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Abstract

This thesis is concerned with building certain classes of sparse and tight surface graphs
via suitable sets of inductive moves from specified sets of irreducible surface graphs. In
particular, we derive topological inductive constructions for (2,2)-tight surface graphs in
the case of the sphere, the cylinder and the torus. We present theorems and results that
determine the number of the irreducible (2,2)-tight sphere, cylinder and torus graphs.
We also found all irreducible (2,2)-tight torus graphs using two independent approaches.
One of these approaches is based on calculation by hand. We employed a mixture of
brute force methods and theoretical insight into the structure of such graphs. The other
approach is a computer assisted search. Consequently, we found that there are exactly 116
irreducible (2,2)-tight torus graphs. We also organise and present all irreducible (2,2)-
tight torus graphs. This thesis also includes a geometric application of configurations to
circular arcs, in the spirit of the Keobe-Andreev-Thurston circle packing theorem. We
used the inductive construction of (2,2)-tight torus graphs to show that every (2,2) -tight
torus graph is the contact graph of a collection of circular arcs in the flat torus.
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Chapter 1

Introduction

1.1 Overview

This thesis studies inductive constructions for certain kinds of sparse graphs that are em-
bedded in surfaces without edge crossing. In general, to build a class of graphs with
particular properties, one needs to start from certain ’small’ graphs in that class which
they were not built from other graphs in the class. Then there is a need to find specific
rules to expand the small graphs to build all other graphs in the class. Such rules are
usually called inductive moves. The choice of using inductive moves is subject to some
restrictions. One restriction is that such inductive moves have to preserve the properties
that the class of graphs possesses. In this thesis, we investigate inductive constructions
of sparse surface graphs. In particular, we find inductive constructions of certain sparse
graphs that are embedded in surfaces of low genus. The great challenge that we faced
in this thesis is to find the small graphs, we call them here irreducible surface graphs
of certain kind of sparsity. However, we found in this thesis inductive constructions for
sparse surface graphs with low genus. This includes finding all the irreducible graphs in
these classes of surface graphs and also choosing suitable inductive moves. The inductive
constructions that we initiated are used to investigate a geometric application.

1



CHAPTER 1. INTRODUCTION

1.2 The outline of the thesis

This thesis is concerned with studying inductive constructions of surface graphs. We in
particular, focus on certain kinds of sparse graphs that are embedded in surfaces of low
genus. Also, a geometric application of the inductive constructions that we found have
been included in this thesis. In the following, we briefly present an outline of the layout
of this thesis.

Figure 1.1: A surface
graph.

Chapter 2: Surface graphs This chapter includes some fun-
damental concepts of surface graph theory. Among those
concepts, we provide a detailed definition of the embedding
of a graph in a surface. We also discuss the rotation system
in detail. This chapter consists of the following sections.
Section 1 is devoted to recalling some basic concepts of
graph theory.
Section 2 reviews some fundamental concepts of surface graphs. We include a detailed
definition of surface graphs and the concept of isomorphic surface graphs.
Section 3 investigates the concept of rotation systems of surface graphs.
Section 4 includes a new form of the Euler’s Formula by including counting on the spar-
sity of surface graphs.
Contribution This chapter provides a modified form of Euler’s Formula.
Chapter 3: Sparsity of graphs and surface graphs

Figure 1.2: The shaded
region is the surface sub-
graph intG(F) .

The purpose of this chapter is to investigate the sparsity and
tightness of graphs and surface graphs. We set a fundamen-
tal background for the rest of the thesis by introducing some
definitions and lemmas which they are used later on in this
thesis. For example, we introduce a significant theorem re-
lated to the sparsity of surface subgraphs of sparse surface
graphs. Also, we survey various results on sparse and tight
graphs. We also survey the most known facts and results
related to sparse and tight graphs and their applications in
various areas. This chapter consists of five sections.
Section 1 presents a brief survey on the sparsity and also
tightness of graphs. We also include some basic results that emerge from the sparsity of

2



1.2. THE OUTLINE OF THE THESIS

graphs.
Section 2 states and proves a significant theorem which contributes in finding the crucial
results of this thesis. We call this theorem the hole filling theorem.
Section 3 serves as a skeleton to the next section. It sets the definitions of three con-
traction moves on certain kinds of closed walks in sparse graphs. Naturally, some results
related to the three contraction moves have been included in this section.
Section 4 investigates contraction moves which are introduced in the previous section.
However, such contraction moves defined on surface graphs not on ’abstract’ graphs.
Section 5 studies the three topological inductive contraction moves in the previous sec-
tion by using rotation systems.
Contribution In this chapter, we state and prove a fundamental theorem, we call it the
hole filling lemma. This theorem is used many times in the rest of the thesis to obtain
the core results of this thesis. Also, in this chapter, we study and investigate three types
of contraction moves on graphs and surface graphs. Following to that, we redefine the
topological versions of the three contraction moves using the rotation system.
Chapter 4: Finiteness Theorems This chapter includes the key results of this
thesis. These results are showing that the numbers of irreducible (2,2)-tight
surface graphs of some low genus are finite. A conjecture has been intro-
duced which concerns the existence of finite number of irreducible (2,2)-tight
surface graphs for any surface. We bound the number of vertices of the ir-
reducible (2,2)-tight torus graphs, and we get rich combinatorial information
of such irreducible graphs. This chapter consists of the following sections.

Figure 1.3: An essential
blocker that is bold.

Section 1 provides a brief literature review of studies and re-
sults on some inductive constructions. In this section, we re-
view some known results on inductive constructions of some
types of tight abstract graphs and surface graphs including sur-
face triangulations.
Section 2 gives an inductive construction for the class of (2,2)-
tight sphere graphs.
Section 3 This section recalls some types of curves in a surface.
More attention has been given to the curves in the torus.
Section 4 is devoted to study the structure of irreducible (2,2)-tight torus graphs. We
prove some structural results which will be used in the next two sections.

3



CHAPTER 1. INTRODUCTION

Section 5 investigates the structures of the blockers of quadrilateral faces in irreducible
(2,2)-tight torus graphs.
Section 6 concerns with finding an inductive construction for the class of (2,2)-tight
cylindrical graphs.
Section 7 contains the key results of this thesis. The finiteness theorem of an existing
finite number of irreducible (2,2)-tight torus graphs is stated and proved in this section.
Section 8 exhibits a variety of examples which cover most of the concepts that have been
introduced and investigated in the previous sections of this chapter.
Contribution We proved for small genus that there are a finite number of irreducible
(2,2)-tight surface graphs. This chapter enables us to find all the irreducible (2,2)-tight
torus graphs in the next chapter by bounding the number of vertices of such irreducible
torus graphs and provides rich combinatorial information about the irreducible (2,2)-tight
torus graphs. We include a conjecture for finiteness of irreducible (2,2)-tight surface
graphs for surfaces of any genus.
Chapter 5: Irreducible (2,2)-tight torus graphs This chapter presents all irreducible
(2,2)-tight T-graphs. We explain in detail how we found all the irreducible (2,2)-tight
torus graphs by using two independent approaches. One approach is computing by hand
all the irreducible (2,2)-tight torus graphs. The other approach is a computer assisted
search. The number of all irreducible (2,2)-tight torus graphs that we found is 116. This
chapter compromises the following sections.
Section 1 This section presents some lemmas which can help in embedding (2,2)-tight
graphs in the torus.

Figure 1.4: An irreducible
(2,2)-tight T-graph.

Section 2 exhibits how we found all irreducible (2,2)-tight
torus graphs. Detailed explanations have been given in this
section of the two methods that we used to find all irreducible
(2,2)-tight torus graphs. Also, we initiated a way to present
all the 116 irreducible (2,2)-tight torus graphs.
Section 3 presents all irreducible (2,2)-tight T-graphs with
less than four vertices.
Section 4 declares all irreducible (2,2)-tight torus graphs
with four vertices.

Section 5 presents all irreducible (2,2)-tight torus graphs with five vertices.
Section 6 explains how we found all irreducible (2,2)-tight torus graphs with six and

4



1.2. THE OUTLINE OF THE THESIS

seven vertices using a computer assisted search.
Section 7 presents irreducible (2,2)-tight torus graphs with 8 vertices.
Contribution We found all nonisomorphic irreducible (2,2)-tight torus graphs. The total
number of them is 116. We found them using two methods. A hand calculating method
we used to find all irreducible (2,2)-tight torus graphs. This has been done using some
technique and lemmas that helped us to embed (2,2)-tight graphs in the torus. We found
all the irreducible (2,2)-tight torus graphs with six and seven vertices by hand. However,
in this chapter we also describe how we used a computer assisted search to find such irre-
ducible (2,2)-tight torus graphs.
Chapter 6: Contacts of circular arcs representation In this chapter, we describe an
application to the study of contact graphs. We benefit from the inductive constructions of
the classes of (2,2)-tight surface graphs with low genus. In this chapter, we investigate
the recognition problem for contact graphs. Specifically, this chapter is designed to find
necessary and/or sufficient conditions for a surface graph to be the contact graph of a col-
lection of curves. Consequently, we showed that every (2,2)-tight torus graph admits a
contacts of circular arcs representation. This chapter comprises the following sections.
Section 1 surveys the intersection graphs theory and related topics in the literature.

Figure 1.5: A contacts
of circular arcs representa-
tion of the torus graph in
Figure 1.4.

Section 2 surveys the topic of contact graphs in some details.
Section 3 investigates contact graphs of curves in surfaces in
more details. We define the embedding of contact graphs of
curves in surfaces.
Section 4 is devoted to investigate the contacts of circular
arcs representation on the flat surfaces. This includes inves-
tigating the contacts of circular arcs representability of the
three topological inductive moves that are used to build some
classes of (2,2)-tight surface graphs in this thesis.
Section 5 investigates representing (2,2)-tight torus graphs
as contacts of circular arcs in the flat torus. We prove that
every (2,2)-tight torus graph admits a contact of circular arcs representation on the flat
torus.
Contribution In this chapter, we show that (2,2)-tight torus graphs are the contact graphs
of a collection of circular arcs in the corresponding flat surfaces.
Appendices: We provide at the end of this thesis a few appendices. These appendices

5



CHAPTER 1. INTRODUCTION

serve as complementary catalogues of various groups of figures and diagrams to their
corresponding relevant sections and chapters throughout this thesis.
Publications and Collaborations: So far there is one publication associated to this thesis
[19] which has appeared on arxiv.org and has been submitted to a journal. This paper is
based in part on the material from Chapter 4 and is written in collaboration with Stephen
Power ( Lancaster University ), Derek Kitson ( Lancaster University ) and James Cruick-
shank as part of a larger project on the sparsity and rigidity properties of surface graphs.
Also, we published the SageMath code that we used for the computer assisted search,
[20].
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Chapter 2

Surface Graphs

Surface graph theory concerns drawing graphs on surfaces without edge crossing. This
theory has a long period of developments date back to the work of Leonhard Euler. During
its relatively old age, surface graph theory possessed various names such as the theory of
maps, [53], [63], maps on surfaces, [53], combinatorial maps [98] and the most common
name is the topological graph theory, [6], [43].

