
 
Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-04-27T19:48:33Z

 

Some rights reserved. For more information, please see the item record link above.
 

Title Mathematical models for the kinetics of some carbohydrate
enzymes

Author(s) Mai, Vinh Quang

Publication
Date 2019-10-17

Publisher NUI Galway

Item record http://hdl.handle.net/10379/15725

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/


Mathematical Models for the Kinetics of

some Carbohydrate Enzymes

by

Vinh Quang Mai

A PhD thesis submitted to the

School of Mathematics, Statistics and Applied Mathematics,

National University of Ireland, Galway

Head of School: Dr. Rachel Quinlan

Head of Discipline: Dr. Martin Meere

Supervisors: Dr. Tuoi Vo and Dr. Martin Meere

Galway, Ireland

October 2019





Contents

List of Figures v

List of Tables ix

Declaration xi

Abstract xiii

Acknowledgements xv

1 Introduction 1

1.1 Introduction to enzymes . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Nomenclature and classification . . . . . . . . . . . . . . . . . . 3

1.3 Industrial applications of enzymes . . . . . . . . . . . . . . . . . 5

1.4 Mechanism of enzyme action . . . . . . . . . . . . . . . . . . . . 5

1.5 Enzyme inhibition . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Carbohydrate enzymes . . . . . . . . . . . . . . . . . . . . . . . 9

1.7 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Mathematical preliminaries 13

2.1 The law of mass action . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Global sensitivity analysis . . . . . . . . . . . . . . . . . . . . . 18

2.4 Some scientific Python packages . . . . . . . . . . . . . . . . . . 23

2.4.1 NumPy . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.2 SciPy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.3 SALib . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

i



2.4.4 Matplotlib . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Modelling hyaluronan degradation by Streptococcus pneumoniae
hyaluronate lyase 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.2 The function of hyaluronan depends on its molecular
weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.3 Hyaluronan degradation and hyaluronidases . . . . . . . 32

3.1.4 The degradation mechanism of hyaluronan by SpnHL . . 32

3.1.5 Some previous modelling studies . . . . . . . . . . . . . . 33

3.2 The mathematical model . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Modelling assumptions . . . . . . . . . . . . . . . . . . . 34

3.2.2 Construction of the governing ordinary differential equa-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Computational methods . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Numerical solution of the ordinary differential equations 40

3.3.2 Parameter estimation . . . . . . . . . . . . . . . . . . . . 41

3.3.3 Global sensitivity analysis . . . . . . . . . . . . . . . . . 42

3.3.4 Polymer molecular weight averages . . . . . . . . . . . . 43

3.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1 Parameter estimation; comparison with experimental data 44

3.4.2 Global sensitivity analysis (GSA) . . . . . . . . . . . . . 47

3.4.3 Other results . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Modelling the phosphorylation of glucose by human hexoki-
nase I 55

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 The kinetic mechanism . . . . . . . . . . . . . . . . . . 58

4.2.2 Modelling assumptions . . . . . . . . . . . . . . . . . . . 61

4.2.3 Model notation . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.4 The chemical reactions . . . . . . . . . . . . . . . . . . . 62

ii



4.2.5 Construction of the governing ordinary differential equa-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.6 Initial conditions . . . . . . . . . . . . . . . . . . . . . . 66

4.2.7 Computational methods . . . . . . . . . . . . . . . . . . 66

4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.1 Numerical results . . . . . . . . . . . . . . . . . . . . . . 69

4.3.2 Results of the global sensitivity analysis . . . . . . . . . 72

4.3.3 Further numerical results . . . . . . . . . . . . . . . . . . 74

4.3.4 Model reduction . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Mathematical models for enzymatic inhibition by product 83

5.1 Model I: Competitive product inhibition . . . . . . . . . . . . . 83

5.1.1 Model I and glucose phosphorylation by mini hexokinase I 86

5.2 Model II: Allosteric product inhibition . . . . . . . . . . . . . . 87

5.2.1 Model II and glucose phosphorylation by mutant hexok-
inase I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Discussion 97

6.1 Modelling hyaluronan degradation by Streptococcus pneumoniae
hyaluronate lyase . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1.1 The first detailed mathematical model . . . . . . . . . . 97

6.1.2 The model may be refined and expanded . . . . . . . . . 97

6.2 Modelling the phosphorylation of glucose by human hexokinase I 98

6.2.1 The mathematical model . . . . . . . . . . . . . . . . . . 98

6.2.2 The model may be extended . . . . . . . . . . . . . . . . 99

6.3 Modelling enzyme with product inhibition . . . . . . . . . . . . 99

6.3.1 Two mathematical models . . . . . . . . . . . . . . . . . 99

6.3.2 Model applications . . . . . . . . . . . . . . . . . . . . . 99

6.4 Some other ideas for future research . . . . . . . . . . . . . . . . 100

6.4.1 Modelling the cellular synthesis of hyaluronan . . . . . . 100

6.4.2 Modelling the behaviour of a bisubstrate enzyme with
competitive product inhibition . . . . . . . . . . . . . . . 100

iii



6.4.3 Modelling a bisubstrate enzyme with allosteric product
inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Appendices 103

Appendices 105

A Mathematical model and Computational programs for Chap-
ter 3 105

A.1 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . 105

A.2 Computational programs . . . . . . . . . . . . . . . . . . . . . . 106

B Mathematical model and Computational programs for Chap-
ter 4 113

B.1 The chemical reactions . . . . . . . . . . . . . . . . . . . . . . . 113

B.2 The model equations . . . . . . . . . . . . . . . . . . . . . . . . 115

B.3 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

iv



List of Figures

1.1 Crystal structure of a dimeric Hexokinase I enzyme molecule
from Kluyveromyces lactis. In the diagram, ligands of the en-
zyme are depicted by balls and sticks. Extracted from [1, 2],
PDB: 3O08. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 An enzyme reduces the activation energy required to initiate a
chemical reaction. (a) represents an uncatalysed reaction, and
(b) represents an enzyme-catalysed reaction. Extracted from [3]. 2

1.3 The lock and key mechanism for enzymes (left). The induced
fit mechanism for enzymes (right). Extracted from [4]. . . . . . 6

1.4 A schematic depiction of a simple enzymatic reaction. E denotes
the enzyme, S the substrate, ES the enzyme-substrate complex,
and P the product. . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 A) Competitive inhibition, and B) Non-competitive inhibition. . 8

1.6 Ribbon diagram for a human hyaluronidase I molecule. This
structure was created using PyMOL [5]. Extracted from [6]. . . 10

2.1 Comparison between a fitted theoretical curve and experimental
data; see Example 2.2.1 . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 The chemical structure of hyaluronic acid. . . . . . . . . . . . . 31

3.2 Adapted from [7]. Schematic of the overall processive degrada-
tion mechanism of hyaluronan by SpnHL. . . . . . . . . . . . . . 33

3.3 The chemical structure of an unsaturated disaccharide unit. . . 34

3.4 Diagrammatic representations for the three bound states of the
enzyme and polymer that the mathematical model considers. . . 35

3.5 An example illustrating the degradation process of hyaluronan
by SpnHL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 The chemical reaction networks defining the mathematical model. 38

3.7 Comparing theory and experiment for the degradation of hyaluro-
nan by bacterial hyaluronidases. . . . . . . . . . . . . . . . . . . 45

v



3.8 Plots of the average molecular weights and polydispersity index
as functions of time. . . . . . . . . . . . . . . . . . . . . . . . . 46

3.9 Concentrations of five groups of oligomers of disaccharides at
times t = 0, 0.5, and 1 hour. The parameter values used to
generate the numerical solutions are given in Table 3.1 for N =
150. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.10 First-order sensitivity indices (on the left) and total sensitivity
indices (on the right) for the model parameters. . . . . . . . . . 48

3.11 First-order sensitivity indices (on the left) and total sensitivity
indices (on the right) for the model parameters with N = 40. . . 49

3.12 Numerical solutions of the mathematical model for disaccharide
concentrations ([D1]). These solutions support and illustrate
the findings of the sensitivity analysis. . . . . . . . . . . . . . . 50

3.13 Numerical solutions of the mathematical model for the concen-
tration of tetrasaccharides ([D2]), hexasaccharides ([D3]), oc-
tasaccharides ([D4]), and oligomers of five disaccharides ([D5]). . 51

3.14 Numerical solutions of the mathematical model for the concen-
trations of the polymer fragments (a) D2, (b) D3, (c) D4, (d)
D5, (e) D100, and (f) D150. . . . . . . . . . . . . . . . . . . . . . 52

4.1 Schematics representations for hexokinase, glucose, glucose-6-
phosphate, adenosine triphosphate (ATP ), adenosine diphos-
phate (ADP ), and inorganic phosphate Pi. . . . . . . . . . . . . 57

4.2 The Bi Bi mechanism for glucose phosphorylation. . . . . . . . . 59

4.3 The eight possible configurations of a hexokinase molecule where
only one of the binding sites is occupied. . . . . . . . . . . . . . 60

4.4 The mechanism for the phosphorylation of glucose by hexoki-
nase I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Diagram of chemical reactions producing product. The dashed
lines represent irreversible reactions. . . . . . . . . . . . . . . . . 63

4.6 Diagram of chemical reactions forming all complexes in the mix-
ture. E, 0, 1, 2, and 3 represent free enzyme, glucose, ATP ,
G6P , and Pi molecules, respectively. . . . . . . . . . . . . . . . 64

4.7 Numerical solutions of the model equations described in Section
4.2. The graphs show the concentration of G6P as a function
of time for various initial concentrations of Pi and G6P . . . . . 71

4.8 Plots of the phosphorylation rate as a function of the initial
concentration of phosphate Pi and for four different initial con-
centrations of G6P . . . . . . . . . . . . . . . . . . . . . . . . . . 72

vi



4.9 (a) First-order sensitivity indices (S1) and (b) total sensitivity
indices (ST ) with [Pi](t = 0) = 2.0 mM . (c) First-order sensi-
tivity indices and (d) total sensitivity indices with [Pi](t = 0) =
10.0 mM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.10 Numerical solutions of the model equations described in Section
4.2. The graphs show the concentration of G6P as a function of
time, and the parameter values used can be found in the main
body of the text. . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.11 Comparison of numerical solutions to the full model and the
Simplified Model (SM). . . . . . . . . . . . . . . . . . . . . . . . 80

5.1 Model I. Product inhibition. Diagram of reactions and inhibition. 84

5.2 Model I. Plots of the rate of product formation for the case of
competitive product inhibition. . . . . . . . . . . . . . . . . . . 87

5.3 Model I. Lineweaver-Burk plots of the product formation rate
formula (5.9) for [P ] = 0 and [P ] > 0. . . . . . . . . . . . . . . . 88

5.4 Mini hexokinase I. . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5 Plots of the product formation rate for different concentrations
of product G6P . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.6 Model II. Allosteric product inhibition. Diagram of reactions
and inhibitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.7 Model II. Plot of Kapp
m as a function of [P ] as given by equation

(5.18). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.8 Model II. Plots of the product formation rate illustrating the
effect of product concentration on the maximal rate of enzyme
production. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.9 Model II. Lineweaver-Burk plots of the product formation rate
formula (5.16) for [P ] = 0 and [P ] > 0. . . . . . . . . . . . . . . 95

5.10 Mutant hexokinase I. . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1 A schematic diagram for the reactions of a bisubstrate enzyme
system with competitive product inhibition. . . . . . . . . . . . 101

6.2 A schematic diagram for the reactions of a bisubstrate enzyme
system with allosteric product inhibition. . . . . . . . . . . . . . 101

vii





List of Tables

1.1 Enzyme classification. The main classes of enzymes in the EC
classification system [3, 8, 9]. . . . . . . . . . . . . . . . . . . . . 4

1.2 Industrial applications of enzyme catalysis [10]. . . . . . . . . . 5

3.1 Estimates for the parameter values obtaining by fitting with the
experimental data of [11]. . . . . . . . . . . . . . . . . . . . . . 45

4.1 Some model parameter values and their literature sources. . . . 67

4.2 Values for the model rate constants. . . . . . . . . . . . . . . . . 68

4.3 Intracellular concentrations of Hexokinase I and some metabolites. 68

ix





Declaration

I declare that the work presented in this thesis is my own, and has not been
previously submitted for award at another degree granting institution.

Signed: ID: 15233989

Vinh Quang Mai

Date:

xi





Abstract

In this thesis, some mathematical models for the mechanism of action of
carbohydrate enzymes are developed and analysed.

Chapter 1 provides a general introduction to enzymes and their applica-
tions. In Chapter 2, mathematical preliminaries required for the subsequent
analysis are introduced and discussed. This chapter also describes the Python
software employed in the thesis.

In Chapter 3, a mathematical model for the degradation of hyaluronan by
Streptococcus pneumoniae hyaluronate lyase is developed and analysed. The
model results were found to agree well with experimental data. A Sobol global
sensitivity analysis was implemented to identify the key model parameters.
Some practical applications of the model are also indicated.

Chapter 4 considers a mathematical model that describes the phosphoryla-
tion of glucose by human hexokinase I. Numerical simulations of the model pro-
duce results that are consistent with the experimentally observed behaviour.
A global sensitivity analysis of the model was implemented to help identify
the key mechanisms of hexokinase I regulation. The sensitivity analysis also
enabled the development of a simpler model that produces output close to that
of the full model.

The model developed in Chapter 4 is too complex to obtain simple analytic
expressions for the rate of product formation. It is also difficult to obtain simple
qualitative insights into the enzyme behaviour from this model. In an effort
to overcome those deficiencies, two simpler related models are developed in
Chapter 5. The first model focuses on the mechanism of competitive product
inhibition only, while the second model considers allosteric inhibition only.
Some practical applications of the models are also indicated.

In Chapter 6, a brief discussion of the work presented in the thesis is given,
and some possible directions for refinement and expansion of the models are
also indicated.
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Chapter 1

Introduction

This thesis is concerned with developing mathematical models that describe
the kinetics of carbohydrate enzymes. The principle enzymes of interest here
are Streptococcus pneumoniae hyaluronate lyase and human Hexokinase I. In
the current chapter, some general discussion of enzymes, their classification and
industrial applications is provided. We also give some discussion of mechanisms
of enzyme action, enzyme inhibition, as well as providing a general introduction
to carbohydrate enzymes. We conclude the chapter with a thesis outline.

1.1 Introduction to enzymes

Enzymes are biological catalysts that are naturally occurring in most living
organisms. In 1833, the French chemist Anselme Payen found the first enzyme
- diastase [12]. In 1877, the German physiologist Wilhelm Kühne first used the
word "enzyme" to describe the ability of yeast to produce alcohol from sugars
[13, 3].

Most enzymes are proteins, except for a few enzymes that are composed of
ribonucleic acids or ribonucleoproteins. The active site of an enzyme is where
substances bind and where a reaction is catalysed to produce a new compound.
An individual enzyme is typically able to catalyse a few specific reactions
[14, 15, 16, 17, 18, 19]. Enzymes are much larger than their substrates, and
their molecular weights range from 10,000 - 2,000,000 Dalton [15]. Figure 1.1
shows a Hexokinase I enzyme molecule of Kluyveromyces lactis in crystal form,
and its ligands.

Enzymes are effective catalysts in the sense that they are capable of greatly
accelerating biochemical reaction rates even when the enzyme is at very low
concentrations. Furthermore, enzymes are not consumed during the reactions,
and this is one of the commercial advantages of enzymes. In order for a reaction
to take place, an amount of energy, called the activation energy, is needed
irrespective of whether the reaction consumes or releases energy. Enzymes
speed up reactions by reducing the required activation energy; see Figure 1.2.

1



Chapter 1. Introduction

Enzyme-catalysed reactions are frequently represented as follows

Substrate
Enzyme−−−−⇀↽−−−− Product.

Figure 1.1: Crystal structure of a dimeric Hexokinase I enzyme molecule from
Kluyveromyces lactis. In the diagram, ligands of the enzyme are depicted by balls
and sticks. Extracted from [1, 2], PDB: 3O08.

Figure 1.2: An enzyme reduces the activation energy required to initiate a chemical
reaction. (a) represents an uncatalysed reaction, and (b) represents an enzyme-
catalysed reaction. Extracted from [3].

Enzymes play an important role in metabolism because of their ability to
catalyse biochemical reactions at typical biological temperatures and pH levels.

2



1.2. Nomenclature and classification

Enzyme-catalysed reactions take place at much faster rates than reactions
without enzyme [19, 20]. Chemical reactions underlie the chemical basis of life,
and enzymes are a key factor in the metabolism of cells [14, 15]. Currently,
approximately 1300 different enzymes have been found in human cells [21], so
it is useful to give some discussion of the nomenclature and classification of
enzymes. This is provided in the next section.

1.2 Nomenclature and classification

By international convention, there are seven classes of enzymes and these
are distinguished by the type of chemical reactions that they catalyse. Each
class can be divided into subclasses based on the nature of the chemical groups
and coenzymes involved in their reactions. A coenzyme is an organic or met-
alloorganic molecule that works with an enzyme to initiate or aid the function
of that enzyme [16, 19]. The seven classes of enzymes are [8, 9]:

• Class 1: Oxidoreductases. Enzymes in this class transfer hydrogen atoms
or oxygen atoms or electrons from one substrate to another. These en-
zymes includes the dehydrogenases, reductases, oxidases, dioxygenases,
hydroxylases, peroxidases, and catalases.

• Class 2: Transferases. These enzymes transfer chemical groups between
substrates, and they include the kinases, aminotransferases, acetyltrans-
ferases, and carbamoyltransferases.

• Class 3: Hydrolases. Enzymes in this class catalyse the hydrolytic cleav-
age of bonds, and they include the peptidases, esterases, phosphatases,
and sulphatases.

• Class 4: Lyases. These enzymes catalyse elimination reactions that re-
sult in the formation of double bonds. Adenylyl cyclase, enolase and
aldolase are lyases.

• Class 5: Isomerases. Enzymes in this class interconvert isomers of vari-
ous types by intramolecular rearrangements. They include phosphoglu-
comutase and glucose-6-phosphate isomerase.

• Class 6: Ligases (also called synthases). These enzymes catalyse cova-
lent bond formation with the concomitant breakdown of a nucleoside
triphosphate, commonly ATP. Carbamoyl phosphate synthase and DNA
ligase are examples of ligases.

• Class 7: Translocases. These enzymes catalyse the movement of ions or
molecules across membranes or their separation within membranes. They
include Na(+)-transporting two-sector ATPase and ABC-type polar-ami-
no-acid transporter [22, 23].

3



Chapter 1. Introduction

According to the Enzyme Commission (EC) rules, each enzyme is given
a unique code of four digits and an obvious systematic name based on the
reaction it catalyses. The nomenclature of an individual enzyme consists of
the letters "EC" followed by four digits separated by points [24].

• The first digit determines the general type of reaction the enzyme catal-
yses and ranges from one to seven, corresponding to the seven categories
described above.

• The second digit describes the subclass.

• The third digit indicates the sub-subclass.

• The fourth digit is the serial number of the enzyme in its sub-subclass.

It should be noted that subclasses of different classes are different even though
they are assigned the same number; see [8] for more details. Fortunately, it is
now easy to find this information for any individual enzyme using the Enzyme
Nomenclature Database (available at https://enzyme.expasy.org/). For ex-
ample, the Enzyme Commission Number for the hyaluronate lyase enzyme is
EC 4.2.2.1. Here the 4 represents the group Lyases. The 2 indicates the sub-
class Carbon-oxygen lyases, and the second 2 gives the sub-subclass Acting on
polysaccharides - this means that this sub-subclass catalyses polysaccharides.
Finally, the 1 is the serial number for the hyaluronate lyase enzyme [25]. A
summary of the seven principle classes of enzymes is given in Table 1.1.

Table 1.1: Enzyme classification. The main classes of enzymes in the EC classifica-
tion system [3, 8, 9].

First EC digit Enzyme class Reaction type
1. Oxidoreductases Oxidation/reduction
2. Transferases Atom/group transfer

(excluding other classes)
3. Hydrolases Hydrolysis
4. Lyases Group removal (excluding 3.)
5. Isomerases Isomerisation
6. Ligases Joining of molecules linked to the

breakage of a pyrophosphate bond
7. Translocases Movement of ions or molecules

across membranes or their
separation within membranes

Enzymes accelerate reactions even at very low concentrations and are not
consumed by the reactions. These features of enzymes provide commercial,
sustainable and environmental advantages. In the next section, we give some
discussion of industrial applications of enzymes.

4
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1.3. Industrial applications of enzymes

1.3 Industrial applications of enzymes

As mentioned above, enzymes offer a variety of benefits. Nowadays, sci-
entific and technological advances facilitate the study of enzymes and their
applications [26, 27]. Increasingly, new enzymes are being extracted and stud-
ied. Numerous applications of enzymes have been investigated and developed
in biotechnology, industry, and medicine [3, 10, 28, 29, 30]. In this section,
some common applications of enzymes are described; see Table 1.2.

Table 1.2: Industrial applications of enzyme catalysis [10].

Sector Enzymes Applications
Pharmaceuticals Nitrile hydratase, Synthesis of intermediates

transaminase, for production of active
monoamine oxidase, pharmaceutical
lipase, ingredients
penicillin acylase

Food Processing Trypsin, amylase, Conversion of starch to
glucose isomerase, glucose, production of
papain, pectinase high fructose corn syrup,

production of prebiotics,
debittering of fruit juice

Detergent Protease, lipase, Stain removal, removal of
amylase, cellulase fats and oils, color retention

Biofuels Lipase, Production of fatty acid
xylanase, methyl esters, decomposition
cellulase of lignocellulotic material

for bioethanol production
Paper and Pulp Lipase, Removal of lignin for improved

cellulase, bleaching, improvement
xylanase of fiber properties

Before an application for an enzyme can be developed, its mechanism of
action must first be understood. Besides experimental studies, mathematical
models are also helpful tools to help gain insights into the mechanism of action
of an enzyme. Hence, some discussion of the theoretical tools employed to
analyse enzymes is appropriate, and this is provided in the next section.

1.4 Mechanism of enzyme action

Enzymes speed up chemical reactions by reducing the activation energy
required to initiate reactions. In enzymatic reactions, there exists at least one
substance, called the substrate, that is converted to another substance, called
the product. How do enzyme and substrate molecules bind to make a reaction
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Chapter 1. Introduction

take place? Recall that enzymes are macromolecules that are typically much
larger than their substrates. Two theoretical models have been proposed for
the binding of a substrate molecule to an enzyme molecule; the "lock and
key" model, and the induced-fit model. In the induced-fit model, the enzyme
makes conformational changes during binding to form a precise fit with its
substrate using multiple weak interactions and hydrophobic characteristics on
the enzyme surface mold [31]. The right hand side of Figure 1.3 depicts an
example of an induced-fit.

Figure 1.3: The lock and key mechanism for enzymes (left). The induced fit mech-
anism for enzymes (right). Extracted from [4].

In the "lock and key" model, the shape of the active site of an enzyme
molecule is complementary to that of its substrate. The exact fit of the sub-
strate to the active site of the enzyme is akin to the fit of a key into a lock
[32]. The "lock" here refers to enzyme, and the "key" refers to its substrate.
The left hand side of Figure 1.3 depicts the lock and key mechanism.

Using the lock and key model, the kinetic mechanism of an enzymatic
reaction can be written as follows

E + S
k1−−⇀↽−−
k−1

ES
k0−→ E + P, (1.1)

where E denotes the enzyme, S the substrate, ES the enzyme-substrate com-
plex, and P the product. The constant k1 is the adsorption constant rate,
k−1 the desorption constant rate, and k0 the catalytic or turnover constant
rate. Figure 1.4 depicts a simple enzymatic reaction. Using the reactions
given in (1.1), the well-known Michaelis-Menten formula for the rate of prod-
uct formation of enzyme-catalysed reactions may be derived using elementary
arguments. This is given by

v =
Vmax[S]

[S] +Km

, (1.2)
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1.4. Mechanism of enzyme action

E S

Active site

ES E P

Figure 1.4: A schematic depiction of a simple enzymatic reaction. E denotes the
enzyme, S the substrate, ES the enzyme-substrate complex, and P the product.

where
Vmax = k0e0, Km =

k−1 + k0
k1

,

[S] is the substrate concentration, and e0 is the initial free enzyme concen-
tration. Here Km and Vmax are referred to as the Michaelis constant of the
enzyme and the maximal rate of the reaction, respectively. The maximal rate
Vm gives the maximal rate of product formation. The Michaelis constant Km

gives the concentration of substrate for which the product formation rate is half
the maximal rate. The formula (1.2) is extensively used in the investigation of
enzymes.

In reality, the kinetic mechanism of an enzyme is usually complicated. For
example, the Bi Bi random mechanism is a kinetic mechanism in which the
enzyme catalyses two substrates to form two products. This mechanism arises
in Chapter 4 of this thesis as a model for hexokinase I enzyme. It may be
represented as follows

(1.3)

where E is the enzyme; A, B are the substrates; C, D are the products;
and EAB, ECD are the enzyme-substrates and enzyme-products complexes,
respectively. In equation (1.3), an A substrate molecule and a B substrate
molecule randomly bind to a free enzyme molecule E to form an enzyme-
substrate complex EAB which is then reversibly catalysed to form an enzyme-
product complex ECD. The enzyme molecule randomly releases the product
molecules C and D to restore the free enzyme.

Enzymes reside in living cells and speed up cellular metabolic chemical
reactions, enabling the rapid production of cellular metabolites. In cells, bio-
chemical substances are required to show up at the right time and at the right

7
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concentration. Hence, there are many mechanisms to regulate the activities
of enzymes in cells, and one particularly important regulatory mechanism is
enzyme inhibition. Some discussion of enzyme inhibition is given in the next
section.

1.5 Enzyme inhibition

Enzymes are responsible for many biochemical reactions involved in the
metabolism of cells. Cells strictly regulate the activities of enzymes through
activation and inhibitory mechanisms. We shall consider inhibitory mecha-
nisms here because these will feature in future chapters. Substances that can
bind to the enzyme to interfere with the catalytic action of the enzyme are
called enzyme inhibitors. Consequently, the presence of inhibitors slows down
catalysis and can in some cases stop catalysis altogether. There are three com-
mon types of enzyme inhibition: competitive, non-competitive, and substrate
inhibition. We restrict our attention here to competitive and non-competitive
inhibition.

In competitive inhibition, the inhibitor competes with the substrate for
the active site of the enzyme. In non-competitive inhibition, the inhibitor
does not compete with the substrate for the active site, but rather binds to
a distinct site of the enzyme. This binding alters the shape of its active site
so that the substrate can no longer bind to the enzyme. In any inhibition,
the rate of the enzymatic reaction reduces with the increasing concentration
of inhibitor [18, 33, 34]. Figure 1.5 depicts competitive inhibition (left), and
non-competitive inhibition (right).

A) Competitive

Enzyme A

Substrate

Inhibitor

B) Non-competitive

Inhibitor

Enzyme B

Substrate

Figure 1.5: A) Competitive inhibition, and B) Non-competitive inhibition.

Carbohydrate enzymes have carbohydrates as their substrates. Carbohy-
drate enzymes belong to a number of different classes, for example, hyaluronate
lyase belongs to the Class 4 Lyases [25], while Hexokinase belongs to the Class
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2 Transferases [35]. Carbohydrate enzymes form the topic of the current study,
and so we provide an overview of carbohydrate enzymes in the next section.

1.6 Carbohydrate enzymes

Carbohydrates, proteins, lipids, and nucleic acids are the four major types
of organic molecules of living systems [36]. Carbohydrates are the most plen-
tiful organic molecules found in nature, and the synthesis and metabolism of
carbohydrates takes place in nearly all organisms [37]. The fact that the em-
pirical formula of most simple sugars is CnH2nOn (n ≥ 3), implies that carbon
atoms are associated in some way with water. These compounds are referred to
as "hydrates of carbon" or "carbohydrates" [19, 37]. Most nonphotosynthetic
cells produce energy by oxidising carbohydrates [19].

Carbohydrates can occur as monosaccharides, oligosaccharides, and polysac-
charides. Monosaccharides include a single polyhydroxy aldehyde or ketone
unit. The six-carbon sugar D-glucose is the most abundant monosaccharide
found in nature. Oligosacchrides are short chains of monosaccharide units
linked together by glycosidic bonds. The most abundant oligosaccharides in
nature are disaccharides. Polysaccharides are sugar polymer chains of more
than 20 monosaccharide units. For example, cellulose is a linear polysaccharide
of one monosaccharide type [38], while hyaluronan is a linear polysaccharide
with two monosaccharide types [39, 40]. Glycogen is a multibranched polysac-
charide with glucose units [19, 41, 42, 43].

Carbohydrates play important roles in the metabolism of most living organ-
isms. For examples, glucose is a major source of energy for living organisms,
and hyaluronan, a high molecular weight polysaccharide, is a constituent of
the extracellular matrix of cells [40]. Carbohydrate enzymes appear in many
forms, and carry out a range of functions in the body, including biosynthesis,
modification, binding, and catabolism of carbohydrates. They are classified
into six families, as follows: [44].

• Glycosyltransferases [45, 46, 47],

• Glycoside Hydrolases [48, 49, 50],

• Polysaccharide Lyases [51, 52],

• Carbohydrate Esterases [53, 54],

• Auxiliary Activity Families [55],

• Carbohydrate Binding Modules (non-catalytic; included due to their as-
sociation with catalytic modules) [56].

Figure 1.6 shows a ribbon diagram for a molecule of human hyaluronidase I;
this enzyme is a member of the Glycoside Hydrolases.

9
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Figure 1.6: Ribbon diagram for a human hyaluronidase I molecule. This structure
was created using PyMOL [5]. Extracted from [6].

The importance of enzymes in living organisms, as well as their numer-
ous applications, motivated the current study. We shall develop mathematical
models describing specific enzymatic reactions with a view to obtaining practi-
cally useful insights into their behaviour. The next section presents an overview
of the thesis.

1.7 Thesis outline

This project is concerned with the mathematical modelling of the kinetics
of carbohydrate enzymes. Mathematical modelling is a useful tool to help
understand the kinetic mechanisms of enzymes. Moreover, model results may
assist with the design of experiments and suggest further applications.

In Chapter 1, the subject area is introduced by giving some discussion of
enzymes and their applications.

In Chapter 2, some mathematical preliminaries that are required for the
subsequent chapters are discussed. In particular, we discuss the Law of Mass
Action, parameter estimation, and global sensitivity analyses. A brief discus-
sion of scientific Python packages is also provided.

In Chapter 3, a mathematical model that describes the degradation of
hyaluronan by Streptococcus pneumoniae hyaluronate lyase is considered. In
this system, (i) enzyme randomly binds to a hyaluronan polymer chain. (ii)
The enzyme then degrades the hyaluronan chain to form two shorter chains,
and releases the chain with an unsaturated end. (iii) The enzyme translocates
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along the truncated chain by one disaccharide unit torward the non-reducing
end to recover the original bound state. The process then repeats (move back
up to step (ii)) until the remaining chain is fully degraded, with all subsequent
degradation products being single unsaturated disaccharide units. Our theo-
retical results are not only consistent with experimental data for the enzyme,
but also well agree with experimental data for other bacterial hyaluronidases.

In Chapter 4, a mathematical model that describes the phosphorylation
of glucose by human hexokinase I is investigated. In this system, hexoki-
nase I enzyme transfers a phosphate group of an ATP molecule to a glucose
molecule to produce an ADP molecule and a glucose-6-phosphate. Glucose-6-
phosphate inhibits the enzyme using both competitive and allosteric inhibitory
mechanisms. Inorganic phosphate antagonises the inhibition of the enzyme by
glucose-6-phosphate for low concentrations, and inhibits the enzyme for high
concentrations. Our theoretical results are consistent with the experimentally
observed behaviours.

In Chapter 5, two mathematical models (model I and model II) that de-
scribe the kinetics of enzymes with product inhibition are studied. Model I
describes enzymes subject to competitive product inhibition, while Model II
describes enzymes subject to allosteric product inhibition. A formula for the
rate of product formation is found for each model. Model I can be used to
obtain, under certain circumstances, the rate of phosphorylation of glucose by
mini hexokinase I. Model II can be used to obtain, in certain circumstances,
the rate of phosphorylation of glucose by a mutant hexokinase I.

Finally, in Chapter 6, some brief discussion of the work presented in the
thesis is presented. It summarises the model results and suggests possible
directions for refinement and expansion of the models.
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Chapter 2

Mathematical preliminaries

In this chapter, we describe the principal mathematical tools used in the
remainder of the thesis. The theme of the thesis is the construction and anal-
ysis of mathematical models describing the action of carbohydrate enzymes.
The mathematical models will consist of coupled systems of nonlinear ordi-
nary differential equations, and will be formulated using the principle of mass
action. Hence, we give some discussion below of the concepts underlying mass
action.

The models we shall develop have quite a large number of parameters, and
values will need to be assigned to each of these to perform numerical simu-
lations. Where possible, parameter values are obtained from the literature.
Another approach is to estimate parameter values using parameter estimation
techniques in conjunction with experimental data. Hence, we shall also discuss
parameter estimation techniques.

Nevertheless, there will inevitably be some uncertainty in the values of the
parameters estimated, and so it is of value to use a sensitivity analysis to assess
the sensitivity of the model output to variations in the model parameters.
Hence, we also describe sensitivity indices and a global sensitivity analysis.
A section describing the Python software used to numerically integrate the
differential equations is also provided.

2.1 The law of mass action

In this section, we give some discussion of the law of mass action [33, 57,
58, 59]. Consider the following chemical reaction

A+B → C, (2.1)

where A and B are the reactants, and C is the reaction product. The reaction
(2.1) states that one molecule of A and one molecule of B are required to form
one molecule of C. It follows that the rate of change of the concentrations of
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A and B are the same, and they are equal to the negative of the rate of change
of C. Hence, we have

d[A]

dt
=
d[B]

dt
= −d[C]

dt
,

where [X] denotes the concentration of the reactant X. In other words,

d[A]

dt
= −v,

d[B]

dt
= −v, (2.2)

d[C]

dt
= v,

where v is called the rate of the reaction. Now v depends on the collision
frequency of A and B, and this implies that it depends on [A] and [B]. Clearly,
collisions do not take place if A or B is absent, so the rate is then zero. Hence,
we are assuming that v = v([A], [B]), where v([A], 0) = v(0, [B]) = 0. Using
Taylor’s theorem, we obtain an approximation of this function as follow

v = v(0, 0) +
∂v

∂[A]
(0, 0)[A] +

∂v

∂[B]
(0, 0)[B] +

1

2

∂2v

∂[A]2
(0, 0)[A]2

+
∂2v

∂[A]∂[B]
(0, 0)[A][B] +

1

2

∂2v

∂[B]2
(0, 0)[B]2 + · · · . (2.3)

Recall that v([A], 0) = v(0, [B]) = 0, so that

∂v

∂[A]
([A], 0) =

∂2v

∂[A]2
([A], 0) =

∂v

∂[B]
(0, [B]) =

∂2v

∂[B]2
(0, [B]) = 0.

It follows that the first nonzero term in (2.3) is

∂2v

∂[A]∂[B]
(0, 0)[A][B] 6= 0,

and we thus have
v ≈ k[A][B], (2.4)

where k is known as the rate constant and we have neglected terms higher than
order two. This expression, along with the rate equations (2.2), is the Law of
Mass Action as applied to the reaction (2.1). We now list the assumptions
underlying the Law of Mass Action.

