM, New York, New York, USA, June 2005. (Cited on

page 3.)

[82] M. Roder. The GAP package HAPcryst, available from http://www.

gap-system.org/Packages/undep.html. (Cited on page 1.)

[83] R. M. Rustamov. Laplace-beltrami eigenfunctions for deformation invariant

shape representation. In Symposium on Ge- ometry Processing, pages 225–233,

2007. (Cited on page 3.)

[84] H. Rutishauser. The jacobi method for real symmetric matrices. Numerische

Mathematik, 9(1):1–10, Nov 1966. (Cited on page 74.)

[85] M. Spagnuolo B. Falcidieno S. Biasotti, D. Giorgi. Reeb graphs for shape

analysis and applications. Theoret. Comput. Sci., (392):5–22, 2008. (Cited on

page 3.)

[86] G. Singh, F. Memoli, and G. Carlsson. Topological Methods for the Analysis

of High Dimensional Data Sets and 3D Object Recognition. In M. Botsch,

R. Pajarola, B. Chen, and M. Zwicker, editors, Eurographics Symposium on

Point-Based Graphics. The Eurographics Association, 2007. (Cited on pages 3,

4, and 68.)

http://www.gap-system.org/Packages/undep.html
http://www.gap-system.org/Packages/undep.html

Bibliography 174

[87] Václav Snášel, Jana Nowaková, Fatos Xhafa, and Leonard Barolli. Geometrical

and topological approaches to Big Data. Future Generation Computer Systems,

67:286–296, February 2017. (Cited on page 3.)

[88] F. Takens. Detecting strange attractors in turbulence. Dynamical Systems

and Turbulence, Lecture Notes in Mathematics, 898:366–381, 1981. (Cited on

page 65.)

[89] R. Vasudevan, A. Ames, and R. Bajcsy. Persistent homology for automatic

determination of human- data based cost of bipedal walking. Nonlinear Anal-

ysis: Hybrid Systems, IFACWorld Congress, 7(1):101 – 115, 2013. (Cited on

page 82.)

[90] Mikael Vejdemo-Johansson, Florian T. Pokorny, Primoz Skraba, and Danica

Kragic. Cohomological learning of periodic motion. Applicable Algebra in

Engineering, Communication and Computing, 26(1-2):5–26, 2015. (Cited on

page 82.)

[91] S. Weinberger. The Complexity of Some Topological Inference Problems. Foun-

dations of Computational Mathematics, 14(6):1277–1285, January 2014. (Cited

on page 3.)

[92] J. H. C. Whitehead. Simple homotopy types. Amer. J. Math., (72):1–57, 1950.

(Cited on page 41.)

[93] Yao Yuan, Jian Sun, Huang Xuhui, B. Gregory, G. Singh, L. Michael,

G. Leonidas, P. Vijay, and G. Gunnar. Topological methods for exploring

low-density states in biomolecular folding pathways. The Journal of Chemical

Physics, 130(144115):1–10, 2009. (Cited on page 68.)

[94] A. Zomorodian. Topology for Computing. Cambridge University Press, New

York, NY, 2005. (Cited on pages 8 and 68.)

[95] A. Zomorodian. Topological data analysis. Proceedings of Symposia in Applied

Mathematics, AMS, 2011. (Cited on page 9.)

[96] A. Zomorodian. Advances in Applied and Computational Topology. 2012. AMS.

(Cited on page 68.)

	Summary
	Declaration
	Certification
	Acknowledgement
	List of symbols
	List of Figures
	List of Algorithms
	Introduction
	Aims of the thesis
	Outline of the thesis
	Background
	CW-Spaces
	Simplicial complexes
	(Co)Homology of a CW-complex

	Groupoids and Fp Groupoids
	Introduction
	Groupoids
	Groupoid Homomorphisms
	Free groupoids
	Finitely presented groupoids
	Vertex group
	Implementations
	Implementation of free groupoids
	Implementation of fp groupoids
	Implementation of vertex groups
	Implementation of groupoid homomorphisms

	Presentation of subgroups
	Implementation of fp groupoids induced by group actions

	Fundamental Groups, Groupoids and the van Kampen Theorem
	Introduction
	Discrete vector fields
	Fundamental group of a topological space
	Fundamental groupoid of a space
	Implementation of presentations of fundamental groupoids
	van Kampen's theorem
	Implementation of van Kampen's theorem
	Groupoid techniques for time series analysis
	Time-delay embedding

	Simplicial Complexes and Mapper
	Introduction
	Simplicial complexes
	Mapper
	Implementations of Mapper
	Some illustrations of Mapper
	Gait analysis

	Distributed Computation of Cup Products
	Introduction
	The low dimensional cup product
	Illustration: digital images
	Fundamental groupoids and a distributed algorithm

	Final Example
	FpGd functions
	Fp Groupoids
	Mapper

	Data sets
	dataset321.txt
	permutahedralcomplex.txt
	dataset61.txt

	 Codes of FpGd
	Groupoid
	Mapper

	Index
	Bibliography

