<table>
<thead>
<tr>
<th>Title</th>
<th>High times for painful blues: the endocannabinoid system in pain-depression comorbidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Fitzgibbon, Marie; Finn, David P.; Roche, Michelle</td>
</tr>
<tr>
<td>Publication Date</td>
<td>2015-09-05</td>
</tr>
<tr>
<td>Publisher</td>
<td>Oxford University Press (OUP)</td>
</tr>
<tr>
<td>Link to publisher's version</td>
<td>https://doi.org/10.1093/ijnp/pyv095</td>
</tr>
<tr>
<td>Item record</td>
<td>http://hdl.handle.net/10379/15692</td>
</tr>
<tr>
<td>DOI</td>
<td>http://dx.doi.org/10.1093/ijnp/pyv095</td>
</tr>
</tbody>
</table>
High times for painful blues: the endocannabinoid system in pain-depression comorbidity

Running title: Cannabinoids in pain-depression interactions

Marie Fitzgibbona,c, David P Finn PhDb,c, Michelle Roche PhDa,c

aPhysiology and bPharmacology and Therapeutics, School of Medicine, cGalway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland.

Corresponding Author: Dr Michelle Roche, Physiology, School of Medicine, National University of Ireland, Galway, University Road, Galway, Ireland.

Tel: 353 91 495427 Fax: 353 91 494544 Email: michelle.roche@nuigalway.ie

Category of manuscript: Review (invited for special issue associated with CINP thematic meeting on stress, inflammation and depression)

Word Count
Abstract: 150
Manuscript: 8,160

Number of References: 278
Number of Tables: 3
Abbreviations: 2-AG, 2-arachidonylglycerol; ABDH6, Serine hydrolase α/β-hydrolase domain containing protein 6; ABDH12, Serine hydrolase α/β-hydrolase domain Containing Protein 12; AEA, Anandamide; AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; BDNF, Brain-derived neurotrophic factor; CB, Cannabinoid receptor; CNS, Central nervous system; CRF, Corticotrophin-releasing factor; CUS, Chronic unpredictable stress; DAGL, Diacylglycerol lipase; FAAH, Fatty acid amide hydrolase; FST, Forced swim test; GABA, γ-Aminobutyric acid; HPA, Hypothalamo-pituitary-adrenal; MAGL, monoacylglycerol lipase; NAPE-PLD, N-arachidonoylphosphatidylethanolamine phospholipase D; NMDA, N-methyl-D-aspartate; PNL, Partial sciatic nerve ligation; PPARs, Peroxisome proliferator-activated receptors; RVM, Rostral ventromedial medulla; SD, Sprague Dawley; WKY, Wistar-Kyoto; Δ⁹-THC, Delta-9-tetrahydrocannabinol.
Abstract

Depression and pain are two of the most debilitating disorders worldwide and have an estimated co-occurrence of up to 80%. Comorbidity of these disorders is more difficult to treat, associated with significant disability and impaired health-related quality of life than either condition alone, resulting in enormous social and economic cost. Several neural substrates have been identified as potential mediators in the association between depression and pain, including neuroanatomical reorganization, monoamine and neurotrophin depletion, dysregulation of the HPA axis and neuroinflammation. However, the past decade has seen mounting evidence supporting a role for the endogenous cannabinoid (endocannabinoid) system in affective and nociceptive processing and thus, alterations in this system may play a key role in reciprocal interactions between depression and pain. This review will provide an overview of the preclinical evidence supporting an interaction between depression and pain and the evidence supporting a role for the endocannabinoid system in this interaction.

Keywords: Depression, Pain, anandamide, cannabinoid, stress
Clinical data supporting depression-pain comorbidity

Depression and pain are two of the most prevalent psychiatric and neurological disorders worldwide and both are associated with significant disability, impaired health-related quality of life, and high mortality (Spitzer et al., 1995, Kvien, 2004, Scholich et al., 2012, Hassett et al., 2014). While each is considered a debilitating disorder in its own right, these disease entities frequently co-exist, and it has been reported that this association may be as high as 80% of patients (Poole et al., 2009). For example, major depressive and bipolar disorder, associate with painful symptoms in up to 95% of patients (Grover et al., 2012, Maneeton et al., 2013, Nicholl et al., 2014). Similarly, patients suffering from inflammatory and neuropathic pain are up to 4.9 times more likely to develop depression or anxiety disorder than the general population (Hawker et al., 2011, Knaster et al., 2012, Emery et al., 2014, Lin et al., 2015). Patients exhibiting co-morbid depression and pain do not respond as effectively to pharmacological treatment and this comorbidity is more disabling and expensive to both patients and society than either condition alone (Emptage et al., 2005, Gameroff and Olfson, 2006). Furthermore, it has also been found that the severity of depression directly correlates with increased severity of pain symptomatology (Khongsangnghdao et al., 2000). However, it should be noted that an intricate relationship exists between depression and pain such that although pain is commonly reported by depressed patients, examination of pain thresholds to various stimuli such as cold, heat and pressure have been shown to be reduced, increased or unchanged (Ben-Tovim and Schwartz, 1981, Lautenbacher et al., 1999, Gormsen et al., 2004, Bar et al., 2005, Boettger et al., 2013), effects which depend on the modality and intensity of the stimulus. Thus, given the complex interaction between affect and pain, and the high comorbidity of depression-pain,
greater understanding of the neurobiological mechanisms underlying the association is warranted in order to develop more efficacious treatment strategies. There have been several studies investigating the role of neural substrates including neuroanatomical organization, neurotransmission, neurotrophins, dysregulation of the hypothalamo-pituitary-adrenal (HPA) axis and inflammation, to name but a few, in the interaction between affect and nociceptive processing [for review see (Blackburn-Munro, 2004, Goesling et al., 2013, Walker et al., 2014)]. A full review of the role of each of these substrates is beyond the scope of this review. However, increased evidence has indicated a role for a further substrate, the endogenous cannabinoid (endocannabinoid) system in affective and nociceptive responding [for reviews see (Finn, 2010, Ashton and Moore, 2011, Gorzalka and Hill, 2011, Rani Sagar et al., 2012, Hillard and Liu, 2014, Jennings et al., 2014, Boychuk et al., 2015) and as such, alterations in this system may provide a common mechanism by which depression and pain co-exist. Preclinical animal models provide a valuable means of investigating potential neurobiological substrates that may underlie the association between depression and pain. As such, this review will provide an overview of the preclinical evidence supporting an interaction between depression and pain, the evidence supporting a role for the endocannabinoid system in this interaction, and the potential mechanisms through which the endocannabinoid system may mediate effects on affect and nociceptive processing.
Preclinical animal models support depression-pain interactions

