

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-05-26T22:42:47Z

Some rights reserved. For more information, please see the item record link above.

Title Expressive RDF stream reasoning via data parallelism in
answer set programming

Author(s) Pham, Le Thi Anh Thu

Publication
Date 2020-02-26

Publisher NUI Galway

Item record http://hdl.handle.net/10379/15806

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

National University of Ireland, Galway

Doctoral Thesis

Expressive RDF Stream Reasoning via
Data Parallelism in Answer Set

Programming

Author : Le Thi Anh Thu Pham

Supervised by : Dr. Muhammad Intizar Ali and Dr. Alessandra Mileo

Co-supervised by : Dr. Matthias Nickles

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

Insight Centre for Data Analytics

College of Engineering and Informatics

February 2020

http://www.university.com
Research Group Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

Declaration of Authorship

I, Le Thi Anh Thu Pham, declare that this thesis titled, ’Expressive RDF Stream

Reasoning via Data Parallelism in Answer Set Programming’ and the work presented in

it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

25/02/2020

“I have not failed. I’ve just found 10,000 ways that won’t work.”

Thomas A. Edison

NATIONAL UNIVERSITY OF IRELAND, GALWAY

Abstract

The Insight Centre for Data Analytics

College of Engineering and Informatics

Doctor of Philosophy

Expressive RDF Stream Reasoning via Data Parallelism in Answer Set

Programming

by Le Thi Anh Thu Pham

The Web nowadays is highly dynamic with massive amounts of data being continuously

generated from a huge number of devices and services across the Internet. Various

application scenarios in several domains, such as environment monitoring, health care

systems, and smart transportation, can hugely benefit from the ability to efficiently

integrate and query data streams from these sources to provide better services. However,

in such applications, it is not only capturing data streams that is important, but also

the ability to extract insights from such streams, and use them to target users’ needs,

preferences and constraints. For this reason, different types of complex reasoning tasks

need to be efficiently designed and executed on such streams to capture the sophisticated

requirements of users. Stream Reasoning is an emerging research area which focuses on

providing continuous complex reasoning capabilities over data streams. However, Stream

Reasoning faces many challenges not only due to their heterogeneity but also due to the

exponential growth in the availability of streaming data on the Web, which severely

limits the complexity of reasoning that can be used to extract actionable knowledge in

a scalable and reliable way.

The key challenge addressed in this thesis is to enable expressive reasoning over massive,

distributed, heterogeneous data streams in a scalable way. I address this problem by

integrating Semantic Web for semantic integration, Answer Set Programming (ASP) for

expressive reasoning, and Data Stream Management Systems for stream processing. The

trade-off between scalability and expressivity in Stream Reasoning is considered, and

parallel reasoning techniques are proposed to enhancing scalability while maintaining

some of the key reasoning capabilities that are more expressive but also computationally

more expensive.

The thesis addresses two research questions related to how the expressivity and scalabil-

ity of a reasoner can be improved when reasoning on Semantic Web data streams. For

University Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

the first research question which targets expressivity, I propose C-ASP, a language ex-

tended from the ASP language with Resource Description Framework (RDF) streaming

operators, which allows users to express complex requirements in terms of preferences

and constraints, as a continuous reasoning request. The C-ASP reasoner is implemented

to continuously evaluate such reasoning request when new data arrives. The experi-

mental evaluation shows that the C-ASP engine outperforms the state-of-the-art RDF

stream processing engine C-SPARQL. For the second research question which focuses on

the scalability, I optimize the reasoning process of the C-ASP reasoner with a parallel

approach based on data-level parallelism, and I demonstrate how the correctness of the

results can be maintained. To do so, a clear characterization and formal definitions for

analyzing the dependencies among input data streams are provided. The algorithms

are developed to create a partitioning plan for guiding the parallel reasoning process to

split data streams on-the-fly. Experiments show that applying this data-level parallelism

improves the reasoning process significantly.

The research discussed in this thesis has been deployed in two real-world scenarios in

the context of Smart Cities where event-driven contextual knowledge extraction is intro-

duced, and Smart Enterprise where an Internet of Things-enabled meeting management

system is developed. The former aims at continuously identifying and filtering critical

events that might affect the decision making of users while the latter investigates how

to enhance users’ experience in online meetings on-the-go by using mobile sensors em-

bedded in a communication platform. By addressing the requirements of such scenarios,

the prototypes demonstrate the validity and feasibility of the approach proposed in this

thesis.

Acknowledgements

I would like to express sincere gratitude to Dr. Alessandra Mileo, my thesis supervisor,

for her patience and excellence in guiding me through my PhD journey. The time she

dedicated and the advice she provided towards the completion of this work are priceless.

Her expertise and positive attitude encouraged me to overcome all struggles occurred

during my PhD process. I am thankful to my co-supervisor, Dr. Muhammad Intizar

Ali, not only for funding the extension period of my PhD but also for his great support

during the completion of this thesis. My thanks also go to Dr. Matthias Nickles for his

time to review the thesis and slides.

I would like to thank my Graduate Research Committee members: Prof. Dietrich

Rebholz-Schuhmann, Dr. John Breslin, Dr. Edward Curry, and Dr. Brian Davis.

Their insightful feedback at various stages of this research help keeping this work on the

track towards completion. I am also very grateful to my examiners Prof. Dr. Emanuele

Della Valle and Prof. Dr. Mathieu D’Aquin for their time to evaluate this work and

their precious feedback and comments, and thanks to Dr. Paul Buitelaar for chairing

the process.

My acknowledgement goes to the funding agencies who supported this work at different

stages: Science Foundation Ireland, Enterprise Ireland, and the European Commission.

Many thanks to friends and colleagues who I have experienced great discussions and

collaborations with. I deeply appreciate Hugo Hromic for his help in setting up environ-

ments for experiments in this thesis, and Andrea Barraza and Andrea Yanez for their

proof-reading comments on the thesis and slides.

Finally, I would like to send my sincerest gratitude to my parents and my sisters who

always love me unconditionally. To my sisters, thank you all for taking care of mom and

dad so that I could pursue my career abroad. Thanks to my dear friend, Hau Bui, who

takes care of me as her sister and cooks a lot of delicious Vietnamese food to me.

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements v

Contents vi

List of Figures ix

List of Tables xi

Listings xii

Abbreviations xiv

1 Introduction 1

1.1 Motivation & Problem Description . 2

1.2 Research Questions . 6

1.3 Hypotheses . 7

1.4 Overview of The Proposed Approach . 8

1.5 Contributions . 8

1.6 Thesis Outline . 9

1.7 Publications . 10

2 Background 13

2.1 Semantic Web . 13

2.1.1 Data Models . 13

2.1.2 Semantic Web Streams . 15

2.2 Answer Set Programming . 17

2.2.1 Syntax . 17

2.2.2 Semantics . 19

2.2.3 The ASP solving paradigm . 21

2.2.4 Optimization in ASP . 22

2.3 Stream Reasoning . 24

vi

Contents vii

2.3.1 Conceptual Architecture . 25

2.3.2 Stream Reasoning Development . 25

2.3.3 Stream Reasoning Categories . 30

2.4 Summary . 32

3 Related Work 33

3.1 Stream Reasoning . 33

3.1.1 Languages and Engines . 33

3.1.1.1 SPARQL-based approaches 34

3.1.1.2 CEP-based approaches 36

3.1.1.3 Logic-based approaches 38

3.1.2 Comparative Analysis . 41

3.1.2.1 RSP Benchmarks . 41

3.1.2.2 Reasoning Benchmarks 44

3.2 Optimization via Parallel Strategy . 46

3.3 Summary . 50

4 C-ASP: Continuous Extension of ASP for RDF Stream Reasoning 51

4.1 The C-ASP Processing Model . 53

4.1.1 Windowing: from streams to relations 54

4.1.2 Evaluating: from relations to relations 56

4.1.3 Streaming: from relations to streams 57

4.2 Implementation: the C-ASP Language . 57

4.2.1 C-ASP Reasoning Request . 58

4.2.2 Examples of a C-ASP Reasoning Request 59

4.3 Evaluation . 61

4.4 Summary . 63

5 Characterizing Input-driven Dependency 65

5.1 Reasoning over Independent Data Streams 66

5.1.1 Experiment Setting . 67

5.1.2 Experiment Discussion . 68

5.2 Reasoning over Dependent Data Streams 71

5.2.1 Running Example: Traffic Management 71

5.2.2 Assumptions . 72

5.2.3 Input Dependency Analysis . 73

5.2.4 Building Input Dependency Graph 77

5.3 Summary . 80

6 Input-driven Parallel Reasoning 82

6.1 Partitioning Plan . 83

6.1.1 Unconnected Input Dependency Graph 83

6.1.2 Connected Input Dependency Graph 85

6.2 Parallel Reasoning in C-ASP . 90

6.3 Evaluation . 91

6.3.1 Experiment 1: Recursive positive rules 92

6.3.2 Experiment 2: Stratified negation rules 95

6.4 Summary . 96

Contents viii

7 Use Cases and Prototypes 98

7.1 Contextual Event Filtering System . 98

7.1.1 Contextual Filtering & Requirements 100

7.1.2 Implementation of C-ASP Reasoner for Contextual Filtering . . . 101

7.1.3 Context-aware Travel Planner . 103

7.1.4 Context-aware Parking Planner . 103

7.2 IoT-enabled Meeting Management System 104

7.2.1 Motivating Scenario . 105

7.2.2 IoT-MMS Architecture . 107

7.2.3 Stream Reasoning in IoT-MMS . 107

7.2.4 IoT-MMS Application Interface . 110

7.2.4.1 Android Application and User Login 111

7.2.4.2 From Meeting Creation to Notification 111

7.3 Summary . 115

8 Conclusion 116

8.1 Contributions . 116

8.2 Limitations . 118

8.3 Future Work . 119

Bibliography 122

List of Figures

2.1 The graphical representation of an RDF triple 14

2.2 The example of the RDFS inference . 14

2.3 An RDF stream of booking hotels . 16

2.4 Declarative problem solving paradigm [1] 17

2.5 A directed graph . 19

2.6 The ASP solving process . 21

2.7 A example of a dependency graph [2] . 24

2.8 The conceptual architecture of a SR system 25

2.9 The conceptual architecture of DSMSs [3] 27

2.10 The CQL model [4] . 27

2.11 The CEP conceptual architecture . 29

2.12 CEP operators [5] . 30

2.13 SR Layers [6] . 30

4.1 The C-ASP Processing Model . 53

4.2 An RDF stream of booking hotels . 56

4.3 C-ASP syntax . 58

4.4 Q1C & R1C (f=1) . 64

4.5 Q1C & R1C (f=2) . 64

4.6 Q2C & R2C (f=1) . 64

4.7 Q2C & R2C (f=2) . 64

4.8 Q10C & R10C (f=1) . 64

4.9 Q10C & R10C (f=2) . 64

5.1 Reasoning time . 70

5.2 Extended dependency graph GP . 75

5.3 Input dependency graph G
inpre(P)
P . 76

5.4 Types of dependencies . 77

5.5 The process to build an input dependency graph 77

6.1 Input dependency graph G
inpre(P ′)
P ′ . 86

6.2 Output of the decomposing process for G
inpre(P ′)
P ′ 89

6.3 The Extended StreamRule . 90

6.4 Latency (recursive rules with static setting) 94

6.5 Memory consumption (recursive rules with static setting) 94

6.6 Latency (recursive rules with streaming setting) 95

6.7 Memory consumption (recursive rules with streaming setting) 95

6.8 Latency (recursive and stratified negation rules) 96

ix

List of Figures x

6.9 Memory consumption (recursive and stratified negation rules) 97

7.1 The components of CityPulse framework with their APIs [7] 99

7.2 Route selection . 103

7.3 Route constraints . 103

7.4 Optimal routes . 104

7.5 Ciritcal Event . 104

7.6 Parking selection . 105

7.7 Parking constraint . 105

7.8 Optimal parking spaces . 105

7.9 IoT-enabled communication system architecture [8] 108

7.10 Stream Reasoning Layer Architecture . 109

7.11 Application login interfaces . 111

7.12 Available sensor list . 112

7.13 Create new meeting event from OM . 113

7.14 Adding agendas for meeting event . 113

7.15 Setting sensor thresholds for the event . 113

7.16 IoT panel in meeting room for each user 114

7.17 User’s IoT Capabilities Notification . 114

List of Tables

3.1 Comparison of SR systems. (Note: ST stands for Single timestamp and
SB for SPARQL-based) . 40

xi

Listings

2.1 An example of a basic SPARQL query . 15

2.2 Samples for the enrichment of the RDF data model 16

2.3 An ASP program for graph 3-coloring (with Clingo format input) 19

4.1 RR1 . 59

4.2 RR2 . 59

4.3 RR3 . 60

4.4 RR4 . 61

4.5 Snapshot of query Q1C . 61

4.6 Snapshot of reasoning request R1C . 63

5.1 An example of a weather event . 68

5.2 An example of user’s context . 68

5.3 The reasoning request for notifying critical events 69

5.4 Sample rules for detecting events . 71

6.1 The reasoning request with positive recursive rules inspired from LUBM . 93

6.2 Negation-as-failure rules . 96

7.1 An example of an annotated event in Contextual Filtering 102

7.2 Rules for contextual filtering of events with ranking through linear com-

bination . 102

7.3 Rules of Event Detection . 109

7.4 Rules of User Reasoner . 110

7.5 Rules of Meeting Reasoner . 111

xii

Abbreviations

ADM Active Database Management.

APIs Application Programming Interfaces.

ASP Answer Set Programming.

BFS Breadth-First Search.

CEP Complex Event Processing.

CQL Continuous Query Language.

CWA Closed World Assumption.

DSMS Data Stream Management Systems.

EDB extensional database.

GL Gelfond-Lifschitz.

GPUs Graphical Processing Units.

IDB intensional database.

IoT Internet of Things.

IoT-MMS IoT-enabled Meeting Management System.

IRI Internationalized Resource Identifier.

KRR Knowledge Representation & Reasoning.

LSD Linked Sensor Data.

OM OpenMeetings.

xiii

Abbreviations xiv

OWL Web Ontology Language.

RDF Resource Description Framework.

RDFS RDF Schema.

RSP RDF Stream Processing.

SPARQL Simple Protocol and RDF Query Language.

SR Stream Reasoning.

SSN Semantic Sensor Network.

SW Semantic Web.

WWW World Wide Web.

Dedicated to my parents and sisters.

xv

Chapter 1

Introduction

Massive amounts of data are being generated every minute every day from a huge number

of devices and services across the Internet. Typical sources of such data include sensors,

Internet of Things (IoT) [9] devices, and social networks. They create a paradigm shift

where (near) real-time data is becoming ubiquitous in all aspects of the human life.

Each of dynamic data flows delivered from these sources is referred to as a data stream.

Various application scenarios have been getting benefits from data streams [10] such as

Smart Cities [11], Smart Grids [12], and Remote Health Monitoring [13]. However, the

explosion of highly dynamic data on the Web together with the complexity of domain

applications still far exceed the computing capability of current methods and infras-

tructures. One of major challenges emerged among these real scenarios is the ability to

perform complex reasoning over huge volumes of heterogeneous data streams in (near)

real-time [14]. Different research communities including Database, Semantic Web (SW)

and Knowledge Representation & Reasoning (KRR) have been focusing on the above

challenge and, as a result, the new area of so-called Stream Reasoning (SR) started to

develop [15].

Several methods have been proposed for processing data streams. For example, in the

SW community, existing solutions extend: (i) RDF [16] (a standard model for data

interchange on the Web) to RDF streams [17] with timestamps for capturing temporal

properties of data; and (ii) Simple Protocol and RDF Query Language (SPARQL) [18]

(a query language for RDF data) to continuous SPARQL-based query languages (e.g.,

C-SPARQL language [19], CQELS-QL [20], and SPARQLstream [21]) for querying over

streams of RDF data. In addition, various engines have been implemented and widely

used in the stream processing frameworks such as C-SPARQL [22] and CQELS [20].

1

Chapter 1. Introduction 2

Majority of existing solutions are divided into two categories: Data Stream Management

Systems (DSMS) [23] and Complex Event Processing (CEP) systems [24]. The former

approach uses a so-called window operators [25] to transform data streams into times-

tamped relations and processes them with relational algebra-based techniques [26]. The

latter approach considers observable raw data as primitive events and identifies when

composite events occur with a given complex event pattern constructed from some spe-

cific operators [27]. Both approaches are able to deal with the transient nature of data

streams mostly based on pattern matching techniques.

These systems, however, do not meet requirements of real-world applications [28]. The

complexity of such applications requires capabilities for reasoning over incomplete, di-

verse, and unreliable input streams together with rich background knowledge in order to

extract new knowledge which supports users in decision making. Answer to this need,

the research of recent years in SR focuses on coupling reasoning techniques with reactive

throughput-efficient stream processing systems [29].

1.1 Motivation & Problem Description

The concept of Stream Reasoning (SR) was introduced by Heiner Stuckenschmidt, Ste-

fano Ceri, Emanuele Della Valle, and Frank van Harmelen in 2010 as follows:

SR is logical reasoning in real time on gigantic and inevitably noisy data

streams in order to support the decision process of extremely large numbers

of concurrent users. [30]

A more detail definition from the Encyclopedia of Database Systems is:

SR refers to inference approaches and deduction mechanisms which are con-

cerned with providing continuous inference capabilities over dynamic data.

The paradigm shift from current batch-like approaches towards timely and

scalable stream reasoning leverages the natural temporal order in data streams

and applies windows-based processing to complex deduction tasks that go be-

yond continuous query processing such as those involving preferential reason-

ing, constraint optimization, planning, uncertainty, non-monotonicity, non-

determinism, and solution enumeration. [15]

Logical reasoning has been playing an important role in designing and building expert

systems. Its techniques are powerful at representing complex domain knowledge and

Chapter 1. Introduction 3

solving NP-hard [31] problems. With these advances, using logical reasoning is a high

potential direction to overcome limitations of stream processing solutions in dealing with

complex decision making tasks [32]. However, the disadvantage of expressive reasoning

is scalability in which the computational time may rise exponentially along with an

increase of the domain complexity and the input size. This drawback gets worse in a

dynamic environment where input data keeps coming and stressing reasoners. Therefore,

as stated in the above definitions, SR aims at providing solutions to perform complex

reasoning over highly changing data streams in (near) real time. This research trend is

considered as “an unexplored yet high impact research area and new multidisciplinary

approach that can provide the abstractions, foundations, methods, and tools required

to integrate data streams, the SW, and reasoning systems” [14].

The capability of SR promisingly benefits numerous areas of the human life [10, 14, 33]

such as managing traffic flows, monitoring public-health risks, discovering new drugs,

etc. These real-world applications require systems being able to handle challenges of the

trade off between complexity and scalability coming from data streams, complex domain

knowledge, and user requirements and preferences. A recent survey in SR [28] listed 9

capabilities that a such system must have:

• (R1) handle volume - the amount of data,

• (R2) handle velocity - the speed of data processing,

• (R3) handle variety - the number of data types,

• (R4) cope with incompleteness - the behavior dealing with missing information,

• (R5) cope with noise - the behavior dealing with fault or misleading data,

• (R6) provide answers in a timely fashion - the ability to reasoning in (near) real

time,

• (R7) support fined-grained information access - being able to access on smaller

piece of information,

• (R8) integrate complex domain models - the ability to combine rich domain knowl-

edge,

• (R9) capture what user wants - meeting requirements and preferences of the user.

In [10, 14], multiple open issues are presented when building a SR system that meets

those above requirements. Such issues can be summarized in 3 big challenges which can

capture all above requirements:

Chapter 1. Introduction 4

• Integration: among data streams coming from multiple sources with different data

types or between data streams and knowledge bases (can be static or quasi-static).

For example, the efficient traffic monitoring use case requires that streaming data

collected from traffic sensors on roads, weather sensors, and social networks (e.g.,

traffic tweets on Tweeter) is combined with a background knowledge about a city

such as street maps or city cultural event information. Solutions for this challenge

can capture requirements R3, R7, and R8.

• Scalability: is commonly evaluated on two dimensions: the ability to perform

higher complex reasoning tasks (the computational complexity) and the ability to

process larger input (the input size). In the context of streaming environments,

a SR system is required to provide answers for a user reasoning request in timely

fashion. Solutions for this challenge can capture requirements R1, R2, R6, and

R9.

• Expressivity: shows to what extent complex reasoning can be supported by a

stream reasoner. Extracting new knowledge from different abstract levels of data

streams and information domains requires different expressive levels. The transient

nature of input information demands the system being able to manage uncertainty

or inconsistency. In addition, users requirements and preferences may ask for very

hard reasoning abilities such as finding all of optimal answers (i.e., non determin-

ism) or making a plan under their constraints and preferences (i.e., combinatorial

optimization). Solutions for this challenge can capture requirements R4, R5, R7,

and R9.

It has been a decade since the notation of SR was first introduced. Numerous techniques

have been proposed in this area. Different communities have focused on complemen-

tary aspects of processing data streams. From the SW realm, besides the development

of data models, query models, and languages inspired by RDF and SPARQL [34–37],

RDF stream processors have been extended with entailment regimes. For example, C-

SPAQRL 1 and Sparkwave [38] support RDF Schema (RDFS)2 inference, TrOWL [39]

and Streaming Knowledge Bases [40] support simple Web Ontology Language (OWL)3

reasoning. Several attempts in extending OWL 2 DL4 and its fragments, and optimiz-

ing its reasoning process by applying incremental reasoning or parallelization techniques

[41–43]. Most of proposed solutions in SW focus closer to the data side so that they are

normally referred to as stream processing approaches.

1https://github.com/streamreasoning/CSPARQL-ReadyToGoPack
2https://www.w3.org/TR/rdf-schema/
3https://www.w3.org/OWL/
4https://www.w3.org/TR/owl2-overview/

Chapter 1. Introduction 5

In the KRR community, researchers study about reasoning over changing worlds long

time ago under the label of temporal logic [44] and belief revision [45]. These approaches,

however, mainly focus on low-volume and low-frequency data. Recently, studies in this

field have been investigating on extending expressive reasoning formalisms to cope with

streaming data such as in ASP [46–48] or in Metric Temporal Logic [49, 50]. Some studies

focus on building theoretical foundations for SR. For example, authors in [51] proposed

the Logic-based framework for Analyzing Reasoning over Streams (LARS) which defines

a rule-based modeling language to formalize SR semantics. Proposed solutions in this

community focus closer on knowledge and inferences via enabling logical reasoning in the

streaming settings, so that they are normally referred to as stream reasoning approaches.

So far, SR has seen several positive outcomes addressed all mentioned challenges but

they have not resolved issues completely [28]. On one hand, stream processing solutions

can handle streams of data and timely produce new results, but they are limited in

complex reasoning capabilities that are required to solve user’s sophisticated demands

such as the ability to handle defaults, common sense, preferences, recursion, and non-

determinism. On the other hand, logical reasoning engines can perform such complex

reasoning tasks are mostly designed to work on static or quasi-static data. Extension

from these engines to work on dynamic data is not trivial because expressivity of a

reasoner is known to be inversely related to its performance - the more expressive the

reasoner is, the longer it takes to perform reasoning. Most of studies have focused

on monotonic reasoning or restricted to some fragments of non-monotonic reasoning

[52] in order to speed up processing time of the reasoner. Moreover, in the attempt

to bridge the gap between RDF Stream Processing (RSP) and expressive reasoning,

other research groups follow the approach to combine a RDF stream processor with a

reasoner in a pipeline [40, 53, 54]. This combination is based on the principle of having

a 2-tier approach where: i) a stream processor is used to filter semantic data elements,

and ii) a logical reasoner is used for computationally intensive tasks. It takes advances

from both stream processing solutions and expressive reasoning solutions in order to

achieve a better trade-off between scalability and expressivity of a SR system. However,

most of exciting engines implemented from this approach hard-code a logical reasoner as

subprocess that performs repetitive reasoning to infer new knowledge from data streams

and a given rule set. Therefore, they do not provide a flexible way to seamlessly integrate

the stream processing and reasoning functionalities.

This thesis aims at addressing the challenge of achieving the trade-off between scala-

bility and expressivity for a reasoner over non-noisy SW data streams. On one hand,

to push the expressivity of the reasoner higher, I leverage advanced techniques from

non-monotonic reasoning, namely ASP [55], in order to resolve complex reasoning tasks.

Chapter 1. Introduction 6

ASP with its stable model semantics is well-known as a powerful high expressive declar-

ative programming language to represent rich knowledge structures and the ability of

managing defaults, common sense, preferences, recursion, and non-determinism. These

are complex reasoning tasks with the expensive computational cost. On the other hand,

I study optimization techniques to scale up the reasoner in the dynamic environment.

Scalability is referred to as the ability to provide answers in an acceptable time when the

throughput increases and the reasoning gets computationally intensive. In summary, my

thesis focuses on tackling a research question “How to perform non-monotonic reasoning

based on ASP over RDF data streams in a scalable way?”.

1.2 Research Questions

To address the main research problem mentioned above, the following questions need to

be answered:

RQ1: How to enable complex reasoning based on ASP over RDF data

streams?

At the beginning of this research, I explore the combination of advances in RDF stream

processing techniques and ASP to address the expressivity concern. Instead of hard-

coding an ASP solver as a reasoner over RDF data streams as in [40, 53, 54], I inves-

tigate an integration between SPARQL-inspired query languages which define a setting

for continuously querying RDF streams and ASP-Core-2 [56] has been standardized as

an input language format which can perform one-shot reasoning over data in form of

predicates. This integration allows users to describe their sophisticated requirements

and preferences via a continuous reasoning request which can be processed seamlessly

by an ASP-based reasoner on RDF streaming data.

RQ2: How to scale up the reasoning process over RDF data streams under

stable model semantics of ASP?

While RQ1 investigates on the expressivity of an RDF stream reasoning engine, the

second research question concerns about its scalability. The strong declarative aspect of

ASP can modeling and solving complex problems on domain-specific knowledge including

incomplete information, defaults, and preferences, but it is very costly to compute answer

sets (i.e., solutions of a reasoning task). In addition, in the streaming setting, the

reasoner needs to return results faster than when new input arrives in order to maintain

the stability. I break this question into two sub-questions to consider:

Chapter 1. Introduction 7

• RQ2.1: Which information is relevant to the reasoning process and how

it can be used to optimize the reasoning performance?

To scale up the RDF stream reasoner, the first sub research question aims at

discovering information pieces that are relevant to the reasoning process. Two

typical information sources for this investigation are user-defined continuous rea-

soning requests and input data streams. In this way, the characteristics of semantic

structures from both input-driven and domain-driven dimensions are studied.

• RQ2: How to use such information found in RQ2.1 efficiently to speed

up the reasoning process without losing the correctness of reasoning

results?

In this second sub research question, a method to enhance the stream reasoning

process using the semantic structures defined in RQ2.1 is studied. Moreover, in the

optimization step, stable model semantics of ASP need to be taken into account

for guaranteeing the accuracy of reasoning results.

1.3 Hypotheses

The research in this thesis stands on these following hypotheses:

H1. The continuous extension of the ASP language with the RDF streaming

features provides a higher expressivity to capture users’ sophisticated requirements

and preferences.

H2. Partitioning an input window in which data is independent helps to reduce

the reasoning cost of an expressive stream reasoner. Moreover, the total time when

reasoning sequentially over such partitions of the input window can be smaller than

the reasoning time over the whole window under the circumstance of monotonically

increasing reasoning time.

H3. The semantic dependencies between input data streams play an important role

in the reasoning process in terms of its performance and the correctness of results.

These dependencies can be captured based on the structure of a given reasoning

request and can be decomposed in such a way to enable parallel reasoning and

maintain the correctness of results.

H4. Parallel reasoning over partitioned data streams when taking into account

input dependencies can reduce the cost of the reasoning process and maintain the

correctness of combined reasoning results.

Chapter 1. Introduction 8

1.4 Overview of The Proposed Approach

The goal of this thesis is to provide an efficient and effective solution to perform complex

reasoning based on ASP over RDF data streams in a scalable way, i.e., providing answers

for the research questions mentioned in Section 1.2. The proposed approach constitutes

these following main elements:

• A continuous ASP-based reasoning language for RDF streams. This piece of work

answers the research question RQ1 and validates the hypothesis H1. A language is

extended from the ASP language with features of the continuous SPARQL query

language to reasoning continuously over RDF streams. This language should pro-

vide a rich declarative way to express users’ complex requirements and preferences

in the form of so-called a continuous reasoning request. Such request should be

registered into an expressive reasoner and be processed continuously whenever new

data arrives.

• Input-driven dependency characterization. This element answers the research ques-

tion RQ2.1 and validates the hypotheses H2 and H3. First, the key features which

potentially affect the scalability of an expressive reasoner are identified. The cor-

relation between such features and their impact on the reasoner’s performance

are empirically evaluated under the assumption of independent input data (H2).

Later, dependencies among input data are taken into account for a further inves-

tigation on their significant impact on the reasoning performance in a streaming

scenario. These dependencies can be discovered based on the structure of rules

defined in the continuous reasoning request. This rule set is restricted to be under

the stratified negation fragment of normal ASP, which ensures uniqueness of the

solution. This work extends from study about dependency graph in ASP [2, 57]

to capture relationships among input data streams (H3).

• Input-driven parallel reasoning. This functionality answers the research question

RQ2.2 and validates the hypotheses H3 and H4 by following the data partitioning

approach. The analysis of input dependencies in the previous piece of work is used

to construct a plan for partitioning input data (H3). This plan will guide the

reasoner to split input data into chunks on-the-fly and process them in parallel

while maintaining the correctness of the combined results (H4).

1.5 Contributions

The contributions of the research in this thesis include:

Chapter 1. Introduction 9

1. A continuous reasoning language, namely the C-ASP language, which is extended

from ASP with RDF streaming features, to enable ASP-based reasoning over RDF

data streams. This language is able to capture users’ sophisticated requirements

and preferences.

2. An ASP-based stream reasoner, namely the C-ASP reasoner, which processes the

C-ASP language and performs complex continuous reasoning over RDF streams.

This reasoner outperforms the state-of-the-art stream processor C-SPARQL.

3. A formal method for analyzing dependencies among input data based on the struc-

ture of a C-ASP reasoning request. This method characterizes different relation-

ships between two predicates appearing in the input data in form of so-called input

dependency graph.

4. Algorithms for building the input dependency graph from the C-ASP request,

constructing a partitioning plan from this graph, and guiding the parallel reasoning

process in C-ASP to split input data on-the-fly and combining reasoning results.

5. Formal proof that guarantees the correctness of the approach under the stable

model semantics of ASP.

6. Extension of the C-ASP reasoner with input-driven parallelization for validation

and testing proposed algorithms.

7. The implementation of two scenarios as demonstrators to validate the proposed

approach in the area of Smart Cities and Smart Enterprise applications.

1.6 Thesis Outline

The rest of the thesis is organized as follows:

• Chapter 2 presents the preliminaries for this research, which involves SW, ASP,

and SR. It defines the terminologies and notations used in the theoretical design

phase of the approach.

• Chapter 3 summarizes the related works regarding to research questions mentioned

in Section 1.2. Firstly, the classification of existing solutions in SR is described, and

followed by a discussion about achievements and limitations of current methods

in each category. Secondly, the works of parallel reasoning over data streams are

reviewed.

Chapter 1. Introduction 10

• Chapter 4 focuses the research question RQ1 associated with hypothesis H1. An

extension of the ASP language with PREFIX, FROM, STREAM, and WINDOW clauses

from the continuous SPARQL language, namely the C-ASP language, is presented.

In addition, an implementation of a so-called C-ASP reasoner which processes the

proposed continuous reasoning language is described. Finally, the chapter reports

experimental results showing C-ASP performances.

• Chapter 5 addresses the research question RQ2.1 associated with hypotheses H2

and H3. In the first part, it details the effort in enhancing the scalability of

the C-ASP reasoner over RDF streams with the case of independent input data

streams. In the second part, this chapter presents a formal method to analyze

dependencies among input data within a window and provides algorithms to build

this dependency graph.

• Chapter 6 focuses the research question RQ2.2 associated with hypotheses H3 and

H4. It describes how dependencies discovered in the previous chapter can be used

to improve the performance of the C-ASP reasoner. Algorithms for constructing

a partitioning plan and on-line splitting input data to enable parallel reasoning is

elaborated. Proofs for the correctness of reasoning results are also provided in this

chapter. At the end, it details an extension of C-ASP with this parallel approach

and the evaluation of efficiency.

• Chapter 7 validates the practicality of the C-ASP reasoner by deploying it in Smart

City and Smart Enterprise applications, namely the contextual event filtering sys-

tem and the IoT-enabled meeting management system. In particular, the chapter

reports the descriptions of such applications, their functionalities, as well as the

contribution of the C-ASP reasoner in those scenarios.

• Chapter 8 concludes the achievements and limitations of this research and discusses

the potential future research.

1.7 Publications

Contributions of this work have been published in various relevant international confer-

ences and journals as follows:

• Pham, Thu-Le, Muhammad Intizar Ali, and Alessandra Mileo. “Enhancing the

Scalability of Expressive Stream Reasoning via input-driven Parallelization.” In

Semantic Web Preprint: 1-17, 2018.

Chapter 1. Introduction 11

• Pham, Thu-Le, Alessandra Mileo, and Muhammad Intizar Ali. “Towards Scalable

Non-Monotonic Stream Reasoning via Input Dependency Analysis.” In Data En-

gineering (ICDE), 2017 IEEE 33rd International Conference on, pp. 1553-1558.

IEEE, 2017.

• Pham, Thu-Le, Stefano Germano, Alessandra Mileo, Daniel Küemper, and Muham-

mad Intizar Ali. “Automatic configuration of smart city applications for user-

centric decision support.” In Innovations in Clouds, Internet and Networks (ICIN),

2017 20th Conference on, pp. 360-365. IEEE, 2017.

• Ali, Muhammad Intizar, Naomi Ono, Mahedi Kaysar, Zia Ush Shamszaman, Thu-

Le Pham, Feng Gao, Keith Griffin, and Alessandra Mileo. “Real-time data analyt-

ics and event detection for IoT-enabled communication systems.” Web Semantics:

Science, Services and Agents on the World Wide Web 42 (2017): 19-37.

• Puiu, Dan, Payam Barnaghi, Ralf Toenjes, Daniel Kümper, Muhammad Intizar

Ali, Alessandra Mileo, Josiane Xavier Parreira, Marten Fischer, Sefki Kolozali,

Nazli Farajidavar, Feng Gao, Thorben Iggena, Thu-Le Pham, Cosmin-Septimiu

Nechifor, Daniel Puschmann, Joao Fernandes. “Citypulse: Large scale data ana-

lytics framework for smart cities.” IEEE Access 4 (2016): 1086-1108.

• Germano, Stefano, Thu-Le Pham, and Alessandra Mileo. “Web stream reasoning

in practice: on the expressivity vs. scalability tradeoff.” In International Confer-

ence on Web Reasoning and Rule Systems, pp. 105-112. Springer, Cham, 2015.

• Pham, Thu-Le. “A Scalable Adaptive Method for Complex Reasoning Over Se-

mantic Data Streams.” In European Semantic Web Conference, pp. 751-759.

Springer, Cham, 2015.For

In addition, some parts of this work are described in project deliverables as follows:

Project: Real-Time IoT Stream Processing and Large-scale Data Analytics

for Smart City Applications

• Mirko Presser, João Fernandes, Daniel Kuemper, Thorben Iggena, Marten Fischer,

Payam Barnaghi, Nazli Farajidvar, Sefki Kolozali, Thu-Le Pham, Muhammad In-

tizar Ali, and Dan Puiu. “Report on Integration and Evaluation Results”. Octo-

ber 2016. URL: http://www.ict-citypulse.eu/page/sites/default/files/

citypulse_d6.3_report_on_integration_and_evaluation_results_final.pdf

• João Fernandes, Dan Puiu, Thorben Iggena, Daniel Kuemper, Marten Fischer,

Sefki Kolozali, Nazli Farajidavar, Daniel Puschmann, Feng Gao, Thu-Le Pham,

http://www.ict-citypulse.eu/page/sites/default/files/citypulse_d6.3_report_on_integration_and_evaluation_results_final.pdf
http://www.ict-citypulse.eu/page/sites/default/files/citypulse_d6.3_report_on_integration_and_evaluation_results_final.pdf

Chapter 1. Introduction 12

Azadeh Bararsani, and Aneta Vulgarakis. “Smart City Demonstrator”. July 2016.