Definition 2.1.1 ([57]). The Law of Mass Action consists of the following
three assumptions:

1. The rate, v, of the reaction is proportional to the product of the reac-
tant concentrations, with each concentration raised to the power of its
stoichiometric coefficient.
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2. The rate of change of the concentration of each species in the reactions is
the product of its stoichiometric coefficient with the rate of the reaction,
adjusted for sign (+ if product and - if reactant).

3. For a system of reactions, the rates add.

To illustrate the ideas above, we consider the following example.

Example 2.1.1. Consider a system of reactions defined by

A+ 2B
k1→ C,

C
k2→ A+ 2B,

where k1 and k2 are the rate constants for the reactions. Using the rules
described above, the governing equations of the model describing the system
are given by

d[A]

dt
= −k1[A][B]2 + k2[C],

d[B]

dt
= −k1[A][B]2 + 2k2[C],

d[C]

dt
= −k2[C] + k1[A][B]2.

Conservation laws are sometimes useful for reducing the number of kinetic
equations appearing in a system. Conservation laws are defined as follows.

Definition 2.1.2 ([57]). Given species concentrations [A], [B], [C], ..., [Z]
(functions of time t) and numbers a, b, c, ..., z then

a[A] + b[B] + c[C] + · · ·+ z[Z]

is said to be conserved if

d

dt
(a[A] + b[B] + c[C] + · · ·+ z[Z]) = 0. (2.5)

It is required that at least one of the numbers a, b, c, ..., z is nonzero, and
that (2.5) does not depend on the initial conditions and rate constants. The
corresponding conservation law is then

a[A] + b[B] + c[C] + · · ·+ z[Z] = constant.

Consider the model equations in Example 2.1.1. It is clear that

d[A]

dt
+
d[C]

dt
= 0.

Hence, a conservation law for this system is

[A] + [C] = constant.
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It should be noted that there may be many independent conservation laws for
a system; see [57] for more details.

As mentioned above, the coefficient k in (2.4) is constant. In reality, k can
depend on the conditions under which the reaction takes place [57]. For exam-
ple, the rate of a chemical reaction can depend strongly on the temperature,
and the rate of an enzymatic reaction can depend on both the temperature
and the pH level. In the current study, it is assumed that the system of interest
takes place in a medium that maintains the same conditions throughout. It is
also assumed that the concentrations of species in the system are sufficiently
high so that a probabilistic model is not required [59].

Using the Law of Mass Action and the kinetic mechanism of a system of
interest, we can develop a model consisting of ordinary differential equations
that describes the evolution of the concentrations of species in the system
in time. Normally, parameters values for the model are not available in the
literature. Another approach is to estimate the values of parameters with the
aid of experimental data. In the next section, we discuss some parameter
estimation techniques.

2.2 Parameter estimation

We now discuss methods to estimate parameters values in a model. A
particular focus here is the method of least squares, a common approach in
parameter estimation, and one that we will subsequently use in Chapter 3.
In this method, the sum of squared residuals between model outputs and
data is minimised using various optimisation algorithms, such as the Nelder-
Mead method or the Sequential Least SQuares Programming method (SLSQP)
[60, 61, 62, 63, 64].

To help fix ideas, we consider a specific example. In modelling biochemical
systems, the mathematical structure of a model is usually known, while the
parameter values remain to be determined. Let y(p, t) be the model output
that is a function of time t, and the single parameter p, and let y1, y2, ...,
ym be experimental data for the species of interest corresponding to the time
points t1, t2, ..., tm. To estimate value of the parameter p, the sum of squared
residuals

Θ =
m∑
i=1

(y(p, ti)− yi)2 (2.6)

will be minimised using algorithms available in the literature [60, 61, 62, 63, 64].
The SLSQP method uses Sequential Least SQuares Programming to minimise
a function of one or several variables with any combination of bounds, equal-
ity and inequality constraints on the parameters [65]. Theoretical algorithms
and optimisation software are available in the literature [58, 66, 67, 64, 65].
Below, we consider a simple example to illustrate this approach to parameter
estimation.
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Example 2.2.1. Given a model defined by

dy

dt
= 2at+ b, y(0) = 0, (2.7)

and experimental data given by

y1 = y(1) = 0, y2 = y(2) = 2, y3 = y(4) = 13.

To estimate values of the model parameters, we solve the equation (2.7) to
obtain a general solution as follows

y(t) = at2 + bt+ c, (2.8)

where c is a constant. Substituting the initial condition into the equation (2.8)
gives

y(0) = c = 0,

so that
y(t) = at2 + bt. (2.9)

Using (2.9) and (2.6), we now calculate the sum of squared residuals as
follows

Θ =
3∑

i=1

(y(ti)− yi)2 = 273a2 + 146ab− 432a+ 21b2 − 112b+ 173 (2.10)

where t1 = 1, t2 = 2, and t3 = 4. To minimise this Θ, we calculate

∂Θ

∂a
= 546a+ 146b− 432 = 0,

∂Θ

∂b
= 42b+ 146a− 112 = 0,

(2.11)

and solving these equations gives

a =
112

101
, b = −120

101
.

One can check that these values correspond to a minimum value of the Θ
function. Figure 2.1 compares the solution y(t) for the estimated parameter
values with the experimental data.

It should be noted that analytical solutions to ODEs are not usually avail-
able in practice, and numerical techniques need to be resorted to. Therefore,
it is rarely feasible to handle parameter estimation by direct calculation as
in Example 2.2.1. Parameter estimation is in fact usually implemented using
computational packages, such as the SciPy package for Python [68, 65]. It
should also be emphasised that there is always uncertainty in the values of the
parameters. Also, there are measurement errors in experimental data, such as
instrument and operator errors. Sensitivity analyses assist with evaluating the
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Figure 2.1: Comparison between a fitted theoretical curve and experimental data;
see Example 2.2.1

significance of errors in parameters values. Also, numerous statistical methods
have been developed to assess measurement errors; see [69, 70, 71, 72] for more
details.

In summary, to implement parameter estimation for a model, we need to
obtain analytically or numerically the solution to the model, and then create
a sum of squared residuals of the solution and experimental data. The param-
eters are then estimated using an appropriate algorithm to minimise the sum
of squared residuals.

Once values for the parameters have been obtained, it is instructive to
evaluate how variations in these values affect the model output. This can be
achieved by carrying out a global sensitivity analysis, and we discuss this next.

2.3 Global sensitivity analysis

To evaluate how variations in the values of the parameters affect model out-
put, total, first-order, second-order, and higher-order sensitivity indices may
be calculated [73]. Many theories and techniques for sensitivity analyses have
been developed [73, 74, 75, 76, 77, 78, 79, 80]. In this section, we restrict my
attention to a Sobol global sensitivity analysis. To simplify the discussion, we
develop a sensitivity analysis for a model consisting of an ordinary differential
equation.

Suppose that the model is governed by the ordinary differential equation

dy

dt
= f(y, t,p),
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where p = (p1, p2, p3) are the model parameters. Each parameter ranges over a
finite interval which may be assumed, after rescaling, to be [0, 1]. Let I = [0, 1],
I2 = [0, 1] × [0, 1], I3 = [0, 1] × [0, 1] × [0, 1], and let y(t,p) be the solution
of the model. For t = t0 fixed, we write y(p) = y(t0,p) for brevity. We now
define new functions as follows [73]:

y0 =

∫
I3

y(p)dp1dp2dp3,

y1(p1) =

∫
I2

y(p)dp2dp3 − y0,

y2(p2) =

∫
I2

y(p)dp1dp3 − y0,

y3(p3) =

∫
I2

y(p)dp1dp2 − y0,

y12(p1, p2) =

∫
I

y(p)dp3 − y0 − y1(p1)− y2(p2),

y13(p1, p3) =

∫
I

y(p)dp2 − y0 − y1(p1)− y3(p3),

y23(p2, p3) =

∫
I

y(p)dp1 − y0 − y2(p2)− y3(p3),

y123(p1, p2, p3) = y(p)− y0 − y1(p1)− y2(p2)− y3(p3)
− y12(p1, p2)− y13(p1, p3)− y23(p2, p3).

(2.12)

Integrating each of the expressions on the left hand side of (2.12)2 - (2.12)8
over the domain I gives zero. For example,∫

I

y1(p1)dp1 =

∫
I

∫
I2

y(p)dp2dp3 − y0

 dp1 =

∫
I3

y(p)dp1dp2dp3 − y0 = 0,

or ∫
I

y23(p2, p3)dp2 =

∫
I

∫
I

y(p)dp1 − y0 − y2(p2)− y3(p3)

 dp2

=

∫
I2

y(p)dp1dp2 − y0 − y3(p3) = 0,

and so on. We have the following expansion for y(p):

y(p) = y0 +
3∑

i=1

yi(pi) + y12(p1, p2) + y13(p1, p3) + y23(p2, p3) + y123(p1, p2, p3).

(2.13)
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The right-hand side of (2.13) is called the ANOVA-representation of y(p); see
[73] for a discussion of this. ANOVA is an acronym for Analysis Of Variances
[81].

Squaring (2.13) and integrating over I3, gives∫
I3

y2(p)dp1dp2dp3 − y20 =
3∑

i=1

∫
I

y2i (pi)dpi +

∫
I2

y212(p1, p2)dp1dp2

+

∫
I2

y213(p1, p3)dp1dp3 +

∫
I2

y223(p2, p3)dp2dp3

+

∫
I3

y2123(p1, p2, p3)dp1dp2dp3. (2.14)

The constants

D =

∫
I3

y2(p)dp1dp2dp3 − y20, Di =

∫
I

y2i (pi)dpi, i = 1, 2, 3,

D12 =

∫
I2

y212(p1, p2)dp1dp2 D13 =

∫
I2

y213(p1, p3)dp1dp3,

D23 =

∫
I2

y223(p2, p3)dp2dp3 D123 =

∫
I3

y2123(p1, p2, p3)dp1dp2dp3

(2.15)

are called variances, and from (2.14) it follows that

D = D1 +D2 +D3 +D12 +D13 +D23 +D123. (2.16)

It is clear that if p were a random point uniformly distributed in I3, with
the parameters p1, p2, and p3 mutually independent, then y(p), y1, y2, y3, y12,
y13, y23, and y123 would be random variables with corresponding variances D,
D1, D2, D3, D12, D13, D23, and D123, respectively. This implies that y(p)
is a random variable with mean y0 and variance D. Each variance in (2.15)
is called the partial variance corresponding to the subset of parameters; for
example, D13 is the partial variance corresponding to the subset of parameters
p1 and p3.

The Sobol global sensitivity indices are defined by

Si1···is =
Di1···is
D

, i1 < · · · < is, s = 1, 2, 3. (2.17)

For example, the first-order Sobol global sensitivity indices are defined by

Si =
Di

D

and are used to compute the first-order contribution of the ith parameter to the
output variance. The second-order Sobol global sensitivity indices are defined
by

Sij =
Dij

D
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and these measure the contribution to the variance from interaction between
the ith and jth parameters.

The total sensitivity index of a parameter pi is defined as the sum of all
sensitivity indices for the subsets of parameters that include pi. For example,

ST
2 = S2 + S12 + S23 + S123

is the total index for p2. Given the definition of the sensitivity indices in (2.17),
it is clear that the indices must sum to 1. For our particular example, we have

1 = S1 + S2 + S3 + S12 + S13 + S23 + S123. (2.18)

Below, we consider a simple example to illustrate how to calculate the global
sensitivity indices.

Example 2.3.1. We consider a specific case of the example discussed above.
The model is given by

dy

dt
= 6p21t+ 4p2p3, (2.19)

subject to

y(0) = 0,

where p1, p2, p3 ∈ I. The solution of this initial value problem is given by

y(t; p) = 3p21t
2 + 4p2p3t,

where p = (p1, p2, p3) ∈ I3.

Let y(p) = y(t = 1; p) = 3p21 + 4p2p3. Using the formulae listed in (2.12),
we now have that

y0 =

1∫
0

1∫
0

1∫
0

(3p21 + 4p2p3)dp1dp2dp3 = 2,

y1(p1) =

1∫
0

1∫
0

(3p21 + 4p2p3)dp2dp3 − 2 = 3p21 − 1,

y2(p2) =

1∫
0

1∫
0

(3p21 + 4p2p3)dp1dp3 − 2 = 2p2 − 1,

y3(p3) =

1∫
0

1∫
0

(3p21 + 4p2p3)dp1dp2 − 2 = 2p3 − 1,
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y12(p1, p2) =

1∫
0

(3p21 + 4p2p3)dp3 − 2− y1(p1)− y2(p2) = 0,

y13(p1, p3) =

1∫
0

(3p21 + 4p2p3)dp2 − 2− y1(p1)− y3(p3) = 0,

y23(p2, p3) =

1∫
0

(3p21 + 4p2p3)dp1 − 2− y2(p2)− y3(p3)

= 1− 2p2 − 2p3 + 4p2p3,

y123(p1, p2, p3) = y(p)− 2− y1(p1)− y2(p2)− y3(p3)
− y12(p1, p2)− y13(p1, p3)− y23(p2, p3) = 0.

Using the formulae listed in (2.15), we have

D =

1∫
0

1∫
0

1∫
0

(3p21 + 4p2p3)
2dp1dp2dp3 − 4 = 71/45,

D1 =

1∫
0

(3p21 − 1)2dp1 = 4/5,

D2 =

1∫
0

(2p2 − 1)2dp2 = 1/3,

D3 =

1∫
0

(2p3 − 1)2dp3 = 1/3,

D12 =

1∫
0

1∫
0

02dp1dp2 = 0,

D13 =

1∫
0

1∫
0

02dp1dp3 = 0,

D23 =

1∫
0

1∫
0

(1− 2p2 − 2p3 − 4p2p3)
2dp2dp3 = 1/9,

D123 =

1∫
0

1∫
0

1∫
0

02dp1dp2dp3 = 0.
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Therefore, the global sensitivity indices here are

S1 =
D1

D
=

4

5
× 45

71
=

36

71
,

S2 =
D2

D
=

1

3
× 45

71
=

15

71
,

S3 =
D3

D
=

1

5
× 45

71
=

15

71
,

S12 =
D12

D
= 0× 45

71
= 0,

S13 =
D13

D
= 0× 45

71
= 0,

S23 =
D23

D
=

1

9
× 45

71
=

5

71
,

S123 =
D123

D
= 0× 45

71
= 0.

We note that the model output is more sensitive to variations of the pa-
rameter p1 than to those of the parameters p2 and p3. The interaction between
the model parameters p2 and p3 modestly affects the model output. Finally,
the interactions between the parameter p1 and the other model parameters do
not affect the model output since S12 = S13 = S123 = 0.

In summary, first-order sensitivity indices quantify the main effect of their
corresponding parameter on the output. Second-order sensitivity indices are
used to quantify the contribution of the interaction between two parameters to
the output. Total sensitivity indices are used to compute the total contribu-
tion, including the main, second-order and higher-order effects, of a parameter
to the output variance. The larger a sensitivity index is, the more influential
the associated model parameter is. Although there are no distinct cutoff val-
ues defined for this type of analysis, the value of 0.05 is frequently accepted
for distinguishing important from unimportant parameters [82]. In practice, it
is difficult to directly calculate sensitivity indices, and they are usually com-
puted numerically using computational packages, such as the SALib package
for Python [83]. We discuss scientific packages for Python in the next section.

2.4 Some scientific Python packages

We now discuss the Python computational tools that are used in the re-
mainder of the thesis. Python is an object-oriented, interpreted high-level
programming language [84]. Python was created in the early 1990s by Guido
van Rossum [85, 86, 84]. The readability of a Python program is usually
high. In this section, we focus on the Python packages used for numerically
integrating differential equations, optimising parameters, computing sensitiv-
ity indices, and plotting numerical results. These packages are NumPy, SciPy,
SALib, and Matplotlib.
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2.4.1 NumPy

NumPy is the fundamental package for scientific computing with Python.
The ancestor of NumPy, Numeric, was created by Jim Hugunin, with contri-
butions from several other developers [87]. In 2005, Travis Oliphant created
NumPy by incorporating features of the competing Numarray into Numeric,
with extensive modifications [88].

NumPy has the following features:

• a powerful N-dimensional array object,

• sophisticated (broadcasting) functions,

• tools for integrating C/C++ and Fortran code,

• useful linear algebra, Fourier transform, and random number capabilities.

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-
dimensional container of generic data. Arbitrary data-types can be defined.
This allows NumPy to seamlessly and speedily integrate with a wide variety
of databases [89].

NumPy is open-source software and has many contributors. It is licensed
under the BSD license, enabling reuse with few restrictions. A very complete
manual by the principle author of NumPy, Travis Oliphant, is available for
free [89, 90].

2.4.2 SciPy

SciPy is a collection of open-source Python-based software for mathematics,
science, and engineering. In particular, it contains the following core packages
[68, 87, 90]:

• NumPy, a base N-dimensional array package;

• SciPy library, a fundamental library for scientific computing;

• Matplotlib, a comprehensive 2D plotting package;

• IPython, an enhanced interactive console;

• Sympy, Symbolic mathematics; and

• Pandas, data structures and analysis.
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SciPy contains modules for optimisation, linear algebra, integration, inter-
polation, special functions, fast Fourier transform, signal and image process-
ing, ODE solvers, and other tasks common in science and engineering [68, 87].
SciPy was created in 2001 by Travis Oliphant, Eric Jones, and Pearu Peterson
[87, 91]. The SciPy library contains a module of ODE solvers called integrate.
One of these solvers is called odeint; it uses the LSODA program [92] from the
FORTRAN library odepack, and it can be used to solve both stiff and non-stiff
systems; see [93, 94, 95, 96].

The module optimize is contained in the SciPy library, and it is commonly
used in scientific computing. This module provides several commonly used
optimisation algorithms. The module contains [97]:

1. Unconstrained and constrained minimisation of multivariate scalar func-
tions (minimise) using a wide range of algorithms, e.g. Nelder-Mead
simplex, SLSQP, etc.

2. Global optimisation routines, e.g. basinhopping, dual_annealing, etc.

3. Least-squares minimisation (least_squares) and curve fitting algori-
thms (curve_fit).

4. Scalar univariate function minimisers (minimize_scalar) and root find-
ers (root_scalar).

5. Multivariate equation systems solvers (root) using a variety of algo-
rithms, e.g. hybrid Powell, Levenberg-Marquardt, etc.

In the next section, we discuss a Python package for implementing a sensitivity
analysis.

2.4.3 SALib

SALib is an open-source Python library for implementing a sensitivity anal-
ysis. SALib was created by Jon Herman and Will Usher in 2016 [83]. To help
understand how SALib works, we consider a model

y′ = f(y, t,p), (2.20)

where p = (p1, p2, p3) are the model parameters and the range of p1, p2, p3
are [9.0, 11.0], [90.0, 110.0], and [45.0, 55.0], respectively. Let y(t,p) be the
solution of the model obtained numerically by a Python solver. To calculate
the Sobol global sensitivity indices of p1, p2, p3 at t = 1.0, we present a Python
program that consists of four main steps as follows:

• Step 1. Setup the problem for the sensitivity analysis.
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problem = {
’num_vars’: 3, # number of variables
’names’:[’p1’, ’p2’, ’p3’], # up to users
’bounds’: [[9.0, 11.0], [90.0, 110.0], [45.0, 55.0]]

}

• Step 2. Run the sample function to generate the model inputs. For a
Sobol sensitivity analysis, the sample function is saltelli.

param_values = saltelli.sample(problem, 1000)
# 1000 is the number of samples.

• Step 3. For each sample p in Step 2, we evaluate the value of the model
output y(1.0,p), and save this output. Note that SALib does not do
these calculations; for more details, see [98].

Y = np.zeros([param_values.shape[0]])
for j, X in enumerate(param_values):

Y[j] = y(1.0, X)
# y(1.0, X) must be a scalar value.
# SALib does not calculate y(1.0, X) value.

• Step 4. Run the analyze function on the output file of Step 3 to compute
the sensitivity indices.

Si = sobol.analyze(problem, Y)

Note that this Python program needs some Python libraries to perform these
four steps; for more details, see [98].

SALib contains several sensitivity analysis methods, such as Sobol [73, 99,
100], Morris [101, 77], and FAST [79, 78]. SALib is a useful and effective
package for performing global sensitivity analyses and it is very easy to use.

2.4.4 Matplotlib

Matplotlib is a Python package that contains plotting tools that can pro-
duce publication-quality figures in a wide range of formats. Matplotlib is
compatible with Python scripts and works well in the Python and IPython
shells, the Jupyter notebook, and other web application servers [102].

Using Matplotlib we can generate plots, histograms, power spectra, bar
charts, errorcharts, scatterplots, etc., with a few lines of code [103]. For easy
plotting, the pyplot module provides a MATLAB-like interface. The func-
tionality of Matplotlib is also extended by several available toolkits, such as
basemap [104] and Mplot3d; for more details, see [105].
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The analysis cycle for a system of interest may be summarised as follows.
First, using the law of mass action, we can write down ordinary differential
equation models for systems of chemical reactions. These can be numerically
solved using the odeint solver in the integrate module of the SciPy library.
Values for the model parameters can be estimated by minimising the sum of
squared residuals between the model outputs and experimental data. This may
be implemented by calling one of the optimisation algorithms of the minimize
submodule in the optimize module of the SciPy library. Once the values
of the parameters are available, we can compute sensitivity indices for the
parameters using the SALib package. Finally, Matplotlib can be used to
produce publication-quality figures for the results obtained.

27





Chapter 3

Modelling hyaluronan degradation
by Streptococcus pneumoniae
hyaluronate lyase

The research presented in this chapter has been published in the
Journal of Mathematical Biosciences [106].

Hyaluronic acid (Hyaluronan) is a linear, high molecular weight polysac-
charide that forms an important component of the extracellular matrix. It is
an excellent biomaterial, and it is increasingly being used in biotechnology,
biomedical applications, and drug delivery. Polymer chains of hyaluronan oc-
cur in many different lengths in nature, and can be as large as multiples of ten
thousand. Since the biological function of a hyaluronan chain often depends on
its molecular weight, it is of value for applications to develop reliable quantita-
tive descriptions of the degradation processes of hyaluronan. In particular, the
development of such models should assist with the rational design of produc-
tion processes to create polymer chains in a given molecular weight category
for a specific application. In this chapter, we propose a new mathematical
model for the degradation of hyaluronan by the enzyme streptococcus pneumo-
niae hyaluronate lyase. The model is based on a processive kinetic mechanism
and consists of a coupled system of nonlinear ordinary differential equations
for the species of interest. The model parameters are estimated using pub-
lished experimental data, and good agreement between theory and experiment
is found. Numerical experimentation and a Sobol global sensitivity analysis
reveal that the key model parameters are the initial enzyme concentration and
the rate constants for enzyme adsorption and catalysis.

The chapter is organised as follows. Motivation for this study is introduced
in Section 3.1. In Section 3.2, we describe the formulation of the mathematical
model. The computational methods used to analyse the model are described
in Section 3.3, and the results and discussion are given in Section 3.4. We
finish with conclusions in Section 3.5.
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Nomenclature
.

[A] - the concentration of a species A; a function of time
(units mg/ml)

D0 - the initial concentration of polymer chains of maximal
degree (mg/ml)

Di - a free hyaluronic acid (HA) polymer molecule of length
i disaccharide units

Di1i2...in - variation in model outputs w.r.t. changes in the model
parameters p1, p2, ..., pn with 1 ≤ n ≤ 5

D - variation in model outputs w.r.t. changes in all of the
model parameters

E0 - the initial concentration of enzyme (mg/ml)
E - a molecule of the enzyme Streptococcus pneumoniae

hyaluronate lyase (SpnHL)
E ×Di - a HA-enzyme complex prior to the catalytic cleavage

step
E ◦Di - a HA-enzyme complex after the catalytic cleavage step,

but prior to the translocation step
E �Di - a HA-enzyme complex after the translocation step
J(p) - sum of squares of residuals
kads - adsorption rate of enzyme molecules to HA binding

sites ((mg/ml)−1s−1)
kdes - desorption rate of enzyme molecules from HA binding

sites (s−1)
kclv - cleavage rate for the enzyme acting on a HA polymer

chain (s−1)
ktrans - rate constant for the translocation step (s−1)
krevtr - rate constant for reversing the translocation step (s−1)

p - (p1, p2, p3, p4, p5) = (kads, kdes, kclv, ktrans, krevtr), the
model parameter set

p0,p
u,pl - initial guesses, upper bounds, lower bounds

for the parameters
Ri - ratio of first-order sensitivity indices to total sensitivity

indices
Si, Sij - first-order, second-order sensitivity indices, respectively
Si1i2...in - nth-order sensitivity indices, 1 ≤ n ≤ 5

Stot
i - total sensitivity indices
t - time (s)
y - vector of model outputs, that is, concentrations of

various model species (mg/ml)
z(ti,p) - model prediction for the total concentration of

reducing ends at time ti (mg/ml)
zi - experimentally measured value for the total

concentration of reducing ends at time ti (mg/ml)
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3.1 Introduction

3.1.1 Background

Hyaluronan, also known as Hyaluronic acid, is a glycosaminoglycan that
was originally discovered in the vitreous of bovine eyes by Karl Meyer and John
Palmer in 1934 [107]. The glycosaminoglycans are a family of polysaccharides
that are composed of repeating disaccharide units. For the case of hyaluronan,
the repeating disaccharide unit is composed of the sugars D-glucuronic acid
and N-acetylglucosamine connected by a β1,3 glycosidic bond; see Figure 3.1.
These disaccharide units are in turn connected via β1,4 glycosidic bonds.

3 2

NH

COCH3

1 O C4

3

OH

2

OH

1 O

3 2

NH

COCH3

1 O C4

3

OH

2

OH
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COOH

O5

CH2OH

4

OH
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COOH

O5

CH2OH

4

OH

O

Figure 3.1: The chemical structure of hyaluronic acid. The central two units here
form the repeating disaccharide, which is composed of the sugar D-glucuronic acid
(left) and the sugar N-acetylglucosamine (right) connected by a β1,3 glycosidic bond.
These disaccharide units are connected via β1,4 glycosidic bonds.

Hyaluronan can be found in most living organisms. In the human body,
hyaluronan is present in the joints, the vitreous humor, the extracellular ma-
trix, hair follicles, the gums, and the skin [108]. Hyaluronan is known to be
involved in numerous biological processes, including inflammation, cell migra-
tion, and tumour development. Hyaluronan is a polyanion and its meshwork
is known to be capable of sterically excluding other macromolecules. Hence,
hyaluronan can play the role of a fence in protecting tissues from infection by
bacteria [108]. Hyaluronan is also known to play the role of a shock absorber
and lubricant in the body, as well as being involved in the transport of nutri-
ents. Hyaluronan is an excellent biomaterial and is being increasingly used in
biomedical applications, drug delivery, and tissue engineering [40, 109].

3.1.2 The function of hyaluronan depends on its
molecular weight

In nature, hyaluronan polymer chains occur in many different lengths. The
length of a hyaluronan polymer chain can be as large as multiples of ten thou-
sand [40], and can have a molecular weight of the order of 107 Da. Intriguingly,
it has been discovered that the biological function of a hyaluronan chain can be
dependent on its chain length [108, 110]. Hyaluronan chains of 1000 saccharides
or more have been shown to suppress angiogenesis [111], phagocytosis [112],
hyaluronan synthesis [113], and the activity of the immune system [114]. On
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the other hand, shorter hyaluronan fragments of between 10 to 40 saccharides
have been associated with CD44 cleavage (this refers to the removal via cleav-
age of the hyaluronan receptors CD44 from cell membranes) and the promotion
of tumour cell migration [115]. Intermediate molecular weight hyaluronan has
been shown to stimulate the expression of human β-defensin 2 (HBD2) in
human keratinocytes [116].

Hence, it is of value for applications to develop reliable quantitative de-
scriptions of the degradation processes of hyaluronan. In particular, the de-
velopment of such models should assist with the rational design of production
processes to generate polymer chains in a given molecular weight category for
a specific application.

3.1.3 Hyaluronan degradation and hyaluronidases

The hyaluronidases are a family of enzymes that degrade hyaluronan [117,
118, 119, 120]. Hyaluronidases primarily fall into one of the followng three
groups: eukaryotic hyaluronidases, invertebrate (leech) hyaluronidases, and
bacterial hyaluronidases. In the eukaryotic category, humans have five hyaluro-
nidases: HYAL1, HYAL2, HYAL3, HYAL4, and HYAL5 [118]. Almost all
bacterial hyaluronidases degrade hyaluronan using an elimination mechanism,
and so these enzymes are sometimes referred to as hyaluronan lyases.

Streptococcus pneumoniae is a pathogenic bacterium that is usually present
in the upper respiratory tract of humans. It is responsible for many human
diseases, including pneumonia, septicemia, otitis media, and bacterial menin-
gitis [121]. Streptococcus pneumoniae hyaluronate lyase (SpnHL) [122, 123] is
a surface enzyme of the Streptococcus pneumoniae bacterium that facilitates
the invasion of the organism into animal tissue by degrading the connective
tissue of the host, primarily hyaluronic acid [124].

3.1.4 The degradation mechanism of hyaluronan by
SpnHL

The mechanism we outline here for the degradation of hyaluronan by
SpnHL is based on work described in [7, 125, 126, 127, 39, 11]. The overall
degradation mechanism is illustrated schematically in Figure 3.2; it may also
be helpful to refer to Figure 3.5 here. The degradation process is processive
and can be broken into five distinct steps as follows.

(i) A random binding step. An SpnHL enzyme randomly binds a hyaluronan
chain; see [7] for structural details.

(ii) A catalytic step. The SpnHL enzyme cleaves a glycosidic β1,4 bond in the
hyaluronan chain to create a truncated bound chain and an unreleased
degradation product.
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Figure 3.2: Adapted from [7]. Schematic of the overall processive degradation mech-
anism of hyaluronan by SpnHL. An SpnHL enzyme (E) initially randomly binds with
a hyaluronan polymer chain substrate (S) to form an enzyme-polymer composite
structure (ES). Following catalysis, the enzyme-polymer composite has been trans-
formed to a truncated bound polymer subtrate with an unreleased product (EPD).
The initial product (D) consists of an integer multiple of disaccharide units. The
product (D) is then released to leave the truncated bound polymer substrate chain
(EP ). The enzyme then translocates along the truncated polymer substrate by one
disaccharide unit toward the non-reducing end to recover the original bound state
(ES). The process then repeats until the remaining polymer chain has been fully
degraded, with all subsequent degradation products being single unsaturated disac-
charide units.

(iii) Hydrogen exchange. During the catalytic step, the enzyme exchanges a
hydrogen with the local water microenvironment; see [7] for structural
details.

(iv) Product release. The degradation product is cleaved off from the hyaluro-
nan chain to leave a bound truncated polymer. The degradation product
for the first round of catalysis consists of an integer multiple of disac-
charide units. All subsequent rounds of catalysis will produce a single
unsaturated disaccharide degradation product (see Figure 3.3), as ex-
plained in the next step.

(v) A translocation step. The enzyme then translocates along the truncated
polymer substrate by one disaccharide unit toward the non-reducing end
to recover the original bound state. The process then repeats (move
back up to step (ii)) until the remaining polymer chain has been fully
degraded, with all subsequent degradation products being single unsat-
urated disaccharide units.

3.1.5 Some previous modelling studies

The literature for the mathematical modelling of hyaluronan degradation
is not as well developed as that for cellulose [128, 129, 130], for example. Nev-
ertheless, there are some mathematical studies that describe processive enzy-
matic mechanisms [131, 132, 133, 134]. The model described in [134] for cel-
lulose degradation is particularly noteworthy. Like the model considered here,
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Figure 3.3: The chemical structure of an unsaturated disaccharide unit. Unsaturated
discaccharide units are the end product of hyaluronan degradation by SpnHL.

it is deterministic and explicitly incorporates a processive enzymatic mecha-
nism. However, there are also significant differences with our modelling. For
example, the model in [134] incorporates a steady-state assumption, whereas
our model retains the full non-equilibrium equations. In the model we shall
present, the initial binding step is random, so that there are numerous possi-
bilities for the initial degradation product. Degradation then proceeds in the
direction of the non-reducing end until the enzyme dissociates or the remain-
ing fragment is degraded. In the model described in [134], there is no random
binding step, and degradation proceeds for a fixed number n catalytic steps,
where n corresponds to an experimentally measured mean processivity. In
short, the equations we shall present capture more of the mechanistic detail of
degradation by the lyase SpnHL [7], at the expense of a more complex model.

3.2 The mathematical model

In this section, we develop the mathematical model describing the degra-
dation of hyaluronan by the hyaluronidase SpnHL. The model is detailed and
tracks the evolution of the concentration of polymer chains of every possible
degree in the mixture, from single disaccharides to chains of maximal length.
We begin by listing our modelling assumptions.

3.2.1 Modelling assumptions

(a) It is assumed throughout that the degradation mixture of hyaluronan and
SpnHL is well-stirred. This implies that diffusive effects in the degrada-
tion process can be neglected, and that the concentrations of the various
species in the mixture can be described by functions of time only. This
further implies that the evolution of the system can be modelled by a
coupled system of nonlinear ordinary differential equations, and that a
partial differential equations model is not required.
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- Reducing endE

Binding
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Catalytic
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(a)

E ◦D6

(b)

E ⋄D6

(c)

E ×D6

(d)

Figure 3.4: Diagrammatic representations for the three bound states of the enzyme
and polymer that the mathematical model considers. (a) E: an enzyme molecule
with a binding domain and a catalytic domain. (b) E ◦ D6: an enzyme molecule
bound to the reducing end of a polymer fragment of degree six. (c) E�D6: an enzyme
molecule bound to the disaccharide immediately to the left of the reducing end of
the polymer fragment. During the processive phase of the degradation process, the
enzyme cycles between an E ◦D and an E �D state. (d) E ×D6: The four possible
states in which the polymer is bound to any of the four other binding sites of the
polymer fragment. These states are required in the modelling to take account of the
fact that the initial binding step is random.
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E ◦D2 +D1 +

E ⋄D2
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Figure 3.5: An example illustrating the degradation process of hyaluronan by
SpnHL. An enzyme E binds to a polymer chain consisting of eight disaccharide
units D8 to create the bound state E × D8. In the particular example here, the
enzyme happens to bind to the sixth disaccharide in the chain, counting from the
reducing end. The enzyme cleaves a β1,4 bond to create a bound state E ◦D3 and a
product D5 as shown. From this point forward, the degradation is processive. The
enzyme translocates one disaccharide unit along the polymer chain to arrive at the
state E �D3. The enzyme then cleaves a β1,4 bond to create a bound state E ◦D2

and an unsaturated disaccharide product D1. Following another translocation and
degradation step, the polymer chain is degraded.
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(b) We assume mass action kinetics throughout; this implies that the rate of
a reaction is taken to be proportional to the product of the concentrations
of the reactants. We emphasise here that more complex formulae, such
as the Michaelis-Menten formula for the rate of product formation in an
enzyme-catalysed reaction, are derivable from more fundamental mass
action considerations under simplifying assumptions [18].

(c) We assume that the probability of an SpnHL enzyme binding with a
polymer chain is proportional to the length of the polymer chain.