In this chapter, we survey some fundamental concepts of the theory of surface graphs.
We also present a detailed definition of surface graphs. This chapter also discusses ro-
tation systems of surface graphs. Such rotation systems will be used to encode surface
graphs by a sequence of permutations.

2.1 Graph theory

In the following we define a directed multigraph which is also known as a quiver. More
background on graph theory can be found in [23] and [11].

Definition 2.1.1. [23] A (directed) multigraph Γ is a quadruple (V,E,s, t) where V and

E are sets and s : E −→V and t : E −→V are functions.

We refer to elements of V ( V (Γ)) as vertices and E (E(Γ)) as edges. The functions
s and t can be thought as specifying the source and the target respectively of each edge.
See Figure 2.1 which depicts some small multigraphs.

In the following we give an example of a multigraph by declaring the functions s and
t.

7



CHAPTER 2. SURFACE GRAPHS

(a) (b) (c)

Figure 2.1: (a) A directed edge. (b) A self-loop ( or loop ). (c) A pair of parallel edges
(multiple edges).

Example 2.1.2. Let Γ=(V,E,s,d) be a multigraph where V = {u,v,w}, E = {e, f ,g,h, i},
s(e) = u,s( f ) = u,s(g) = v,s(h) = w,s(i) = v and t(e) = v, t( f ) = u, t(g) = u, t(h) =

u, t(i) = w. The graph Γ can be represented as in Figure 2.2.

ef

g

h i

u v

w

Figure 2.2: An example of a multigraph which is defined by the terms of source and
target.

Definition 2.1.3. A walk is a sequence v1,e1,v2,e2, . . . ,ek,vk+1 where i = 1,2, . . . ,k and

either s(ei) = vi and t(ei) = vi+1 or s(ei) = vi+1 and t(ei) = vi . The walk is simple if no

vertex in that walk is repeated. The walk is closed if vk+1 = v1 and is a cycle if vk+1 = v1

is the only repeated vertex.

Figure 2.3 provides various kinds of walks in a multigraph, say Γ. We emphasise
that the previous definition of a walk means that a walk is not required to respect the
orientation of the edge. Notice that throughout this thesis, whenever we deal with a graph,
then that graph is a multigraph which is defined as in Definition 2.1.1.

Definition 2.1.4. Let Γ = (V,E,s, t) be a graph. A half edge is a pair (e,r) where e ∈ E

and r ∈ {s, t}.
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2.2. SURFACE GRAPHS

e1

e4
v1

e2

e6 e5

e7 e8

e3

v2

v5

v4

v3

Γ

Figure 2.3: In the graph Γ; v1,e1,v2,e8,v4 is a simple walk. v1,e1,v2,e2,v3,e3,v2,e4,v1 is
a nonsimple closed walk, v2 is a repeated vertex. v1,e4,v2,e5,v5,e6,v1 is a simple closed
walk.

Example 2.1.5. Let Γ be a graph defined as in Figure 2.4. We use numbers to represent

each half edge in Γ. Hence H = {1,2,3,4,5,6,7,8} is a set of half edges of Γ and {1,3}
respectively {2,4}, {6,7} and {5,8} are the half edges of the edge e respectively f , g and

h.

u
v

w
1

2

3

4 5

6

8

7e

f

g

h

Figure 2.4: A multigraph Γ with a labelling of all of its half edges.

2.2 Surface graphs

In this section we define surface graphs and state some of their properties.

2.2.1 Surfaces

In the following, we briefly review some concepts of surface theory. More background on
surface theory can be found in [32], [95], [36] and [37].

Definition 2.2.1. [66] A surface is a connected compact Hausdorff topological space Σ

which is locally homeomorphic to an open disc in the plane, i.e. each point of Σ has an

open neighbourhood homeomorphic to the open unit disc in R2.

9



CHAPTER 2. SURFACE GRAPHS

Definition 2.2.2. [56] A surface with a boundary is a surface Σ such that every point of

Σ has a neighbourhood homeomorphic either to an open disc or to the set {(x,y) ∈ R2 :
x2 + y2 < 1,x≥ 1}.

See Figure 2.5 which provides some examples of surfaces.

( a ) ( b ) ( c ) ( d )

Figure 2.5: Some examples of surfaces: (a) The sphere S= {(x,y,z) ∈R3 : x2+y2+ z2 =
1}. (b) The cylinder {(x,y,z) ∈ R3 : x2 + y2 = 1 and 0 ≤ z ≤ 1}. (c) The torus T =
{(x,y,z,w)∈R4 : x2+y2 = 1;z2+w2 = 1}. (d) The Möbius strip {(x,y) : 0≤ x,y≤ 1}/∼
where (0, t)∼ (1,1−t) and t ∈ [0,1]. Notice that the surfaces (a) and (c) have no boundary
while (b) has two boundaries and (d) has one boundary.

Definition 2.2.3. [40], [58] A surface Σ is nonorientable if some subset of it (with the

induced topology) is homeomorphic to the Möbius strip. Otherwise, it is orientable.

Certain loops on surfaces can be used to determine many properties of surfaces. For
instance, existing specific loops on a surface can be used to determine the genus of that
surface and also can be used to determine whether a surface is orientable or nonorientable.
Let us consider the concept of a loop in a surface.

Definition 2.2.4. [35] Let Σ be a surface. A loop in Σ is a map α : S1 −→ Σ. A loop α is

called simple if it is injective.

An alternative definition to Definition 2.2.3 can be stated as follows.

Definition 2.2.5. [96] A surface Σ is said to be orientable if for every simple loop α in Σ,

a clockwise sense of rotation is preserved by travelling once around α . Otherwise, Σ is

nonorientable.

10



2.2. SURFACE GRAPHS

As we mentioned above, the genus of a surface can be determined by using loops. In
the following, we define the genus of a surface.

Definition 2.2.6. Let C be a collection of pairwise disjoint simple loops in a surface Σ.

We say that C is nonseparating in Σ if Σ−C has the same number of components as Σ.

The genus g of Σ is the cardinality of a maximal nonseparating collection C .

See Figure 2.6.

(a)
(b)

(c) (d)

Figure 2.6: Surfaces with various genera. (a) No nonseparating loop exists on the sphere,
so its genus equal to 0. While the genus of the surface in (b), (c) and (d) is 1, 2 and 3
respectively. Notice that the nonseparating loops are clearly depicted.

Throughout this thesis, we let Σ to be an oriented, compact and connected surface of
genus g with no boundary unless we declare a different hypothesis.

2.2.2 Rectangular representation of the cylinder and torus

Representing surfaces by a specific drawing can help to understand various properties of
surfaces. One method of drawing surfaces is the planar model. In such a model, plane

11



CHAPTER 2. SURFACE GRAPHS

polygons are used to represent surfaces. For example, the torus can be represented by a
polygon of degree 4 with indicating that the opposite edges of this polygon are identified
together. This representation is also called rectangular representation of the torus. We use
this representation to represent torus graphs later.

(a)

(b)

(c)

Figure 2.7: (a) The tilling of the plane with the unit square. (b) The fundamental domain
of the action of Z2 on the space R2. (c) Rectangular representation of the torus.

Notice that the torus is the quotient group R2/Z2, so we consider the fundamental
domain of the action of Z2 on the space R2 by translation. The fundamental domain is
the unit square, i.e. the Cartesian product I× I where I is the closed unit interval [0,1],
Figure 2.7(b). We allow the boundary of the unit square to be dashed, Figure 2.7(c).

Observe that the action of Z2 on the space R2 by translation gives the classical tessel-
lation of the plane by a square, Figure 2.7(a). More sources on torus can be found in [24]
and [10].

The cylinder is a surface with two boundaries. It can be represented using the rectan-
gular representation. We represent the cylinder as in Figure 2.8.

12



2.2. SURFACE GRAPHS

Figure 2.8: Rectangular representation of the cylinder.

2.2.3 Definition of surface graphs

In the following we state the definition of the embedding of a graph in a surface. More
background on the theory of surface graphs can be found in [9] and [6].

Definition 2.2.7. The geometric realisation |Γ| of a graph Γ=(V,E,s, t) is the topological

space

|Γ|= V t (E× [0,1])
∼

where V,E are discrete spaces and s(e)∼ (e,0) and t(e)∼ (e,1).

Definition 2.2.8. Let Σ be a compact connected surface without a boundary of genus g.

A Σ-graph is a pair G = (Γ,φ) where φ : |Γ| −→ Σ is a continuous injective map.

The map φ is called the embedding of Γ in Σ. See Figure 2.9 that illustrates an example
of embedding a graph in the sphere respectively torus to get an S respectively T-graph.

Definition 2.2.9. Let G = (Γ,φ) be a Σ-graph. A face of G is a component of Σ−φ(|Γ|).

Definition 2.2.10. Let Gi = (Σi,φi) be a Σi-graph for i = 1,2. G1 and G2 are isomorphic

if there is a homeomorphism h : Σ1 −→ Σ2 and a graph isomorphism g : Γ1 −→ Γ2 such

that h◦φ1 = φ2◦|g| where |g| : |Γ1| −→ |Γ2| is the map induced by the graph isomorphism

g.

We comment on how the map |g| is defined. For v ∈V , let v be the equivalence class
of v under the equivalence relation ∼. So v is the point of |Γ| that corresponds to v.

13
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( a ) ( b ) ( c )

Figure 2.9: (a) An abstract graph, K4. (b) An embedding of K4 in the sphere, an S-graph.
(b) An embedding of K4 in the torus, a T-graph.

Similarly, for e ∈ E and t ∈ I, let (e, t) be the point of |Γ| corresponding to (e, t). Define
|g|(v) = g(v) and |g|(e, t) = (g(e), t).

Notice that it can happen that two surface graphs are nonisomorphic to each other but
their underlying graphs are isomorphic. See the following example.

Example 2.2.11. The two torus graphs in Figure 2.10 are nonisomorphic to each other

although their underlying graphs are isomorphic.

(a) (b) (c)

Figure 2.10: The T-graphs in (b) and (c) are nonisomorphic, one can use the SageMath
code in [20] to verify that. However, the graph in (a) is the underlying abstract graph of
both of the torus graphs in (b) and (c).

Definition 2.2.12. Let Ω be a subgraph of Γ where Γ is the underlying graph of a Σ-graph

G. The pair H = (Ω,φ|Ω|) is called a Σ-subgraph of G.

14



2.3. ROTATION SYSTEM

Figure 2.11 provides an example of a T-subgraph of a T-graph.

Figure 2.11: A T-subgraph that is bold of a T-graph.

Definition 2.2.13. Let G be a Σ-graph. A face of G is cellular if it is homeomorphic to an

open disc. G is cellular if all its faces are cellular.

Figure 2.12 presents two torus graphs. One of them is a noncellular torus graph,
Figure 2.12(a). The other one is a cellular torus graph, Figure 2.12(b). The faces of each
of them are highlighted.