URL: http://www.ict-citypulse.eu/page/sites/default/files/citypulse_

d6.2_smart_city_demonstrator-final.pdf

• Dan Puiu, Daniel Kümper, Marten Fischer, Sefki Kolozali, Nazli Farajidavar,

Feng Gao, Thorben Iggena, Thu-Le Pham, Daniel Puschmann, Joao Fernan-

des, Bogdan Serbanescu, and Cosmin Marin. “Smart City Environment User

Interfaces”. February 2016. URL: http://www.ict-citypulse.eu/page/sites/

default/files/citypulse_d5.3_smart_city_environment_user_interfaces_

final.pdf

• Alessandra Mileo, Stefano Germano, Thu-Le Pham, Dan Puiu, Daniel Kuemper,

and Muhammad Intizar Ali. “User-Centric Decision Support in Dynamic En-

vironments”. August 2015. URL: http://www.ict-citypulse.eu/page/sites/

default/files/citypulse_d5.2-user-centric_decision_support_in_dynamic_

environments_final.pdf

• Alessandra Mileo, Feng Gao, Muhammad Intizar Ali, Thu-Le Pham, Maria Bermudez,

and Daniel Puschmann. “Real-time Adaptive Urban Reasoning”. July 2014. URL:

http://www.ict-citypulse.eu/page/sites/default/files/citypulse_d5.1_

real-time_adaptive_urban_reasoning_final.pdf

Project: Enabling the Internet of Everything: a Linked Data infrastructure

for networking, managing and analyzing streaming information

• Thu-Le Pham, Mahedi Kaysar, Muhammad Intizar Ali, and Alessandra Mileo.

“Stream Reasoning and Knowledge Extraction”. Jan 2016.

http://www.ict-citypulse.eu/page/sites/default/files/citypulse_d6.2_smart_city_demonstrator-final.pdf
http://www.ict-citypulse.eu/page/sites/default/files/citypulse_d6.2_smart_city_demonstrator-final.pdf
http://www.ict-citypulse.eu/page/sites/default/files/citypulse_d5.3_smart_city_environment_user_interfaces_final.pdf
http://www.ict-citypulse.eu/page/sites/default/files/citypulse_d5.3_smart_city_environment_user_interfaces_final.pdf
http://www.ict-citypulse.eu/page/sites/default/files/citypulse_d5.3_smart_city_environment_user_interfaces_final.pdf
http://www.ict-citypulse.eu/page/sites/default/files/citypulse_d5.2-user-centric_decision_support_in_dynamic_environments_final.pdf
http://www.ict-citypulse.eu/page/sites/default/files/citypulse_d5.2-user-centric_decision_support_in_dynamic_environments_final.pdf
http://www.ict-citypulse.eu/page/sites/default/files/citypulse_d5.2-user-centric_decision_support_in_dynamic_environments_final.pdf
http://www.ict-citypulse.eu/page/sites/default/files/citypulse_d5.1_real-time_adaptive_urban_reasoning_final.pdf
http://www.ict-citypulse.eu/page/sites/default/files/citypulse_d5.1_real-time_adaptive_urban_reasoning_final.pdf

Chapter 2

Background

This chapter provides the background information used in the research of this thesis.

The chapter is started with basic concepts in SW and SW in the streaming setting.

Subsequently, the underlying concepts and relevant methodologies in ASP are presented.

Finally, the chapter details the development of the SR area.

2.1 Semantic Web

SW is about connecting facts rather than linking to a specific document or an application

as in the traditional World Wide Web (WWW). It uses machine-accessible knowledge to

abstract from web documents and applications. This thesis uses various SW techniques.

In this section, the data models as well as the SW streams are presented.

2.1.1 Data Models

RDF1 is a framework proposed by the WWW Consortium (W3C)2 for standardizing

data interchange on the Web. RDF models the SW data in the form of triples, each

consisting of a subject, a predicate, and a object. An RDF triple encodes a statement

which is a claim about the world by describing a relation (represented by the predicate)

between two entities (represented by the subject and the object). Figure 2.1 visualizes

a triple as a simple graph with two nodes represented for the subject and the object in

ovals and a directed link represented for the predicate.

1https://www.w3.org/TR/rdf11-concepts/
2https://www.w3.org/Consortium/

13

Chapter 2. Background 14

Subject Object
Predicate

Figure 2.1: The graphical representation of an RDF triple

Music Event Cultural Event

Event

rdfs:subClassOf
rdfs:subClassOf

Event_02

Event_01

Weather Event

rdf:type

rdf:type

rdfs:subClassOf

rdfs:subClassOf

rdf:type

RDF special term

RDFS special term

Inferred relations

rdf:type

Figure 2.2: The example of the RDFS inference

RDFS3 provides the data-modeling vocabulary for RDF data. It extends the basic RDF

vocabulary with terms which allow describing classes (i.e., groups of related resources),

property domains and ranges, taxonomies (i.e., classes and properties hierarchies), RDF

containers, RDF collections, and so on. RDFS provides basic elements for the description

of ontologies and enable inference, namely the RDFS entailment, to infer implicit RDF

statements from explicitly specified ones. Figure 2.2 illustrates an example of the RDFS

inference based on class hierarchies.

OWL4 aims at leveraging advances of expressive and reasoning power of description logic

to the SW. It extends RDF and RDFS by adding more vocabulary for representing richer

types of properties and classes (e.g., symmetric properties, enumerated classes, etc)

and more expressive relations among them (e.g., disjointedness, exactly one, equality,

etc). However, OWL semantics is not fully compatible with RDF/RDFS semantics.

To partially overcome this problem, OWL provides three increasingly expressive sub-

languages: OWL Lite, OWL DL, and OWL Full.

SPARQL5 is a SQL-like query language for retrieving and manipulating data stored in

the RDF format. Moreover, with the availability of SPARQL specification for web ser-

vice, it currently serves as an RDF data access protocol. The results of a SPARQL query

3https://www.w3.org/TR/rdf-schema/
4https://www.w3.org/TR/owl-features/
5https://www.w3.org/TR/rdf-sparql-query/

Chapter 2. Background 15

S e l e c t ? eventId Where {
? eventId rd f : type ? eventType .
? eventType r d f s : subClassOf : Event .

}

Listing 2.1: An example of a basic SPARQL query

over an RDF dataset varies depending on reasoning types supported by the SPARQL

engine implementation. Listing 2.1 expresses a basic SPARQL query over the RDF

graph shown in Figure 2.2. This query asks for Ids of any events available in the

graph. {Event 01} is answer of the query with no reasoning support while {Event 01,

Event 02} is result with the RDFS entailment support.

2.1.2 Semantic Web Streams

Moving from static data to streaming data, the very first notable update is in the RDF

data model with temporal properties. The RDF data stream model is extended from

RDF data with two main dimensions: data item (i.e., the minimal information unit in

the stream) and time annotation (i.e., a set of time instants associated with each data

item). The first extension, which is also the most popular, is the one in which an RDF

statement is enriched with one timestamp t, e.g. [20, 21, 34, 58]. It reports that the

RDF statement is valid at t. The second extension is adopted with two timestamps ts

and te, e.g. [36, 59, 60]. The semantics that is usually associated to these timestamps is

a time interval in which the RDF statement is valid. Listing 2.2 (a) and (b) (in Turtle6-

like syntax) shows examples for such time-annotated RDF statement. The first three

elements in each row define an RDF statement while the fourth element in the square

brackets identifies timestamps. Listing 2.2 (a) reports that an event1 is detected at

dangan street at timestamp t = 1 while Listing 2.2 (b) describes an event2 is detected

at newcastle street during the period of time from 1 to 6. The third extension proposes

to use an RDF graph as an informative unit and associates it with one timestamp, e.g.

[61]. An example for this extension is illustrated in Listing 2.2 (c) (in Trig7-like syntax)

which describes an RDF graph g1 including two RDF statements and being valid at

timestamp t = 2.

In the following, the basic concepts in RSP are formalized and adopted from [4, 34, 59,

62].

6https://www.w3.org/TR/turtle/
7https://www.w3.org/TR/trig/

Chapter 2. Background 16

(a) : event1 : detectedAt : dangan [1]
(b) : event2 : detectedAt : newcast l e [1 , 6]
(c) : g1 {

: event3 : detectedAt : thomas
: event3 : detectedSource : s e n s o r s

} [2]

Listing 2.2: Samples for the enrichment of the RDF data model

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 t

d1 d4
d3

d2

:user1 :book :hotelA :user4 :book :hotelA

:user3 :book :hotelB :user4 :book :hotelC

Figure 2.3: An RDF stream of booking hotels

Definition 2.1. A time line T is an infinite, discrete, ordered sequence of time instants

(t1, t2, ...), where ti ∈ N . A time unit is the difference between two consecutive time

instants (ti+1 − ti) and it is constant.

Definition 2.2. A timestamped RDF statement is a pair (d, t), where d is an RDF

statement and t ∈ T is a time instant.

Definition 2.3. An RDF data stream S is a (possibly infinite) bag (multi-set) of times-

tamped RDF statements in non-decreasing time order:

S = (d1, t1), (d2, t2), (d3, t3), ...

Example 2.1. A travel company records the bookings from users to hotels that are

available on its website in Figure 2.3. An RDF stream S of the bookings is as follows:

(: user1 : book, : hotelA, 2)

(: user3 : book, : hotelB, 8)

(: user4 : book, : hotelC, 8)

(: user4 : book, : hotelA, 15)

...

The statements assert that user1 and user4 booked hotelA at timestamps 2 and 15,

user3 booked hotelB and user4 booked hotelC at the same time instant t = 8.

Chapter 2. Background 17

Problem

Representation Output

Solution

Modeling

Solving

Interpreting

Figure 2.4: Declarative problem solving paradigm [1]

2.2 Answer Set Programming

ASP emerged in the 1990s from Logic Programming and Non-monotonic Reasoning

as a declarative problem solving paradigm [1, 55, 63–67]. The Figure 2.4 illustrates

this declarative approach. Compare to the traditional way of solving a problem by

telling a computer how to solve a problem, the declarative paradigm tackles a problem

with a different perspective by focusing on how to state a problem and leaving a solving

process to the computer. The declarative approach models the given problem by creating

its formal representation. The solving process automatically extracts an implicit state

space from this representation and outputs results after exploring the state spaces with

its sophisticated search algorithms. Those results are interpreted as solutions of the

original problem.

The fundamental idea of ASP is to express a given problem into so-called logic program.

The models of this logic program provides the solutions to the original problem, namely

answer set or stable models, under the stable models semantics which introduced by

Michael Gelfond and Vladimir Lifschitz in 1988 [63]. In what follows, I provide the

syntax and semantics of ASP in Section 2.2.1 and Section 2.2.2, respectively. Section

2.2.3 is devoted to the ASP solving paradigm and Section 2.2.4 presents the optimization

in ASP.

2.2.1 Syntax

As common in ASP, I denote uppercase letters or strings starting with an uppercase

letter for variables while lowercase letters or strings starting with lowercase letter for

constants, predicates, or atoms. In addition, function symbols are not considered.

Definition 2.4. A term is either a variable or a constant.

Definition 2.5. An atom is an expression p(t1, ..., tn), where p is a predicate of arity n

and t1, ..., tn are terms.

Chapter 2. Background 18

Definition 2.6. A literal is either a positive literal p or a negative literal not p, where

p is an atom.

Definition 2.7. A disjunctive rule r is of the form:

a1 ∨ ... ∨ an :– b1, ..., bk, not bk+1, ..., not bm

where a1, ..., an, b1, ..., bm are atoms and n ≥ 0,m ≥ k ≥ 0.

“not” is called negation as failure, default negation, or weak negation. A rule r of the

form above is normally composed by the head (i.e, the disjunction a1 ∨ ...∨ an) and the

body (i.e, the conjunction b1, ..., bk, not bk+1, ..., not bm). Bellow are some notations to

distinguish parts of a rule r:

• the head of r: H(r) = {a1, ..., an}

• the positive body of r: B+(r) = {b1, ..., bk}

• the negative body of r: B−(r) = {bk+1, ..., bm}

• the body of r: B(r) = B+(r) ∪B−(r)

A rule r is called:

• a fact if B(r) = ∅

• a constraint if H(r) = ∅

• a normal rule if |H(r)| = 1

• a positive rule if B−(r) = ∅

• a Horn rule if it is positive and normal

• a safe rule if each variable in r also appears in at least one positive literal in the

body of r

Recursive rules are rules where some body predicate depends, directly or transitively, on

a predicate in the head. Intuitively, recursion through negation (or unstratified negation)

happens when two or more predicates are mutually defined over not such as {b ← not

a, a← not b}.

Definition 2.8. An ASP program (or program) is a finite set of safe rules.

Chapter 2. Background 19

Example 2.2. Consider the graph N-coloring problem with three colors red, green and

blue (N = 3) and the directed graph as in Figure 2.5. An ASP program expressing this

3-coloring problem is illustrated in Listing 2.3. Line 1, 2, and 3 are facts which represent

the directed graph and available colors via predicates node, edge, and col. Line 4 is

a disjunctive rule (notation | in Clingo source code is similar to notation ∪ in the logic

program). Line 5 is a constraint to eliminate unwanted candidate solutions.

1

2

3

5

4

Figure 2.5: A directed graph

1 node (1).node (2).node (3).node

(4).node (5).

2 edge (1,2).edge (2,1).edge (2,3).

edge (2,4).edge (2,5).edge

(3,1).edge (4,3).edge (4,2).

edge (5,4).

3 col(red).col(blue).col(green).

4 color(X,red) | color(X,blue) |

color(X,green) :- node(X).

5 :- edge(X,Y),col(C),color(X,C)

,color(Y,C).

Listing 2.3: An ASP program for
graph 3-coloring (with Clingo format

input)

2.2.2 Semantics

In this section, I describe the semantics of an ASP program which is based on the answer

set semantics originally proposed by Gelfond and Lifschitz in 1991 [68].

Definition 2.9. A term, an atom, a literal, a rule, or a program is ground if no variable

occurs in it.

Definition 2.10. Given a program P , the Herbrand Universe UP is a set of all con-

stants occurring in P and the Herbrand Base BP is a set of all possible ground atoms

constructible from predicates appearing in P with constants in UP .

Example 2.3. Consider the program P as in Example 2.2. The Herbrand Universe and

a snapshot of the Herbrand Base as follow:

UP = {1, 2, 3, 4, 5, red, blue, green}.
BP = {node(1), node(red),..., edge(1,1), edge(1,blue),..., col(1), col(green),..., color(3,4),

color(5,2), color(2,green)... }.

For any program P :

Chapter 2. Background 20

• grnd(r) denotes the set of ground rules obtained by substituting variables in a rule

r ∈ P with constants in UP in all possible ways and the ground program P .

• grnd(P) denotes the ground program of P which is a collection of grnd(r) for all

r ∈ P (grnd(P) =
⋃
r∈P grnd(r)).

• An interpretation of P is a subset of Herbrand Base BP .

Definition 2.11. (Satisfaction) Let ag be a ground atom, rg be a ground rule of a

rule r (rg ∈ grnd(r)), and P be a program. Consider an interpretation I ⊆ BP , the

satisfaction relationship (|=) between I and ag, rg, r, P is defined as follow:

• I |= ag iff ag ∈ I

• I |= not ag iff ag /∈ I

• I |= B(rg) iff B+(rg) ⊆ I and B+(rg) ∩ I = ∅

• I |= H(rg) iff H(rg) ∩ I 6= ∅

• I |= rg iff (I |= B(r) implies I |= H(r))

• I |= r iff I |= rg ∀rg ∈ grnd(r)

• I |= grnd(P) iff I |= rg ∀rg ∈ grnd(P)

• I |= P iff I |= r ∀r ∈ P

The answer sets of a program P are defined in two steps by using its ground program

grnd(P): first defines the answer sets of positive disjunctive programs, then reduces the

general programs to positive ones and checks a stable condition. An intuitive answer set

semantics for positive programs are minimal models which is defined as follow:

Definition 2.12. An interpretation I ⊆ BP is minimal model of a positive program P

if I |= P and @M ⊂ I such that M |= P .

Definition 2.13. The Gelfond-Lifschitz (GL) reduct P I of a program P relative to an

interpretation I is defined by:

P I = {H(r) : – B+(r) | r ∈ P and B−(r) ∩ I = ∅}

The GL reduct of P reduces the general program P to its positive program by:

• deleting all ground rules rg ∈ grnd(P) for which B−(rg) ∩ I 6= ∅ holds, and

• deleting all negative bodies from the remaining ground rules.

Chapter 2. Background 21

Problem

Logic Program Answer Sets

Solution

Modeling

Solving

Interpreting

Grounder SolverGrounded
Program

Figure 2.6: The ASP solving process

Definition 2.14. Given a program P and an interpretation I of P . I is an answer set

(or stable model) of P if I is a minimal model of P I .

Example 2.4. The program in Example 2.2 has 6 answer sets (predicates node, edge,

and col are removed):

I1 = {color(1, blue), color(2, green), color(3, red), color(4, blue), color(5, red)}
I2 = {color(1, red), color(2, green), color(3, blue), color(4, red), color(5, blue)}
I3 = {color(1, green), color(2, blue), color(3, red), color(4, green), color(5, red)}
I4 = {color(1, red), color(2, blue), color(3, green), color(4, red), color(5, green)}
I5 = {color(1, green), color(2, red), color(3, blue), color(4, green), color(5, blue)}
I6 = {color(1, blue), color(2, red), color(3, green), color(4, blue), color(5, green)}

2.2.3 The ASP solving paradigm

Following the declarative paradigm, the ASP solving process is depicted in the Figure

2.6. This solving process includes two steps in a pipeline. In the first step (so-called

the instantiation or grounding step), a grounder generates a variable-free program of

the input program. In the second step (so-called the solving or model searching step), a

solver computes answer sets of the grounded program. Those answer sets are interpreted

as solutions of the original problem.

The grounding phase generates a ground program (i.e., the propositional program) that

does not contain any variable by replacing the variables with all the constants appearing

in the program. This ground program has the same answer sets as the original program

and is considered as input for the solving phase. Over the past 25 years, various efficient

grounders have been developed, including DLV grounder [69], Gringo [70, 71], Lparse

[72, 73], GIDL [74], psgrnd [75].

The solving phase takes the output of the instantiation phase and computes answer sets.

Informally, this solving step consists of two subtasks [55]: generate candidate models and

Chapter 2. Background 22

checking whether these candidate models are stable. The number of candidate models

in the first subtask is potentially exponential and the procedure in the second subtask to

decide if a candidate model is a stable model is NP-complete [76]. Therefore, the efficient

realization of this phase is needed to enhance the performance of the whole ASP system.

The availability of ASP solvers is very various such as Smodels [77], Platypus [78], DLV

solver [79], nomore++ [80], GnT [81], assat [82], Cmodels [83], Wasp [84], and Clasp

[85].

Instead of offering grounders and solvers individually, the ASP community has combined

them into a monolithic system, e.g., Clingo [86] couples the grounder Gringo and the

solver Clasp, DLV integrates the DLV grounder and DLV solver. Meanwhile, several

Application Programming Interfaces (APIs) have been developed, which allow an em-

bedding program to interact with an ASP system such as the interaction between ASP

and Java is supported in DLV Wrapper [87], JASP [88], and EmbASP [89]; the com-

bination of ontologies and reasoning modules is developed in ONTODLV API [90]; the

embedding of ASP in Python and Lua programs is available in Gringo and Clasp. In ad-

dition, integrated development environments (IDEs) are also available with supportive

tools for editing, debugging, testing, and visualizing such as SeaLion [91] and ASPIDE

[92].

Due to the availability of a rich modeling language [93] together with efficient systems

and engineering environments [94], ASP has been successfully applied in widespread

applications in both research and industry fields. For example, the recent paper [95]

reports these ASP applications in robotics, bioinformatics, and industry. In robotics,

ASP has been used to: generate optimal plans of actions of multiple robots within

a given time [96, 97], diagnose failures in the plan execution [98], rearrange multiple

movable objects in a cluttered surface [99]. In bioinformatics, [100] and [101] model a

biological signaling network and biochemical reactions, [102] reconstructs phylogenies,

[103] studies protein structure prediction, and [104, 105] answer complex queries over

biomedical ontologies with ASP. In industry, ASP has been integrated in e-tourism [106]

to advice promising offers for customers, in workforce management of the Gioia Tauro

seaport [107], or in intelligent phone-call routing platform, namely zLog 8, of the Exeura

company.

2.2.4 Optimization in ASP

All of current competitive ASP reasoners imitate semantics as defined in Section 2.2.2

by implementing the 2-tier approach as in Figure 2.6. The grounding phase in ASP

8http://www.exeura.eu/en/solution/customer-profiling/

Chapter 2. Background 23

systems may be very computationally expensive since the generated ground program is

probably of exponential size in regard to the input program. For example, considering

the following program which contains one rule and two facts:

f a c t (1) , f a c t (2) .

newfact (X1 , . . . , Xn) : − f a c t (X1) , . . . , f a c t (Xn) .

The instantiation generates 2n ground rules, corresponding to n variables X1, ..., Xn

over two constants 1 and 2. The output of this grounding phase is the input of the model

searching phase. Hence, an efficient grounder plays an important role in the performance

of the whole system.

To enhance the instantiation process, substantial efforts have been focused on extending

optimization techniques [108]. The most relevant ones can be recalled such as backjump-

ing techniques [109–111] exploit the semantic and the structural information of a rule to

reduce the number of useless ground rules [112]; join-ordering methods reorder the body

literals of a rule during the grounding process [113]; program rewriting strategies, which

inspired from query optimization techniques in relational algebra, automatically rewrite

rules by rearranging their projections and selections in the execution tree [114]; dynamic

magic sets, which extended from the magic set technique [115], exploit the information

provided by the magic predicates in disjunctive programs [116]; and parallel techniques

allows for performing concurrent instantiations [57].

Other efforts have been putting restrictions in the syntax of a logic program to improve

the grounding step [55]. For instances, Lparse imposes rules on the domain restriction in

which very each variable in a rule must appear in some positive domain predicate (i.e.,

predicates that are not defined via recursive negation or choice rules) [117]. Another

restriction on rules which are more relaxed than the domain restriction can be found

in DLV or Gringo, namely rule safety [1, 69]. A rule is safe if every variable in that

rule occurs in some positive body literal whose predicate is not a built-in comparison

predicate.

For the solving phase, different approaches and extensions have been implemented in

those ASP solvers. One approach constructs sophisticated search algorithms from the

Davis-Putman-Logemann-Loveland procedure which was introduced in [118], e.g., in

Smodels, nomore++, and DLV. Another approach utilizes advances of SAT solvers [119],

e.g., in assat and Cmodels. An extension of the Conflict-Driven Clause Learning [120]

is implemented in Wasp and Clasp. Clasp is enhanced with parallel evaluation methods

in [121]. Recently, there are some efforts on applying machine learning techniques to

identify the best solver among existing solvers to deal with a particular input program

[122, 123].

Chapter 2. Background 24

To close this section, I provide the concept of dependency graph [2, 57, 69] which is widely

used in ASP to enable parallelism in the grounding step. This concept is considered as

a tool to analyze the structure of non-ground answer set programs so that it helps to

enable parallel instantiation algorithms in generating a much smaller ground program

equivalent to a given logic program. To do so, the grounders generates instances of rules

containing only atoms which can possibly be derived from a given program by taking

into account the dependencies among intensional database (IDB) predicates.

According to the database terminology, a predicate occurring only in facts is referred

to as an extensional database (EDB) predicate, all others as IDB predicates. EDB

predicates are relations stored in a database, while IDB ones are relations defined by

one or more rules. Thus, an IDB predicate can appear in the body or head of a rule

while an EDB predicate is only in the body.

Definition 2.15. Let P be a program. The dependency graph of P is a directed graph

GP = 〈N,E〉, where N is a set of nodes and E is a set of arcs. N contains a node for

each IDB predicate of P , and E contains an arc e = (p, q) if there is a rule r in P such

that q occurs in the head of r and p occurs in a positive literal of the body of r.

Example 2.5. Consider the following pro-
gram P , where a is an EDB predicate:

p(X,Y) ∨ s(Y) : −q(X), q(Y), not t(X,Y).

q(X) : −a(X).

p(X,Y) : −q(X), t(X,Y).

t(X,Y) : −p(X,Y), s(Y).

The dependency graph of P is illustrated in
Figure 2.7 where a is not appeared in the
graph since it is an EDB predicate.

Figure 2.7: A example of a depen-
dency graph [2]

2.3 Stream Reasoning

Stream reasoning (SR) emerged as a research trend provides solutions for applying logical

reasoning techniques over massive data streams in the scalable way [30]. In particular,

SR performs a set of logical rules, which express knowledge bases and reasoning tasks,

on input streams and derives actionable knowledge. The research on SR has been rooted

from different research areas: Active Database Management (ADM) [124], Data Stream

Management Systems (DSMS) [4] and Complex Event Processing (CEP) [27], and logical

reasoning [125]. In fact, SR requires new theoretical investigations that go beyond those

research areas such as which logical language is most appropriate or how to define

Chapter 2. Background 25

Stream
Reasoner

Input
streams

Output
streams

Continuous
Reasoning requests

… …

…

Knowledge bases

Figure 2.8: The conceptual architecture of a SR system

soundness and completeness for stream reasoning. Since the term SR introduced, this

area has seen multiple promising results and various applications have been built on the

top of them.

2.3.1 Conceptual Architecture

Figure 2.8 shows the conceptual architecture of a SR system. The stream reasoner

takes multiple data streams as inputs and produces outputs as streams. Input stream-

ing data are considered as infinite sequences of time-varying data elements [29], and

once a data element has been streamed by, it can not be revised. The output streams

can be stored or processed by other streaming systems. The stream reasoner also re-

quires stored knowledge bases to provide richer answers. The knowledge bases should

be static or infrequently updated. Similar to stream processing systems where users

can register continuous queries, continuous reasoning requests can be registered at the

stream reasoner. Those requests are evaluated continuously based on a combination of

input streams and knowledge bases. The reasoning requests are expected to have higher

expressivity than queries so that they can capture more sophisticated requirements of

users.

2.3.2 Stream Reasoning Development

The rise of data streams has evoked new challenges about managing, processing, query-

ing, and reasoning over infinite sequences of data with high frequency rate. In this

Chapter 2. Background 26

section, I highlight two most prominent approaches that led to the growth of the SR

research area: DSMS [4] and CEP [27].

DSMS solutions have been developed in the database community in order to cope with

high rates of data updates. Extending from the ADM approach [126], DSMS adds the

concept of stream is as follows:

A stream S is a (possibly infinite) bag (multi-set) of elements 〈s, τ〉, where s

is a tuple belonging to the schema of S and τ ∈ T is the timestamp of the

element. [4]

A stream is usually unbounded but at a given timestamp, the number of elements is

finite. There is no assumption on data arrival order. Size and time constraints of DSMS

applications make it difficult to store and process data elements after their arrival. They

require an in-flow processing model.

A conceptual architecture for DSMS is reported in Figure 2.9 which is directly taken

from [3]. A DSMS system is modeled as a set of continuous queries Q, n input streams

(n ≥ 1), and four possible outputs:

• (Derived) stream is intermediate elements in the answer produced by operators in

the query once and never changed.

• Store is to keep elements of the answer that may be changed or removed at a

certain point in the future.

• Scratch is considered as working memory of the system. It keeps data which is

not part of the answer but may be needed in computing the answer.

• Throw represents the recycle bin in which the system throws away unnecessary

data.

DSMS adopts a new interaction paradigm by introducing: continuous queries - ones

are deployed once and continue to produce results (as new stream items arrive) un-

til removed, and windows - operators to limit the portion of an input stream from

which elements can be selected to process [25]. This form of interaction is called the

Database-Active Human-Passive model as opposite from the Human-Active Database-

Passive model in the traditional database management systems [127].

One of main contributions in DSMS is the work developed by researchers in Stanford

University, namely Continuous Query Language (CQL). CQL is a SQL-based declarative

Chapter 2. Background 27

Figure 2.9: The conceptual architecture of DSMSs [3]

Figure 2.10: The CQL model [4]

language over streams. This work defines a precise abstract semantics for continuous

queries based on the concepts of streams and relations:

A relation R is a mapping from each time instant in T to a finite but un-

bounded bag of tuples belonging to the schema of R. [4]

With the formalization of streams and relations, the authors constructed a stream pro-

cessing model through three classes of operators, depicted in Figure 2.10:

• Stream-to-relation operators produce a relation R from an input stream S. In

other words, these operators extract finite bags of data elements (relations) from

a potentially infinite bag of timestamped data elements (streams). To do so, they

are mainly the concept of sliding window to take a snapshot of a stream. There

are several types of sliding window proposed in the-state-of-the-art such as fixed

windows [128], tumbling windows [129], value-based windows [130], etc. Below, I

report two most popular sliding windows:

– A time-based sliding window on a stream S takes two time intervals as input

parameters: width ω (the dimension of the window) and slide β (the distance

Chapter 2. Background 28

between two consecutive windows). Its output relation at time t is:

R(t) =

∅ if t < ω − 1

{s|〈s, t′〉 ∈ S and t′ ≥ tend and t′ ≤ tstart} if otherwise

where tstart = bt/βc.β and tend = max{tstart − ω, 0}.

– A tuple-based sliding window extracts a fixed number of last data items on

a stream S. It also takes two parameters width ω and slide β as input.

However, the width indicates that the current window should contain exactly

ω data items while the slide specifies β data items are removed or added at

each window.

• Relation-to-relation operators produce a relation R from one or more relations

R1, ..., Rn (n ≥ 1). These operators are derived from the traditional relational

algebra expressed in SQL.

• Relation-to-stream operators produce an output stream S from a relationR. Oppo-

site to stream-to-relation operators, those stream out data elements in relations. In

CQL, there are three types of such operators are defined: RStream (i.e., produces

the computed timestamped set of relations at each step), IStream (i.e., streams

out the difference between the timestamped set of relations computed at current

step and previous step), and DStream (i.e., streams out the difference between the

timestamped set of relations computed at previous step and current step).

CEP solutions also focus on analyzing data streams and generating insights on the

current situation. While DSMS is well suited for processing streams which require ag-

gregations or assessing occurrence in intervals, CEP has the capability to construct new

pieces of information by means of temporal relations among data elements in streams.

To do so, CEP associates a specific semantics to data items, so-called events defined as

“An object that represents, encodes, or records an event, generally for the purpose of

computer processing. [131]”. Other definitions of events can be found in the-state-of-

the-art of CEP such as an event is a significant change in the state of the world [132],

it can also be a thing that did not happen at all [133], or it is a computer processable

object that formed with particular attributes [27]. Categories of events are reported in

three dimensions: duration, context, and complexity. Under the duration dimension, an

event can happen at a time point (instantaneous) (e.g., an eye blinking) or can happen

for a period of time (e.g., a football match). With the context dimension, an event can

happen within a system (internal) (e.g., a reasoner fires a rule) or can happen outside

a system (external) (e.g., a weather change notification). On the complexity dimension,

an event can be primitive or is not considered as summarizing or denoting a set of other

Chapter 2. Background 29

Figure 2.11: The CEP conceptual architecture

events (simple) (e.g., a phone call) or can be composite or is created by combining a set

of other events (complex) (e.g., a stock market crash).

Figure 2.11 illustrates the conceptual architecture of CEP. A CEP system is modeled as

an agent receives input events from event providers, evaluates in real-time with the event

processing logic, and streams out complex events for event consumers. CEP considers

observable raw data as primitive events and aims at detecting occurrences of composite

events. These composite events are ones whose occurrence relies on the occurrence or

absence of other events. For instance, the fact that a traffic jam on a road is detected

when there is no traffic light on that road but different sensors located on that road

keeps notifying a number of cars greater than 40 and average speed of cars lower than

10 km/h in last 30 minutes. To detect such complex events from data streams, an event

pattern is registered at those CEP systems. It is defined as “A template specifying one

or more combinations of events” [24].

Also in [24], four categories of event patterns are reported:

• Logical pattern: describes the occurrence (or non-occurrence) of relevant event

types using logical operators such as conjunction, disjunction, exclusive-disjunction,

and negation.

• Attribute-based pattern: describes the occurrence (or non-occurrence) of relevant

event types based on constraints over event attributes.

• Dimensional pattern: describes the temporal, spatial, or spatio-temporal relations

between event types.

• Aggregated pattern: describes the occurrence (or non-occurrence) of relevant event

types based on the occurring rules of event instances.

An event pattern is constructed from given operators which express sequencing and or-

dering relationships. Examples of such operators are depicted in Figure 2.12 in which the

horizontal bars express the result evaluation over such operators. The formal semantics

of those operators can be found in [5].

Chapter 2. Background 30

Figure 2.12: CEP operators [5]

Stream Query
Processing

Semantic
Complex Event

Processing

Stream
ReasoningDa

ta

st
re

am
s

Da
ta

st

re
am

s
Da

ta

st
re

am
s

Relevant
data

Complex
Events

Solution
Sets

Applications

Expressivity

Scalability

C
ro

ss
-L

ay
er

 R
ea

so
ni

ng

Layer 1

Layer 2

Layer 3

Figure 2.13: SR Layers [6]

2.3.3 Stream Reasoning Categories

Considering existing approaches and solutions for processing SW data, authors in [6]

characterized SR into three main layers with respect to the expressivity of the reasoning

tasks that they can support. Figure 2.13 shows the representation of these three layers

with expressivity increase.

• Stream Query Processing Layer. This bottom layer includes all systems that in-

herit the processing model of DSMS. Their continuous queries are extended from

Chapter 2. Background 31

SPARQL to deal with semantically annotated input, namely RDF streams. Exist-

ing RSP query languages support a subset of SPARQL 1.1 features and operators

to form query patterns [134] and have different underlying semantics [62]. These

semantics differences rise heterogeneous consequences at the query evaluation and

result production. Example stream query processing systems include: CQELS [20],

C-SPARQL [19] , IMaRS [135], TrOWL [41], Streaming-SPARQL [136], Streaming

Knowledge Bases [40], Sparkwave [38].

• Semantic Complex Event Processing Layer. This middle layer follows a different

approach than the previous one. The systems in this layer inherit the process-

ing model of CEP systems. Most of existing CEP solutions process events at

a syntactical level and can not share definitions for the syntax or semantics of

composite events. This isolates those solutions [137, 138] from others and unable

to integrate with richer knowledge representation and reasoning [139]. To over-

come these issues, the approaches in this layer mainly leverage from rule-based or

Nondeterministic-Finite-Automata-based techniques [140]. In the first approach,

an event pattern is described by rules and input events are considered as facts.

In the second approach, an event pattern is specified as a state model and input

events are used to control state transitions. Examples of CEP engines Sase+ [141],

TESLA [142], Etalis [60], EP-SPARQL [36].

• Stream Reasoning Layer. This top layer investigates in approaches to deal with

more complex reasoning tasks than previous layers and be able to infer new logical

conclusions from input streams. Solutions in this layer aim at enabling the capa-

bility to deal with non-monotonicity, uncertainty, defaults, preferences, or common

sense inferences. Systems in this layer mainly leverage from expressive logic rea-

soning paradigms such as temporal logics [143], temporal action logics [144], event

calculus [145], description logic [146], or ASP. The processing of data streams with

such logics has brought many positive results such as LARS [51], DyKnow [49],

Ticker [147], Laser [148], P-MTL [149].

Other attempts follow the cross-layer reasoning approach by combining solutions from

different layers, each one is responsible for processing data streams at different levels

of abstract. For example, [150, 151] leverage advances from a semantic complex event

processing system with a production rules system, [54] ties up a stream query processing

system with an ASP reasoner. Such solutions normally combine the underlying layers

in a pipeline. Each layer filters and abstracts input streams and streams out relevant

data to the next layer.

Chapter 2. Background 32

2.4 Summary

In this chapter, relevant concepts and techniques in the SW, ASP, and SR are introduced

as the background for the research carrying on this thesis. In particular, I presented

the conceptual architecture of SR systems, highlighted two major research areas that

have contributed the most in the development of SR, and its classifications based on the

complexity of reasoning tasks. For SW, the foundation for modeling, representing, and

querying static SW data is introduced. It is followed by the extension of SW concepts

in the streaming environment. Besides, a discussion about ASP solving paradigm is

presented together with its formal syntax and semantics. In this thesis, I leverage the

techniques in these three research areas and integrate them to enhance the expressivity

and scalability of a stream reasoner over RDF data.