(d) The mechanism of Hyaluronan degradation by SpnHL is described in
section 3.1.4 above. The mathematical model incorporates the following
features: a random binding step, a combined catalytic and product re-
lease step, and a translocation step; see Figure 3.5. In the modelling,
we allow for three distinct states for enzyme binding to the polymer, as
shown in Figure 3.4. These are:

– E ◦ Di: the configuration in which the enzyme is bound to the
reducing end of a polymer chain with i disaccharides (Figure 3.4
(a));

– E � Di: the configuration in which the enzyme is bound to the
disaccharide unit immediately to the left of the reducing end (Figure
3.4 (b));

– E ×Di: the i − 2 configurations in which the enzyme is bound to
any one of the other i − 2 binding sites on the chain (Figure 3.4
(c)).

The character of the degradation process forces us to take account of
these three states in the mathematical modelling, as we now explain.
When the degradation process is in the processive phase, with the enzyme
moving toward non-reducing end of the chain cleaving one dissacharide
at a time, the system alternates between the configurations E ◦ D and
E �D. However, a third configuration, E×D, is required to take account
of the fact that the initial binding step is random, so that the initial
degradation product can be larger than a single disaccharide. In Figure
3.5, we illustrate the degradation mechanism with a particular example.

(e) The binding and translocation steps are taken to be reversible. The
combined catalytic and product release step is assumed to be irreversible.

(f) The model only allows for one enzyme to be bound to a polymer chain
at a time.
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Figure 3.6: The chemical reaction networks defining the mathematical model. Net-
work (3.2) describes the degradation of a polymer fragment with just two disaccha-
rides. Networks (3.3) and (3.4) need to be considered in combination, and describe
the degradation of polymer fragments with three or more disaccharides. In (3.3) and
(3.4), we have i ≥ 3, j < i, and j ≥ 2.
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3.2. The mathematical model

3.2.2 Construction of the governing ordinary differential
equations

The complete set of governing equations for the model can be found in
Appendix A. It is not necessary to discuss all of these equations here. However,
we do briefly discuss two of them to illustrate how the governing equations are
constructed. The chemical reaction networks for the model are displayed in
Figure 3.6.

We begin by considering the equation for Dj where 3 ≤ j < N and where
DN is a chain of maximal length. This is given by

d[Dj]

dt
=

1︷ ︸︸ ︷
−j kads[E] [Dj] +

2︷ ︸︸ ︷
kdes[E �Dj] +

3︷ ︸︸ ︷
kdes[E ×Dj] +

4︷ ︸︸ ︷
kclv

N∑
i=j+1

1

i− 2
[E ×Di]

where

1○ - this term accounts for the reduction in concentration of Dj due to
enzyme binding. The j term is included here because the probability
of enzyme binding is assumed to be proportional to the length of the
polymer chain.

2○ - the increase in concentration of Dj due to enzyme unbinding from the
complex E �Dj.

3○ - the increase in concentration of Dj due to enzyme unbinding from the
complex E ×Dj.

4○ - the increase in concentration of Dj due to the creation of degradation
products Dj by the enzymatic cleavage of the complexes E ×Di, where
i = j+ 1, j+ 2, ...., N . The 1/(i− 2) term is included here because there
are i− 2 possible configurations for each E ×Di, and only one of these
will produce the degradation product Dj.

It should be noted that E ◦ Dj terms do not appear in the above equation
since it is assumed that enzyme may not unbind from the complexes E ◦Dj.

Next consider the equation for the enzyme E, given by

d[E]

dt
=

a︷ ︸︸ ︷
−kads[E]

(
N∑
i=1

i[Di]

)
+

b︷ ︸︸ ︷
ktrans[E ◦D1]

+

c︷ ︸︸ ︷
kdes

(
N∑
i=2

[E �Di]

)
+

d︷ ︸︸ ︷
kdes

(
N∑
i=3

[E ×Di]

)
where
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a○ - this term accounts for the reduction in the free enzyme concentration
due to enzyme binding with polymer chains. The i factor here is in-
cluded because the probability of an enzyme binding to a polymer chain
is assumed to be proportional to the length of the chain.

b○ - the increase in the concentration of E due to enzyme unbinding from
the complex E ◦D1.

c○ - the increase in the concentration of E due to enzyme unbinding from
the complexes E �D2, E �D3, ..., E �DN .

d○ - the increase in the concentration of E due to enzyme unbinding from
the complexes E ×D3, E ×D4, ..., E ×DN .

The remaining equations listed in Apppendix A are interpreted similarly.
These equations are solved subject to the initial conditions

[E](t = 0) = E0,

[DN ](t = 0) = D0,

[Di](t = 0) = 0, 1 ≤ i ≤ N − 1,

[E ×Di](t = 0) = 0, 3 ≤ i ≤ N,

[E �Di](t = 0) = 0, 2 ≤ i ≤ N.

[E ◦Di](t = 0) = 0, 1 ≤ i ≤ N,

where E0, D0 give the initial concentrations of enzyme and polymer chains of
degree N , respectively. Notice here that we have chosen all of the polymer
chains to have the same initial length N . Of course this is not realistic as we
expect there to be some distribution of initial chain lengths in the mixture. In
this context, our choice of N may be interpreted as the average initial length
of the chains. However, we did carry out some numerical experiments for
distributions of initial lengths for the polymer chains, and found that changing
the character of the assumed initial conditions typically only had a weak effect
on the values estimated for the key model parameters.

3.3 Computational methods

In this section, we describe the computational tools used to analyse the
model equations. The software developed for this chapter was coded using the
Python programming language [135].

3.3.1 Numerical solution of the ordinary differential
equations

The system of differential equations was numerically integrated using the
odeint solver in the module integrate of the SciPy library. SciPy [136] is an
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open source Python library that contains numerical routines for applications
in science and engineering. The odeint solver [137] uses the LSODA program
[138] from the FORTRAN library odepack, and it is capable of solving both
stiff and non-stiff systems.

3.3.2 Parameter estimation

Experimental data

The parameter values were estimated with the aid of experimental data
taken from the paper by Rapport et al. [11]. In their study, the type II
strain D39R of streptococcus pneumoniae was used and sodium hyaluronate
was sourced from umbilical cord. The incubation experiments were carried out
at a temperature of 37° C and at a pH of 5.0; we emphasise here that the rate
constants appearing in the mathematical model will in general depend on these
two variables. Hence, it should be borne in mind that the parameter estimates
we obtain are tied to the conditions of the incubation experiments. In [11],
the progress of the degradation was quantified by measuring the concentration
of reducing sugar in the incubation mixture. As the degradation proceeds,
the concentration of reducing sugars increases. In the experiments, the initial
concentrations of hyaluronate and enzyme were D0 = 10.0 mg/ml and E0 =
1.0 mg/ml, respectively.

The method for parameter estimation

The experiments measure the total concentration of reducing ends, and
so this is the quantity we work with in the estimation process. The total
concentration of reducing ends is given in the model by

z(t;p) =
N∑
i=1

[Di](t) +
N∑
i=1

[E ◦Di](t) +
N∑
i=2

[E �Di](t) +
N∑
i=3

[E ×Di](t)

where p is the vector of model parameters. We denote the experimental data
points by (ti, zi) for 1 ≤ i ≤ m, where the zi are the experimental measure-
ments for the concentrations of the reducing ends, and the ti are the corre-
sponding times of measurement. We then form the following sum of squares
of residuals

J(p) =
m∑
i=1

(z(ti,p)− zi)2. (3.5)

The vector of model parameters p is estimated by finding the vector p that
minimises (3.5). This is a non-trivial minimisation task since the z(ti,p) here
are determined by solving an initial value problem for a system of nonlinear
ordinary differential equations (see Appendix A).

The minimisation was carried out using the routine minimize [139] in the
module optimize of the SciPy library. The routine is provided with a set
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of initial guesses p0 for the parameters, as well as a set of parameter lower
bounds pl and upper bounds pu. For a given p, J(p) is calculated by calling
the odeint solver (see Section 3.3.1) to calculate the z(ti,p). The routine
used the Sequential Least SQuare Programming (SLSQP) [62, 140] method to
perform the minimisation.

3.3.3 Global sensitivity analysis

A Sobol global sensitivity analysis was implemented to evaluate the im-
portance of the various parameters appearing in the model [75, 73]. A Sobol
analysis enables us to quantify how variations in the model parameters p =
(pi) = (kads, kdes, kclv, ktrans, krevtr) affect the model output. This is achieved
via the calculation of sensitivity indices. The model considered in this chapter
has the structure y = f(p, t), where the inputs are the model parameters p
and the time t, and the output y is a vector that gives the model predictions
for the concentrations of the various species in the incubation mixture at time
t. In the current chapter, we consider the effect on the output for the dis-
accharide concentration only, since disaccharides form the end product of the
degradation process here.

For the parameter pi, the associated first-order sensitivity index Si is given
by

Si =
Di

D
,

where Di is the variation of the model output with respect to changes in the
parameter pi, and D is the variation in the model output with respect to
changes in all of the model parameters p. For brevity, we do not explicitly
display the formulae for Di and D here; the details can be found in [75].
These first-order indices represent the effect of an individual parameter pi on
the output without interactions with the other parameters.

For the pair of parameters pi and pj (i 6= j), the associated second-order
sensitivity index Sij is given by

Sij =
Dij

D
,

where Dij is the variation of the model output with respect to changes in
the parameters pi and pj. This index measures the effect of the interaction
between the parameters pi and pj on the model output. These ideas generalise
in an obvious way for a set of parameters pi, pj, ...., pk, where we define the
sensitivity index

Sij...k =
Dij...k

D
,

and where Dij...k is the variation of the model output with respect to the
parameters pi, pj, ...., pk. The index Sij...k measures the effect of the interaction
between the parameters pi, pj, ...., pk on the model output.
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The total sensitivity index, Stot
i , is the sum of all of the indices involving the

parameter pi, without repetition. It gives a measure for the total effect of the
parameter pi. Rather than display a rather opaque general formula ([75]) for
Stot
i , it is more instructive here to illustrate the idea with particular examples.

If there are three parameters in total p1, p2, p3, then

Stot
1 = S1 + S12 + S13 + S123.

For four parameters p1, p2, p3, p4, we have

Stot
2 = S2 + S12 + S23 + S24 + S123 + S234 + S124 + S1234.

Notice here that we have included S12, but not S21 = S12, and so on.

If it is found that the values Stot
i and Si are close, then the higher order

indices are small, and this implies that interactions between the parameter pi
and the other model parameters do not significantly affect the model output.

For this chapter, the sensitivity analysis was implemented computationally
using the Python package SALib [83, 141].

3.3.4 Polymer molecular weight averages

Knowledge of the molecular weight of polymer chains is useful in under-
standing the properties of a polymer, such as its mechanical strength, its sol-
ubility, or its chemical resistance. A polymeric material is generally a mixture
of molecules differing in degree of polymerisation. As a result, some concepts
of average molecular weights have been established to measure the molecular
weight of a polymer material. Nowadays, number average molecular weightMn

and weight average molecular weight Mw are two important average molecu-
lar weights widely recognised and used; whereas two higher average molecular
weights Mz and Mz+1 tend to be used in measuring the motion of polymer
molecules [142, 143].

Mathematical expressions for these average molecular weights are given by

Mn =

∑
NiMi∑
Ni

, (3.6)

Mw =

∑
NiM

2
i∑

NiMi

, (3.7)

Mz =

∑
NiM

3
i∑

NiM2
i

, (3.8)

Mz+1 =

∑
NiM

4
i∑

NiM3
i

, (3.9)

where Mi is the molecular weight of a chain and Ni is the number of chains of
that molecular weight per ml. The formulae used to calculate the Ni and the
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Mi are given by:

N1 =
[D1(t)]

m
+

[E ◦D1(t)]

mE +m
,

N2 =
[D2(t)]

2 ·m +
[E ◦D2(t)] + [E �D2(t)]

mE + 2 ·m ,

Ni =
[Di(t)]

i ·m +
[E ◦Di(t)] + [E �Di(t)] + [E ×Di(t)]

mE + i ·m , i ≥ 3,

Mi = i ·m, i ≥ 1,

where m = 401.30 Da is the molecular weight of a disaccharide unit, and
mE = 8.3× 104 Da is the molecular weight of the SpnHL enzyme.

From the expressions above, it follows that

Mn < Mw < Mz < Mz+1. (3.10)

Additionally, the polydispersity index (PDI) is widely used to describe the
width of a molecular weight distribution for a polymer, and is given by

PDI =
Mw

Mn

. (3.11)

The bigger the polydispersity index is, the wider the molecular weight distri-
bution is. A monodisperse polymer is a polymer with chains of equal length,
such as a protein, so that PDI = 1.

3.4 Results and discussion

3.4.1 Parameter estimation; comparison with
experimental data

In Section 3.3.2, we give a discussion of experimental data and the method
used to estimate the model parameters. We display the parameter values ob-
tained in Table 3.1. These parameter values are appropriate for a temperature
of 37°C and a pH of 5.0 [11], as dictated by the conditions of the experiments.
Computational details such as the initial guesses and bounds for the param-
eters when calling the minimize routine can be found in the Appendix A. In
the table, we display estimates for the parameters for a number of different
values of N , where N gives the initial length of the polymer chains. Of course,
under real experimental conditions, there will be a distribution of initial poly-
mer chain lengths. Hence, we envisage that in the modelling presented here,
N corresponds to the average of the initial polymer degree. In our numeri-
cal calculations, we found that the estimates for the parameters were rather
insensitive to the values of N provided N > 100; in Table 3.1, compare the
values for N = 80 and N = 150.
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Table 3.1: Estimates for the parameter values obtaining by fitting with the exper-
imental data of [11]. These values are appropriate for a temperature of 37°C and a
pH of 5.0. Results are shown here for various values of N , the initial length of the
polymer chains. The computational details can be found in the Appendix A.

N kads kdes kclv ktrans krevtr
(Molar−1hr−1) (hr−1) (hr−1) (hr−1) (hr−1)

60 1.488× 104 3.001× 102 3.241× 103 2.116× 103 56.91
70 1.243× 104 2.178× 102 3.022× 103 2.249× 103 18.16
80 1.004× 104 1.082× 102 2.693× 103 2.099× 103 6.804
150 9.998× 103 1.094× 102 2.695× 103 2.097× 103 4.701
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Figure 3.7: Comparing theory and experiment for the degradation of hyaluronan
by bacterial hyaluronidases. (a) A theoretical curve generated by the mathematical
model developed here fitted to experimental data taken from [11]; see the main text.
: Experimental data points for pneumococcal enzyme. : The theoretical curve.

(b) The same theoretical curve as in part (a) compared with (not fitted to) experi-
mental data taken from [39]; see the main text. The symbols give the experimental
data points for various enzymes. : Staphylococcal enzyme. : Pneumococcal en-
zyme. : Streptococcal enzyme. : Clostridium welchii enzyme. : The theoretical
curve.

In Figure 3.7 (a), we illustrate the results of the fitting process graphically.
In this figure, we show a theoretical curve generated by the model fitted to
experimental data taken from [11]. The parameters values that give the fitting
can be found in Table 3.1 with N = 150. It is evident that the correspon-
dence between theory and experiment is very good here, though this is hardly
surprising here given that the parameter values were obtained by fitting the
theoretical curve to this data. The units on the y axis of Figure 3.7 (a), reduc-
ing ends as glucose mg/ml, were those used in [11, 39]. A particular example
serves to clarify their meaning - a value of 2 on this scale corresponds to that
concentration of reducing ends in the incubation mixture that has the same
reducing strength as a solution of 2 mg/ml of glucose. Unfortunately, due to a
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paucity of kinetic studies for SpnHL, there is no data we can directly compare
the values in Table 1 with. However, there is quite an extensive literature on
the degradation of cellulose, and some of the relevant parameters found for
the cellulose models have the same order of magnitude as those displayed in
Table 1; see, for example, [129, 130]. It should be said though that cellulose
degradation is quite different to the system currently under consideration, so
that such comparisons should be treated with caution.

In Figure 3.7 (b), we compare the same theoretical curve as that shown in
(a) with experimental data taken from a different paper [39]. The conditions
for the experiments in this paper are the same as those for [11]. However, in
[39], experiments for four bacterial enzymes are considered, including strep-
tococcus pneumoniae. We note again a good correspondence between theory
and experiment, despite the fact that we are now not fitting the data to a
theoretical curve. These results suggest that the degradation mechanism for
streptococcus pneumoniae described here may be applicable to other bacterial
enzymes as well.

While the correspondence between theory and experiment exhibited in Fig-
ure 7 (b) is gratifying and suggestive, more experimental data for streptococ-
cus pneumoniae is required for model validation. In particular, data obtained
under differential experimental conditions is required to properly assess the
predictive capabilities of the model; for example, experiments with different
initial concentrations for the enzyme or polymer.
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Figure 3.8: Plots of the average molecular weights and polydispersity index as
functions of time. In this figure, the parameter values used to generate the numerical
curves are given in Table 3.1 for N = 150. (a) The average molecular weights as
given by the formulae (3.6), (3.7), (3.8), and (3.9). (b) The polydispersity index as
a function of time given by the formula (3.11).

In Figure 3.8 (a), we plot the average molecular weights of the degrading
polymer as functions of time using the formulae (3.6), (3.7), (3.8), and (3.9).
It is immediately clear from the figure that the inequalities (3.10) are satisfied.
The curves were generated using the parameter values in Table 3.1 forN = 150.
In Figure 3.8 (b), we plot the corresponding polydispersity index as a function
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of time given by (3.11). Recall that the polydispersity index gives a measure of
the broadness of the distribution of the molecular weight of a polymer sample.
In Figure 3.8 (b), we see that the initial and final states are monodisperse,
and that the maximum dispersity occurs after about one hour. Finally, Figure
3.9 shows concentrations of five groups of oligomers of disaccharides for the
times t = 0, 0.5 and 1 hour. The behaviour exhibited is as expected with chain
lengths decreasing in time.
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Figure 3.9: Concentrations of five groups of oligomers of disaccharides at times
t = 0, 0.5, and 1 hour. The parameter values used to generate the numerical solutions
are given in Table 3.1 for N = 150.

3.4.2 Global sensitivity analysis (GSA)

The Sobol global sensitivity analysis employed is discussed in Section 3.3.3,
and was implemented using the SALib package with default parameters [83].
Our model has the structure y = f(p, t), where the inputs are the model
parameters p and the time t, and the output y gives the model predictions for
the concentrations of the species at time t. In the current study, we evaluate
the effect on the output for the disaccharides only, and we calculate sensitivity
indices for the times t = 1 hour, 2 hours, 3 hours, 4.5 hours, and 6 hours. Given
the high computational cost of implementing a GSA here, we have chosen to
use the modest values N = 35 and 40 for the initial lengths of the polymer
chains. However, we shall see that the values of the sensitivity indices in our
calculations are weakly dependent on the value chosen for N .

We display some of the results of the sensitivity analysis in Figure 3.10 and
Figure 3.11. In all cases, the sensitivity indices for krevtr are so small as to be
difficult to see close to the x axis of the plots. Hence, we guess that the reverse
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Figure 3.10: First order sensitivity indices (on the left) and total sensitivity indices
(on the right) for the model parameters. Here the initial length of the polymer chains
is N = 35. We see here that the first-order values and the total values are close so
that parameter interactions do not significantly impact the model output here.

translocation step could be removed from the mathematical model developed
here without significantly affecting the model output. However, the other four
parameters kads, kdes, kclv, ktrans do significantly affect model output, with
the adsorption and catalytic parameters being the most important, and the
desorption parameter being the least important. It is also evident that the
sensitivity indices are functions of time, with the values of kads in particular
rising significantly as the polymer degradation proceeds.

These results are supported in detail by the numerical curves for the dis-
accharide concentrations displayed in Figure 3.12. In this figure, the default
parameter values used to generate the numerical curves are given in Table 3.1
for N = 150. Also, the initial concentration for the polymer is 10 mg/ml
and the initial concentration for the enzyme is 1 mg/ml. The details of how
the six plots in this figure are generated are explained in the figure caption.
Inspecting the curves in these six plots, it appears from Figure 3.12 (f) that
the output is most sensitive to variations in the initial enzyme concentration.
However, variations in the initial enzyme concentration did not form part of
our sensitivity analysis, and so we cannot compare it to our sensitivity results.
Of the remaining five plots, Figure 3.12 (a) and Figure 3.12 (c) show the largest
variation in behaviour, and these correspond to varying the values of kads and
kclv, respectively. This is consistent with the results of our sensitivity analysis
where we have seen that kads and kclv have the largest sensitivity indices. On
the other hand, the curves in Figure 3.12 (e) show the least variation, and these
correspond to variations in the values of krevtr. This is again consistent with
our sensitivity analysis where we have seen that krevtr has by far the smallest
sensitivity indices.
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Figure 3.11: First order sensitivity indices (on the left) and total sensitivity indices
(on the right) for the model parameters with N = 40. We see that the behaviour
here is similar to that exhibited in Figure 3.10 which has N = 35, although there
are perceptible differences in the values.

3.4.3 Other results

The mathematical model developed here is detailed and tracks the evolution
in time of the concentration of all polymer fragments up to maximal degree.
In Figure 3.13, we plot numerical solutions of the mathematical model for
the concentrations of the polymer fragments D2, D3, D4, and D5. We note
from these plots that the peak concentrations for the longer fragments occur
at earlier times, as would be expected. In Figure 3.14, we plot concentrations
of polymer fragments of various lengths, and for various initial concentrations
of enzyme. We note again the strong dependence of the behaviour on the
initial concentration of enzyme. This is of particular interest since the initial
concentration of enzyme is a variable that is in principle under the control of
the experimentalist/manufacturer.

Another quantity of interest here is the enzyme processivity. Following
[134], we introduce the concept of a theoretical processivity, which is defined
to be the mean number of sequential catalytic steps that would be performed
on an infinitely long and uniform substrate strand. This number gives a mea-
sure for the actual processivity, the average number of catalytic steps for the
real polymer substrate. Denoting the theoretical processivity by ntheo, and
assuming that ntheo � 1, it is demonstrated in [134] that

ntheo ≈
kdes + kclv

kdes
,

where we recall that kdes, kclv are the desorption and catalytic rate constants,
respectively. For the current analysis, we found that for N = 150 and the
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Figure 3.12: Numerical solutions of the mathematical model for disaccharide concen-
trations ([D1]). These solutions support and illustrate the findings of the sensitivity
analysis. In this figure, the default parameter values used to generate the numerical
curves are given in Table 3.1 for N = 150. Also, the initial concentration for the
polymer is 10 mg/ml and the initial concentration for the enzyme is 1 mg/ml. One
parameter at a time is changed to generate the six plots in the figure. So, for exam-
ple, to generate (a), all of the parameters are fixed at their default values, except for
kads, which takes the values (default value)-70%[ ], (default value) [ ], (default
value)+70%[ ]. In (b), all of the parameters are fixed at their default values, ex-
cept for kdes, which takes the values (default value)-70%[ ], (default value) [ ],
(default value)+70%[ ], and so on. We have (a) varying kads, (b) varying kdes, (c)
varying kclv, (d) varying ktrans, (e) varying krevtr, and (f) varying E0.
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Figure 3.13: Numerical solutions of the mathematical model for the concentra-
tion of tetrasaccharides ([D2]), hexasaccharides ([D3]), octasaccharides ([D4]), and
oligomers of five disaccharides ([D5]). The parameter values used to generate the
curves are the same as the default values used for Figure 3.12.

experimental conditions descried in Section 3.2.1, we have kdes = 1.094 × 102

hr−1, kclv = 2.695× 103 hr−1, so that ntheo ≈ 26.

3.5 Conclusions

Hyaluronan is a natural biopolymer that has numerous biomedical and
industrial applications. The physiological function of hyaluronan chains can
depend on their polymer degree. Hence, from the point of view of applica-
tions, the development of reliable mathematical models for the degradation
of hyaluronan is clearly desirable. In this chapter, we develop the first de-
tailed mathematical model for the degradation of hyaluronan by the bacterial
hyaluronidase streptococcus pneumoniae. The model parameters values were
estimated using available experimental data, and good agreement between
theory and experiment was found. Furthermore, good agreement between the
theory and hyaluronan degradation for other bacterial hyaluronidases was also
seen, suggesting that the model may have wider applicability. Nevertheless, it
should also be noted that additional experimental data is required for complete
model validation. The model was further analyzed using numerical experimen-
tation and a Sobol global sensitivity analysis, and it was found that the model
output was most sensitive to the initial concentration of enzyme and the rate
constants for enzyme adsorption and catalysis.

The model presented in the current study may be further refined. For
example, it is known that hyaluronan in solution may adopt secondary and
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hyaluronate lyase
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Figure 3.14: Numerical solutions of the mathematical model for the concentrations
of the polymer fragments (a) D2, (b) D3, (c) D4, (d) D5, (e) D100, and (f) D150.
The parameter values used here are the same as the default values used in Figure
3.12, except for the initial concentration of enzyme. Each of the six plots has three
curves corresponding to three different initial concentrations for the enzyme, these
being 0.5 mg/ml [ ], 1.0 mg/ml [ ], and 1.5 mg/ml [ ].
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tertiary structures [144, 145]. It is likely that these structures may affect
the accessibility of some of the glycosidic bonds for the enzyme. Such effects
have implications for the parameters in our modelling [146]. It is probable
that some of the model parameters we are estimating are in fact effective
parameters that implicitly incorporate effects not explicitly modelled. These
issues could form the basis of future interesting studies that incorporate more of
the mechanistic details of the degradation process. Another issue that requires
further experimental and theoretical investigation is enzyme inhibition. In the
current study, we assume that enzyme activity remains constant throughout
the degradation process. However, many enzymatic degradation processes for
polysaccharides are known to be subject to various inhibitory processes, and
such effects may also play a role in the current context.

The analysis presented in the current study shows that the rate at which
degradation proceeds is strongly dependent on the initial concentration of en-
zyme. The initial enzyme concentration is of particular interest since this
quantity is potentially under the control of experimenters. Using numerical
experimentation, quantitative insight into the relationship between the initial
enzyme concentration and the rate of degradation has been established. This
information should assist with the future design of degradation experiments
for the SpnHL/hyaluronan system.
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Chapter 4

Modelling the phosphorylation of
glucose by human hexokinase I

The content of this chapter was submitted to the

Journal of Mathematical Biology

In this chapter, we have developed a comprehensive mathematical model
to describe the phosphorylation of glucose by the enzyme hexokinase I. Glu-
cose phosphorylation is the first step of the glycolytic pathway, and as such
it is carefully regulated in cells. Hexokinase I phosphorylates glucose to pro-
duce glucose-6-phosphate, and the cell regulates the phosphorylation rate by
inhibiting the action of this enzyme. The cell uses three inhibitory processes
to regulate the enzyme: an allosteric inhibitory process, a competitive prod-
uct inhibitory process, and a competitive inhibitory process. Surprisingly, the
cellular regulation of hexokinase I is not yet fully resolved, and so in this
chapter we have developed a detailed mathematical model to help unpick the
behaviour. Numerical simulations of the model produce results that are con-
sistent with the experimentally observed behaviour of hexokinase I. A global
sensitivity analysis of the model was implemented to help identify the key
mechanisms of hexokinase I regulation. The sensitivity analysis also enabled
the development of a simpler model that produces output close to that of the
full model. The computational software developed for this chapter has been
made available in the Appendix B and online.

4.1 Introduction

Glucose is a major source of energy for most living organisms. Glucose
glycolysis is a key pathway for the production of energy in a cell, and gly-
colytic intermediates form precursors for the biosynthesis of other key cellular
constituents, such as glycogen, nucleotide sugars, and hyaluronan. The first
step of glycolysis is the transformation of glucose into glucose-6-phosphate.
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Chapter 4. Modelling the phosphorylation of glucose by human hexokinase I

This is achieved via a phosphorylation that is catalysed by an enzyme called
hexokinase. There are four isozymes of hexokinase found in mammalian tis-
sue [147, 148], and these are usually referred to as hexokinase I, II, III, and
IV (glucokinase). The molecular weights for hexokinase I, II, and III are all
approximately 100 kDa. However, hexokinase IV is a smaller molecule, with a
molecular weight of approximately 50 kDa [149].

Previous studies have identified some of the functions and expression levels
for the various hexokinase isoforms. Hexokinase I is present in all tissues,
where it regulates the rate-limiting step of glycolysis; the mechanism of this
regulation forms the topic of the current study. It is the predominant form
present in brain cells and red blood cells [150, 151]. Hexokinase II is known to
be highly expressed in skeletal muscle and adipose tissue [152, 153]. Hexokinase
III is typically present at low levels in most tissues, with the highest levels being
found in the lung, the kidney, and the liver [154, 155, 156]. Finally, glucokinase
is primarily expressed in hepatocytes and pancreatic β cells [157, 158].

Hexokinase I and II can bind to the outer membrane of mitochondria, a
process that has been associated with the prevention of cell death [159, 160].
Hexokinase III does not bind to mitochondria and exists predominantly in the
cytoplasmic fraction, although there is evidence for Hexokinase III perinuclear
binding [161]. Hexokinase III overexpression has been associated with a re-
duction in cell death [162]. Like hexokinase III, hexokinase IV (glucokinase)
cannot bind to mitochondria and is localised in cytoplasm, where it plays a
key role in the regulation of glucose homeostasis [163].

The product of glucose phosphorylation, glucose-6-phosphate (G6P ), in-
hibits the activity of hexokinase I, II, and III (but not glucokinase) at physi-
ological levels. Inorganic phosphate (Pi), however, antagonises the inhibition
of hexokinase I by glucose-6-phosphate at low concentrations (few milimolar),
and becomes an inhibitor of hexokinase I at high concentrations. In addi-
tion, inorganic phosphate inhibits hexokinases II and III at all concentrations
[156, 162, 164]. Only the C terminal half of hexokinase I contains the catalytic
sites, whereas the N terminal half does not [164, 165], but is involved in the
Pi-antagonism of the product inhibition [165, 166]. In contrast, both the C
and N terminal halves of hexokinase II are catalytically active and sensitive
to G6P levels [167, 168]. Furthermore, both hexokinase I and II have bind-
ing sites for ATP , glucose, G6P , and Pi in both N and C terminal halves
[149, 165, 169]. Similar to hexokinase I, only the C-terminal half of hexoki-
nase III is catalytically active [170, 171]. A detailed description of the kinetic
mechanism for hexokinase I is given in the next section.

Many cellular factors can influence the phosphorylation of glucose by hex-
okinase I. In the current chapter, we construct a mathematical model that
describes the cellular regulation of glucose phosphorylation. One of the prin-
cipal aims of the modelling is to gain insight into the roles of G6P and Pi

in regulating the phosphorylation process. The model consists of a system of
ordinary differential equations that tracks the evolution in time of the con-
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centrations of various relevant species, including hexokinase enzyme, glucose,
G6P , ATP , ADP , and Pi. We give schematic representations for each of these
species in Figure 4.1.

Figure 4.1 (a) represents a single hexokinase I molecule, with blue being
used for the N terminal domain and green for the C terminal domain. Each
hexokinase I molecule possesses binding sites for glucose, ATP , G6P , and
inorganic phosphate in the both C and N domains, even though the C domain
only is catalytically active [164, 165, 149]. In Figure 4.1 (a), the binding
sites for glucose on the C and N domains are depicted by the t shape, and
the binding sites for ATP , glucose-6-phosphate, and inorganic phosphate are
represented by a ∨ cleft.

(a) Schematic representation of the hex-
okinase I enzyme. The C and N domains
are coloured green and light blue, respec-
tively. t: binding sites for glucose; ∨:
binding sites for ATP , G6P and Pi.

(b) Glucose.

(c) Glucose-6-phosphate. (d) Adenosine triphosphate ATP .

(e) Adenosine diphosphate ADP . (f) Inorganic phosphate Pi.

Figure 4.1: Schematics representations for hexokinase, glucose, glucose-6-phosphate,
adenosine triphosphate (ATP ), adenosine diphosphate (ADP ), and inorganic phos-
phate Pi.

In 1969, Ning et al. [172] proposed a random Bi Bi kinetic mechanism
for hexokinase I. This mechanism can be represented by the following set of
chemical equations

EA EC

E EAB ECD E,

EB ED

KB K′
AKD

KC

k1

k2

K′
C

K′
D

KA K′
B

(4.1)

where here E, A, B, C, D represent hexokinase enzyme, ATP , glucose, ADP ,
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and G6P , respectively. Moreover, KX , K ′X with X = A,B,C,D are the
dissociation constants for the four species. Finally, k1 and k2 are forward
and backward rate constants, respectively, for the catalytic reaction. Some
further discussion of this mechanism is given in Section 1.4 of Chapter 1.
Many investigators have found experimental evidence in support of the Bi Bi
mechanism for hexokinase I [149, 173, 174, 175, 176]. In the context of the
current study, it forms a subset of a larger kinetic mechanism we develop for
hexokinase I.

4.2 Mathematical model

The mathematical model we develop for the phosphorylation of glucose
will necessarily be large and complex since it will describe multiple binding
sites, numerous species, almost 150 chemical reactions, and various inhibitory
mechanisms. The phosphorylation mechanism of glucose by hexokinase I has
already been briefly introduced in Section 4.1, and schematic representations of
the relevant species arising are given in Figure 4.1. Recall that each hexokinase
I molecule has two subunits, an N and a C terminal domain. Each subunit
has its own binding site for glucose, and another binding site for ATP , Pi, and
G6P [149]. In Figure 4.3, we depict the eight possible configurations of the
molecule where only one of binding sites is occupied.

4.2.1 The kinetic mechanism

The kinetic mechanism for the phosphorylation of glucose by hexokinase I
may be summarized as follows.

1. Binding sites. Both the N and C domains have two binding sites; one
for glucose and another for ATP , Pi, and G6P [149, 177, 178, 179, 180,
166, 181, 182]; see Figure 4.3.

2. Product formation. The product here is G6P and it is produced by
the phosphorylation of glucose by hexokinase I. The phosphorylation
is achieved via a Bi Bi mechanism [172], as represented in Figure 4.2
(a). However, in the current study, we consider the simplified process
represented in Figure 4.2 (b). Here, for a G6P molecule to be produced,
an ATP molecule must be bound to its C domain site and a glucose
molecule must be bound to its C domain site; see Figure 4.4.
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E

E(ATP )

E(ATP )(G)

E(G)

E(ADP )(G6P )

E(ADP )

E(G6P )

E

(a) The full Bi Bi mechanism for the phosphorylation of glucose.

E

E(ATP )

E(ATP )(G) E,ADP,G6P

E(G)

(b) The simplified Bi Bi mechanism modelled in the current study.

Figure 4.2: The Bi Bi mechanism for glucose phosphorylation.

3. Product formation is regulated. The phosphorylation of glucose is inhib-
ited via the following three mechanisms.

(a) Allosteric product inhibition. Binding of a molecule of G6P to
the N binding site makes a conformational change to the C do-
main binding site for ATP . This conformational change disables
the binding of ATP to the C domain, resulting in the deactivation
of the enzyme [179, 178]; see Figure 4.3 (g). This inhibition is miti-
gated by the presence of Pi and ATP which compete with G6P for
the N domain binding site.

(b) Competitive product inhibition. The product G6P competes with
ATP for its C domain binding site, inhibiting product formation;
see Figure 4.3 (h).

(c) Competitive inhibition. Pi competes with ATP for the C domain
binding site; see Figure 4.3 (f).

4. Other details. The following information concerning glucose phosphory-
lation is also available in the literature.

(a) Only one molecule of G6P can bind to an enzyme molecule at a
time [178, 179].

(b) The binding of Pi to the N domain binding site weakens the bind-
ing of G6P to the C domain binding site (that is, it increases the
dissociation constant) [180, 182].