2.3 Rotation system

In this section, we state the concept of rotation system. Also we survey the rotation system
of surface graphs, and then we show how one can construct a surface graph from a given
rotation system. For more survey on this topic, see [89], [72] and [60].

2.3.1 Rotation systems of surface graphs

In the following we state the definition of a rotation system and the rotation system of a
surface graph.

Definition 2.3.1. An oriented rotation system is a triple (X ,σ ,τ) where X is a nonempty

set, σ : X −→ X is a permutation and τ : X −→ X is a fixed point free involution ( permu-

tation of order 2).
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(b)

F

F

(a)

F

F

G G′

Figure 2.12: (a) G is a T-graph that has only one face and that face F is noncellular. (b)
G′ is a T-graph that has only one face F and that face is cellular.

Let Σ be an oriented surface. Let G be a Σ-graph with vertex set V and edge set E.
The rotation system of G is the triple RG = (H,σ ,τ) of G where H is the set of half edges
of G. The permutation σ : H −→ H is a map defined as σ(h) = m where h,m ∈ H and m

is the half edge immediately following h in an anticlockwise direction in G. On the other
hand, the permutation τ : H −→H is a map defined as τ(p) = q where p,q ∈H such that
both of p and q are half edges of an edge in G.

Notice that there is a one-to-one correspondence between orbits of σ and vertices.
Also there is a one-to-one correspondence between orbits of τ and edges.

Example 2.3.2. Consider the T-graph G in Figure 2.13. The permutations σ and τ are

specified as follows.

σ = (1,2,3)(4,5,6)(7,8,9)(10,11,12) and τ = (1,5)(2,6)(3,10)(4,8)(7,12)(9,11).
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2

1

3

45

6

78

9

10
11

12

Figure 2.13: A T-graph with its half edges labelled with numbers.

2.3.2 Constructing a surface graph from a rotation system

Let R = (X ,σ ,τ) be a rotation system. We define a graph ΓR = (VR,ER,sR, tR) as follows.
VR = { cycles of σ} and ER = { cycles of τ}. For (i, j) ∈ ER define sR((i, j)) to be the
σ -orbit (σ -cycle) of i and tR((i, j)) to be the σ -orbit ( σ -cycle) of j. Notice that there is
an arbitrary choice for specifying the source and the target since (i, j) = ( j, i). However,
the underlying undirected graph will be independent of this choice.

A boundary walk in ΓR is a closed walk v1,e1,v2,e2, . . . ,ek,vk+1 = v1 satisfying the
following condition. At each vertex vi ( including v1), let ei−1 = (a,b) where a,b ∈ X ,
vi = σ -orbit of b then ei = (σ(b),c) where c ∈ X .

For each of the boundary walks of length k in ΓR, we take a polygon in the plane of
degree k. Notice that each edge of ΓR appears exactly twice in the boundary walks of ΓR

and this determines the orientations of the sides of the polygons. Now, by pasting each
side of the polygons with its mate we obtain a Σ-graph GR = (ΓR,φ). In the following we
state a theorem that was established independently by Heffter [48] and Edmonds [25].

Theorem 2.3.3. If G is a cellular Σ-graph and R be the rotation system of G, then G∼=GR.

In particular, every cellular Σ-graph is uniquely determined, up to homeomorphism, by

its rotation system. Conversely, if R is a rotation system , then R∼= RGR .

Definition 2.3.4. Let R be the rotation system of a cellular Σ-graph G. A boundary walk

of G is a boundary walk of GRG .

The previous definition of the boundary walks can be extended to noncellular surface
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graphs by tracking of the homeomorphism type of each face.

Definition 2.3.5. Let F be a cellular face of a Σ-graph G = (Γ,φ). We say that F has

nondegenerate boundary if no vertex occurs more than once among all boundary walks

of F.

In Figure 2.14, the S-graph G has degenerate and nondegenerate faces.

Lemma 2.3.6. A cellular face has nondegenerate boundary if and only if its unique

boundary walk is a cycle in the graph.

F

L

G

Figure 2.14: The face F of the S-graph G is degenerate while the face L is nondegenerate.

Definition 2.3.7. Let F be a cellular face of a Σ-graph G. The degree of F is the length

of its boundary walk.

Figure 2.15 provides two cellular surface graphs such that the degree of each face in
such surface graphs is declared.

Lemma 2.3.8. For i ≥ 0, let fi be the number of faces of a cellular Σ-graph G with e

edges. Then

∑
i≥0

i fi = 2e (2.1)

Proof. ∑
i≥0

i fi is the sum of all face degrees. Each edge is counted twice in this sum.
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5 4

9

6

4 4

5 5

( a ) ( b )

Figure 2.15: The degrees of the faces of the S-graph in (a) and the T-graph in (b) are
written inside the faces.

2.4 Euler polyhedral formula

In this section we modify Euler polyhedral formula so that sparsity of a surface graph is
included in the counting faces of the surface graph.

Definition 2.4.1. (sparsity function) Let Γ be a graph with vertex set V and edge set E.

Let k be a nonnegative integer . Define γk(Γ) = k|V |− |E|.

For i ≥ 0, let fi be the number of faces of a cellular Σ-graph G with e edges. Let H

be the set of the half edges of G. It is clear that |H|= 2|E|= ∑
i≥0

i fi. In the following we

state the Euler’s polyhedral formula, [2], [44], [99].

Theorem 2.4.2. Let G be a Σ-graph with vertex set V and edge set E. Let f be the number

of the faces of G. If G is cellular, then

f −|E|+ |V |= 2−2g (2.2)

where g is the genus of Σ.

Notice that, for a cellular Σ-graph G, we have f0 6= 0 if and only if Σ = S and G has
one vertex and no edges. The following theory is a modification of Theorem 2.4.2.

Theorem 2.4.3. Let G = (Γ,φ) be a cellular Σ-graph where Γ = (V,E,s, t). Let k be a
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nonnegative integer. Then

∑
i≥0

(i(k−1)−2k) fi = 2γk(G)+4k(g−1) (2.3)

Proof. Let v respectively e and f be the number of the vertices respectively edges and
faces of G. By Euler’s formula we get the following.

k f − (k−1)e =−(kv− e)+2k−2kg

The previous equation can be rewritten as follows.

2k∑
i≥0

fi−2e(k−1) =−2γk(G)−4k(g−1)

By Lemma 2.3.8, the previous equation can be rewritten as follows.

2k∑
i≥0

fi−∑
i≥0

i fi(k−1) =−2γk(G)−4k(g−1)

The required equation can be simply derived from the last equation.

Lemma 2.4.4. Suppose that G is a cellular Σ-graph with genus g. Then

4 f0 +3 f1 +2 f2 + f3 = 8(1−g)−2γ2(G)+ f5 +2 f6 + . . .

Proof. Substituting k = 2 in Equation 2.3 results the following.

∑
i≥0

(i−4) fi = 2γ2(G)+8(g−1) (2.4)

Expanding the summation in Equation 2.4 gives the following equation.

−4 f0−3 f1−2 f2− f3 + f5 +2 f6 + · · ·= 2γ2(G)−8(1−g) (2.5)

Reordering the terms in Equation (2.5) gives the required equation.

20



Chapter 3

Sparsity of Graphs and Surface Graphs

Sparse and tight graphs have been subject of much research and investigations. They
have been used in many topics for their counting properties. In graph decomposition, for
instance, Nash-William and Tutte stated and proved the well-known tree packing theorem,
see Subsection 3.1.6.

Sparse and tight graphs have been inspired by the mathematical theory of rigidity the-
ory (also known as geometric rigidity theory). The famous result in determining the rigid-
ity status of a framework in two dimensions dates back to the work of Hilda Pollaczek-
Geiringer, [78], [79] and Gerard Laman, [59]. They independently found a combinatorial
characterisation for bar-joint frameworks in two dimensions, see Subsection 3.1.6. Their
result is known as Laman’s theorem. The combinatorial aspect of rigidity theory has been
extended to involve different types of sparse and tight graphs. For example, Tay used a
certain type of tight graphs to determine the rigidity status of body-bar frameworks in any
dimension, see Subsection 3.1.6.

Sparsity and tightness of graphs have been also employed in geometric graph theory.
Different geometric representations have been used to represent special kinds of sparse
and tight graphs, [1].

In this chapter, we discuss the sparsity and tightness of graphs and surface graphs.
We also state an important theorem, we call it hole filling theorem, which will be used
frequently through this thesis.
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3.1 Sparsity of graphs

In this section, we state the definitions of sparsity and tightness of graphs and provide
some examples of such graphs. More background on the sparsity of graphs can be found
in [29] and [75].

3.1.1 Definition of sparsity

We recall the following definition of the sparsity function.

Definition 3.1.1. Let Γ be a graph with vertex set V and edge set E. Let k be a nonnegative

integer. Define γk(Γ) = k|V |− |E|.

Intuitively, we think of γk as a function that measures the k-dimensional ’degree of
freedom’ of the graph under consideration. An immediate property of the function γk is
stated in the following lemma.

Lemma 3.1.2. Let Γ1 and Γ2 be subgraphs of a graph Γ = (V,E,s, t). Then

γk(Γ1∪Γ2) = γk(Γ1)+ γk(Γ2)− γk(Γ1∩Γ2)

Proof.

γk(Γ1∪Γ2) = k|V (Γ1∪Γ2)|− |E(Γ1∪Γ2)|

= k(|V (Γ1)|+ |V (Γ2)|− |V (Γ1∩Γ2)|)− (|E(Γ1)|+ |E(Γ2)|− |E(Γ1∩Γ2)|)

= k|V (Γ1)|− |E(Γ1)|+ k|V (Γ2)|− |E(Γ2)|− (k|V (Γ1∩Γ2)|− |E(Γ1∩Γ2)|)

= γk(Γ1)+ γk(Γ2)− γk(Γ1∩Γ2)

Definition 3.1.3. Let l,k be nonnegative integers with l ≤ k. A graph Γ is called (k, l)-

sparse if, for every nonempty subgraph Ω of Γ,

γk(Ω)≥ l (3.1)

If Γ is (k, l)-sparse and, in addition, γk(Γ) = l then Γ is called (k, l)-tight.
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3.1.2 Some basic lemmas

In the following we present some lemmas which survey some of the properties of (k, l)-
sparse graphs. It is easy to prove the following lemma.

Lemma 3.1.4. Let Γ = (V,E,s, t) be a (k, l)-sparse graph. If l = k then Γ has no loop

edges.

Lemma 3.1.5. Let Ω be a subgraph of a graph Γ. If Γ is (k, l)-sparse then so is Ω.

Proof. By sparsity definition.

Lemma 3.1.6. Let Ω be a subgraph of a (k, l)-sparse graph Γ. Then Ω is (k, l)-tight if

and only if γk(Ω) = l.

Proof. By Lemma 3.1.5.

Lemma 3.1.7. Suppose that Γ1 and Γ2 are (k, l)-tight subgraphs of a (k, l)-tight Γ such

that Γ1∩Γ2 is nonempty. Then Γ1∩Γ2 and Γ1∪Γ2 are (k, l)-tight.