Chapter 3

Related Work

Works towards SR have resulted in many different perspectives and focuses. This chapter

presents related work in two sections regarding two main research questions mentioned

in Chapter 1. Section 3.1 analyzes existing languages and engines in the SR area, as well

as their evaluation. Section 3.2 discusses relevant techniques to optimize the reasoning

process over data streams. The chapter is summarized in Section 3.3.

3.1 Stream Reasoning

This section describes existing works related to research question RQ1 which demands

a highly declarative language for continuous reasoning over RDF streams. Various ap-

proaches for modeling and processing streams have been proposed in the state-of-the-art,

which rely on concepts from DSMS, CEP, and logical reasoning. First, the existing SR

languages and engines are presented in Section 3.1.1 and then the collection of bench-

marks for evaluating them is detailed in Section 3.1.2.

3.1.1 Languages and Engines

In the following, key representative approaches are selected to be presented for discussion

and are categorized into three classes, namely SPARQL-, CEP-, Logic-based approaches.

This classification is relatively driven from the characteristics of supporting languages

for accessing and querying streaming data.

33

Chapter 3. Related Work 34

3.1.1.1 SPARQL-based approaches

The commonality across these approaches are the usage of SPARQL 1.1 to model queries

over RDF streams. Those query languages focus on extending the syntax and semantics

of SPARQL 1.1 with streaming operators. For instance, STREAM clause is added into the

SPARQL query with window operators in order to allow a user to specify input streams

and how to take a portion of them to process. Below, prominent solutions under this

category are discussed.

One of the first SPARQL-based query language proposed for processing RDF streams

is Streaming-SPARQL [136]. Its syntax is extended from SPARQL 1.1 with a set of

keywords and grammar to allow the definition of time- and count-based windows over

data streams. The keyword STREAM followed by an Internationalized Resource Identifier

(IRI)1 describes an input data stream and the keyword RANGE followed by a number

defines the size of the window on that input stream. The semantics of Streaming-

SPARQL extends the logical SPARQL algebra for stream processing on the foundation

of a temporal relational algebra based on multi-sets. In this way, an input stream is not

defined as a sequence but as unlimited multi-set of triples. Each element in the stream

is an RDF triple annotated with two parameters t and n in order to express that the

triple is valid at time t and occurs n times at that point in time.

Barbieri et al. [19, 22, 34, 152] introduced C-SPARQL (i.e., Continuous SPARQL) as a

new language for continuous queries over streams of RDF data. This language extends

from SPARQL 1.1 with new features such as RDF stream data type, aggregates, window

management, and timestamps. Similar to Streaming-SPARQL, C-SPARQL provides a

set of keywords and grammar to define clauses which capture such new features. It also

changes the semantics of SPARQL 1.1 queries from one-time semantics to continuous

semantics with the formalization of aggregates, windows, and the timestamp function.

Additionally, C-SPARQL supports to query RDF streams while taking into account the

background knowledge expressed in RDF datasets. This language is implemented in the

C-SPARQL engine, where users can register continuous queries. Registered C-SPARQL

queries are then mapped to an internal model which enables automatic decomposi-

tion and transformation processes in order to generate intermediate static and dynamic

queries. After the transformation, those queries are evaluated by a suitable orchestration

of Esper2 and Jena3 as reasoning engines. Esper executes queries over RDF streams and

produces a sequence of RDF graphs over time while Jena is responsible for executing a

1https://www.w3.org/TR/rdf11-concepts/section-IRIs
2http://www.espertech.com/esper/
3http://jena.apache.org

Chapter 3. Related Work 35

standard SPARQL query against each RDF graph in the sequence and produces con-

tinuous results. C-SPARQL engine accepts one-timestamped RDF triples as input and

returns results as specified in its query form.

Another SPARQL-based language to process RDF streams is SPARQLstream [21, 35].

Similar to C-SPARQL, an RDF stream in SPARQLstream is defined as a sequence

of triples and each triple is annotated with one timestamp. The query language of

SPARQLstream is inspired from C-SPARQL and SNEEql [153], but is improved to cor-

rect the types supported and the semantics of windowing operators. SPARQLstream

focuses on solutions for streaming data mapping and querying using ontology-based ap-

proaches. This language is implemented in the ontology-based streaming data access

service which is built on top of several existing technologies such as continuous data

querying, ontology-based data access, and SPARQL query processing. This service has

three main processes, namely query translation, query processing, and data translation.

When a SPARQLstream query is registered, the query translation process will transform

it, which expressed in terms of the ontology, into target continuous query (i.e., SNEEql)

by means of proposed S2O mapping language [35]. This target continuous query is eval-

uated by the query processing phase to extract the relevant data. The result of this

phase is a set of tuples which then fed into the data translation process to transforms

into ontology instances by using S2O.

CQELS (Continuous Query Evaluation over Linked Streams) [20] is presented as a

native and adaptive query processor for unified query processing over Linked Stream

Data and Linked Data. Similar to C-SPARQL, CQELS adopts the processing model

of DSMS and extends SPARQL 1.1 with windowing and relational operators to process

one-timestamped RDF streams. However, there are three main differences distinguish

between them. Firstly, differently from C-SPARQL engine that is implemented based

on the “black box” approach which leverages the processing capabilities from other

engines, CQELS is proposed based on the “white box” approach and is implemented

naively. This white box approach is claimed to avoid the overhead and limitations of

the use of existing engines. Secondly, while C-SPARQL supports RStream in relation-

to-stream operators, CQELS supports only IStream. Thirdly, the query evaluation in

C-SPARQL is periodic while in CQELS, the execution is triggered by the arrival of new

triples. CQELS with its native approach enables to apply query rewriting techniques

to make its query processor dynamically adapting to the changes in the input. In this

way, it is claimed to improve the performance of the query execution in term of delay

and complexity.

Chapter 3. Related Work 36

Another approach is inheriting advances from the Rete algorithm [154], which is pre-

sented in [38]. Authors introduced Sparkwave as an approach for continuous schema-

enhanced pattern matching over RDF streams. It detects from one-timestamped RDF

data streams the triple pattern conjunctions bound over joining variables but those

triples must occur inside a same time window. Besides RDF streams, Sparkware takes

graph pattern (i.e., a conjunction of triple patterns) as input and operates over a fixed

RDF schema which limits it in supporting for static data instances. The pattern match-

ing process is based on the Rete algorithm to associate input sources to compute entail-

ments. To address RDF schema entailment, Sparkwave extends Rete with an additional

network called ε-network. This network is positioned in front of the normal Rete network

and is responsible for generating triples following schema entailments.

Following the similar approach as Sparkware, INSTANS [155] is also based on the Rete

algorithm to process streams. It supports the ability to evaluate simultaneous and

continuous multiple queries. Users register their multiple interconnected SPARQL 1.1

queries and rules. Then, INSTANS continuously evaluates incoming RDF data streams

against the compiled set of queries and stores intermediate results into a Rete-like struc-

ture. When all the conditions are matched, the result is instantly produced.

Those mentioned approaches provide different answers at disparate moments due to the

heterogeneity of their operational semantics, which render the process of understanding

and comparing continuous query results. This raises a need from the RSP community

to unify them into one. To address this challenge, authors in [62] proposed RSP-QL, a

unifying formal model for representing and processing RDF streams, that reflects the

different semantics of existing RSP engines. To do so, they extended the temporal di-

mension in the RDF data model in three ways: timestamped RDF graphs are RDF

statements with a time annotation, RDF streams are ordered sequences of timestamped

RDF graphs, and time-varying and instantaneous RDF graphs capture the evolution

of RDF graph over time. An RSP-QL query is a continuous one which extended from

SPARQL, whose correctness can be formally assessed and that can capture the pro-

cessing model of existing systems (i.e., C-SPARQL, CQELS, and SPARQLstream). This

work constitutes a contribution to ongoing efforts in the SW community to provide stan-

dardized and agreed definition of extensions to RDF and SPARQL for managing data

streams.

3.1.1.2 CEP-based approaches

Approaches in this direction mainly inherit the processing model of CEP systems for

detecting events from data streams. They consider each raw data element in the stream

Chapter 3. Related Work 37

as an atomic event, and their solutions aim at extracting implicit knowledge from input

streams in form of complex events.

One of the popular complex event processing engines over data streams is the Event

TrAnsaction Logic Inference System (ETALIS) [5]. The engine receives atomic events

which are annotated with two timestamps as input streams and produces detected com-

plex events which indicate the changes happening in near real-time as output streams.

Users can register complex event patterns in ETALIS using its declarative rule-based

language, namely ETALIS Language for Event (ELE). To detect events specified in ELE

at runtime, ETALIS uses the event-based backward chaining algorithm which converts

queries to Prologs rules and evaluates them whenever data arrives. ETALIS supports

multiple Prolog engines such as YAP 4 and SWI 5 with three consumption policies:

recent (i.e., the latest input events which can be matched are selected for matching

the event patterns and are ignored in the next evaluations), chronological (i.e., the ear-

liest input event which can be matched are selected for matching event patterns and

are ignored in the next evaluation), and unrestricted (i.e., all input events are selected

for matching event patterns). While detecting complex events, ETALIS may need to

evaluate the background knowledge on the fly and infer implicit knowledge as logical

sequences from deductive rules.

Darko Anicic et al., who proposed ETALIS, extended ELE to enable the usage of ETALIS

in SW applications. This extension, called EP-SPARQL [36, 156], allows a user to define

complex event tasks for ETALIS in a SPARQL-like language. In this way, the input

streams and the background knowledge are both represented in the RDF format. The

input events are RDF triples annotated with two timestamps, which represent the lower

and upper bound of the occurring interval (interval semantics). The knowledge base is

expressed in the form of RDFS ontologies and is converted into a Prolog program at

design time. EP-SPARQL queries are translated into logic expressions in ELE and are

evaluated continuously by ETALIS at runtime.

Authors in [157] studied the integration of the currently available CEP features into RSP-

QL. This work results a new language RSEP-QL whose operators aim at enabling both

DSMS and CEP features. RSEP-QL models both event patterns and their evaluation

semantics taking into account the presence of selection and consumption policies. In

addition, it captures the behaviors of both EP-SPARQL and C-SPARQL. However, the

work focuses mainly on defining semantics for the SEQ operator in the integration with

RSP-QL while others of CEP operators (such as DURING, NOT, etc) are not considered.

4ttp://www.dcc.fc.up.pt/ Evsc/Yap/
5http://swi-prolog.org/

Chapter 3. Related Work 38

3.1.1.3 Logic-based approaches

Approaches in this direction mainly inherit from reasoning techniques which are avail-

able in the KRR community. These efforts aim at creating expressive SR systems

which are able to scope with more complex tasks over streams rather than systems

in SPARQL- and CEP-based approaches. Reasoning techniques, such as default reason-

ing, non-monotonicity, preference, or multiple possible solutions are important to deal

with missing or incomplete data, users’ preferences, or enumerating alternative solutions.

Several works have been proposed in the attempt of enabling such expressive reasoning

capabilities in the streaming environments.

Reasoning over changing data or program has been considered in ASP. Incremental

ASP [46] uses the module theory in [158] to introduce new techniques for incremental

grounding and solving. The domain description is expressed as a triple (B,P,Q) of logic

programs in which B describes static knowledge, P and Q are slices that depend on a

parameter t. P captures knowledge accumulating with increasing t while Q is specified

for each value of t. As regards grounding, all instantiations which are derivable from

static knowledge can be grounded only one while the parameter t in a rule of the program

part P or Q is instantiated with a new value at each step. Regarding solving, the model

computation can be executed incrementally replying on the composition of modules.

Following this work, the same authors augmented the concept of the incremental logic

program and its mechanism with asynchronous information, aiming at reasoning about

real-time dynamic systems.

Reactive ASP [47] provides additional means to add new data online at running time

via so-called online progressions of external events and inquiries. While entire event

streams are made available for reasoning, inquiries act as punctual queries. At each step,

external information can be incorporated to ground new rules dynamically. However, the

program P and Q in reactive ASP cannot express the relevance of information relative

to an interval step. To enable such a window mechanism, reactive ASP is extended with

time-decaying logic program [48] in which the program Q is a sequence {Q1, ..., Qm}.
The instantiation of each Qi expires after a specified lifespan of n steps. Ideas from

incremental ASP, reactive ASP and time-decaying logic programs have been improved

continuously and are now subsumed in the current version 5 of Clingo [159].

Targeting at filling the missing theoretical underpinnings for SR which has been raised

in [14], authors in [51] conceived a Logic-based framework for Analytic Reasoning over

Streams (LARS). They first provided a formal model of a stream as a sequence of time-

annotated formulas and a generic notion of window function as a sub-stream. The

Chapter 3. Related Work 39

practical usage of this window notation includes time-based windows (i.e., data selec-

tion is based on temporal constraints), tuple-based window (i.e., data selection is based

on order constraints), and partition-based windows (data selection is based on a mix

of order and semantic information). In addition to the usual boolean operators (i.e.,

and, or, implies, not), authors defined three temporal logic operators �, ♦, and @, to

represent the fact that a formula holds at all times, some time, and a specific time

point in a window, respectively. To account for the aspect of streaming, LARS sup-

ports window operators of the form � to restricts the scope on which enclosed formula

applies. LARS language includes: LARS formulas and LARS programs - set of rules

similar as in Datalog but built upon LARS formulas. Additionally, LARS programs are

equipped with multiple-model semantics as in ASP to deal with incomplete information

and negation. Authors proved that LARS captures the CQL language (including ag-

gregates) and ETALIS semantics. In [160], LARS is extended with a filter window to

select data based on semantic information and generalized time-based window to access

the future. Moreover, the computational complexity of model checking and satisfiabil-

ity for both LARS formulas and programs are investigated as well as the use of LARS

is explored via use cases such as cache management in content-centric networking or

dynamic knowledge-based configuration of cyber-physical systems.

Fragments of LARS have been implemented recently in prototype engines called Ticker

[147] and Laser [148]. Both of them explore incremental reasoning techniques on a

practical fragment of LARS called plain LARS on different realization principles. Ticker

supports sliding time- and tuple-based windows and can be run in two evaluation modes.

The first one exploits the static encoding and calls ASP-based reasoner (i.e., Clingo) for

one-shot evaluation. This mode is claimed as a choice for a stratified program (i.e.,

single solution) where no ambiguity arises which model to compute. The second mode

carries out incrementally adapting a model based on an incremental adjustment of a

program and supports use cases that have multiple potential solutions. The program

update is built based on the extension of justification-based truth maintenance system

[161] that also allows for removing expired ground rules. The experimental evaluation

of Ticker is conducted based on two small scenarios (i.e., caching strategy and content

retrieval) and reports the run-time performance of Ticker in these two modes [147].

Developed in parallel with Ticker, Laser focuses on applications which have deterministic

solutions. Hence, this engine supports positive and stratified plain LARS programs.

Its incremental evaluation is based on the idea of annotating formulas with two time

markers, namely consideration time and horizon time. These time makers indicate time

interval in which formulas hold and enable the implementation a technique similar to

the semi-naive evaluation in Datalog [162] to reduce duplication derivations. Laser

Chapter 3. Related Work 40

is compared against C-SPARQL, CQELS, and Ticker (using Clingo mode) on single-

rule programs and the cooling system use case. It is reported that Laser has been

outperformed significantly [148]. However, both Ticker and Laser do not support for

reasoning on SW data streams.

Other attempts towards expressive stream reasoning in SW applications follow the idea

of cross-layer reasoning in Figure 2.13 such as ASR [53] and StreamRule [54]. In partic-

ular, ASR calls the DLVhex solver [163] and StreamRule uses the Clingo solver [48] as a

subprocess to infer new knowledge from data streams and a given rule set. In order to

support ASP solvers for reasoning about RDF data streams, a middle layer is required

for transformation between data formats. For example, the StreamRule system inter-

cepts the query results (output RDF stream) filtered by the RSP engine and translates

them into ASP syntax before streaming them into the ASP reasoner Clingo. Given

the data transformation overhead, the performance of the reasoning subprocess should

be measured by not only the processing time of the solver but also the time required

for data transformation. In addition, the ASP solver in the subprocess needs to return

results faster than when the new input data arrives, in order to ensure the stability of

the whole system. This requires optimization techniques that can further speed up the

processing.

C-
SPARQL

CQELS
EP-
SPARQL

SPARQL

stream
Laser Ticker

Data model RDF RDF RDF RDF Predicate Predicate

Time model ST ST Interval ST ST ST

Query language SB SB SB SB LARS LARS

Time-based
window

X X X X X

Count-based
window

X X X X

Background
knowledge

X X X X X X

Reasoning
capability

RDFS RDFS ASP ASP

Table 3.1: Comparison of SR systems. (Note: ST stands for Single timestamp and
SB for SPARQL-based)

To summarize, Table 3.1 lists representative SR systems and compares them according to

data models, operators, and reasoning capabilities that they support. Except for Laser

and Ticker which focus on predicate streams, other systems support RDF-based data

models and SPARQL-based query languages. Most stream reasoners annotate a single

timestamp to each data item and integrate with background knowledge which enables

richer functions for reasoning. However, none of the current systems addresses the merg-

ing of large background data with streams [164]. Due to the fact that semantic reasoning

is computationally expensive, some existing solutions implement only a reduced set of

Chapter 3. Related Work 41

reasoning entailments. For example, C-SPARQL and EP-SPARQL consider subsets of

RDFS, or Laser and Ticker partially support ASP reasoning.

3.1.2 Comparative Analysis

One of open challenges in SR area is how to systematically evaluate implementations

against well-defined quality criteria. Among variety of proposed engines, their results

have crucial differences in operational semantics. A common benchmarking framework

would not only help to assess differences and limitations of existing implementations, but

also provide a basis for steering future research directions and standardization efforts.

Thomas et al. [165] investigated the key issues that such systems must face and identify

best practices to design a benchmark with three Key Performance Indicators (KPI)

and seven commandments for designing the stress tests of system evaluation. Several

benchmarking systems focus on different aspects mentioned in [165]. Bellow, I discuss

a set of prominent benchmarks that are strongly related to RSP and ASP reasoning for

evaluating existing engines.

3.1.2.1 RSP Benchmarks

SRBench [134] is the first proposal in this direction for functionally evaluating stream-

ing RDF/SPARQL engines. The basic dataset of SRBench is built from the real-world

dataset, namely Linked Sensor Data (LSD)6, published by Kno.e.sis7. This dataset is

part of the Linked Open Data Cloud8 and contains weather sensors observations which

are collected from 2002 and semantically annotated using the Semantic Sensor Net-

work (SSN)9 ontology. Together with weather sensors streams, SRBench uses two static

datasets, GeoNames10 and DBpedia11, to assess the interlinkable ability of a system.

Those datasets are claimed to be cautiously chosen to meet the data requirements of

designing a benchmark such as relevant [166], realistic [167], semantically valid [168],

and interlinkable [169]. Besides, SRBench verbally describes 17 benchmarking queries

which are classified into three parts: graph pattern matching, solution modifiers, and

query forms. The first class includes queries that cover the basic graph pattern matching

operators such as AND, FILTER, UNION, OPTIONAL. The second class includes ones with

projection and DISTINCT modifiers which modify the results of the graph pattern match-

ing operators. The last class determines the form of the final output of a query (SELECT,

6http://wiki.knoesis.org/index.php/LinkedSensorData
7http://knoesis.wright.edu
8https://lod-cloud.net
9https://www.w3.org/TR/vocab-ssn/

10http://www.geonames.org/ontology/documentation.html
11https://wiki.dbpedia.org

Chapter 3. Related Work 42

CONSTRUCT, and ASK). Finally, the authors of this work complemented their benchmark

on three systems: SPARQLstream, CQELS (Aug.2011), and C-SPARQL (0.7.4). The

conclusion drawn from that experiment is some of the queries are not supported by

the existing engines and therefore cannot be executed. In short, SRBench assesses

the system’s ability to deal with streams, background integration and reasoning fea-

tures. However, this benchmark supports very limited reasoning capability. The queries

involve reasoning only over three properties rdfs:subClassOf, rdfs:subPropertyOf

and owl:sameAs.

A second proposal is LSBench [170]. It includes a synthetic dataset on social networks

and a set of 12 queries covering both stream processing and background integration. Its

dataset is generated by the proposed Stream Social network data Generator (S2Gen)

to simulate the stream data in social networks. S2Gen offers 3 ranges of parameters

for flexibility: the generating period - the period of time in which the social activities

are generated, the maximum number of posts/comments/photos for each user per week,

and correlation probabilities. There are 3 social data streams (i.e., GPS stream, posts

and comments stream, and photos stream) and 1 static data (i.e., user profile) in the

dataset of LSBench. Authors of this benchmark argued that 3 characteristics of existing

engines are critically important to be taken into account in evaluation: (i) even supported

languages of all considered engines extend from SPARQL and CQL but they have some

difference in semantics, (ii) the execution mechanisms of such engines are also different,

and (ii) the outputs of a single test in each engine can be various due to any change

in the running environment and experiment parameters. Based on those arguments,

they aim at assessing not only query language features but also systematic measures of

well-known quality criteria (e.g., throughput, latency) over three engines C-SPARQL,

CQELS, and JTALIS (a Java wrapper for ETALIS). In addition, LSBench raises an issue

about the correctness test by defining a way to compare the mismatch among outputs

of those engines. However, this benchmark does not include any reasoning assessment.

Focusing on the theme of correctness, authors in [171] proposed CSRBench for check-

ing the correctness of RDF stream engines, which was not targeted by SRBench and

LSBench. The authors of this work showed that such engines comply with their own

semantics and these may differ from each other via a simple example as an evidence.

Therefore, two assumptions about correctness that had been used as default in other

benchmarks (i.e., the tested systems work correctly, and the tested systems have the

same operational semantics) do not hold anymore. Deepening in the understanding

of the semantics of RDF continuous processing, three main dimensions which affect

query results are identified: system (e.g., the initial time for window, timestamp policy,

and notification policy), query (e.g., query operators, window slide, and window size),

Chapter 3. Related Work 43

and input stream data (e.g., data rate, window content size, and data stream distri-

bution). Taking into account such dimensions, CSRBench extends from SRBench with

parametrized queries in window size, window slide, aggregation, and join operator over

different timestamped triples. In addition, this benchmark includes an oracle that gen-

erates and compares results of RDF stream processors and checks their correctness. The

prototype of this proposed oracle is implemented and experimented over three represen-

tative engines C-SPARQL (0.9), CQELS (Aug 2011) and SPARQLstream (1.0.5). The

dataset was used for this particular experiment is a small subset of SRBench dataset

which contains weather observations of hurricane Charley in the US for 3 hours. It was

reported that none of these engines passes all tests. The benchmark has a step moving

in the direction of correctness verification but does not add any extra reasoning-related

things from SRBench.

CityBench [172] is a benchmarking suite to evaluate RDF stream processing engines

within the context of Smart City applications. Different from other previous bench-

marks which mainly focus on features of query languages and engines, CityBench is

dedicated to assessing the behavior of such engines with taking into account dynamic

features that are significant in real-time scenarios. The authors analyzed 7 dynamic re-

quirements that can potentially affect performance, scalability and correctness of smart

city applications: (1) address high data distribution, (2) scope with unpredictable data

arrival rate, (3) handle the increasing number of concurrent queries, (4) deal with a

large amount of background data while processing streams, (5) update the quasi-static

background during query execution, (6) support on-demand discovery of data streams

with taking into account quality constraints, (7) be able to switch between multiple

semantically equivalent data streams during query execution. Based on that, CityBench

is built with three components: datasets, a testbed infrastructure, and queries. Firstly,

the datasets are leveraged from outcomes of the CityPulse project12 which includes

both real and syntactic data about the city of Aarhus, Denmark. There are 5 streaming

datasets collected from sensors (i.e., vehicle traffic, parking, weather, pollution, and user

location), 2 quasi-static datasets about cultural and library events in the city. Among

them, pollution and user location streams are synthetic. All data is annotated with

the SSN ontology. Secondly, a testbed infrastructure is designed in a configurable way

which allows users to configure a variety of metrics for the evaluation. The testbed sup-

ports 6 configuration metrics: changes in input streaming rate, playback time, variable

background data size, number of concurrent queries, number of streams within a single

query, and selection of RDF stream engines. Thirdly, a set of queries includes 13 verbal

queries in the context-aware travel/parking planner/administration. In addition, the

12http://www.ict-citypulse.eu/page/

Chapter 3. Related Work 44

flexibility of CityBench is highlighted through an experimental evaluation over two rep-

resentative RDF stream engines CQELS and C-SPARQL. The experiment compares the

latency, memory consumption, and completeness of these two engines and its results are

reported that no existing engines can handle efficiently quasi-static data, and support

adaptation in stream processing. The contribution of this benchmark in this research

area is opening a way to evaluate engines under real-time circumstances. However, it

does not contribute to assessing the expressivity of reasoning tasks that such engines are

supporting.

While pioneering benchmarks isolate evaluate RSP engines against various dimension

(i.e., functional coverage, performance, correctness), YABench [173] is emerged to assess

those engines with all such dimensions. To do so, the YABench framework is designed

with 4 components: a stream generator creates input streaming data, an oracle that

evaluates the correctness of results, a set of supported engines, and a visualization tool

of results. The stream generator creates RDF data streams from weather observations in

LSD dataset with various parameters such as the number of simulated systems, the time

interval between two measurements of a single station, the duration of the generated

output stream, the seed for randomization to vary the timestamps of initial measure-

ment of each system. The oracle of YABench is an extension of the oracle proposed

in CSRBench with correctness metrics for each window. YABench currently supports

two engines CQELS and C-SPARQL. And finally, YABench provides a reporting web

application, named as YABench reports, which displays the performance measurements

in forms of graphs. Instead of defining new benchmarking queries, YABench reuses

ones from CSRBench. This benchmark builds a complete workflow for evaluating such

engines from defining tests, generating suitable test data, executing tests, and finally

analyzing the results. However, YABench does not consider the influence of multiple

windows in one query or an engine, the combination of background knowledge, as well

as the reasoning support.

3.1.2.2 Reasoning Benchmarks

So far, existing benchmarks have been proposed for evaluating RSP engines, yet none

of them is available to assess the reasoning capabilities of such engines in the streaming

setting. Targeting in this direction, authors in [174] proposed a benchmark, called

SLUBM, for assessing the performance of incremental reasoning engines in stream-based

experiments. It is an extension of a well-known benchmark for OWL knowledge base

systems, named Lehigh University Benchmark (LUBM) [175], with a temporal semantic

dimension. In particular, SLUBM uses semester as the solo time granularity to convert

static triples in the LUBM knowledge base into timestamped triples. This semester is

Chapter 3. Related Work 45

considered as a time slice in which all facts are defined semantically validated. Hence,

as the time evolves, data in the previous semester are considered expired and must be

removed and replaced by newer data. The predicate classes in LUBM ontology are

classified heuristically into three groups: static, near-dynamic, and dynamic. Static is

a label for predicates which are considered to be true for the whole timespan, while

dynamic (or near dynamic) indicates ones that change constantly for every time slice

(or every window of time slices). In the data generator, the temporal predicates decide

the percentage of dynamic data generated in each semester. This benchmark is used

to conduct experiments to evaluate the loading time and query execution time of 4

different engines: Jess13, BaseVISor [176], Pellet [177], and C-SPARQL. Among these

engines, only C-SPARQL is a stream processing engine while others are designed for

reasoning over static data. To be able to test these systems with dynamic data, SLUBM

re-designed 6 temporal inference rules for such engines by introducing a time-to-last

which describes the expiration time of the conclusions that derive from these rules. The

experiments are deployed over 14 queries defined in LUBM over a temporal dedicate

takecourse (approximately 10% of the generated data are dynamic). The benchmark

makes a part of the LUBM static dataset available to be streamed while retaining most

of the LUBM’s old standards. It is a first attempt in evaluating the reasoning capabilities

of stream reasoners. However, the benchmark is limited in assessing systems according

to its streaming supported features as well as various complexity levels of reasoning

tasks.

Benchmarks, which focus on stressing the performance of ASP solvers on problems of

increasing input size and complexity, have been populated in the context of the ASP

competitions over the years [178]. These competitions are biannual events since 2007

with two initial goals: collecting benchmarks and creating a fair competition environ-

ment. Its format is consolidated into two main tracks: the model and solve track, and

the system track. The former track aims at integrating different scientific communities

by opening for all types of solvers with declarative modeling capabilities. The partici-

pant systems are compared over a variety of problem domains defined in the benchmark.

The latter track focuses on fostering language standardization. The standard input lan-

guage ASP-CORE-2.0 was introduced in the fourth competition in 2013. During such

competitions, the benchmark has been updating with new problem domains. Each prob-

lem defined in the benchmark is provided with alternative encodings. The input data of

such problems are mostly synthetic. The ASP benchmark enables assessment of different

complexity levels of reasoning problems as well as optimization techniques which have

13http://www.jessrules.com/

Chapter 3. Related Work 46

been implemented in existing engines. However, this benchmark is designed for compar-

ing such engines in static environments, which is not suitable to use in the streaming

world.

3.2 Optimization via Parallel Strategy

In SR, the trade-off between expressivity and scalability is evident. Rich frameworks

which encompass advance reasoning features are normally computationally intensive.

The applicability of such systems is hindered by the exponential growth in the availabil-

ity of streaming data on the Web. Two prominent directions for enhancing the scalability

of SR reasoners are incremental and parallel approaches. Incremental approaches reduce

the reasoning time of a single reasoner by avoiding many unnecessary re-computation

when new data arrives, while parallel approaches take advantages of multiple concurrent

reasoners to process input data faster. With this manner, parallel approaches become

popular choices for scaling up the systems nowadays when the amount of data gener-

ated increase exponentially. Therefore, in this thesis, I follow the parallel approach to

optimize the expressive reasoning process over SW streams. In the following, I discuss

existing works related to the research question RQ2 which apply parallel techniques to

optimize the reasoning process.

Parallel strategies were important features of database technology in the nineties in or-

der to speed up the execution of complex queries [179]. Compared to traditional parallel

processing, parallel reasoning has some additional concerns such as complex data depen-

dencies makes the partitioning process is not easy. Two major trends are introduced to

process reasoning in parallel [180]. The first one is called data partitioning approaches

in which only data is split into smaller chunks and processed by several reasoners. The

second trend is rule partitioning approaches in which only rules are partitioned into

different reasoners to perform the reasoning tasks. These studies have also shown that

effective partitioning is not easy due to the various reasoning complexities [181].

In SW, several studies how to assign a partition of the parallel computation to a set of

machines have been published. As a part of the LarKC project14, MaRVIN (Massive

RDF Versatile Inference Network) [182] is a parallel and distributed platform for calcu-

lating the full closure of large amounts of RDF data. To infer through forward chaining,

MaRVIN proposes the divide-conquer-swap strategy, which extends the traditional ap-

proach of divide-and-conquer with an iterative procedure whose result converges towards

completeness over time. Its algorithm can be described in three steps: (first) the input

data is partitioned into several independent portions with equal sizes, (second) each

14http://www.larkc.eu

Chapter 3. Related Work 47

portion is assigned to each compute node to calculate the closure using a conventional

reasoner, (third) new partitions are created over the mix of old and new data. This pro-

cess is repeated until no new triples are derived. In this way, MaRVIN does not require

upfront data analysis. The closure is guaranteed to obtain via its divide-conquer-swap

method due to the fact that MaRVIN supports only monotonic logic reasoning.

Similarly, [183] proposes a technique for materializing the closure of an RDF graph

based on Hadoop framework15. Hadoop implements MapReduce [184] algorithm which

requires all of data is encoded as a set of a pair of the form 〈key, value〉, processes them

using two functions, called map and reduce, and returns new pairs as output. This work

also focuses on monotonic reasoning but applies both data and rule partitioning. The

rules are evaluated during the reduce function while the triples are grouped in the map

function which could lead to a duplicated derivation. Moreover, the rules need to be

evaluated in certain order to avoid applying same rules multiple times.

Authors in [185] also use MapReduce, but to explore the non-monotonic reasoning in

the form of logic over huge datasets. They restrict this logic to the single-argument

defeasible logic. Taking into account the fact that all predicates have only one argu-

ment, the map function groups together facts with the same argument value. Rules are

evaluated during the reduce step for each argument value separately. This process is

claimed to not alter resulting conclusions because facts with different argument values

cannot produce conflicting literals and cannot be combined to reach new conclusions.

Afterwards, authors extend their approach for predicates of arbitrary arity, but under

the assumption of stratification [186]. The solution is extended with an idea of ranking

predicates. For example, facts and predicates supported by rules containing no negative

subgoals are assigned rank 0. Predicates depending negatively only on rank 0 are as-

signed rank 1. The reasoning is carried on in order of ranks. For each rank, reasoning

is carried on until no new fact inferred.

In [187], an approach using MapReduce framework for parallel reasoning with the well-

founded semantics over massive data is proposed. This work relaxes the assumption of

stratified programs in [186] and allows recursion through negation. However, the pro-

grams are required to be safe and the closure calculation is based on the consecutive

computation of true and unknown literals. Adapting and incorporating the computation

of joins and anti-join described in [186], authors proposed the alternating fixpoint pro-

cedure to avoid full materialization of Herbrand base for any predicate. While the works

in [182, 183] focus on monotonic reasoning, [185–187] examine non-monotonic reasoning

over massive data. However, these attempts do not consider the streaming setting and

15http://hadoop.apache.org

Chapter 3. Related Work 48

are required more effort be able to apply on ASP due to the complexity of its stable

model semantics.

In ASP, several works about parallel techniques for the evaluation of a logic program

have been proposed, focusing on both phases of the ASP computation, namely grounding

and solving. The recent survey on the main techniques and approaches in the literature

to improve performance through the exploitation of parallelism in the execution of ASP

solvers can be found in [188]. The authors explored approaches according to two orthog-

onal dimensions: (first) the different levels of complexity and features of the underlying

language, (second) the different levels of granularity of exploitation of parallelism.

Concerning the parallelization of the grounding phase, a first investigation is the work

in [189]. Authors exploited the restrictedness and the presence of domain predicates

in LPARSE programs to statically partition the program rules. The distributed imple-

mentation of the grounder LPARSE is organized as a master-slave structure in which

the master partitions the program and delegates the grounding of each component to

different slaves. Load balancing can be heuristically controlled by assigning weights to

rules. In fact, such weight is an estimate of the number of expected ground instances

of each rule. However, this work is applicable only to a subset of the program rules.

Therefore, in general, this work is unable to exploit parallelism fruitfully in the case of

programs with a small number of rules.

F. Calimeri et al. [2] studied the parallelization of the DLV grounder by exploring

some structural properties of the input program via the defined dependency graph in

order to detect subprograms that can be evaluated in parallel. The study adopts a

symmetric multi-processing architecture to enable communication of concurrent threads

through a share memory. [57] extends this work with parallelism in three different

levels in the grounding process: components, rules, and single rule level. The first level

(components level) divides the input program into subprograms (or modules), according

to the strongly connected components of the dependency graph among IDB predicates

of that program. The second level (rules level) allows for concurrently evaluating the

rules within each subprogram. The semi-naive algorithm of Datalog is used to evaluate a

fixpoint when grounding recursive rules. The third level (single rule level) partitions the

extension of a single rule literal into a number of subsets. This step is especially efficient

when the input program consists of few rules and two first levels have no effects on the

evaluation of the program. For each level, the authors proposed different techniques to

take advantage of the underlying multi-threaded system.

For the solving step which is carried out after the grounding step, the computation can

be visualized as the construction of a binary search tree. Hence, the parallelism can be

enabled by distributing the construction of different branches of the search tree between

Chapter 3. Related Work 49

different processors. This idea for exploiting parallel in the solving phase was originally

presented in [190, 191]. Later, authors in [78] proposed a generic approach to distribute

the searching space in order to find the answer sets, which permits exploitation of the

increasing availability of clustered and/or multiprocessor machines.

Dynamic distribution of the search space is vital to achieving adequate parallel perfor-

mance. Two components have a great impact in the execution is task sharing (i.e., how

to move a processor to a different part of the search tree) and scheduling (i.e., how to

locate which part of the subtree one processor should explore next). Authors in [192]

provided an analysis of distinct strategies for these two components. [193] enriched this

investigation and obtained as variations of the copying and the re-computation schemes.

Authors in [189] explored parallelism for the ASP solving phase in two dimensions.