(c) The ATP binding sites of free or complexed enzyme are open, ex-
cept for the case where a G6P molecule is bound at the N binding
site.

(d) The high affinity binding site for G6P is in the C domain, while the
high affinity binding site for Pi is in the N domain [180].
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Active

(a) Hexokinase I with an ATP molecule
bound to the N domain.

Active

(b) Hexokinase I with an ATP molecule
bound to the C domain.

Active

(c) Hexokinase I with a glucose molecule
bound to the N domain.

Active

(d) Hexokinase I with a glucose molecule
bound to the C domain.

Active

(e) Hexokinase I with a Pi molecule
bound to the N domain.

Inactive

(f) Hexokinase I with a Pi molecule
bound to the C domain. Competitive in-
hibition.

Inactive

(g) Hexokinase I with an G6P molecule
bound to the N domain. Allosteric inhi-
bition.

Inactive

(h) Hexokinase I with an G6P molecule
bound to the C domain. Competitive
product inhibition.

Figure 4.3: The eight possible configurations of a hexokinase molecule where only
one of the binding sites is occupied. Figures (a),(b),(c),(d),(e) depict active states
for the enzyme, while (f),(g),(h) depict inactive states.
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HK

Glucose

ATP
G6P

ADP

Figure 4.4: The mechanism for the phosphorylation of glucose by hexokinase I.

4.2.2 Modelling assumptions

(a) It is assumed throughout that the cellular mixture of hexokinase I, glu-
cose, ATP , and Pi is well-stirred. This implies that diffusive effects in
the phosphorylation process can be neglected, and that the concentra-
tions of the various species in the mixture can be described by functions
of time only. This further implies that the evolution of the system can
be modelled by a coupled system of ordinary differential equations, and
that a partial differential equation model is not required.

(b) We assume mass action kinetics throughout; this implies that the rate of
a reaction is taken to be proportional to the product of the concentrations
of the reactants. We emphasise here that more complex formulae, such
as the Michaelis-Menten formula for the rate of product formation in an
enzyme-catalysed reaction, are derivable from more fundamental mass
action considerations under simplifying assumptions [183].

(c) We focus attention solely on the phosphorylation of glucose, and make
no attempt to model in detail the evolution of the intracellular glucose
concentration. Rather, we assume instead a constant initial concentra-
tion of glucose, and use the model to track its subsequent depletion as it
is converted to G6P via phosphorylation.

(d) The mechanism of the phosphorylation of glucose is assumed to be the
simplified Bi Bi process represented in Figure 4.2b.

(e) The binding of one substrate does not affect the affinity of the binding
sites for other substrates, except that the binding of Pi at the N domain
reduces the affinity of the C binding site for G6P .

(f) The model allows only one molecule of G6P to bind to an enzyme
molecule at a time.
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4.2.3 Model notation

We introduce the following model notation. We write

E : a hexokinase I molecule, 0 : a glucose molecule, 1 : an ATP molecule,
2 : a G6P molecule, 3 : a Pi molecule, 4 : an ADP molecule.

We also add subscripts and superscripts to E, where a subscript denotes a
molecule binding to the C domain of the enzyme, and a superscript denotes a
molecule binding to its N domain. Hence, for example, we have

E0 - A hexokinase I molecule with a glucose molecule bound
to its C domain,

E1 - A hexokinase I molecule with an ATP molecule bound
to its N domain,

E0
2 - A hexokinase I molecule with a G6P molecule bound to its

C domain and a glucose molecule bound to its N domain,
E2

03 - A hexokinase I molecule with a Pi molecule and a glucose molecule
bound to its C domain and a G6P molecule bound to its N domain.

There are 59 such enzyme complexes in total, and so that there 65 species in
all in the model; see Figure 4.5, 4.6 and the Appendix B. The concentration
of a species X at time t will be denoted by [X](t).

We introduce the following notation for the model rate constants.

k0 : the catalytic constant (turnover rate) for hexokinase I,
k1, k3, k5, k7 : the forward rate constants for the binding of glucose, ATP ,

G6P , and Pi, respectively, to their N binding sites,
k−1, k−3, k−5, k−7 : the reverse rate constants for the dissociation of glucose,

ATP , G6P , and Pi, respectively, from
their N binding sites,

k2, k4, k6, k8 : the forward rate constants for the binding of glucose,
ATP , G6P , and Pi, respectively, to their C binding sites,

k−2, k−4, k−6, k−8 : the reverse rate constants for the dissociation of glucose,
ATP , G6P , and Pi, respectively, from
their C binding sites,

k9, k−9 : the forward and reverse rate constants for
the binding/unbinding of G6P to/from its C binding site,
when the enzyme has a Pi molecule bound to
its N binding site.

4.2.4 The chemical reactions

The system has numerous chemical reactions because of the large number
of possible bound states for the enzyme, and a small selection of these are
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4

2

E

E0E1

E2

E3

E01 E02

E03

E01

E0
01

E1
01

E2
01

E3
01

E01
01

E02
01

E03
01

Figure 4.5: Diagram of chemical reactions producing product. The dashed lines
represent irreversible reactions. There are eight such reaction types and each of
them forms one G6P and one ADP molecule (denoted by number 4), and either a
free enzyme or an enzyme complex.

given by

E + 0
k1−−⇀↽−−
k−1

E0, E + 0
k2−−⇀↽−−
k−2

E0, E + 1
k3−−⇀↽−−
k−3

E1, E + 1
k4−−⇀↽−−
k−4

E1,

E + 2
k5−−⇀↽−−
k−5

E2, E + 2
k6−−⇀↽−−
k−6

E2, .......... ..........

There are 147 reactions in all, and these are listed in detail in the Appendix
B. In Figure 4.6, we schematically represent all of the chemical reactions pro-
ducing an enzyme complex. Figure 4.5 shows the reactions that lead to the
production of the product G6P .

4.2.5 Construction of the governing ordinary differential
equations

The complete set of governing equations for the model can be found in
the Appendix B, but it is not necessary to discuss all of these equations here.
However, we do briefly discuss two of them to illustrate how the governing
equations are constructed. The equations are developed based on the chemical
reactions referred to in the previous subsection, and the law of mass action.
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Figure 4.6: Diagram of chemical reactions forming all complexes in the mixture.
E, 0, 1, 2, and 3 represent free enzyme, glucose, ATP , G6P , and Pi molecules,
respectively. The red lines refer to reversible reactions involving glucose binding; the
blue: ATP binding; the green: G6P binding; the brown: Pi binding. Letters E with
superscript(s) and/or subscript(s) denote complexes of enzyme, for instance, E01

3 is a
complex of enzyme with one glucose and one ATP molecule bound at the N binding
site, and one Pi molecule bound at the C binding site.
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We begin by considering the equation for the product G6P , which is given by

d[2]

dt
=

a︷ ︸︸ ︷
k0([E01] + [E0

01] + [E1
01] + [E2

01] + [E3
01] + [E01

01 ] + [E02
01 + [E03

01 ])

+

b︷ ︸︸ ︷
k−5([E

2] + [E02] + [E2
0 ] + [E2

1 ] + [E2
3 ] + [E02

0 ] + [E02
1 ] + [E02

3 ]

+ [E2
01] + [E2

03] + [E02
01 ] + [E02

03 ])

+

c︷ ︸︸ ︷
k−6([E2] + [E02] + [E0

2 ] + [E1
2 ] + [E0

02] + [E1
02] + [E01

2 ] + [E01
02 ])

+

d︷ ︸︸ ︷
k−9([E

3
2 ] + [E03

2 ] + [E3
02] + [E03

02 ])

−
e︷ ︸︸ ︷

[2]((k5 + k6)([E] + [E0] + [E0] + [E0
0 ]) + k5([E1] + [E0

1 ] + [E3]

+ [E0
3 ] + [E01] + [E03] + [E0

01] + [E0
03])

+ k9([E
3] + [E3

0 ] + [E03] + [E03
0 ])

+ k6([E
1] + [E1

0 ] + [E01] + [E01
0 ])), (4.2)

where

a - these terms accounts for the increase in the concentration of G6P due to
the creation of product by enzymatic reactions involving the complexes
E01, E0

01, Ek
01, E0k

01 , where k = 1, 2, 3; see Figure 4.5.

b - the increase in the concentration of G6P due to G6P unbinding from
the enzyme complexes E2, E02, E2

k , E02
k , E2

0j, E02
0j , where k = 0, 1, 3 and

j = 1, 3; see Figure 4.6.

c - the increase in the concentration of G6P due to G6P unbinding from
the enzyme complexes E2, E02, E01

2 , E01
02 , Ek

2 , Ek
02, where k = 0, 1; see

Figure 4.6.

d - the increase in the concentration of G6P due to G6P unbinding from
the complexes E3

2 , E03
2 , E3

02, E03
02 ; see Figure 4.6.

e - the reduction in concentration of G6P due to G6P binding with the
species E, E0, E0, E0

0 , Ek, Ek, Ek
0 , E0

k , E0k, E0k, E0k
0 , E0

0k, where k = 1, 3;
see Figure 4.6.
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Next consider the equation for the enzyme concentration, given by

d[E]

dt
=

1︷ ︸︸ ︷
k0[E01]

+

2︷ ︸︸ ︷
k−1[E

0] + k−2[E0] + k−3[E
1] + k−4[E1] + k−5[E

2]

+ k−6[E2] + k−7[E
3] + k−8[E3]

−
3︷ ︸︸ ︷

[E]((k1 + k2)[0] + (k3 + k4)[1] + (k5 + k6)[2] + (k7 + k8)[3]), (4.3)

where

1 - this term accounts for the increase in concentration of enzyme due to
the recovery of enzyme after the catalytic step has been completed.

2 - this gives the increase in the concentration of the free enzyme due to
the unbinding from the complexes Ek, Ek, where k = 0, 1, 2, 3.

3 - this gives the reduction in the concentration of enzyme due to enzyme
binding.

4.2.6 Initial conditions

The equations described in the previous subsection are solved subject to
the initial conditions

[E](t = 0) = E0, [0](t = 0) = G0, [1](t = 0) = ATP0,

[2](t = 0) = 0, [3](t = 0) = Pi0, [4](t = 0) = 0,

where E0, G0, ATP0, Pi0 give the initial constant concentrations of enzyme,
glucose, ATP , and Pi, respectively. The initial concentrations for all of the
enzyme complexes were taken to be zero.

4.2.7 Computational methods

In this section, we describe the computational tools used to analyse the
model equations. The software developed for this chapter was coded using the
Python programming language [84].

Numerical method for solving the ordinary differential equations

The system of differential equations was numerically integrated using the
odeint solver in the module integrate of the SciPy library. SciPy [68] is an
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open source Python library that contains numerical routines for applications
in science and engineering. The odeint solver [184] uses the LSODA program
[92] from the FORTRAN library odepack, and it is capable of solving both
stiff and non-stiff systems.

Model parameter values

Table 4.1 shows some of the model parameter values, together with their
literature sources. We note that the dissociation constant for Pi at its C
binding site has been taken to be ten times larger than its value at the N
site [185]. This implies that the higher affinity binding site for Pi is in the N
domain, with much weaker binding to the C site. We recall that the enzyme
is active when Pi is bound to its N site (Figure 4.3 (e)) but inactive when
bound to the C site (Figure 4.3 (f)). Hence, for low concentrations of Pi (few
milimolar), the higher affinity N site dominates and the inhibition of G6P
is antagonised. However, for higher Pi concentrations, Pi binding to the C
site is significant and enzyme activity is inhibited. This behaviour matches
experimental findings [149, 156, 182].

Table 4.1: Some model parameter values and their literature sources.

Substrate Domain Km(µM) Kd(µM) kcat(k0)s
−1 Ref.

Hexokinase I 63 [180]
Glucose C 53 [180]
ATP C 700 [180]
G6P N 710 [180]

C 54 [180]
Pi N 22 [182]

C 220 [185]

The Lambda (Λ) and Omega (Ω) methods for approximating kinetic rate
constants are discussied in the paper [186]. Rate constants for the current
model were estimated using these methods with Λ = 100, Ω = 1.0 and the data
displayed in Table 4.1; see Table 4.2. The Michaelis-Menten constants for the C
domain binding sites of glucose and ATP are known. The corresponding values
for the N domain are unknown, and so in the absence of other information,
are taken here to be the same as their C domain values.

Table 4.3 displays typical intracellular concentrations for Hexokinase I and
some other model species. These values informed the choice of initial conditions
for the numerical solutions.

Global sensitivity analysis

A Sobol global sensitivity analysis was implemented to evaluate the impor-
tance of the various parameters appearing in the model [73, 75]. The model
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Table 4.2: Values for the model rate constants.

Parameter Description Value Unit
k0 Catalytic constant 63 s−1

k1 Forward rate const. for glucose to N site 1.18868×105 mM−1s−1

k−1 Reverse rate const. for glucose from N site 6.237×103 s−1

k2 Forward rate const. for glucose to C site 1.18868×105 mM−1s−1

k−2 Reverse rate const. for glucose from C site 6.237×103 s−1

k3 Forward rate const. for ATP to N site 9.0×103 mM−1s−1

k−3 Reverse rate const. for ATP from N site 6.237×103 s−1

k4 Forward rate const. for ATP to C site 9.0×103 mM−1s−1

k−4 Reverse rate const. for ATP from C site 6.237×103 s−1

k5 Forward rate const. for G6P to N site 9.0×103 mM−1s−1

k−5 Reverse rate const. for G6P from N site 6.390×103 s−1

k6 Forward rate const. for G6P to C site 9.0×103 mM−1s−1

k−6 Reverse rate const. for G6P from C site 4.86×102 s−1

k7 Forward rate const. for Pi to N site 9.0×103 mM−1s−1

k−7 Reverse rate const. for Pi from N site 1.98×102 s−1

k8 Forward rate const. for Pi to C site 9.0×103 mM−1s−1

k−8 Reverse rate const. for Pi from C site 1.980×103 s−1

k9 Forward rate const. for G6P to E3, E03 9.0×102 mM−1s−1

k−9 Reverse rate const. for G6P from E3, E03 90 s−1

Table 4.3: Intracellular concentrations of Hexokinase I and some metabolites.

Substrate Concentration (mM) Cell type Ref.
Hexokinase I 6.65×10−2 General cells [187]
Glucose 2.5 Adipose cells [188]
ATP 3.0 Brain cells [189]
G6P 0 - 3.0
Pi 0.0 -15.0 Brain cells [189, 182]

considered in this chapter has the structure y = f(p, t), where the inputs are
the model parameters p and time t, and the output y is a vector that gives
the model predictions for the concentrations of the various species at time t.
A Sobol sensitivity analysis enables us to quantify how variations in the model
parameters p = (pi), affect the model output y. This is achieved via the cal-
culation of sensitivity indices. A detailed explanation of sensitivity indices can
be found in Section 3.3.3 of Chapter 3.

The sensitivity analysis in the current study was implemented computa-
tionally using the Python package SALib [83, 141].
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4.3 Results and discussion

4.3.1 Numerical results

Section 4.2 introduced the mathematical model. Section 4.2.7 described the
computational methods used to integrate the model equations, and included
some discussion of the numerical method, the choice of parameter values, and
the initial conditions. In the current section, we describe some of the numerical
results obtained.

The principal purpose of the numerical solutions displayed here is to gain
insight into the cellular phosphorylation of glucose by Hexokinase I. To focus
attention on the phosphorylation process itself, we make no attempt to model
the evolution of intracellular glucose levels. Instead, we simply assume a con-
stant initial concentration of glucose and then track its subsequent conversion
via phosphorylation to G6P . For similar reasons, we also make no attempt to
model the cellular behaviour of G6P subsequent to its production.

Figure 4.7 shows the time evolution of the concentration of G6P for a range
of different initial concentrations of Pi and G6P . In the numerical results
displayed here, the initial concentration of glucose is taken to be 2.5 mM [188]
and the total concentration of the enzyme is taken to be 6.65 × 10−2 mM
[187]. We begin by noting some broad features of the behaviour exhibited in
Figure 4.7. All of the curves are increasing functions of time, as would be
expected since G6P levels increase as the available glucose is phosphorylated.
The levelling off of the curves corresponds to the exhaustion of the available
glucose substrate. It is also noteworthy that the time scale over which the
phosphorylation process is completed is of the order of ten seconds, a prediction
that is consistent with literature values [190, 191].

In Figure 4.7, the subplots (a), (b), (c), (d) correspond to differing initial
concentrations of G6P , with (a) having the lowest initial concentration and
(d) the highest. It is clear that the time for the phosphorylation process to
be completed increases with increasing initial concentration of G6P . This
again is as expected since G6P is the species that is responsible for both the
allosteric and competitive product inhibition of the enzyme, and so increasing
its concentration should slow the phosphorylation process; see Section 4.2.1.

The dependence of the phosphorylation behaviour on the initial concentra-
tion of inorganic phosphate is more subtle and interesting. Focus, for example,
on the subplot Figure 4.7 (d), and begin by considering the curve correspond-
ing to [Pi] = 0. This is the curve corresponding to zero initial Pi concentration,
and it gives a convenient reference. We note that for relatively low Pi con-
centrations (1 mM , 2 mM), the phosphorylation process is faster than the
phosphate free case. However, for the higher concentrations (Pi ≥ 10 mM),
we note that the phosphorylation rate is slower relative to the phosphate free
case. This is in line with experimental findings [149, 156, 182] which show
that for low concentrations of phosphate (few milimolar) enzyme inhibition
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Figure 4.7: Numerical solutions of the model equations described in Section 4.2.
The graphs show the concentration of G6P as a function of time for various initial
concentrations of Pi and G6P . The initial concentrations for Pi are given in the
legends on the graphs, and the initial G6P concentrations are given by (a) 0 mM ,
(b) 1.0 mM , (c) 2.0 mM , and (d) 3.0 mM . The remaining parameter values can be
found in Section 4.2.7.
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by G6P is antagonised, and that for higher phosphate concentrations, enzyme
activity is inhibited. In the context of the current modelling, this behaviour
is explained by recalling that for low concentrations of Pi, the higher affinity
N binding site for Pi dominates and inhibition by G6P is antagonised. How-
ever, for higher Pi concentrations, Pi binding to the lower affinity C site is
significant and enzyme activity is inhibited. This phenomenon is clearly ex-
hibited in Figure 4.8, where we show plots of the phosphorylation rate as a
function of inorganic phosphate Pi concentration, and for four different initial
concentrations of G6P .
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Figure 4.8: Plots of the phosphorylation rate as a function of the initial concentration
of phosphate Pi and for four different initial concentrations of G6P . The parameter
values used to generate these curves can be found in Table 4.2 and Table 4.3. We note
an initial increase in the phosphorylation rate in all cases, followed by a subsequent
decrease in the rate. This is discussed further in the main text.

4.3.2 Results of the global sensitivity analysis

The Sobol global sensitivity analysis employed in the current study is de-
scribed in Section 4.2.7, and it was implemented using the SALib package [83].
A Sobol analysis enables us to quantify how variations in the model param-
eters p = (ki),−9 ≤ i ≤ 9 affect the model output. The ki here are the
model rate constants and are described in Table 4.2. The model is of the form
y = f(p, t), where the inputs are the parameters p and the time t, and the
output y give the predictions for the concentrations of the model species at
time t. In the current study, we confine our attention to the output for the
G6P concentration since G6P is the product here.

Default settings for the SALib package were used, with one exception - no
second-order indices were calculated [83]. We calculated first-order and total
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sensitivity indices for the times t = 2, 4, 6, 8, 10 s. The output is then G6P (t =
2, 4, 6, 8, 10 s) and the purpose of the analysis is to evaluate the sensitivity of
this output to variations in the parameters ki using the sensitivity indices. The
G6P values were calculated by numerically integrating the governing ordinary
differential equations, as previously described. The initial concentration for
G6P was taken to be 2.0 mM when numerically integrating the differential
equations. Two choices for the initial concentration of phosphate were made,
2.0 mM (low Pi concentration) and 10.0 mM (high Pi concentration). The
initial concentrations for the enzyme, glucose and ATP are given in Table 3.
The remaining species had zero initial concentration.

0 2 4 6 8 10
Time (s)

0.00

0.05

0.10

0.15

0.20

0.25

Fi
rs

t-o
rd

er
 in

di
ce

s f
or

 [P
i]=

2.
0
m
M

k0
k1
k−1
k2
k−2
k3
k−3
k4
k−4
k5
k−5
k6
k−6
k7
k−7
k8
k−8
k9
k−9

(a)

0 2 4 6 8 10
Time (s)

0.00

0.05

0.10

0.15

0.20

0.25

To
ta

l i
nd

ice
s f

or
 [P

i]=
2.

0
m
M

k0
k1
k−1
k2
k−2
k3
k−3
k4
k−4
k5
k−5
k6
k−6
k7
k−7
k8
k−8
k9
k−9

(b)

0 2 4 6 8 10
Time (s)

0.00

0.05

0.10

0.15

0.20

0.25

Fi
rs

t-o
rd

er
 in

di
ce

s f
or

 [P
i]=

10
.0

m
M

k0
k1
k−1
k2
k−2
k3
k−3
k4
k−4
k5
k−5
k6
k−6
k7
k−7
k8
k−8
k9
k−9

(c)

0 2 4 6 8 10
Time (s)

0.00

0.05

0.10

0.15

0.20

0.25

To
ta

l i
nd

ice
s f

or
 [P

i]=
10

.0
m
M

k0
k1
k−1
k2
k−2
k3
k−3
k4
k−4
k5
k−5
k6
k−6
k7
k−7
k8
k−8
k9
k−9

(d)

Figure 4.9: (a) First-order sensitivity indices (S1) and (b) total sensitivity indices
(ST ) with [Pi](t = 0) = 2.0 mM . (c) First-order sensitivity indices and (d) total
sensitivity indices with [Pi](t = 0) = 10.0 mM . The indices are calculated at the
times t = 2, 4, 6, 8, 10 s. The remaining parameter values are given in the main body
of the text.

Figure 4.9 displays first-order sensitivity indices and total sensitivity indices
for the model parameters. Figure 4.9 (a) and (b) show values for a low initial
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phosphate concentration (2.0 mM), while Figure 4.9 (c) and (d) give values for
a high initial phosphate concentration (10.0 mM). For convenience, we split
the model parameters into three groups - Group I: k1, k−1, k2, k−2, k3, k−3,
k5, k−5, k6, k−6, k7, k−7, Group II: k8, k−8, and Group III: k0, k4, k−4, k9, k−9.
The sensitivity indices for all of the Group I parameters are small. This means
that the rate of G6P production is relatively insensitive to modest variations in
the assumed values of these parameters. The parameters in Group I describe,
among other things, the rate of binding and unbinding of glucose to both the
N and the C domains of the enzyme, and the rate of binding/unbinding of Pi

to the N domain of the enzyme.

We now turn our attention to the parameters in Group III. The first-order
sensitivity indices for all of these parameters are relatively large, implying that
the G6P production rate is relatively sensitive to variations in the assumed
values of these parameters. The Group III parameters determine the turnover
rate of the enzyme, the rate of binding/unbinding of ATP to the C domain of
the enzyme, and the rate of binding/unbinding of G6P to the C domain of the
enzyme when a Pi molecule is bound at its N site. It is noteworthy that the
indices S9 and S−9 are quite sensitive to the phosphate concentration, being
significantly larger for lower initial phosphate concentration. Hence, for low
phosphate concentrations, the binding of Pi to the N binding site is one of the
key regulators of enzyme activity.

The parameters for Group II (k−8, k8) are also seen to be sensitive to
the phosphate concentration, being small for the low phosphate cases, and
significant for higher phosphate cases. These parameters determine the rate
of binding/unbinding of Pi to its C binding site.

It is clear from Figure 4.9, that the first-order sensitivity indices are close to
the total sensitivity indices. Hence interactions between any of the parameters
ki and the other model parameters do not significantly affect the model output.

4.3.3 Further numerical results

We now display some further numerical solutions inspired by the results of
the sensitivity analysis just presented. In these calculations, the default values
used for the parameters ki are given in Table 4.2, and the initial concentrations
for the enzyme, glucose and ATP are given in Table 4.3. The initial concen-
trations of G6P and Pi were taken to be 3 mM and 6 mM , respectively,
corresponding to a high phosphate concentration case.

We illustrate how the new numerical results shown in Figure 4.10 were
generated by considering a particular example. Consider the curves displayed
in Figure 4.10 (a). The middle curve was generated using the default values
for the parameters ki. The upper curve was generated using the default values,
except that 1.3k0 was used rather than k0, and the lower curve was generated
using 0.7k0 rather than k0. Hence the three curves shown in Figure 4.10 (a) help
evaluate the sensitivity of the model output to variations in the parameter k0.
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Figure 4.10: Numerical solutions of the model equations described in Section 4.2.
The graphs show the concentration of G6P as a function of time, and the parameter
values used can be found in the main body of the text. The solutions displayed help
evaluate the sensitivity of the model output to the parameter (a) k0, (b) k4, (c) k−4,
(d) k−9, (e) k1, and (f) k5.
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The remaining subplots in Figure 4.10 are generated by repeating this process
for the parameters k4, k−4, k−9, k1, and k5.

The results shown in Figure 4.10 are consistent with the predictions of the
sensitivity analysis of Section 4.3.2 since the model output is seen to be quite
sensitive to the parameters with relatively large sensitivity indices (k0, k4, k−4,
k−9), but insensitive to the parameters with small indices (k1, k5).

4.3.4 Model reduction

Motivated by the results of the sensitivity analysis in Section 4.3.2, we now
consider a simplified model (SM). This model is obtained from the full model
described in Section 4.2 by setting

k1 = k−1 = k3 = k−3 = 0.

In this SM model, glucose molecules do not bind to their N domain site, and
ATP molecules do not bind to their N domain site.

We have previously seen that the sensitivity indices for all of these param-
eters are small, and so we anticipate that the output for these models should
typically closely match that for the full model. The initial conditions used to
generate the numerical solutions for the SM model are the same as those used
for the full model, with the exception of the initial conditions for G6P and Pi,
which are specified on the numerical figures. Figure 4.11 compares solutions
of the full model with solutions of the SM, where solid curves are solutions to
the full model, and dashed-dotted curves are solutions to the SM.

It is seen in Figure 4.11 that the results of the full model and the SM are
close in all cases, suggesting that the full model may reasonably be simplified
by dropping the mechanisms of glucose and ATP binding to the N domains.

Intuitively, we can explain why the original model output is rather insen-
sitive to the parameters for the N binding sites for glucose (k1, k−1) and ATP
(k3, k−3) as follows.

• The reason why glucose binding to the N domain does not significantly
affect the phosphorylation rate is because the concentration of glucose is
typically much larger than the concentration of enzyme. Hence, glucose
binding to the N domain does not significantly reduce the free concen-
tration of glucose, and there is ample glucose remaining to participate in
phosphorylation.

• The reason ATP binding to the N domain does not significantly affect
the phosphorylation rate is more complex since ATP binding to this do-
main has a number of effects. Firstly, as for glucose, ATP concentration
is typically much higher than that of the enzyme, so that ATP binding
at the N domain does not significantly reduce the ATP pool available
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Figure 4.11: Comparison of numerical solutions to the full model and the Simplified
Model (SM). The solid curves are solutions to the full model and the dashed-dotted
curves are solutions to the SM. The initial concentrations for the phosphate Pi are
given on the figures, and the initial concentrations for G6P are given by (a) 0 mM ,
(b) 1.0 mM , (c) 2.0 mM , and (d) 3.0 mM . The remaining parameter values used
can be found in the main body of the text.
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for phosphorylation. Also, ATP competes with both G6P and Pi for the
N domain binding sites. Competition with G6P reduces enzyme inhi-
bition (as previously explained), whereas competition with Pi increases
inhibition (again, as previously explained), and we speculate that there
is a cancellation effect here.

4.4 Conclusions

In this chapter, we have developed a comprehensive mathematical model
describing the phosphorylation of glucose by the enzyme Hexokinase I. Glucose
phosphorylation is the first step of the glycolysis pathway, and so it is carefully
regulated by cells. The regulation of hexokinase I is quite complex and includes
three inhibitory mechanisms: a competitive product inhibitory mechanism,
an allosteric inhibitory mechanism, and a competitive inhibitory mechanism.
We used the mathematical model to help unpick the regulatory behaviour of
Hexokinase I. In particular, we obtained the following results.

• Numerical simulations. The model was numerically integrated using the
SciPy Python library, and the solutions obtained were found to be con-
sistent with the known behaviour of hexokinase I. For example, it was
found that the rate of phosphorylation decreased with increasing concen-
tration of G6P . Also, it was found that low phosphate concentrations
antagonise hexokinase I inhibition, while high phosphate concentrations
inhibit hexokinase I.

• Global sensitivity analysis. A global sensitivity analysis of the model
was implemented to help identify the key mechanisms of hexokinase I
regulation. The results of this analysis indicate that the rate of phos-
phorylation is quite sensitive to the following factors: the turnover rate
of the enzyme; the rate of binding/unbinding of ATP to/from the C
domain of the enzyme; the rate of binding/unbinding of G6P to/from
the C domain of the enzyme with a Pi molecule bound at the N domain
for low phosphate concentration; and the rate of binding/unbinding of
phosphate to/from the C domain of the enzyme for high phosphate con-
centration.

• Simplified model. One reduced model was developed based on the results
of the sensitivity analysis. This simpler model produces results that
closely match the results of the full model.

• Software. The software developed in this chapter to numerically integrate
the governing equations and to implement the sensitivity analysis has
been made available in the Appendix B and online.

Although the model developed in the current chapter is comprehensive and
detailed, there is some scope for improvement. For example, the full detail of
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Chapter 4. Modelling the phosphorylation of glucose by human hexokinase I

the Bi Bi mechanism could be incorporated in the modelling. Also, glucose-
6-phosphate binding to its N binding site not only allosterically inhibits the
enzyme but also stimulates enzyme release from mitochondria [192, 193], and
we have made no attempt to describe this release behaviour. Finally, the
possible inhibition of hexokinase I by ADP [185] has not been explored in the
current study.
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Chapter 5

Mathematical models for
enzymatic inhibition by product

In the previous chapter, we developed a detailed mathematical model de-
scribing the phosphorylation of glucose by Hexokinase I. The model was com-
plex, and incorporated three mechanisms for enzyme inhibition. However, the
complexity of this model made it impossible to obtain simple analytical ex-
pressions for the rate of product formation. It also made it difficult to obtain
simple qualitative insights into the enzyme behaviour. In an effort to over-
come those deficiencies, we shall consider two simpler related models in this
chapter. The first model focuses on the mechanism of competitive product in-
hibition only, while the second model considers allosteric inhibition only. For
each of these models, we develop expressions for the rate of product formation.
We also explain how the models can, in appropriate circumstances, model the
phosphorylation of glucose by hexokinase I.

5.1 Model I: Competitive product inhibition

In this section, we develop a mathematical model for the action of an
enzyme that is inhibited by its product. Although the formula for the product
formation rate is already available in the literature [187, 194, 195], we shall
derive it in a transparent manner by non-dimensionalising the equations and
making rational approximations.

A minimal set of chemical reactions representing competitive product in-
hibition is given by

S + E
k1−−⇀↽−−
k−1

ES
k0−→ E + P,

P + E
k2−−⇀↽−−
k−2

EP,

where S,E, P,ES, and EP represent substrate, free enzyme, product, enzyme-
substrate complex, and enzyme-product complex, respectively; see Figure 5.1.
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Chapter 5. Mathematical models for enzymatic inhibition by product

(a) Reaction

Enzyme

Active site

Substrate Enzyme-substrate

complex

Substrate catalysed to

form product

Product

(b) Inhibition

Enzyme-product

complex

Product molecule

obstructs the binding

of substrate molecule

Figure 5.1: Model I. Product inhibition. Diagram of reactions and inhibition. The
enzyme here has one binding site that can accommodate both the substrate and the
product. In (a) a substrate binds to a free enzyme molecule to form an enzyme-
substrate complex. The enzyme then catalyses the substrate to form a product. In
(b) binding of a product molecule to a free enzyme molecule to form an enzyme-
product complex prevents the enzyme molecule from binding with a substrate.

Applying the law of mass action in the usual way, the corresponding governing
ordinary differential equations are given by

d[E]

dt
= (k0 + k−1)[ES] + k−2[EP ]− k1[E][S]− k2[E][P ],

d[ES]

dt
= k1[E][S]− (k0 + k−1)[ES],

d[EP ]

dt
= k2[E][P ]− k−2[EP ], (5.1)

d[S]

dt
= k−1[ES] + k1[E][S],

d[P ]

dt
= k0[ES] + k−2[EP ]− k2[E][P ],

where [X] = [X](t) denotes the concentration of species X at time t. These
equations are to be solved subject to the initial conditions

[E](t = 0) = e0, [S](t = 0) = s0,

[ES](t = 0) = 0, [EP ](t = 0) = 0, [P ](t = 0) = 0,

84



5.1. Model I: Competitive product inhibition

where e0, s0 are positive constants corresponding to the initial concentrations
of enzyme and substrate, respectively. Forming (5.1)1+(5.1)2+ (5.1)3 and
integrating yields

[E] + [ES] + [EP ] = e0, (5.2)

which is an expression of conservation of enzyme.

Introducing the dimensionless variables

e =
[E]

e0
, c1 =

[ES]

e0
, c2 =

[EP ]

e0
, s =

[S]

s0
, p =

[P ]

s0
, τ = e0k1t,

the governing equations may be written in the equivalent dimensionless form

e+ c1 + c2 = 1,

ε
dc1
dτ

= −(s+ k̂0 + k̂−1)c1 − sc2 + s,

ε
dc2
dτ

= k̂2

(
−pc1 − (p+ k̂−2/k̂2)c2 + p

)
, (5.3)

ds

dτ
= k̂−1c1 − s(1− c1 − c2)),

dp

dτ
= k̂0c1 + k̂−2c2 − k̂2p(1− c1 − c2),

where
ε =

e0
s0
, k̂0 =

k0
k1s0

, k̂−1 =
k−1
k1s0

, k̂2 =
k2
k1
, k̂−2 =

k−2
k1s0

, (5.4)

are dimensionless parameters. These equations are solved subject to the initial
conditions

e(t = 0) = 1, s(t = 0) = 1, c1(t = 0) = 0, c2(t = 0) = 0, p(t = 0) = 0. (5.5)

In applications, the amount of substrate initially present typically greatly
exceeds the enzyme present, so that e0 � s0, or ε � 1. Hence it is of value
to consider the behaviour of (5.3),(5.5) in the limit ε→ 0. There is an initial
transient at τ = O(ε) as ε → 0, but this behaviour is of limited practical
interest, and its discussion is omitted here. For τ = O(1), we have at leading
order as ε→ 0 that (see (5.3))

e+ c1 + c2 = 1, −(s+ k̂0 + k̂−1)c1− sc2 + s = 0, −pc1− (p+ k̂−2/k̂2)c2 +p = 0,

and these expressions may be manipulated to give

c1 =
s

s+ (k̂0 + k̂−1)(1 + pk̂2/k̂−2)
, c2 =

p

p+ (1 + s/(k̂0 + k̂−1))k̂−2/k̂2
.