Proof. By Lemma 3.1.2, we get.

γk(Γ1∪Γ2)+ γk(Γ1∩Γ2) = 2l (3.2)

Since Γ1∩Γ2 and Γ1∪Γ2 are nonempty subgraphs of Γ. Thus, γk(Γ1∩Γ2) ,γk(Γ1∪Γ2)≥
l. However, (3.2) leads to γk(Γ1∩Γ2) = γk(Γ1∪Γ2) = l. Therefore, the require conclusion
follows from Lemma 3.1.6.

Lemma 3.1.8. Let Γ be a (k, l)-sparse graph. If γk(Γ)≤ 2l−1, then Γ is connected.

Proof. Assume that Γ has two components Γ1 and Γ2. By Lemma 3.1.2,

2l−1≥ γk(Γ) = γk(Γ1∪Γ2)

= γk(Γ1)+ γk(Γ2)− γk(Γ1∩Γ2)

= γk(Γ1)+ γk(Γ2)−0

≥ 2l

This is a contradiction.

23



CHAPTER 3. SPARSITY OF GRAPHS AND SURFACE GRAPHS

Lemma 3.1.9. Let Γ = (E,V,s, t) be a (2,2)-tight graph. Then the minimum degree of Γ

is greater than 1.

Proof. For contradiction, suppose that v∈V with deg(v) = 1. Let e∈ E such that s(e) = v

and t(e) = u for some u ∈V . Consider the subgraph Ω = (V ′,E ′,s′, t ′) with V ′ =V −{v}
and E ′ = E−{e}, s|E ′ = s′ and t|E ′ = t ′. Then

γ2(Ω) = 2|V ′|− |E ′|

= 2(|V |−1)− (|E|−1)

= 2|V |−2−|E|+1)

= 2|V |− |E|−1

= γ2(Γ)−1

= 1 < 2

3.1.3 Extending the sparsity definition for l ≥ k+1

The definition of sparsity can be extended to include the cases where l ≥ k + 1 by the
requirement that the inequality (3.1) is only satisfied for sufficiently large graphs. The
sufficiently large depends on the particular k and l. For example, in the range k+1≤ l ≤
2k−1, we generally require the inequality (3.1) only for subgraphs with at least one edge.
More investigations on sparseness can be found in [45] and [84].

Lemma 3.1.10. Suppose that k+1≤ l ≤ 2k−1 and Γ1 and Γ2 are (k, l)-tight subgraphs

of a (k, l)-tight Γ such that Γ1∩Γ2 has at least two vertices. Then Γ1∩Γ2 and Γ1∪Γ2 are

(k, l)-tight.

3.1.4 Examples of (k, l)-sparse graphs

In the following we list a few examples of well-known graphs where they are also sparse
graphs.

1. Planar graphs are (3,6)-sparse, Figure 3.1(a).
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2. An outerplanar graph is a planar graph which can be embedded in the plane so that
all its vertices lie on the boundary of one face. Notice that outerplanar graphs are
(2,3)-sparse, Figure 3.1(b).

(a) (b)

Figure 3.1: (a) A planar (3,6)-sparse graph. (b) An outerplanar graph.

3.1.5 Examples of (k, l)-tight graphs

We provide some examples of various kinds of (k, l)-tight graphs.

Examples in figures

In Figure 3.2, we consider two types of tightness; (2,0)-tight graph and (2,2)-tight graphs.

( c )( a ) ( d )( b )

Figure 3.2: (a) A (2,0)-tight graph. (b) A (2,2)-tight graph. (c) A graph that is not
(2,2)-tight. However, this graph is (2,2)-sparse. (d) A graph that is not (2,0)-tight.

Well-known graphs

We include two examples where tightness is another characteristic of the corresponding
graphs.
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1. (1,1)-tight graphs are trees, see Figure 3.3(a).

2. (1,0)-tight graphs are graphs that are connected and have exactly one cycle, see
Figure 3.3(b).

(a) (b)

Figure 3.3: (a) A tree graph which is also (1,1)-tight. (b) A (1,0)-tight graph.

3.1.6 Applications

The robust counting of sparse and tight graphs has been employed in many areas whenever
such graphs arise. Such counting applied in some topics in graph theory, like graph de-
composition as we will see later. In the rigidity theory, counting on sparse and tight graphs
found its way to contribute in solving many problems that arise in the combinatorial as-
pect of such theory. In geometric graph theory, tight graphs also have their contributions,
see for example [3] and [1]. We will discuss representing certain tight torus graphs in the
flat torus in Chapter 6. However, here we summarise two topics where sparse and tight
graphs play significant roles in such topics.

Graph decomposition

The topic of graph decomposition concerns with finding a partition of the edge set of a
graph into edge-disjoint subgraphs, although there is another kind of graph decomposition
known as vertex-disjoint decomposition. Graph decomposition has been involved in many
different areas such as network theory, coding theory, geometry, design theory and not
ending with graphic theory. As an example, graph decomposition has been used in solving
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some geometric problems. In this area, a geometric problem is translated into a graph such
that the vertex set of such a graph is the set of the geometric elements of the geometric
problem and its edge set consists of the constraints, see [82] and [52]. The well-known
result in graph decomposition is due to Tutte, [93], and Nash-Williams, [70]. They proved
the following classical theorem.

Theorem 3.1.11. A graph Γ is the union of k edge-disjoint trees if and only if Γ is (k,k)-

tight.

In Figure 3.4, there is a simple example of decomposing a (2,2)-tight graph.

(a) (b)

Figure 3.4: (a) A (2,2)-tight graph. (b) The decomposition of the graph in (a) into 2
edge-disjoint trees.

Nash-Williams also showed that every (2,2)-tight graph has a decomposition into two
spanning trees, [71].

Rigidity theory

Rigidity theory studies the following question: Given a geometric embedding (typically
a bar-joint framework) of a graph in a specific dimension, when is there a continuous
motion or deformation of the vertices into a non-congruent embedding without chang-
ing the distances between pairs of vertices that are connected by edges? The process of
investigating rigidity depends on combinatorial and geometric tools.

Historically, Cauchy, [2], and Maxwell, [34], introduced the mathematical theory of
structural rigidity in the mid 19th century, which is, later on, was known as rigidity theory.
In 1927, Pollaczek-Geiringer proved Theorem 3.1.14, [78], [79]. Then in 1970, Laman
rediscovered and proved Theorem 3.1.14, [59]. Since then, rigidity theory is receiving
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a lot of attention. In the following, we briefly survey some fundamental concepts of the
rigidity theory, [41], [42], [54], [76].

A bar-joint framework is an ordered pair (G, p) where G = (V,E) is a graph and
p : V −→ Rd is an embedding of the vertices into Rd . A framework is generic if the
coordinates of the framework points form an algebraically independent set ( over Q).
Two frameworks on the same graph (G, p) and (G,q) are equivalent if the edge lengths in
(G, p) are the same as those in (G,q) and are congurent if the distance between any pairs
of points in (G, p) are the same as those in (G,q).

Definition 3.1.12. A framework (G, p) is flexible in Rd if there is a continuous motion

x(t) of the framework points such that (G,x(t)) is equivalent to (G, p) for all t but it is not

congruent to (G, p) for some t ( where x(t) 6= p). A framework (G, p) is rigid if it is not

flexible.

Definition 3.1.13. A graph G = (V,E) is called rigid if the framework (G, p) is rigid. G

is called minimally rigid if removing any edge from G results flexibility.

Notice that every minimally rigid graph is rigid but the converse is not true in general,
see Figure 3.5.

(a) (b)

Figure 3.5: (a) A rigid graph in R2. (b) A minimally rigid graph in R2. Notice that the
graph in (a) is not minimally rigid.

Theorem 3.1.14. A graph G is (generically) minimally rigid in the plane R2 if and only

if G is (2,3)-tight.

A graph that is (2,3)-tight is known as Laman graph. Notice that Theorem 3.1.14,
cannot be extended into three-dimension. The graph in Figure 3.6(e) (which is called the
double banana graph) is a counterexample of such an extension.
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( d ) ( e )

( a ) ( b ) ( c )

Figure 3.6: The graphs in (a), (c) and (d) are (2,3)-tight and so they are rigid in the plane.
The graph in (b) is not a (2,3)-tight and the graph in (e), known as the double banana
graph, is (3,6)-tight.

In attempting to find a partial solution for the problem of deciding the rigidity in three
dimensions, some works have been achieved on the rigidity of surface graphs. Gluck,
[38], presented and proved the following theorem.

Theorem 3.1.15. [38] Let G = (Γ,φ) be an S-graph such that Γ is a triangulation. Then

G is rigid if and only if G is (3,6)-tight.

This work has been followed by some other nice results. We recall some of them in
Chapter 4 Section 4.1.

We end this brief survey on rigidity theory by stating a nice result which was estab-
lished by Tay, [88]. Tay proved that (

(d
2

)
,
(d

2

)
)-tight graphs are precisely those that admit

a realisation as a generic rigid body-bar framework in Rd . Where A d-dimensional body-
and-bar framework is a bar-and-joint framework G(p) in which the vertex set of G is
partitioned into pairwise disjoint complete graphs (the bodies) and the remaining edges
(bars), connecting these bodies, are pairwise disjoint, see [16].
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3.2 The hole filing theorem

In this section, we state and prove a theorem, informally we call it the hole filling theorem
which will be often used through the rest of this thesis.

3.2.1 Faces of surface subgraphs

In this subsection, we discuss the structure of the faces of surface subgraphs.

Definition 3.2.1. Assume that l ≤ k and G = (Γ,φ) be a (k, l)-tight Σ-graph. Let F be a

face of a Σ-subgraph H of G. We define intG(F) to be the Σ-subgraph of G corresponding

to the vertices and the edges of Γ whose images lie in the topological closure of F. Sim-

ilarly, we define extG(F) to be the Σ-subgraph of G corresponding to those vertices and

edges of Γ whose images lie in Σ−F.

It is clear that ∂F = intG(F)∩ extG(F) = H ∩ intG(F) where ∂F is the Σ-subgraph
intG(F)∩ extG(F) of G, see Figure 3.7.

G
extG(F)

intG(F) ∂F

F

Figure 3.7: Consider the T-graph G. The T-subgraph that is bold has a pentagon face F
where intG(F) is the T-subgraph in the dark gray shaded area together with its boundary
(i.e. ∂F). On the other hand, the T-subgraph in the light gray shaded area together with
∂F is extG(F).

30



3.3. CONTRACTIONS ON CLOSED WALKS

3.2.2 The hole filling theorem

Theorem 3.2.2. Let G be a (k, l)-tight Σ-graph with l ≤ k and H be a Σ-subgraph of G.