The vertical one indicates a situation where separated threads of computation are em-

ployed to explore alternative literals to add to the partial answer set. The horizontal

dimension indicates the use of separate threads of computation to concurrently apply

different expansion techniques to a partial answer set. The first dimension is enabled by

implementation of the copy-based task sharing and re-computation-based task sharing

approaches. The former allows agents to share work by exchanging a complete copy of

the current answer set while the latter allows agents to exchange the list of chosen lit-

erals which have been used in the construction of an answer set. The second dimension

is achieved via the lookahead technique. Author deployed this technique from the field

of satisfiability testing to enrich the typical algorithms for the computation of answer

sets in the parallel manner. This parallelization is obtained by partitioning the set of

unexplored literals and assigning each subset to a different agent. After agents process

the test on these unexplored literals, their results are merged to create a new partial

answer set.

A multi-thread version of the state-of-the-art answer set solver Clasp is presented in

[121]. The idea in this work is to transfer the entire functionality from the sequential

to a parallel setting. When the logic program is read in Clasp , the preprocessing

stages, conducted by the main thread, identify redundant variables. The outcomes of the

preprocessing phase are stored in an object which can be shared among all participating

solving threads. Each solving thread performs propagation by implementing conflict-

driven search involving nogood (i.e., set of literals that must not jointly be assigned)

learning. However, the solver may learn exponentially many nogoods. To solve this

issue, the authors pursued a hybrid approach by separate distribution and integration

components for carefully selecting the spread constraints.

In recent years, the use of Graphical Processing Units (GPUs) has become pervasive

in general-purpose applications that are not directly related to computer graphics, but

Chapter 3. Related Work 50

demand massive computational power. Dovier Agostino et al. [194, 195] are interested in

devising the power of GPUs to enhance the parallelization of ASP solving. The approach

is built on the notion of ASP computation combined with conflict-driven analysis and

learning techniques derived from those adopted in [196]. All the solving components

(i.e., nogoods management, search strategy, (non-chronological) backjumping, heuristics,

conflict analysis and learning, and unit propagation) are performed on the GPUs by

exploiting Single-Instruction Multiple-Thread parallelism. The CPU is used only to

preprocess the program and to output the results.

3.3 Summary

This chapter analyzed the state-of-the-art for continuous querying and reasoning over

data streams, especially semantically annotated streams. Different approaches in SR

including languages, engines, benchmarks, and optimization were discussed relative to

the set of research questions defined in this thesis. This analysis supports the iden-

tification of the main gaps in the literature such as: (i) need for a higher expressive

language to capture more sophisticated what users want (RQ1), and (ii) investigation

of scalable techniques for integrating more complex reasoning capabilities in stream-

ing setting (RQ2). The contribution of this thesis concentrates on the proposal of an

ASP-based approach for stream reasoning which leverages RDF stream processing and

parallel optimization to bridge these gaps.

Chapter 4

C-ASP: Continuous Extension of

ASP for RDF Stream Reasoning

Massive amounts of data are being generated every minute every day from a huge number

of devices and services across the Internet. Various application scenarios in several

domains, such as IoT and Smart Cities, benefited from the ability to efficiently integrate

and query data streams from these sources, in some cases providing basic reasoning

functionalities [10]. In recent years, SW research has contributed to advancing the

state-of-the-art in semantic stream processing, in particular through the extension of

RDF, a standard model for data interchange on the Web, to represent and manipulate

RDF streams [17]. As a result, extensions of SPARQL, a query language for RDF

data, have been proposed to continuously query RDF data streams. These efforts have

resulted in the implementation of several engines for RSP, such as C-SPARQL [19] and

CQELS [20], among others. Such engines are able to deal with the transient nature

of data streams mostly based on pattern matching techniques, and in some cases they

have limited reasoning capabilities. For example, C-SPARQL 1 supports for RDFS

entailment regimes. Despite all these efforts, reasoning capabilities are still limited

and cannot support complex reasoning such as the ability to handle defaults, common

sense, preferences, recursion, and non-determinism. When it comes to modern real-world

applications, the ability to handle incomplete and potentially inconsistent input streams,

and extract knowledge from them to support decision making is not fully supported yet

[28].

Some work in this direction leverages the expressive power of logic-based non-monotonic

reasoning techniques to build a SR system, relying on advances in semantic stream

processing technologies for representing and processing data streams on the one hand,

1http://streamreasoning.org/resources/c-sparql

51

Chapter 4. C-ASP: Continuous Extension of ASP for RDF Stream Reasoning 52

and non-monotonic reasoning approaches for performing complex rule-based inference

on the other hand. This combination is based on the principle of having a 2-tier ap-

proach where: i) a semantic stream query processor is used to filter RDF triples, and ii)

a non-monotonic reasoner is used for computationally intensive tasks over the filtered

data. Since the grounding phase in rule-based inference is responsible for the size of the

program to be evaluated, such a combined approach improves the scalability of com-

plex reasoning over SW streams by reducing the input to the non-monotonic reasoner.

Current expressive reasoning systems over RDF data streams, like EP-SPARQL [36],

ASR [53], and StreamRule [54], support non-monotonic reasoning over data streams

in different ways. For instance, EP-SPARQL extends the SPARQL querying language

for event processing. EP-SPARQL queries are translated into logic expressions and are

evaluated continuously by ETALIS [156] which is implemented based on SWI-Prolog2.

ASR [53] and StreamRule [54] support more complex reasoning capabilities based on

ASP by using the DLVhex solver [163] and the Clingo solver [48], respectively. These

systems rely on ASP by hard-coding a subprocess that performs repetitive calls to the

ASP solver to infer new knowledge from data streams and a given rule set. Therefore,

they do not provide a flexible way to seamlessly integrate the stream processing and

reasoning functionalities.

Recently, two new SR engines, namely Ticker [147] and Laser [148], have been intro-

duced. These two engines implement a fragment of LARS [160]. programs are encoded

as ASP rules. However, Laser restricts its expressivity to positive and stratified pro-

grams and ASP encodings of Ticker’s programs use mainly normal ASP rules. As a

result, they do not fully exploit the expressive power of ASP, including the ability to

handle disjunction, optimization, aggregations, and preferences. Moreover, they do not

support the ability to query SW streams, which we believe is the key in ensuring the

scalability of such systems when handling real IoT streams.

Aiming to i) exploit full capabilities of ASP to perform reasoning over RDF streams,

and ii) seamlessly provide flexible ways of combining semantic stream processing and

non-monotonic reasoning, this chapter mainly addresses the first research question RQ1

which states as follows:

RQ1. How to enable complex reasoning based on ASP over RDF data

streams?

The chapter tests the hypothesis H1 that is formulated below:

2http://www.swi-prolog.org

http://www.swi-prolog.org

Chapter 4. C-ASP: Continuous Extension of ASP for RDF Stream Reasoning 53

C-ASP
Input

streams
Output
streams

Continuous
Reasoning requests

… …

…
Knowledge bases

Figure 4.1: The C-ASP Processing Model

H1. The extension of the ASP language within the RDF streaming setting

provides a higher expressivity to capture users’ sophisticated requirements

and preferences.

To answer the research question RQ1 and to test the hypothesis H1, this chapter

proposes C-ASP, an extension of ASP to support continuous reasoning over seman-

tic streams. The C-ASP language allows users to specify their reasoning requests which

include their sophisticated reasoning requirements, input streams, and how to access

those streams. Such requests are registered with the C-ASP engine and continuously

executed over RDF streams by the means of windows. The chapter starts with the

processing model and key definitions in Section 4.1. In Section 4.2, I define the syntax

and semantics of a reasoning request in the C-ASP language as well as a set of examples

in order to illustrate its expressive power. Section 4.3 provides an evaluation of the

proposed approach. The chapter is summarized in Section 4.4.

4.1 The C-ASP Processing Model

The processing model of C-ASP combines RSP and ASP-based reasoning in one single

framework. It defines RDF streams by means of windows and reasoning requests to be

evaluated over RDF streams and RDF static datasets, as illustrated in Figure 4.1.

Similarly to other RSP engines, C-ASP takes multiple RDF data streams as inputs

and produces outputs as streams. It also supports the integration with background

knowledge from static RDF knowledge bases.

Definition 4.1. An RDF stream S is defined as an ordered sequence of pairs:

S = ..., (di, ti), (di+1, ti+1), ...

Chapter 4. C-ASP: Continuous Extension of ASP for RDF Stream Reasoning 54

where each pair is made of an RDF triple di and its timestamp ti. Timestamps are

monotonically non-decreasing (ti ≤ ti+1).

Users express their requirements and preferences in the form of continuous reasoning

requests using the C-ASP language, an extension of the ASP language described in

Section 4.2. Reasoning requests are registered with the C-ASP engine and evaluated

continuously over the input streams and the knowledge bases. The continuous reasoning

model of C-ASP takes as input RDF streams, evaluates a continuous reasoning request

RR, and produces output streams. When evaluating RR at time t, only a portion of the

input stream is considered in the evaluation of the request. It is to be noticed that the

C-ASP processing model combines models developed for DSMS based on windowing,

and models for CEP systems based on rules applied to one-timestamped data items to

produce new events from input data.

The process can be broken down into 3 steps:

1. Windowing (from streams to relations): select subsets of the most recent elements

of the input streams.

2. Evaluating (from relations to relations): perform reasoning on the finite and in-

termediate data portions.

3. Streaming (from relations to streams): convert the final solutions back into streams.

4.1.1 Windowing: from streams to relations

I now introduce the concept of windows over a stream in the windowing step.

Definition 4.2. Given a stream S as in Definition 4.1, a window W of S at time t can

be defined as

W (S, t) = {(d, t′) ∈ S : t′ ≤ t}

To select elements from a stream S, C-ASP supports two types of windows, namely time-

based window and count-based window. Each type takes a window parameter ω ∈ N to

define the selection of elements from the stream.

Definition 4.3. Given a stream S as in Definition 4.1, a time-based window over S at

time t can be defined as

Wω
T (S, t) = {(d, t′) ∈ S : t′ ∈ [max{0, t− ω}, t]}

Chapter 4. C-ASP: Continuous Extension of ASP for RDF Stream Reasoning 55

Definition 4.4. Given a stream S as in Definition 4.1, a count-based window over S at

time t can be defined as Wω
C (S, t) ⊆W (S, t) and satisfies two following conditions:

|Wω
C (S, t)| = ω, and

∀(d′, t′) ∈Wω
C (S, t),@(d′′, t′′) ∈ S \Wω

C (S, t) such that t′ ≤ t′′ ≤ t

In order to process the continuous stream, windows use an additional parameter β in-

dicating the distance between two consecutive windows, referred to as slide. Intuitively,

a time-based sliding window on stream S, Wω,β
T (S, t), continuously produces a window

Wω
T (S, t) every β units of time. Similarly, a count-based sliding window on the stream

S, Wω,β
C (S, t), continuously produces a window Wω

C (S, t) containing exactly ω (times-

tamped) triples, by removing the oldest and adding the newest β triples for each new

window. Note that if the number of triples with the same timestamp removed (resp.

added) makes the cardinality of the window smaller (resp. bigger) than ω then data

items to be removed (resp. added) are chosen randomly.

I will illustrate how the windows work with a simple example.

Example 4.1. A travel company records the bookings of users to hotels that are available

on its website as an RDF stream S = (d1, 2), (d2, 8), (d3, 8), (d4, 11), (d5, 15), ... as

in Figure 4.2. Assume that the unit of time is minute and the stream starts producing

triples at time t = 0.

• The time-based sliding window W 7,3
T (S, t) starts producing a window at time t = 7

and continuously produces new windows every 3 minutes as follows:

W 7,3
T (S, 7) = {(d1, 2)},

W 7,3
T (S, 10) = {(d2, 8), (d3, 8)},

W 7,3
T (S, 13) = {(d2, 8), (d3, 8), (d4, 11)}, ...

(4.1)

• The count-based sliding window W 3,1
C (S, t) starts producing a window when |W 3

C(S, t)| =
3 and continuously produces a new window whenever a new triple arrives, by re-

moving the oldest triple and adding the new one as follows:

W 3,1
C (S, 8) = {(d1, 2), (d2, 8), (d3, 8)},

W 3,1
C (S, 11) = {(d2, 8), (d3, 8), (d4, 11)},

W 3,1
C (S, 15) = {(d2, 8), (d4, 11), (d5, 15)}3, ..

(4.2)

3(d3, 8) is removed randomly.

Chapter 4. C-ASP: Continuous Extension of ASP for RDF Stream Reasoning 56

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 t

d1 d5
d3

d2

:user1 :book :hotelA :user4 :book :hotelA

:user3 :book :hotelB
:user4 :book :hotelC

d4

:user2 :book :hotelC

Figure 4.2: An RDF stream of booking hotels

4.1.2 Evaluating: from relations to relations

After selecting the relevant portion of the input stream as a set of discrete elements

(the window), the second step of the C-ASP processing model evaluates the reasoning

request which follows the stable model semantics of ASP. In what follows we define a

C-ASP reasoning request (Definition 4.5 and its semantics in Definition 4.6 by resorting

to the stable model semantics of ASP).

Definition 4.5. A C-ASP reasoning request RR is defined as

RR = (Pre, I, P,O)

where Pre defines a set of constants indicating namespace prefixes4; I = Istream ∪ Ikb,
where Istream = {(Si,W (Si, t)), i = 1..n} identifies a set of RDF input streams and the

windows to specify how to extract data elements from streams, and Ikb = {kbj , j = 1..m}
identifies a set of RDF static datasets; P identifies a set of ASP rules (or a logic program);

andO ⊂ pre(P) identifies a selections of output data (pre(P) is a set of predicate symbols

appearing in P).

Intuitively, an evaluation of a reasoning request RR = (Pre, I, P,O) at time t generates

a solution of RR with respect to the windows generated in I at that time point.

Definition 4.6. Given a C-ASP reasoning request RR = (Pre, I, P,O). A solution of

RR at time t, ans(RR, t) is defined as:

ans(RR, t) = ϕO(ans(
n⋃
i=1

W (Si, t),
m⋃
j=1

kbj , P))

ans(RR, t) is computed in two steps. First, I compute an answer set of the ASP rules in

P and the facts in both the static knowledge bases (
⋃m
j=1 kbj) and the windows produced

4As illustrated in Section 4.2, these refer to IRIs to identify RDF streams sources.

Chapter 4. C-ASP: Continuous Extension of ASP for RDF Stream Reasoning 57

from the input streams at time t (
⋃n
i=1W (Si, t)). Next, I select the output data items

from the answer set based on the predicates defined in O as follows:

ϕO(ans(
n⋃
i=1

W (Si, t),
m⋃
j=1

kbj , P)) = {p(.) ∈ ans(
n⋃
i=1

W (Si, t),
m⋃
j=1

kbj , P) : p ∈ O}

As the nonmonotonic semantics of ASP comes with possibly multiple answer sets, C-

ASP provides possibly multiple solutions for the reasoning request RR which denoted

as Ans(RR, t) = {ans(RR, t)}.

4.1.3 Streaming: from relations to streams

I now need to serialize the output of the reasoning request to generate the output stream.

To generate streams as output, C-ASP needs a streaming operator to assign the correct

evaluation timestamp to data items derived by the evaluation step. In order to do this,

I adapt the RStream operator defined for relational data stream processing in [4] as

defined below.

Definition 4.7. Given an answer set ans(RR, t) of the C-ASP reasoning request RR

at time t. RStream is defined as follows:

RStream(ans(RR, t)) = {(d, t) : d ∈ ans(RR, t)}

Similarly, RStream(Ans(RR, t)) = {RStream(ans(RR, t)) : ans(RR, t) ∈ Ans(RR, t)}.

In order to generate RDF streams as output, a predicate symbol p in O has to appear

in a predicate of the form p(s, o). In this way, the RStream operator is modified as

follows:

RStream(ans(RR, t)) = {(< s, p, o >, t) : p(s, o) ∈ ans(RR, t)}

4.2 Implementation: the C-ASP Language

Based on the C-ASP processing model defined Section 4.1, I now define how a C-ASP

reasoning request is expressed in an extension of the ASP language with RDF streaming

features, and I provide a set of examples.

Chapter 4. C-ASP: Continuous Extension of ASP for RDF Stream Reasoning 58

4.2.1 C-ASP Reasoning Request

Consider a C-ASP reasoning request RR = (Pre, I, P,O) as defined in Definition 4.6.

In Figure 4.3, I provide the syntax to express each component in RR. First, to deal with

the RDF data format, I use a PrefixClause statement which captures each element

in Pre. This PrefixClause is adopted from the syntax for prefixes used to abbreviate

IRIs5 in SW.

PrefixClause → #prefix prefixName : 〈〈〈IRI〉〉〉;

FromStreamClause → #from stream streamIRI Window;
Window → Time-basedWindow | Tuple-basedWindow

Time-basedWindow → [time number TimeUnit step number TimeUnit]
TimeUnit → d | h | m | s | ms

Tuple-basedWindow → [count number step number]

FromClause → #from 〈〈〈knowledge base〉〉〉;

RuleClause → ASP rule;

OutputClause → #show predicateSymbol///number;;;

Figure 4.3: C-ASP syntax

The identifications of input streams and static knowledge bases in I are expressed by

means of FromStreamClause and FromClause, respectively. In FromStreamClause, each

input stream is coupled with a window (represented by Window) to guide the C-ASP

engine on how to extract related data from the stream. In FromClause, static knowledge

bases are specified via their paths and the C-ASP engine integrates them with input

streams before performing ASP-based reasoning over them.

A rule in P follows the ASP-core2 language standard6 and the C-ASP implementation

relies on the Clingo solver7. However, the extension of ASP rules to deal with RDF

streams introduces predicate symbols, which are obtained from converting an RDF triple

〈s, p, o〉, in form of prefixName p. The predicate symbol prefixName p identifies that

this predicate is from RDF input streams or RDF datasets while p (without prefixName)

is an internal predicate defined and used within the ASP rules. In this way, an input RDF

triple with a timestamp (〈s, p, o〉, t) is automatically converted into an ASP predicate of

the form prefixName p(s, o, t).

5https://www.w3.org/TR/rdf11-concepts/#section-IRIs
6https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03b.pdf
7http://potassco.sourceforge.net

https://www.w3.org/TR/rdf11-concepts/##section-IRIs
 https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03b.pdf
http://potassco.sourceforge.net

Chapter 4. C-ASP: Continuous Extension of ASP for RDF Stream Reasoning 59

#prefix t l : 〈http :// t r a v e l . org /〉;

#from stream <http :// t r a v e l . org /booking> [time 1h step 30m];

bookedHotel (Hotel) :− t l booked (User , Hotel , Time) ;
noH(N) :− N = #count{Hotel : bookedHotel (Hotel) };

#show noH/1;

Listing 4.1: RR1

#prefix t l : 〈http :// t r a v e l . org /〉;
#prefix ht : 〈http :// h o t e l . org /〉;
#prefix ct : 〈http :// c i t y . org /〉;
#prefix rd f : 〈http ://www. w3 . org /1999/02/22− rdf−syntax−ns#〉;
#prefix ex : 〈http :// example . org /〉;

#from stream <http :// t r a v e l . org /booking> [time 1h step 30m];
#from <hote lkb . rdf>;
#from <s t r e e t k b . rdf>;

bookedHotel (Hotel) :− t l booked (User , Hotel , Time) ;
f i v e S t a r (Hotel) :−bookedHotel (Hotel) , h t s t a r (Hotel , Star) ,

Star = 5;
ex fmHotel (Hotel , S t r e e t) :− f i v e S t a r (Hotel) ,

h t l o c a t e d (Hotel , S t r e e t) ,
r d f t y p e (Street , ” c t MainStreet ”) ;

#show ex fmHotel /2;

Listing 4.2: RR2

In addition, output statements identify output predicates the C-ASP engine needs

to provide after reasoning. The syntax of an output statement in O is defined in

OutputClause. The variable number in OutputClause identifies the number of argu-

ments in predicateSymbol. If number = 2 then the C-ASP engine provides output as

(timestamped) RDF streams by converting output atoms (i.e., predicateSymbol(s,o))

to triples (i.e., <s,predicateSymbol,o>) and assigning timepstamps to them with the

RStream operator (i.e., (<s,predicateSymbol,o>, t)). Otherwise, C-ASP outputs

(timestamped) predicate-format streams.

4.2.2 Examples of a C-ASP Reasoning Request

In what follows, I present some of the features of the C-ASP language defined above

by providing examples of continuous reasoning requests. I refer to the hotel booking

scenario introduced in Example 4.1.

Chapter 4. C-ASP: Continuous Extension of ASP for RDF Stream Reasoning 60

#prefix t l : 〈http :// t r a v e l . org /〉;
#prefix ht : 〈http :// h o t e l . org /〉;
#prefix ct : 〈http :// c i t y . org /〉;
#prefix rd f : 〈http ://www. w3 . org /1999/02/22− rdf−syntax−ns#〉;
#prefix ex : 〈http :// example . org /〉;

#from stream <http :// t r a v e l . org /booking> [time 1h step 30m];
#from stream <http :// t r a v e l . org / cance l ing> [time 1h step 30m];
#from <hote lkb . rdf>;
#from <s t r e e t k b . rdf>;

bcHotel (Hotel) :− t l booked (User , Hotel , Time1) ,
t l c a n c e l e d (User , Hotel , Time2) ,
Time1<Time2;

bcStar (Hotel) :−bcHotel (Hotel) , h t s t a r (Hotel , Star) ,
Star <= 3;

hasStar (Hotel) :− h t s t a r (Hotel , Star) ;
bcStar (Hotel) :−bcHotel (Hotel) , not hasStar (Hotel , Star) ;
ex bcmHotel (Hotel , S t r e e t) :−bcStar (Hotel) ,

h t l o c a t e d (Hotel , S t r e e t) ,
r d f t y p e (Street , ” c t MainStreet ”) ;

#show ex bcmHotel /2;

Listing 4.3: RR3

RR1, illustrated in Listing 4.1, is a simple C-ASP reasoning request with aggregation.

The request is made by the travel company in order to know how many hotels have been

booked during the last hour. It will notify the company every 30 minutes.

Assume that the information of hotels and streets are stored in static RDF datasets,

hotelkb.rdf and streetkb.rdf respectively. The company wants to know which 5-star

hotels located on a main street have been booked in the last hour. The reasoning request

RR2 in Listing 4.2 shows the combination of static and streaming data.

To illustrate an example of combining multiple input streams, I assume that the company

also records information when a user cancels a booking. The reasoning request RR3

(Listing 4.3) notifies the company on which below-3-star hotels located on a main street

have been booked and then canceled during the last hour. This request also allows the

company to decide how to deal with incomplete information about hotels’ stars via the

negation-as-failure rule bcStar(Hotel):- bcHotel(Hotel), not hasStar(Hotel);.

I now showcase an example of C-ASP that can capture more sophisticated requirements

via optimization statements in ASP. Imagine that the company wants to know the most

expensive and highest star hotels that have been booked during the last hour. They

do not want to get notification of those hotels located in a noisy area (I assume that

a hotel located on a main street is noisy). Moreover, they are more interested in the

most expensive hotels. RR4 expresses such request as illustrated in Listing 4.4. This

Chapter 4. C-ASP: Continuous Extension of ASP for RDF Stream Reasoning 61

#prefix t l : 〈http :// t r a v e l . org /〉;
#prefix ht : 〈http :// h o t e l . org /〉;
#prefix ct : 〈http :// c i t y . org /〉;
#prefix rd f : 〈http ://www. w3 . org /1999/02/22− rdf−syntax−ns#〉;

#from stream <http :// t r a v e l . org /booking> [time 1h step 30m];
#from <hote lkb . rdf>;
#from <s t r e e t k b . rdf>;

1{bookedHotel (Hotel) : t l booked (User , Hotel , Time) }1;
no i syHote l (Hotel) :−bookedHotel (Hotel) ,

h t l o c a t e d (Hotel , S t r e e t) ,
r d f t y p e (Street , ” c t MainStreet ”) ;

:− no i syHote l (Hotel) ;
#maximize {Y@1 : h t s t a r (Hotel , Star) , bookedHotel ((Hotel) } ;
#maximize {Y@2 : h t c o s t (Hotel , Cost) , bookedHotel (Hotel) } ;

#show bookedHotel /1;

Listing 4.4: RR4

PREFIX ct : <http ://www. in s i g h t−cent r e . org / c i t y t r a f f i c#>
PREFIX ssn : <http :// pur l . o c l c . org /NET/ ssnx / ssn#>
PREFIX sao : <http :// pur l . o c l c . org /NET/ sao/>
PREFIX : <http ://www. in s i g h t−cent r e . org / datase t / SampleEventService#>

CONSTRUCT {? obId1 sao : hasValue ?v1 . ? obId2 sao : hasValue ?v2 .}
FROM STREAM < . . . / Traf f icData182955> [range 3000ms step 1 s]
FROM STREAM < . . . / Traf f icData158505> [range 5000ms step 4 s]
FROM <http :// l o c a l h o s t :8080/ SensorRepos i tory . rdf>

WHERE {
?p1 a ct : Congest ionLeve l .
?p2 a ct : Congest ionLeve l .
? obId1 ssn : observedProperty ?p1 .
? obId1 sao : hasValue ?v1 .
? obId1 ssn : observedBy : AarhusTraf f icData182955 .
? obId2 ssn : observedProperty ?p2 .
? obId2 sao : hasValue ?v2 .
? obId2 ssn : observedBy : AarhusTraf f icData158505 .
}

Listing 4.5: Snapshot of query Q1C

request takes advantage of the ability of ASP to handle expressive reasoning such that

managing optimization statements.

4.3 Evaluation

In this section, I compare the performance of the C-ASP reasoner against one of the

most mature RSP engines, C-SPARQL, with respect to two metrics, latency and memory

Chapter 4. C-ASP: Continuous Extension of ASP for RDF Stream Reasoning 62

consumption, by using the well-known stream processing benchmark CityBench [172].

Another RSP engine that is still maintained is CQELS, but I do not consider CQELS

because its processing mode does not allow certain positive rules to be expressed: both

C-ASP and C-SPARQL process streaming data in batches while CQELS processes every

new data item immediately and therefore cannot reason about elements appearing in

the same window. Laser and Ticker are not considered because they do not support

RDF streams and RDF datasets.

Latency refers to the time consumed by the engine between the input arrival and the

output generation while memory consumption reflects the usage of the system memory

during the execution. The experiment was conducted on a machine with 24-core In-

tel(R) Xeon(R) 2.40 GHz and 96G RAM. I used Java 1.8 with heap size from 5GB to

20GB for C-SPARQL and Clingo 4.5.4 for C-ASP. The empirical results are encouraging

as they show that C-ASP outperforms C-SPARQL in both latency and memory con-

sumption. I aim at showing that C-ASP has superior performance when dealing with

the same expressivity as C-SPARQL with increasing stream frequency. One of possible

reason for the difference in the performance of these two engines is the difference of

their implementation. C-ASP delegates the reasoning task to Clingo which implements

multiple optimization techniques to speed up the grounding step and the solving step

(see Section 2.2.4) while C-SPARQL delegates the query evaluation to Esper and Jena.

In this way, C-SPARQL limits to apply query rewriting techniques to make its query

processor dynamically adapting to the changes in the input. Programming languages

may contribute on this performance difference. C-ASP uses Clingo which written in

C++ while C-SPARQL is written fully in Java.

To make sure that both engines return the same result format (triples) for a fair com-

parison, I modify the SELECT statements of C-SPARQL queries in CityBench to the

CONSTRUCT statements. I translate C-SPARQL CONSTRUCT queries into C-ASP

reasoning requests. In particular I use queries Q1C, Q2C, and Q10C as representative

samples in terms of the number of query patterns and the presence of join operators.

Listing 4.5 and 4.6 show snapshots of the C-SPARQL query Q1C and the corresponding

C-ASP reasoning request R1C.

First, I evaluate the performance of the two engines with a frequency f = 1 (i.e., replay

streams at the original rate). I stream data for 10 minutes to C-SPARQL queries Q1C,

Q2C, and Q10C (respectively, R1C, R2C, and R10C for C-ASP reasoning requests) and

measure the latency and memory consumption every minute. Results shown in Figures

4.4, 4.6, and 4.8 indicate that the latency of C-ASP is minimal compared to C-SPARQL

for all three queries. More specifically, C-ASP performs almost 3 times (or more) faster

than C-SPARQL for queries Q1C, Q2C and slightly faster for query Q10C. In addition,

Chapter 4. C-ASP: Continuous Extension of ASP for RDF Stream Reasoning 63

#prefix ct : 〈http ://www. in s i g h t−cent r e . org / c i t y t r a f f i c#〉;
#prefix ssn : 〈http :// pur l . o c l c . org /NET/ ssnx / ssn#〉;
#prefix sao : 〈http :// pur l . o c l c . org /NET/ sao /〉;
#prefix : 〈http ://www. in s i g h t−cent r e . org / datase t / SampleEventService#〉;
#prefix rd f : 〈http ://www. w3 . org /1999/02/22− rdf−syntax−ns#〉;

#from stream < . . . / Traf f icData182955> [time 3 s step 1 s];
#from stream < . . . / Traf f icData158505> [time 5 s step 4 s];
#from <datase t / SensorRepos i tory . rdf>;

observerBy (ObId) :− ssn observedBy (ObId , ” Tra f f i cData182955 ”) ;
observerBy (ObId) :− ssn observedBy (ObId , ” Tra f f i cData158505 ”) ;
r e s u l t (ObId , V) :− observerBy (ObId) , sao hasValue (ObId , V)

ssn observedProperty (ObId , P) ,
r d f t y p e (P, ” c t Conges t i onLeve l ”) ;

#show r e s u l t /2;

Listing 4.6: Snapshot of reasoning request R1C

it is noticeable in those figures that the memory consumption of C-ASP is less than a

half of the C-SPARQL memory consumption.

I then increase the frequency of streams to f = 2 and re-run the experiment with the

similar setting. Figures 4.5, 4.7, and 4.9 show that C-ASP still outperforms C-SPARQL.

In details, the latency of C-SPARQL increases slightly from f = 1 to f = 2 for queries

Q1C and Q10C, and increases sharply for query Q2C (around 2 times). In contrast,

C-ASP maintains the same latency for both f = 1 and f = 2. Those figures also show

that when f = 2, the memory consumption of both engines remains stable as in f = 1

and C-ASP consumes half less memory than C-SPARQL.

4.4 Summary

This chapter presents C-ASP, a ASP-based approach for performing complex reasoning

over RDF streams. More precisely, C-ASP enables the continuous reasoning capability

on ASP by adding: RDF streams to the data types, windowing operators to capture

the most relevant portions of data from streams, (stable model semantics) entailment

at window-level, and streaming operators to stream out the results. The conceptual

architecture of the C-ASP reasoner is presented together with its continuous reasoning

model. This model supports the C-ASP language which extended from the ASP lan-

guage and RDF stream features. This language, which leverages full expressive power

of ASP, allows users to express their requirements and preferences in form of C-ASP

Chapter 4. C-ASP: Continuous Extension of ASP for RDF Stream Reasoning 64

0

500

1000

1500

2000

2500

3000

0

10

20

30

40

50

60

70

80

90

100

1 3 6 10

La
te
nc
y	
(m

s)

M
em

or
y	
(M

B)

Experiment	 time	(minutes)

Figure 4.4: Q1C & R1C (f=1)

0

500

1000

1500

2000

2500

3000

3500

4000

0

10

20

30

40

50

60

70

80

90

100

1 3 6 10

La
te
nc
y	
(m

s)

M
em

or
y	
(M

B)

Experiment	 time	(minutes)

Figure 4.5: Q1C & R1C (f=2)

0

500

1000

1500

2000

2500

3000

0

10

20

30

40

50

60

70

80

90

1 3 6 10

La
te
nc
y	
(m

s)

M
em

or
y	
(M

B)

Experiment	 time	(minutes)

Figure 4.6: Q2C & R2C (f=1)

0

1000

2000

3000

4000

5000

6000

7000

8000

0

10

20

30

40

50

60

70

80

90

100

1 3 6 10

La
te
nc
y	
(m

s)

M
em

or
y	
(M

B)

Experiment	 time	(minutes)

Figure 4.7: Q2C & R2C (f=2)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0

10

20

30

40

50

60

70

80

90

100

1 3 6 10

La
te
nc
y	
(m

s)

M
em

or
y	
(M

B)

Experiment	 time	(minutes)

Figure 4.8: Q10C & R10C (f=1)

0

200

400

600

800

1000

1200

1400

1600

1800

0

10

20

30

40

50

60

70

80

90

100

1 3 6 10

La
te
nc
y	
(m

s)

M
em

or
y	
(M

B)

Experiment	 time	(minutes)

Figure 4.9: Q10C & R10C (f=2)

reasoning requests. Such requests are registered once at the C-ASP engine and continu-

ously evaluated when data arrives. The experimental evaluation shows that the C-ASP

engine outperforms the state-of-the-art RSP engine C-SPARQL.

Chapter 5

Characterizing Input-driven

Dependency

The highly declarative power of ASP opens up the capabilities of the C-ASP reasoner

to capture more sophisticated requirements of users and to solve more complex tasks

over diverse SW streams. However, computing solutions of such reasoning tasks under

stable model semantics of ASP is quite costly, especially in the dynamic environment.

As defined in Chapter 1, the second research question RQ2 in this thesis is concerned

about enhancing the scalability of the proposed C-ASP stream reasoner. This question

is composed of two sub-questions. In this chapter, I mainly tackle the first sub-question

of RQ2 (RQ2.1). The second sub-question of RQ2 (RQ2.2) is answered in Chapter 6.

The research question RQ2.1 states as follows:

RQ2.1. What information potentially affects the reasoning process of an

expressive stream reasoner?

The chapter tests the hypothesis H2 and the first half of the hypothesis H3 that are

formulated below:

H2. Partitioning an input window in which data is independent helps to

reduce the reasoning cost of an expressive stream reasoner. Moreover, the

total time when reasoning sequentially over such partitions of the input win-

dow can be smaller than the reasoning time over the whole window under

the circumstance of monotonically increasing reasoning time.

H3. The semantic dependencies between input data streams plays an im-

portant role in the reasoning process in terms of its performance and the

65

Chapter 5. Characterizing Input-driven Dependency 66

correctness of results. These dependencies can be captured based on the

structure of a given reasoning request and can be decomposed in such a way

to enable parallel reasoning and maintain the correctness of results.

To answer the research question RQ2.1 and to test the hypotheses H2, H3, the key

features that potentially affect the scalability of the C-ASP reasoner are identified. The

chapter is formed in two parts. In the first part, the correlation between key features

and their impact on the reasoner’s performance are empirically evaluated under the

assumption of independent input data (H2), presented in Section 5.1. This work is in

collaboration with Stefano Germano at University of Calabria and is published in [197],

and also in his PhD thesis “Logic Programming in non-conventional environments”1.

Later, this assumption is relaxed and dependencies among input data are analyzed for

a further investigation on their significant impact on the reasoning performance in a

streaming scenario (H3), which is detailed in the second part of the chapter. This sec-

ond part starts with a running example introduced in Section 5.2.1 in order to illustrate

the importance of dependencies among data. Section 5.2.2 presents the assumptions

applied for this section and the following chapter. A formal characterization for analyz-

ing dependencies among input data based on the structure of a given reasoning request

is then proposed in Section 5.2.3. Section 5.2.4 presents algorithms which characterize

different relationships between two predicates appearing in the input data in the form

of so-called input dependency graph. The chapter is summarized in Section 5.3.

5.1 Reasoning over Independent Data Streams

This section provides a preliminary analysis on how the scalability of the C-ASP reasoner

can be improved under the assumption that data elements in an input window are

independent. This reasoner processes data streams by replying on an ASP solver in

which the grounding phase and the solving phase are strongly affected by the amount

of input data. Hence, the performance of the C-ASP reasoner is affected by not only

the size of an input window but also the frequency of windows sending to it. In order

to maintain the stability, the C-ASP reasoner needs to keep up with the new coming

windows. In this way, it has to reason and return results faster than the next window

arrives for preventing the time delay accumulation. Assume that the size of the input

window W is fixed, and a new window is sent to the C-ASP reasoner every unit of time

U , the question is “Can W be processed in less than U of time by reasoning sequentially

1https://www.mat.unical.it/phd/Alumni?action=AttachFile&do=get&target=

GermanoAbstract.pdf

https://www.mat.unical.it/phd/Alumni?action=AttachFile&do=get&target=GermanoAbstract.pdf
https://www.mat.unical.it/phd/Alumni?action=AttachFile&do=get&target=GermanoAbstract.pdf

Chapter 5. Characterizing Input-driven Dependency 67

over partitions of W?”. Formally, the question can be stated as: Is there a window W ′

such that: |W ′| < |W | and T (W,W ′) ≤ U?