Animal models of depression exhibit altered nociceptive responding

Several animal models of depression based on genetics, stress, lesion and pharmacological manipulation have been shown to exhibit alterations in nociceptive responding [for review see (Li, 2015)], supporting the clinical finding of an association between depression and pain. For example, rat the chronic mild stress model of depression has been shown to display a reduced nociceptive thresholds to cold (Bardin et al., 2009, Bravo et al., 2012, Bravo et al., 2014) and mechanical (Bardin et al., 2009, Imbe et al., 2012) stimuli and an increased threshold to noxious thermal stimuli (Shi et al., 2010). Furthermore both inflammatory (Gameiro et al., 2005, Rivat et al., 2010, Wang et al., 2013) and neuropathic (Bravo et al., 2012) pain behaviour are enhanced in chronic stress models of depression. Similarly, we and others have shown that the Wistar-Kyoto (WKY) rat, a stress hyperresponsive rat strain with a depressive-like phenotype, exhibits thermal hyperalgesia (Burke et al., 2010), visceral hyperalgesia to colorectal distension (Gibney et al., 2010, Gosselin et al., 2010, O'Malley et al., 2010), enhanced formalin-evoked inflammatory pain behaviour (Burke et al., 2010, Rea et al., 2014) and enhanced mechanical allodynia following peripheral nerve injury (neuropathic pain) (Zeng et al., 2008, del Rey et al., 2011). Reserpine-induced monoamine depletion has long been known to result in depressive-like behaviour, and recent evidence has demonstrated accompanying thermal allodynia (Liu et al., 2014), as well as pronounced and long-lasting mechanical hyperalgesia and allodynia, and cold allodynia (Nagakura et al., 2009, Arora et al., 2011). Thus, this model has been proposed as a possible rodent model of fibromyalgia (Nagakura et al., 2009). Furthermore, recent work from
our group has demonstrated that the olfactory bulbectomised rat, a lesion model of depression, exhibits increased sensitivity to mechanical and thermal stimuli in the von Frey, acetone drop, hot plate and tail flick tests (Burke et al., 2010, Burke et al., 2013), increased inflammatory pain responding in the formalin test (Burke et al., 2010) and enhanced neuropathic pain responding following spinal nerve ligation (Burke et al., 2013, Burke et al., 2014). Thus, taken together, several animal models of depression have been shown to exhibit altered nociceptive thresholds and enhanced inflammatory and neuropathic pain behaviour, mimicking effects observed clinically.

Animal models of chronic pain exhibit depressive-like behaviour

Depressive- and anxiety-like behaviour, as assessed by multiple paradigms, has been reported in a wide variety of preclinical models of chronic pain [for review see (Yalcin et al., 2014, Li, 2015)]. For example, peripheral or spared nerve injury in mice induce a pronounced mechanical allodynia accompanied by the development of depressive-like behaviour as determined by enhanced immobility in the forced swim test (FST) (Goncalves et al., 2008, Norman et al., 2010, Wang et al., 2011). Similarly, rodents subjected to the chronic constriction injury model of neuropathic pain exhibit reduced sucrose preference (Dellarole et al., 2014) and increased immobility in the FST (Hu et al., 2009, Jesse et al., 2010, Fukuhara et al., 2012, Zhao et al., 2014), indicating the development of anhedonia and behavioural despair, hallmarks of depressive-like behaviour. In the complete Freund’s adjuvant model of inflammatory pain, both mice and rats exhibited depression-like behaviour in the FST (Maciel et al., 2013, Borges et al.,
2014) and tail suspension test (Maciel et al., 2013); and anxiety-related behaviour in the elevated plus maze, open field test and social interaction test (Parent et al., 2012, Borges et al., 2014). Such changes in affective processing in chronic pain models have been shown to occur later than the development of enhanced somatosensory perception. For example in neuropathic pain models, alterations in emotional behaviour have been observed 4-8 weeks post nerve injury (Suzuki et al., 2007, Yalcin et al., 2011), but not prior to this (2-4 weeks) when mechanical allodynia/hypersensitivity is observed (Kontinen et al., 1999, Hasnie et al., 2007). These studies highlight the development of depressive- and anxiety-like behaviour in models of neuropathic or inflammatory pain, and suggest that pathological alterations induced by persistent nociceptive input to brain regions that process both pain and affect may account, at least in part, for co-morbid depressive-like behavioural changes.

Animal models that replicate the clinical scenario are important for in-depth investigation of the possible neurobiological substrates that may mediate the association between depression and chronic pain. Although the cause of this co-existence remains somewhat elusive, as highlighted earlier, common anatomical substrates and neurobiological mediators including neurotransmitters, neurotrophins, neuroendocrine alterations and inflammatory mediators have been identified, any or all of which may alter neural functioning in key brain regions involved in regulating emotional and nociceptive processing [for recent reviews see (Blackburn-Munro, 2004, Maletic and Raison, 2009, Anderson et al., 2012, Goesling et al., 2013, Meerwijk et al., 2013, Jennings et al., 2014, Walker et al., 2014, Doan et al., 2015)]. Increasing evidence has highlighted an important role for the endocannabinoid system in modulating emotional and
nociceptive processing, and thus this system may play a key role in the association between pain and depression.

The Endocannabinoid System

The plant *Cannabis sativa* has been used as a medicine throughout the world for several thousand years, with reports of its use in treating painful symptoms appearing as early as 2600 B.C. The principal psychoactive ingredient of *Cannabis sativa*, delta-9-tetrahydrocannabinol (Δ9-THC), was first identified in 1964 (Gaoni and Mechoulam, 1964) and subsequent studies to understand its mechanism of action led to the discovery of the endogenous cannabinoid (endocannabinoid) system. This endocannabinoid system consists of the cannabinoid receptors (CB₁ and CB₂) (Devane et al., 1988, Matsuda et al., 1990, Munro et al., 1993), their naturally occurring endogenous ligands, the best characterized of which are N-arachidonoylethanolamine (or anandamide; AEA) (Devane et al., 1992) and 2-arachidonoylglycerol (2-AG) (Mechoulam et al., 1995), and the enzymes involved in their biosynthesis and degradation. Other endocannabinoid ligands have also been identified including oleamide (Leggett et al., 2004), O-arachidonoyl ethanolamine (virodhamine) (Porter et al., 2002), 2-arachidonoyl glycerol ether (noladin ether) (Hanus et al., 2001) and N-arachidonoyl-dopamine (Huang et al., 2002), although their physiological role has not been examined in detail. Endocannabinoid biosynthesis occurs on demand via hydrolysis of cell membrane phospholipid precursors. AEA is formed from the precursor N-arachidonoylphosphatidylethanolamine, due to the hydrolytic activity of the phospholipase D
enzyme NAPE-PLD (Di Marzo et al., 1994, Sugiura et al., 1996), while fatty acid amide hydrolase (FAAH) is the primary enzyme responsible for the metabolism of this endocannabinoid (Cravatt et al., 1996). In comparison, the main biosynthetic pathway for 2-AG involves the hydrolysis of the membrane phospholipid phosphatidylinositol by phospholipase C, producing 1,2-diacylglycerol which is then converted to 2-AG by diacylglycerol lipase (DAGL) (Prescott and Majerus, 1983, Sugiura et al., 1995). 2-AG is primarily metabolized by monoacylglycerol lipase (MAGL) (85%) (Blankman et al., 2007) although other enzymes including cyclooxygenase-2 (Yu et al., 1997, Kozak et al., 2000), lipoxygenase (van der Stelt et al., 2002), ABDH6 (serine hydrolase α/β-hydrolase domain) and ABDH12 (Blankman et al., 2007) have also been shown to play a role.