Substituting these expressions into (5.3) gives

dp

dτ
=

k̂0s

s+ (k̂0 + k̂−1)(1 + pk̂2/k̂−2)
. (5.6)
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Chapter 5. Mathematical models for enzymatic inhibition by product

Reverting to dimensional variables, the rate of formation of product is now
given by

v =
d[P ]

dt
= k1e0s0

dp

dτ
(5.7)

and using (5.6), this leads to

v =
d[P ]

dt
=

Vmax[S]

[S] +Km

(
1 +

[P ]

KD

) , (5.8)

where
Vmax = k0e0, Km =

k0 + k−1
k1

, KD =
k−2
k2

.

Here Vmax = k0e0 is the maximum production rate for the enzyme, Km is the
Michaelis constant for the enzyme in the absence of product inhibition, and
KD is the dissociation constant for product binding to the enzyme. Notice
that we can write (5.8) as

v =
Vmax[S]

[S] +Kapp
m

, (5.9)

where
Kapp

m = Km

(
1 +

[P ]

KD

)
(5.10)

is the apparent Michaelis-Menten constant that takes account of competitive
product inhibition. It is noteworthy here that the maximal production rate for
the enzyme Vmax is unaffected by product inhibition. However, the apparent
Michaelis-Menten constant increases linearly with product concentration; see
Figure 5.2. Figure 5.3 shows the Lineweaver-Burk plots of the product for-
mation rate formula (5.9) for [P ] = 0 and one value with [P ] > 0. It can be
seen that the maximal product formation rate does not depend on the product
concentration, while the slope of the line corresponding to [P ] > 0 is greater
than that of the line corresponding to [P ] = 0, as would be expected since the
presence of product slows the speed of product formation.

5.1.1 Model I and glucose phosphorylation by mini
hexokinase I

The model just described may be applicable to a mini hexokinase I system.
A mini hexokinase molecule consists of the C terminal half only of the hexoki-
nase I enzyme [165, 166], and this corresponds to the enzyme species E in our
model above; see Figure 5.4. The active site here is the binding site for ATP ,
so that ATP corresponds to the substrate S in the model. The product P here
is G6P since G6P competes with ATP for the ATP binding site. However,
the correspondence between the model and the mini hexokinase I system falls
down here since G6P is not a direct product of ATP binding - recall that a
glucose molecule must also be bound to its site in the C terminal domain in
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K
a
p
p

m
=

5
.0

K
a
p
p

m
=

1
0
.0

K
a
p
p

m
=

2
0
.0

Vmax

Vmax/2

[S]

v

Figure 5.2: Model I. Plots of the rate of product formation for the case of com-
petitive product inhibition. The relevant formula is given in equation (5.8), and
the plots shown illustrate the effect of the product concentration on the product
formation rate. The parameter values used to generate these plots are given by
Vmax = 4.0 mM/s, Km = 5.0 mM , KD = 1.0 mM , and [P ] = 0.0, 1.0, 3.0 mM ,
with corresponding values Kapp

m = 5.0 mM , Kapp
m = 10.0 mM , Kapp

m = 20.0 mM ,
respectively.

order for G6P to be formed. However, G6P would be the effective product of
ATP binding if ATP binding is the rate-limiting step for product formation.
This would be the case for sufficiently high concentrations of glucose, for ex-
ample. The model also does not take account of phosphate binding, and so
would only apply to the mini hexokinase system if phosphate concentrations
are sufficiently low. However, in these circumstances, the rate of production
of G6P may be approximated by (see (5.8))

v =
Vmax[ATP ]

[ATP ] +KATP
m (1 + [G6P ]/KG6P

D )
. (5.11)

Figure 5.5 displays plots of this formula for different concentrations of the
product G6P .

5.2 Model II: Allosteric product inhibition

We now turn attention to a model (Model II) that focuses on the mech-
anism of allosteric product inhibition of an enzyme. Recall from Chapter 4
that allosteric product inhibition is one of the key mechanisms involved in the
phosphorylation of glucose by hexokinase I. The study of Model II will yield
insights into this aspect of the phosphorylation of glucose. Allosteric product
inhibition is also involved in the regulation of other enzymes, for example,
horseradish peroxidase [196], and so it is of practical value to establish a for-
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1/[S]

1/v

1/Vmax

inhibitor

no inhibitor

Slope: change

: Y-intercept

Competitive inhibition

Km increased

Vmax unchanged

Figure 5.3: Model I. Lineweaver-Burk plots of the product formation rate formula
(5.9) for [P ] = 0 and [P ] > 0.

Glucose binding site

G6P , ATP binding site

C domain

of Hexokinase I

Figure 5.4: Mini hexokinase I.

mula for product formation rate for this mechanism. Hence, in this section,
we develop and analyse a minimal model for allosteric inhibition.

Figure 5.6 graphically depicts the model reactions. In the model, the en-
zyme molecule has two binding sites, one for the substrate (active site) and
another for the product (allosteric site). When the product of the active site
binds to the allosteric site, it deactivates the active site. The chemical reactions
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5.2. Model II: Allosteric product inhibition

Vmax

Vmax/2

[ATP ]

v
[G6P ] = 0.0 mM

[G6P ] = 0.05 mM

[G6P ] = 0.2 mM

Figure 5.5: Plots of the product formation rate for different concentrations of
product G6P . The relevant formula is given in equation (5.11). The parameters
values used here are k0 = 60 s−1, KATP

m = 0.68 mM , KG6P
D = 0.05 mM [180],

[HK] = 0.05 mM , and [G6P ] = 0.0, 0.05, 0.2 mM .

for the model are
S + E

k1−−⇀↽−−
k−1

ES
k0−→ E + P,

P + E
k2−−⇀↽−−
k−2

EP,

S + EP
k1−−⇀↽−−
k−1

ESP,

P + ES
k2−−⇀↽−−
k−2

ESP,

(5.12)

where E, S, and P denote an enzyme molecule, a substrate molecule, and a
product molecule, respectively. The complexes ES, EP , and ESP have the
obvious interpretation; see Figure 5.6.

The governing ordinary differential equations here are:

d[E]

dt
= (k0 + k−1)[ES] + k−2[EP ]− (k1[S] + k2[P ])[E],

d[ES]

dt
= k1[E][S] + k−2[ESP ]− (k0 + k−1 + k2[P ])[ES],

d[EP ]

dt
= k2[E][P ] + k−1[ESP ]− (k−2 + k1[S])[EP ],

d[ESP ]

dt
= k1[S][EP ] + k2[P ][ES]− (k−1 + k−2)[ESP ],

d[S]

dt
= k−1([ES] + [ESP ])− k1[S]([E] + [EP ]),

d[P ]

dt
= k0[ES] + k−2([EP ] + [ESP ])− k2[P ]([E] + [ES]).

(5.13)

and these are solved subject to the initial conditions

[E](t = 0) = e0, [P ](t = 0) = 0, [EP ](t = 0) = 0,

[S](t = 0) = s0, [ES](t = 0) = 0, [ESP ](t = 0) = 0,
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Scheme of reactions

Enzyme

Active site

Allosteric site

Substrate

Enzyme-substrate

complex

Substrate catalysed to

form product

Product

Enzyme-product

complex (inactive)

Enzyme-substrate-product

complex (inactive)

Figure 5.6: Model II. Allosteric inhibition. Diagram of reactions and inhibitions.
The top row corresponds to the reactions (5.12)1, while the bottom row corresponds
to the reactions (5.12)3. The left and right vertical reactions corresponds to (5.12)2,
and (5.12)4, respectively.

where e0 and s0 are the constant initial concentrations of enzyme and substrate,
respectively. Adding the first four equations in (5.13) and integrating gives

[E] + [ES] + [EP ] + [ESP ] = e0, (5.14)

which corresponds to conservation of enzyme.

We non-dimensionalize the equations by introducing the dimensionless quan-
tities

e =
[E]

e0
, c1 =

[ES]

e0
, c2 =

[EP ]

e0
, c3 =

[ESP ]

e0
,

s =
[S]

s0
, p =

[P ]

s0
, τ = e0k1t, ε =

e0
s0
,

to obtain the dimensionless equations
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5.2. Model II: Allosteric product inhibition

ε
dc1
dτ

= −(k̂0 + k̂−1 + s+ k̂2p)c1 − sc2 + (k̂−2 − s)c3 + s,

ε
dc2
dτ

= −k̂2pc1 − (k̂−2 + s+ k̂2p)c2 + (k̂−1 − k̂2p)c3 + k̂2p,

ε
dc3
dτ

= k̂2pc1 + sc2 − (k̂−1 + k̂−2)c3,

ds

dτ
= (k̂−1 − s)(c1 + c3)− s,

dp

dτ
= k̂0c1 + (k̂−2 + k̂2p)(c2 + c3)− k̂2p,

(5.15)

where
k̂0 =

k0
k1s0

, k̂−1 =
k−1
k1s0

, k̂2 =
k2
k1
, k̂−2 =

k−2
k1s0

.

We have omitted the equation for e here since this can be determined from the
dimensionless form for (5.14), given by

e+ c1 + c2 + c3 = 1.

Under typical conditions, the initial concentration of substrate is much
larger than the substrate concentration, so that e0 � s0, or ε � 1. Taking
the limit ε → 0 in the equations (5.15), we obtain at leading order that (for
τ = O(1))

c1 =
k̂−2s(s+ k̂2p+ k̂−1 + k̂−2)

(k̂−2 + k̂2p)(s2 + as+ b)
, c2 =

k̂2p(k̂−1s+ b)

(k̂−2 + k̂2p)(s2 + as+ b)
,

c3 =
k̂2ps(s+ a− k̂−1)

(k̂−2 + k̂2p)(s2 + as+ b)
,

where

a = k̂2p+ k̂0 + 2k̂−1 + k̂−2, b = k̂−1(k̂2p+ k̂0 + k̂−1 + k̂−2) + k̂0k̂−2.

Substituting these expressions into (5.15)5 gives

dp

dτ
=
k̂−2k̂0s(s+ k̂2p+ k̂−1 + k̂−2)

(k̂−2 + k̂2p)(s2 + as+ b)
,

and reverting to dimensional variables gives

v =
d[P ]

dt
= k1e0s0

dp

dτ
,

which leads to

v =
Vmax

1 + [P ]/KD,P

[S]2 + A[S]

[S]2 +B[S] + C
, (5.16)
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where

A = KD,S + (1 + [P ]/KD,P )k−2/k1,

B = KD,S +Km + (1 + [P ]/KD,P )k−2/k1, (5.17)
C = KD,S[Km + (1 + [P ]/KD,P )k−2/k1] + k0k−2/k

2
1,

and

Vmax = k0e0, KD,S =
k−1
k1

, KD,P =
k−2
k2

, Km =
k0 + k−1

k1
.

Letting [S]→∞ in (5.16) gives

v → Vmax

1 + [P ]/KD,P

,

and so the maximal rate of product formation is decreased by the factor
(1 + [P ]/KD,P ). Hence, for allosteric inhibition, the maximal rate of prod-
uct formation is reduced by the concentration of product. This contrasts with
the case of competitive product inhibition discussed earlier, where it was seen
that the maximal rate of product formation is independent of the product
concentration (equation (5.8)).

We can define an apparent Michaelis-Menten constant for the system, Kapp
m

via the equation

v ([S] = Kapp
m ) =

1

2

(
Vmax

1 + [P ]/KD,P

)
.

Using (5.16), this leads to

Kapp
m =

1

2

(
Km − A+

√
(Km − A)2 + 4C

)
, (5.18)

where A,C are given in (5.17). This dependence is quite complex, but there
are various simpler limits of interest that may be considered. For example, if
Km � A,

√
C, we have Kapp

m ∼ Km. Also, if A−Km �
√
C, we have Kapp

m ∼
C/(A − Km) - if we then consider the further limit, [P ] � KD,P , we arrive
at Kapp

m ∼ KD,S; see Figure 5.7. In this figure, we observe that the apparent
Michaelis-Menten constant decreases with increasing product concentration.
Also, the parameters here are such that A−Km �

√
C and [P ]� KD,P , and

it is observed that Kapp
m ∼ KD,S.

The curves shown in Figure 5.8 illustrate the effect of product concen-
tration on the product formation rate. It is seen that the higher the initial
concentration of product is, the lower the maximal rate of product formation
is, which is consistent with the formula (5.16) for sufficiently high [S]. Figure
5.9 shows the Lineweaver-Burk plots of the product formation rate formula
5.16 for [P ] = 0 and one value with [P ] > 0. Notice that the intersection point
between the line for [P ] > 0 and 1/v-axis is higher than that between the
line for [P ] = 0 and 1/v-axis. This implies that the maximal rate of product
formation decreases when the initial concentration of product increases.
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Figure 5.7: Model II. Plot of Kapp
m as a function of [P ] as given by equation

(5.18). The parameter used here are given by e0 = 0.1 mM , k0 = 10.0 s−1,
k1 = 1000.0 mM−1s−1, k−1 = 490.0 s−1, k2 = 1000.0 mM−1s−1, k−2 = 100.0 s−1,
Km = 0.5 mM , KD,P = 0.1 mM , and KD,S = 0.49 mM .

5.2.1 Model II and glucose phosphorylation by mutant
hexokinase I

The model we have just developed may be applicable to a mutant hexoki-
nase I system. The mutant hexokinase I molecule in question is a hexokinase
I enzyme molecule with the N binding site for ATP and the C binding site
for G6P deactivated; see Figure 5.10. This mutant is important because it has
been successfully used in experimental studies [178, 180] to establish that the
enzyme has two binding sites for G6P . We omit the technical details here -
see [178, 180] for more information. The active site here is the binding site
for ATP , so that ATP corresponds to the substrate species S in the model.
The product P here is G6P since the binding of G6P to its N binding site
allosterically inhibits the binding site of ATP . However, the correspondence
between the model and the mutant hexokinase I system falls down here since
G6P is not a direct product of ATP binding. However, G6P would be the
effective product of ATP binding if ATP binding is the rate-limiting step for
product formation. This would be the case for sufficiently high concentrations
of glucose, for example. The model also does not take account of phosphate
binding, and so would only apply to the mutant hexokinase I system if phos-
phate concentrations are sufficiently low. However, in these circemstances, the
rate of production of G6P may be approximated by (see (5.16)).
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Figure 5.8: Model II. Plots of the product formation rate illustrating the effect
of product concentration on the maximal rate of enzyme production (Model II).
The parameter values used here are given by e0 = 0.1 mM , k0 = 10.0 s−1, k1 =
1000.0 mM−1s−1, k−1 = 490.0 s−1, k2 = 1000.0 mM−1s−1, k−2 = 100.0 s−1, and
[P ] = 0.0, 0.1, 0.3 mM .

v =
Vmax

1 + [G6P ]/KD,G6P

[ATP ]2 + A[ATP ]

[ATP ]2 +B[ATP ] + C
, (5.19)

where

A = KD,ATP + (1 + [G6P ]/KD,G6P )k−2/k1,

B = KD,ATP +Km + (1 + [G6P ]/KD,G6P )k−2/k1, (5.20)
C = KD,ATP [Km + (1 + [G6P ]/KD,G6P )k−2/k1] + k0k−2/k

2
1,

and

Vmax = k0e0, KD,ATP =
k−1
k1

, KD,G6P =
k−2
k2

, Km =
k0 + k−1

k1
.

5.3 Conclusions

The detailed mathematical model describing the phosphorylation of glucose
by Hexokinase I presented in the previous chapter was complex, and combined
three mechanisms for enzyme inhibition. Hence, it was impossible to obtain
simple analytical expressions for the rate of product formation. It was also
difficult to obtain simple qualitative insights into the enzyme behaviour. In an

94



5.3. Conclusions

1/[S]

1/v inhibitor

no inhibitor

Slope: change

: Y-intercept

Non-competitive inhibition

Km unchanged

Vmax decreased

Figure 5.9: Model II. Lineweaver-Burk plots of the product formation rate formula
(5.16) for [P ] = 0 and [P ] > 0.

Deactivated for ATP binding

Deactivated for G6P binding

Figure 5.10: Mutant hexokinase I.

effort to overcome those deficiencies, we developed two simpler related models
in this chapter. The first model considers the mechanism of competitive prod-
uct inhibition only, while the second model concentrates on allosteric inhibition
only. For each of these models, a formula of the rate of product formation was
formulated. Also, an application of the first model to the phosphorylation of
glucose was described. The second model was seen to model, under appro-
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priate conditions, the phosphorylation of glucose by mutant hexokinase I. The
second model may be applied to describe the reaction of horseradish peroxidase
with a fluorogenic substrate [196].
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Chapter 6

Discussion

In this thesis, we have formulated mathematical models describing the be-
haviour of some carbohydrate enzymes. We now summarise these models and
indicate how they may be expanded and improved upon. We begin by consider-
ing the mathematical model for the degradation of hyaluronan by streptococcus
pneumoniae hyaluronate lyase discussed in Chapter 3.

6.1 Modelling hyaluronan degradation by
streptococcus pneumoniae hyaluronate lyase

6.1.1 The first detailed mathematical model

To the best of my knowledge, the model formulated is the first that de-
scribes in detail the degradation of hyaluronan by streptococcus pneumoniae
hyaluronate lyase. It was developed based on what is currently known about
hyaluronan and the kinetic mechanism of streptococcus pneumoniae hyaluronate
lyase. Using available experimental data, the model parameters values were
estimated, and it was found that the model results corresponded well with
experiments. The model results were also found to be consistent with experi-
mental data for other bacterial hyaluronidases. This suggests that the model
may have wider applicability. It should also be noted that additional experi-
mental data is required for complete model validation.

6.1.2 The model may be refined and expanded

The hyaluronan degradation model presented in Chapter 3 may be ex-
panded upon and refined. For example, it is known that hyaluronan in solution
may adopt secondary and tertiary structures [144, 145]. It is likely that these
sructures may affect the accessibility of some of the glycosidic bonds for the
enzyme. Such effects have implications for the parameters in our modelling
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[146]. It is probable that some of the model parameters estimated are in fact
effective parameters that implicitly incorporate effects not explicitly modelled.
These issues could form the basis of future interesting studies that incorporate
more of the mechanistic details of the degradation process.

Another issue that requires further experimental and theoretical investiga-
tion is enzyme inhibition. In the current study, we assume that enzyme activity
remains constant throughout the degradation process. However, many enzy-
matic degradation processes for polysaccharides are known to be subject to
various inhibitory processes [197, 198, 199, 200], and such effects may also
play a role in the current context.

6.2 Modelling the phosphorylation of glucose by
human hexokinase I

Here, we give some discussion of the glucose phosphorylation model pre-
sented in Chapter 4, as well as some indications as to how it can be further
developed.

6.2.1 The mathematical model

This mathematical model is the first comprehensive model describing the
phosphorylation of glucose by the enzyme hexokinase I. It was developed based
on what is currently known about hexokinase I, and following a careful review
of the relevant literature. Glucose phosphorylation is the first step of the
glycolytic pathway, and so it is carefully regulated by cells. The regulation
of hexokinase I is quite complex and includes three inhibitory mechanisms: a
competitive product inhibitory mechanism, an allosteric inhibitory mechanism,
and a competitive inhibitory mechanism. We used the model to help unpick the
regulatory behaviour of hexokinase I. In particular, we obtained the following
results.

• Numerical simulations. The model solutions obtained were consistent
with the known behaviour of hexokinase I. For example, it was found
that the rate of phosphorylation decreased with increasing concentration
of G6P . Also, it was found that low phosphate concentrations antago-
nises hexokinase I inhibition, while high phosphate concentrations inhibit
hexokinase I.

• Global sensitivity analysis. The results of this analysis indicate that the
rate of phosphorylation is sensitive to the following factors: the turnover
rate of the enzyme; the rate of of binding/unbinding of ATP to/from
the C domain of the enzyme; the rate of binding/unbinding of G6P
to/from the C domain of the enzyme with a Pi molecule bound at the N
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domain for low phosphate concentration; and the rate of phosphate bind-
ing/unbinding to/from the C domain of the enzyme for high phosphate
concentration.

• Simplified model. One reduced model was developed based on the results
of the sensitivity analysis. This simpler model produces results that
closely match the results of the full model.

6.2.2 The model may be extended

Although the model we have developed for glucose phosphorylation is com-
prehensive and detailed, there is some scope for improvement. For example, the
full detail of the Bi Bi mechanism [172] could be incorporated in the modelling.
Also, glucose-6-phosphate binding to its N binding site not only allosterically
inhibits the enzyme but also stimulates enzyme release from mitochondria
[192, 193], and no attempt has been made to describe this release behaviour.
Furthermore, the possible inhibition of hexokinase I by ADP [185] has not been
explored in the current study. Also, some glycolytic intermediates can inhibit
hexokinase I, examples being 2,3-diphosphoglycerate, glycerate-3-phosphate
and fructose-1,6-diphosphate [185]. This inhibition has not been incorporated
in the current modelling.

6.3 Modelling enzyme with product inhibition

6.3.1 Two mathematical models

In Chapter 5, we have developed two mathematical models (Model I and
Model II) for the kinetics of enzymes with product inhibition. Model I de-
scribes enzymes subject to competitive inhibition, and Model II describes en-
zymes subject to allosteric inhibition. Model II is new, but Model I is not.
Nevertheless, we used a careful scaling argument to carefully justify the for-
mulation of Model I and clarified the assumptions made for its derivation.
Formulae for the product formation rate of each model were developed.

6.3.2 Model applications

The models may be applied to a mini hexokinase I system and to a mutant
hexokinase I system. Model I may model a mini hexokinase I system involving
mini hexokinase I, glucose (at sufficiently high concentration), and ATP . A
mini hexokinase I enzyme molecule contains the C domain of the hexokinase
I molecule only. Model II may describe a system involving mutant hexokinase
I, glucose (at sufficiently high concentration), and ATP . In this case, the
mutant hexokinase I enzyme molecule is a hexokinase I enzyme molecule with
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the N binding site for ATP deactivated, and the C binding site for G6P
deactivated. It should be noted that in order for a G6P molecule to be formed,
a glucose molecule and an ATP molecule must be bound at their C binding
site. However, G6P would be the effective product of ATP binding if ATP
binding is the rate-limiting step for product formation. This would be the case
for sufficiently high concentrations of glucose, for example.

6.4 Some other ideas for future research

The following are some suggestions for future work on modelling carbohy-
drate enzymes.

6.4.1 Modelling the cellular synthesis of hyaluronan [201]

It is now known that hyaluronan is involved in cancer metastasis [202, 203].
It is also speculated that the length of hyaluronan chains may play a vital
important role in cancer resistance. The remarkable longevity of naked mole
rats may be due to the fact that they secrete extremely high-molecular-weight
hyaluronan, over five times larger than human or mouse hyaluronan [204].
Hence, it would be of interest to develop a mathematical model describing
the cellular synthesis of hyaluronan to help identify the key factors involved in
this process, and in particular, to help pinpoint those factors affecting ultimate
chain length.

6.4.2 Modelling the behaviour of a bisubstrate enzyme
with competitive product inhibition

This system involves a bisubstrate enzyme E, substrates S1, S2, and prod-
ucts P1, P2. The kinetic mechanism of the enzyme is a Bi Bi random mecha-
nism, and the product P1 inhibits the enzyme by competing with the substrate
S2. A schematic diagram of the system reactions is depicted in Figure 6.1. This
model is applicable to a mini hexokinase I system involving mini hexokinase I
enzyme, glucose, ATP , glucose-6-phosphate, and ADP . The correspondence
between the model and this system is as follows:

• mini hexokinase I is the enzyme E;

• glucose and ATP correspond to the substrates S1 and S2, respectively;

• glucose-6-phosphate and ADP correspond to the products P1 and P2,
respectively.

Recall that glucose-6-phosphate competes with ATP for the C binding site on
a mini hexokinase I molecule.
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E E(S1)

E(S1)(S2)E(S2) E + P1 + P2

E(P1) E(S1)(P1)

Figure 6.1: A schematic diagram for the reactions of a bisubstrate enzyme system
with competitive product inhibition. E denotes the enzyme, S1, S2 the substrates,
P1, P2 the products, and E(S1), E(S2), E(S1)(S2), E(P1), and E(S1)(P1) the en-
zyme complexes. The product P1 inhibits the enzyme by competing with the S2
substrate.

6.4.3 Modelling a bisubstrate enzyme with allosteric
product inhibition

E

E(S1)

E(S1)(S2)

E(S2)

E + P1 + P2

E(P1)

E(S1)(P1)

E(S1)(S2)(P1) E(P1) + P1 + P2

E(S2)(P1)

Figure 6.2: A schematic diagram for the reactions of a bisubstrate enzyme system
with allosteric product inhibition. E denotes the enzyme, S1, S2 the substrates,
P1, P2 the products, and E(S1), E(S2), E(S1)(S2), E(P1), E(S1)(P1), E(S2)(P1),
and E(S1)(S2)(P1) the enzyme complexes. The binding of a product P1 molecule to
an enzyme molecule makes a conformational change to the binding site for the S2
substrate so that S2 cannot then bind to the enzyme molecule.

This system consists of a bisubstrate enzyme E, substrates S1, S2, and
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products P1, P2. The kinetic mechanism of the enzyme is a Bi Bi random
mechanism, and the product P1 inhibits the enzyme E by binding to a distinct
site of the enzyme. The binding of a P1 molecule to an enzyme molecule results
in a conformational change of the binding site for the S2 substrate so that S2

cannot then bind to the enzyme molecule. A schematic diagram for the system
of reactions is depicted in Figure 6.2. One of the principal aims of this work
would be to derive a rate equation for the system.

The mechanism just described is of interest because it may be applicable
to the enzyme horseradish peroxidase. Horseradish peroxidase is a well-known
enzyme that is widely used in the food industry and in experimental studies
[205]. This enzyme has a Bi Bi random kinetic mechanism, and it is alloster-
ically inhibited by its product [196]. The correspondence between the model
and this system is as follows:

• horseradish peroxidase is the enzyme E;

• H2O2 and Amplex Red reagent correspond to the substrates S1 and S2,
respectively [206];

• oxidised Amplex Red reagent and H2O correspond to the products P1

and P2, respectively.
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Appendix A

Mathematical model and
Computational programs for
Chapter 3

A.1 Mathematical model

Here we list the complete set of governing equations for the model in Chap-
ter 3. The notation used here is explained in the nomenclature at the begin-
ning of the chapter. Information on how these equations are constructed can
be found in Section 3.2.2 and in Figure 3.6.

d[D1]

dt
= −kads[E].[D1] + ktrans[E ◦D1] + kclv

N∑
i=2

[E �Di],

d[D2]

dt
= −2kads[E].[D2] + kdes[E �D2] + kclv

N∑
i=3

1

i− 2
[E ×Di],

d[D3]

dt
= −3kads[E].[D3] + kdes[E �D3] + kdes[E ×D3]

+kclv

N∑
i=4

1

i− 2
[E ×Di],

...
d[DN−1]

dt
= −(N − 1)kads[E].[DN−1] + kdes[E �DN−1]

+kdes[E ×DN−1] +
1

N − 2
kclv[E ×DN ],

d[DN ]

dt
= −Nkads[E].[DN ] + kdes[E �DN ] + kdes[E ×DN ],
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d[E]

dt
= −kads[E]

(
N∑
i=1

i[Di]

)
+ ktrans[E ◦D1]

+kdes

(
N∑
i=2

[E �Di] +
N∑
i=3

[E ×Di]

)
,

d[E ◦D1]

dt
= −ktrans[E ◦D1] + kads[E].[D1] + kclv[E �D2]

+kclv

N∑
i=3

1

i− 2
[E ×Di],

d[E ◦Dk]

dt
= −ktrans[E ◦Dk] + kads[E].[Dk] + kclv[E �Dk+1]

+krevtr[E �Dk] + kclv

N∑
m=k+2

1

m− 2
[E ×Dm],

2 ≤ k ≤ N − 2,

d[E ◦DN−1]

dt
= −ktrans[E ◦DN−1] + kads[E].[DN−1] + kclv[E �DN ]

+krevtr[E �DN−1]

d[E ◦DN ]

dt
= −ktrans[E ◦DN ] + kads[E].[DN ] + krevtr[E �DN ].

d[E �Dj]

dt
= −(kdes + kclv + krevtr)[E �Dj] + ktrans[E ◦Dj]

+kads[E].[Dj], 2 ≤ j ≤ N,

d[E ×Di]

dt
= −(kdes + kclv)[E ×Di] + (i− 2)kads[E].[Di], 3 ≤ i ≤ N.

These equations are solved subject to the initial conditions

[E](t = 0) = E0,

[DN ](t = 0) = D0,

[Di](t = 0) = 0, 1 ≤ i ≤ N − 1,

[E ×Di](t = 0) = 0, 3 ≤ i ≤ N,

[E �Di](t = 0) = 0, 2 ≤ i ≤ N.

[E ◦Di](t = 0) = 0, 1 ≤ i ≤ N,

where E0, D0 give the initial concentrations of enzyme and polymer chains of
degree N , respectively.

A.2 Computational programs

See the NEXT PAGE.
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# Supplementary material
#
# The program used to estimate parameters and
# calculate sensitivity indices. It can be
# executed with the following libraries
# in Python 2.7 or later!
#
# Libraries for parameter estimation
import numpy as np
from scipy.integrate import odeint
from scipy import integrate
from scipy.optimize import minimize
#
# Library for plotting
import matplotlib.pyplot as plt
#
#
#
#=================================================
# n: number of disaccharides of a HA chain.
# Take care when choosing n for
# sensitivity analysis
n = 125
#
#=================================================
# Create solution to the model that is a
# vector-value function of p, initial_cond, t0,
# t_end and stpz, where p, initial_cond,
# t0, t_end and stpz are a parameter vector, a
# vector of initial concentrations, starting time,
# ending time, and step size of time
# interval, respectively.
#
def sol(p,initial_cond,t0,t_end,stpz):

# Parameters
k1, k2, k3, k5, k6 = p
# time-grid-----
t = np.arange(t0, t_end, stpz)
# Model
def funct(y,t):

# if n = 4,
# y[0] = E
# y[i] = D[i], i=1,n
# y[i] = EoD[i-n], i=n+1,2n, 5,6,7,8
# y[i] = EvD[i-2n+1], i=2n+1,3n-1, 9,10,11
# y[i] = ExD[i-3n+3], i=3n,4n-3, 12,13
#n = 20
#k = 4*n - 2
# the model equations

# sum of D[i], i=1,n
#sumD = sum(y[i] for i in range(1,n+1))

# sum of i*D[i], i=1,n
#sumiD = sum(i*y[i] for i in range(1,n+1))

# sum of EoD[i], i=1,n
#sumC = sum(y[i] for i in range(n+1,2*n+1))

# sum of EvD[i], i=2,n
#sumT = sum(y[i] for i in range(2*n+1,3*n))

# sum of ExD[i], i=3,n
#sumX = sum(y[i] for i in range(3*n,4*n-2)
#===============================
f = []
# Eq. for Enzyme = y[0]
f.append(-k1*y[0]*sum(i*y[i] for i in range(1,n+1)) + k5*y[n+1]

+ k2*(sum(y[i] for i in range(2*n+1,3*n))
+ sum(y[i] for i in range(3*n,4*n-2))))

# Eq. for D[1] = y[1]
f.append(-k1*y[0]*y[1] + k5*y[n+1]

+ k3*sum(y[i] for i in range(2*n+1,3*n)))
# Eq. for D[2] = y[2]
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f.append(-k1*2*y[0]*y[2] + k2*y[2*n+1]
+ k3*sum(y[i]/(i-3*n+1) for i in range(3*n,4*n-2)))

# Eqs. for D[i] = y[i], i=3,n-1
for i in range(3,n):

f.append(-k1*i*y[0]*y[i] + k2*y[2*n+i-1] + k2*y[3*n+i-3]
+ k3*sum(y[k]/(k-3*n+1) for k in range(3*n+1+i-3,4*n-2)))

# Eq. for D[n] = y[n]
f.append(-k1*n*y[0]*y[n] + k2*y[3*n-1] + k2*y[4*n-3])
# Eq. of EoD[1] = y[n+1]
f.append(-k5*y[n+1] + k1*y[0]*y[1] + k3*y[2*n+1]

+ k3*sum(y[i]/(i-3*n+1) for i in range(3*n,4*n-2)))
# Eqs. for EoD[2] = y[n+2], 2<=i<=n-2
for i in range(n+2,2*n-1):

f.append(-k5*y[i] + k1*y[0]*y[i-n] + k3*y[i+n] + k6*y[i+n-1]
+ k3*sum(y[k]/(k-3*n+1) for k in range(i+2*n-1,4*n-2)))

# Eq. for EoD[n-1] = y[2*n-1]
f.append(-k5*y[2*n-1] + k1*y[0]*y[n-1] + k3*y[3*n-1] + k6*y[3*n-2])
# Eq. for EoD[n] = y[2*n]
f.append(-k5*y[2*n] + k1*y[0]*y[n] + k6*y[3*n-1])
# Eqs. for EvD[i] = y[2*n+i-1], i=2,n
for i in range(2*n+1,3*n):

f.append(-(k2 + k3 + k6)*y[i] + k5*y[i-n+1] + k1*y[0]*y[i-2*n+1])
# Eqs. for ExD[i] = y[3n+i-3], i=3,n
for i in range(3*n,4*n-2):

f.append(-(k2 + k3)*y[i] +k1*(i-3*n+1)*y[0]*y[i-3*n+3])
return(f)

#===============================
# integrate the system---
ds = integrate.odeint(funct,initial_cond,t)
return(ds)

#
#===============================
# Section for Parameter estimation
# Molecular weight of a disaccharide unit
#
b = 401.30
#
# Initial conditions
#
y0 = []
E0 = 1.21e-5
D0 = 2.64e-4/26**2 # 2.64e-2/n (real)
y0.append(E0)
for i in range(1,75):

y0.append(0.0)
for i in range(75,101):

y0.append((i-74)*D0)
for i in range(101,n+1):

y0.append((n+1-i)*D0)
for i in range(n+1,4*n-2):

y0.append(0.0)
y0
#
#===============================
# Time grid 1-----
stpz = 1e-4
t0 = 0.0
t_end = 48.0 + stpz
t1 = np.arange(t0, t_end, stpz)
#
#===============================
# Original guesses
#
p0 = [9998.23, 109.36, 2695.43, 2096.69, 4.70]
#
#===============================
# Data section

# Data
# Time grid
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Td = [0.0, 0.3528, 0.9119, 1.8932, 3.9141, 6.0, 24.0, 48.0]
        # Pneumococcal
Zd = [180.1559*D0, 0.6969, 1.3391, 2.7056, 4.5154, 4.6042, 4.6947, 4.7562]
indices = [int(x*1e+4) for x in Td]
#
#===============================
# Section for parameter estimation

# Score fit of the model to data
def score(p):

# Solutions
y = sol(p, y0, 0.0, t_end, stpz)
# Reducing ends
r_ends = 180.1559*sum(y[:,i] for i in range(1,4*n-2))
Zm = np.take(r_ends, indices)
ss = sum((x - y)**2 for x, y in zip(Zm, Zd))
return(ss)