T (W,W ′) notates the time needed by the reasoner to processW by reasoning sequentially

over same-size partitions W ′ of W . The number of W ′ is d |W ||W ′|e and T (W,W ′) =

d |W ||W ′|e× T (W ′), in which T (W ′) notates the time needed by the reasoner to process W ′

in one computation.

In the following, I answer the above question by demonstrating how the window size

and the streaming frequency affects the reasoning process via an empirical evaluation on

the C-ASP reasoner based on the travel planner scenario. I present below the scenario,

data streams, and the reasoning request for the experiment and discuss findings.

5.1.1 Experiment Setting

Scenario. Alice is moving on a street. She wants to know real-time events that affect

her travel plan to react accordingly. She needs an application built on the top of the C-

ASP reasoner to notify events which are considered to be critical to her current situation.

The C-ASP reasoner receives event streams that indicate changes in the real world (such

as accidents, road traffic, flooding, road diversions and so on) and updates on the user’s

current status (such as Alice’s current location and activity). With this information

as input streams, the C-ASP reasoner is in charge of: (i) selecting among the list of

events, which are the ones that are really relevant according to the Alice’s context, and

(ii) continuously ranking their level of criticality with respect to her context in order to

decide whether a new path needs to be computed.

Data streams. As mentioned in the scenario, there are two input streams: a stream

of events and a stream of user’s context. An event is modeled with 4 features: event

name, category, location, and time. For example, Listing 5.1 describes the condition

of weather being strong wind at a certain time and a given location. User’s context is

defined by current activity, location, and time. For instance, Listing 5.2 illustrate that

at a certain time, Alice is driving a car at a particular location.

Static input data. A small instance of the context ontology which describes the

effect of events on certain activities is created. For example, the ontology contains

the fact <ec:Fog uc:effect ac:DrivingCar> which indicates that any person who is

driving a car is affected by foggy weather. I generate 10 categories of events such as:

roadwork, obstructions, incident, sporting events, disasters, weather, traffic conditions,

device status, visibility air quality, incident response status. Each type of events has

more than 2 event names (e.g., traffic condition has event names: clear traffic, slow

Chapter 5. Characterizing Input-driven Dependency 68

@pref ix sao : <http :// pur l . o c l c . org /NET/UNIS/ sao / sao#> .
@pre f ix t l : <http :// pur l . org /NET/c4dm/ t i m e l i n e . owl#> .
@pre f ix xsd : <http ://www. w3 . org /2001/XMLSchema#> .
@pre f ix ec : <http :// pur l . o c l c . org /NET/UNIS/ sao / ec#> .

sao : e1 a ec : StrongWind ;
sao : hasCategory ec : WeatherEvent ;
sao : hasEventLocation ”38011736−121867224” ;
t l : time ”2014−11−26T13 :00 : 00”ˆˆ xsd : dateTime .

Listing 5.1: An example of a weather event

@pref ix sao : <http :// pur l . o c l c . org /NET/UNIS/ sao / sao#> .
@pre f ix t l : <http :// pur l . org /NET/c4dm/ t i m e l i n e . owl#> .
@pre f ix xsd : <http ://www. w3 . org /2001/XMLSchema#> .
@pre f ix uc : <http :// pur l . o c l c . org /NET/UNIS/ sao /uc#> .
@pre f ix ac : <http :// pur l . o c l c . org /NET/UNIS/ sao /ac#> .

uc : uc1 uc : user uc : A l i c e ;
uc : a c t i v i t y ac : DrivingCar ;
sao : hasUserLocat ion ”38011736−121867224” ;
t l : time ”2014−11−26T12 :00 : 00”ˆˆ xsd : dateTime .

Listing 5.2: An example of user’s context

traffic, and congested traffic). In addition, the route of the user is also considered as

static input data.

Reasoning request. The Listing 5.3 shows a snapshot of the C-ASP reasoning request

which is used for this experiment. This request contains 10 rules which have 2 negation-

as-failure rules. Rule r1 identifies events that affect the current activities of the user.

Rules r2 − r7 define ‘out of context’ events which may be relevant but not be critical

to the user. Rule r2 confirms that an event is ‘out of context’ if it does not affect the

current activity of the user. Rules r3 and r4 identify the case when the user is moving

out of the path where related event is happening. Similarly, rules r6 and r7 filter events

that are not happening on the user’s path. Rule r5 shows that the related event is

‘out of context’ when the user has passed by the event’s location. Rules r8 and r9

compute the criticality of an event and rule r10 reports the event which has criticality

is bigger than 0.

5.1.2 Experiment Discussion

The experiment is conducted over a machine running Debian GNU/Linux 6.0.10, con-

taining 8-cores of 2.13 GHz processor and 64 GB RAM. I evaluate the same reasoning

request with varying sizes of input window W (from 100 to 30000 events) of the city

event stream (see Listing 5.3) and measured the reasoning time of the C-ASP reasoner

Chapter 5. Characterizing Input-driven Dependency 69

#prefix t l : 〈http :// pur l . org /NET/c4dm/ t i m e l i n e . owl#〉;
#prefix uc : 〈http :// pur l . o c l c . org /NET/UNIS/ sao /uc#〉;
#prefix ac : 〈http :// pur l . o c l c . org /NET/UNIS/ sao /ac#〉;
#prefix sao : 〈http :// pur l . o c l c . org /NET/UNIS/ sao / sao#〉;
#prefix rd f : 〈http ://www. w3 . org /1999/02/22− rdf−syntax−ns#〉;

#from stream <http :// c i t y . org / c i tyevent s> [count W step W];
#from stream <http :// c i t y . org / usercontext> [count 1 step 1];
#from <e f f e c t . rdf>;

(r1) r e l a t e d (EID , UID) :− u c e f f e c t (EN,AN) , r d f t y p e (EID ,EN) ,
u c a c t i v i t y (UID,AN) ;

(r2) o u t o f c o n t e x t (EID , UID) :− r d f t y p e (EID ,EN) , u c a c t i v i t y (UID,AN) ,
not r e l a t e d (EID , UID) ;

(r3) wrong locat ion (UID) :− sao hasUserLocat ion (UID, ULID) ,
not path segment (ULID,) ;

(r4) o u t o f c o n t e x t (EID , UID) :− r e l a t e d (EID , UID) , wrong locat i on (UID) ;
(r5) o u t o f c o n t e x t (EID , UID) :− sao hasUserLocat ion (UID, ULID) ,

r e l a t e d (EID , UID) , path segment (ULID,UPN) ,
sao hasEventLocat ion (EID , ELID) ,
path segment (ELID ,EPN) , EPN−UPN<0;

(r6) wrong loca t i on event (EID) :− sao hasEventLocat ion (EID , ELID) ,
not path segment (ELID ,) ;

(r7) o u t o f c o n t e x t (EID , UID) :− wrong loca t i on event (EID) ,
r e l a t e d (EID , UID) ;

(r8) weight (EID , UID,D) :− sao hasUserLocat ion (UID, ULID) ,
sao hasEventLocat ion (EID , ELID) , r e l a t e d (EID , UID) ,
path segment (ULID,UPN) , path segment (ELID ,EPN) ,
EPN−UPN>=0, D = n − (EPN−UPN) ;

(r9) weight (EID , UID, 0) :− o u t o f c o n t e x t (EID , UID) .
(r10) w e i g h t c r i t i c a l (EID , UID,N) :− weight (EID , UID,N) , N > 0 .

#show w e i g h t c r i t i c a l /3;

Listing 5.3: The reasoning request for notifying critical events

(T (W)). The reasoner is triggered 20 times for each W and then the average performance

time is computed. These values are plotted in Figure 5.1.

Given U = 1 s, the graph shows that the C-ASP reasoner is ‘stable’ if every window

streaming into it has the size is smaller than 17520 events (i.e., green line in Figure

5.1). Let denote this ‘stable’ window as Ws. For window sizes are bigger than |Ws|, the

reasoner will accumulate a delay that will cause a bottleneck. Giving the reasoning time

is monotonically increasing as in Figure 5.1, there are some W bigger than Ws that can

be processed in less than 1 U by partitioning W into smaller chunks and process them

in sequence. The easiest way to perform this split is to consider several windows of the

same size.

For example, consider |W | = 20000 events, it will take 1232 ms for the reasoner process

all events in W in one computation (T (W) = 1232 ms). The reasoner will combine a

Chapter 5. Characterizing Input-driven Dependency 70

0

500

1000

1500

2000

2500

100 10000 20000 30000

Re
as
on
in
g	
tim

e	
(m

s)

Number	 of	events
WuWs

Figure 5.1: Reasoning time

delay in each computation and therefore will crash at some point. However, if W is

split into 4 chucks of the same size |W ′| = 5000 events and process sequentially, the

reasoner will take T (W,W ′) = d200005000 e× T (5000) = 4× 216 ms = 864 ms for processing

W . So there is a proper window size (|W ′|) such that T (W,W ′) ≤ U . In other words,

the reasoner can be ‘stable’ with bigger window sizes.

Moreover, if W is divided into windows of size |W ′| = 2000 events, the reasoning time

for W will be T (W,W ′) = d200002000 e × T (2000) = 10× 72 ms = 720 ms. It shows that, in

general, there could be more than one way to split the input window. For any given W , a

proper value for W ′ such that T (W,W ′) ≤ U can be found in a trivial way just checking

for each W ′ less than Ws and verifying that T (W,W ′) = d WW ′ e×T (W ′) ≤ U . Increasing

W up to the point where there is no W ′ such that |W ′| < |Ws| and T (W,W ′) ≤ U ,

this point, denoted as Wu, is the upper bound of the window where the reasoner can

scale up to and still maintain the stability. In this experiment, the upper bound value

is 23350 events (i.e., red line in Figure 5.1). It means that the reasoner can be stable if

the window size is less than or equal to 23350 events.

In summary, the experiment shows that:

∀W where |Ws| ≤ |W | ≤ |Wu|, ∃W ′ such thatT (W,W ′) ≤ U

In other words, the processing time of the C-ASP reasoner over an input window can be

reduced by reasoning sequentially over the window’s partitions. This observation holds

under the circumstance of the monotonically increasing reasoning time and independent

input data (to guarantee the reasoning results).

Chapter 5. Characterizing Input-driven Dependency 71

(r1) very_slow_speed(X) :- average_speed(X,Y), Y<20;

(r2) many_cars(X) :- car_number(X,Y), Y>40;

(r3) traffic_jam(X) :- very_slow_speed(X), many_cars(X),

not traffic_light(X,red);

(r4) car_fire(X) :- car_in_smoke(C,high), car_speed(C,0),

car_location(C,X);

(r5) give_notification(X) :- traffic_jam(X);

(r6) give_notification(X) :- car_fire(X);

Listing 5.4: Sample rules for detecting events

5.2 Reasoning over Dependent Data Streams

Section 5.1 has shown that the reasoning time of the C-ASP reasoner over an input

window can be reduced by reasoning parallel (or even sequential) over partitions of

that window. This observation is based on the assumption that input data in the

window is independent in order to guarantee the reasoning results, which is rarely a

case. Moreover, partitioning data randomly in general decreases the accuracy of the

final answers. To overcome this issue, the data partitioning process needs to take into

account the dependencies among input data items.

5.2.1 Running Example: Traffic Management

In this section, I motivate the problem by providing an example to show the significance

of the relationships among input data in the reasoning process of the C-ASP reasoner.

This example is then used throughout the rest of the chapter to explain the formal

definitions and algorithms which construct the input dependency analysis.

Consider the following scenario: A city manager wants to know real-time events hap-

pening in the city in order to make informed decisions on traffic management, reaction

to vandalism/crime, management of traffic congestions, reduction of risks for drivers/-

cyclists/pedestrians, and so on. To do that, he wants to register a continuous reasoning

request into the C-ASP reasoner that integrates and reasons upon relevant semantic

streams from different sources to detect events of interest. Listing 5.4 shows a rule set

P of his reasoning request to detect events traffic jam and car fire.

Assume that the set of input predicates inpre(P) (i.e., predicates appear in the input

streams) as follows:

inpre(P) = {average speed, car number, traffic light, car in smoke,

car speed, car location}.

Chapter 5. Characterizing Input-driven Dependency 72

The C-ASP reasoner is triggered whenever a new input window W arrives. As an

illustrative example, assume at time t, the input window W (in ASP format) arrives as

follows:

W = {average speed(newcastleRoad, 10), car number(newcastleRoad, 55),

traffic light(newcastleRoad,red), car in smoke(car1, high), car speed(car1, 0),

car location(car1, danganRoad)}

This example is probably not presenting issues in terms of performance, but as the

number of cars, segments, traffic lights and other events increases, the scalability of the

system becomes an issue. In order to process W faster, partitioning W randomly as in

Section 5.1 could generate wrong results. For example, W can be partitioned randomly

into two smaller chunks, W1 and W2 as bellow:

W1 = {average speed(newcastleRoad, 10), car number(newcastleRoad, 55),

car in smoke(car1, high)}, and

W2 = {traffic light(newcastleRoad,red), car speed(car1, 0), car location(car1,

danganRoad)}

Reasoning in parallel over these two input partitions produces as a result the event

traffic jam(newcastleRoad) and the action give notification(newcastleRoad) is triggered,

which is not correct. The accurate answer is the event car fire(danganRoad) detected

and the notification about the danganRoad segment. Partitioning randomly the input

stream may reduce the processing time of C-ASP reasoner but also reduce the accuracy of

its reasoning results in return. Therefore, the parallel reasoning process should consider

the relations between input data (ground atoms) in the input window, and distribute

the computation accordingly across multiple instances of the rule set. Note that this

approach is different from distributing the processing by splitting the rules, and it targets

instead the input predicates. How this input analysis is done will be detailed in the

following sections.

5.2.2 Assumptions

While addressing research question RQ2, I make some assumptions on the supported

the rule set and the input data streams in the reasoning request.

Regarding the logic program P in the reasoning request which is given in advance to the

C-ASP reasoner, I assume that P is constructed under the stratified negation fragment

Chapter 5. Characterizing Input-driven Dependency 73

of normal ASP (i.e., the program should contain no recursion through negation). This

assumption ensures uniqueness of the answer sets and contributes in guaranteeing the

correctness of the parallel inference process. In this way, I make the restriction on the

expressivity of the ASP semantics to achieve: (i) a better scalability via parallelism and

(ii) correctness of reasoning results. Relaxing this assumption is an interesting direction

for future work.

Regarding the assumption on the input streams, I assume that unrelated input data are

filtered out. In other words, the C-ASP reasoner receives only data which are ground

atoms of predicates appearing in the logic program P . In a formal way, inpre(P) ⊆
pre(P). In addition, to analyze the dependencies among input data, note that inpre(P)

is known in advance.

Another assumption on the input streams which is related to different types of predi-

cates in P . According to the database terminology, there are two types of predicates:

EDB (extensional database) and IDB (intensional database). I assume that the input

predicates in inpre(P) can be either IDB or EDB predicates.

5.2.3 Input Dependency Analysis

In this section, I discuss the problem of analyzing the dependency of input elements in

a window W for the C-ASP reasoner with respect to a stratified negation program P

in a reasoning request. I first extend the dependency graph defined in 2.15 to capture

different relationships among all predicates in P . Thereafter, I introduce the concept

of input dependency graph that shows how input data items in W relate to each other

with respect to the logic program P .

The concept of dependency graph has been widely used in ASP as a tool to analyze

the structure of non-ground answer set programs [2, 57]. It has been efficiently used in

parallel instantiation algorithms that generate a much smaller ground program equiva-

lent to a given logic program. Note that the computation of most ASP systems follows

a two-phase approach: an instantiation (or grounding) phase generates a variable-free

program which is then evaluated by propositional algorithms in the solving phase. The

instantiation process in ASP can be expensive from a computational viewpoint and the

size of the ground program has a huge effect on the performance of the solver. To ad-

dress this issue, the idea of parallel grounding has been investigated, which relies on the

concept of dependency graph.

As defined in 2.15, a dependency graph G is a directed graph where nodes are IDB

predicates and arcs show the relationship between a positive IDB predicate in the body

Chapter 5. Characterizing Input-driven Dependency 74

with a predicate in the head of a rule. This graph divides the input program P into sub-

programs, according to the dependencies among the IDB predicates of P , and identifies

which of them can be grounded in parallel.

However, in this thesis, I do not partition the logic program for the grounding process.

I focus instead on partitioning the input on-the-fly and evaluating each partition in

parallel with a copy of the whole program P . The reasons to follow the input partitioning

approach are:

• in the context of dynamic environments, the amount of input data streaming into

the reasoner normally much bigger than the number of rules defined in a registered

reasoning request, and

• in the context of dynamic environments, the amount of input data at each execu-

tion varies in terms of rate and size, thus having different effects on performance.

In order to capture this aspect, I first define an extended dependency graph which stems

from the definition in 2.15. Besides the dependencies among IDB predicates defined in

the dependency graph, other relationships should be taken into account, such as between

two EDB predicates, or between an IDB predicate and an EDB predicate. This graph

shows different types of dependencies among predicates in P by considering:

• i) the (transitive) relation between two predicates (both IDB and EDB) in the

body of a rule,

• ii) both positive and negative literals.

Definition 5.1. Let P be a logic program. The extended dependency graph of P ,

denoted as GP = 〈NP , EP 〉, is a graph in which:

i) NP is a set of nodes, where each node represents a predicate in pre(P).

ii) EP = EP1 ∪ EP2 , where:

(a) EP1 contains undirected edges eu = (pu, qu) if pu and qu occur in the body of

a rule r in P . Moreover, (pu, pu) ∈ EP1 if pu ∈ B−(r).

(b) EP2 contains directed edges ed = 〈pd, qd〉 if qd occurs in the head of r and pd

occurs in the body of r.

Note that pu, qu, pd, qd are predicates that can appear in either a positive or a

negative literal.

Chapter 5. Characterizing Input-driven Dependency 75

Example 5.1. Consider the program P in Listing 5.4. The extended dependency graph

GP illustrated in Figure 5.2 represents different relations among predicates in P includ-

ing directed and undirected edges.

average_speed very_slow_speed

car_number

many_cars

traffic_light

traffic_jam

car_in_smoke

car_speed

car_location

car_fire

give_notification

Figure 5.2: Extended dependency graph GP

Based on the extended dependency graph, I introduce the concept of input dependency

graph of P with respect to inpre(P). This input dependency graph describes how

predicates in inpre(P) depend on each other. Below, I describe the meaning of direct

path that is used to build the input dependency graph.

Definition 5.2. Given the extended dependency graph GP = 〈NP , EP 〉 of the logic

program P , a directed path from node p1 to node pn is a sequence of nodes p1, p2, ..., pn

such that pi ∈ NP , i = 1..n and 〈pj , pj+1〉 ∈ EP2 , j = 1..n− 1.

Example 5.2. A directed path from average speed to give notification is a se-

quence of predicates:

average speed, very slow speed, traffic jam, give notification.

Definition 5.3. Let P be a logic program, GP = 〈NP , EP 〉 be an extended dependency

graph of P , and inpre(P) be a set of input predicates of P . The input dependency graph

of P with respect to inpre(P) is an undirected graph G
inpre(P)
P = 〈N inpre(P)

P , E
inpre(P)
P 〉,

where N
inpre(P)
P ⊂ NP is a set of nodes and E

inpre(P)
P is a set of edges. N

inpre(P)
P contains

a node for each predicate in inpre(P), and ∀p, q ∈ N inpre(P)
P , (p, q) ∈ Einpre(P)

P if one of

the following conditions is satisfied:

i) p 6= q and there is a sequence of nodes p1, p2, ..., pn−1, pn (n > 1, p1 = p, pn = q)

such that ∃i ∈ [1, n), (pi, pi+1) ∈ EP1 and there are two directed paths: one is

from p1 to pi if p1 6= pi and the other is from pn to pi+1 if pn 6= pi+1.

Chapter 5. Characterizing Input-driven Dependency 76

ii) p = q and ((p, p) ∈ EP1 or ∃u ∈ NP , (u, u) ∈ EP1 , 〈p, u〉 ∈ EP2).

Example 5.3. Consider the extended dependency graph GP in Example 5.1 with the in-

put predicates inpre(P) = {average speed, car number, traffic light, car in smoke,

car speed, car location}. The input dependency graph G
inpre(P)
P is shown in Figure

5.3.

average_speed

car_number

traffic_light

car_in_smoke

car_speed

car_location

Figure 5.3: Input dependency graph G
inpre(P)
P

In this example, the link between car in smoke and car speed is created based on

the basic case of the condition (i) in Definition 5.3 in which p1 = car in smoke, p2

= car speed, and (p1, p2) ∈ EP1 . The link between average speed and car number

illustrates the general case of the condition (i) where a sequence of four predicates

(n = 4) p1 (average speed), p2 (very slow speed), p3 (many cars), p4 (car number)

satisfies that i = 2, (p2, p3) ∈ EP1 and there are two directed paths, one is from p1 to

p2 and the other is from p4 to p3. The self-loop of the predicate p = traffic light

derives from condition (ii) where (p, p) ∈ EP1 .

Definition 5.4. Let P be a logic program and inpre(P) be a set of input predicates

of P . Predicates p, q ∈ inpre(P) depend on each other if there is an edge (p,q) in the

input dependency graph G
inpre(P)
P .

The first condition in Definition 5.3 represents the dependency between two different

predicates in inpre(P). In this way, all ground atoms of these two predicates are consid-

ered to be dependent to each other, but there is no dependency among ground atoms of

the same predicate. These are called predicate-level dependencies. Figure 5.4 (a) show

an example of predicate-level dependencies among ground atoms (in dash boxes) of pred-

icates average speed and car number. The second condition in Definition 5.3 shows a

predicate dependent on itself. It indicates that all ground atoms of that predicate are

considered to be dependent on each other. These are called atom-level dependencies.

The Figure 5.4 (b) illustrates such atom-level dependencies among ground atoms of the

predicate traffic jam. When two different predicates depend on each other or a pred-

icate depends on itself, it means that their ground atoms can contribute to infer a new

Chapter 5. Characterizing Input-driven Dependency 77

fact by firing a single rule or multiple rules. Therefore, all ground atoms of dependent

predicates need to be processed together in order to guarantee that rules in P are fired

properly and to ensure correctness of results.

average_speed car_number traffic_light

average_speed(eyre, 20)

average_speed(newcastle, 10)

car_number(newcastle,50)

a) predicate-level dependencies

traffic_light(newcastle)

traffic_light(eyre)traffic_light(dangan)

b) atom-level dependencies

Figure 5.4: Types of dependencies

5.2.4 Building Input Dependency Graph

In this section, I present a set of algorithms to build an input dependency graph when a

logic program and a set of input predicates are given in advance. The process is depicted

in Figure 5.5. First, the given logic program in the registered reasoning request is used

as input to build an extended dependency graph as defined in Definition 5.1. Then

this extended dependency graph is fed to the next step together with the given input

predicates to create an input dependency graph.

Logic
Program

Input
predicates

Create extended
dependency graph

(Algorithm 1)

Extended
dependency

graph

Create input
dependency graph

(Algorithm 2)

Input
dependency

graph

Figure 5.5: The process to build an input dependency graph

The function to create an extended dependency graph is shown in Algorithm 1. The

algorithm processes each rule r in the given logic program P by first adding all predicates

in r into NP (a set of nodes). Line 4 uses the method pre() to compute all predicates

in r. Next, for each predicate in the body of r (Line 5), the algorithm creates a self-

loop for the predicate if it appears in negated literal (IsNegative()) or it appears more

than 1 time in the body of r (IsDuplicate()) (Lines 6 - 8). These lines correspond to

condition (a) of Definition 5.1. Lines 9 - 11 create undirected edges between two different

predicates (i.e., the condition (a) of Definition 5.1) while the directed edges indicate the

dependencies between a predicate in the body with a predicate in the head of r are

created in Lines 12 - 14 (i.e., the condition (b) of Definition 5.1).

Chapter 5. Characterizing Input-driven Dependency 78

Algorithm 1 Creating extended dependency graph

Input: a logic program P
Output: an extended dependency graph GP

1: procedure EDG(P)
2: NP ← {}, EP1 ← {}, EP2 ← {}
3: for r ∈ P do
4: NP = NP ∪ pre(r)
5: for b ∈ pre(B(r)) do
6: if IsNegative(b)||IsDuplicate(b) then
7: EE1 = EP1 ∪ {(b, b)}
8: end if
9: for b′ 6= b ∈ pre(B(r)) do

10: EE1 = EP1 ∪ {(b, b′)}
11: end for
12: for h ∈ pre(H(r)) do
13: EE2 = EP2 ∪ {〈b, h〉}
14: end for
15: end for
16: end for
17: EP = (EP1 , EP2)
18: return GP = 〈NP , EP 〉
19: end procedure

Algorithm 1 guarantees the creation of the extended dependency graph because all

predicates in a rule and all rules in the given logic program are examined. The most

inner loop (Line 12) needs to be executed for every predicates in the head of a rule. In

normal ASP programs (i.e., the programs contain all normal rules), the head contains

only 1 predicate so the iteration for this loop is 1. The loops in Lines 5 and 9 are executed

for every predicate in the body of a rule while the outer loop (Line 3) iterates according to

the number of rules in the logic program. Given nb is the maximum number of predicates

in the body among all rules in the logic program (nb = max(|pre(B(r))| : ∀r ∈ P)), the

worst-case time complexity of Algorithm 1 is O(|P |n2b) (|P | is the number of rules in P).

Algorithm 2 creates an input dependency graph as defined in Definition 5.3. N
inpre(P)
P

and E
inpre(P)
P contain vertexes and edges of the graph. At the beginning, each predi-

cate in inpre(P) is identified as a vertex (Line 2). Each vertex is checked to see if it

depends on other vertexes according to the conditions in Definition 5.3. In Lines 5-9,

the algorithm checks condition (i) in Definition 5.3 by calling the underlying function

CheckDependency which is detailed in Algorithm 3. Lines 10-17 create a self-loop for a

vertex if the condition (ii) in Definition 5.3 holds. First, it takes a self-loop in EP1 that

is related to the current vertex (Lines 10-12). Then, it creates a self-loop for a vertex if

this vertex implies another self-loop vertex (Lines 13-17).

The goal of the function CheckDependency is to check if two separated vertexes v1 and

Chapter 5. Characterizing Input-driven Dependency 79

Algorithm 2 Creating input dependency graph

Input: an extended dependency graph GP and a set of input predicates inpre(P)

Output: an input dependency graph G
inpre(P)
P

1: procedure IDG(GP , inpre(P))

2: N
inpre(P)
P ← inpre(P)

3: E
inpre(P)
P ← {}

4: for v1 ∈ N inpre(P)
P do

5: for v2 ∈ N inpre(P)
P do

6: if CheckDependency(v1, v2, GP) then

7: E
inpre(P)
P = E

inpre(P)
P ∪ {(v1, v2)}

8: end if
9: end for

10: if (v1, v1) ∈ EP1 then

11: E
inpre(P)
P = E

inpre(P)
P ∪ {(v1, v1)}

12: end if
13: for v ∈ NP do
14: if (v, v) ∈ EP1 & 〈v1, v〉 ∈ EP2 then

15: E
inpre(P)
P = E

inpre(P)
P ∪ {(v1, v1)}

16: end if
17: end for
18: end for
19: return G

inpre(P)
P = 〈N inpre(P)

P , E
inpre(P)
P 〉

20: end procedure

v2 depend on each other as per the condition (i) in Definition 5.3. There is a basic

dependency between two predicates if there is an undirected link between them (Lines

12-13). Otherwise, the algorithm will find if there are two direct paths connected by an

undirected edge between those two vertexes. This function is extended from the Breadth-

First Search (BFS) algorithm to discover those paths. This algorithm will terminate at

Line 13 or when all vertexes are checked.

The creation of an input dependency graph in Algorithm 2 is guaranteed because the

dependencies between every two predicates in inpre(P) are examined. The main op-

erator of the algorithm is the CheckDependency method which check if two different

predicates depend on each other according to the condition (i) in Definition 5.3. Lines

7 - 20 in Algorithm 3 is basically the BFS algorithm operating on inpre(P) and a set

of directed edges EP2 . The outer loop of Algorithm 3 performs another similar BFS.

Then, the time complexity of CheckDependency method is O((|inpre(P)| + |EP2 |)2).
Algorithm 2 triggers CheckDependency method for every pair of predicates in inpre(P).

Therefore, the time complexity of Algorithm 2 is O(|inpre(P)|2(|inpre(P)|+ |EP2 |)2).

Chapter 5. Characterizing Input-driven Dependency 80

Algorithm 3 Check dependency between 2 vertexes

Input: two vertexes v1, v2 and an extended dependency graph GP
Output: true/false

1: procedure CheckDependency(v1, v2, GP)
2: queueV1 ← [v1]
3: queueV2 ← [v2]
4: checked← {}
5: while queueV2 6= ∅ do
6: tempV2 ← queueV2.remove(0)
7: while queueV1 6= ∅ do
8: tempV1 ← queueV1.remove(0)
9: if (tempV1, tempV2) ∈ checked then

10: continue
11: end if
12: if (tempV1, tempV2) ∈ EP1 then
13: return true
14: else
15: for 〈tempV1, cV 〉 ∈ EP2 do
16: Add cV into queueV1
17: end for
18: end if
19: Add (tempV1, tempV2) into checked
20: end while
21: Add v1 into queueV1
22: for 〈tempV2, cV 〉 ∈ EP2 do
23: Add cV into queueV2
24: end for
25: end while
26: return false
27: end procedure

5.3 Summary

In this chapter, the first section reports the correlation between the input window size,

the streaming rate and the reasoning time. The experiment shows that when the rea-

soning time of the C-ASP reasoner over streaming data is monotonically increasing, this

time can be reduced by reasoning sequentially over the input window’s partitions. The

data elements in the window are assumed to be independent to make sure that the rea-

soning results are correct. To relax this assumption, the second section is dedicated to

analyze how these input data elements depend on each other. A clear characterization

and formal definitions for analyzing the dependencies among input data streams are

provided. At the center of the proposed analysis is the concept of an input dependency

graph which expresses two types of dependencies among data: predicate-level and atom-

level. The input dependency graph is built based on the extension of the dependency

Chapter 5. Characterizing Input-driven Dependency 81

graph in ASP. A set of algorithms for building this graph are provided and their com-

plexities are discussed. Leveraging outcomes in this chapter, the next chapter describes

how to use the proposed input dependency graph to enable parallel reasoning while

maintaining the correctness of results. The material presented in the first part of this

chapter has been published in [197] and also in the PhD thesis “Logic Programming in

non-conventional environments”2 of Stefano Germano (i.e., the co-author of the paper

[197]). The work presented in the second part can be found at [198] and [199].

2https://www.mat.unical.it/phd/Alumni?action=AttachFile&do=get&target=

GermanoAbstract.pdf

https://www.mat.unical.it/phd/Alumni?action=AttachFile&do=get&target=GermanoAbstract.pdf
https://www.mat.unical.it/phd/Alumni?action=AttachFile&do=get&target=GermanoAbstract.pdf

Chapter 6

Input-driven Parallel Reasoning

Chapter 5 targets on finding the information which can be used to optimize the C-ASP

reasoner (RQ2.1). As the result, the input dependency graph is defined to capture how

input data in a window depends on each other. Continuing from this investigation, this

chapter tackles mainly the second sub-question of the research question RQ2 that states

the following:

RQ2.2. How to use such information found in RQ2.1 efficiently to speed up

the reasoning process without losing the correctness of reasoning results?

The first part of the hypothesis H3 has been demonstrated in Chapter 5. This chapter

focus on testing the second part of H3 and the hypothesis H4 that are formulated as

follows:

H3. The semantic dependencies between input data streams can be captured

based on the structure of a given rule sets. These dependencies can be de-

composed in such a way to maintain the correctness of the parallel reasoning

results.

H4. Parallel reasoning over partitioned data streams when taking into ac-

count input dependencies can reduce the reasoning cost and maintain the

correctness of combined reasoning results.

To answer the research question RQ2.2 and to test the hypotheses H3, H4, this chapter

investigates a method to partition data streams based on the input dependency graph.

This method and a proof of correctness of the results are presented in Section 6.1.

82

Chapter 6. Input-driven Parallel Reasoning 83

Section 6.2 describes how to use the proposed partitioning plan in guiding the parallel

reasoning of the C-ASP engine. Section 6.3 conducts an evaluation on the effectiveness

of this approach via experiments with different levels of expressivity of the reasoning

request. The chapter is then summarized in Section 6.4.

6.1 Partitioning Plan

In this section, I investigate on how to use the input dependency graph in optimizing the

C-ASP reasoner with parallelism while maintaining the correctness of reasoning results.

The parallel reasoning in C-ASP is enabled via the data partitioning approach. In other

words, the input data in a window is partitioned into smaller chunks. However, this

partitioning method needs to take into account the dependencies among input data in

order to ensure the accuracy of the final results. In this way, the input dependency

graph is used to create a so-call partitioning plan, defined as follows:

Definition 6.1. A partitioning plan of a given input dependency graph G
inpre(P)
P =

〈N inpre(P)
P , E

inpre(P)
P 〉 is defined as:

{N1, ..., Nr : Nr ⊆ N inpre(P)
P and 1 ≤ r ≤ |N inpre(P)

P |}

I analyze the input dependency graph for creating the partitioning plan in two cases:

unconnected and connected graph, detailed in Section 6.1.1 and 6.1.2 respectively.

6.1.1 Unconnected Input Dependency Graph

In this subsection, I consider a case where the input dependency graph is unconnected1

to partition the input window W into smaller chunks and provide the proof for the

correctness of results when reasoning parallel over these chunks. This serves as a basic

case of the partitioning plan.

The input dependency graph G
inpre(P)
P that is not connected induces naturally a sub-

division of the graph into several connected components (or components). A connected

component of an undirected graph is a maximal connected subgraph of the graph. For

instance, G
inpre(P)
P in Figure 5.3 is decomposed into two components which have sepa-

rated sets of nodes from inpre(P):

1An undirected graph is connected if, for every pair of vertexes, there is a path in the graph between
those vertexes.

Chapter 6. Input-driven Parallel Reasoning 84

N1 = {average speed, traffic light, car number}, and

N2 = {car in smoke, car speed, car location}.

These sets of nodes are used as a partitioning plan in the partitioning process of the

parallel C-ASP reasoner (presented in Section 6.2) for splitting ground atoms in an input

window on-the-fly.

Consider the input window W as in Section 5.2.1. Splitting W while taking into account

the partitioning plan (N1, N2) produces two smaller chunks as follows:

W ′1 = {average speed(newcastle, 10), car number(newcastle, 55),

traffic light(newcastle)}
W ′2 = {car speed(car1, 0), car in smoke(car1, high)

car location(car1, dangan)}

Parallel reasoning over these two chunks against the rule set in Listing 5.4 produces two

sub-results: {} for W ′1 and {car fire(dangan), give notification(dangan)} for W ′2.

Union of these two sub-results provides the correct answer as reasoning over whole W .

In order to ensure the proposed approach provides all and only the expected results when

the input window is split and processed in parallel, I close this subsection by providing

a sketch of the correctness proof.

Proposition 1. Given G
inpre(P)
P that is not connected, G1, ..., Gn (n > 1) are connected

components of G
inpre(P)
P , and W is an input window such that pre(W) ⊆ inpre(P):

AnsP (W) =

n⋃
i=1

AnsP (Wi)

where W =
⋃n
i=1Wi, and pre(Wi) is the set of nodes of Gi.

Proof. I introduce some notations that are used in the proof:

• pre(body(r)): a set of predicates appearing in the body of rule r.

• pre head(r): a predicate appearing in the head of rule r.

• ground(p): a set of ground atoms over the predicate p.