Upon release, endocannabinoids bind and activate the G-protein coupled receptors CB$_1$ and/or CB$_2$. CB$_1$ receptors are highly expressed on presynaptic neurons throughout the human and rodent brain (Herkenham, 1991, Tsou et al., 1998, Mackie, 2008), the activation of which results in inhibition of cyclic AMP, activation of mitogen-activated protein kinase, inhibition of N- and P/Q-type voltage-activated Ca$^{2+}$ channels and induction of inwardly rectifying K$^+$ currents, with the resultant inhibition of neurotransmitter release (Demuth and Molleman, 2006). CB$_1$ receptors have also been shown to be expressed on glia and on a wide range of peripheral tissues, though at lower levels than observed on neurons (Gallegue et al., 1995, Carlisle et al., 2002, Osei-Hyiaman et al., 2005, Cauvuto et al., 2007, Cota, 2007). In contrast, CB$_2$ receptors are widely distributed in peripheral tissues and organs, with a particularly high density on immune cells and tissues (Munro et al., 1993, Berdyshev, 2000, Sugiura et al., 2000).
including on glia within the brain, with enhanced expression observed under neuroinflammatory conditions (Carlisle et al., 2002, Nunez et al., 2004, Rock et al., 2007). Accumulating evidence has also indicated that the CB₂ receptor is also expressed on subsets of neurons within the brain (Van Sickle et al., 2005, Gong et al., 2006, Baek et al., 2008, Zhang et al., 2014), and thus also modulates neurotransmission (Roche and Finn, 2010, Atwood et al., 2012, Kim and Li, 2015). Endocannabinoids also have affinity for and activity at other receptors, namely the transient receptor potential vanilloid 1 (TRPV1), peroxisome proliferator-activated receptors (PPARs), GPR55 and GPR119 (Huang et al., 2002, Overton et al., 2006, Sun et al., 2006, Ryberg et al., 2007). Activity at these receptors has been proposed to account, at least partially, for some of the differential effects observed with potent selective cannabinoid agonists and pharmacological modulators of endocannabinoid tone.

Due to the distribution of the endocannabinoid system throughout spinal and supraspinal regions, it is in a prime position to regulate neurophysiological activities such as affective and nociceptive processing. This has been a very active area of research over the past decade with a number of excellent reviews synthesizing the data supporting a role for the endocannabinoid system in modulating mood and nociception [for reviews see (Ashton and Moore, 2011, Gorzalka and Hill, 2011, Rani Sagar et al., 2012, Hillard and Liu, 2014, Ulugol, 2014, Boychuk et al., 2015)]. However, no review to date has examined the evidence which may support a role for the endocannabinoid system as a link between depression and pain, and thus the remainder of this review aims to collate and synthesize these data.
The role of the endocannabinoid system in depression-pain interactions

Clinical Evidence

Several lines of evidence have demonstrated alterations in the endocannabinoid system in chronic pain (Richardson et al., 2008, Kaufmann et al., 2009) and in psychiatric patients (Gobbi et al., 2005, Hill and Gorzalka, 2005, Koethe et al., 2007). For example, various polymorphisms of CB₁ and CB₂ receptors have been identified in patients with major depression and bipolar disorder (Monteleone et al., 2010, Minocci et al., 2011, Mitjans et al., 2012, Mitjans et al., 2013) with a single nucleotide polymorphism in the CB₁ receptor reported to enhance the risk of treatment resistance in depression (Domschke et al., 2008) and the development of anhedonic depression following early life trauma (Agrawal et al., 2012). Similarly, genetic alterations in the CB₁ receptor and FAAH have also been identified in patients with pain associated with migraine, Parkinson’s disease and irritable bowel syndrome (Juhasz et al., 2009, Park et al., 2011, Greenbaum et al., 2012). In addition, serum levels of endocannabinoids have been reported to be reduced in both depressed patients (Hill et al., 2008c, Hill et al., 2009b) and chronic pain patients (Fichna et al., 2013). A recent study has reported enhanced plasma 2-AG levels and increased CB₁ and CB₂ mRNA expression on blood lymphocytes in osteoarthritic patients (La Porta et al., 2015). A significant positive correlation was observed between 2-AG levels, pain and depression, and negative correlation of 2-AG with quality of life and visual memory, was observed (La Porta et al., 2015). In addition, CB₁ receptor expression was positively correlated with depression scores, while CB₂ receptor expression was correlated with pain scores. These
data indicate that key components of the endocannabinoid system are up-regulated in human osteoarthritis with significant correlations with pain and emotional symptoms. In addition to visual loss and sensory deficits, neuromyelitis optica is associated with significant pain (altered threshold responding and symptoms of neuropathic pain), depression and increased plasma levels of 2-AG and AEA (Pellkofer et al., 2013). This study evaluated if a correlation existed between pain threshold and levels of endocannabinoids, demonstrating a considerable negative correlation between the plasma levels of 2-AG and mechanical pain thresholds in these patients, although this study did not evaluate if an association also existed with depressed mood. While the data suggest a possible association between pain, depression and the endocannabinoid system in osteoarthritis and neuromyelitis optica patients, further clinical studies are required to determine if alterations in the genetics, levels and activity of the endocannabinoid system exist in other patient groups exhibiting depression-pain comorbidity.

There has been a paucity of clinical studies directly investigating the role or activity of cannabinoids in depression-pain interactions; however enhanced mood and improved quality of life have been reported in studies investigating the analgesic efficacy of cannabinoid-based therapies [Table 1]. For instance, cannabis intake has been reported to improve muscle and nerve pain, as well as depression and anxiety symptomatology, in a group of HIV patients (Woolridge et al., 2005). Improvements in anxiety and overall distress have been reported in patients with advanced cancer, in whom pain symptoms were managed by daily adjunctive administration of Cesamet® (nabilone, a Δ⁹-THC analogue) for 30 days (Maida et al., 2008). Similarly, a randomized, double blind, placebo controlled trial, which examined the therapeutic
benefit of nabilone in terms of pain management and quality of life improvement in patients with fibromyalgia, identified significant pain relief and alleviation of anxiety symptoms after 4 weeks of therapy (Skrabek et al., 2008). In addition, a retrospective evaluation investigating the efficacy of nabilone for the management of concurrent disorders in seriously mentally ill correctional populations, identified significant amelioration of symptoms related to post traumatic stress disorder, as well as a subjective improvement in chronic pain (Cameron et al., 2014). Furthermore, a multicentre retrospective survey of patients with chronic central neuropathic pain or fibromyalgia who were prescribed oral Δ⁹-THC (dronabinol), supplemental to existing medication, reported improved symptoms of both anxiety and depression after 7 months of treatment as assessed by the Hospital Anxiety and Depression Scale (Weber et al., 2009). Although Sativex® (1:1 ratio of Δ⁹-THC:cannabidiol), indicated for resistant spasticity and pain in multiple sclerosis has not yet been directly associated with significant mood changes, patients have reported improvements in overall quality of life following 16 weeks of treatment (Vermersch, 2011). In a separate randomized control clinical trial evaluating the effect of Sativex® in patients with chronic painful diabetic neuropathy, patients with co-morbid depression displayed significant improvements in total pain score in comparison with non-depressed counterparts (Selvarajah et al., 2010). Collectively, the above studies suggest that when co-existent, both depression/anxiety and pain respond to exogenously administered cannabinoids, although it remains to be determined if the effects are mediated by common or parallel mechanisms. Recent evidence has demonstrated enhanced amygdala activity and reduced functional connectivity between the amygdala and somatosensory cortex correlate with Δ⁹-THC mediated reductions in the unpleasantness to ongoing pain (Lee et al., 2013).
suggesting that the amygdala may provide a common neural circuit that for the association between emotional responding and pain.