Let F be a face in H. Then

γk(H ∪ intG(F))≤ γk(H) (3.3)

Proof. By Lemma 3.1.2, we have

γk(H ∪ intG(F)) = γk(H)+ γk(intG(F))− γk(H ∩ intG(F))

= γk(H)+ γk(intG(F))− γk(∂F)
(3.4)

Using Lemma 3.1.2 again, we obtain

l = γk(G)

= γk(intG(F)∪ extG(F))

= γk(intG(F))+ γk(extG(F))− γk(intG(F)∩ extG(F))

= γk(intG(F))+ γk(extG(F))− γk(∂F)

Therefore,
γk(intG(F))− γk(∂F) = l− γk(extG(F))≤ 0 (3.5)

The previous inequality is derived from the sparsity of G. Now, by combining (3.4)
and ( 3.5) the result follows.

Notice that (2,2)-tightness is necessary for Theorem 3.2.2. See the two examples in
Figure 3.8.

Lemma 3.2.3. Let G be a (k, l)-tight Σ-graph with l ≤ k and H be a Σ-subgraph of G and

F be a face in H. Suppose that H is (k, l)-tight. Then H ∪ intG(F) is also (k, l)-tight.

Proof. Since G is (k, l)-tight then γk(H ∪ intG(F))≥ l. Now, from Theorem 3.2.2,
we get γk(H ∪ intG(F))≤ γk(H) = l. Thus, γk(H ∪ intG(F)) = l.

3.3 Contractions on closed walks

In this section, we consider three kinds of closed walk contractions in sparse graphs. We
include some results related to these three contraction moves.
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F
F

(a) (b)

G G

H

H

Figure 3.8: (a) The S-graph G is not (2,2)-tight. Its clear that γ2(H) = 2. However,
γ2(H ∪ intG(F)) = 3. Thus, the conclusion of Theorem 3.2.2 does not hold. (b) The T-
graph G is not (2,2)-tight. Its clear that γ2(H) = 2. However, γ2(H∪ intG(F)) = 3. Thus,
the inequality of Theorem 3.2.2 does not hold. Notice that in Figure (a) respectively (b),
H in bold is a (2,2)-tight S respectively T-subgraph of G and the face F is the shaded
area together with its boundary.

3.3.1 Some operations on graphs

Two of the typical operations on graphs are edge contraction and edge deletion. In the
following, we state such operations. For more background on graph operations, one can
consult for example [23], [11] and [94].

Definition 3.3.1. Let Γ = (V,E) be a graph and e be an edge in Γ. Let Γ− e = (V ′,E ′)

be a graph where V ′ =V and E ′ = E\{e}. We say that Γ−e is the graph that is obtained

from Γ by edge deletion .

Edge deletion operation is illustrated in Figure 3.9(a).

Definition 3.3.2. Let Γ = (V,E) be a graph and u,v ∈ V . Let Γ/u ∼ v = (V ′,E ′) be a

graph where V ′ = (V ∪{z})\{u,v} and E ′ = E such that z is incident to all edges in E

which were incident to u and v. We say that Γ/u∼ v is the graph that is obtained from Γ

by identifying two vertices.

Figure 3.9(b) illustrates the operation of identifying two vertices.

Definition 3.3.3. Let Γ = (V,E) be a graph and e be an edge in Γ that is incident to v and

u where u,v ∈ V . Define Γ/e to be (Γ− e)/u ∼ v. We say that Γ/e is the graph that is

obtained from Γ by contracting the edge e.
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Figure 3.9(c) illustrates the edge contraction operation.

Γ
( a )

Γ− e

Γ Γ/u∼ v

e

f
f

u v u v

e

f

u v z

f

( b )

g

h i

g

h i

g

h i

g

h i

Γ Γ/e

e

f

u v z

f
( c )

g

h i

g

h i

e

Figure 3.9: (a) The graph Γ− e is obtained from Γ by deleting the edge e from the graph
Γ. (b) The graph Γ/u∼ v is obtained from Γ by identifying the vertices u and v together.
(c) The graph Γ/e is obtained from Γ by contracting the edge e.

Now, we are ready to discuss in details contractions on three kinds of cycles. Namely
2-cycle, 3-cycle and 4-cycle contractions.

3.3.2 2-cycle contractions

Definition 3.3.4. A nondegenerate 2-cycle is a closed walk v1,e1,v2,e2,v1 such that e1 6=
e2 and v1 6= v2.

Definition 3.3.5. Let Γ be a (2, l)-tight graph and v1,e1,v2,e2,v1 be a nondegenerate

2-cycle in Γ. Define the 2-cycle contraction to be (Γ/e1)− e2.

The 2-cycle contraction move is illustrated in Figure 3.10. In the following we exhibit
some fundamental properties of the 2-cycle contraction move.
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v1 v2
e1

e2

Γ

z

(Γ/e1)− e2

g

h

i
g

h

i

Figure 3.10: A 2-cycle contraction move.

Lemma 3.3.6. Let Γ = (V,E) be a graph and v1,e1,v2,e2,v1 be a nondegenerate 2-cycle.

Then γ2((Γ/e1)− e2) = γ2(Γ).

Proof. Consider the graph (Γ/e1)− e2 = (V ′,E ′). Then |V ′| = |V |−1 and E ′ = |E|−2.
Hence

γ2((Γ/e1)− e2) = 2|V ′|− |E ′|

= 2(|V |−1)− (|E|−2)

= 2|V |− |E|

= γ2(Γ)

Lifting of a subgraph with respect to 2-cycle contraction

Let Γ = (V,E,s, t) be a graph. Let Ω be a subgraph of (Γ/e1)−e2, we construct a lift Ω as
follows. V (Ω) is the preimage of V (Ω) under the quotient map V (Γ)−→V ((Γ/e1)−e2).

Given e∈ E(Γ), then e∈Ω if and only if either e corresponds to an edge of Ω or e= ei

for i = 1 or 2, and vi,vi+1 ∈ V (Ω), see Figure 3.11. Hence the proof of the following
lemma follows easily from the previous setting.

Lemma 3.3.7. Let Γ = (V,E,s, t) be a graph and v1,e1,v2,e2,v1 be a nondegenerate 2-

cycle in Γ. Consider the graph (Γ/e1)− e2. Let Ω be a subgraph of (Γ/e1)− e2 and z
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Ω

v1 v2

Γ (Γ/e1)− e2

Ω

z

Figure 3.11: The subgraph Ω of the graph Γ is the lift of the subgraph Ω of the 2-cycle
contraction graph (Γ/e1)− e2.

be a vertex in (Γ/e1)− e2 such that z is resulted from v1 ∼ v2. Then Ω∼= Ω if and only if

z /∈Ω.

Projection of a subgraph with respect to 2-cycle contraction

Let v1,e1,v2,e2,v1 be a nondegenerate 2-cycle of a graph Γ. Given a subgraph, Θ, of
Γ, we define the projection Θ as follows. If v2 /∈ Θ then Θ = Θ. If v2 ∈ Θ, then Θ =

(Θ∪ e1)/e1− e2.

Remark 3.3.8. Let v1,e1,v2,e2,v1 be a nondegenerate 2-cycle of a graph Γ. Let Θ be a

subgraph of Γ. Consider the graph (Γ/e1)− e2. Then Θ ∼= Θ if and only if at least one

vertex of e1 does not belong to Θ and e2 does not belong to Θ, see Figure 3.12.

Lemma 3.3.9. Let v1,e1,v2,e2,v1 be a nondegenerate 2-cycle of a graph Γ. Then Γ is

(2, l)-sparse if and only if the 2-cycle contraction (Γ/e1)− e2 of Γ is (2, l)-sparse.

Proof. Suppose that (Γ/e1)−e2 is not (2, l)-sparse. So let Ω⊂ (Γ/e1)−e2 with γ2(Ω)<

l. If z /∈ Ω, then by Lemma 3.3.7, Ω ∼= Ω and so γ2(Ω) = γ2(Ω). If z ∈ Ω then by the
construction of Ω we have also γ2(Ω) = γ2(Ω). Both of the previous cases lead to a
contradiction to the sparsity of Γ.

Now, suppose that Γ is not (2, l)-sparse. Let Θ ⊂ Γ with γ2(Θ) < l. If {v1,v2} 6⊂ Θ,
then Θ ∼= Θ. So γ2(Θ) = γ2(Θ) < l. On the other hand, if {v1,v2} ⊂ Θ, then γ2(Θ) =

γ2(Θ∪{e1,e2})≤ γ2(Θ)< l. This contradicts the sparsity of (Γ/e1)− e2.
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v1

v2

z

( c )

( b )

Γ
Γ/e1− e2

Θ
Θ

e1
e2

v1

v2

z

( a )

Γ Γ/e1− e2

Θ
Θ

e1
e2

v1

v2 Γ

Θ

e1
e2

z

Γ/e1− e2 Θ

Figure 3.12: The subgraph Θ of the 2-cycle contraction graph (Γ/e1)− e2 of Γ in (a) re-
spectively (b) and (c) is the projection of the subgraph Θ of the graph Γ in (a) respectively
(b) and (c).

3.3.3 3-cycle contractions

In (2,2)-sparse graph, any closed walk of length 3 is necessary a cycle. More generally,
we may consider closed walk v1,e1,v2,e2,v3,e1 such that v1 6= v2.

Definition 3.3.10. Let Γ be a (2, l)-tight graph and v1,e1,v2,e2,v3,e3,v1 be a closed walk

as described above. Let (Γ/e1)− ei be the graph that is obtained from Γ by contracting

the edge e1 and then deleting ei where i = 2 or 3 and ei is different from e1. Let z be the

vertex of (Γ/e1)− ei corresponding to the identification v1 ∼ v2.

We denote the move which obtains (Γ/e1)−ei from Γ by Γ−→ (Γ/e1)−ei, see Figure
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3.13.

v1 v2e1

e2

Γ (Γ/e1)− e2

v3

e3

z

v3

e3

g

h
i

j

g

h i

j

Figure 3.13: A 3-contraction move.

We observe in the case that both e2 and e3 are different from e1, then, in Γ/e1, the
edges e2 and e3 are parallel. Thus, the choice of which one is deleted does not affect
the isomorphism class of the resulting graph, Figure 3.14. Note that in our later work

Γ

v2e1v1

v3

e3 e2

Γ/e1

z

v3

e3 e2

Figure 3.14: Contracting e1 in Γ results a pair of parallel edges e2 and e3 in Γ/e1. Thus,
deleting the edge e2 or e3 yields no affect.

we will mainly be focused on the (2,2)-sparse graphs. In that case, as noted above, all
closed walks of length 3 are necessarily cycles, so we do not have to worry about any
degeneracies in that case. However, we have tried to state the following lemmas in a more
general setting to allow for possible future applications to (2,1) and (2,0)-sparse graphs.

Lifting of a subgraph with respect to 3-cycle contraction

Let Γ be a (2, l)-tight graph and v1,e1,v2,e2,v3,e3,v1 be a closed walk of length 3 in Γ

with v1 6= v2.
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Given a subgraph Ω of (Γ/e1)− ei we define Ω as follows. V (Ω) is the preimage
of V (Ω) under the quotient map V (Γ) −→ V ((Γ/e1)− ei) and E(Ω) consists of E(Ω)

together with any e1,e2,e3 spanned by V (Ω). Figure 3.15 presents an example of lifting
a subgraph with respect to 3-cycle contraction.