#
#===============================
# Minimize the score
#
# Original bounds
#
#bnds = ((5000,3e+4), (0,1e+3), (500,5e+3), (500,5e+3), (0,1e+2))
#
s_fit = minimize(score, p0, method='nelder-mead', options={'xtol':1e-4, 'disp': 
True})
new_p = s_fit.x
print('for n =' + str(n))
print(new_p)
#
#---------------------------------------------------------------------------------
# Section for plotting
# the model curve and the data
#
if 1 == 10:
    y_sol = sol(p0, y0, t0, t_end, stpz)
 #
    # Plot Reducing sugars

fg1 = plt.figure(1)
plt.plot(t1, 180.1559*sum(y_sol[:,i] for i in range(1,4*n-2)))
plt.plot(Td, Zd, 'ro')
plt.legend(['Model curve', 'Data'])
plt.xlabel('TIME (HOURS)')
plt.ylabel('INCREASE IN REDUCING ENDS' + '\n' + 'AS GLUCOSE $mg/ml$')
#fg1.savefig('data.eps')
plt.show()
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# Global sensitivity analysis program
#
#
# Libraries needed
from SALib.sample import saltelli
from SALib.analyze import sobol
import numpy as np
from scipy.integrate import odeint
from scipy import integrate
#
#=================================================
# No. of disacch.
# n = 35 and 40 chosen to implement with.
n = 35
#
#=================================================
# Solutions to model
def sol(p,initial_cond,t0,t_end,stpz):

# Parameters
k1, k2, k3, k5, k6 = p
# time-grid-----
t = np.arange(t0, t_end, stpz)
# Model
def funct(y,t):

# if n = 4,
# y[0] = E
# y[i] = D[i], i=1,n
# y[i] = EoD[i-n], i=n+1,2n, 5,6,7,8
# y[i] = EvD[i-2n+1], i=2n+1,3n-1, 9,10,11
# y[i] = ExD[i-3n+3], i=3n,4n-3, 12,13
#n = 20
#k = 4*n - 2
# the model equations

# sum of D[i], i=1,n
#sumD = sum(y[i] for i in range(1,n+1))

# sum of i*D[i], i=1,n
#sumiD = sum(i*y[i] for i in range(1,n+1))

# sum of EoD[i], i=1,n
#sumC = sum(y[i] for i in range(n+1,2*n+1))

# sum of EvD[i], i=2,n
#sumT = sum(y[i] for i in range(2*n+1,3*n))

# sum of ExD[i], i=3,n
#sumX = sum(y[i] for i in range(3*n,4*n-2)
#===============================
f = []
# Eq. of Enzyme = y[0]
f.append(-k1*y[0]*sum(i*y[i] for i in range(1,n+1)) + k5*y[n+1]

+ k2*(sum(y[i] for i in range(2*n+1,3*n))
+ sum(y[i] for i in range(3*n,4*n-2))))

# Eq. of D[1] = y[1]
f.append(-k1*y[0]*y[1] + k5*y[n+1]

+ k3*sum(y[i] for i in range(2*n+1,3*n)))
# Eq. of D[2] = y[2]
f.append(-k1*2*y[0]*y[2] + k2*y[2*n+1]

+ k3*sum(y[i]/(i-3*n+1) for i in range(3*n,4*n-2)))
# Eqs. of D[i] = y[i], i=3,n-1
for i in range(3,n):

f.append(-k1*i*y[0]*y[i] + k2*y[2*n+i-1] + k2*y[3*n+i-3]
+ k3*sum(y[k]/(k-3*n+1) for k in range(3*n+1+i-3,4*n-2)))

# Eq. of D[n] = y[n]
f.append(-k1*n*y[0]*y[n] + k2*y[3*n-1] + k2*y[4*n-3])
# Eq. of EoD[1] = y[n+1]
f.append(-k5*y[n+1] + k1*y[0]*y[1] + k3*y[2*n+1]

+ k3*sum(y[i]/(i-3*n+1) for i in range(3*n,4*n-2)))
# Eqs. of EoD[2] = y[n+2], 2<=i<=n-2
for i in range(n+2,2*n-1):

f.append(-k5*y[i] + k1*y[0]*y[i-n] + k3*y[i+n] + k6*y[i+n-1]
+ k3*sum(y[k]/(k-3*n+1) for k in range(i+2*n-1,4*n-2)))

# Eq. of EoD[n-1] = y[2*n-1]
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f.append(-k5*y[2*n-1] + k1*y[0]*y[n-1] + k3*y[3*n-1] + k6*y[3*n-2])
# Eq. of EoD[n] = y[2*n]
f.append(-k5*y[2*n] + k1*y[0]*y[n] + k6*y[3*n-1])
# Eqs. of EvD[i] = y[2*n+i-1], i=2,n
for i in range(2*n+1,3*n):

f.append(-(k2 + k3 + k6)*y[i] + k5*y[i-n+1] + k1*y[0]*y[i-2*n+1])
# Eqs. of ExD[i] = y[3n+i-3], i=3,n
for i in range(3*n,4*n-2):

f.append(-(k2 + k3)*y[i] +k1*(i-3*n+1)*y[0]*y[i-3*n+3])
return(f)

#===============================
# integrate the system---
ds = integrate.odeint(funct,initial_cond,t)
return(ds)

#
#===============================
#====================================================
# Model for Sensitivity Analysis
def model(p):

#===============================
# initial conditions
y0 = []
E0 = 1.21e-5 # 0.00001204 mmol/ml
D0 = 2.64e-2/n # 0.02491957867/n
y0.append(E0)
for i in range(1,n):

y0.append(0.0)
y0.append(D0)
for i in range(n+1,4*n-2):

y0.append(0.0)
y0
#==============================
# Solutions
y = sol(p,y0,0.0,6.0 + 0.02, 0.01)
# Disaccharide in mg/ml
F = 401.3*y[:,1]
return(F)
#

#=================================================
# Define problem of sensitivity analysis
problem = {

'num_vars': 5,
'names': ['k1', 'k2', 'k3', 'k5', 'k6'],
'bounds': [[0.9*9998.23,1.1*9998.23 ], [0.9*109.36,1.1*109.36], 

[0.9*2695.43,1.1*2695.43], [0.9*2096.69,1.1*2096.69], [0.9*4.7,1.1*4.7]]
}
#
# Generate samples
param_values = saltelli.sample(problem, 1000)
#
#=================================================
# Number of model points at which implementing SA
print('For n = ' + str(n) + '\n')
L = [101, 201, 301, 451, 601]
for i in L:

# Run model
Y = np.zeros([param_values.shape[0]])
for j, X in enumerate(param_values):

K = model(X)
Y[j] = K[i]

# Perform analysis
Si = sobol.analyze(problem, Y, print_to_console=True)
#
# Print the first-order sensitivity indices
print(' and for i = ' + str(i) + '\n')
print(Si['S1'])
# Print the total-order sensitivity indices
print(Si['ST'])

#=========================================================
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Appendix B

Mathematical model and
Computational programs for
Chapter 4

B.1 The chemical reactions

Here we list all of the enzymatic reactions included in the mathematical
model. For brevity, we introduce the following notation.

E: free hexokinase I enzyme, 0: glucose, 1: ATP ,
2: G6P , 3: Pi, 4: ADP ,

k0 : catalytic constant rate,
k1, k3, k5, k7 : adsorption constant rates of glucose, ATP , G6P , and

Pi on the N binding sites, respectively.
k−1, k−3, k−5, k−7 : desorption constant rates of glucose, ATP , G6P ,

and Pi from the N binding sites, respectively.
k2, k4, k6, k8 : adsorption constant rates of glucose, ATP , G6P , and

Pi on the C binding sites, respectively.
k−2, k−4, k−6, k−8 : desorption constant rates of glucose, ATP , G6P ,

and Pi from the C binding sites, respectively.
k9, k−9 : adsorption and desorption constant rates of G6P on

and from the Cbinding site of complexes of enzyme
with one Pi molecule bound at the N binding site.

Ex
yz : an enzyme complex with an x molecule bound at its N binding site, a y

molecule bound at its C site, and a z molecule bound at its C site.

E + 0
k1−−⇀↽−−
k−1

E0, E + 0
k2−−⇀↽−−
k−2

E0, E + 1
k3−−⇀↽−−
k−3

E1, E + 1
k4−−⇀↽−−
k−4

E1,

E + 2
k5−−⇀↽−−
k−5

E2, E + 2
k6−−⇀↽−−
k−6

E2, E + 3
k7−−⇀↽−−
k−7

E3, E + 3
k8−−⇀↽−−
k−8

E0,
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E0 + 0
k2−−⇀↽−−
k−2

E0
0 , E0 + 1

k3−−⇀↽−−
k−3

E01, E0 + 1
k4−−⇀↽−−
k−4

E0
1 , E0 + 2

k5−−⇀↽−−
k−5

E02,

E0 + 2
k6−−⇀↽−−
k−6

E0
2 , E0 + 3

k7−−⇀↽−−
k−7

E03, E0 + 3
k8−−⇀↽−−
k−8

E0
3 , E0 + 0

k1−−⇀↽−−
k−1

E0
0 ,

E0 + 1
k3−−⇀↽−−
k−3

E01, E0 + 1
k4−−⇀↽−−
k−4

E0
1 , E0 + 2

k5−−⇀↽−−
k−5

E02, E0 + 2
k6−−⇀↽−−
k−6

E0
2 ,

E0 + 3
k7−−⇀↽−−
k−7

E03, E0 + 3
k8−−⇀↽−−
k−8

E0
3 , E1 + 0

k1−−⇀↽−−
k−1

E01, E1 + 0
k2−−⇀↽−−
k−2

E1
0 ,

E1 + 1
k4−−⇀↽−−
k−4

E1
1 , E1 + 2

k6−−⇀↽−−
k−6

E1
2 , E1 + 3

k8−−⇀↽−−
k−8

E1
3 , E1 + 0

k1−−⇀↽−−
k−1

E0
1 ,

E1 + 0
k2−−⇀↽−−
k−2

E01, E1 + 1
k3−−⇀↽−−
k−3

E1
1 , E1 + 2

k5−−⇀↽−−
k−5

E2
1 , E1 + 3

k7−−⇀↽−−
k−7

E3
1 ,

E2 + 0
k1−−⇀↽−−
k−1

E02, E2 + 0
k2−−⇀↽−−
k−2

E2
0 , E2 + 0

k1−−⇀↽−−
k−1

E0
2 , E2 + 0

k2−−⇀↽−−
k−2

E02,

E2 + 1
k3−−⇀↽−−
k−3

E1
2 , E2 + 3

k7−−⇀↽−−
k−7

E3
2 , E3 + 0

k1−−⇀↽−−
k−1

E03, E3 + 0
k2−−⇀↽−−
k−2

E3
0 ,

E3 + 1
k4−−⇀↽−−
k−4

E3
1 , E3 + 2

k9−−⇀↽−−
k−9

E3
2 , E3 + 3

k8−−⇀↽−−
k−8

E3
3 , E3 + 0

k1−−⇀↽−−
k−1

E0
3 ,

E3 + 0
k2−−⇀↽−−
k−2

E03, E3 + 1
k3−−⇀↽−−
k−3

E1
3 , E3 + 2

k5−−⇀↽−−
k−5

E2
3 , E3 + 3

k7−−⇀↽−−
k−7

E3
3 ,

E01 + 0
k2−−⇀↽−−
k−2

E01
0 , E01 + 1

k4−−⇀↽−−
k−4

E01
1 , E01 + 2

k6−−⇀↽−−
k−6

E01
2 , E01 + 3

k8−−⇀↽−−
k−8

E01
3 ,

E02 + 0
k2−−⇀↽−−
k−2

E02
0 , E03 + 0

k2−−⇀↽−−
k−2

E03
0 , E03 + 1

k4−−⇀↽−−
k−4

E03
1 , E03 + 2

k9−−⇀↽−−
k−9

E03
2 ,

E03 + 3
k8−−⇀↽−−
k−8

E03
3 , E0

0 + 1
k3−−⇀↽−−
k−3

E01
0 , E0

0 + 1
k4−−⇀↽−−
k−4

E0
01, E0

0 + 2
k5−−⇀↽−−
k−5

E02
0 ,

E0
0 + 2

k6−−⇀↽−−
k−6

E0
02, E0

0 + 3
k7−−⇀↽−−
k−7

E03
0 , E0

0 + 3
k8−−⇀↽−−
k−8

E0
03, E0

1 + 0
k2−−⇀↽−−
k−2

E0
01,

E0
1 + 1

k3−−⇀↽−−
k−3

E01
1 , E0

1 + 2
k5−−⇀↽−−
k−5

E02
1 , E0

1 + 3
k7−−⇀↽−−
k−7

E03
1 , E0

2 + 0
k2−−⇀↽−−
k−2

E0
02,

E0
2 + 1

k3−−⇀↽−−
k−3

E01
2 , E0

2 + 3
k7−−⇀↽−−
k−7

E03
2 , E0

3 + 0
k2−−⇀↽−−
k−2

E0
03, E0

3 + 1
k3−−⇀↽−−
k−3

E01
3 ,

E0
3 + 2

k5−−⇀↽−−
k−5

E02
3 , E0

3 + 3
k7−−⇀↽−−
k−7

E03
3 , E1

0 + 0
k1−−⇀↽−−
k−1

E01
0 , E1

0 + 1
k4−−⇀↽−−
k−4

E1
01,

E1
0 + 2

k6−−⇀↽−−
k−6

E1
02, E1

0 + 3
k8−−⇀↽−−
k−8

E1
03, E1

1 + 0
k1−−⇀↽−−
k−1

E01
1 , E1

1 + 0
k2−−⇀↽−−
k−2

E1
01,

E1
2 + 0

k1−−⇀↽−−
k−1

E01
2 , E1

2 + 0
k2−−⇀↽−−
k−2

E1
02, E1

3 + 0
k1−−⇀↽−−
k−1

E01
3 , E1

3 + 0
k2−−⇀↽−−
k−2

E1
03,

E2
0 + 0

k1−−⇀↽−−
k−1

E02
0 , E2

1 + 0
k1−−⇀↽−−
k−1

E02
1 , E2

1 + 0
k2−−⇀↽−−
k−2

E2
01, E2

3 + 0
k1−−⇀↽−−
k−1

E02
3 ,

E2
3 + 0

k2−−⇀↽−−
k−2

E2
03, E3

0 + 0
k1−−⇀↽−−
k−1

E03
0 , E3

0 + 1
k4−−⇀↽−−
k−4

E3
01, E3

0 + 2
k9−−⇀↽−−
k−9

E3
02,

E3
0 + 3

k8−−⇀↽−−
k−8

E3
03, E3

1 + 0
k1−−⇀↽−−
k−1

E03
1 , E3

1 + 0
k2−−⇀↽−−
k−2

E3
01, E3

2 + 0
k1−−⇀↽−−
k−1

E03
2 ,

E3
2 + 0

k2−−⇀↽−−
k−2

E3
02, E3

3 + 0
k1−−⇀↽−−
k−1

E03
3 , E3

3 + 0
k2−−⇀↽−−
k−2

E3
03, E01 + 0

k1−−⇀↽−−
k−1

E0
01,
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E01 + 1
k3−−⇀↽−−
k−3

E1
01, E01 + 2

k5−−⇀↽−−
k−5

E2
01, E01 + 3

k7−−⇀↽−−
k−7

E3
01, E02 + 0

k1−−⇀↽−−
k−1

E0
02,

E02 + 1
k3−−⇀↽−−
k−3

E1
02, E02 + 3

k7−−⇀↽−−
k−7

E2
02, E03 + 0

k1−−⇀↽−−
k−1

E0
03, E03 + 1

k3−−⇀↽−−
k−3

E1
03,

E03 + 2
k5−−⇀↽−−
k−5

E2
03, E03 + 3

k7−−⇀↽−−
k−7

E3
03, E01

0 + 1
k4−−⇀↽−−
k−4

E01
01 , E01

0 + 2
k6−−⇀↽−−
k−6

E01
02 ,

E01
0 + 3

k8−−⇀↽−−
k−8

E01
03 , E01

1 + 0
k2−−⇀↽−−
k−2

E01
01 , E01

2 + 0
k2−−⇀↽−−
k−2

E01
02 , E01

3 + 0
k2−−⇀↽−−
k−2

E01
03 ,

E02
1 + 0

k2−−⇀↽−−
k−2

E02
01 , E02

3 + 0
k2−−⇀↽−−
k−2

E02
03 , E03

0 + 1
k4−−⇀↽−−
k−4

E03
01 , E03

0 + 2
k9−−⇀↽−−
k−9

E03
02 ,

E03
0 + 3

k8−−⇀↽−−
k−8

E03
03 , E03

1 + 0
k2−−⇀↽−−
k−2

E03
01 , E03

2 + 0
k2−−⇀↽−−
k−2

E03
02 , E03

3 + 0
k2−−⇀↽−−
k−2

E03
03 ,

E0
01 + 1

k3−−⇀↽−−
k−3

E01
01 , E0

01 + 2
k5−−⇀↽−−
k−5

E02
01 , E0

01 + 3
k7−−⇀↽−−
k−7

E03
01 , E1

01 + 0
k1−−⇀↽−−
k−1

E01
01 ,

E2
01 + 0

k1−−⇀↽−−
k−1

E02
01 , E3

01 + 0
k1−−⇀↽−−
k−1

E03
01 , E0

02 + 1
k3−−⇀↽−−
k−3

E01
02 , E0

02 + 3
k7−−⇀↽−−
k−7

E03
02 ,

E1
02 + 0

k1−−⇀↽−−
k−1

E01
02 , E3

02 + 0
k1−−⇀↽−−
k−1

E03
02 , E0

03 + 1
k3−−⇀↽−−
k−3

E01
03 , E0

03 + 2
k5−−⇀↽−−
k−5

E02
03 ,

E1
03 + 0

k1−−⇀↽−−
k−1

E01
03 , E2

03 + 0
k1−−⇀↽−−
k−1

E02
03 , E3

03 + 0
k1−−⇀↽−−
k−1

E03
03 .

Note no substrate can bind to the E02
0 complex. Here are all reactions that

produce product

E01
k0−→ E + 2 + 4, E0

01
k0−→ E0 + 2 + 4,

E1
01

k0−→ E1 + 2 + 4, E2
01

k0−→ E2 + 2 + 4,

E3
01

k0−→ E3 + 2 + 4, E01
01

k0−→ E01 + 2 + 4,

E02
01

k0−→ E02 + 2 + 4, E03
01

k0−→ E03 + 2 + 4,

B.2 The model equations

We now list the complete set of governing equations for the model. The
notation used is explained in the chapter. Information on how these equations
are constructed can also be found in the chapter.

d[E]

dt
= k0[E01] + k−1[E

0] + k−2[E0] + k−3[E
1] + k−4[E1] + k−5[E

2]

+ k−6[E2] + k−7[E
3] + k−8[E3]− [E]((k1 + k2)[0]

+ (k3 + k4)[1] + (k5 + k6)[2] + (k7 + k8)[3]), (B.1)
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d[0]

dt
= k−1([E

0] + [E01] + [E02] + [E03] + [E0
1 ] + [E0

2 ] + [E0
3 ] + [E01

1 ]

+ [E01
2 ] + [E01

3 ] + [E02
1 ] + [E02

3 ] + [E03
1 ] + [E03

2 ] + [E03
3 ])

+ k−2([E0] + [E01] + [E02] + [E03] + [E1
0 ] + [E2

0 ] + [E3
0 ] + [E1

01]

+ [E2
01] + [E3

01] + [E1
02] + [E3

02] + [E1
03] + [E2

03] + [E3
03])

+ (k−1 + k−2)([E
0
0 ] + [E01

0 ] + [E02
0 ] + [E03

0 ] + [E0
01] + [E0

02] + [E0
03]

+ [E01
01 ] + [E01

02 ] + [E01
03 ] + [E02

01 ] + [E02
03 ] + [E03

01 ] + [E03
02 ] + [E03

03 ])

− [0]((k1 + k2)([E] + [E1] + [E1] + [E2] + [E2] + [E3] + [E3]

+ [E1
1 ] + [E1

2 ] + [E1
3 ] + [E2

1 ] + [E2
3 ] + [E3

1 ] + [E3
2 ] + [E3

3 ])

+ k1([E0] + [E1
0 ] + [E2

0 ] + [E3
0 ] + [E01] + [E02] + [E03] + [E1

01]

+ [E2
01] + [E3

01] + [E1
02] + [E3

02] + [E1
03] + [E2

03] + [E3
03])

+ k2([E
0] + [E01] + [E02] + [E03] + [E0

1 ] + [E0
2 ] + [E0

3 ] + [E01
1 ]

+ [E01
2 ] + [E01

3 ] + [E02
1 ] + [E02

3 ] + [E03
1 ] + [E03

2 ] + [E03
3 ])), (B.2)

d[1]

dt
= k−3([E

1] + [E1
0 ] + [E1

2 ] + [E1
3 ] + [E01

0 ] + [E01
2 ] + [E01

3 ] + [E1
02] + [E1

03]

+ [E01
02 ] + [E01

03 ]) + k−4([E1] + [E0
1 ] + [E2

1 ] + [E3
1 ] + [E0

01] + [E2
01]

+ [E3
01] + [E02

1 ] + [E03
1 ] + [E02

01 ] + [E03
01 ]) + (k−3 + k−4)([E

1
1 ] + [E01

1 ]

+ [E1
01] + [E01

01 ])− [1]((k3 +K4)([E] + [E0] + [E0] + [E0
0 ]) + k3([E1]

+ [E2] + [E3] + [E0
1 ] + [E0

2 ] + [E0
3 ] + [E01] + [E02] + [E03] + [E0

01]

+ [E0
02] + [E0

03]) + k4([E
1] + [E3] + [E1

0 ] + [E3
0 ] + [E01] + [E03]

+ [E01
0 ] + [E03

0 ])), (B.3)
d[2]

dt
= k0([E01] + [E0

01] + [E1
01] + [E2

01] + [E3
01] + [E01

01 ] + [E02
01 ] + [E03

01 ])

+ k−5([E
2] + [E02] + [E2

0 ] + [E2
1 ] + [E2

3 ] + [E02
0 ] + [E02

1 ] + [E02
3 ]

+ [E2
01] + [E2

03] + [E02
01 ] + [E02

03 ]) + k−6([E2] + [E02] + [E0
2 ] + [E1

2 ]

+ [E0
02] + [E1

02] + [E01
2 ] + [E01

02 ]) + k−9([E
3
2 ] + [E03

2 ] + [E3
02] + [E03

02 ])

− [2]((k5 + k6)([E] + [E0] + [E0] + [E0
0 ]) + k5([E1] + [E0

1 ] + [E3]

+ [E0
3 ] + [E01] + [E03] + [E0

01] + [E0
03]) + k6([E

1] + [E1
0 ] + [E01]

+ [E01
0 ]) + k9([E

3] + [E3
0 ] + [E03] + [E03

0 ])), (B.4)
d[3]

dt
= k−7([E

3] + [E03] + [E3
0 ] + [E3

1 ] + [E3
2 ] + [E03

0 ] + [E03
1 ] + [E03

2 ] + [E3
01]

+ [E3
02] + [E03

01 ] + [E03
02 ]) + k−8([E3] + [E03] + [E0

3 ] + [E1
3 ] + [E2

3 ]

+ [E0
03] + [E1

03] + [E2
03] + [E01

3 ] + [E02
3 ] + [E01

03 ] + [E02
03 ])

+ (k−7 + k−8)([E
3
3 ] + [E03

3 ] + [E3
03] + [E03

03 ])

− [3](k7([E1] + [E2] + [E3] + [E0
1 ] + [E0

2 ] + [E0
3 ] + [E01] + [E02] + [E03]

+ [E0
01] + [E0

02] + [E0
03]) + k8([E

1] + [E3] + [E1
0 ] + [E3

0 ] + [E01]

+ [E03] + [E01
0 ] + [E03

0 ]) + (k7 + k8)([E] + [E0] + [E0] + [E0
0 ])),

(B.5)
d[4]

dt
= k0([E01] + [E0

01] + [E1
01] + [E2

01] + [E3
01] + [E01

01 ] + [E02
01 ] + [E03

01 ]), (B.6)
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d[E0]

dt
= k0[E

0
01] + k1[0][E] + k−2[E

0
0 ] + k−3[E

01] + k−4[E
0
1 ] + k−5[E

02]

+ k−6[E
0
2 ] + k−7[E

03] + k−8[E
0
3 ]− [E0](k−1 + k2[0]

+ (k3 + k4)[1] + (k5 + k6)[2] + (k7 + k8)[3]), (B.7)
d[E1]

dt
= k0[E

1
01] + k−1[E

01] + k−2[E
1
0 ] + k−4[E

1
1 ] + k−6[E

1
2 ] + k−8[E

1
3 ]

+ k3[1][E]− [E1](k−3 + (k1 + k2)[0] + k4[1] + k6[2] + k8[3]), (B.8)
d[E2]

dt
= k0[E

2
01] + k−1[E

02] + k−2[E
2
0 ] + k−4[E

2
1 ] + k−8[E

2
3 ] + k5[2][E]

− [E2](k−5 + (k1 + k2)[0]), (B.9)
d[E3]

dt
= k0[E

3
01] + k−1[E

03] + k−2[E
3
0 ] + k−4[E

3
1 ] + k−9[E

3
2 ] + k−8[E

3
3 ]

+ k7[3][E]− [E3](k−7 + (k1 + k2)[0] + k4[1] + k9[2] + k8[3]), (B.10)
d[E0]

dt
= k2[E][0] + k−1[E

0
0 ] + k−3[E

1
0 ] + k−4[E01]

+ k−5[E
2
0 ] + k−6[E02] + k−7[E

3
0 ] + k−8[E03]

− [E0](k−2 + k1[0] + (k3 + k4)[1] + (k5 + k6)[2] + (k7 + k8)[3]),
(B.11)

d[E1]

dt
= k−1[E

0
1 ] + k−2[E01] + k−3[E

1
1 ] + k−5[E

2
1 ] + k−7[E

3
1 ] + k4[1][E]

− [E1](k−4 + (k1 + k2)[0] + k3[1] + k5[2] + k7[3]), (B.12)
d[E2]

dt
= k−1[E

0
2 ] + k−2[E02] + k−3[E

1
2 ] + k−7[E

3
2 ] + k6[2][E]

− [E2](k−6 + (k1 + k2)[0] + k3[1] + k7[3]), (B.13)
d[E3]

dt
= k−1[E

0
3 ] + k−2[E03] + k−3[E

1
3 ] + k−5[E

2
3 ] + k−7[E

3
3 ] + k8[3][E]

− [E3](k−8 + (k1 + k2)[0] + k3[1] + k5[2] + k7[3]), (B.14)
d[E01]

dt
= k0[E

01
01 ] + k−2[E

01
0 ] + k−4[E

01
1 ] + k−6[E

01
2 ] + k−8[E

01
3 ] + k1[0][E1]

+ k3[1][E0]− [E01](k−1 + k−3 + k2[0] + k4[1] + k6[2] + k8[3]),
(B.15)

d[E02]

dt
= k0[E

02
01 ] + k−2[E

02
0 ] + k−4[E

02
1 ] + k−8[E

02
3 ] + k1[0][E2] + k5[2][E0]

− [E02](k−1 + k−5 + k2[0]), (B.16)
d[E03]

dt
= k0[E

03
01 ] + k−2[E

03
0 ] + k−4[E

03
1 ] + k−9[E

03
2 ] + k−8[E

03
3 ] + k1[0][E3]

+ k7[3][E0]− [E03](k−1 + k−7 + k2[0] + k4[1] + k9[2] + k8[3]),
(B.17)

d[E0
0 ]

dt
= k−3[E

01
0 ] + k−4[E

0
01] + k−5[E

02
0 ] + k−6[E

0
02] + k−7[E

03
0 ] + k−8[E

0
03]

+ (k1[E0] + k2[E
0])[0]− [E0

0 ](k−1 + k−2 + (k3 + k4)[1]

+ (k5 + k6)[2] + (k7 + k8)[3]), (B.18)
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d[E0
1 ]

dt
= k−2[E

0
01] + k−3[E

01
1 ] + k−5[E

02
1 ] + k−7[E

03
1 ] + k1[0][E1] + k4[1][E0]

− [E0
1 ](k−1 + k−4 + k2[0] + k3[1] + k5[2] + k7[3]), (B.19)

d[E0
2 ]

dt
= k−2[E

0
02] + k−3[E

01
2 ] + k−7[E

03
2 ] + k1[0][E2] + k6[2][E0]

− [E0
2 ](k−1 + k−6 + k2[0] + k3[1] + k7[3]), (B.20)

d[E0
3 ]

dt
= k−2[E

0
03] + k−3[E

01
3 ] + k−5[E

02
3 ] + k−7[E

03
3 ] + k1[0][E3] + k8[3][E0]

− [E0
3 ](k−1 + k−8 + k2[0] + k3[1] + k5[2] + k7[3]), (B.21)

d[E1
0 ]

dt
= k−1[E

01
0 ] + k−4[E

1
01] + k−6[E

1
02] + k−8[E

1
03] + k2[0][E1] + k3[1][E0]

− [E1
0 ](k−2 + k−3 + k1[0] + k4[1] + k6[2] + k8[3]), (B.22)

d[E1
1 ]

dt
= k−1[E

01
1 ] + k−2[E

1
01] + [1](k3[E1] + k4[E

1])− [E1
1 ](k−3 + k−4

+ (k1 + k2)[0]), (B.23)
d[E1

2 ]

dt
= k−1[E

01
2 ] + k−2[E

1
02] + k3[1][E2] + k6[2][E1]− [E1

2 ](k−3 + k−6

+ (k1 + k2)[0]), (B.24)
d[E1

3 ]

dt
= k−1[E

01
3 ] + k−2[E

1
03] + k3[1][E3] + k8[3][E1]− [E1

3 ](k−3 + k−8

+ (k1 + k2)[0]), (B.25)
d[E2

0 ]

dt
= k−1[E

02
0 ] + k−4[E

2
01] + k−8[E

2
03] + k2[0][E2] + k5[2][E0]

− [E2
0 ](k−2 + k−5 + k1[0]), (B.26)

d[E2
1 ]

dt
= k−1[E

02
1 ] + k−2[E

2
01] + k5[2][E1]− [E2

1 ](k−4 + k−5 + (k1 + k2)[0]),

(B.27)
d[E2

3 ]

dt
= k−1[E

02
3 ] + k−2[E

2
03] + k5[2][E3]− [E2

3 ](k−5 + k−8 + (k1 + k2)[0]),

(B.28)
d[E3

0 ]

dt
= k−1[E

03
0 ] + k−4[E

3
01] + k−9[E

3
02] + k−8[E

3
03] + k2[0][E3] + k7[3][E0]

− [E3
0 ](k−2 + k−7 + k1[0] + k4[1] + k9[2] + k8[3]), (B.29)

d[E3
1 ]

dt
= k−1[E

03
1 ] + k−2[E

3
01] + k4[1][E3] + k7[3][E1]− [E3

1 ](k−4 + k−7

+ (k1 + k2)[0]), (B.30)
d[E3

2 ]

dt
= k−1[E

03
2 ] + k−2[E

3
02] + k9[2][E3] + k7[3][E2]− [E3

2 ](k−9 + k−7

+ (k1 + k2)[0]), (B.31)
d[E3

3 ]

dt
= k−1[E

03
3 ] + k−2[E

3
03] + (k7[E3] + k8[E

3])[3]− [E3
3 ](k−7 + k−8

+ (k1 + k2)[0]), (B.32)
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d[E01]

dt
= k−1[E

0
01] + k−3[E

1
01] + k−5[E

2
01] + k−7[E

3
01] + k2[0][E1] + k4[1][E0]

− [E01](k0 + k−2 + k−4 + k1[0] + k3[1] + k5[2] + k7[3]), (B.33)
d[E02]

dt
= k−1[E

0
02] + k−3[E

1
02] + k−7[E

3
02] + k2[0][E2] + k6[2][E0]

− [E02](k−2 + k−6 + k1[0] + k3[1] + k7[3]), (B.34)
d[E03]

dt
= k−1[E

0
03] + k−3[E

1
03] + k−5[E

2
03] + k−7[E

3
03] + k2[0][E3] + k8[3][E0]

− [E03](k−2 + k−8 + k1[0] + k3[1] + k5[2] + k7[3]), (B.35)
d[E01

0 ]

dt
= k−4[E

01
01 ] + k−6[E

01
02 ] + k−8[E

01
03 ] + (k1[E

1
0 ] + k2[E

01])[0] + k3[1][E0
0 ]

− [E01
0 ](k−1 + k−2 + k−3 + k4[1] + k6[2] + k8[3]), (B.36)

d[E01
1 ]

dt
= k−2[E

01
01 ] + k1[0][E1

1 ] + (k3[E
0
1 ] + k4[E

01])[1]

− [E01
1 ](k−1 + k−3 + k−4 + k2[0]), (B.37)

d[E01
2 ]

dt
= k−2[E

01
02 ] + k1[0][E1

2 ] + k3[1][E0
2 ] + k6[2][E01]

− [E01
2 ](k−1 + k−3 + k−6 + k2[0]), (B.38)

d[E01
3 ]

dt
= k−2[E

01
03 ] + k1[0][E1

3 ] + k3[1][E0
3 ] + k8[3][E01]

− [E01
3 ](k−1 + k−3 + k−8 + k2[0]), (B.39)

d[E02
0 ]

dt
= k−4[E

02
01 ] + k−8[E

02
03 ] + (k1[E

2
0 ] + k2[E

02])[0] + k5[E
0
0 ][2]

− [E02
0 ](k−1 + k−2 + k−5), (B.40)

d[E02
1 ]

dt
= k−2[E

02
01 ] + k1[0][E2

1 ] + k5[2][E0
1 ]

− [E02
1 ](k−1 + k−4 + k−5 + k2[0]), (B.41)

d[E02
3 ]

dt
= k−2[E

02
03 ] + k1[0][E2

3 ] + k5[2][E0
3 ]

− [E02
3 ](k−1 + k−5 + k−8 + k2[0]), (B.42)

d[E03
0 ]

dt
= k−4[E

03
01 ] + k−9[E

03
02 ] + k−8[E

03
03 ] + (k1[E

3
0 ] + k2[E

03])[0] + k7[3][E0
0 ]

− [E03
0 ](k−1 + k−2 + k−7 + k4[1] + k9[2] + k8[3]), (B.43)

d[E03
1 ]

dt
= k−2[E

03
01 ] + k1[0][E3

1 ] + k4[1][E03] + k7[3][E0
1 ]

− [E03
1 ](k−1 + k−4 + k−7 + k2[0]), (B.44)

d[E03
2 ]

dt
= k−2[E

03
02 ] + k1[0][E3

2 ] + k9[2][E03] + k7[3][E0
2 ]

− [E03
2 ](k−1 + k−9 + k−7 + k2[0]), (B.45)
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d[E03
3 ]

dt
= k−2[E

03
03 ] + k1[0][E3

3 ] + (k7[E
0
3 ] + k8[E

03])[3]

− [E03
3 ](k−1 + k−7 + k−8 + k2[0]), (B.46)

d[E0
01]

dt
= k−3[E

01
01 ] + k−5[E

02
01 ] + k−7[E

03
01 ] + (k1[E01] + k2[E

0
1 ])[0] + k4[1][E0

0 ]

− [E0
01](k0 + k−1 + k−2 + k−4 + k3[1] + k5[2] + k7[3]), (B.47)

d[E1
01]

dt
= k−1[E

01
01 ] + k2[0][E1

1 ] + (k3[E01] + k4[E
1
0 ])[1]

− [E1
01](k0 + k−2 + k−3 + k−4 + k1[0]), (B.48)

d[E2
01]

dt
= k−1[E

02
01 ] + k2[0][E2

1 ] + k5[2][E01]

− [E2
01](k0 + k−2 + k−4 + k−5 + k1[0]), (B.49)

d[E3
01]

dt
= k−1[E

03
01 ] + k2[0][E3

1 ] + k4[1][E3
0 ] + k7[3][E01]

− [E3
01](k0 + k−2 + k−4 + k−7 + k1[0]), (B.50)

d[E0
02]

dt
= k−3[E

01
02 ] + k−7[E

03
02 ] + (k1[E02] + k2[E

0
2 ])[0] + k6[2][E0

0 ]

− [E0
02](k−1 + k−2 + k−6 + k3[1] + k7[3]), (B.51)

d[E1
02]

dt
= k−1[E

01
02 ] + k2[0][E1

2 ] + k3[1][E02] + k6[2][E1
0 ]

− [E1
02](k−2 + k−3 + k−6 + k1[0]), (B.52)

d[E3
02]

dt
= k−1[E

03
02 ] + k2[0][E3

2 ] + k9[2][E3
0 ] + k7[3][E0

2 ]

− [E3
02(k−2 + k−9 + k−7 + k1[0]), (B.53)

d[E0
03]

dt
= k−3[E

01
03 ] + k−5[E

02
03 ] + k−7[E

03
03 ] + (k1[E03] + k2[E

0
3 ])[0] + k8[3][E0

0 ]

− [E0
03](k−1 + k−2 + k−8 + k3[1] + k5[2] + k7[3]), (B.54)

d[E1
03]

dt
= k−1[E

01
03 ] + k2[0][E1

3 ] + k3[1][E03] + k8[3][E1
0 ]

− [E1
03](k−2 + k−3 + k−8 + k1[0]), (B.55)

d[E2
03]

dt
= k−1[E

02
03 ] + k2[0][E2

3 ] + k5[2][E03]

− [E2
03](k−2 + k−5 + k−8 + k1[0]), (B.56)

d[E3
03]

dt
= k−1[E

03
03 ] + k2[0][E3

3 ] + (k7[E03] + k8[E
3
0 ])[3]

− [E3
03](k−2 + k−7 + k−8 + k1[0]), (B.57)

d[E01
01 ]

dt
= (k1[E

1
01] + k2[E

01
1 ])[0] + (k3[E

0
01] + k4[E

01
0 ])[1]

− [E01
01 ](k0 + k−1 + k−2 + k−3 + k−4), (B.58)
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d[E01
02 ]

dt
= (k1[E

1
02] + k2[E

01
2 ])[0] + k3[1][E0

02] + k6[2][E01
0 ]

− [E01
02 ](k−1 + k−2 + k−3 + k−6), (B.59)

d[E01
03 ]

dt
= (k1[E

1
03] + k2[E

01
3 ])[0] + k3[1][E0

03] + k8[3][E01
0 ]

− [E01
03 ](k−1 + k−2 + k−3 + k−8), (B.60)

d[E02
01 ]

dt
= (k1[E

2
01] + k2[E

02
1 ])[0] + k5[2][E0

01]

− [E02
01 ](k0 + k−1 + k−2 + k−4 + k−5), (B.61)

[E02
03 ]

dt
= (k1[E

2
03] + k2[E

02
3 ])[0] + k5[2][E0

03]

− [E02
03 ](k−1 + k−2 + k−5 + k−8), (B.62)

[E03
01 ]

dt
= (k1[E

3
01] + k2[E

03
1 ])[0] + k4[1][E03

0 ] + k7[3][E0
01]

− [E03
01 ](k0 + k−1 + k−2 + k−4 + k−7), (B.63)

d[E03
02 ]

dt
= (k1[E

3
02] + k2[E

03
2 ])[0] + k9[2][E03

0 ] + k7[3][E0
02]

− [E03
02 ](k−1 + k−2 + k−9 + k−7), (B.64)

d[E03
03 ]

dt
= (k1[E

3
03] + k2[E

03
3 ])[0] + (k7[E

0
03] + k8[E

03
0 ])[3]

− [E03
03 ](k−1 + k−2 + k−7 + k−8). (B.65)

These equations are solved subject to the initial conditions

[E](t = 0) = E0,

[0](t = 0) = G0,

[1](t = 0) = ATP0,

[2](t = 0) = 0,

[3](t = 0) = Pi0,

[4](t = 0) = 0,

[Ek](t = 0) = 0, k = 0, 1, 2, 3,

[Ek](t = 0) = 0, k = 0, 1, 2, 3,

[E0j](t = 0) = 0, j = 1, 2, 3,

[E0j](t = 0) = 0, j = 1, 2, 3,

[Ek
j ](t = 0) = 0, k = 0, 1, 2, 3, j = 0, 1, 3,

[Ej
2](t = 0) = 0, j = 0, 1, 3,

[E0x
y ](t = 0) = 0, x = 1, 2, 3, y = 0, 1, 3,

[Ex
0y](t = 0) = 0, x = 0, 1, 3, y = 1, 2, 3,
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[E0x
2 ](t = 0) = 0, x = 1, 3,

[E2
0x](t = 0) = 0, x = 1, 3,

[E0x
0y ](t = 0) = 0, x = 1, 3, y = 1, 3,

[E02
0x](t = 0) = 0, x = 1, 3,

[E0x
02 ](t = 0) = 0, x = 1, 3,

where E0, G0, ATP0, Pi0 give the initial concentrations of enzyme, glucose,
ATP , and Pi, respectively.