Preclinical Evidence

Despite numerous reports of altered endocannabinoid signaling in various animal models of pain (Lim et al., 2003, Zhang et al., 2003, Walczak et al., 2005, Mitrirattanakul et al., 2006) and mood-related behavior (Vinod et al., 2012, Marco et al., 2014, Navarria et al., 2014), there is limited direct evidence available identifying alterations in endocannabinoid function in animal models of co-existent depressive- and pain behaviour [see Table 2 and 3]. One of the first studies examining the role of the endocannabinoid system in the interaction between affect and pain was conducted by Takahashi and colleagues (2003). In this study, outbred Swiss-albino mice were stratified into groups of ‘anxious’ and ‘non-anxious’ animals as determined by behavioural responses in the elevated plus maze, before subsequent exposure to intraplantar formalin administration (Takahashi et al., 2003). Despite the hypothesis that the degree of anxiety may contribute to the perception of and response to the noxious stimulus, both anxious and non-anxious animals displayed comparable formalin-evoked biphasic nociceptive profiles. Systemic pretreatment with Δ⁹-THC elicited an analgesic effect in both groups of animals, an effect blocked by systemic pre-treatment with a CB₁ receptor antagonist, rimonabant (Takahashi et al., 2003). These data suggested that the endocannabinoid system (and in particular the CB₁ receptor) may represent a potential treatment strategy for inflammatory pain in the presence and/or absence of anxiety and possibly other neuropsychiatric disorders. However, it should be noted that direct activation of central CB₁ receptors is responsible for the
psychoactive effects of potent synthetic or plant-derived cannabinoids, thus potent, direct agonism of this receptor is unlikely to be therapeutically viable for pain and/or psychiatric disorders. In comparison, modulation of endocannabinoid tone by inhibiting enzymes responsible for their metabolism has been proposed to confer improved efficacy and safety relative to direct cannabinoid agonists.

The Wistar-Kyoto (WKY) rat is a genetically stress-sensitive strain of rat that exhibits a depression- and anxiety-related phenotype (Pare and Redei, 1993) and heightened nociceptive behavioural responding in several paradigms (Zeng et al., 2008, Burke et al., 2010). Characterisation of the endocannabinoid system in WKY rats has revealed higher levels of FAAH and CB₁ receptor coupling and lower levels of AEA in the frontal cortex and hippocampus, when compared to Wistar rats (Vinod et al., 2012). Furthermore, enhancing AEA tone by pharmacologically inhibiting FAAH activity resulted in an attenuation of depressive-like behaviour (sucrose preference test and FST) in WKY rats (Vinod et al., 2012). Recent studies in our laboratory have identified alterations in the endocannabinoid system concurrent with enhanced formalin-evoked nociceptive behavior in the Wistar-Kyoto (WKY) rat (Rea et al., 2014) [Table 2]. More specifically, we found that in WKY rats, intraplantar administration of the noxious inflammatory pain stimulus formalin resulted in a significant reduction in AEA in the rostral ventromedial medulla (RVM), a component of the descending pain pathway synonymous with pain facilitation and/or inhibition, an effect which was not observed in Sprague Dawley (SD) counterparts. Intraplantar administration of formalin increased levels of 2-AG in the RVM of SD rats, an effect not observed in WKY animals. Furthermore, exposure to
formalin induced significant increases in mRNA expression of NAPE-PLD and DAGL-α, precursors of AEA and 2-AG respectively, in the RVM of SD rats, an effect not observed in the WKY strain. Pharmacological studies were carried out in order to evaluate the functional significance of the alterations in the endocannabinoid system in WKY rats in response to formalin. Enhancing endogenous AEA tone following systemic administration of the FAAH inhibitor URB597 attenuated formalin-evoked hyperalgesic responding in WKY rats, while in comparison, CB₁ receptor antagonism was associated with augmentation of nociceptive responding. Furthermore, CB₁ receptor blockade within the RVM attenuated the reduction in nociceptive behaviour induced by URB597 in WKY rats. In comparison, pharmacological manipulation of the endocannabinoid system in SD rats did not alter formalin-evoked nociceptive responding (Rea et al., 2014). These findings indicate a causative role of endocannabinoid dysregulation in hyperalgesic behavior associated with negative affect and moreover, identify a role for AEA-induced activation of CB₁ receptors in the RVM as a mediator of pain suppression in animal subjects predisposed to anxiety and depression. In addition to its role in influencing responsivity of WKY rats to noxious stimuli in the absence of stress, we have also shown very recently that the endocannabinoid system may also play a role in the differential effects of repeated homotypic stress on inflammatory pain-related behaviour in WKY versus SD rats (Jennings et al., 2015). Specifically, repeated forced swim stress exposure prolonged and attenuated formalin-evoked nociceptive behaviour in SD and WKY rats respectively. These behavioural alterations were accompanied by differential effects of stress on AEA levels in the amygdala and MAGL expression in the spinal cord between SD and WKY rats (Jennings et al., 2015). These data indicate that changes in the tone of the endocannabinoid system in the
amygdala and spinal cord may underlie the differential effects of stress on inflammatory pain behaviour between SD and WKY rats.

The chronic unpredictable stress (CUS) model of depression has been shown to exhibit thermal hyperalgesia in the hotplate test (Lomazzo et al., 2015), cold allodynia (Bravo et al., 2012), exacerbated trigeminovascular nociception (Zhang et al., 2013), inflammatory hyperalgesia in response to formalin administration (Shi et al., 2010) and persistent mechanical hyperalgesia following nerve growth factor administration (Lomazzo et al., 2015). Exposure to CUS has been shown to result in site-specific alterations in the endocannabinoid system, notably a downregulation of CB₁ receptors, reduction in 2-AG levels and increased FAAH levels in the hippocampus (Hill et al., 2005, Reich et al., 2009), an increase in CB₁ receptor mRNA expression in prefrontal cortex and decrease in expression in the midbrain (Bortolato et al., 2007), a decrease in CB₁ receptor density in the hypothalamus and striatum and increased CB₁ receptor density in the prefrontal cortex (Hill et al., 2008a, McLaughlin et al., 2013), a reduction in 2-AG mediated retrograde synaptic transmission in the hippocampus (Zhong et al., 2014) and a reduction in AEA levels in the hypothalamus, prefrontal cortex, hippocampus and striatum (Hill et al., 2008a). Depressive-like behaviours in the CUS model have been shown to be attenuated by endocannabinoid-modulating pharmacological agents including the MAGL inhibitor JZL184 (Zhong et al., 2014, Zhang et al., 2015). Only one study to date has examined the effect of endocannabinoid modulation on affective and pain responding in CUS exposed mice. Pre-treatment with the FAAH inhibitor, URB597, or MAGL inhibitor, JZL184, which enhanced endogenous levels of AEA and 2-AG respectively, significantly attenuated CUS-induced anxiety-related behaviour in the light-dark box and concurrent thermal hyperalgesia (Lomazzo et al.,
Long-lasting widespread mechanical hyperalgesia, induced by intramuscular administration of nerve growth factor to CUS rats, was effectively reduced by URB597, but not JZL184, (Lomazzo et al., 2015). These data demonstrate an important role for AEA signaling in anxiety- and pain-related behaviour, in stress-exposed mice.