Suppose a ∈ AnsP (W), let consider the following cases:

Chapter 6. Input-driven Parallel Reasoning 85

• a is created by firing one rule r in P

⇒ ∀pi,pj∈pre(body(r))(pi 6= pj), (pi, pj) ∈ Einpre(P)
P

⇒ ∃i ∈ [1, n] : ∀p ∈ pre(body(r)), ground(p) ⊂Wi

⇒ a ∈ AnsP (Wi)

⇒ a ∈
⋃n
i=1AnsP (Wi)

• a is created by firing two rules r1, r2 in P

⇒ pre head(r1) ∈ pre(body(r2))

– If pre(body(r2)) = {pre head(r1)}
⇒ ∀p ∈ pre(body(r1)), (pre head(r1), p) /∈ Einpre(P)

P

⇒ ∃Wi 6= Wj : pre(body(r1)) ⊂ pre(Wi) and pre head(r1) ∈ pre(Wj)

⇒ ∀p ∈ pre(body(r1)), ground(p) ⊂Wi and ground(pre head(r1)) ⊂Wj

⇒ a ∈ AnsP (Wi) (by firing both r1 and r2) or a ∈ AnsP (Wj) (by firing r2)

⇒ a ∈
⋃n
i=1AnsP (Wi)

– Else

⇒ ∀p ∈ pre(body(r1)), ∀q ∈ pre(body(r2)), (p, q) ∈ Einpre(P)
P

⇒ ∃i = [1..n] : ∀p ∈ pre(body(r1)) ∪ pre(body(r2)), ground(p) ⊂Wi

⇒ a ∈ AnsP (Wi)

⇒ a ∈
⋃n
i=1AnsP (Wi)

• Similarly, when a is created by firing k rules r1, ..., rk in P

⇒ ∃i ∈ [1..n] : ∀p, q ∈
⋃k
j=1 pre(body(rj)), (p, q) ∈ Einpre(P)

P → p, q ∈ pre(Wi)

⇒ ∃Wi : a ∈ AnsP (Wi)

⇒ a ∈
⋃n
i=1AnsP (Wi)

Suppose a ∈
⋃n
i=1AnsP (Wi) ⇒ ∃i ∈ [1..n] : a ∈ AnsP (Wi)

• If a is created by firing a set of positive rules

⇒ a ∈ AnsP (W) because Wi ⊂W

• If a is created by firing a set of rules (e.g., r1, ..., rk) with negation-as-failure

⇒ ∀p ∈
⋃k
i=1 pre(body

−(rj)), ground(p) ⊂Wi and @Wj 6= Wi: ground(p) ⊂Wj

⇒ a ∈ AnsP (W).

Therefore, the proposition 1 is proved.

6.1.2 Connected Input Dependency Graph

In Section 6.1.1, I presented how a partitioning plan is created in the case of an un-

connected input dependency graph. This section is dedicated to investigate to create a

Chapter 6. Input-driven Parallel Reasoning 86

partitioning plan under the circumstance of a connected input dependency graph. This

type of graph is not straightforward to identify and separate connected components,

which are the main factors to build the partitioning plan. Below, I describe an example

to motivate the problem and illustrate the solution approach.

Consider the logic program P ′ which includes P in Listing 5.4 (Section 5.2.1) and the

following rule:

(r7) traffic_jam(X) :- car_fire(X), many_cars(X).

Assume that inpre(P ′) = inpre(P) = {average speed, car number, traffic light,

car in smoke, car speed, car location}. The input dependency graph G
inpre(P ′)
P ′ is

shown in Figure 6.1.

average_speed

car_number

traffic_light
car_in_smoke

car_speed

car_location

Figure 6.1: Input dependency graph G
inpre(P ′)
P ′

This graph is connected, which means that input data of all predicates in inpre(P ′) have

to be processed together in order to maintain the correctness of reasoning results. The

parallel reasoning approach cannot be applied if the input dependency graph cannot be

decomposed as in this case. To cope with this issue, I introduce the decomposing process

to create the partitioning plan from the connected input dependency graph by extending

the Greedy algorithm introduced in PowerGraph [200]. The Greedy algorithm is a

rule-based partitioning mechanism which aims to minimize vertex-cuts2 while assigning

balanced load across partitions. To do so, this algorithm requires a predefined number

of partitions and chooses the partition for two endpoint vertexes of every edge in the

graph by applying the following rules:

• Rule 1: if both endpoint vertexes have been previously assigned in any common

partition, pick the smallest common partition.

2A vertex-cut set is a set of vertices of a graph which, if removed (or ”cut”)–together with any
incident edges–disconnects the graph.

Chapter 6. Input-driven Parallel Reasoning 87

• Rule 2: if either vertex has been previously assigned partitions or both of vertexes

have been previously assigned in different partitions, pick the smallest partition

from the union of all assigned partitions of two vertexes.

• Rule 3: if none of vertexes has been previously assigned, pick the smallest partition

overall.

I extend the Greedy algorithm by: (i) relaxing the requirement of a predefined number

of partitions, and (ii) choosing the partition based on not only its size but also how

connected the graph formed by vertexes in that partition is. The first extension enables

the automatic decomposing process without any knowledge of the number of partitions.

The second extension prioritizes assigning vertexes into a partition such that after the

assignment, all vertexes in that partition can create a highly connected graph. In this

way, a highly connected sub graph of the input dependency graph shall be put in the same

partition and reduce the number of common vertexes among different partitions. Let

call such partition is ‘highly connected’. Similar to highly connected graph, a partition

is considered as ‘highly connected’ if the degree of each vertex in that partition is bigger

than or equal to bnp/2c+ 1 (np is the number of vertexes in the partition).

The greedy-based decomposing process for partitioning the input dependency graph is

presented in Algorithm 4. The algorithm takes the input dependency graph as input

and provides a partitioning plan as output. PP is used to store the partitioning plan

(Line 2) while D keeps the information about the degree of a vertex in each partition

(Line 3). For each edge e = (s, t) in the input dependency graph, the algorithm first uses

the function findPartitionIds to find the set of partitions, ps, containing the endpoint

vertex s in Line 6. Similarly, pt denotes the set of partitions containing the endpoint

vertex t (Line 7). Then, this algorithm follows three rules of Greedy in Lines 8-10 (Rule

1), Lines 11-13 (Rule 2), and Lines 14-16 (Rule 3). The function choosePartition used

in Rule 1 and 2 examines the participation of the edge e based on both the size of the

partition and how much the vertexes in that partition connected. Rule 3 is modified to

add new partition into the partitioning plan PP if none of vertexes has been previously

assigned. After identifying the partition Id for the edge e, the algorithm adds two

endpoint vertexes of e into that partition and updates the degrees of those vertexes in

D.

The function choosePartition takes 4 input parameters: the edge e, the set of partition

Ids S (i.e., S = ps ∩ pt (Rule 1) or S = ps ∪ pt(Rule 2)), the partitioning plan PP , and

the information of vertexes’ degrees D. This function returns the partition Id as output.

The output partition Id has to satisfy two conditions: smallest size and highly connected.

To do so, this function first sorts the partition Ids in S in the ascending manner based

Chapter 6. Input-driven Parallel Reasoning 88

on the partition size (Line 25). Later, it chooses the smallest and highly connected

partition (Lines 26-30) using the function checkHighlyConnected. If there is no highly

connected partition, the smallest one is provided as output (Line 32).

Algorithm 4 Decomposing process

Input: input dependency graph G
inpre(P)
P = 〈N inpre(P)

P , E
inpre(P)
P 〉

Output: Partitioning plan

1: procedure DecomposeIDG(G
inpre(P)
P)

2: PP ← {}
3: D ← {}
4: for e = (s, t) ∈ Einpre(P)

P do
5: if s 6= t then
6: ps← findPartitionIds(s, PP)
7: pt← findPartitionIds(s, PP)
8: if ps ∩ pt 6= ∅ then
9: pId← choosePartition(e, ps ∩ pt, PP,D)

10: end if
11: if ps ∩ pt = ∅ && ps ∪ pt 6= ∅ then
12: pId← choosePartition(e, ps ∪ pt, PP,D)
13: end if
14: if ps = ∅ && pt = ∅ then
15: pId← addNewPartition(PP)
16: end if
17: Add s and v into partition pId
18: Update partition pId in PP
19: Update degrees of vertexes in the partition pId in D
20: end if
21: end for
22: return PP
23: end procedure
24: procedure choosePartition(e,S,PP,D)
25: sortedS ← sort(S, PP)
26: for pId ∈ S do
27: dpId← D.get(pId)
28: if checkHighlyConnected(e,dpId) then
29: return pId
30: end if
31: end for
32: return sortedS.get(0)
33: end procedure

The function findPartitionIds has the worse-case complexity of O(kn) to find the set

of partitions containing a vertex (k is the number of partitions and n is the number of

vertexes of the input dependency graph. The function choosePartition has the overall

time complexity of O(k2 +n), in which O(k2) comes from the function sort and O(n) is

the complexity of the function checkHighlyConnected. The function addNewPartition

has constant complexity since it simply initializes the new partition and then adds to

Chapter 6. Input-driven Parallel Reasoning 89

the partitioning plan. The main function DecomposeIDG traverses every edges in the

input dependency graph, so its time complexity is O(m(kn+ k2 +n)) (m is the number

of edges).

Example 6.1. Consider the input dependency graph G
inpre(P ′)
P ′ in Figure 6.1. Algorithm

4 creates a partitioning plan with two partitions N1 = {traffic light, average speed,

car number} and N2 = {car number, car in smoke, car speed, car location} in

which the vertex car number appears in both partitions. These two partitions create two

sub graphs of the input dependency graph as in Figure 6.2.

average_speed

car_number

traffic_light
car_in_smoke

car_speed

car_location
car_number

Figure 6.2: Output of the decomposing process for G
inpre(P ′)
P ′

In order to ensure that under the circumstance of connected input dependency graph,

the proposed approach provides all and only the expected results when the input is split

and processed in parallel, I now provide a sketch of the correctness proof.

Proposition 2. Given G
inpre(P)
P that is connected and W is an input window such that

pre(W) ⊆ inpre(P):

AnsP (W) =

n⋃
i=1

AnsP (Wi)

where W =
⋃n
i=1Wi, and pre(Wi) are computed by the Algorithm 4.

Proof. When G
inpre(P)
P is connected, Algorithm 4 decomposes inpre(P) into pre(Wi), i =

1..n and the intersection of any two sets pre(Wi) and pre(Wj) (pre(Wi) 6= pre(Wj)) may

be not empty. Without loosing generality, assume that pre(Wi) ∩ pre(Wj) = {p}, p ∈
inpre(P). All ground atoms of p ∈ W occurs in both Wi and Wj . In this way, I do

not loose the dependencies between p with other predicates in pre(Wi) (or in pre(Wj)).

Therefore, the correctness of the parallel reasoning process is maintained as proved in

Proposition 1.

Chapter 6. Input-driven Parallel Reasoning 90

Reasoning
Request

Find input
dependency graph

Input
predicates

Design tim
e

Run tim
e

Data
Streams

Solutions

C-ASP

Partitioning
Handler

C-ASP

Combining
Handler. .

 .

Input
dependency

graph

Partitioning
Plan

Decomposing
Process

Parallel C-ASP

Figure 6.3: The Extended StreamRule

6.2 Parallel Reasoning in C-ASP

The C-ASP reasoner extended with the partitioning process is shown in Figure 6.3.

The extension consists of the partitioning handler and the combining handler. The

partitioning handler splits an input window W coming from streams into several sub-

windows taking into account the input dependency. The combining handler combines

outputs from parallel instances of the reasoner. For the realization of the partitioning

process, the analysis of input dependency is made available within the framework initially

at design time. To achieve this, the set of rules in the reasoning request and a set of

input predicates are given in advance in order to build an input dependency graph as

defined in Definition 5.3. Then the graph decomposing process described in Section

6.1 builds a partitioning plan by decomposing this graph into several components, with

duplicated predicates when needed.

The partitioning handler. At run-time, the partitioning handler starts to split an

input window on-the-fly by using the partitioning plan provided at design-time. Algo-

rithm 5 shows the partitioning process. First, the group() method classifies items in the

window by their predicates (Line 3). For each group of items, the algorithm identifies

a set of partitions’ Ids that groups belong to based on the partitioning plan (Line 5).

Finally, it adds that group into the proper partitions corresponding to those Ids.

Grouping input data in W based on their predicate symbols in Line 3 has a time com-

plexity of O(|W |). Identifying where each group should add to (Line 5) has an overall

complexity O(np) (np is the number of partitions in the partitioning plan). Lines 6 - 8

are triggered ng times in which ng is the number of groups found in Line 5. That makes

the overall time complexity of Lines 4 - 9 to be O(|inpre(W)|(np + ng)). Due to the

Chapter 6. Input-driven Parallel Reasoning 91

fact that the number of input data is much bigger than the number of their predicate

symbols plus the number of partitions in the partitioning plan, the overall complexity

of Algorithm 5 is proportional to O(|W |).

The combining handler. To combine the outputs from concurrent instances of the

C-ASP reasoner, the combining handler unions them to form the final result as follows:

AnsP (W) =
n⋃
i=1

AnsP (Wi)

Where P is a program under stratified negation, W is an input window, and Wi (i = 1..n)

are partitions of W provided by the partitioning handler. The correctness of the parallel

reasoning process is guaranteed by Proposition 2.

Algorithm 5 Partitioning method

Input: a partitioning plan PP and an input window W
Output: sub-windows of W

1: procedure partition(PP,W)
2: Partitions ← [];
3: G ← group(W);
4: for g ∈ G do
5: C ← findPartitionIds(g.predicate, PP);
6: for c ∈ C do
7: Add g.items into Partitions[c];
8: end for
9: end for

10: return Partitions;
11: end procedure

6.3 Evaluation

In this section, I evaluate the performance of the proposed parallel approach with two

different levels of expressivity of the reasoning request: positive recursive rules (experi-

ment 1), and stratified negation rules (experiment 2). The first experiment is conducted

on the reasoning request which contains positive recursive rules while the second one is

dedicated for the request which contains stratified negation rules. In each experiment, I

measure two metrics: latency and memory consumption, as in Section 4.3. The experi-

ments were conducted on a machine with 24-core Intel(R) Xeon(R) 2.40 GHz and 96G

RAM. I used Java 1.8 with heap size from 5GB to 20GB for C-SPARQL and Clingo 4.5.4

for the reasoners. For the rest of this section, I use R to refer to the C-ASP reasoner

Chapter 6. Input-driven Parallel Reasoning 92

presented in Chapter 4 (without parallelism), and PR to refer to the optimized version

of C-ASP with the parallel approach that is detailed in Chapter 5 and 6.

6.3.1 Experiment 1: Recursive positive rules

For the experiment with recursive positive rules that are not supported by C SPARQL,

I compare PR against R and Jena reasoner3 by using a widely used benchmark for

reasoning systems, LUBM [175]. I select a different benchmark for this experiment

(comparing to the experiment in Section 4.3) due to limitations regarding expressivity

of rules in CityBench. In order to evaluate these engines, I create a reasoning request

which contains a set of rules {r1, ..., r15} as in Listing 6.1. This rule set includes 4

recursive rules over 15 rules. In terms of parallel optimization in PR, a given set of

input predicates for this reasoning request is as follows:

inpre(P) = {rdf type, uniben worksFor, uniben subOrganizationOf,

uniben teacherOf, uniben teachingAssistantOf, uniben takesCourse,

uniben publicationAuthor, uniben advisor}

The input dependency graph of this reasoning request is connected and is decomposed by

Algorithm 4 in order to form a partitioning plan for PR with three subsets of inpre(P)

as follows:

pp1 = {rdf type, uniben worksFor, uniben subOrganizationOf},
pp2 = {uniben takesCourse, uniben teacherOf, uniben advisor,

uniben publicationAuthor},
pp3 = {uniben takesCourse, uniben teachingAssistantOf }

I use Univ-Bench Artificial Data Generator4 to generate and stream data to the engines.

Due to the fact that the Jena reasoner does not support data stream processing, I run

this experiment in two settings: static and streaming.

Static setting. In this setting, I evaluate PR, R and Jena reasoner with different

sizes of input data from 5k to 100k (k=1000) triples. I trigger each engine 3 times

per each input data size and take the average. Figure 6.4 and 6.5 show the effect over

the latency and memory consumption with the increasing number of triples for three

engines. A closer look at the results in Figure 6.4 reveals that PR outperforms R over

subsequent increase from 10k to 100k (R can not process 60k and 100k triples). Compare

3https://jena.apache.org/documentation/inference/
4https://github.com/rvesse/lubm-uba

https://jena.apache.org/documentation/inference/
https://github.com/rvesse/lubm-uba

Chapter 6. Input-driven Parallel Reasoning 93

#input r d f t y p e /2 ;
#input uniben worksFor /2 ;
#input uniben subOrganizat ionOf /2 ;
#input uniben teacherOf /2 ;
#input un iben teach ingAss i s tantOf /2 ;
#input uniben takesCourse /2 ;
#input uniben publ i cat ionAuthor /2 ;
#input un iben adv i so r /2 ;

#prefix uniben : 〈http ://www. l e h i g h . edu / . . . / 0 4 0 1 / univ−bench . owl#〉;
#prefix rd f : 〈http ://www. w3 . org /1999/02/22− rdf−syntax−ns#〉;

#from stream <http :// lubm . org#u n i v e r s i t i e s > [time 3 s step 2 s];

(r1) r d f t y p e (X, ” Pro f e so r ”) :− r d f t y p e (X, ” u n i b e n F u l l P r o f e s s o r ”) ;
(r2) r d f t y p e (X, ” Pro f e so r ”) :− r d f t y p e (X, ” u n ib en As so c i a t e Pr o f e s s o r ”) ;
(r3) r d f t y p e (X, ” Pro f e so r ”) :− r d f t y p e (X, ” u n i b e n A s s i s t a n t P r o f e s s o r ”) ;
(r4) canBecomeDean (X,U) :− r d f t y p e (X, ” P r o f e s s o r ”) , uniben worksFor (X,D) ,

uniben subOrganizat ionOf (D,U) ;
(r5) canBecomeHeadOf (X,D) :−uniben worksFor (X,D) ;
(r6) commonResearchInterests (X,Y) :− u n i b e n r e s e a r c h I n t e r e s t (X,R) ,

u n i b e n r e s e a r c h I n t e r e s t (Y,R) ;
(r7) commonPulication (X,Y) :−uniben publ i cat ionAuthor (P,X) ,

un iben publ i cat ionAuthor (P,Y) ;
(r8) commonResearchInterests (X,Y) :−commonPulication (X,Y) ;
(r9) un iben teacherOf (Y,C) :− commonResearchInterests (X,Y) ,

un iben teacherOf (X,C) ;
(r10) commonResearchInterests (X,Y) :− un iben adv i so r (X, Z) ,

un iben adv i so r (Y, Z) ;
(r11) canRequestRecommendationLetter (X, Z) :− un iben adv i so r (X, Z) ;
(r12) canRequestRecommendationLetter (X, Z) :− t eaches (Z ,X) ;
(r13) t eaches (X,Y) :−uniben teacherOf (X,C) , uniben takesCourse (Y,C) ;
(r14) t eaches (X,Y) :−un iben teach ingAss i s tantOf (X,C) ,

uniben takesCourse (Y,C) ;
(r15) suggestAdvi sor (X,Y) :− t eaches (Y,X) ;

#show canBecomeDean/2;
#show canBecomeHeadOf/2;
#show commonResearchInterests /2;
#show canRequestRecommendationLetter /2;
#show t eaches /2;
#show suggestAdvisor /2;

Listing 6.1: The reasoning request with positive recursive rules inspired from LUBM

Chapter 6. Input-driven Parallel Reasoning 94

to Jena, PR is slightly slower when the input size is smaller than 30k. However, PR is

considerably faster than Jena when the number of triples is bigger than 30k. When the

input size increases from 60k to 100k triples, the latency of Jena increases sharply from

200 seconds to 750 seconds while PR’s latency only increases slightly from 100 seconds

to 200 seconds. This is an indication of the scalability of my approach over increasing

size of the input. For the memory consumption, Figure 6.5 shows that all engines

have increasing memory consumption issue but Jena seems to be better at memory

management when increasing the number of input triples.

0

100

200

300

400

500

600

700

800

5k 10k 30k 60k 100k

La
te
nc
y	
(s
)

Number	 of	triples

R PR Jena

Figure 6.4: Latency (recursive rules with static setting)

0

500

1000

1500

2000

2500

3000

3500

5k 10k 30k 60k 100k

M
em

or
y	
(M

B)

Number	 of	triples

R PR Jena

Figure 6.5: Memory consumption (recursive rules with static setting)

Streaming setting. In the streaming setting, I trigger PR and R by streaming triples

for 10 minutes with various rates from 1k to 5k triples/second. I use the time-based

window size of 3 seconds with the sliding step of 2 seconds. Figure 6.6 reports the latency

observed from PR and R. It shows that PR performs as R at the streaming rate of 1k

triples/second. The reason for this is that the number of input triples is small enough

and the Clingo solver in the C-ASP reasoner does not suffer from exponential grounding.

However, I observe the benefit of parallel optimization in PR at the streaming rates of

3k and 5k triples/second where PR performs much faster than R. In addition, the

Chapter 6. Input-driven Parallel Reasoning 95

latency of PR is more stable than the one of R during the 10-minute streaming. This

means that my approach generates a smaller ground program and a smaller search space,

speeding up both grounding and solving of the reasoner. For memory consumption that

is illustrated in Figure 6.7, PR consumes slightly less memory than R. The figures also

show that there is a considerable increase in memory consumption when streaming rate

increases from 1k to 5k triples/seconds.

0

5,000

10,000

15,000

20,000

25,000

1 2 3 4 5 6 7 8 9 10

La
te
nc
y	
(m

s)

Experiment	 time	(minutes)

r=1k	R r=1k	PR r=3k	R r=3k	PR r=5k	R r=5k	PR

Figure 6.6: Latency (recursive rules with streaming setting)

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10

M
em

or
y	
(M

B)

Experiment	 time	(minutes)

r=1k	R r=1k	PR r=3k	R r=3k	PR r=5k	R r=5k	PR

Figure 6.7: Memory consumption (recursive rules with streaming setting)

6.3.2 Experiment 2: Stratified negation rules

I now focus on a rule set which has stratified negations. I modify rules r5, r12 and r15

in the reasoning request of Experiment 1 with 3 negation-as-failure atoms as in Listing

6.2. As a result, the experimental reasoning request has a rule set including 4 recursive

rules and 3 negation-as-failure rules over 15 rules.

As the rules in Experiment 1 has been changed, the partitioning plan for the reasoner

PR has been changed as follows:

Chapter 6. Input-driven Parallel Reasoning 96

(r′5) canBecomeHeadOf (X,D) :−uniben worksFor (X,D) , uniben headOf (Z ,D) ,
not commonResearchInterests (X, Z) ;

(r′12) cannotRequestRecommendationLetter (X, Z) :− t eaches (Z ,X) ,
not un iben adv i so r (X, Z) ;

(r′15) suggestAdvi sor (X,Y) :− t eaches (Y,X) , not un iben adv i so r (X, Z) ;

Listing 6.2: Negation-as-failure rules

pp′1 = {uniben takesCourse, uniben advisor, uniben teacherOf,

uniben publicationAuthor, uniben teachingAssistantOf},
pp′2 = {rdf type, uniben worksFor, uniben subOrganizationOf},
pp′3 = {uniben advisor, uniben worksFor, uniben publicationAuthor}

The number of partitions remains the same as in Experiment 1. However, the number of

duplicated predicates (i.e., the predicate appears in more than two partitions) in this ex-

periment is three (i.e., uniben advisor, uniben publicationAuthor, uniben worksFor)

while there is only one duplicated predicate in Experiment 1 (i.e., uniben takesCourse).

I compare PR against R only since Jena reasoner does not support negation-as-failure.

Similar to Experiment 1, I evaluate the same two engines for 10 minutes with various

streaming rates from 1k to 5k triples/second. Figure 6.8 and Figure 6.9 illustrate a

similar pattern in latency and memory consumption as observed in Experiment 1. PR

has faster reasoning time at streaming rates 3k and 5k triples/second, but consumes

slightly higher memory compared to R at 5k triples/seconds.

-1000

1000

3000

5000

7000

9000

11000

13000

15000

1 2 3 4 5 6 7 8 9 10

La
te
nc
y	
(m

s)

Experiment	 time	(minutes)

r=1k	R r=1k	PR r=3k	R r=3k	PR r=5k	R r=5k	PR

Figure 6.8: Latency (recursive and stratified negation rules)

6.4 Summary

Scalability is a key challenge for the applicability of reasoning techniques to rapidly

changing information. This chapter constructs a method to parallelization of stream

Chapter 6. Input-driven Parallel Reasoning 97

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

M
em

or
y	
(M

B)

Experiment	 time	(minutes)

r=1k	R r=1k	PR r=3k	R r=3k	PR r=5k	R r=5k	PR

Figure 6.9: Memory consumption (recursive and stratified negation rules)

reasoning by input dependency analysis. The rationale for using input dependencies as

guidance for parallel reasoning has been discussed. Building upon the work in Chapter

5, this chapter investigates parallel reasoning while taking into account the dependencies

among input data. A greedy-based algorithm is proposed to identify a partitioning plan

by decomposing such graph into subgraphs such that the number of common nodes

among partitions is as small as possible.

An architecture of a parallel version of the C-ASP reasoner is defined in which the

partitioning plan, realized at the designed time, will guide the reasoning process to split

input data on-the-fly. Two new components are introduced, named partitioning handler

and combining handler, take care of distributing input data to concurrent reasoners

and combining final reasoning results, respectively. I implemented the proposed parallel

approach as an extension of the C-ASP reasoner and provided a proof of correctness

under the assumption that no recursion through negation is present in the rules, thus

guaranteeing the uniqueness of the solution. Furthermore, I considered the different

levels of expressivity that are supported by my prototype reasoner and conducted a

detailed experimental evaluation by comparison with different systems based on their

expressivity. This evaluation indicates that the parallel C-ASP reasoner not only has a

competitive performance in comparison with existing systems but it also supports higher

expressivity of reasoning tasks. This work is a demonstration that expressive reasoning

is possible also in streaming environments, and it paves the way for investigating feasible

solutions in this space. This study and related results have been published in [199].

Chapter 7

Use Cases and Prototypes

The validity and efficiency of the C-ASP reasoner are discussed in previous chapters

(Chapters 4 - 6). This chapter validates the practicality of this reasoner by answering

the following question:

How is the C-ASP reasoner deployed in real-world scenarios and how does it

meet the requirements of such applications?

The practicality of this reasoner is showcased by demonstrating its usage in two Smart

City and Smart Enterprise applications: the contextual event filtering system and the

IoT-enabled meeting management system. In particular, descriptions of such two appli-

cations and their functionalities are presented in order to illustrate the contribution of

the C-ASP reasoner in those scenarios.

Section 7.1 discusses the use of the C-ASP reasoner in the contextual event filtering

system. Section 7.2 details the use of the C-ASP reasoner for an IoT-enabled meeting

management system. The chapter is summarized in Section 7.3.

7.1 Contextual Event Filtering System

This section reports on the use of the C-ASP reasoner as a key component within the

CityPulse project 1. The main objective of this project was to “develop, build and test a

distributed framework for the semantic discovery and processing of large-scale real-time

IoT and relevant social data streams for knowledge extraction in a city environment”

[201]. The CityPulse framework integrates and processes large volumes of streaming

1http://www.ict-citypulse.eu

98

Chapter 7. Use Cases and Prototypes 99

city data in a flexible and extensible way. Service and application creation is facilitated

by open APIs that are exposed by CityPulse components. The CityPulse components

are depicted in Figure 7.1 and can be divided into two main categories:

• Large-scale data stream processing modules (i.e., in the blue box): these include

tools which allow the application developer to interact with heterogeneous and

unreliable data sources from cities; these tools also allow discovering, summarizing

and processing data streams.

• Adaptive decision support modules (i.e., in the red box): these include tools which

can be used for making various recommendations based on the user context and

the current status of the city.

Figure 7.1: The components of CityPulse framework with their APIs [7]

Chapter 7. Use Cases and Prototypes 100

Smart city applications in changing environments require to take into account user pref-

erences and requirements, as well as dynamic contextual information represented by

real-time events, in order to provide optimal decision support to the end user at any

time. The event-driven adaptation and context-driven user-centrality of the CityPulse

framework are materialized by a closed loop between the Contextual Filtering compo-

nent, the user application, and the Decision Support component. The research presented

in this thesis has been applied in building the Contextual Filtering component within

the CityPulse framework, and in its interaction with the Decision Support component.

7.1.1 Contextual Filtering & Requirements

The main role of the Contextual Filtering component is to i) continuously identify and

filter events that might affect the optimal result of the decision making task (performed

by the Decision Support component) and ii) react to such changes in the real world by

requesting Decision Support for the computation of new solutions when needed. This

not only ensures that the selected solution provided to the user remains the best option

when situations change, but it also empowers the CityPulse framework to automatically

provide alternative decisions whenever the selected best decision is no longer the best

for a particular situation.

The adaptive capability of identifying and reacting to unexpected events in a user-centric

way relies on two aspects:

• A characterization of the user implicit and explicit context provided by the user

application

• A stream of events provided by the Event Detection component.

The Contextual Filtering capability of the CityPulse framework is a good fit for the use

of the C-ASP reasoner. This stems from the requirements of this component as follows:

• The context-awareness requirement is essential to easily capture sophisticated user

context (including user requirements, preferences, events of interest and activities).

The C-ASP reasoner meets this requirement through its expressive reasoning re-

quest language. Thus, it provides users the wide ability to express their complex

context and seamlessly connect to event streams. In this way, users are able to

receive their most wanted events regarding to their provided context.

• The scalability requirement is important for (near) real-time notification of a

ranked list of critical events to users. The C-ASP reasoner can meet this re-

quirement as it is efficient in terms of latency.

Chapter 7. Use Cases and Prototypes 101

7.1.2 Implementation of C-ASP Reasoner for Contextual Filtering

Contextual Filtering subscribes to a subset of events among those provided by the

Event Detection component. The types of events Contextual Filtering subscribes to

are application-specific and are in part dependent on the domain (determined at design-

time), and in part contextualized, depending on the specific reasoning task or user

preferences specified by the user application (determined at run-time). For example, in

the Context-aware Travel Planner application (see Section 7.1.3), traffic and weather

conditions are relevant types of events that can be characterized at design time. How-

ever, when the user selects a route among those provided by Decision Support to go from

a starting point A to an ending point B, only traffic and weather conditions in areas

around that specific route are potentially relevant, and they can be augmented by the

user interest in other types of events on the way (such as cultural or social gathering).

The occurrence of such relevant events is notified to the Contextual Filtering component

by the Event Detection component, which provides additional metadata describing the

event. Listing 7.1 illustrates an example of an annotated event about a traffic jam, as it is

received by Contextual Filtering. Information about the user context can be gathered by

Contextual Filtering in several ways: it can be either explicitly stated in the event request

or in the user application (e.g. specifying events of interest), or it can be explicitly or

implicitly acquired by identifying user’s current activity (e.g. using the speed to detect

that the user is in a car, or having the user specifying in the application what type

of transportation he/she is using). With this information, Contextual Filtering is able

to: (i) select, among the list of detected filtered events, the ones that are contextually

relevant; and (ii) continuously rank their level of criticality to decide when an action is

to be triggered.

The level of criticality of events is dynamically assessed by Contextual Filtering based

on metrics such as the location-based correlation between a detected event and user’s

current location, or an explicit measure of how severe the event is (referred to as Event

Level). The current implementation of Contextual Filtering uses a linear combination of

these metrics. An application developer can configure such metrics and users can modify

them in order to satisfy their own requirements. Listing 7.2 is a snapshot of the logic

rules in the reasoning request used in Contextual Filtering. Rule r1 filters out unrelated

events. Rule r2 generates sets of solutions containing one critical event each per solution,

provided that the event is not expired. Rules r3− r7 compute the criticality of an event.

Based on this level of criticality, Contextual Filtering refers back to the user application

that an action is required, which can be either generating a new request for Decision

Support to automatically provide an alternative (better) solution, or informing the user

about the critical event and let the user decide whether a new solution is needed.

Chapter 7. Use Cases and Prototypes 102

@pref ix geo : http ://www. w3 . org /2003/01/ geo / wgs84 pos# .
@pref ix sao : <http :// pur l . o c l c . org /NET/UNIS/ sao / sao#> .
@pre f ix t l : <http :// pur l . org /NET/c4dm/ t i m e l i n e . owl#> .
@pre f ix xsd : <http ://www. w3 . org /2001/XMLSchema#> .
@pre f ix prov : <http ://www. w3 . org /ns/prov#> .
@pre f ix ec : <http :// pur l . o c l c . org /NET/UNIS/ sao / ec#> .

sao : c2d69ca8−b404−4006−ad48−9317397251ab a ec : Traf f icJam ;
ec : hasSource ”SENSOR” ;
sao : hasLeve l ”1”ˆˆ xsd : long ;
sao : hasLocat ion [a geo : In s tant ;

geo : l a t ”56.17091325696965”ˆˆ xsd : double ;
geo : lon ”10.15728564169882”ˆˆ xsd : double

] ;
sao : hasType ec : Transportat ionEvent ;
t l : time ”2015−11−26T13 : 2 7 : 4 6 . 0 7 9 Z”ˆˆ xsd : dateTime .

Listing 7.1: An example of an annotated event in Contextual Filtering

(r1) r e l a t e d c i t y e v e n t (EventId) :− f i l t e r i n g e v e n t (Type) ,
sao hasType (EventId , Type) .

(r2) 1 <= { s e l e c t e d c i t y e v e n t (EventId) : r e l a t e d c i t y e v e n t (EventId) ,
not exp i r ed event (EventId) } <= 1 .

(r3) va lue (RankEleName , Value) :− s e l e c t e d c i t y e v e n t (EventId) ,
r a n k i n g c i t y e v e n t d a t a (EventId , RankEleName , Value) .

(r4) va lue w i th rank ing type (RankingElementName , M) :− M = Value∗ Int ,
va lue (RankingElementName , Value) ,
r a n k i n g m u l t i p l i e r (RankingElementName , Int) .

(r5) sum(C) :− #sum{Value : va lue w i th rank ing type (, Value) }
(r6) c r i t i c a l i t y (C) :− C = M/100 , sum(M) .
(r7) c r i t i c a l c i t y e v e n t (EventId ,C) :− s e l e c t e d c i t y e v e n t (EventId) ,

c r i t i c a l i t y (C) .

Listing 7.2: Rules for contextual filtering of events with ranking through linear
combination

Two prototype applications have been collaboratively developed by the teams involved in

CityPulse, namely Context-aware Parking and Travel Planner, using live data from the

city of Aarhus in Denmark. The descriptions of these two applications can be found at

http://www.ict-citypulse.eu/scenarios/(i.e., scenario 1 and 2). Both applications

aim at providing parking/travel-planning solutions, which go beyond state of the art

solutions by allowing users to provide multidimensional requirements and preferences

such as air quality, traffic conditions and parking availability. In this way, a user receives

parking and route recommendations based on the current situation in the city and the

user context. Both applications are built as Client/Server applications. The server side

hosts an instance of the CityPulse smart city framework. The client side is a mobile

application on Android in both cases.

http://www.ict-citypulse.eu/scenarios/

Chapter 7. Use Cases and Prototypes 103

7.1.3 Context-aware Travel Planner

Tony needs to travel from home to work. When he starts the client application, the

city map is displayed with options to input his start and end points for his journey.

Different means of transportation are generally available to him such as walking, biking,

or car as shown in Figure 7.2. In addition, Tony can also specify his constraints and

preferences on the recommended routes such as fastest, shortest, or cleanest as illustrated

in Figure 7.3. His request is first processed by the Decision Support component which

recommends all possible optimal routes on the map (see Figure 7.4). Next, Tony needs

to choose one of such routes (i.e., the blue route in Figure 7.4). When he starts the

navigation, Contextual Filtering will subscribe to city events related to that route from

the Event Detection component. Contextual Filtering should notify Tony any critical

event happen on his route which may affect his journey, such as a traffic jam, as shown

in Figure 7.5. Recalculation of his chosen route can happen depending on his decision

over the reported critical event.