B.3 Software

We display three files: the file which implements the Sensitivity Analysis,
the main file which calculates and plots solutions by calling the model file
containing the model equations. See the NEXT PAGE.
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#======================#
# SENSITIVITY ANALYSIS #
#======================#
 
from SALib.sample import saltelli
from SALib.analyze import sobol
import numpy as np
from scipy.integrate import odeint
from scipy import integrate
 
# SOLUTION TO THE MODEL
#
def SOL(p, initial_cond, t0, t_end, stpz):

#
    k0, k1, k_1, k2, k_2, k3, k_3, k4, k_4, k5, k_5, \

k6, k_6, k7, k_7, k8, k_8, k9, k_9 = p
 #
    t = np.arange(t0, t_end, stpz)
    #
    def MODEL(y,t):
    #

#
    # Define y
    
        _E_, _0_, _1_, _2_, _3_, _4_,\

\
    _0E_,_1E_, _2E_, _3E_,\

\
    _E0_, _E1_, _E2_, _E3_,\

\
    _01E_, _02E_, _03E_,\

\
    _0E0_, _0E1_, _0E2_, _0E3_,\

\
    _1E0_, _1E1_, _1E2_, _1E3_,\

\
    _2E0_, _2E1_, _2E3_,\

\
    _3E0_, _3E1_, _3E2_, _3E3_,\

\
    _E01_, _E02_, _E03_,\

\
    _01E0_, _01E1_, _01E2_, _01E3_,\

\
    _02E0_, _02E1_, _02E3_,\

\
    _03E0_, _03E1_, _03E2_, _03E3_,\

\
    _0E01_, _1E01_, _2E01_, _3E01_,\

\
    _0E02_, _1E02_, _3E02_,\

\
    _0E03_, _1E03_, _2E03_, _3E03_,\

\
    _01E01_, _01E02_, _01E03_, _02E01_,\

\
    _02E03_, _03E01_, _03E02_, _03E03_ = y 

#
#

    # _E_: Hexokinase 1; _0_: Glucose
# _1_: ATP; _2_: G6P; _3_: Pi; _4_: ADP
# _xEy_: x, y substances bound at N, C domains, respectively.
# Define dydt

        dydt=[]
#

    #1 Eq. for enyme _E_
        dydt.append(k0*_E01_ + k_1*_0E_ + k_2*_E0_ + k_3*_1E_ \
        

+ k_4*_E1_ + k_5*_2E_ + k_6*_E2_ + k_7*_3E_ + k_8*_E3_ \
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- _E_*((k1 + k2)*_0_ + (k3 + k4)*_1_ + (k5 + k6)*_2_ \

+ (k7 + k8)*_3_))
 

    #2 Eq. for _0_
        dydt.append(k_1*(_0E_ + _01E_ + _02E_ + _03E_ + _0E0_ \
    
    + _0E1_ + _0E2_ + _0E3_ + _01E0_ + _01E1_ + _01E2_ \
    
    + _01E3_ + _02E0_ + _02E1_ + _02E3_ + _03E0_ \
    
    + _03E1_ + _03E2_ + _03E3_ + _0E01_ + _0E02_ \
    
    + _0E03_ + _01E01_ + _01E02_ + _01E03_ + _02E01_ \
    
    + _02E03_ + _03E01_ + _03E02_ + _03E03_ )\

+ k_2*(_E0_ + _0E0_ + _1E0_ + _2E0_ + _3E0_ + _E01_ \

+ _E02_ + _E03_ + _01E0_ + _02E0_ + _03E0_ + _0E01_ \

+ _1E01_ + _2E01_ + _3E01_ +_0E02_ + _1E02_ + _3E02_ \

+ _0E03_ + _1E03_ + _2E03_ + _3E03_ + _01E01_ \

+ _01E02_ + _01E03_ + _02E01_ + _02E03_ + _03E01_ \
 

+ _03E02_ + _03E03_ )\

- _0_*((k1 + k2)*(_E_ + _1E_ + _E1_ + _2E_ + _E2_ + _3E_ \

+ _E3_ + _1E1_ + _1E2_ + _1E3_ + _2E1_ + _2E3_ \

+ _3E1_ + _3E2_ + _3E3_)\
 

+ k1*(_E0_ + _1E0_ + _2E0_ + _3E0_ + _E01_ + _E02_ \

+ _E03_ + _1E01_ + _2E01_ + _3E01_ + _1E02_ \

+ _3E02_ + _1E03_ + _2E03_ + _3E03_) \
 

+ k2*(_0E_ + _01E_ + _02E_ + _03E_ + _0E1_ + _0E2_ \

+ _0E3_ + _01E1_ + _01E2_ + _01E3_ + _02E1_ \

+ _02E3_ + _03E1_ + _03E2_ + _03E3_)))
 

    #3 Eq. for _1_
        dydt.append(k_3*(_1E_ + _01E_ + _1E0_ + _1E1_ + _1E2_ + _1E3_ \
    
    + _01E0_ + _01E1_ + _01E2_ + _01E3_ + _1E01_ + _1E02_ \
    
    + _1E03_ + _01E01_ + _01E02_ + _01E03_) \
 

+ k_4*(_E1_ + _0E1_ + _1E1_ + _2E1_ + _3E1_ + _E01_ \

+ _01E1_ + _02E1_ + _03E1_ + _0E01_ + _1E01_ \

+ _2E01_ + _3E01_ + _01E01_ + _02E01_ + _03E01_) \
 

- _1_*(k3*(_E_ + _0E_ + _E0_ + _E1_ + _E2_ + _E3_ + _0E0_ \

+ _0E1_ + _0E2_ + _0E3_ + _E01_ + _E02_ + _E03_ \

+ _0E01_ + _0E02_ + _0E03_) \
 

+ k4*(_E_ + _0E_ + _1E_ + _3E_ + _E0_ + _01E_ + _03E_ \
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+ _0E0_ + _1E0_ + _3E0_ + _01E0_ + _03E0_)))
 
    #4 Eq. for _2_
        dydt.append(k0*(_E01_ + _0E01_ + _1E01_ + _2E01_ + _3E01_ \
 
    + _01E01_ + _02E01_ + _03E01_) \
    

+ k_5*(_2E_ + _02E_ + _2E0_ + _2E1_ + _2E3_ + _02E0_ \
 

+ _02E1_ + _02E3_ + _2E01_ + _2E03_ + _02E01_ \

+ _02E03_) \
 

+ k_6*(_E2_ + _0E2_ + _1E2_ + _E02_ + _01E2_ \

+ _0E02_ + _1E02_ + _01E02_) \
 

+ k_9*(_3E2_ + _03E2_ + _3E02_ +  _03E02_ ) \
 

- _2_*(k5*(_E_ + _0E_ + _E0_ + _E1_ + _E3_ + _0E0_ \

+ _0E1_ + _0E3_ + _E01_ + _E03_ + _0E01_ + _0E03_) \
 

+ k6*(_E_ + _0E_ + _1E_ + _E0_ + _01E_ + _0E0_ \

+ _1E0_ + _01E0_) \
 

+ k9*(_3E_ + _03E_ + _3E0_ + _03E0_)))
 
    #5 Eq. for _3_
        dydt.append(k_7*(_3E_ + _03E_ + _3E0_ + _3E1_ + _3E2_ + _3E3_ \
 

+ _03E0_ + _03E1_ + _03E2_ + _03E3_ + _3E01_ \

+ _3E02_ + _3E03_ + _03E01_ + _03E02_ + _03E03_) \
 

+ k_8*(_E3_ + _0E3_ + _1E3_ + _2E3_ + _3E3_ + _E03_ \
 

+ _01E3_ + _02E3_ + _03E3_ + _0E03_ + _1E03_ \

+ _2E03_ + _3E03_ + _01E03_ + _02E03_ + _03E03_) \
 

- _3_*(k7*(_E_ + _0E_ + _E0_ + _E1_ + _E2_ + _E3_ + _0E0_ \
 

+ _0E1_ + _0E2_ + _0E3_ + _E01_ + _E02_ + _E03_ \
 

+ _0E01_ + _0E02_ + _0E03_) \
 

+ k8*(_E_ + _0E_ + _1E_ + _3E_ + _E0_ + _01E_ + _03E_ \

+ _0E0_ + _1E0_ + _3E0_ + _01E0_ + _03E0_)))
 
    #6 Eq. for _4_
        dydt.append(k0*(_E01_ + _0E01_ + _1E01_ + _2E01_\
                + _3E01_ + _01E01_ + _02E01_ + _03E01_))
    #

#
#

    #7 Eq. for _0E_
        dydt.append(k0*_0E01_ + k1*_0_*_E_ + k_2*_0E0_ + k_3*_01E_ \
    
    + k_4*_0E1_ + k_5*_02E_ + k_6*_0E2_ + k_7*_03E_ \
    
    + k_8*_0E3_ \
 

- _0E_*(k_1 + k2*_0_ + (k3 + k4)*_1_ + (k5 + k6)*_2_ \

+ (k7 + k8)*_3_))
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    #8 Eq. for _1E_
        dydt.append(k0*_1E01_ + k_1*_01E_ + k_2*_1E0_ + k_4*_1E1_ \
    
    + k_6*_1E2_ + k_8*_1E3_ + _1_*k3*_E_ \
 

- _1E_*(k_3 + (k1 + k2)*_0_ + k4*_1_ + k6*_2_ + k8*_3_))
 

#9 Eq. for _2E_
        dydt.append(k0*_2E01_ + k_1*_02E_ + k_2*_2E0_ + k_4*_2E1_ \
    
    + k_8*_2E3_ + _2_*k5*_E_ \
 

- _2E_*(k_5 + (k1 + k2)*_0_))
 
    #10 Eq. for _3E_
        dydt.append(k0*_3E01_ + k_1*_03E_ + k_2*_3E0_ + k_4*_3E1_ \
    
    + k_9*_3E2_ + k_8*_3E3_ + _3_*k7*_E_ \
 

- _3E_*(k_7 + (k1 + k2)*_0_ + k4*_1_ + k9*_2_ + k8*_3_))
 

    #11 Eq. for _E0_
        dydt.append(k2*_E_*_0_ + k_1*_0E0_ + k_3*_1E0_ + k_5*_2E0_ \
 

+ k_7*_3E0_ + k_4*_E01_ + k_6*_E02_  + k_8*_E03_ \
 

- _E0_*(k_2 + k1*_0_ + (k3 + k4)*_1_ + _2_*(k5 + k6) \

+ (k7 + k8)*_3_)) 
 

#12 Eq. for _E1_
        dydt.append(k_1*_0E1_ + k_2*_E01_ + k_3*_1E1_ + k_5*_2E1_ \
    
    + k_7*_3E1_ + _1_*_E_*k4 \
 

- _E1_*(k_4 + (k1 + k2)*_0_ + k3*_1_ + k5*_2_ + k7*_3_))
 

#13 Eq. for _E2_
        dydt.append(k_1*_0E2_ + k_2*_E02_ + k_3*_1E2_ + k_7*_3E2_ \
 

+ _2_*k6*_E_ \
 

-_E2_*(k_6 + (k1 + k2)*_0_ + k3*_1_ + k7*_3_))
 

#14 Eq. for _E3_
        dydt.append(k_1*_0E3_ + k_2*_E03_ + k_3*_1E3_ + k_5*_2E3_ \
    
    + k_7*_3E3_ + _3_*k8*_E_ \
 

- _E3_*(k_8 + (k1 + k2)*_0_ + k3 *_1_ + k5*_2_ + k7*_3_))
 

#
#
#15 Eq. for _01E_

        dydt.append(k0*_01E01_ + k_2*_01E0_ + k_4*_01E1_ \
        
        + k_6*_01E2_ + k_8*_01E3_ + _0_*_1E_*k1 + _1_*k3*_0E_ \
 

- _01E_*(k_1 + k_3 + k2*_0_ + k4*_1_ + k6*_2_ + k8*_3_))
 

#16 Eq. for _02E_
        dydt.append(k0*_02E01_ + k_2*_02E0_ + k_4*_02E1_ \
        
        + k_8*_02E3_ + k1*_0_*_2E_ + _2_*k5*_0E_ \
 

- _02E_*(k_1 + k_5 + k2*_0_))
 

#17 Eq. for _03E_
        dydt.append(k0*_03E01_ + k_2*_03E0_ + k_4*_03E1_ + k_9*_03E2_ \
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    + k_8*_03E3_ + _0_*_3E_*k1 + _3_*k7*_0E_ \
 

- _03E_*(k_1 + k_7 + k2*_0_ + k4*_1_ + k9*_2_ + k8*_3_))

#
    #18 Eq. for _0E0_
        dydt.append(k_3*_01E0_ + k_4*_0E01_ + k_5*_02E0_ + k_6*_0E02_ \
    
    + k_7*_03E0_ + k_8*_0E03_ + _0_*(k1*_E0_ + k2*_0E_) \
 

- _0E0_*(k_1 + k_2 + (k3 + k4)*_1_ + (k5 + k6)*_2_ \

+ (k7 + k8)*_3_))
 

#19 Eq. for _0E1_
        dydt.append(k_2*_0E01_ + k_3*_01E1_ + k_5*_02E1_ + k_7*_03E1_ \
    

    + k1*_0_*_E1_ + _1_*k4*_0E_ \
 

- _0E1_*(k_1 + k_4 + k2*_0_ + k3*_1_ + k5*_2_ + k7*_3_))
 

#20 Eq. for _0E2_
        dydt.append(k_2*_0E02_ + k_3*_01E2_ + k_7*_03E2_ \
        
        + k1*_0_*_E2_ + _2_*k6*_0E_ \
 

- _0E2_*(k_1 + k_6 + k2*_0_ + k3*_1_ + k7*_3_))
 
    #21 Eq. for _0E3_
        dydt.append(k_2*_0E03_ + k_3*_01E3_ + k_5*_02E3_ \
        
        + k_7*_03E3_ + k1*_0_*_E3_ + _3_*k8*_0E_ \
 

- _0E3_*(k_1 + k_8 + k2*_0_ + k3*_1_ + k5*_2_ + k7*_3_))
 

#
#22 Eq. for _1E0_

        dydt.append (k_1*_01E0_ + k_4*_1E01_ + k_6*_1E02_ \
    
    + k_8*_1E03_ + k2*_0_*_1E_ + _1_*k3*_E0_ \
 

- _1E0_*(k_2 + k_3 + k1*_0_ + k4*_1_ + k6*_2_ + k8*_3_))
 

#23 Eq. for _1E1_
        dydt.append(k_1*_01E1_ + k_2*_1E01_ + _1_*(k3*_E1_ + k4*_1E_) \
 

- _1E1_*(k_3 + k_4 + (k1 + k2)*_0_))
 

#24 Eq. for _1E2_
        dydt.append(k_1*_01E2_ + k_2*_1E02_ + _1_*k3*_E2_ \
        
        + _2_*k6*_1E_ \
 

- _1E2_*(k_3 + k_6 + (k1 + k2)*_0_))
 

#25 Eq. for _1E3_
        dydt.append(k_1*_01E3_ + k_2*_1E03_ \
        
        + _1_*k3*_E3_ + _3_*k8*_1E_ \
 

- _1E3_*(k_3 + k_8 + (k1 + k2)*_0_))
 

#
#26 Eq. for _2E0_

        dydt.append(k_1*_02E0_ + k_4*_2E01_ + k_8*_2E03_ \
    
    + k2*_0_*_2E_ + _2_*k5*_E0_ \
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    - _2E0_*(k_2 + k_5 + k1*_0_))
 

#27 Eq. for _2E1_
        dydt.append(k_1*_02E1_ + k_2*_2E01_ + _2_*k5*_E1_ \
 

- _2E1_*(k_4 + k_5 + (k1 + k2)*_0_))
 
    #28 Eq. for _2E3_
        dydt.append(k_1*_02E3_ + k_2*_2E03_ + _2_*k5*_E3_ \
 

- _2E3_*(k_5 + k_8 + (k1 + k2)*_0_))
 

#
#29 Eq. for _3E0_

        dydt.append(k_1*_03E0_ + k_4*_3E01_ + k_9*_3E02_ \
    
    + k_8*_3E03_ + _0_*k2*_3E_ + _3_*k7*_E0_ \
 

- _3E0_*(k_2 + k_7 + k1*_0_ + k4*_1_ + k9*_2_ + k8*_3_))
 

#30 Eq. for _3E1_
        dydt.append(k_1*_03E1_ + k_2*_3E01_ + _1_*k4*_3E_ \
        
        + _3_*k7*_E1_ \
 

- _3E1_*(k_4 + k_7 + (k1 + k2)*_0_))
 

#31 Eq. for _3E2_
        dydt.append(k_1*_03E2_ + k_2*_3E02_ + _2_*k9*_3E_ \
        
        + _3_*k7*_E2_ \
 

- _3E2_*(k_7 + k_9 + (k1 + k2)*_0_))
 

#32 Eq. for _3E3_
        dydt.append(k_1*_03E3_ + k_2*_3E03_ \
        
        + _3_*(k7*_E3_ + k8*_3E_) \
 

- _3E3_*(k_7 + k_8 + (k1 + k2)*_0_))
 

#
#33 Eq. for _E01_

        dydt.append(k_1*_0E01_ + k_3*_1E01_ + k_5*_2E01_ \
    
    + k_7*_3E01_ + _0_*k2*_E1_ + _1_*k4*_E0_ \
 

- _E01_*(k0 + k_2 + k_4 + k1*_0_ + k3*_1_ + k5*_2_ + k7*_3_))
 

#34 Eq. for _E02_
        dydt.append(k_1*_0E02_ + k_3*_1E02_ + k_7*_3E02_ \
    
    + _0_*k2*_E2_ + _2_*k6*_E0_ \
 

- _E02_*(k_2 + k_6 + k1*_0_ + k3*_1_ + k7*_3_))
 

#35 Eq. for _E03_
        dydt.append(k_1*_0E03_ + k_3*_1E03_ + k_5*_2E03_ \
    
    + k_7*_3E03_ + _0_*k2*_E3_ + _3_*k8*_E0_ \
 

- _E03_*(k_2 + k_8 + _0_*k1 + _1_*k3 + _2_*k5 + _3_*k7))
 

#
#
#36 Eq. for _01E0_

        dydt.append(k_4*_01E01_ + k_6*_01E02_ + k_8*_01E03_ \
    
    + _0_*(k1*_1E0_ + k2*_01E_) + _1_*k3*_0E0_ \
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- _01E0_*(k_1 + k_2 + k_3 + _1_*k4 + _2_*k6 + _3_*k8))

 
#37 Eq. for _01E1_

        dydt.append(k_2*_01E01_ + _0_*k1*_1E1_ \
    
    + _1_*(k3*_0E1_ + k4*_01E_) \
 

- _01E1_*(k_1 + k_3 + k_4 + _0_*k2))
 

#38 Eq. for _01E2_
        dydt.append(k_2*_01E02_ + _0_*k1*_1E2_ + _1_*k3*_0E2_ \
 

+ _2_*k6*_01E_ \
 

- _01E2_*(k_1 + k_3 + k_6 + _0_*k2))
 

#39 Eq. for _01E3_
        dydt.append(k_2*_01E03_ + _0_*k1*_1E3_ \
    
    + _1_*k3*_0E3_ + _3_*k8*_01E_ \
 

- _01E3_*(k_1 + k_3 + k_8 + _0_*k2 ))
 

#
#40 Eq. for _02E0_

        dydt.append(k_4*_02E01_ + k_8*_02E03_ \
    
    + _0_*(k1*_2E0_ + k2*_02E_) + _2_*k5*_0E0_ \
 

- _02E0_*(k_1 + k_2 + k_5))
 

#41 Eq. for _02E1_
        dydt.append(k_2*_02E01_ + _0_*k1*_2E1_ + _2_*k5*_0E1_ \
 

- _02E1_*(k_1 + k_4 + k_5 + _0_*k2))
 

#42 Eq. for _02E3_
        dydt.append(k_2*_02E03_ + _0_*k1*_2E3_ + _2_*k5*_0E3_ \
 

- _02E3_*(k_1 + k_5 + k_8 + _0_*k2))
 

#
#43 Eq. for _03E0_

        dydt.append(k_4*_03E01_ + k_9*_03E02_ + k_8*_03E03_ \
 
    + _0_*(k1*_3E0_ + k2*_03E_) + _3_*k7*_0E0_ \
 

- _03E0_*(k_1 + k_2 + k_7 + _1_*k4 + _2_*k9 + _3_*k8))
 

#44 Eq. for _03E1_
        dydt.append(k_2*_03E01_ + _0_*k1*_3E1_ + _1_*k4*_03E_ \
    
    + _3_*k7*_0E1_ \
 

- _03E1_*(k_1 + k_4 + k_7 + _0_*k2))
 

#45 Eq. for _03E2_
        dydt.append(k_2*_03E02_ + _0_*k1*_3E2_ \
    
    + _2_*k9*_03E_ + _3_*k7*_0E2_ \
 

- _03E2_*(k_1 + k_9 + k_7 + _0_*k2))
 

#46 Eq. for _03E3_
        dydt.append(k_2*_03E03_ + _0_*k1*_3E3_ \
    
    + _3_*(k7*_0E3_ + k8*_03E_) \
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- _03E3_*(k_1 + k_7 + k_8 + _0_*k2))
 

#
#47 Eq. for _0E01_

        dydt.append(k_3*_01E01_ + k_5*_02E01_ + k_7*_03E01_ \
    
    + _0_*(k1*_E01_ + k2*_0E1_) + _1_*k4*_0E0_ \
 

- _0E01_*(k0 + k_1 + k_2 + k_4 + _1_*k3 + _2_*k5 + _3_*k7))
 

#48 Eq. for _1E01_
        dydt.append(k_1*_01E01_ + _0_*k2*_1E1_ \
    
    + _1_*(k3*_E01_ + k4*_1E0_) \
 

- _1E01_*(k0 + k_2 + k_3 + k_4 + _0_*k1))
 

#49 Eq. for _2E01_
        dydt.append(k_1*_02E01_ + _0_*k2*_2E1_ + _2_*k5*_E01_ \
 

- _2E01_*(k0 + k_2 + k_4 + k_5 + _0_*k1))
 

#50 Eq. for _3E01_
        dydt.append(k_1*_03E01_ + _0_*k2*_3E1_ + _1_*k4*_3E0_ \
    
    + _3_*k7*_E01_ \
 

- _3E01_*(k0 + k_2 + k_4 + k_7 + _0_*k1))
 

#
#51 Eq. for _0E02_

        dydt.append(k_3*_01E02_ + k_7*_03E02_ 
    
    + _0_*(k1*_E02_ + k2*_0E2_) + _2_*k6*_0E0_ \
 

- _0E02_*(k_1 + k_2 + k_6 + _1_*k3 + _3_*k7))
 

#52 Eq. for _1E02_
        dydt.append(k_1*_01E02_ + _0_*k2*_1E2_ + _1_*k3*_E02_ \
    
    + _2_*k6*_1E0_ \
 

- _1E02_*(k_2 + k_3 + k_6 + _0_*k1))
 

#53 Eq. for _3E02_
        dydt.append(k_1*_03E02_ + _0_*k2*_3E2_ + _2_*k9*_3E0_ \
    
    + _3_*k7*_E02_ \
 

- _3E02_*(k_2 + k_9 + k_7 + _0_*k1))
 

#
#54 Eq. for _0E03_

        dydt.append(k_3*_01E03_ + k_5*_02E03_ + k_7*_03E03_ \
    
    + _0_*(k1*_E03_ + k2*_0E3_) + _3_*k8*_0E0_ \
 

- _0E03_*(k_1 + k_2 + k_8 + _1_*k3 + _2_*k5 + _3_*k7))
 

#55 Eq. for _1E03_
        dydt.append(k_1*_01E03_ + _0_*k2*_1E3_ + _1_*k3*_E03_ \
    
    + _3_*k8*_1E0_ \
 

- _1E03_*(k_2 + k_3 + k_8 + _0_*k1))
 

#56 Eq. for _2E03_
        dydt.append(k_1*_02E03_ + _0_*k2*_2E3_ + _2_*k5*_E03_ \
 

130



- _2E03_*(k_2 + k_5 + k_8 + _0_*k1))
 

#57 Eq. for _3E03_
        dydt.append(k_1*_03E03_ + _0_*k2*_3E3_ \
    
    + _3_*(k7*_E03_ + k8*_3E0_) \
 

- _3E03_*(k_2 + k_7 + k_8 + _0_*k1))
 

#
#
#58 Eq. for _01E01_

        dydt.append(_0_*(k1*_1E01_ + k2*_01E1_) \
    
    + _1_*(k3*_0E01_ + k4*_01E0_) \
 

- _01E01_*(k0 + k_1 + k_2 + k_3 + k_4))
 

#59 Eq. for _01E02_
        dydt.append(_0_*(k1*_1E02_ + k2*_01E2_) \
    
    + _1_*k3*_0E02_ + _2_*k6*_01E0_ \
 

- _01E02_*(k_1 + k_2 + k_3 + k_6))
 

#60 Eq. for _01E03_
        dydt.append(_0_*(k1*_1E03_ + k2*_01E3_) \
    
    + _1_*k3*_0E03_  + _3_*k8*_01E0_ \
 

- _01E03_*(k_1 + k_2 + k_3 + k_8))

#
#61 Eq. for _02E01_

        dydt.append(_0_*(k1*_2E01_ + k2*_02E1_) + _2_*k5*_0E01_ \
 

- _02E01_*(k0 + k_1 + k_2 + k_4 + k_5))
 

#62 Eq. for _02E03_
        dydt.append(_0_*(k1*_2E03_ + k2*_02E3_) + _2_*k5*_0E03_ \
 

- _02E03_*(k_1 + k_2 + k_5 + k_8))
 

#
#63 Eq. for _03E01_

        dydt.append(_0_*(k1*_3E01_ + k2*_03E1_) \
    
    + _1_*k4*_03E0_ + _3_*k7*_0E01_ \
 

- _03E01_*(k0 + k_1 + k_2 + k_4 + k_7))
 

#64 Eq. for _03E02_
        dydt.append(_0_*(k1*_3E02_ + k2*_03E2_) \
    
    + _2_*k9*_03E0_ + _3_*k7*_0E02_ \
 

- _03E02_*(k_1 + k_2 + k_9 + k_7))
 

#65 Eq. for _03E03_
        dydt.append(_0_*(k1*_3E03_ + k2*_03E3_) \
    
    + _3_*(k7*_0E03_ + k8*_03E0_) \
 

- _03E03_*(k_1 + k_2 + k_7 + k_8))
 

#--------------#
# Return dydt  #
#--------------#

        return(dydt)
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    #----------------------#
# Integrate the model  #
#----------------------#

    ds = integrate.odeint(MODEL, initial_cond, t)
    return(ds)
#
 
 
# -------------------#
# INITIAL CONDITIONS #
#     Unit: mM       #
#--------------------#
 
# E, 0, 1, 2, 3, 4
E, G, ATP, ADP = 6.65e-2, 2.5, 3.0, 0.0 
 
G6P = 2.0
Pi = [2.0, 10.0]
 
y0 = [[E, G, ATP, G6P, Pi[0], ADP,\
     0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\
     0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\
     0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\
     0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\
     0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\
     0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\
     0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\
     0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\
     0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\
     0.0, 0.0, 0.0, 0.0, 0.0],\
  [E, G, ATP, G6P, Pi[1], ADP,\
     0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\
     0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\
     0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\
     0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\
     0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\
     0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\
     0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\
     0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\
     0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\
     0.0, 0.0, 0.0, 0.0, 0.0]]
#
#===================================#
# PARAMETER VALUES FOR SIMULATIONS  #
#===================================#
 
k0 = 63.0
 
KmG = 0.053
 
a = 99.0
# For Glucose
k1, k_1 = (a + 1.0)*k0/KmG, a*k0
 
k2, k_2 = k1, k_1
 
# For ATP
# Km
KmA = 0.7 
k3, k_3 = (a + 1.0)*k0/KmA, a*k0
 
# Ki = 
k4, k_4 = k3, k_3
 
# For G6P
 
# Ki = 0.71 mM (N)
k5, k_5 = k3, 0.71*k3
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# Ki = 54 microM = 0.054 mM(C)
k6, k_6 = k3, 0.054*k3
 
#d = 1.0e-0
# For Pi
# K_i = 0.022mM
k7, k_7 = k3, 0.022*k3
 
# Ki = 0.22mM
k8, k_8 = k3, 0.22*k3
 
# For G6P binding to _3E_, _03E_, and _03E0_
k9, k_9 = 0.1*k3, 0.01*k3
 
#===========================================#
#  MODEL FOR SENSITIVITY ANALYSIS #
#===========================================#
## Model for sensitivity analysis
def model(p):
    ys = SOL(p, y0[0], 0.0, 10.05, 0.01)
    #Fs = ys[:,3]
    return(ys[:,3])
    #
#====================================#
a = 0.9
b = 1.1
## Define the problem of SA
problem = {

'num_vars': 19,
'names':['k0', 'k1', 'k_1', 'k2', 'k_2', 'k3', 'k_3', \

'k4', 'k_4', 'k5', 'k_5', 'k6', 'k_6', 'k7', 'k_7', \
'k8', 'k_8', 'k9', 'k_9'],

'bounds': [[a*k0, b*k0], \
[a*k1, b*k1], [a*k_1, b*k_1], \
[a*k2, b*k2], [a*k_2, b*k_2], \
[a*k3, b*k3], [a*k_3, b*k_3], \
[a*k4, b*k4], [a*k_4, b*k_4], \
[a*k5, b*k5], [a*k_5, b*k_5], \
[a*k6, b*k6], [a*k_6, b*k_6], \
[a*k7, b*k7], [a*k_7, b*k_7], \
[a*k8, b*k8], [a*k_8, b*k_8], \
[a*k9, b*k9], [a*k_9, b*k_9]]

}
#
#print(problem['bounds'])
#=====================================#
## Generate samples
### Number of samples
n = 1000
##
param_values = saltelli.sample(problem, n,\

                   calc_second_order=False)
 
#=====================================#
#
# Data poits for the GSA
# 
#L = [101, 201, 301, 401, 501, 601, 701, 801, 901, 1001]
 
Y1 = np.zeros([param_values.shape[0]])
 
Y2 = np.zeros([param_values.shape[0]])
 
Y3 = np.zeros([param_values.shape[0]])
 
Y4 = np.zeros([param_values.shape[0]])
 
Y5 = np.zeros([param_values.shape[0]])
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Y6 = np.zeros([param_values.shape[0]])
 