In addition to the evidence supporting a role for the endocannabinoid system in enhanced nociception observed in models of depression, alterations in endocannabinoid signaling have also been observed in animal models of chronic pain with co-morbid alteration in affective responding [Table 3]. A recent report by Racz and colleagues has revealed a prominent role of CB$_2$-mediated events in affective behaviour induced by neuropathic pain (Racz et al., 2015). In this study, partial sciatic nerve ligation (PNL) was employed to induce a model of neuropathic pain in wild type and CB$_1^{-/-}$ mice. Wildtype and CB$_1^{-/-}$ mice exhibited mechanical allodynia following PNL. However, evaluation of anxiety- (light-dark test and the elevated zero-maze) and depressive-like (sucrose preference test) behaviour 4-7 weeks following PNL revealed deficits in affective responding in CB$_1^{-/-}$, but not wildtype, mice (Racz et al., 2015). Thus, these data demonstrate that functionally active CB$_1$ receptors confer resilience to pain-related anxiety/depression highlighting a protective role for CB$_1$ receptors against the emotional consequences of neuropathic pain. In a similar fashion, La Porta et al recently investigated the role of the endocannabinoid system in affective and cognitive manifestations in an animal model of osteoarthritis (La Porta et al., 2015). This study revealed that the anxiety-related behaviour of osteoarthritic mice, identified in the elevated plus maze, was enhanced in CB$_1^{-/-}$ and absent in CB$_2^{-/-}$ mice, indicating differential effects of CB$_1$ and CB$_2$ receptors in mediating...
the affective dimension of pain in the model. Similar to effects in a neuropathic model (Racz et al., 2015), the data would indicate that CB₁ receptors confer resilience, while CB₂ receptors confer susceptibility to the development of arthritis-related anxiety. The authors suggest and provide some support, that the differential effects of CB₁ and CB₂ receptors may be mediated by alterations in HPA axis functionality and responses (La Porta et al., 2015). In addition, this study also demonstrated that acute pharmacological blockade of CB₁ or CB₂ receptors ameliorated both the nociceptive and affective dimension of pain in the model (La Porta et al., 2015). Taken together, the data suggests that cortico-limbic endocannabinoid signaling is a key modulator of different osteoarthritis pain manifestations.

Only one study to date has investigated the role of CB₂ receptors in the interaction between neuropathic pain and affective behaviour. The chronic constriction injury model of neuropathic pain results in mechanical hypersensitivity and depressive-like behaviour (immobility in the FST) in mice (Hu et al., 2009). Both depressive-like behavior and mechanical hyperalgesia following constriction injury were significantly attenuated by systemic administration of the CB₂ receptor agonist, GW405833, effects which were not observed in sham-operated animals. Furthermore, such behavioural effects were superior to administration of a tricyclic anti-depressant, first line treatment for depression and chronic pain (Hu et al., 2009). The precise mechanism by which CB₂ receptor agonism may elicit analgesic and antidepressant-like effects was not evaluated, however given the well recognized role for inflammatory processes in mediating chronic pain, it is possible that CB₂ receptor activation attenuates such responses, preventing the development of central sensitization and mechanical allodynia and the associated increase in neuronal input to affective supraspinal sites. Further studies are required to evaluate this theory.
Intraperitoneal administration of a dilute concentration of lactic or acetic acid has been shown to induce abdominal stretching/writhing (visceral pain behaviour), an effect associated with a reduction in feeding and hedonic behaviours (pain-depressed behaviour). Evaluation of the role of the endocannabinoid system in mediating pain-stimulated and pain-depressed/suppressed responses in this model has revealed that genetic antagonism of CB₁ receptors enhances acid-induced writhing (visceral pain stimulated behaviour) and augments acid-induced reductions in feeding (Miller et al., 2011). In contrast, CB₁ receptor agonism using Δ⁹-THC and CP55940, dose-dependently inhibits acid-stimulated stretching while eliciting either no effect (Miller et al., 2012) or exacerbating (Kwilasz and Negus, 2012) acid-induced depression of feeding and scheduled controlled/intracranial self-stimulation in rats. Thus, under these conditions, potent synthetic cannabinoids such as Δ⁹-THC and CP55940 may elicit differential effects on visceral pain (attenuated) and pain-related depressive (exacerbated) behaviour. However, the FAAH inhibitor URB597 exhibits a dose-related and CB₁ receptor-mediated decrease in acid-stimulated stretching and suppression of feeding (Miller et al., 2012, Kwilasz et al., 2014). Furthermore, URB597 also elicits a delayed but significant attenuation of acid-induced suppression of ICSS, an effect occurring independent of CB₁ or CB₂ mediation (Kwilasz et al., 2014). Taken together, these data indicate a role for CB₁ receptors in mediating acid-induced visceral pain, with a possible common and/or alternative endocannabinoid mechanism mediating the associated anhedonic/depressive-like behaviour.
Overall, despite the limited data, evidence suggests a prominent role for the endocannabinoid system in the interaction between depression and pain, although whether the effects are mediated by the same or parallel neuroanatomical pathways remains to be determined.

Mechanisms by which the endocannabinoid system may modulate depression and pain interactions

While the exact mechanism(s) by which the endocannabinoid system may influence emotional and nociceptive processing remains undetermined, this system is known to elicit potent modulatory effects on neurotransmission, neuroendocrine and inflammatory processes, all known to be altered in both depression and chronic pain. Presented here is an overview of how the endocannabinoid system may modulate affective and pain processing via interacting with these systems.

Neurotransmitters

GABA and Glutamate

GABA- and glutamatergic neurotransmission are well recognised as important mediators in affect and nociceptive processing, and alterations in these systems have been demonstrated in both depression and chronic pain [for reviews see (Kendell et al., 2005, Rea et al., 2007)]. There are an increasing number of studies demonstrating that glutamatergic and GABAergic signaling
play an important role in mediating the depressive symptoms associated with chronic pain. For example, ketamine, an NMDA receptor antagonist, attenuated depressive-like behaviour following spared nerve injury, without altering injury-induced hypersensitivity (Wang et al., 2011), while AMPAkines (which augment AMPA receptor function) have been shown to attenuate both pain hypersensitivity and associated depressive-like behaviour in models of chronic inflammatory and neuropathic pain (Le et al., 2014). Furthermore, facilitation of glutamatergic transmission through AMPA receptors in the nucleus accumbens, a brain region involved in reward, resulted in attenuation of depression-like behaviour in an animal model of neuropathic pain (Goffer et al., 2013). Despite a recognized role for the GABAergic system in emotional and pain processes respectively, to our knowledge few studies have investigated the role of this system in affect-pain interactions to date. One such study has reported that GABA_A receptor activation in the RVM blocked formalin-induced hyperalgesia produced upon removal from an aversive elevated plus maze (stressor) (Cornelio et al., 2012). In addition, Quintero and colleagues have also identified that repeated forced swim stress-induced inflammatory hyperalgesia is initiated by decreased and delayed GABA release and GABA_A receptor activation; and maintained by increased glutamate release and NMDA activation at the spinal cord level (Suarez-Roca et al., 2008, Quintero et al., 2011).