Figure 7.2: Route selection Figure 7.3: Route constraints

7.1.4 Context-aware Parking Planner

Mary is having a hard time finding a public parking space. The city is increasingly

reducing the number of parking spaces per unit (e.g. apartments), and the difficulty of

finding a parking space means Mary has to drive around to look for available parking

spots. This is both annoying for her and has a negative environmental impact (increased

Chapter 7. Use Cases and Prototypes 104

Figure 7.4: Optimal routes Figure 7.5: Ciritcal Event

pollution and noise). By using the Context-aware Parking Planner, Mary can specify an

area within which to find a parking spaces, as shown in Figure 7.6. This area is a circle

which can be centered by the destination point or by her current location (the blue circle

on the map in Figure 7.6) and a fixed radius (i.e., 1000 meters). In addition, she can add

her preferences by choosing parking spaces with the cheapest toll or shortest walking

distance to the destination or both (see Figure 7.7). Decision Support provides optimal

parking spaces which satisfy Mary’s requirements as illustrated in Figure 7.8. When

Mary chooses one of the parking spaces, Contextual Filtering continuously subscribes to

parking events in that parking space and will notify her as soon as possible when that

parking space is full.

7.2 IoT-enabled Meeting Management System

Enterprise communication systems are designed in such a way to maximize the efficiency

of communication and collaboration within the enterprise. In this domain, mobile users

have the potential to produce a lot of dynamic sensory input that can be used for the

next generation of mobile enterprise collaboration, with great potentials for better user

experience. The IoT-enabled Meeting Management System (IoT-MMS) is a research

project developed with Cisco Systems. This project aims at enabling IoT in the smart

Chapter 7. Use Cases and Prototypes 105

Figure 7.6: Park-
ing selection

Figure 7.7: Park-
ing constraint

Figure 7.8: Opti-
mal parking spaces

enterprise, through a Linked Data infrastructure for networking, managing and reason-

ing upon heterogeneous, distributed and continuously changing data streams. In this

section, I present how the work in this thesis has been used as a part of IoT-MMS.

7.2.1 Motivating Scenario

Alice is hosting an online meeting for her company FictionDynamic. The meeting is

planned to be held in Meeting Room B at 11:00 am. Bob and Charlie will be attending

the meeting while they are on the move, thus their availability and ability to participate

in the meeting in various ways is dynamically changing. IoT-MMS enables:

(i) automatic on-the-fly semantic enrichment of IoT information related to the meet-

ing attendees,

(ii) communication of such richer information to the participants via their IoT-MMS

clients through a panel showing IoT values and related user capabilities (e.g. ability

to hear properly, share a screen, type, talk),

(iii) use of such rich information to improve user experience and optimize meeting

management on-the-fly.

Chapter 7. Use Cases and Prototypes 106

The integration of a web-based IoT-MMS with sensory input and enterprise data such

as attendees details, calendars and agenda items makes it possible to characterize and

manage the following aspects in a flexible and inter-operable way:

• updating (enabling or disabling) users capabilities based on IoT input (via sensors’

visualization and interpretation, semantic integration and stream query process-

ing);

• managing agenda items, including users assigned to a particular item and capabil-

ity requirements for that item via declarative logic rules;

• dynamically verifying privacy-constraints on agenda items based on location and

context.

Contextual information can be explicitly available as the user specifies whether he/she

is in a public or private place, but they can also be detected by specific simple event

detection logic via query processing in the framework. However, the ability to reason

about constraints and planning (e.g. for rescheduling agenda items) needs to be handled

by more expressive rules, and are handled by the stream reasoning component. In order

to further illustrate the multiplicity of situations that can occur, a few instances of the

motivating scenario are characterized as follows:

• Capability-aware participation. Charles is on the move and gets notified about

a last-minute meeting to be held with a customer on a specific product with the

development team. As the head of the team, Charles needs to be mainly a listener,

and intervene only if needed. Information about Charles capabilities as a listener

(e.g. level of attention while driving or while in a noisy area) are collected and in-

terpreted through inertial and environmental sensors via his Android phone. Such

capabilities are continuously monitored and updated in the IoT-MMS web clients

for the meeting host to see so that when the customer is addressing Charles di-

rectly, he knows whether the issue should be answered right away or later. Charles

is also notified when his intervention is requested and what capabilities are needed

to participate (e.g. quieter area, ability to type and so on). All this information is

stored and associated with a synthetic representation of the meeting minutes for

future reference.

• Agenda re-shuffling. Alice needs automatic support to dynamically re-order

certain agenda items since most of the participants are on the move. IoT-MMS

continuously assesses attendees’ capabilities and matches them with agenda items

requirements. Some agenda items are very sensitive with respect to privacy; there-

fore location-based constraints are associated to those items in order to prevent a

Chapter 7. Use Cases and Prototypes 107

meeting participant to disclose sensitive information in public and crowded spaces

like a trains or open-spaces airport lounges.

The capabilities of the C-ASP reasoner are well suited to handle the functionalities

required by IoT-MMS, for the following reasons:

• the ability to reason about constraints, planning, and preferences can be handled

by the expressive power of C-ASP.

• the ability to notify in (near) real-time about user’s current participation, as well

as new agenda schedule for all people in the meeting, can be met by the efficiency

in terms of throughput and latency of C-ASP.

7.2.2 IoT-MMS Architecture

The conceptual architecture of IoT-MMS is illustrated in Figure 7.9 and can be divided

into three main layers:

• Data acquisition and semantic annotation layer: is mainly responsible for acquir-

ing sensor data from mobile devices and performing semantic annotation of the

acquired data using information model which proposed in the project.

• Stream processing and reasoning layer: is responsible for the discovery of relevant

sensor streams, and performs reasoning over those streams to produce actionable

knowledge.

• Application layer: represents the class of enterprise applications that can benefit

from IoT intelligence.

The work in this thesis has been mainly applied in the development of the SR component

in the stream processing and reasoning layer in IoT-MMS.

7.2.3 Stream Reasoning in IoT-MMS

The SR component performs complex reasoning over IoT streams produced by the

stream query processing component. Its conceptual architecture is provided in Figure

7.10.

The stream reasoning functionality is realized by three main components, namely Event

Detection, User Reasoner and Meeting Reasoner.

Chapter 7. Use Cases and Prototypes 108

Application
Client

Physical &
Virtual

Sensors

Apache Open Meetings

Application Layer

Stream Processing & Reasoning Layer

Stream
Resoning

Stream Query
Processing

Data Acquisition & Semantic Annotation Layer

OpenIoT

Figure 7.9: IoT-enabled communication system architecture [8]

Event Detection.This component integrates the dynamic sensor data streams pro-

duced by the stream query processing component (dynamic), with background knowl-

edge about the meeting (static), such as users’ calendar, meeting duration, agenda sched-

ule and thresholds set for the different capabilities. This information is used to detect

triggering events which are then used to trigger the User Reasoner or the Meeting Rea-

soner when needed.

In details, Event Detection detects event triggers by keeping track of sensors’ data pro-

duced by the stream query processing component. It is implemented as a C-ASP reasoner

where input data includes: a sensor observation stream (i.e., sensor observation(Sensor,

SensorValue, User)) provided by the stream query processing component, and infor-

mation about discussing agenda in the meeting (i.e., current agenda(Agenda)) pro-

vided by Meeting Reasoner. A snapshot of the reasoning request of Event Detection is

shown in Listing 7.3. The first three rules detect changes in sensor capabilities being

within or going out of a specific range while the last positive rule encodes a check on

the sensitivity of items in the agenda.

User Reasoner. A separate User Reasoner component is initiated for each user when

he logs into the meeting, and is stopped at logout. This component is responsible for

reasoning about the dynamic status of user capabilities and their changes according

to the user context. User Reasoner triggers updates on user’s capabilities whenever it

receives an event from the Event Detection component that relates the user capabilities

with changed values in related sensors thresholds.

Chapter 7. Use Cases and Prototypes 109

Stream Reasoning

MeetingReasoner

UserReasoner 1 UserReasoner n

Application Layer

Client 1 Client n

Event Detection

Stream Query Processing

Knowledge
Base

…

…

Figure 7.10: Stream Reasoning Layer Architecture

(r1) i n range (User , Sensor) :− s e n s o r o b s e r v a t i o n (Sensor , SensorValue , User)
, s e n s o r t h r e s h o l d (Sensor , LowerBound , UpperBound) , SensorValue <
UpperBound , SensorValue > LowerBound .

(r2) i n r a n g e e v e n t (User , Sensor) :− i n range (User , Sensor) ,
p r ev i ou s ou t range (User , Sensor) .

(r3) out range event (User , Sensor) :− not in range (User , Sensor) ,
p r e v i o u s i n r a n g e (User , Sensor) .

(r4) cur rent agenda event (Agenda , s e n s i t i v e) :− current agenda (Agenda)
, agenda property (Agenda , Property) , Property == s e n s i t i v e .

Listing 7.3: Rules of Event Detection

For example, a change in the user position w.r.t. to the meeting (in range or out

of range) is detected by Event Detection and encoded as the propositional predicates

out range event(User, Sensor) or in range event(User, Sensor), which are sent

as input to User Reasoner. This triggers rules r1 or r2 in Listing 7.4. In a similar way, if

the agenda being discussed is sensitive, Event Detection will produce an event encoded

as the propositional predicate current agenda event(Agenda, sensitive) and send it

to User Reasoner to verify whether the current user context triggers any meeting-related

action (i.e., rule r3 in Listing 7.4).

Chapter 7. Use Cases and Prototypes 110

(r1) u s e r c a p a b i l i t y s t a t u s e v e n t (User , Capabi l i ty , on) :−
i n r a n g e e v e n t (User , Sensor) , a f f e c t (Sensor , Capab i l i ty) ,
u s e r c a p a b i l i t y s t a t u s (User , Capabi l i ty , o f f) .

(r2) u s e r c a p a b i l i t y s t a t u s e v e n t (User , Capabi l i ty , o f f) :−
out range event (User , Sensor) , a f f e c t (Sensor , Capab i l i ty) ,
u s e r c a p a b i l i t y s t a t u s (User , Capabi l i ty , on) .

(r3) u s e r c a p a b i l i t y s t a t u s e v e n t (User , ta lk ing , o f f) :−
cur rent agenda event (Agenda , s e n s i t i v e) , u s e r p l a c e (User , pub l i c) ,

u s e r c a p a b i l i t y s t a t u s (User , ta lk ing , on) .

Listing 7.4: Rules of User Reasoner

Listing 7.4 shows a sample excerpt of rules for User Reasoner: the first two rules turn

certain capabilities on or off based on detected events on range values of any of the

sensors associated to the related capability; the third rule marks the talking capability

as disabled if Event Detection has identified the current agenda item as sensitive.

Meeting Reasoner. This component encodes rules related to the meeting itself and

normally involves more than one user, including agenda re-shuffling and meeting re-

scheduling, and it can be triggered either as a result of a change in user capabilities (e.g.

a user is no longer able to talk therefore some agenda items might need to be swapped)

or as a result of specific events detected by Event Detection (e.g. a key user has not

logged in and is far from the venue, therefore, the meeting might need to be rescheduled

or postponed).

Meeting Reasoner is in charge of providing a suitable reschedule on-the-fly for the agenda

items based on user calendars and constraints or dependencies that might be present in

the order of agenda items. As an example, when a user is not available for a particular

agenda item assigned to him, Meeting Reasoner will receive an event encoded as a

propositional predicate could not attend(User,Item) and reason about options to re-

shuffle the agenda items. The corresponding planning rules used to re-order agenda

items in this case can be found in Listing 7.5. The first rule generates all possible orders

of agenda items, while the second and third rules (referred to as consistency constraints)

check each solution to eliminate those where required users can not attend.

The required actions identified as a result of the inference performed by User Reasoner

or Meeting Reasoner are then sent as notifications to the Application layer which will

take care of the actuation part.

7.2.4 IoT-MMS Application Interface

In this section, I describe the implementation of the application interface of IoT-MMS.

Chapter 7. Use Cases and Prototypes 111

(r1) 1{ new agenda order (Item , Order) : order (Order) }1 :−
agenda item (Item) .

(r2) :− agenda speaker (Item , User) , cou ld not a t t end (User , Item) ,
agenda order (Item , Order) , new agenda order (Item , Order) .

(r3) :− new agenda order (Item1 , Order) , new agenda order (Item2 , Order) ,
Item1 != Item2 .

Listing 7.5: Rules of Meeting Reasoner

(A) (B)

Figure 7.11: Application login interfaces

7.2.4.1 Android Application and User Login

This section describes the design of the Android application which is responsible for

registering sensors to the OpenIoT platform and sending sensor information as contin-

uous streams. Before entering a web conference room through the OpenMeetings (OM)

application client, every user must login through the Android application using the same

credentials used for OM. The Android application uses the login web services of OM

for maintaining the same session for both HTTP clients. Figure 7.11(A) shows the OM

login interface while Figure 7.11(B) shows the Android login interface.

After signing in, the Android application shows the list of available sensors of the mobile

device. Figure 7.12 shows the list of sensors of a mobile device. After selecting the

sensor input to be sent, those sensors will be registered in the OpenIoT platform and

the Android application will start sending sensor data to the IoT-MMS framework.

7.2.4.2 From Meeting Creation to Notification

In describing the scenario design mentioned in Section 7.2.1, this section focuses on

meeting event creation functionality, which enables to manage multiple agenda items

(e.g., multiple talks, breaks) and meeting rooms description, and helps controlling the

Chapter 7. Use Cases and Prototypes 112

Figure 7.12: Available sensor list

capabilities of attendees when the meeting is running using both real-time and static

information.

Creating Meeting Event: each meeting contains event information including start-

time, end-time, location, list of attendees and meeting agenda, all stored in the triple

store. Figure 7.13 shows that Alice has created a meeting event located in Room B and

has two more attendees including Bob and Charlie. All the attendees will be notified of

the event information upon creation through emails. Figure 7.14 shows how the host has

set two agenda items of type talk, one is for 30 minutes and another one is 25 minutes.

The organizer of that event sets an explicit threshold for each sensor capability (noise,

light, proximity). Thresholds are configurable during the meeting based on the room

condition. Figure 7.15 shows three sensor capabilities and thresholds where 80 db is for

the noise sensor, 0 is for proximity and 150 lux is for the light sensor. Such thresholds

can be auto-generated or set by default at meeting creation to help the meeting host in

configuring the meeting.

Chapter 7. Use Cases and Prototypes 113

Figure 7.13: Create new meeting event from OM

Figure 7.14: Adding agendas for meeting event

Figure 7.15: Setting sensor thresholds for the event

Starting Meeting Event: when a user joins a meeting in OM, each client registers as

a IoT-enabled client through a web socket connection to the WebSocket server running

the reasoning component. Each client sends JSON objects to the server containing user

and meeting IDs. After connecting to the server, clients are ready to get IoT notification

of changes in user’s capabilities also as JSON object. In the meeting room interface all

the IoT capabilities are represented as icons. Figure 7.16 describes the IoT capabilities

Chapter 7. Use Cases and Prototypes 114

(A) (B)

Figure 7.16: IoT panel in meeting room for each user

(A) (B) (C) (D)

Figure 7.17: User’s IoT Capabilities Notification

of a user which has five icons including capability of speak, listen, read, chat and user

presence in the room from left to right respectively. Each icons has two states shown in

Figure 7.16(A) and 7.16(B) representing enabled or disabled capabilities, and a user’s

presence icons indicating whether the user is physically in the room or remotely joining.

When the OM application gets IoT notifications that the capability state of a user have

changed, a notification message pops up and when possible and make an actuation action

is executed such as muting or unmuting the microphone of that user.

IoT Notification and Action: the OM application gets real-time information from

all the users who joins an OM meeting and sends IoT notification if there is any change

in user’s capabilities. After getting the notification, the OM server triggers an action for

that user based on the notification. Different situations are illustrated in a client panel

and example of pop-up messages in the following screenshot figures: Figure 7.17(A)

shows that Alice has reached the meeting room and has all capabilities enabled; Figure

7.17(B) shows that there are three attendees in the room where two users are outside

the room location and Bob cannot share his screen, listen or speak but he can read

and type because he is in a noisy area; Figure 7.17(C) shows that Charlie is inside the

meeting room and has all the capabilities enabled; and Figure 7.17(D) shows that Bob

cannot read and type because he is driving.

Chapter 7. Use Cases and Prototypes 115

After getting the IoT notification, the OM application notifies the host (or all the at-

tendees if required) and perform some actions in form of pop-up warning or actuations

like acting on audio/video or controlling screen sharing, chatting, white board drawing,

file uploading.

7.3 Summary

This chapter provides evidence on how the C-ASP reasoner is deployed in two real-

world scenarios and how it meets requirements of such scenarios. The usage of C-ASP

is introduced via two systems, namely contextual event filtering and IoT-enabled meet-

ing management system. The former aims at continuously identifying and filtering

critical events that might affect the decision making of users in Smart City applica-

tions. Two prototypes of the first system are implemented for users who are travel-

ing in Aarhus, Denmark: a travel planner and a parking planner. The latter investi-

gates on enhancing user experiences in online meetings on-the-move by using mobile

sensors. One prototype of this system is implemented which has abilities to continu-

ously update the current status of attendees, manage agenda items, and support the

organizer in re-plan the meeting on-the-fly. The prototypes implemented in the first

scenario are open-source and can be downloaded at https://github.com/CityPulse/

Decision-Support-and-Contextual-Filtering. The third-party developers can re-

use those components to create new Smart City applications. Since those components

(including ones in the second scenario) are implemented based on C-ASP reasoner, it

requires for the developers to have a Clingo solver installed in the system and an abil-

ity to express user’s requirements in C-ASP reasoning requests using C-ASP language.

Related results of this chapter have been published in [7, 8, 202].

https://github.com/CityPulse/Decision-Support-and-Contextual-Filtering
https://github.com/CityPulse/Decision-Support-and-Contextual-Filtering

Chapter 8

Conclusion

The ability to perform complex reasoning over semantic data streams has recently be-

come an important area of research in the SW community. Most of the existing sys-

tems for processing RDF streams extend SPARQL 1.1 language and have limitations

in capturing sophisticated user requirements and dealing with complex reasoning tasks.

Moreover, the exponential growth in the availability of streaming data on the Web has

seriously hindered the applicability of state-of-the-art expressive reasoners, limiting their

applicability to process streaming information in a scalable way. This thesis explores

the trade-off between scalability and expressivity for a continuous reasoner over SW

data streams and the applicability of such reasoner in Smart City and Smart Enterprise

applications. On the one hand, I propose a stream reasoner in which its expressivity

is enhanced from advances in both ASP and RSP research. On the other hand, I in-

vestigate on the parallel-based optimization method to scale up the proposed expressive

reasoner.

8.1 Contributions

In this section, I review the research questions presented in Chapter 1 and how my

contributions address them and advance the state-of-the-art.

The first question RQ1, stated: How to enable complex reasoning based on ASP over

RDF data streams? My investigation in Chapter 4 resulted in the C-ASP language and

the C-ASP engine.

• The C-ASP language is an ASP-based language for continuous reasoning over

RDF streams. This language integrates the stable model semantics of ASP with

RDF streams, windowing operators and streaming operators in order to achieve

116

Chapter 8. Conclusion 117

expressive stream reasoning. C-ASP shifts the evaluation semantics of ASP from

one time to continuous. In other words, C-ASP continuously produces the results

of complex reasoning (solutions) as a stream.

• The C-ASP engine implements the C-ASP language which allows users to express

their reasoning task in the form of a continuous reasoning request. This request is

registered once into the C-ASP engine and continuously evaluated whenever new

data arrives.

C-ASP seamlessly provides flexible ways of combining RSP and ASP reasoning. More-

over, it leverages the full expressive power of ASP. C-ASP represents a step forward

from state-of-the-art RSP engines in capturing complex requirements and preferences of

users, including optimization and common-sense reasoning. In addition, the experiments

in Chapter 4 show that the implemented C-ASP engine outperforms the state-of-the-art

RSP engine C-SPARQL for tasks at the same level of complexity.

Next, the thesis focuses on tackling research question RQ2 : How to scale up the reasoning

process over RDF data streams under stable model semantics of ASP ? Given the C-ASP

engine proposed in Chapter 4, I improved the scalability of C-ASP while investigating

on the two following sub-questions:

• RQ2.1 : Which information is relevant to the reasoning process and how can it be

used to optimize the reasoning performance? The relevant features in the stream-

ing setting which can be used to optimize the C-ASP reasoning performance are

identified in Chapter 5. The first part of this chapter reports interesting findings

about reasoning sequentially over partitions of an input window: the empirical

evaluation states that the reasoning time of C-ASP can be reduced when reason-

ing sequentially over partitions of the input window. This finding is under the

assumption that the reasoning time of C-ASP is monotonically increasing. More-

over, in order to guarantee the correctness of the reasoning results, all data points

in the input window are assumed to be independent. The second part of this

chapter removes the independence assumption which is unrealistic in real settings,

and considers different ways input data depends on each other. I proposed a new

method to analyze such dependencies between input data items based on the C-

ASP reasoning request registered by the user. The concept of input dependency

graph is introduced to capture the dependencies among input data in a window.

This input dependency graph is defined and constructed based on the extension

of the notion of dependency graph in ASP. The resulting contributions have been

published and presented in Web Reasoning and Rule Systems (2015) [197] and

Data Engineering (2017) [198].

Chapter 8. Conclusion 118

• RQ2.2 : How to use such information found in RQ2.1 efficiently to speed up the

reasoning process without losing the correctness of reasoning results? The input

dependency graph proposed in Chapter 5 has been used to improve the reasoning

process of the C-ASP engine as it enabled data parallelism. My investigation,

under the circumstance of ASP with stratified negation, leads to the definition of

the partitioning plan, described in Chapter 6. The partitioning plan is the result of

decomposing the input dependency graph in such a way that all of dependencies

among data items in the input window are maintained. This partitioning plan

guides the C-ASP engine on how to split the input window into smaller chunks

on-the-fly. In this way, C-ASP can reason in parallel over portions of the input

window and reduce the reasoning time. Moreover, the final results of the parallel

reasoning under the guidance of the partitioning plan is proved to be semantically

correct. The contribution has been published and presented in Semantic Web

(2018) [199].

Additional contributions of this thesis are presented in Chapter 7, where the practicality

of the proposed C-ASP reasoner is validated in the domains of Smart City and Smart

Enterprise. Two different components have been developed, namely the contextual event

filtering system and the IoT-enabled meeting management system, respectively. Three

prototypes of those components are implemented. This shows the evidence on how

the C-ASP reasoner is deployed in real-world scenarios and how it meets requirements

of such scenarios. Related results of this contribution have been published as follows:

IEEE Access 4 (2016) [7], Innovations in Clouds, Internet and Networks (2017) [202],

and Journal of Web Semantics (2017) [8].

8.2 Limitations

In this section I want to highlight some limitations that would be worth investigating in

future research.

Concurrent evaluation. In RQ1, I proposed the C-ASP language and engine to

capture users’ sophisticated requirements and perform complex reasoning over SW data

streams. The current implementation of C-ASP is limited to the case where multiple

reasoning requests are registered and evaluated concurrently. For now, each registered

reasoning request is processed by an instance of the C-ASP engine separately. The

inability of the C-ASP engine to share resources among different concurrent reasoning

requests can cause the performance bottleneck.

Chapter 8. Conclusion 119

Granularity of input dependencies. The partitioning plan created from the input

dependency graph is responsible for guiding the C-ASP engine in partitioning input data

on-the-fly and reasoning in parallel. The creation of this partitioning plan currently takes

place at design time and is mainly based on predicate-level dependencies. Creating on-

the-fly partitioning plan would make it possible to consider extra information such as

atom-level dependencies and their distribution in an input window. This may have

impact on the scalability of the reasoning process but it requires to adapt the way the

dependency graph is built and maintained, and it is currently not supported.

Reasoning expressivity. The reasoning time of C-ASP is reduced thanks to the opti-

mization based on parallelism. However, this parallel reasoning is currently restricted to

ASP rules with stratified negation in the reasoning request. This restriction is necessary

to guarantee the correctness of the parallel reasoning results. Relaxing this assump-

tion and allowing parallel reasoning with recursive negation or disjunctive ASP rules

can push the expressivity of C-ASP and enable more complex reasoning, but careful

consideration should be given on how to maintain correctness in this case.

Comparative evaluation. The experiments in this thesis do not compare the perfor-

mance of C-ASP with other existing ASP-based reasoners such as Laser [148] or Ticker

[147]. These reasoners do not support RDF data streams as input. In addition, their

optimization follows the approach of incremental reasoning. Both incremental reasoning

and parallel reasoning help to improve the reasoning process and they are not exclusive.

Instead, these two approaches are complementary to each other in that the parallel ap-

proach can be applied first to partition input data and enable concurrent reasoners to

run in parallel, and then the incremental approach can be applied within each reasoner

instance. I have not explored this combination in this thesis.

8.3 Future Work

The results presented in this thesis open up several possibilities for future work. In the

following, I discuss future directions of research on which this thesis can be extended.

The first endeavor is to investigate the reasoning process of the C-ASP engine in the

presence of multiple reasoning requests. Having concurrent reasoning requests may

enable synergies among common resources which are shared by those requests such as

input data streams, background knowledge, or rules. The ability to share resources

while evaluating concurrent reasoning requests can lead to a significant reduction in

latency and increase in performance. Resource sharing and load balancing techniques

in data processing (e.g., [203–205]) can be leveraged to address this challenge. However,

Chapter 8. Conclusion 120

for an expressive stream reasoning system more complicated reasoning semantics need

to be incorporated and the dynamicity of data buffers and input streams have to be

considered.

The C-ASP engine supports full ASP capabilities to reason over RDF streams and

static knowledge. However, when it comes to parallelism, the engine proposed and im-

plemented in this thesis restricts the expressivity of its reasoning requests to ASP with

stratified negation so that correctness of reasoning results can be maintained. The ex-

tension of C-ASP to be able to perform parallel reasoning with full ASP expressivity

(i.e., recursive negation and disjunctive rules) while maintaining correctness of the rea-

soning results could open new opportunities in terms of application scenarios. In order

to enable this, the input dependency graph needs to be updated with new types of

edges to specify the recursive negation as well as disjunctive dependencies. Moreover,

the combination handler also needs to be modified to ensure that the results of parallel

reasoning are semantically correct.

Another direction for future investigation is to consider how different partitioning plans

affect the performance of the parallel C-ASP reasoner. The current solution for creating

the partitioning plan is extended from the greedy algorithm, in which the number of

partitions is determined by randomly traversing edges in the input dependency graph.

Different heuristics to create the partitions may have different impact on the reasoning

process. The distribution of ground atoms across the different predicates could be a

good information to design heuristics for creating better partitions. This could also

inform the current partitioning function so that the splitting process does not rely on

predicate-level analysis only.

Inspired by related work on incremental reasoning over streams with ASP, it would also

be interesting to study how to combine the result of this thesis with incremental tech-

niques to achieve better scalability for the C-ASP reasoner. Such direction would need

to consider the parallel approach as a first step to reduce the amount of input data that

is fetched into the stream reasoner, and then within each instance of the reasoner, con-

sider the incremental mechanism to reduce the cost of recomputing solutions over sliding

windows. In this way, efficient incremental reasoning techniques recently implemented

in systems such as Laser [148] or Ticker [147] can be leveraged for a more advanced

solution to expressive stream reasoning on RDF streams based on ASP.

The parallel reasoning approach in this thesis is mainly based on the analysis of depen-

dencies between input data. This analysis considers not only the structure of a given

rule set (a C-ASP reasoning request) but also the presence of data (input predicates)

to create the input dependency graph. This idea can be generally applied to a broader

stream reasoning field for enabling parallel reasoning. However, the method to construct

Chapter 8. Conclusion 121

the input dependency graph needs to be customized with respect to the semantics of

the supported logical reasoning.

Bibliography

[1] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. An-

swer set solving in practice. Synthesis Lectures on Artificial Intelligence and Ma-

chine Learning, 6(3):1–238, 2012.

[2] Francesco Calimeri, Simona Perri, and Francesco Ricca. Experimenting with par-

allelism for the instantiation of ASP programs. Journal of Algorithms, 63(1):34–54,

2008.

[3] Shivnath Babu and Jennifer Widom. Continuous queries over data streams. ACM

Sigmod Record, 30(3):109–120, 2001.

[4] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL continuous query

language: semantic foundations and query execution. The VLDB Journal—The

International Journal on Very Large Data Bases, 15(2):121–142, 2006.

[5] Darko Anicic, Paul Fodor, Sebastian Rudolph, Roland Stühmer, Nenad Stojanovic,

and Rudi Studer. A rule-based language for complex event processing and rea-

soning. In International Conference on Web Reasoning and Rule Systems, pages

42–57. Springer, 2010.

[6] Alessandra Mileo. Web stream reasoning: From data streams to actionable knowl-

edge. In Reasoning Web International Summer School, pages 75–87. Springer,

2015.

[7] Dan Puiu, Payam Barnaghi, Ralf Tönjes, Daniel Kümper, Muhammad Intizar Ali,

Alessandra Mileo, Josiane Xavier Parreira, Marten Fischer, Sefki Kolozali, Nazli

Farajidavar, et al. Citypulse: Large scale data analytics framework for smart cities.

IEEE Access, 4:1086–1108, 2016.

[8] Muhammad Intizar Ali, Naomi Ono, Mahedi Kaysar, Zia Ush Shamszaman, Thu-

Le Pham, Feng Gao, Keith Griffin, and Alessandra Mileo. Real-time data analytics

and event detection for IoT-enabled communication systems. Web Semantics:

Science, Services and Agents on the World Wide Web, 42:19–37, 2017.

122

Bibliography 123

[9] Feng Xia, Laurence T Yang, Lizhe Wang, and Alexey Vinel. Internet of things.

International Journal of Communication Systems, 25(9):1101–1102, 2012.

[10] Alessandro Margara, Jacopo Urbani, Frank van Harmelen, and Henri Bal. Stream-

ing the web: Reasoning over dynamic data. Web Semantics: Science, Services and

Agents on the World Wide Web, 25:24–44, 2014.

[11] Yasir Mehmood, Farhan Ahmad, Ibrar Yaqoob, Asma Adnane, Muhammad Imran,

and Sghaier Guizani. Internet-of-things-based smart cities: Recent advances and

challenges. IEEE Communications Magazine, 55(9):16–24, 2017.

[12] Andreas Wagner, Sebastian Speiser, and Andreas Harth. Semantic web technolo-

gies for a smart energy grid: Requirements and challenges. In In proceedings of

9th International Semantic Web Conference (ISWC2010), pages 33–37. Citeseer,

2010.

[13] Reza Shojanoori and Radmila Juric. Semantic remote patient monitoring system.

Telemedicine and e-Health, 19(2):129–136, 2013.

[14] Emanuele Della Valle, Stefano Ceri, Frank Van Harmelen, and Dieter Fensel. It’s a

streaming world! reasoning upon rapidly changing information. IEEE Intelligent

Systems, 24(6), 2009.

[15] Alessandra Mileo, Minh Dao-Tran, Thomas Eiter, and Michael Fink. Stream

reasoning. Encyclopedia of Database Systems, 2017.

[16] Graham Klyne and Jeremy J Carroll. Resource description framework (RDF):

Concepts and abstract syntax. 2006.

[17] Jonas Tappolet and Abraham Bernstein. Applied temporal RDF: Efficient tempo-

ral querying of RDF data with SPARQL. In European Semantic Web Conference,

pages 308–322. Springer, 2009.

[18] Steve Harris, Andy Seaborne, and Eric Prud’hommeaux. SPARQL 1.1 query

language. W3C recommendation, 21(10), 2013.

[19] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle,

and Michael Grossniklaus. C-SPARQL: a continuous query language for RDF

data streams. International Journal of Semantic Computing, 4(01):3–25, 2010.

[20] Danh Le-Phuoc, Minh Dao-Tran, Josiane Xavier Parreira, and Manfred

Hauswirth. A native and adaptive approach for unified processing of linked streams

and linked data. In The Semantic Web–ISWC 2011, pages 370–388. Springer, 2011.

Bibliography 124

[21] Jean-Paul Calbimonte, Ho Young Jeung, Oscar Corcho, and Karl Aberer. Enabling

query technologies for the semantic sensor web. International Journal on Semantic

Web and Information Systems, 8(EPFL-ARTICLE-183971):43–63, 2012.

[22] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, and Michael Grossniklaus.

An execution environment for C-SPARQL queries. In Proceedings of the 13th In-

ternational Conference on Extending Database Technology, pages 441–452. ACM,

2010.

[23] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer

Widom. Models and issues in data stream systems. In Proceedings of the twenty-

first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database sys-

tems, pages 1–16. ACM, 2002.

[24] Opher Etzion, Peter Niblett, and David C Luckham. Event processing in action.

Manning Greenwich, 2011.

[25] Gianpaolo Cugola and Alessandro Margara. Processing flows of information: From

data stream to complex event processing. ACM Computing Surveys (CSUR), 44

(3):15, 2012.

[26] Arvind Arasu, Shivnath Babu, and Jennifer Widom. CQL: A language for contin-

uous queries over streams and relations. In International Workshop on Database

Programming Languages, pages 1–19. Springer, 2003.

[27] David Luckham. The power of events: An introduction to complex event process-

ing in distributed enterprise systems. In International Workshop on Rules and

Rule Markup Languages for the Semantic Web, pages 3–3. Springer, 2008.

[28] Daniele Dell’Aglio, Emanuele Della Valle, Frank van Harmelen, and Abraham

Bernstein. Stream reasoning: A survey and outlook. Data Science, (Preprint):

1–25, 2017.

[29] Emanuele Della Valle, Stefano Ceri, Davide Francesco Barbieri, Daniele Braga,

and Alessandro Campi. A first step towards stream reasoning. In Future Internet

Symposium, pages 72–81. Springer, 2008.

[30] Heiner Stuckenschmidt, Stefano Ceri, Emanuele Della Valle, and Frank

Van Harmelen. Towards expressive stream reasoning. In Dagstuhl Seminar pro-

ceedings. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010.

[31] Jan Leeuwen. Handbook of theoretical computer science: Algorithms and complex-

ity, volume 1. Elsevier, 1990.

Bibliography 125

[32] Gulay Unel and Dumitru Roman. Stream reasoning: A survey and further research

directions. In International Conference on Flexible Query Answering Systems,

pages 653–662. Springer, 2009.

[33] Emanuele Della Valle, Stefan Schlobach, Markus Krötzsch, Alessandro Bozzon,

Stefano Ceri, and Ian Horrocks. Order matters! harnessing a world of orderings

for reasoning over massive data. Semantic Web, 4(2):219–231, 2013.

[34] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle, and

Michael Grossniklaus. Querying RDF streams with C-SPARQL. ACM SIGMOD

Record, 39(1):20–26, 2010.

[35] Jean-Paul Calbimonte, Oscar Corcho, and Alasdair JG Gray. Enabling ontology-

based access to streaming data sources. In ISWC, pages 96–111. Springer, 2010.

[36] Darko Anicic, Paul Fodor, Sebastian Rudolph, and Nenad Stojanovic. EP-

SPARQL: a unified language for event processing and stream reasoning. In Pro-

ceedings of the 20th international conference on World wide web, pages 635–644.

ACM, 2011.

[37] Özgür Lütfü Özçep, Ralf Möller, and Christian Neuenstadt. A stream-temporal

query language for ontology based data access. In Joint German/Austrian Con-

ference on Artificial Intelligence (Künstliche Intelligenz), pages 183–194. Springer,

2014.

[38] Srdjan Komazec, Davide Cerri, and Dieter Fensel. Sparkwave: continuous schema-

enhanced pattern matching over RDF data streams. In Proceedings of the 6th ACM

International Conference on Distributed Event-Based Systems, pages 58–68. ACM,

2012.

[39] Yuan Ren, Jeff Z Pan, and Yuting Zhao. Towards scalable reasoning on ontology

streams via syntactic approximation. Proc. of IWOD, 2010.

[40] Onkar Walavalkar, Anupam Joshi, Tim Finin, and Yelena Yesha. Streaming knowl-

edge bases. In In International Workshop on Scalable Semantic Web Knowledge

Base Systems, 2008.

[41] Yuan Ren and Jeff Z Pan. Optimising ontology stream reasoning with truth main-

tenance system. In Proceedings of the 20th ACM international conference on In-

formation and knowledge management, pages 831–836. ACM, 2011.

[42] Jacopo Urbani, Alessandro Margara, Ceriel Jacobs, Frank Van Harmelen, and

Henri Bal. Dynamite: Parallel materialization of dynamic RDF data. In Interna-

tional Semantic Web Conference, pages 657–672. Springer, 2013.

Bibliography 126

[43] Boris Motik, Yavor Nenov, Robert Edgar Felix Piro, and Ian Horrocks. Incremental

update of Datalog materialisation: the backward/forward algorithm. In AAAI,

pages 1560–1568, 2015.