Y7 = np.zeros([param_values.shape[0]])
 
Y8 = np.zeros([param_values.shape[0]])
 
Y9 = np.zeros([param_values.shape[0]])
 
Y10 = np.zeros([param_values.shape[0]])
 
#==========================================#
for j, X in enumerate(param_values):
    K      = model(X)
    Y1[j]  = K[101]
    Y2[j]  = K[201]
    Y3[j]  = K[301]
    Y4[j]  = K[401]
    Y5[j]  = K[501]
    Y6[j]  = K[601]
    Y7[j]  = K[701]
    Y8[j]  = K[801]
    Y9[j]  = K[901]
    Y10[j] = K[1001]
    
#==========================================#
Y1
Y2
Y3
Y4
Y5
Y6
Y7
Y8
Y9
Y10
 
#==========================================#
np.savetxt(str(Pi[0]) + "Pi_Y1_outputs.txt", Y1)
np.savetxt(str(Pi[0]) + "Pi_Y2_outputs.txt", Y2)
np.savetxt(str(Pi[0]) + "Pi_Y3_outputs.txt", Y3)
np.savetxt(str(Pi[0]) + "Pi_Y4_outputs.txt", Y4)
np.savetxt(str(Pi[0]) + "Pi_Y5_outputs.txt", Y5)
np.savetxt(str(Pi[0]) + "Pi_Y6_outputs.txt", Y6)
np.savetxt(str(Pi[0]) + "Pi_Y7_outputs.txt", Y7)
np.savetxt(str(Pi[0]) + "Pi_Y8_outputs.txt", Y8)
np.savetxt(str(Pi[0]) + "Pi_Y9_outputs.txt", Y9)
np.savetxt(str(Pi[0]) + "Pi_Y10_outputs.txt", Y10)
 
#===========================================#
# Open file to write results
f = open('SA_g6p_' + str(G6P) + '_n_' + str(n) \

 + '_Pi_' + str(Pi[0]) + '.txt', 'a+')
 
# Perform analysis Y2
print('Y2')
Si = sobol.analyze(problem, Y2, calc_second_order=False,\

   print_to_console=True)
 
### Record the results to the file
f.write('For i = Y2:\n')
for key, value in Si.items():
    f.write('%s: %s\n' % (key, value))
 
f.write('\n')
f.write('================================\n')
 
# Perform analysis Y4
print('Y4')
Si = sobol.analyze(problem, Y4, calc_second_order=False,\
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   print_to_console=True)
 
### Record the results to the file
f.write('For i = Y4:\n')
for key, value in Si.items():
    f.write('%s: %s\n' % (key, value))
 
f.write('\n')
f.write('================================\n')
 
 
# Perform analysis Y6
print('Y6')
Si = sobol.analyze(problem, Y6, calc_second_order=False,\

   print_to_console=True)
 
### Record the results to the file
f.write('For i = Y6:\n')
for key, value in Si.items():
    f.write('%s: %s\n' % (key, value))
 
f.write('\n')
f.write('================================\n')
 
# Perform analysis Y8
print('Y8')
Si = sobol.analyze(problem, Y8, calc_second_order=False,\

   print_to_console=True)
 
### Record the results to the file
f.write('For i = Y8:\n')
for key, value in Si.items():
    f.write('%s: %s\n' % (key, value))
 
f.write('\n')
f.write('================================\n')
 
# Perform analysis Y10
print('Y10')
Si = sobol.analyze(problem, Y10, calc_second_order=False,\

   print_to_console=True)
 
### Record the results to the file
f.write('For i = Y10:\n')
for key, value in Si.items():
    f.write('%s: %s\n' % (key, value))
 
f.write('\n')
f.write('================================\n')
 
# Close result file #
f.close()
  
#=========================================================#
#==        THE END  ==#
#=========================================================#
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#======================#
# MAIN FILE    #
#======================#
 
# Import some needed packages
 
from scipy.integrate import odeint
from scipy import integrate
import numpy as np
import matplotlib.pyplot as plt
from _model_ import *
#from conservation import *
#
#
# Define numerical solutions
# Step size
h = 0.01
#
# Solution
def solution(model, initial_cond, t0, t1, p):
    # p: parameters
    t = np.arange(t0, t1, h)
    sl = integrate.odeint(model, initial_cond, t, args=p)
    return(sl)
 
#
# Time grid
t0 = 0.0
t1 = 45.0
t = np.arange(t0, t1, h)
 
# Solutons to the full model
ys = []
yss = []
 
for i in range(len(y0)):
    ys.append(solution(MODEL, y0[i], t0, t1, p0))
    yss.append(solution(MODEL, y0[i], t0, t1, p0s))
    
ysa = []
for i in range(len(xl)):
    ysa.append(solution(MODEL, y0[1], t0, t1, p0l[i]))
#
#=====Conservation Test=====#
#plt.figure(figsize=(7, 5))
#plt.plot(t, glc, label='G')
#plt.plot(t, atp, label='ATP')
#plt.plot(t, Pi, label='Pi')
#plt.xlabel('Time ($s$)')
#plt.ylabel('$G6P$ concentration $mM$')
 
 
#=========================#
# Numerical solutions #
# and simplified model #
 
list_color = ['red', 'green', 'blue',\

  'indigo', 'crimson', 'black', 'maroon']
 
#=========================#
# 
plt.figure(figsize=(7,5))
plt.plot(t, ys[0][:,3], color=list_color[0], linestyle='--',\

 label='$[P_i]$ = ' + str(Pi[0]) + ' $mM$')
plt.plot(t, yss[0][:,3], color=list_color[0], linestyle='-.', \

 label='$[P_i]$ = ' + str(Pi[0]) + ' $mM$')
for i in range(1, len(Pi)):
    plt.plot(t, ys[i][:,3], color=list_color[i], \
    label='$[P_i]$ = ' + str(Pi[i]) + ' $mM$')
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    plt.plot(t, yss[i][:,3], color=list_color[i], \
    label='$[P_i]$ = ' + str(Pi[i]) + ' $mM$', \
    linestyle='-.')
plt.xlabel('Time ($s$)')
plt.ylabel('$G6P$ concentration $mM$')
plt.legend()
 
#=========================#
# SA illustration #
 
sa_color = ['g', 'r', 'b']
sa_labels = ['$0.7k_{-9}$', '$1.0k_{-9}$', '$1.3k_{-9}$']
 
fig=plt.figure(figsize=(7,5))
for i in range(len(xl)):
    plt.plot(t, ysa[i][:,3], color=sa_color[i],\
         label=sa_labels[i])
plt.xlabel('Time ($s$)')
plt.ylabel('$G6P$ concentration $mM$')
plt.legend()
 
plt.show()
#=======================================================#
#= END #
#=======================================================#
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#======================#
#    MODEL    #
#======================#
 
def MODEL(y, t, k0, k1, k_1, k2, k_2, k3, k_3, k4, k_4, \
 
k5, k_5, k6, k_6, k7, k_7, k8, k_8, k9, k_9):
    #

#
    # Define y
    
    _E_, _0_, _1_, _2_, _3_, _4_,\

\
    _0E_,_1E_, _2E_, _3E_,\

\
    _E0_, _E1_, _E2_, _E3_,\

\
    _01E_, _02E_, _03E_,\

\
    _0E0_, _0E1_, _0E2_, _0E3_,\

\
    _1E0_, _1E1_, _1E2_, _1E3_,\

\
    _2E0_, _2E1_, _2E3_,\

\
    _3E0_, _3E1_, _3E2_, _3E3_,\

\
    _E01_, _E02_, _E03_,\

\
    _01E0_, _01E1_, _01E2_, _01E3_,\

\
    _02E0_, _02E1_, _02E3_,\

\
    _03E0_, _03E1_, _03E2_, _03E3_,\

\
    _0E01_, _1E01_, _2E01_, _3E01_,\

\
    _0E02_, _1E02_, _3E02_,\

\
    _0E03_, _1E03_, _2E03_, _3E03_,\

\
    _01E01_, _01E02_, _01E03_, _02E01_,\

\
    _02E03_, _03E01_, _03E02_, _03E03_ = y 

#
#

    # _E_: Hexokinase 1; _0_: Glucose
# _1_: ATP; _2_: G6P; _3_: Pi; _4_: ADP
# _xEy_: x, y substances bound at N, C domains, respectively.
# Define dydt

    dydt=[]
    #1 Eq. for enyme _E_
    dydt.append(k0*_E01_ + k_1*_0E_ + k_2*_E0_ + k_3*_1E_ \
        

+ k_4*_E1_ + k_5*_2E_ + k_6*_E2_ + k_7*_3E_ + k_8*_E3_ \
            

- _E_*((k1 + k2)*_0_ + (k3 + k4)*_1_ + (k5 + k6)*_2_ \

+ (k7 + k8)*_3_))
 
    #2 Eq. for _0_
    dydt.append(k_1*(_0E_ + _01E_ + _02E_ + _03E_ + _0E0_ \
    
    + _0E1_ + _0E2_ + _0E3_ + _01E0_ + _01E1_ + _01E2_ \
    
    + _01E3_ + _02E0_ + _02E1_ + _02E3_ + _03E0_ \
    
    + _03E1_ + _03E2_ + _03E3_ + _0E01_ + _0E02_ \
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    + _0E03_ + _01E01_ + _01E02_ + _01E03_ + _02E01_ \
    
    + _02E03_ + _03E01_ + _03E02_ + _03E03_ )\

+ k_2*(_E0_ + _0E0_ + _1E0_ + _2E0_ + _3E0_ + _E01_ \

+ _E02_ + _E03_ + _01E0_ + _02E0_ + _03E0_ + _0E01_ \

+ _1E01_ + _2E01_ + _3E01_ +_0E02_ + _1E02_ + _3E02_ \

+ _0E03_ + _1E03_ + _2E03_ + _3E03_ + _01E01_ \

+ _01E02_ + _01E03_ + _02E01_ + _02E03_ + _03E01_ \
 

+ _03E02_ + _03E03_ )\

- _0_*((k1 + k2)*(_E_ + _1E_ + _E1_ + _2E_ + _E2_ + _3E_ \

+ _E3_ + _1E1_ + _1E2_ + _1E3_ + _2E1_ + _2E3_ \

+ _3E1_ + _3E2_ + _3E3_)\
 

+ k1*(_E0_ + _1E0_ + _2E0_ + _3E0_ + _E01_ + _E02_ \

+ _E03_ + _1E01_ + _2E01_ + _3E01_ + _1E02_ \

+ _3E02_ + _1E03_ + _2E03_ + _3E03_) \
 

+ k2*(_0E_ + _01E_ + _02E_ + _03E_ + _0E1_ + _0E2_ \

+ _0E3_ + _01E1_ + _01E2_ + _01E3_ + _02E1_ \

+ _02E3_ + _03E1_ + _03E2_ + _03E3_)))
 
    #3 Eq. for _1_
    dydt.append(k_3*(_1E_ + _01E_ + _1E0_ + _1E1_ + _1E2_ + _1E3_ \
    
    + _01E0_ + _01E1_ + _01E2_ + _01E3_ + _1E01_ + _1E02_ \
    
    + _1E03_ + _01E01_ + _01E02_ + _01E03_) \
 

+ k_4*(_E1_ + _0E1_ + _1E1_ + _2E1_ + _3E1_ + _E01_ \

+ _01E1_ + _02E1_ + _03E1_ + _0E01_ + _1E01_ \

+ _2E01_ + _3E01_ + _01E01_ + _02E01_ + _03E01_) \
 

- _1_*(k3*(_E_ + _0E_ + _E0_ + _E1_ + _E2_ + _E3_ + _0E0_ \

+ _0E1_ + _0E2_ + _0E3_ + _E01_ + _E02_ + _E03_ \

+ _0E01_ + _0E02_ + _0E03_) \
 

+ k4*(_E_ + _0E_ + _1E_ + _3E_ + _E0_ + _01E_ + _03E_ \

+ _0E0_ + _1E0_ + _3E0_ + _01E0_ + _03E0_)))
 
    #4 Eq. for _2_
    dydt.append(k0*(_E01_ + _0E01_ + _1E01_ + _2E01_ + _3E01_ \
 
    + _01E01_ + _02E01_ + _03E01_) \
    

+ k_5*(_2E_ + _02E_ + _2E0_ + _2E1_ + _2E3_ + _02E0_ \
 

+ _02E1_ + _02E3_ + _2E01_ + _2E03_ + _02E01_ \

+ _02E03_) \
 

+ k_6*(_E2_ + _0E2_ + _1E2_ + _E02_ + _01E2_ \
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+ _0E02_ + _1E02_ + _01E02_) \
 

+ k_9*(_3E2_ + _03E2_ + _3E02_ +  _03E02_ ) \
 

- _2_*(k5*(_E_ + _0E_ + _E0_ + _E1_ + _E3_ + _0E0_ \

+ _0E1_ + _0E3_ + _E01_ + _E03_ + _0E01_ + _0E03_) \
 

+ k6*(_E_ + _0E_ + _1E_ + _E0_ + _01E_ + _0E0_ \

+ _1E0_ + _01E0_) \
 

+ k9*(_3E_ + _03E_ + _3E0_ + _03E0_)))
 
    #5 Eq. for _3_
    dydt.append(k_7*(_3E_ + _03E_ + _3E0_ + _3E1_ + _3E2_ + _3E3_ \
 

+ _03E0_ + _03E1_ + _03E2_ + _03E3_ + _3E01_ \

+ _3E02_ + _3E03_ + _03E01_ + _03E02_ + _03E03_) \
 

+ k_8*(_E3_ + _0E3_ + _1E3_ + _2E3_ + _3E3_ + _E03_ \
 

+ _01E3_ + _02E3_ + _03E3_ + _0E03_ + _1E03_ \

+ _2E03_ + _3E03_ + _01E03_ + _02E03_ + _03E03_) \
 

- _3_*(k7*(_E_ + _0E_ + _E0_ + _E1_ + _E2_ + _E3_ + _0E0_ \
 

+ _0E1_ + _0E2_ + _0E3_ + _E01_ + _E02_ + _E03_ \
 

+ _0E01_ + _0E02_ + _0E03_) \
 

+ k8*(_E_ + _0E_ + _1E_ + _3E_ + _E0_ + _01E_ + _03E_ \

+ _0E0_ + _1E0_ + _3E0_ + _01E0_ + _03E0_)))
 
    #6 Eq. for _4_
    dydt.append(k0*(_E01_ + _0E01_ + _1E01_ + _2E01_\
    
                + _3E01_ + _01E01_ + _02E01_ + _03E01_))
    #

#
#

    #7 Eq. for _0E_
    dydt.append(k0*_0E01_ + k1*_0_*_E_ + k_2*_0E0_ + k_3*_01E_ \
    
    + k_4*_0E1_ + k_5*_02E_ + k_6*_0E2_ + k_7*_03E_ \
    
    + k_8*_0E3_ \
 

- _0E_*(k_1 + k2*_0_ + (k3 + k4)*_1_ + (k5 + k6)*_2_ \

+ (k7 + k8)*_3_))
 
    #8 Eq. for _1E_
    dydt.append(k0*_1E01_ + k_1*_01E_ + k_2*_1E0_ + k_4*_1E1_ \
    
    + k_6*_1E2_ + k_8*_1E3_ + _1_*k3*_E_ \
 

- _1E_*(k_3 + (k1 + k2)*_0_ + k4*_1_ + k6*_2_ + k8*_3_))
 

#9 Eq. for _2E_
    dydt.append(k0*_2E01_ + k_1*_02E_ + k_2*_2E0_ + k_4*_2E1_ \
    
    + k_8*_2E3_ + _2_*k5*_E_ \
 

- _2E_*(k_5 + (k1 + k2)*_0_))
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    #10 Eq. for _3E_
    dydt.append(k0*_3E01_ + k_1*_03E_ + k_2*_3E0_ + k_4*_3E1_ \
    
    + k_9*_3E2_ + k_8*_3E3_ + _3_*k7*_E_ \
 

- _3E_*(k_7 + (k1 + k2)*_0_ + k4*_1_ + k9*_2_ + k8*_3_))
 
    #11 Eq. for _E0_
    dydt.append(k2*_E_*_0_ + k_1*_0E0_ + k_3*_1E0_ + k_5*_2E0_ \
 

+ k_7*_3E0_ + k_4*_E01_ + k_6*_E02_  + k_8*_E03_ \
 

- _E0_*(k_2 + k1*_0_ + (k3 + k4)*_1_ + _2_*(k5 + k6) \

+ (k7 + k8)*_3_)) 
 

#12 Eq. for _E1_
    dydt.append(k_1*_0E1_ + k_2*_E01_ + k_3*_1E1_ + k_5*_2E1_ \
    
    + k_7*_3E1_ + _1_*_E_*k4 \
 

- _E1_*(k_4 + (k1 + k2)*_0_ + k3*_1_ + k5*_2_ + k7*_3_))
 

#13 Eq. for _E2_
    dydt.append(k_1*_0E2_ + k_2*_E02_ + k_3*_1E2_ + k_7*_3E2_ \
 

+ _2_*k6*_E_ \
 

-_E2_*(k_6 + (k1 + k2)*_0_ + k3*_1_ + k7*_3_))
 

#14 Eq. for _E3_
    dydt.append(k_1*_0E3_ + k_2*_E03_ + k_3*_1E3_ + k_5*_2E3_ \
    
    + k_7*_3E3_ + _3_*k8*_E_ \
 

- _E3_*(k_8 + (k1 + k2)*_0_ + k3 *_1_ + k5*_2_ + k7*_3_))
 

#
#
#15 Eq. for _01E_

    dydt.append(k0*_01E01_ + k_2*_01E0_ + k_4*_01E1_ + k_6*_01E2_ \
    
    + k_8*_01E3_ + _0_*_1E_*k1 + _1_*k3*_0E_ \
 

- _01E_*(k_1 + k_3 + k2*_0_ + k4*_1_ + k6*_2_ + k8*_3_))
 

#16 Eq. for _02E_
    dydt.append(k0*_02E01_ + k_2*_02E0_ + k_4*_02E1_ + k_8*_02E3_ \
    
    + k1*_0_*_2E_ + _2_*k5*_0E_ \
 

- _02E_*(k_1 + k_5 + k2*_0_))
 

#17 Eq. for _03E_
    dydt.append(k0*_03E01_ + k_2*_03E0_ + k_4*_03E1_ + k_9*_03E2_ \
    
    + k_8*_03E3_ + _0_*_3E_*k1 + _3_*k7*_0E_ \
 

- _03E_*(k_1 + k_7 + k2*_0_ + k4*_1_ + k9*_2_ + k8*_3_))

#
    #18 Eq. for _0E0_
    dydt.append(k_3*_01E0_ + k_4*_0E01_ + k_5*_02E0_ + k_6*_0E02_ \
    
    + k_7*_03E0_ + k_8*_0E03_ + _0_*(k1*_E0_ + k2*_0E_) \
 

- _0E0_*(k_1 + k_2 + (k3 + k4)*_1_ + (k5 + k6)*_2_ \
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+ (k7 + k8)*_3_))
 

#19 Eq. for _0E1_
    dydt.append(k_2*_0E01_ + k_3*_01E1_ + k_5*_02E1_ + k_7*_03E1_ \
    

    + k1*_0_*_E1_ + _1_*k4*_0E_ \
 

- _0E1_*(k_1 + k_4 + k2*_0_ + k3*_1_ + k5*_2_ + k7*_3_))
 

#20 Eq. for _0E2_
    dydt.append(k_2*_0E02_ + k_3*_01E2_ + k_7*_03E2_ + k1*_0_*_E2_ \
 

+ _2_*k6*_0E_ \
 

- _0E2_*(k_1 + k_6 + k2*_0_ + k3*_1_ + k7*_3_))
 
    #21 Eq. for _0E3_
    dydt.append(k_2*_0E03_ + k_3*_01E3_ + k_5*_02E3_ + k_7*_03E3_ \
    
    + k1*_0_*_E3_ + _3_*k8*_0E_ \
 

- _0E3_*(k_1 + k_8 + k2*_0_ + k3*_1_ + k5*_2_ + k7*_3_))
 

#
#22 Eq. for _1E0_

    dydt.append (k_1*_01E0_ + k_4*_1E01_ + k_6*_1E02_ \
    
    + k_8*_1E03_ + k2*_0_*_1E_ + _1_*k3*_E0_ \
 

- _1E0_*(k_2 + k_3 + k1*_0_ + k4*_1_ + k6*_2_ + k8*_3_))
 

#23 Eq. for _1E1_
    dydt.append(k_1*_01E1_ + k_2*_1E01_ + _1_*(k3*_E1_ + k4*_1E_) \
 

- _1E1_*(k_3 + k_4 + (k1 + k2)*_0_))
 

#24 Eq. for _1E2_
    dydt.append(k_1*_01E2_ + k_2*_1E02_ + _1_*k3*_E2_ + _2_*k6*_1E_ \
 

- _1E2_*(k_3 + k_6 + (k1 + k2)*_0_))
 

#25 Eq. for _1E3_
    dydt.append(k_1*_01E3_ + k_2*_1E03_ + _1_*k3*_E3_ + _3_*k8*_1E_ \
 

- _1E3_*(k_3 + k_8 + (k1 + k2)*_0_))
 

#
#26 Eq. for _2E0_

    dydt.append(k_1*_02E0_ + k_4*_2E01_ + k_8*_2E03_ \
    
    + k2*_0_*_2E_ + _2_*k5*_E0_ \
    
    - _2E0_*(k_2 + k_5 + k1*_0_))
 

#27 Eq. for _2E1_
    dydt.append(k_1*_02E1_ + k_2*_2E01_ + _2_*k5*_E1_ \
 

- _2E1_*(k_4 + k_5 + (k1 + k2)*_0_))
 
    #28 Eq. for _2E3_
    dydt.append(k_1*_02E3_ + k_2*_2E03_ + _2_*k5*_E3_ \
 

- _2E3_*(k_5 + k_8 + (k1 + k2)*_0_))
 

#
#29 Eq. for _3E0_

    dydt.append(k_1*_03E0_ + k_4*_3E01_ + k_9*_3E02_ \
    
    + k_8*_3E03_ + _0_*k2*_3E_ + _3_*k7*_E0_ \
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- _3E0_*(k_2 + k_7 + k1*_0_ + k4*_1_ + k9*_2_ + k8*_3_))

 
#30 Eq. for _3E1_

    dydt.append(k_1*_03E1_ + k_2*_3E01_ + _1_*k4*_3E_ + _3_*k7*_E1_ \
 

- _3E1_*(k_4 + k_7 + (k1 + k2)*_0_))
 

#31 Eq. for _3E2_
    dydt.append(k_1*_03E2_ + k_2*_3E02_ + _2_*k9*_3E_ + _3_*k7*_E2_ \
 

- _3E2_*(k_7 + k_9 + (k1 + k2)*_0_))
 

#32 Eq. for _3E3_
    dydt.append(k_1*_03E3_ + k_2*_3E03_ + _3_*(k7*_E3_ + k8*_3E_) \
 

- _3E3_*(k_7 + k_8 + (k1 + k2)*_0_))
 

#
#33 Eq. for _E01_

    dydt.append(k_1*_0E01_ + k_3*_1E01_ + k_5*_2E01_ \
    
    + k_7*_3E01_ + _0_*k2*_E1_ + _1_*k4*_E0_ \
 

- _E01_*(k0 + k_2 + k_4 + k1*_0_ + k3*_1_ + k5*_2_ + k7*_3_))
 

#34 Eq. for _E02_
    dydt.append(k_1*_0E02_ + k_3*_1E02_ + k_7*_3E02_ \
    
    + _0_*k2*_E2_ + _2_*k6*_E0_ \
 

- _E02_*(k_2 + k_6 + k1*_0_ + k3*_1_ + k7*_3_))
 

#35 Eq. for _E03_
    dydt.append(k_1*_0E03_ + k_3*_1E03_ + k_5*_2E03_ \
    
    + k_7*_3E03_ + _0_*k2*_E3_ + _3_*k8*_E0_ \
 

- _E03_*(k_2 + k_8 + _0_*k1 + _1_*k3 + _2_*k5 + _3_*k7))
 

#
#
#36 Eq. for _01E0_

    dydt.append(k_4*_01E01_ + k_6*_01E02_ + k_8*_01E03_ \
    
    + _0_*(k1*_1E0_ + k2*_01E_) + _1_*k3*_0E0_ \
 

- _01E0_*(k_1 + k_2 + k_3 + _1_*k4 + _2_*k6 + _3_*k8))
 

#37 Eq. for _01E1_
    dydt.append(k_2*_01E01_ + _0_*k1*_1E1_ \
    
    + _1_*(k3*_0E1_ + k4*_01E_) \
 

- _01E1_*(k_1 + k_3 + k_4 + _0_*k2))
 

#38 Eq. for _01E2_
    dydt.append(k_2*_01E02_ + _0_*k1*_1E2_ + _1_*k3*_0E2_ \
 

+ _2_*k6*_01E_ \
 

- _01E2_*(k_1 + k_3 + k_6 + _0_*k2))
 

#39 Eq. for _01E3_
    dydt.append(k_2*_01E03_ + _0_*k1*_1E3_ \
    
    + _1_*k3*_0E3_ + _3_*k8*_01E_ \
 

- _01E3_*(k_1 + k_3 + k_8 + _0_*k2 ))
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#
#40 Eq. for _02E0_

    dydt.append(k_4*_02E01_ + k_8*_02E03_ \
    
    + _0_*(k1*_2E0_ + k2*_02E_) + _2_*k5*_0E0_ \
 

- _02E0_*(k_1 + k_2 + k_5))
 

#41 Eq. for _02E1_
    dydt.append(k_2*_02E01_ + _0_*k1*_2E1_ + _2_*k5*_0E1_ \
 

- _02E1_*(k_1 + k_4 + k_5 + _0_*k2))
 

#42 Eq. for _02E3_
    dydt.append(k_2*_02E03_ + _0_*k1*_2E3_ + _2_*k5*_0E3_ \
 

- _02E3_*(k_1 + k_5 + k_8 + _0_*k2))
 

#
#43 Eq. for _03E0_

    dydt.append(k_4*_03E01_ + k_9*_03E02_ + k_8*_03E03_ \
 
    + _0_*(k1*_3E0_ + k2*_03E_) + _3_*k7*_0E0_ \
 

- _03E0_*(k_1 + k_2 + k_7 + _1_*k4 + _2_*k9 + _3_*k8))
 

#44 Eq. for _03E1_
    dydt.append(k_2*_03E01_ + _0_*k1*_3E1_ + _1_*k4*_03E_ \
    
    + _3_*k7*_0E1_ \
 

- _03E1_*(k_1 + k_4 + k_7 + _0_*k2))
 

#45 Eq. for _03E2_
    dydt.append(k_2*_03E02_ + _0_*k1*_3E2_ \
    
    + _2_*k9*_03E_ + _3_*k7*_0E2_ \
 

- _03E2_*(k_1 + k_9 + k_7 + _0_*k2))
 

#46 Eq. for _03E3_
    dydt.append(k_2*_03E03_ + _0_*k1*_3E3_ \
    
    + _3_*(k7*_0E3_ + k8*_03E_) \
 

- _03E3_*(k_1 + k_7 + k_8 + _0_*k2))
 

#
#47 Eq. for _0E01_

    dydt.append(k_3*_01E01_ + k_5*_02E01_ + k_7*_03E01_ \
    
    + _0_*(k1*_E01_ + k2*_0E1_) + _1_*k4*_0E0_ \
 

- _0E01_*(k0 + k_1 + k_2 + k_4 + _1_*k3 + _2_*k5 + _3_*k7))
 

#48 Eq. for _1E01_
    dydt.append(k_1*_01E01_ + _0_*k2*_1E1_ \
    
    + _1_*(k3*_E01_ + k4*_1E0_) \
 

- _1E01_*(k0 + k_2 + k_3 + k_4 + _0_*k1))
 

#49 Eq. for _2E01_
    dydt.append(k_1*_02E01_ + _0_*k2*_2E1_ + _2_*k5*_E01_ \
 

- _2E01_*(k0 + k_2 + k_4 + k_5 + _0_*k1))
 

#50 Eq. for _3E01_
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    dydt.append(k_1*_03E01_ + _0_*k2*_3E1_ + _1_*k4*_3E0_ \
    
    + _3_*k7*_E01_ \
 

- _3E01_*(k0 + k_2 + k_4 + k_7 + _0_*k1))
 

#
#51 Eq. for _0E02_

    dydt.append(k_3*_01E02_ + k_7*_03E02_ 
    
    + _0_*(k1*_E02_ + k2*_0E2_) + _2_*k6*_0E0_ \
 

- _0E02_*(k_1 + k_2 + k_6 + _1_*k3 + _3_*k7))
 

#52 Eq. for _1E02_
    dydt.append(k_1*_01E02_ + _0_*k2*_1E2_ + _1_*k3*_E02_ \
    
    + _2_*k6*_1E0_ \
 

- _1E02_*(k_2 + k_3 + k_6 + _0_*k1))
 

#53 Eq. for _3E02_
    dydt.append(k_1*_03E02_ + _0_*k2*_3E2_ + _2_*k9*_3E0_ \
    
    + _3_*k7*_E02_ \
 

- _3E02_*(k_2 + k_9 + k_7 + _0_*k1))
 

#
#54 Eq. for _0E03_

    dydt.append(k_3*_01E03_ + k_5*_02E03_ + k_7*_03E03_ \
    
    + _0_*(k1*_E03_ + k2*_0E3_) + _3_*k8*_0E0_ \
 

- _0E03_*(k_1 + k_2 + k_8 + _1_*k3 + _2_*k5 + _3_*k7))
 

#55 Eq. for _1E03_
    dydt.append(k_1*_01E03_ + _0_*k2*_1E3_ + _1_*k3*_E03_ \
    
    + _3_*k8*_1E0_ \
 

- _1E03_*(k_2 + k_3 + k_8 + _0_*k1))
 

#56 Eq. for _2E03_
    dydt.append(k_1*_02E03_ + _0_*k2*_2E3_ + _2_*k5*_E03_ \
 

- _2E03_*(k_2 + k_5 + k_8 + _0_*k1))
 

#57 Eq. for _3E03_
    dydt.append(k_1*_03E03_ + _0_*k2*_3E3_ \
    
    + _3_*(k7*_E03_ + k8*_3E0_) \
 

- _3E03_*(k_2 + k_7 + k_8 + _0_*k1))
 

#
#
#58 Eq. for _01E01_

    dydt.append(_0_*(k1*_1E01_ + k2*_01E1_) \
    
    + _1_*(k3*_0E01_ + k4*_01E0_) \
 

- _01E01_*(k0 + k_1 + k_2 + k_3 + k_4))
 

#59 Eq. for _01E02_
    dydt.append(_0_*(k1*_1E02_ + k2*_01E2_) \
    
    + _1_*k3*_0E02_ + _2_*k6*_01E0_ \
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- _01E02_*(k_1 + k_2 + k_3 + k_6))
 

#60 Eq. for _01E03_
    dydt.append(_0_*(k1*_1E03_ + k2*_01E3_) \
    
    + _1_*k3*_0E03_  + _3_*k8*_01E0_ \
 

- _01E03_*(k_1 + k_2 + k_3 + k_8))

#
#61 Eq. for _02E01_

    dydt.append(_0_*(k1*_2E01_ + k2*_02E1_) + _2_*k5*_0E01_ \
 

- _02E01_*(k0 + k_1 + k_2 + k_4 + k_5))
 

#62 Eq. for _02E03_
    dydt.append(_0_*(k1*_2E03_ + k2*_02E3_) + _2_*k5*_0E03_ \
 

- _02E03_*(k_1 + k_2 + k_5 + k_8))
 

#
#63 Eq. for _03E01_

    dydt.append(_0_*(k1*_3E01_ + k2*_03E1_) \
    
    + _1_*k4*_03E0_ + _3_*k7*_0E01_ \
 

- _03E01_*(k0 + k_1 + k_2 + k_4 + k_7))
 

#64 Eq. for _03E02_
    dydt.append(_0_*(k1*_3E02_ + k2*_03E2_) \
    
    + _2_*k9*_03E0_ + _3_*k7*_0E02_ \
 

- _03E02_*(k_1 + k_2 + k_9 + k_7))
 

#65 Eq. for _03E03_
    dydt.append(_0_*(k1*_3E03_ + k2*_03E3_) \
    
    + _3_*(k7*_0E03_ + k8*_03E0_) \
 

- _03E03_*(k_1 + k_2 + k_7 + k_8))
 

#--------------#
# Return dydt  #
#--------------#

    return(dydt)
#
 
 
# -------------------#
# INITIAL CONDITIONS #
#     Unit: mM       #
#--------------------#
 
# E, 0, 1, 2, 3, 4 
# <=> HK, G, ATP, G6P, Pi, ADP
#
E, G, ATP = 6.65e-2, 2.5, 3.0
#
G6P, ADP = 0.0, 0.0 
 
#Pi = [0.0, 2.0, 10.0]
Pi = [0.0, 1.0, 2.0, 4.0, 6.0, 10.0, 15.0]
 
#G6P = [0.0, 1.0, 2.0, 3.0]
 
# Pi = 6.0 should be changed to 8.0
y0 = []
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for y in Pi:
    y0.append([E, G, ATP, G6P, y, ADP,\
     0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\
     0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\
     0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\
     0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\
     0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\
     0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\
     0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\
     0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\
     0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\
     0.0, 0.0, 0.0, 0.0, 0.0])
 
#print(y0)
#
#
#===================================#
# PARAMETER VALUES FOR SIMULATIONS  #
#===================================#
 
##------------------##
## FROMM MODEL      ##
##==================##
k0 = 63.0
 
KmG = 0.053
 
a = 99.0
# For Glucose
k1, k_1 = (a + 1.0)*k0/KmG, a*k0
 
k2, k_2 = k1, k_1
 
# For ATP
# Km
KmA = 0.7 
k3, k_3 = (a + 1.0)*k0/KmA, a*k0
 
# Ki = 
k4, k_4 = k3, k_3
 
# For G6P
c = 1.0e-0
 
# Ki = 0.71 mM (N)
k5, k_5 = c*k3, 0.71*k3*c
 
# Ki = 54 microM = 0.054 mM(C)
k6, k_6 = c*k3, 0.054*k3*c
 
# For Pi
# K_i = 0.022mM
k7, k_7 = k3, 0.022*k3
 
# Ki = 0.22mM
k8, k_8 = k3, 0.22*k3
 
# For G6P binding to _3E_, _03E_, and _03E0_
u = 0.10
v = 1.0e-1
k9, k_9 = c*v*k3, c*v*u*k3
 
 
p0 = (k0, k1, k_1, k2, k_2, k3, k_3, k4, k_4, \

 k5, k_5, k6, k_6, k7, k_7, k8, k_8, k9, k_9)
 
for i in range(len(p0)):
    print(p0[i])
#==Simplified model==#
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z = 0.0
p0s =(k0, z*k1, z*k_1, k2, k_2, z*k3, z*k_3, k4, k_4, \

  k5, k_5, k6, k_6, k7, k_7, k8, k_8, k9, k_9)
 
# ==SA illustration ==#
p0l = []
x = 0.3
xl = [1.0 - x, 1.0, 1.0 + x]
 
for i in xl:
    p0l.append((k0, k1, k_1, k2, k_2, k3, k_3, k4, k_4, \

 k5, k_5, k6, k_6, k7, k_7, k8, k_8, k9, i*k_9))
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