CB_1 receptors are expressed at a particularly high density on presynaptic nerve terminals of GABAergic and glutamatergic synapses in cortical and limbic areas of the brain associated with stress, emotional response and pain modulation (Herkenham et al., 1990, Katona et al., 2001, Domenici et al., 2006, Wittmann et al., 2007). Endocannabinoids have been shown to exert...
behavioural effects via CB₁ receptor agonism and resultant presynaptic inhibition of GABAergic and glutamatergic transmission (Meng et al., 1998, Millan, 2002) in supraspinal and spinal regions (Ulugol, 2014). In addition, glutamatergic neurotransmission is known to enhance endocannabinoid formation and subsequent CB₁ receptor activation (Galante and Diana, 2004). Thus, complex bidirectional interaction exists between the endocannabinoid-glutamatergic-GABAergic systems. Several studies have demonstrated that CB₁ modulation of GABAergic signaling is important in nociceptive (Manning et al., 2003, Naderi et al., 2005, Pernia-Andrade et al., 2009) and emotional (Haller et al., 2007, Naderi et al., 2008, Rossi et al., 2010, Rey et al., 2012, Reich et al., 2013) processing. Although it would appear intuitive, it is unknown if endocannabinoid modulation of GABA and/or glutamate plays a role in depression-pain interactions. However, we have demonstrated that CB₁ receptors play an important role in mediating analgesia in response to acute stress (contextual fear conditioning) (Finn et al., 2004, Butler et al., 2008) and demonstrated an important role for GABAergic and glutamatergic signaling in the basolateral amygdala in mediating this effect (Rea et al., 2014). Thus, endocannabinoid modulation of GABAergic and glutamatergic tone can mediate stress-pain interactions, and therefore may play a prominent role in co-existent psychiatric and pain disorders.

Monoamines

In addition to the treatment of depression, monoamine-based antidepressants are now regarded as first-line therapy for fibromyalgia and neuropathic pain. The monoaminergic
system has been proposed as a common neural substrate for depression-pain associations. In accordance, a number of preclinical studies have demonstrated beneficial effects of modulating monoaminergic tone on depression-associated with chronic pain and vice versa. For example, recent studies have demonstrated that chronic administration of 3-(4-fluorophenylselenyl)-2,5-diphenylselenophene, which increases serotonergic neurotransmission by inhibiting presynaptic serotonin transport, attenuates mechanical allodynia and depressive-like behaviour in an animal model of neuropathic pain (Gai et al., 2014). Furthermore, chronic imipramine treatment reduces depressive-like behaviour but not hyperalgesia in a rat model of neuropathic pain, effects mediated by increasing the neurotrophin BDNF (Yasuda et al., 2014). In addition, direct administration of a BDNF inducer (4-MC) into the brain attenuated thermal hyperalgesia and depressive-like behaviour following nerve injury (Fukuhara et al., 2012, Ishikawa et al., 2014). The spinal serotonergic system has been shown to participate in the thermal hyperalgesia response in an animal model of depression, the olfactory bulbectomised rat (Rodriguez-Gaztelumendi et al., 2014). We have shown recently chronic amitriptyline treatment elicits an antidepressant-like effect and potently attenuates nerve-injury induced mechanical and cold allodynia in the bulbectomy model of depression (Burke et al., 2015). Thus, enhancing monoaminergic tone, and consequently central BDNF expression, modulates pain-depression behaviours.

Several lines of evidence have demonstrated that chronic antidepressant administration modulates endocannabinoid signaling (Hill et al., 2006, Hill et al., 2008b, Mato et al., 2010, Smaga et al., 2014), which underlie at least in part the mechanism by which these pharmacological agents modulate affective and nociceptive processes. Furthermore,
endocannabinoid-induced modulation of serotonergic, noradrenergic and dopaminergic transmission has been thoroughly investigated in several excellent reviews (Haj-Dahmane and Shen, 2011, Melis and Pistics, 2012, Kirilly et al., 2013). CB₁ receptors are highly expressed on serotonergic, noradrenergic and dopaminergic neurons, and play an important role in the regulation of monoaminergic activity. Local and systemic administration of exogenous CB₁ receptor agonists significantly increases serotonin (Bambico et al., 2007), noradrenaline (Jentsch et al., 1997, Oropeza et al., 2005, Page et al., 2007, Page et al., 2008) and dopamine (Cheer et al., 2004, Solinas et al., 2006) levels in discrete brain regions which mediate emotional and nociceptive processing. Increasing endogenous levels of AEA and 2-AG through systemic administration of FAAH or MAGL inhibitors respectively, has also been shown to enhance serotonergic and dopaminergic activity (Gobbi et al., 2005, Seif et al., 2011) and FAAH inhibition in the PFC increases serotonergic neuronal firing in the dorsal raphe nucleus (McLaughlin et al., 2012). In addition, endocannabinoids can inhibit the activity of monoamine oxidase (MAO) (Fisar, 2010), the enzyme responsible for the metabolism of monoamines, which may also contribute to the increasing synaptic availability of the monoamines. Endocannabinoid activation of the CB₁ receptor has been shown to control the function and expression of specific serotonin receptors namely 5-HT₁A, 5-HT₂A, and 5-HT₂C, in discrete regions of the CNS (Aso et al., 2009, Moranta et al., 2009, Zavitsanou et al., 2010, Franklin et al., 2013). Furthermore, spinal noradrenergic depletion is associated with compromised analgesic effects of CB₁ agonism on formalin-evoked inflammatory pain (Gutierrez et al., 2003), while CB₁ receptor activation results in attenuation of enhanced serotonergic firing in the dorsal raphe following nerve injury, an effects accompanied by anti-nociception (Palazzo et al., 2006). Taken together, these data
demonstrate that cannabinoids modulate nociceptive tone, in part through modulation of noradrenergic and serotonergic systems. Thus, endocannabinoid-induced enhancement of monoaminergic tone may modulate emotional and nociceptive processes and thus the interaction between depression and pain.