Ω

v1 v2

Γ

Ω

v3

e3 e2

e1
z

(Γ/e1)− e2

v3

e3

Figure 3.15: The subgraph Ω of the graph Γ is the lift of the subgraph Ω of the 3-cycle
contraction graph Γ/e1− e2 ( of Γ ).

Projection of a subgraph with respect to 3-cycle contraction

Let Γ be a (2, l)-tight graph and v1,e1,v2,e2,v3,e3,v1 be a closed walk of length 3 in Γ

with v1 6= v2.
Given a subgraph Θ of Γ, we define Θ to be the subgraph of (Γ/e1)− ei which is

obtained by identifying v1 and v2 and then deleting any of the edges e1,e2,e3 from the
resulting graph which they are not in (Γ/e1)− ei. See the example in Figure 3.16.

v1

v2

Γ

Θ

Θ

(Γ/e1)− e2

v3 e1
e2

e3 e3

v3

z

Figure 3.16: The subgraph Θ of the 3-cycle contraction graph (Γ/e1)− e2 ( of Γ ) is the
projection of the subgraph Θ of the graph Γ.
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Lemma 3.3.11. Suppose that e1,e2 and e3 are the edges of a 3-cycle in a graph Γ such

that e1 6= e2,e3. For i = 2 or 3, if (Γ/e1)− ei is (2, l)-sparse then so is Γ.

Proof. From the hypothesis and a previous assumption that v1 6= v2, we can see that the
three edges e1,e2 and e3 are distinct. Now let Θ be an induced subgraph of Γ. Then it is
clear that γ2(Θ)≤ γ2(Θ). From the sparsity of (Γ/e1)− ei we get that γ2(Θ)≥ l.

We comment that Lemma 3.3.11 holds even in degenerate cases where one of e2 or e3

is a loop edge. On the other hand, the hypothesis e1 6= e2,e3 is necessary. For example if
l = 2, e1 = e3 and e2 is a loop edge, then the conclusion is false, see the example in Figure
3.17.

e2

e1 = e3

Γ (Γ/e1)− e2

Figure 3.17: The graph (Γ/e1)− e2 is (2,2)-tight while the graph Γ is not (2,2)-tight.

Lemma 3.3.12. Suppose that Γ is a (2, l)-sparse and let v1,e1,v2,e2,v3,e3,v1 be a 3-cycle

in Γ with v1 6= v2. Then for i = 2 or 3, (Γ/e1)− ei is not (2, l)-sparse if and only if there

is some subgraph Π of Γ such that Π is (2, l)-tight and e1 ∈Π but v3 /∈Π.

Proof. Suppose Π exists as in the statement. It is clear that γ2(Π) = γ2(Π)− 1 = l− 1.
Hence γ2(Π)< l.

On the other hand, suppose that Γ/e1− ei is not (2, l)-sparse. Let γ2(Ω)< l for some
subgraph Ω of Γ/e1−ei. Without loss of generality, assume that Ω is an induced subgraph
of Γ/e1− ei. Let Π = Ω. Let z be the vertex in (Γ/e1)− ei that is corresponding to the
identification v1∼ v2. Clearly z∈Ω since if not then Π∼=Ω which contradicts the sparsity
of Γ. Notice that γ2(Π)≤ γ2(Ω)+1. Therefore, γ2(Ω) = l−1 and γ2(Π) = l and so Π is
(2, l)-tight. Therefore, e1 ∈Π and e2,e3 /∈Π. Finally, since Ω is induced by its vertex set,
then it is clear that v3 /∈Π.
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Definition 3.3.13. The subgraph Π in Lemma 3.3.12 is called a blocker for the 3-cycle

contraction move of Γ−→ (Γ/e1)− ei where i = 2 or 3.

In general such a blocker looks like the one in Figure 3.18.

Γ

v2e1v1

v3

e3 e2

Π

Figure 3.18: Π is a blocker for a 3-contraction move.

In Figure 3.19, we provide some examples of graphs where blockers of conducting
certain 3-contraction moves are highlighted.

Lemma 3.3.14. Suppose that Γ is (2,2)-sparse graph. Let v1,e1,v2,e2,v3,e3,v1 be a

closed walk in Γ. Then at least two of the graphs Γ/e1− e2, Γ/e2− e3 or Γ/e3− e1 are

(2,2)-sparse.

Proof. Since Γ is (2,2)-sparse then v1,v2,v3 are distinct. So the closed walk v1,e1,v2,

e2,v3,e3,v1 is simple. In particular, this means that the three graphs Γ/e1− e2, Γ/e2− e3

or Γ/e3− e1 are 3-cycle contractions of Γ. Now, suppose that Π1, respectively Π2 is
a blocker for the move Γ −→ Γ/e1− e2, respectively Γ −→ Γ/e2− e3. It follows that
v1,v2,v3 ∈ Π1 ∪Π2 and e3 /∈ Π1 ∪Π2. Notice that by Lemma 3.1.7, Π1 ∪Π2 is (2,2)-
tight. Therefore,

γ2(Π1∪Π2∪{e3}) = γ2(Π1∪Π2)+ γ2({e3})− γ2(Π1∩Π2∩{e3})

= γ2(Π1∪Π2)+ γ2({e3})− γ2({v2,v3})

= 2+3−4

This contradicts the sparsity of Γ.

We observe that Lemma 3.3.14 also works for (2, l)-sparseness for l ≤ 1 if we add the
additional hypothesis that v1,v2 and v3 are pairwise distinct.
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v1
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v3

e3

z
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( d )

Π

Γ

Γ ′

v1
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e2

v2

v3

e3
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( b )

Π

Γ

v1

e1

e2

v2

v3

e3

f

( c )

Π
Γ

Figure 3.19: In each of (a), (b) and (c), the (2,2)-tight subgraph Π of the (2,2)-tight
graph Γ is a blocker for the 3-cycle contraction Γ/e1− e2. The blocker Π in (c) is the
maximal blocker for Γ −→ Γ/e1− e2. The graph Γ′ in (d) is obtained by performing
Γ−→ Γ/e1− e2. However, It is clear that Γ′ is not a (2,2)-sparse graph as there is a loop
in it.

3.3.4 4-cycle contractions

Definition 3.3.15. A nondegenerate 4-cycle is a closed walk v1,e1,v2,e2,v3,e3,v4,e4,v1

such that vi 6= vi+1 for i = 1, . . . ,4, ei 6= ei+1 for i = 1,2,3, e1 6= e3 and e2 6= e4.

Lemma 3.3.16. let v1,e1,v2,e2,v3,e3,v4,e4,v1 be a closed walk in a graph Γ. If v1 6= v3

and e1 = e3 then e2 6= e4.

Proof. The hypothesis indicates that v2 = v3 and v1 = v4. Therefore, e2 6= e4. See Figure
3.20.
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v2 = v3

v1 = v4

e1 = e3

e4

e2

Figure 3.20: The conclusion of Lemma 3.3.16.

Definition 3.3.17. Let Γ be a (2, l)-tight graph and let v1,e1,v2,e2,v3,e3,v4,e4,v1 be

a closed walk in Γ. Assume that v1 6= v3 and define the 4-cycle contraction (Γ/v1 ∼
v3)−{e1,e3} to be the graph that is obtained from Γ by identifying v1 and v3 together

and deleting the edges e1 and e3. In case e1 = e3, we notice from the previous lemma that

e2 6= e4, hence we can define the 4-cycle contraction (Γ/v1 ∼ v3)−{e2,e4}.

Figure 3.21 shows how 4-contraction move can be performed. Notice that for the
previous definition, in case e1 = e3, defining the 4-cycle contraction (Γ/v1∼ v3)−{e2,e4}
has no effect on any of the rest of the arguments in this thesis. Moreover, such a case
cannot even arise in the case of (2,2)-tight graphs since loop edges are prohibited in that
case.

v1

v2

e1 e2

Γ (Γ /v1 ∼ v2)−{e1,e3}

v3

e3

v4

e4

z

v2

e2

v4

e4f

g

h

i

j

f

g
h

i

j

Figure 3.21: A 4-cycle contraction on the graph Γ.

Lifting a subgraph with respect to 4-cycle contraction

Let Γ be a (2, l)-tight graph and let v1,e1,v2,e2,v3,e3,v4,e4,v1 be a closed walk in Γ

with v1 6= v3. Let Ω be a subgraph of (Γ/v1 ∼ v3)−{e1,e3}. We can define a lift Ω
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as follows. V (Ω) is the preimage of V (Ω) under the quotient map V (Γ) −→ V ((Γ/v1 ∼
v3)−{e1,e3}).

Given e ∈ E(Γ), then e ∈ Ω if and only if either e corresponds to an edge of Ω or
e = ei for i = 1 or 3, and vi,vi+1 ∈V (Ω). See the example in Figure 3.22.

Ω

v1

v2

(Γ /v1 ∼ v3)−{e1,e3}

v4

e3

e2e1

z

Ω

v2

v3

v4

e4

Γ

e4

e2

Figure 3.22: The subgraph Ω of the graph Γ in (a) is the lift of the subgraph Ω of the
4-cycle contraction graph (Γ/v1 ∼ v3)−{e1,e3} ( of Γ ) in (b).

Theorem 3.3.18. Let v1,e1,v2,e2,v3,e3,v4,e4,v1 be a closed walk in a graph Γ. Suppose

that ei 6= ei+1 for i = 1,2,3 and e4 6= e1. If Γ is (2, l)-sparse and (Γ/v1 ∼ v3)−{e1,e3} is

not (2, l)-sparse. Then at least one of the following statements is true.

1. There is a subgraph Π of Γ such that γ2(Π) = l,{v1,v3} ⊂Π and exactly one of v2

or v4 belong to Π.

2. There is a subgraph Π of Γ such that γ2(Π) = l +1,{v1,v3} ⊂Π and v2,v4 /∈Π.

Proof. Suppose that Ω be a subgraph of (Γ/v1∼ v3)−{e1,e3} such that γ2(Ω)< l. With-
out loss of generality, we assume that Ω is induced by its vertex set. Let Π = Ω and let z

be the vertex in (Γ/v1 ∼ v3)−{e1,e3} that corresponds to v1 and v2. It is clear that z ∈Ω

since if not then Π ∼= Ω. Also, it is clear that {v2,v4} 6⊂ Π, otherwise γ2(Π) = γ2(Ω),
since Ω is an induced subgraph of (Γ/v1 ∼ v3)−{e1,e3}.

Now, suppose that v2 ∈ Π. Then v4 /∈ Π and e1,e2 ∈ Π and γ2(Π) = γ2(Ω)+ 1 ≤ l.
Since Γ is (2, l)-sparse then γ2(Π) = l and clearly (1) holds in this case. Similar arguments
apply if v4 ∈ Π. Now if v2,v4 /∈ Π then γ2(Π) = γ2(Ω) + 2 ≤ l + 1. If v2 = v4 then
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γ2(Π∪{v2}∪ {e1,e2,e3,e4}) ≤ l− 1 contradicting the sparsity of Γ. Hence v2 6= v4 in
this case.