[44] Amir Pnueli. The temporal logic of programs. In Foundations of Computer Sci-

ence, 1977., 18th Annual Symposium on, pages 46–57. IEEE, 1977.

[45] Peter Gärdenfors. Belief revision, volume 29. Cambridge University Press, 2003.

[46] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten

Schaub, and Sven Thiele. Engineering an incremental ASP solver. In Logic Pro-

gramming, pages 190–205. Springer, 2008.

[47] Martin Gebser, Torsten Grote, Roland Kaminski, and Torsten Schaub. Reactive

answer set programming. In Logic Programming and Nonmonotonic Reasoning,

pages 54–66. Springer, 2011.

[48] Martin Gebser, Torsten Grote, Roland Kaminski, Philipp Obermeier, Orkunt

Sabuncu, and Torsten Schaub. Answer set programming for stream reasoning.

CoRR, abs/1301.1392, 2013.

[49] Fredrik Heintz. DyKnow: A stream-based knowledge processing middleware frame-

work. PhD thesis, Linköping University Electronic Press, 2009.

[50] Abdulbasit Ahmed, Alexei Lisitsa, and Clare Dixon. A misuse-based network

intrusion detection system using temporal logic and stream processing. In Network

and System Security (NSS), 2011 5th International Conference on, pages 1–8.

IEEE, 2011.

[51] Harald Beck, Minh Dao-Tran, Thomas Eiter, and Michael Fink. LARS: A logic-

based framework for analyzing reasoning over streams. In Twenty-Ninth AAAI

Conference on Artificial Intelligence, 2015.

[52] Alexander Bochman. A logical theory of nonmonotonic inference and belief change.

Springer Science & Business Media, 2013.

[53] Thang M Do, Seng W Loke, and Fei Liu. Answer set programming for stream

reasoning. In Advances in Artificial Intelligence, pages 104–109. Springer, 2011.

[54] Alessandra Mileo, Ahmed Abdelrahman, Sean Policarpio, and Manfred Hauswirth.

Streamrule: a nonmonotonic stream reasoning system for the semantic web. In

Web Reasoning and Rule Systems, pages 247–252. Springer, 2013.

[55] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. Answer set pro-

gramming: A primer. In Reasoning Web. Semantic Technologies for Information

Systems, pages 40–110. Springer, 2009.

Bibliography 127

[56] Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovambattista Ianni,

Roland Kaminski, Thomas Krennwallner, Nicola Leone, Francesco Ricca, and

Torsten Schaub. ASP-Core-2: Input language format. URL: https://www.

mat. unical. it/aspcomp2013/files/ASP-CORE-2.03 b. pdf [Accessed on August 15,

2017], 2012.

[57] Simona Perri, Francesco Ricca, and Marco Sirianni. Parallel instantiation of ASP

programs: techniques and experiments. Theory and Practice of Logic Program-

ming, 13(2):253–278, 2013.

[58] Daniele Dell’Aglio, Jean-Paul Calbimonte, Emanuele Della Valle, and Oscar Cor-

cho. Towards a unified language for RDF stream query processing. In International

Semantic Web Conference, pages 353–363. Springer, 2015.

[59] Claudio Gutierrez, Carlos Hurtado, and Alejandro Vaisman. Temporal RDF. In

European Semantic Web Conference, pages 93–107. Springer, 2005.

[60] Darko Anicic, Paul Fodor, Sebastian Rudolph, Roland Stühmer, Nenad Stojanovic,

and Rudi Studer. ETALIS: Rule-based reasoning in event processing. In Reasoning

in event-based distributed systems, pages 99–124. Springer, 2011.

[61] Marco Balduini, Emanuele Della Valle, Daniele Dell’Aglio, Mikalai Tsytsarau,

Themis Palpanas, and Cristian Confalonieri. Social listening of scale events using

the streaming linked data framework. In International Semantic Web Conference,

pages 1–16. Springer, 2013.

[62] Daniele Dell’Aglio, Emanuele Della Valle, Jean-Paul Calbimonte, and Oscar Cor-

cho. RSP-QL semantics: a unifying query model to explain heterogeneity of RDF

stream processing systems. International Journal on Semantic Web and Informa-

tion Systems (IJSWIS), 10(4):17–44, 2014.

[63] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic

programming. In ICLP/SLP, volume 88, pages 1070–1080, 1988.

[64] Victor W Marek and Miroslaw Truszczyński. Stable models and an alternative

logic programming paradigm. In The Logic Programming Paradigm, pages 375–

398. Springer, 1999.

[65] Ilkka Niemelä. Logic programs with stable model semantics as a constraint pro-

gramming paradigm. Annals of mathematics and Artificial Intelligence, 25(3-4):

241–273, 1999.

[66] Alessandro Provetti and Tran Cao Son. Answer Set Programming: Towards Ef-

ficient and Scalable Knowledge Representation and Reasoning: Papers from the

2001 AAAI Symposium, March 26-28, Stanford, California. AAAI Press, 2001.

Bibliography 128

[67] Michael Gelfond and Nicola Leone. Logic programming and knowledge represen-

tation—the A-Prolog perspective. Artificial Intelligence, 138(1-2):3–38, 2002.

[68] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and

disjunctive databases. New generation computing, 9(3-4):365–385, 1991.

[69] Wolfgang Faber, Nicola Leone, and Simona Perri. The intelligent grounder of DLV.

In Correct Reasoning, pages 247–264. Springer, 2012.

[70] Martin Gebser, Torsten Schaub, and Sven Thiele. Gringo: A new grounder for

answer set programming. In International Conference on Logic Programming and

Nonmonotonic Reasoning, pages 266–271. Springer, 2007.

[71] Martin Gebser, Roland Kaminski, Arne König, and Torsten Schaub. Advances in

gringo series 3. In International Conference on Logic Programming and Nonmono-

tonic Reasoning, pages 345–351. Springer, 2011.

[72] Tommi Syrjänen. Omega-restricted logic programs. In International Conference

on Logic Programming and NonMonotonic Reasoning, pages 267–280. Springer,

2001.

[73] Tommi Syrjnen. Lparse 1.0 users manual, 2002.

[74] Johan Wittocx, Maarten Mariën, and Marc Denecker. Grounding FO and FO

(ID) with bounds. arXiv preprint arXiv:1401.3840, 2014.

[75] Deborah East, Mikhail Iakhiaev, Artur Mikitiuk, and Miros law Truszczyński.

Tools for modeling and solving search problems. AI Communications, 19(4):301–

312, 2006.

[76] Remi Brochenin, Marco Maratea, and Yuliya Lierler. Disjunctive answer set solvers

via templates. Theory and Practice of Logic Programming, 16(4):465–497, 2016.

[77] Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending and implementing

the stable model semantics. Artificial Intelligence, 138(1-2):181–234, 2002.

[78] Jean Gressmann, Tomi Janhunen, Robert E Mercer, Torsten Schaub, Sven Thiele,

and Richard Tichy. Platypus: A platform for distributed answer set solving. In

International Conference on Logic Programming and Nonmonotonic Reasoning,

pages 227–239. Springer, 2005.

[79] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Si-

mona Perri, and Francesco Scarcello. The DLV system for knowledge represen-

tation and reasoning. ACM Transactions on Computational Logic (TOCL), 7(3):

499–562, 2006.

Bibliography 129

[80] Christian Anger, Martin Gebser, Thomas Linke, André Neumann, and Torsten

Schaub. The nomore++ approach to answer set solving. In International Con-

ference on Logic for Programming Artificial Intelligence and Reasoning, pages 95–

109. Springer, 2005.

[81] Tomi Janhunen, Ilkka Niemelä, Dietmar Seipel, Patrik Simons, and Jia-Huai You.

Unfolding partiality and disjunctions in stable model semantics. ACM Transac-

tions on Computational Logic (TOCL), 7(1):1–37, 2006.

[82] Fangzhen Lin and Yuting Zhao. ASSAT: Computing answer sets of a logic program

by SAT solvers. Artificial Intelligence, 157(1-2):115–137, 2004.

[83] Enrico Giunchiglia, Yuliya Lierler, and Marco Maratea. Answer set programming

based on propositional satisfiability. Journal of Automated Reasoning, 36(4):345,

2006.

[84] Mario Alviano, Carmine Dodaro, Wolfgang Faber, Nicola Leone, and Francesco

Ricca. WASP: A native asp solver based on constraint learning. In International

Conference on Logic Programming and Nonmonotonic Reasoning, pages 54–66.

Springer, 2013.

[85] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub.

Conflict-driven answer set solving. In IJCAI, volume 7, pages 386–392, 2007.

[86] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub.

Clingo= ASP+ control: Preliminary report. arXiv preprint arXiv:1405.3694, 2014.

[87] Francesco Ricca. The DLV Java wrapper. In APPIA-GULP-PRODE, pages 263–

274. Citeseer, 2003.

[88] Onofrio Febbraro, Nicola Leone, Giovanni Grasso, and Francesco Ricca. JASP: A

framework for integrating answer set programming with Java. In KR, 2012.

[89] Davide Fuscà, Stefano Germano, Jessica Zangari, Marco Anastasio, Francesco

Calimeri, and Simona Perri. A framework for easing the development of applica-

tions embedding answer set programming. In Proceedings of the 18th International

Symposium on Principles and Practice of Declarative Programming, pages 38–49.

ACM, 2016.

[90] Francesco Ricca, Lorenzo Gallucci, Roman Schindlauer, Tina Dell’Armi, Giovanni

Grasso, and Nicola Leone. OntoDLV: an asp-based system for enterprise ontologies.

Journal of Logic and Computation, 19(4):643–670, 2008.

Bibliography 130

[91] Paula-Andra Busoniu, Johannes Oetsch, Joerg Puehrer, PETER SKOČOVSKÝ,

and Hans Tompits. SeaLion: An eclipse-based IDE for answer-set programming

with advanced debugging support. Theory and Practice of Logic Programming, 13

(4-5):657–673, 2013.

[92] Onofrio Febbraro, Kristian Reale, and Francesco Ricca. ASPIDE: Integrated de-

velopment environment for answer set programming. In International Conference

on Logic Programming and Nonmonotonic Reasoning, pages 317–330. Springer,

2011.

[93] Martin Gebser and Torsten Schaub. Modeling and language extensions. AI Mag-

azine, 37(3), 2016.

[94] Yuliya Lierler, Marco Maratea, and Francesco Ricca. Systems, engineering envi-

ronments, and competitions. AI Magazine, 37(3), 2016.

[95] Esra Erdem, Michael Gelfond, and Nicola Leone. Applications of answer set pro-

gramming. AI Magazine, 37(3), 2016.

[96] Esra Erdem, Erdi Aker, and Volkan Patoglu. Answer set programming for collabo-

rative housekeeping robotics: representation, reasoning, and execution. Intelligent

Service Robotics, 5(4):275–291, 2012.

[97] Esra Erdem, Volkan Patoglu, Zeynep G Saribatur, Peter Schüller, and Tansel

Uras. Finding optimal plans for multiple teams of robots through a mediator: A

logic-based approach. Theory and Practice of Logic Programming, 13(4-5):831–

846, 2013.

[98] Esra Erdem, Volkan Patoglu, and Zeynep G Saribatur. Integrating hybrid diag-

nostic reasoning in plan execution monitoring for cognitive factories with multiple

robots. In Robotics and Automation (ICRA), 2015 IEEE International Conference

on, pages 2007–2013. IEEE, 2015.

[99] Giray Havur, Guchan Ozbilgin, Esra Erdem, and Volkan Patoglu. Geometric rear-

rangement of multiple movable objects on cluttered surfaces: A hybrid reasoning

approach. In Robotics and Automation (ICRA), 2014 IEEE International Confer-

ence on, pages 445–452. IEEE, 2014.

[100] Nam Tran and Chitta Baral. Hypothesizing about signaling networks. Journal of

Applied Logic, 7(3):253–274, 2009.

[101] Martin Gebser, Torsten Schaub, Sven Thiele, and Philippe Veber. Detecting in-

consistencies in large biological networks with answer set programming. Theory

and Practice of Logic Programming, 11(2-3):323–360, 2011.

Bibliography 131

[102] Daniel R Brooks, Esra Erdem, Selim T Erdoğan, James W Minett, and Don Ringe.

Inferring phylogenetic trees using answer set programming. Journal of Automated

Reasoning, 39(4):471, 2007.

[103] Agostino Dovier, Andrea Formisano, and Enrico Pontelli. An empirical study of

constraint logic programming and answer set programming solutions of combina-

torial problems. Journal of Experimental & Theoretical Artificial Intelligence, 21

(2):79–121, 2009.

[104] Esra Erdem, Yelda Erdem, Halit Erdogan, and Umut Öztok. Finding answers and

generating explanations for complex biomedical queries. In AAAI, 2011.

[105] Esra Erdem and Umut Oztok. Generating explanations for biomedical queries.

Theory and Practice of Logic Programming, 15(1):35–78, 2015.

[106] Francesco Ricca, Antonella Dimasi, Giovanni Grasso, Salvatore Maria Ielpa, Salva-

tore Iiritano, Marco Manna, and Nicola Leone. A logic-based system for e-tourism.

Fundamenta Informaticae, 105(1-2):35–55, 2010.

[107] Francesco Ricca, Giovanni Grasso, Mario Alviano, Marco Manna, Vincenzino Lio,

Salvatore Iiritano, and Nicola Leone. Team-building with answer set programming

in the Gioia-Tauro seaport. Theory and Practice of Logic Programming, 12(3):361–

381, 2012.

[108] Benjamin Kaufmann, Nicola Leone, Simona Perri, and Torsten Schaub. Grounding

and solving in answer set programming. AI Magazine, 37(3):25–32, 2016.

[109] Rina Dechter. Enhancement schemes for constraint processing: Backjumping,

learning, and cutset decomposition. Artificial Intelligence, 41(3):273–312, 1990.

[110] Patrick Prosser. Hybrid algorithms for the constraint satisfaction problem. Com-

putational intelligence, 9(3):268–299, 1993.

[111] Edward Tsang. Foundations of constraint satisfaction: the classic text. BoD–

Books on Demand, 2014.

[112] Simona Perri, Francesco Scarcello, Gelsomina Catalano, and Nicola Leone. En-

hancing DLV instantiator by backjumping techniques. Annals of Mathematics and

Artificial Intelligence, 51(2-4):195, 2007.

[113] Nicola Leone, Simona Perri, and Francesco Scarcello. Improving ASP instantiators

by join-ordering methods. In International Conference on Logic Programming and

Nonmonotonic Reasoning, pages 280–294. Springer, 2001.

Bibliography 132

[114] Wolfgang Faber, Nicola Leone, Cristinel Mateis, and Gerald Pfeifer. Using

database optimization techniques for nonmonotonic reasoning. 1999.

[115] Catriel Beeri and Raghu Ramakrishnan. On the power of magic. The journal of

logic programming, 10(3-4):255–299, 1991.

[116] Mario Alviano and Wolfgang Faber. Dynamic magic sets and super-coherent an-

swer set programs. AI Communications, 24(2):125–145, 2011.

[117] Ilkka Niemela, Patrik Simons, and Tommi Syrjanen. Smodels: a system for answer

set programming. arXiv preprint cs/0003033, 2000.

[118] Martin Davis, George Logemann, and Donald Loveland. A machine program for

theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

[119] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability,

volume 185. IOS press, 2009.

[120] Lintao Zhang, Conor F Madigan, Matthew H Moskewicz, and Sharad Malik. Ef-

ficient conflict driven learning in a boolean satisfiability solver. In Proceedings of

the 2001 IEEE/ACM international conference on Computer-aided design, pages

279–285. IEEE Press, 2001.

[121] Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. Multi-threaded ASP

solving with clasp. Theory and Practice of Logic Programming, 12(4-5):525–545,

2012.

[122] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Torsten Schaub, Mar-

ius Thomas Schneider, and Stefan Ziller. A portfolio solver for answer set pro-

gramming: Preliminary report. In International Conference on Logic Programming

and Nonmonotonic Reasoning, pages 352–357. Springer, 2011.

[123] Marco Maratea, Luca Pulina, and Francesco Ricca. A multi-engine approach to

answer-set programming. Theory and Practice of Logic Programming, 14(6):841–

868, 2014.

[124] Dennis McCarthy and Umeshwar Dayal. The architecture of an active database

management system. In ACM Sigmod Record, volume 18, pages 215–224. ACM,

1989.

[125] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach.

Malaysia; Pearson Education Limited,, 2016.

[126] Norman W Paton and Oscar Dı́az. Active database systems. ACM Computing

Surveys (CSUR), 31(1):63–103, 1999.

Bibliography 133

[127] Daniel J Abadi, Don Carney, Ugur Cetintemel, Mitch Cherniack, Christian Con-

vey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Aurora:

a new model and architecture for data stream management. VLDB Journal, 12

(2):12039, 2007.

[128] Mark Sullivan. Tribeca: A stream database manager for network traffic analysis.

In VLDB, volume 96, page 594, 1996.

[129] Don Carney, Uğur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee,

Greg Seidman, Nesime Tatbul, Stan Zdonik, and Michael Stonebraker. Monitoring

streams—a new class of data management applications. In VLDB’02: Proceedings

of the 28th International Conference on Very Large Databases, pages 215–226.

Elsevier, 2002.

[130] Praveen Seshadri, Miron Livny, and Raghu Ramakrishnan. SEQ: A model for

sequence databases. In Data Engineering, 1995. Proceedings of the Eleventh In-

ternational Conference on, pages 232–239. IEEE, 1995.

[131] David Luckham. Event processing glossary-version 2.0, event processing tech-

nical society. http://www. ep-ts. com/component/option, com docman/task,

doc download/gid, 66/Itemid, 84/, 2016.

[132] K Mani Chandy, Michel Charpentier, and Agostino Capponi. Towards a theory

of events. In Proceedings of the 2007 inaugural international conference on Dis-

tributed event-based systems, pages 180–187. ACM, 2007.

[133] S Chakravarthy and D Mishra-Snoop. An expressive event specification language

for active databases. university of florida. Technical report, Technical Report UF-

CIS-TR-93-007.

[134] Ying Zhang, Pham Minh Duc, Oscar Corcho, and Jean-Paul Calbimonte. SR-

Bench: a streaming RDF/SPARQL benchmark. In International Semantic Web

Conference, pages 641–657. Springer, 2012.

[135] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle,

and Michael Grossniklaus. Incremental reasoning on streams and rich background

knowledge. In Extended Semantic Web Conference, pages 1–15. Springer, 2010.

[136] Andre Bolles, Marco Grawunder, and Jonas Jacobi. Streaming SPARQL-extending

SPARQL to process data streams. In European Semantic Web Conference, pages

448–462. Springer, 2008.

[137] Adrian Paschke. A semantic design pattern language for complex event processing.

In AAAI Spring Symposium: Intelligent Event Processing, pages 54–60, 2009.

Bibliography 134

[138] Robin Keskisärkkä and Eva Blomqvist. Semantic complex event processing for

social media monitoring-a survey. In Proceedings of Social Media and Linked Data

for Emergency Response (SMILE) Co-located with the 10th Extended Semantic

Web Conference, Montpellier, France. CEUR workshop proceedings (May 2013),

2013.

[139] Marc Schaaf, Stella Gatziu Grivas, Dennie Ackermann, Arne Diekmann, Arne

Koschel, and Irina Astrova. Semantic complex event processing. Recent Researches

in Applied Information Science, pages 38–43, 2012.

[140] Kia Teymourian, Malte Rohde, and Adrian Paschke. Knowledge-based processing

of complex stock market events. In Proceedings of the 15th International Confer-

ence on Extending Database Technology, pages 594–597. ACM, 2012.

[141] Daniel Gyllstrom, Jagrati Agrawal, Yanlei Diao, and Neil Immerman. On sup-

porting kleene closure over event streams. In Data Engineering, 2008. ICDE 2008.

IEEE 24th International Conference on, pages 1391–1393. IEEE, 2008.

[142] Gianpaolo Cugola and Alessandro Margara. TESLA: a formally defined event

specification language. In Proceedings of the Fourth ACM International Conference

on Distributed Event-Based Systems, pages 50–61. ACM, 2010.

[143] Alessandro Artale and Enrico Franconi. A survey of temporal extensions of de-

scription logics. Annals of Mathematics and Artificial Intelligence, 30(1-4):171–

210, 2000.

[144] Patrick Doherty and Jonas Kvarnström. Temporal action logics. Foundations of

Artificial Intelligence, 3:709–757, 2008.

[145] Anastasios Skarlatidis, Georgios Paliouras, Alexander Artikis, and George A

Vouros. Probabilistic event calculus for event recognition. ACM Transactions

on Computational Logic (TOCL), 16(2):11, 2015.

[146] Carsten Lutz. Description logics with concrete domains–a survey. 2003.

[147] Harald Beck, Thomas Eiter, and Christian Folie. Ticker: A system for incremental

ASP-based stream reasoning. Theory and Practice of Logic Programming, pages

1–20, 2017.

[148] Hamid R Bazoobandi, Harald Beck, and Jacopo Urbani. Expressive stream rea-

soning with Laser. In International Semantic Web Conference, pages 87–103.

Springer, 2017.

Bibliography 135

[149] Mattias Tiger and Fredrik Heintz. Stream reasoning using temporal logic and

predictive probabilistic state models. In Temporal Representation and Reasoning

(TIME), 2016 23rd International Symposium on, pages 196–205. IEEE, 2016.

[150] Adrian Paschke and Harold Boley. Rule responder: rule-based agents for the

semantic-pragmatic web. International Journal on Artificial Intelligence Tools, 20

(06):1043–1081, 2011.

[151] Kia Teymourian, Malte Rohde, and Adrian Paschke. Fusion of background knowl-

edge and streams of events. In Proceedings of the 6th ACM International Confer-

ence on Distributed Event-Based Systems, pages 302–313. ACM, 2012.

[152] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle,

and Michael Grossniklaus. C-SPARQL: SPARQL for continuous querying. In

Proceedings of the 18th international conference on World wide web, pages 1061–

1062. ACM, 2009.

[153] Christian YA Brenninkmeijer, Ixent Galpin, Alvaro AA Fernandes, and Norman W

Paton. A semantics for a query language over sensors, streams and relations. In

British National Conference on Databases, pages 87–99. Springer, 2008.

[154] CL Rete. A fast algorithm for the many pattern/many object pattern matching

problem. Artificial Intelligence, 19:17–37, 1982.

[155] Mikko Rinne, Esko Nuutila, and Seppo Törmä. INSTANS: high-performance event

processing with standard RDF and SPARQL. In Proceedings of the 2012th In-

ternational Conference on Posters & Demonstrations Track-Volume 914, pages

101–104. Citeseer, 2012.

[156] Darko Anicic, Sebastian Rudolph, Paul Fodor, and Nenad Stojanovic. Stream

reasoning and complex event processing in ETALIS. Semantic Web, 3(4):397–407,

2012.

[157] Daniele Dell’Aglio, Minh Dao-Tran, Jean-Paul Calbimonte, Danh Le Phuoc, and

Emanuele Della Valle. A query model to capture event pattern matching in RDF

stream processing query languages. In European Knowledge Acquisition Workshop,

pages 145–162. Springer, 2016.

[158] Emilia Oikarinen and Tomi Janhunen. Modular equivalence for normal logic pro-

grams. In ECAI, volume 6, pages 412–416, 2006.

[159] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub.

Multi-shot ASP solving with Clingo. Theory and Practice of Logic Programming,

pages 1–56, 2018.

Bibliography 136

[160] Harald Beck, Minh Dao-Tran, and Thomas Eiter. LARS: A logic-based framework

for analytic reasoning over streams. Artificial Intelligence, 261:16–70, 2018.

[161] Harald Beck, Minh Dao-Tran, and Thomas Eiter. Answer update for rule-based

stream reasoning. In IJCAI, pages 2741–2747, 2015.

[162] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases: the

logical level. Addison-Wesley Longman Publishing Co., Inc., 1995.

[163] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits.

DLV-hex: Dealing with semantic web under answer set programming. In: Proc. of

ISWC, 2005.

[164] Soheila Dehghanzadeh, Daniele Dell’Aglio, Shen Gao, Emanuele Della Valle,

Alessandra Mileo, and Abraham Bernstein. Approximate continuous query an-

swering over streams and dynamic linked data sets. In International Conference

on Web Engineering, pages 307–325. Springer, 2015.

[165] Thomas Scharrenbach, Jacopo Urbani, Alessandro Margara, Emanuele Della Valle,

and Abraham Bernstein. Seven commandments for benchmarking semantic flow

processing systems. In Extended Semantic Web Conference, pages 305–319.

Springer, 2013.

[166] Jim Grey. The benchmark handbook for database and transaction systems, 1993.

[167] Songyun Duan, Anastasios Kementsietsidis, Kavitha Srinivas, and Octavian

Udrea. Apples and oranges: a comparison of RDF benchmarks and real RDF

datasets. In Proceedings of the 2011 ACM SIGMOD International Conference on

Management of data, pages 145–156. ACM, 2011.

[168] Arvind Arasu, Mitch Cherniack, Eduardo Galvez, David Maier, Anurag S Maskey,

Esther Ryvkina, Michael Stonebraker, and Richard Tibbetts. Linear road: a

stream data management benchmark. In Proceedings of the Thirtieth international

conference on Very large data bases-Volume 30, pages 480–491. VLDB Endowment,

2004.

[169] Juan F Sequeda and Oscar Corcho. Linked stream data: A position paper. 2009.

[170] Danh Le-Phuoc, Minh Dao-Tran, Minh-Duc Pham, Peter Boncz, Thomas Eiter,

and Michael Fink. Linked stream data processing engines: Facts and figures. In

International Semantic Web Conference, pages 300–312. Springer, 2012.

[171] Daniele Dell’Aglio, Jean-Paul Calbimonte, Marco Balduini, Oscar Corcho, and

Emanuele Della Valle. On correctness in RDF stream processor benchmarking. In

International semantic web conference, pages 326–342. Springer, 2013.

Bibliography 137

[172] Muhammad Intizar Ali, Feng Gao, and Alessandra Mileo. CityBench: A config-

urable benchmark to evaluate RSP engines using smart city datasets. In Interna-

tional Semantic Web Conference, pages 374–389. Springer, 2015.

[173] Maxim Kolchin, Peter Wetz, Elmar Kiesling, and A Min Tjoa. YABench: A

comprehensive framework for RDF stream processor correctness and performance

assessment. In International Conference on Web Engineering, pages 280–298.

Springer, 2016.

[174] Tu Ngoc Nguyen and Wolf Siberski. SLUBM: An extended LUBM benchmark for

stream reasoning. In OrdRing@ ISWC, pages 43–54, 2013.

[175] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for OWL

knowledge base systems. Web Semantics: Science, Services and Agents on the

World Wide Web, 3(2):158–182, 2005.

[176] Christopher J Matheus, Ken Baclawski, and Mieczyslaw M Kokar. Basevisor: A

triples-based inference engine outfitted to process ruleml and r-entailment rules.

In Rules and Rule Markup Languages for the Semantic Web, Second International

Conference on, pages 67–74. IEEE, 2006.

[177] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden

Katz. Pellet: A practical OWL-DL reasoner. Web Semantics: science, services

and agents on the World Wide Web, 5(2):51–53, 2007.

[178] Martin Gebser, Marco Maratea, and Francesco Ricca. The sixth answer set pro-

gramming competition. Journal of Artificial Intelligence Research, 60:41–95, 2017.

[179] Filippo Cacace, Stefano Ceri, and Maurice Houtsma. A survey of parallel execu-

tion strategies for transitive closure and logic programs. Distributed and Parallel

Databases, 1(4):337–382, 1993.

[180] Ramakrishna Soma and Viktor K Prasanna. Parallel inferencing for OWL knowl-

edge bases. In 37th International Conference on Parallel Processing, pages 75–82.

IEEE, 2008.

[181] Peiqiang Li, Yi Zeng, Spyros Kotoulas, Jacopo Urbani, and Ning Zhong. The

quest for parallel reasoning on the semantic web. In International Conference on

Active Media Technology, pages 430–441. Springer, 2009.

[182] Eyal Oren, Spyros Kotoulas, George Anadiotis, Ronny Siebes, Annette ten Teije,

and Frank van Harmelen. Marvin: Distributed reasoning over large-scale semantic

web data. Web Semantics: Science, Services and Agents on the World Wide Web,

7(4):305–316, 2009.

Bibliography 138

[183] Jacopo Urbani, Spyros Kotoulas, Eyal Oren, and Frank Harmelen. Scalable dis-

tributed reasoning using MapReduce. In Proceedings of the 8th International Se-

mantic Web Conference, pages 634–649. Springer-Verlag, 2009.

[184] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on

large clusters. Communications of the ACM, 51(1):107–113, 2008.

[185] Ilias Tachmazidis, Grigoris Antoniou, Giorgos Flouris, and Spyros Kotoulas. To-

wards parallel nonmonotonic reasoning with billions of facts. In KR, 2012.

[186] Ilias Tachmazidis and Grigoris Antoniou. Computing the stratified semantics of

logic programs over big data through mass parallelization. In International Work-

shop on Rules and Rule Markup Languages for the Semantic Web, pages 188–202.

Springer, 2013.

[187] Ilias Tachmazidis, Grigoris Antoniou, and Wolfgang Faber. Efficient computation

of the well-founded semantics over big data. arXiv preprint arXiv:1405.2590, 2014.

[188] Agostino Dovier, Andrea Formisano, and Enrico Pontelli. Parallel answer set pro-

gramming. In Handbook of Parallel Constraint Reasoning, pages 237–282. Springer,

2018.

[189] Marcello Balduccini, Enrico Pontelli, Omar Elkhatib, and Hung Le. Issues in

parallel execution of non-monotonic reasoning systems. Parallel Computing, 31

(6):608–647, 2005.

[190] Enrico Pontelli and Omar El-Khatib. Exploiting vertical parallelism from answer

set programs. In Answer Set Programming, 2001.

[191] Raphael A Finkel, Victor W Marek, Neil Moore, and Miroslaw Truszczynski. Com-

puting stable models in parallel. In Answer Set Programming, 2001.

[192] Hung Viet Le and Enrico Pontelli. An investigation of sharing strategies for answer

set solvers and SAT solvers. In European Conference on Parallel Processing, pages

750–760. Springer, 2005.

[193] Enrico Pontelli, Hung Viet Le, and Tran Cao Son. An investigation in parallel

execution of answer set programs on distributed memory platforms: Task sharing

and dynamic scheduling. Computer Languages, Systems & Structures, 36(2):158–

202, 2010.

[194] Agostino Dovier, Andrea Formisano, Enrico Pontelli, and Flavio Vella. Parallel

execution of the ASP computation - an investigation on GPUs. In ICLP (Technical

Communications), 2015.

Bibliography 139

[195] Agostino Dovier, Andrea Formisano, Enrico Pontelli, and Flavio Vella. A GPU

implementation of the ASP computation. In International Symposium on Practical

Aspects of Declarative Languages, pages 30–47. Springer, 2016.

[196] Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. Conflict-driven answer

set solving: From theory to practice. Artificial Intelligence, 187:52–89, 2012.

[197] Stefano Germano, Thu-Le Pham, and Alessandra Mileo. Web stream reasoning in

practice: on the expressivity vs. scalability tradeoff. In Web Reasoning and Rule

Systems, pages 105–112. Springer, 2015.

[198] Thu-Le Pham, Alessandra Mileo, and Muhammad Intizar Ali. Towards scalable

non-monotonic stream reasoning via input dependency analysis. In Data Engi-

neering (ICDE), 2017 IEEE 33rd International Conference on, pages 1553–1558.

IEEE, 2017.

[199] Thu-Le Pham, Muhammad Intizar Ali, and Alessandra Mileo. Enhancing the scal-

ability of expressive stream reasoning via input-driven parallelization. Semantic

Web, (Preprint):1–17, 2018.

[200] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.

Powergraph: distributed graph-parallel computation on natural graphs. In OSDI,

volume 12, page 2, 2012.

[201] Ralf Tönjes, P Barnaghi, M Ali, A Mileo, M Hauswirth, F Ganz, S Ganea, B Kjær-

gaard, D Kuemper, Septimiu Nechifor, et al. Real time IoT stream processing and

large-scale data analytics for smart city applications. In poster session, European

Conference on Networks and Communications. sn, 2014.

[202] Thu-Le Pham, Stefano Germano, Alessandra Mileo, Daniel Küemper, and

Muhammad Intizar Ali. Automatic configuration of smart city applications for

user-centric decision support. In Innovations in Clouds, Internet and Networks

(ICIN), 2017 20th Conference on, pages 360–365. IEEE, 2017.

[203] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath Babu,

Mayur Datar, Gurmeet Singh Manku, Chris Olston, Justin Rosenstein, and Rohit

Varma. Query processing, approximation, and resource management in a data

stream management system. In CIDR, pages 245–256, 2003.

[204] Amol Deshpande, Zachary Ives, Vijayshankar Raman, et al. Adaptive query pro-

cessing. Foundations and Trends R© in Databases, 1(1):1–140, 2007.

[205] Chan Le Van, Feng Gao, and Muhammad Intizar Ali. Optimizing the perfor-

mance of concurrent RDF stream processing queries. In European Semantic Web

Conference, pages 238–253. Springer, 2017.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Listings
	Abbreviations
	1 Introduction
	1.1 Motivation & Problem Description
	1.2 Research Questions
	1.3 Hypotheses
	1.4 Overview of The Proposed Approach
	1.5 Contributions
	1.6 Thesis Outline
	1.7 Publications

	2 Background
	2.1 Semantic Web
	2.1.1 Data Models
	2.1.2 Semantic Web Streams

	2.2 Answer Set Programming
	2.2.1 Syntax
	2.2.2 Semantics
	2.2.3 The ASP solving paradigm
	2.2.4 Optimization in ASP

	2.3 Stream Reasoning
	2.3.1 Conceptual Architecture
	2.3.2 Stream Reasoning Development
	2.3.3 Stream Reasoning Categories

	2.4 Summary

	3 Related Work
	3.1 Stream Reasoning
	3.1.1 Languages and Engines
	3.1.1.1 SPARQL-based approaches
	3.1.1.2 CEP-based approaches
	3.1.1.3 Logic-based approaches

	3.1.2 Comparative Analysis
	3.1.2.1 RSP Benchmarks
	3.1.2.2 Reasoning Benchmarks

	3.2 Optimization via Parallel Strategy
	3.3 Summary

	4 C-ASP: Continuous Extension of ASP for RDF Stream Reasoning
	4.1 The C-ASP Processing Model
	4.1.1 Windowing: from streams to relations
	4.1.2 Evaluating: from relations to relations
	4.1.3 Streaming: from relations to streams

	4.2 Implementation: the C-ASP Language
	4.2.1 C-ASP Reasoning Request
	4.2.2 Examples of a C-ASP Reasoning Request

	4.3 Evaluation
	4.4 Summary

	5 Characterizing Input-driven Dependency
	5.1 Reasoning over Independent Data Streams
	5.1.1 Experiment Setting
	5.1.2 Experiment Discussion

	5.2 Reasoning over Dependent Data Streams
	5.2.1 Running Example: Traffic Management
	5.2.2 Assumptions
	5.2.3 Input Dependency Analysis
	5.2.4 Building Input Dependency Graph

	5.3 Summary

	6 Input-driven Parallel Reasoning
	6.1 Partitioning Plan
	6.1.1 Unconnected Input Dependency Graph
	6.1.2 Connected Input Dependency Graph

	6.2 Parallel Reasoning in C-ASP
	6.3 Evaluation
	6.3.1 Experiment 1: Recursive positive rules
	6.3.2 Experiment 2: Stratified negation rules

	6.4 Summary

	7 Use Cases and Prototypes
	7.1 Contextual Event Filtering System
	7.1.1 Contextual Filtering & Requirements
	7.1.2 Implementation of C-ASP Reasoner for Contextual Filtering
	7.1.3 Context-aware Travel Planner
	7.1.4 Context-aware Parking Planner

	7.2 IoT-enabled Meeting Management System
	7.2.1 Motivating Scenario
	7.2.2 IoT-MMS Architecture
	7.2.3 Stream Reasoning in IoT-MMS
	7.2.4 IoT-MMS Application Interface
	7.2.4.1 Android Application and User Login
	7.2.4.2 From Meeting Creation to Notification

	7.3 Summary

	8 Conclusion
	8.1 Contributions
	8.2 Limitations
	8.3 Future Work

	Bibliography