Opioids

Numerous studies have characterized the causative role and therapeutic potential of opioidergic signaling in affective and nociceptive processing [for review see (Maletic and Raison, 2009, Lutz and Kieffer, 2013)]. Furthermore, alterations in opioid signaling in key brain regions such as the amygdala has been reported in a chronic pain model that exhibits co-morbid anxiety-related behaviour (Narita et al., 2006). Acute morphine administration attenuated both mechanical allodynia and anxiety-related behaviour in the complete Freund’s adjuvant model of inflammatory pain (Parent et al., 2012). A very substantial body of evidence is now available to suggest that the endocannabinoid and opioidergic systems interact in therapeutically beneficial ways. CB₁ and µ-opioid receptors are highly co-localized on neurons in areas of the brain associated with emotional and pain processing such as the caudate putamen, periaqueductal gray and spinal cord (Rodriguez et al., 2001, Salio et al., 2001, Wilson-Poe et al., 2012). Co-administration of opioids and cannabinoids results in synergistic and bi-directional antinociceptive effects in several animal models (Cichewicz et al., 1999, Cichewicz and McCarthy, 2003, Tham et al., 2005, Roberts et al., 2006, Smith et al., 2007, Wilson et al.,
In addition, increasing endocannabinoid tone has been shown to attenuate withdrawal symptoms in morphine-dependent animals (Smith et al., 2007, Wilson et al., 2008, Shahidi and Hasanein, 2011). Interestingly, cross tolerance also exists between these neuromodulatory systems. For example, decreases in the analgesic effects of Δ⁹-THC have been identified in morphine-tolerant animals and vice versa (Thorat and Bhargava, 1994). Furthermore, inhibition of opioid signalling (via κ-opioid receptors) attenuates the antidepressant-like effect of rimonabant (CB₁ receptor antagonist/inverse agonist) in the FST (Lockie et al., 2011) and conversely the antidepressant-like effects of κ-opioid receptor antagonism is attenuated by the CB₁ receptor antagonist/inverse agonist AM251 (Braida et al., 2009). Although further studies are required, collectively these findings suggest a regulatory role of the endocannabinoid system on opioid transmission, which may underlie the maintenance of co-existent depression-pain processes.

Neuroendocrine activity – Hypothalamic-pituitary adrenal (HPA) axis

Dysregulation of the HPA axis has been implicated in the pathophysiology of both depression and pain disorders for decades [for review see (Bomholt et al., 2004, Vierck, 2006, Maric and Adzic, 2013, Belvederi Murri et al., 2014)] and thus has also been proposed as a possible mediator in the depression-pain dyad [for review see (Blackburn-Munro, 2004)]. Several clinical studies have identified altered HPA axis activity in patients exhibiting symptoms of both depression and pain. For example, a cross-sectional study of patients with advanced breast cancer revealed increasing plasma cortisol levels which positively correlated with symptoms of
depression and pain (Thornton et al., 2010). However in patients with fibromyalgia, enhanced cortisol release and dysregulation of HPA function associates with depressive, but not pain, symptoms, implying possible diverging mechanisms for both affective and nociceptive processing in this condition (Wingenfeld et al., 2010). Preclinical evidence of this reciprocity is also evident in an experimental model of gastritis which is associated with gastrointestinal inflammation, pain, anxiety- and depressive-like behaviours in rats (Luo et al., 2013). These behavioural alterations are accompanied by dysregulation of the HPA axis, characterized by increased expression of corticotrophin-releasing factor (CRF) mRNA and reduced expression of glucocorticoid receptor in the hypothalamus and increased plasma levels of corticosterone (Luo et al., 2013). Increased expression of CRF has also been reported in the paraventricular nucleus of the hypothalamus and dorsal raphe nucleus of WKY rats and animals pre-exposed to neonatal maternal separation respectively (Bravo et al., 2011), two models of depression and associated hyperalgesia. Pharmacological blockade of CRF1, following intraamygdalar infusion of the CRF1 antagonist CP376395, inhibits hyperalgesic responding to colorectal distention in WKY rats, an effect not observed following glucocorticoid receptor or mineralocorticoid receptor antagonism (Johnson et al., 2012). Furthermore, the hyperalgesic visceromotor response to phasic colorectal distension following repeated water avoidance stress has been shown to be attenuated by CRF1 antagonism (Larauche et al., 2008). In addition, systemic or intraamygdalar injection of the CRF1 receptor antagonist NBI27914, blocks anxiety-related and nocifensive behavior in a rat model of arthritis (Ji et al., 2007). Thus, the CRF-HPA stress axis has been shown to play a key role in affective and/or nociceptive processing.
Several lines of evidence now support an important role for the endocannabinoid system as a modulator of HPA axis function and vice versa [for review see (Finn, 2010, Riebe and Wotjak, 2011, Hill and Tasker, 2012)]. The majority of evidence collated to date would suggest that basal HPA activity is under tonic inhibitory control by CB₁ receptors. This has been shown in numerous reports where genetic deletion or pharmacological blockade of the CB₁ receptor in vivo enhances expression of CRF and reduces glucocorticoid receptor expression in the hypothalamus and pituitary gland respectively (Cota et al., 2007), and increases circulating levels of corticosterone and adrenocorticotropic hormone (Barna et al., 2004, Cota et al., 2007, Steiner et al., 2008). In addition, stress-induced increases in CRF expression in the paraventricular nucleus of the hypothalamus and the basolateral amygdala, as well as corticosterone secretion, are effectively blocked by pharmacological enhancement of endocannabinoid levels (Patel et al., 2004, Hill et al., 2009a, Bedse et al., 2014, Roberts et al., 2014), thus implying a role for endocannabinoid-CB₁ receptor signaling in diminished hyperactivity of the HPA axis. Furthermore, recent evidence has shown that CRF1 activation in the amygdala induces FAAH and reduces anandamide levels, an effect associated with anxiety-related behaviour(Gray et al., 2015). Given the important role of the amygdala in affective modulation of pain, it is possible that CRF mediated FAAH activation in this region may also modulate nociceptive possessing and associated emotional alterations. While there have been a few studies examining endocannabinoid-HPA axis effects in mediating the effects of the stress response (Hill et al., 2011, Roberts et al., 2014), to date no study has investigated if cannabinoid mediated alterations of the HPA axis underlies alterations in nociceptive and/or affective behavior observed in depression-pain comorbidity.
Neuro-inflammatory processes