Now, if γ2(Π) = l + 1, then (2) holds. Thus, we suppose that γ2(Π) = l. If v2 /∈
{v1,v3}, then replace Π by Π∪{v2,e1,e2} and (1) holds. Similarly if v4 /∈ {v1,v3}. There
is only one possibility that remains in this case is that v2 ∈ {v1,v3} and that v4 ∈ {v1,v3}.
One readily checks that in this case that Γ−→ (Γ/v1 ∼ v3)−{e1,e3} is in fact equivalent
to a contraction on a pair of parallel edges.

By Lemma 3.3.9, this preserves the sparseness contradicting the assumption that
(Γ/v1 ∼ v3)−{e1,e3} is not (2, l)-sparse.

Definition 3.3.19. We call the subgraph Π in Lemma 3.3.18(1) respectively Lemma 3.3.18(2)

a blocker of type 1 respectively of type 2 for the 4-cycle contraction move Γ−→ (Γ/v1 ∼
v3)−{e1,e3}.

In general, the blocker of type 1 respectively type 2 looks like as in Figure 3.23(a)
respectively 3.23(b).

Γ

Π

v1

v2

e1 e2

v3e3
v4

e4
Γ

Π

v1
v2

e1 e2

v3e3
v4

e4

( a ) ( b )

Figure 3.23: (a) Π is a blocker of type 1. (b) Π is a blocker of type 2.

In Figure 3.24, we include more examples of blockers for certain 4-contraction
moves.

We observe that it is possible that a 4-cycle contraction move can has more than one
blockers of type 1 or type 2. See Figure 3.24(b).
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e1 e2

v3

v4

e4

v2

v1

e3

Π
Γ

e1e4

v2

e3
e2

v3

v4

v1

Π
Γ

( b )( a )

e1 e2

v3

v4

e4

v2

v1

e3

Π
Γ

( c )

Figure 3.24: The (2,2)-tight subgraph Π of the (2,2)-tight graph Γ in (a) respectively (b)
is a blocker of type 1 for Γ −→ (Γ/v1 ∼ v3)−{e1,e3}. This blocker is also maximal.
The subgraph Π of the (2,2)-tight graph Γ in (c) is a blocker of type 2 for Γ−→ (Γ/v1 ∼
v3)−{e1,e3}. This blocker is also maximal.

3.4 Inductive operations on surface graphs

In this section, we discuss three inductive operations on surface graphs. Each of these
three topological inductive moves is indeed the topological version of one of the three
contractions that we discussed in the previous section.

3.4.1 Topological contraction and deletion of an edge

We define the topological version of contracting and deleting an edge of a surface graph.
We state first the definition of an edge contraction of a Σ-graph.
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Definition 3.4.1. Let G= (Γ,φ) be a Σ-graph. Let e be an edge in Γ= (V,E,s, t) such that

s(e) = u, t(e) = v, φ(u) 6= φ(v). Let |e|= φ(e× I) be the realisation of the edge e. There

is a quotient map q : Σ −→ Σ/|e|. As a consequence of the Jordan-Schoenflies theorem

([13]), we can fix a homeomorphism h : Σ −→ Σ/|e| such that h−1 ◦ q is the identity

outside a regular neighbourhood of |e|. Now, let Γ/e be the graph that is obtained from Γ

by contracting the edge e. It is clear that q◦φ induces an embedding φ : |Γ/e| −→ Σ/|e|.
Hence we define a Σ-graph G/e to be the pair (Γ/e,h−1 ◦ q) and we say that G/e is

obtained from G by a topological edge contraction.

Figure 3.25 clarifies Definition 3.4.1.

|e|

Σ Σ/|e|

(a) (b)

Figure 3.25: (a) The realisation of the edge e in Σ. A regular neighbourhood of |e| is in
the shaded dark gray area. (b) Contracting |e| in Σ.

Topological edge deletion on the other hand is more straightforward to be defined than
edge contraction as we can see in the following.

Definition 3.4.2. Let G = (Γ,φ) be a Σ-graph. Let e be an edge in Γ. Let Γ− e is the

graph that is obtained from Γ by deleting the edge e. We define the Σ-graph G− e to be

the pair (Γ− e,φ ||Γ−e|) and we say that G− e is obtained from G by a topological edge

deletion.

We note that topological edge deletion may change a cellular surface graph into a
noncellular surface graph, see Figure 3.26 (a). On the other hand, topological edge con-
traction preserves the homeomorphism type of all faces. However, it is not necessary that
topological edge contraction preserves the boundary of all the faces, see Figure 3.26(b).
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(a)

(b)

F1 F2

e

F ′1 F ′2

G G− e

G G/e

Figure 3.26: (a) The T-graph G is cellular while G− e is noncellular. (b) The degree of
the face F1 respectively F2 of the T-graph G is 4 respectively 5 while its corresponding
face F ′1 respectively F ′2 of G/e has degree 3 respectively 4.

3.4.2 Digon contraction

In this subsection we consider the topological version of the 2-cycle contraction operation
which is discussed in Subsection 3.3.2.

Definition 3.4.3. Let G be a Σ-graph. A digon B of G is a face of G such that its boundary

walk has length 2. A nondegenerate digon is a digon such that its boundary walk is a

nondegenerate 2-cycle.

Definition 3.4.4. Let G be a Σ-graph and B be a nondegenerate digon of G with boundary

walk v1,e1,v2,e2,v1. Let GB = G/e1− e2 be the Σ-graph that is obtained from G by

contracting the edge e1 and deleting the edge e2. We say that GB is the Σ-graph that is

obtained from G by a digon contraction. We call the move G−→GB a digon contraction.

Figure 3.27 clarifies the digon contraction.
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e1

e2

v1 v2B

G GB

z

Figure 3.27: A digon contraction move. Notice that the digon B in G is nondegenerate.
In GB, the vertex z corresponds to the vertices v1 and v2 in G.

We observe that since B is a cellular face, then G/e1−e2 is canonically isomorphic to
G/e2− e1. Therefore, there is no need to declare which edge is contracted and which is
deleted in the notation.

Lemma 3.4.5. GB is (2, l)-sparse if and only if G is (2, l)-sparse.

Proof. This follows from Lemma 3.3.9.

3.4.3 Triangle contraction

In this subsection we consider the topological version of the 3-cycle contraction operation
which is discussed in Subsection 3.3.3.

Definition 3.4.6. Let G be a Σ-graph. A triangle T of G is a face of G such that its

boundary walk has length 3. A nondegenerate triangle is a triangle such that its boundary

walk is a cycle.

Definition 3.4.7. Let G be a Σ-graph and let T be a nondegenerate triangle of G with

boundary walk v1,e1,v2,e2,v3,e3,v4 = v1. Let GT,e1 = G/e1− e2 be the Σ-graph that

is obtained from G by contracting the edge e1 and deleting the edge e2. We say that

GT,e1 is the Σ-graph that is obtained from G by a triangle contraction. We call the move

G−→ GT,e1 a triangle contraction.

Figure 3.28 clarifies the triangle contraction move. Notice that since T is cellular, then
G/e1− e2 is canonically isomorphic as a Σ-graph to G/e1− e3. So it is unambiguous to
only declare the contracted edge in the notation.
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e1

e2e3

v1 v2

v3

T e3

v3

z

G GT, e1

Figure 3.28: A triangle contraction move. Notice that the triangle T in G is nondegenerate.
The Σ-graph GT,e1 is obtained from G by contracting e1 and deleting e2. The vertex z
corresponds to the vertices v1 and v2 in G.

Lemma 3.4.8. Suppose that G is (2,2)-sparse and let T be a triangular face in G with

boundary walk v1,e1,v2,e2,v3,e3,v1. Then at least two of GT,e1 , GT,e2 , GT,e3 are (2,2)-
sparse.

Proof. This follows from Lemma 3.3.14.

Suppose that GT,e1 is not (2,2)-sparse. By Lemma 3.3.12, there is some blocker in G

for the contraction G−→ GT,e1 . Let H be such a blocker that is maximal with respect to
inclusion.

The following lemma is analogous to Lemma 9 in Fekete et al. [28].

Lemma 3.4.9. Let G be a (2,2)-tight Σ-graph and T be a triangular face of G with a

boundary walk v1,e1,v2,e2,v3,e3,v1. Let H be a maximal blocker for the contraction

G−→ GT,e1 . Let F be a face in H that does not contain v3. Then F is also a face of G.

Proof. Since G is (2,2)-tight, by Theorem 3.2.2, γ2(H ∪ intG(F)) ≤ γ2(H) = 2. By the
sparsity of G, γ2(H ∪ intG(F)) = 2. It is clear that v3 /∈ H ∪ intG(F). So H ∪ intG(F) is a
blocker for G−→ GT,e1 . By the maximality of H, H ∪ intG(F)⊆ H and so intG(F)⊂ H.
Therefore, there are no vertices or edges of G in F .

3.4.4 Quadrilateral contraction

In this subsection we consider the topological version of the 4-cycle contraction operation
which is discussed in Subsection 3.3.4.
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Definition 3.4.10. Let G be a Σ-graph. A quadrilateral Q of G is a face of G such that its

boundary walk has length 4. A nondegenerate quadrilateral is a quadrilateral such that

its boundary walk is nondegenerate 4-cycle.

Definition 3.4.11. let v1,e1,v2,e2,v3,e3,v4,e4,v5 = v1 be the boundary walk of a cellular

quadrilateral face, Q, of a (2, l)-sparse Σ-graph G. Suppose that v1 6= v3 and e1 6= e3. The

4-cycle contraction operation is a composition of an edge contraction and two deletions.

The edge contraction operation can be performed by adding an edge, d, joining v1 and

v3. We embed d as a diagonal of the quadrilateral face Q. Since Q is homeomorphic

to an open disc this uniquely defines the isotopy class of |d|. Thus, we define GQ,v1,v3 =

(G∪ d)/d−{e1,e3} where d is embedded as described above. We say that GQ,v1,v3 is

the Σ-graph that is obtained from G by a quadrilateral contraction. We call the move

G−→ GQ,v1,v3 a quadrilateral contraction.

Figure 3.29 illustrates the quadrilateral contraction move.

e1 e2

e3
v1

v2

v3
Q

e2

v4
z

G GQ, v1,v3

e4 v4
e4

v2

d

Figure 3.29: A quadrilateral contraction move. Notice that the quadrilateral Q in G is
nondegenerate. The Σ-graph GQ,v1,v3 is obtained from G by contracting the (temporary)
edge d and deleting e1 and e3. The vertex z corresponds to the vertices v1 and v3 in G.

Suppose that G is (2,2)-tight surface graph and GQ,v1,v3 is not (2,2)-tight. Since G is
(2,2)-tight, by Lemma 3.3.18 there is some ( type 1 or type 2) blocker H.