Increasing evidence indicates a potent and prominent interaction between inflammation, depression and pain [for review see (Walker et al., 2014)]. For instance, there is a high prevalence of depression among patient with inflammatory pain disorders such as fibromyalgia, arthritis and irritable bowel disorder (Kappelman et al., 2014, Scheidt et al., 2014, Lin et al., 2015). In addition, patients receiving cytokine therapy for specific cancers and malignancies also develop depressive and/or painful symptomatology (Capuron and Ravaud, 1999, Capuron et al., 2001, Nogueira et al., 2012). Furthermore, increases in serum and cerebrospinal fluid levels of pro-inflammatory cytokines have been widely reported in both depression (Tuglu et al., 2003, Knuth et al., 2014, Bay-Richter et al., 2015) and pain conditions (Koch et al., 2007, Ludwig et al., 2008, Kadetoff et al., 2012). Inflammatory processes have also been shown to underlie the interaction between depression and pain in several animal models. For instance, increased expression of pro-inflammatory cytokines, concomitant with depressive-like behavior has been identified in animal models of inflammatory (Kim et al., 2012, Maciel et al., 2013) and neuropathic (Norman et al., 2010, Burke et al., 2014, Dellarole et al., 2014, Zhou et al., 2015) pain. The innate inflammatory cascade has been shown to increase glutamate neurotransmission, central sensitization and excitotoxicity, reduce BDNF and neurogenesis and activate neurodegenerative cascades, events observed in both depression and pain conditions [for review (Dantzer et al., 2011, Maes et al., 2011, Song and Wang, 2011, Zunszain et al., 2013, Walker et al., 2014)].
Over the past decade, a wealth of data has demonstrated an important role for the endocannabinoid system in modulating innate immune function and inflammatory processes [for review, see (Alhouayek and Muccioli, 2012, Zajkowska et al., 2014, Henry et al., 2015)]. Interactions between the endocannabinoid system and inflammatory mediators has been shown to influence synaptic transmission and neuronal function (Rossi et al., 2014). Spinal cord injury has been shown to be associated with increased co-expression of CB₁ receptors with chemokines CCL2, CCL3, and/or CCR2 in the hippocampus, thalamus and periaqueductal grey; areas associated with affective pain responding (Knerlich-Lukoschus et al., 2011) and studies have also demonstrated that CB₁-chemokine interactions in the periaqueductal grey can modulate nociceptive responding (Benamar et al., 2008). Pharmacological enhancement of endocannabinoid tone also modulates inflammatory effects in vivo. For example, the FAAH inhibitor URB597 and the MAGL inhibitor JZL184 attenuates inflammation induced astrocyte and microglial activation (Katz et al., 2015) and neuroinflammatory processes (Kerr et al., 2012, Kerr et al., 2013, Henry et al., 2014). Furthermore, Zoppi and colleagues have demonstrated that pharmacological activation of CB₁ or CB₂ receptors attenuates, while genetic deletion of these receptors augments, repeated stress-induced pro-inflammatory responses in the frontal cortex (Zoppi et al., 2011, Zoppi et al., 2014). In addition, several studies have demonstrated that the analgesic effects of cannabinoids in chronic inflammatory and neuropathic pain are, at least, partially mediated by modulation of inflammatory responses (Burgos et al., 2012, Wilkerson et al., 2012, Burston et al., 2013, Lu et al., 2015). While there are no studies to date investigating if cannabinoids modulation of inflammatory processes underlies co-existent depressive-and pain behaviour, the above findings suggest a potential role for cannabinoid-
mediated immunomodulation in the pathogenesis and treatment of co-occurring depression and pain.

Conclusion and future directions

This review has provided an overview of the clinical and preclinical evidence supporting an association between depression and pain and *vice versa*. While a number of neural substrates have been proposed to underlie this association, this review provides a synthesis of the data supporting the contention that co-morbid depression and pain may be mediated, at least in part, via dysregulation of the endocannabinoid system. Targeting the endocannabinoid system for therapeutic benefit has been an ever expanding area of research with over 150 clinical trials over the past decade evaluating the effects of cannabinoids in pain and psychiatric disorders [International Clinical Trials Registry Platform]. While no study to date has specifically evaluated the effects of cannabinoids on depression-pain comorbidity, several have examined effects on mood and quality of life in patients receiving cannabinoid-based pharmaceuticals for analgesic purposes (Maida et al., 2008, Skrabek et al., 2008, Weber et al., 2009, Cameron et al., 2014), providing a basis for further study in this area. However, many of these cannabinoids are potent CB$_1$ receptor agonists (Δ^9-THC derivatives), an effect which may limit their usefulness in psychiatric conditions due to the associated adverse CNS effects. Cannabidiol has been shown to limit the adverse CNS effects associated with CB$_1$ receptor agonists and Sativex (1:1 Δ^9-THC:cannabidiol) has been shown to reduce chronic pain and improve mood (Selvarajah et al., 2010, Vermersch, 2011). Thus, combination therapy may be a beneficial treatment strategy for
depression-pain comorbidity. As highlighted throughout this review, modulation of endogenous cannabinoid tone provides an alternative to direct CB\textsubscript{1} receptor agonism and although still in the early stages of clinical investigation, FAAH inhibitors such as PF-04457845 have demonstrated safety and tolerability in patients, although no effect on pain associated with osteoarthritis was reported (Huggins et al., 2012). However, this inhibitor is currently under clinical investigation for treatment of cannabis withdrawal, PTSD and Tourette syndrome [International Clinical Trials Registry Platform], the results from which will provide important clinical data on the effect of FAAH inhibition on affective responding. Further clinical studies will provide with greater insight into alterations and the role of the endocannabinoid system in the association between depression and pain.

Preclinical models that encapsulate the clinical scenario are particularly useful in gaining greater understanding on the neurobiology underlying depression-pain interactions. This review has presented the evidence to date demonstrating alterations in various components of the endocannabinoid system in models of depression-pain comorbidity, and highlighted a particular role for AEA and CB\textsubscript{1} receptors in mediating and modulating the affective and nociceptive processes in these models. However, research in this area is still in its infancy and this review highlights the gaps in the knowledge and outstanding questions that remain to be addressed. For example, there have been limited data examining the role of other components of the endocannabinoid system on depression-pain interactions (2-AG, CB\textsubscript{2}, PPAR etc), whether the endocannabinoid modulation of affect and nociception occur through the same or parallel
pathways, and the mechanism by which the endocannabinoid system may mediate its effects (neurotransmitters, HPA axis, inflammation or a combination). Furthermore, it is unknown if the role of the endocannabinoid system in chronic pain associated with depression is the same or different to altered affective processing associated with chronic pain conditions. Such studies are essential if we are to move towards a more comprehensive understanding of the neurobiology underlying the association between these pain and depression and fully explore the potential clinical efficacy of targeting the endocannabinoid system for resolution of these co-morbid conditions.
Funding and Acknowledgements

This work was supported by funding received from Molecular Medicine Ireland Clinical & Translational Research Scholars Programme.

Conflict of Interest

None

References

Neuropathic pain-induced depressive-like behavior and hippocampal neurogenesis and plasticity
are dependent on TNFR1 signaling. Brain Behav Immun 41:65-81.

Devane WA, Dysarz FA, 3rd, Johnson MR, Melvin LS, Howlett AC (1988) Determination and

Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger
A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the

Neural Plast 2015:504691.

Domenici MR, Azad SC, Marsicano G, Schierloh A, Wotjak CT, Dodt HU, Ziegglansberger W, Lutz B,
Rammes G (2006) Cannabinoid receptor type 1 located on presynaptic terminals of principal
neurons in the forebrain controls glutamatergic synaptic transmission. J Neurosci 26:5794-5799.

Arolt V, Deckert J, Suslow T, Baune BT (2008) Cannabinoid receptor 1 (CNR1) gene: impact on
antidepressant treatment response and emotion processing in major depression. Eur
Neuropsychopharmacol 18:751-759.

Emery PC, Wilson KG, Kowal J (2014) Major depressive disorder and sleep disturbance in patients with

Emptage NP, Sturm R, Robinson RL (2005) Depression and comorbid pain as predictors of disability,
employment, insurance status, and health care costs. Psychiatr Serv 56:468-474.

Maes M, Leonard BE, Myint AM, Kubera M, Verkerk R (2011) The new '5-HT' hypothesis of depression: cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry 35:702-721.

the behavioral despair induced by stress in rats and modulates the HPA-axis. Pharmacol Res 87:151-159.