Lemma 3.4.12. Let G be a (2,2)-tight Σ-graph and Q be a quadrilateral face with bound-

ary walk v1,e1,v2,e2,v3,e3,v4,e4,v5 = v1. Let H be a type 1 blocker for G −→ GQ,v1,v3

and that H is maximal with respect to inclusion among all such blockers. Then there is

exactly one face of H that is not a face of G.

Proof. Suppose that v2 /∈ H and let F be a face in H such that v2 /∈ F . Then by Theorem
3.2.2, γ2(H ∪ intG(F)) ≤ γ2(H) = 2. By the sparsity of G, γ2(H ∪ intG(F)) = 2. Hence
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H ∪ intG(F) is a blocker of type 1 for G −→ GQ,v1,v3 . By the maximality of H, H ∪
intG(H)⊆ H which means intG(H)⊂ H. Therefore, F is also a face of G.

See Figure 3.30.

H

v1

v2

v3
v4

G

S

Figure 3.30: The face S of the Σ-subgraph H is not a face of the Σ-graph G.

Lemma 3.4.13. Suppose that there is no type 1 blocker of G−→ GQ,v1,v3 and that H is a

type 2 blocker for G−→GQ,v1,v3 that is maximal with respect to inclusion among all such

blockers. Then there is exactly one face of H that is not also a face of G.

Proof. It is clear that v2 and v4 both belong to the same face say I of H. Suppose that F 6= I

is another face of H. By Theorem 3.2.2 we see that γ2(H ∪ intG(F))≤ γ2(H) = 3. By the
sparsity of G, γ2(H ∪ intG(F)) ∈ {2,3}. If γ2(H ∪ intG(F)) = 2 then γ2((H ∪ intG(F))∪
{v2}∪{e1,e2}) = 2. Hence H ∪ intG(F) is a blocker of type 1 for G −→ GQ,v1,v3 which
contradicts the hypothesis. Therefore, γ2(H∪ intG(F)) = 3 and so H∪ intG(F) is a blocker
of type 2 for G−→GQ,v1,v3 . By the maximality of H, H∪ intG(F)⊆H and so intG(F)⊂H

as required.

See Figure 3.31.

Figure 3.32 provides an example of a (2,2)-tight T-graph with a quadrilateral face.
The two blockers for the contraction move G−→ GQ,v1,v3 are also illustrated.
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H

v1

v2

v3

v4

G

S

Figure 3.31: The face S of the Σ-subgraph H is not a face of the Σ-graph G.

v2

v4

v3

v1
Q

Figure 3.32: The black respectively gray bold edge is a blocker of type 2 for the contrac-
tion move G−→ GQ,v2,v4 respectively G−→ GQ,v1,v3 .

3.4.5 Topological vertex splitting

Let G′ be the contraction G/e of a surface graph G. We say that G is obtained by a topo-
logical vertex split on G′. Thus, we distinguish three types of topological vertex splits that
are of particular interest. Those are digon splits, triangle splits and quadrilateral splits that
are the inverse to the digon contractions, triangle contractions and quadrilateral contrac-
tions respectively. In Figure 3.33, we provide examples of the three splitting moves.

Definition 3.4.14. A (2,2)-tight Σ-graph G is irreducible if there is no digon, triangle or

quadrilateral contraction of G that is also (2,2)-tight.

It is clear that every (2,2)-tight Σ-graph can be obtained from some irreducible Σ-
graph by applying a sequence of digon/triangle/quadrilateral splitting moves.
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G

G G′

G G′(a)

(b)

(c) G′

contraction

splitting

contraction

splitting

contraction

splitting

Figure 3.33: (a) The inverse of a digon contraction move. (b) The inverse of a triangle
contraction move. (c) The inverse of a quadrilateral contraction move.

3.5 Rotation systems and topological contraction moves

In this section, we explain how the topological contraction moves that we defined in the
previous section can be recalled using rotation system.

3.5.1 Edge contraction and deletion moves in terms of rotation sys-
tem

In the following, we describe how the rotation systems of Σ-graphs which are obtained by
edge contraction or deletion can be derived from the (original) rotation systems.
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Topological edge deletion move

Definition 3.5.1. Let R = (H,σ ,τ) be the rotation system of a Σ-graph G. Let e be an

edge in G and let (a,b) be the corresponding transposition in τ . Let G−e be the Σ-graph

which is obtained from G by deleting e. We define the rotation system R′ of G− e to be

(H ′,σ ′,τ ′) where H ′ = H−{a,b}, σ ′ = (b,σ(b))(a,σ(a))σ and τ ′ = (a,b)τ .

See Figure 3.34.

G

e

a b
σ
(a)

σ−1(a)

σ −1(b)

σ
(b)

G− e

σ
(a)

σ−1(a)

σ −1(b)

σ
(b)

Figure 3.34: Deleting an edge e and its corresponding half edges a and b.

Example 3.5.2. Consider the T-graph G in Figure 3.35. The rotation system of this graph

is R=(H,σ ,τ) where H = {1,2, . . . ,8}, σ =(1,2,3,4,5)(6,7,8) and τ =(1,3)(2,7)(4,6)
(5,8). On the other hand, the rotation system of the T-graph G− e in Figure 3.35

is (H ′,σ ′,τ ′) where H ′ = {1,2,3,5,7,8}, τ ′ = (1,2,3,5)(7,8). It is clear that H ′ =

H − {4,6} where (4,6) is the corresponding transposition of the edge e in τ , σ ′ =

(6,σ(6))(4,σ(4))σ = (6,7)(4,5)σ and τ ′ = (4,6)τ .

Topological edge contraction move

Definition 3.5.3. Let R = (H,σ ,τ) be the rotation system of a Σ-graph G. Let e be an

edge in G and let (a,b) be the corresponding transposition in τ . Let G/e be the Σ-graph

which is obtained from G by contracting e. We define the rotation system R′ of G/e to be

(H ′,σ ′,τ ′) where H ′ = H−{a,b}, σ ′ = (b,σ(a))(a,σ(b))σ and τ ′ = (a,b)τ .

See Figure 3.36.
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G G− e

e

Figure 3.35: A labelling of the half edges of the T-graphs G and G− e.
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(a)
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σ −1(b)

σ
(b)

G/e

σ(a)

σ
−1 (a)

σ−1(b)

σ
(b)

Figure 3.36: Contracting an edge e with the half edges a and b.

Example 3.5.4. Consider the S-graph G in Figure 3.37. The rotation system of this

graph is R = (H,σ ,τ) where H = {1,2, . . . ,12}, σ = (1,2,3)(4,5,6)(7,8,9)(10,11,12)
and τ = (1,7)(6,8)(9,10)(2,12)(3,4)(5,11). On the other hand, the rotation system of

the S-graph G/e in Figure 3.37 is (H ′,σ ′,τ ′) where H ′ = {2,3, . . . ,6,8, . . . ,12}, τ ′ =

(2,3,8,9)(4,5,6)(10,11,12). It is clear that H ′ = H−{1,7} where (1,7) is the corre-

sponding transposition of the edge e in τ , σ ′ = (7,σ(1))(1,σ(7))σ = (7,2)(1,8)σ and

τ ′ = (1,7)τ .
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Figure 3.37: A Labelling of the half edges of the S-graphs G and G/e.

3.5.2 Rotation systems of digon, triangle and quadrilateral contrac-
tions

In the following we describe the three topological contraction moves in terms of rotation
systems.

Rotation system of a digon contraction

Given G be a Σ-graph with a rotation system R. Let B be a digon of G with boundary walk
v1,e1,v2,e2,v1. The rotation system of GB can be easily obtained from R by specifying
the rotation system R′ of G/e1− e2.

Rotation system of a triangle contraction

Given G be a Σ-graph with a rotation system R. Let T be a triangle of G with bound-
ary walk v1,e1,v2,e2,v3,e3,v1. The rotation system of GT,e1 can be obtained from R by
specifying the rotation system R′ of G/e1− e2.

Rotation system of a quadrilateral contraction

Let R = (H,σ ,τ) be the rotation system of a Σ-graph G. Let Q be a quadrilateral in
G with boundary walk v1,e1,v2,e2,v3,e3,v4,e4,v1. The rotation system of GQ,v1,v3 can
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be obtained from R by specifying the rotation system R′ of (G∪ d)/d−{e1,e3}. See
Definition 3.4.11 for the embedding of d.
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Chapter 4

Finiteness Theorems

Constructing a class of graphs that have specific properties can be achieved by finding
small graphs that have the desired properties and a set of inductive moves. The term
’small’ is subject to missing the desired properties once the inverse of one of the inductive
moves performs on such graphs. Inductive moves, on the other hand, have to maintain the
desired properties of the class. Thus, by performing a sequence of the inductive moves
that we choose on the small graphs, we can generate the class of interest. In the literature,
the term ’small’ possesses other names such as minimal or irreducible.

The typical examples of inductive constructions have been done on triangulations of
surfaces. The natural inductive move in that sequel is the vertex splitting and its inverse
(edge contraction). In the study of triangulations of surfaces, vertex splitting has an im-
portant role. In Subsection 4.1, we survey some of the results in the area of triangulations
of surfaces and finding irreducible triangulations. Quadrangulations of surfaces also have
been investigated in a similar vein to the triangulations of surfaces. More background on
quadrangulations of surfaces can be found in [68] and [67].

Various inductive constructions of various subclass of sparse graphs have been initi-
ated in [29], [33] and [86].

For some classes of (2,2)-tight Σ-graphs with small genus, we show through this
chapter that there are finite number of irreducible graphs for such classes of graphs. In
4.8, we provide various examples for all the concepts that we will introduce in this chapter.
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4.1 Irreducibility and inductive constructions: Literature
review

In this section we recall and restate some well-known results of inductive constructions
of some classes of graphs. Note that the material that we present in Section 4.1 is not
strictly required for our own work. We present these results to provide some context and
motivation for our results.

4.1.1 Inductive constructions of some kinds of tight graphs

Inductive constructions of Laman graphs

Before stating the inductive constructions of some classes of graphs, we state some moves
which they extend the graphs under consideration. These moves are also known as Hen-
neberg extension moves. The following three definitions can be also found in [75] and
[82].

Definition 4.1.1. Let Γ = (V,E,s, t) be a graph and let u,v ∈ V . Note that we do not

assume that u and v are necessarily distinct. Define V ′ = V ∪{z} (where z is a ’new’

vertex) and E ′= E∪{e, f}. Extend s, t to E as follows: s(e) = u,s( f ) = v, t(e) = t( f ) = z.

We say that the graph (V ′,E ′,s, t) is a Henneberg type 0 extension of Γ. If u and v are

distinct, then we call the graph (V ′,E ′,s, t) a simple Henneberg type 0 extension of Γ.

Definition 4.1.2. Let Γ = (V,E,s, t) be a graph. Let u,v,w ∈ V and e ∈ E such that

s(e)= u and t(e)= v. Define V ′=V ∪{z} (where z is a ’new’ vertex) and E ′=(E−{e})∪
{ f ,g,h}. Extend s, t to E as follows: s( f ) = u,s(g) = v,s(h) = w, t( f ) = t(g) = t(h) = z.

We say that the graph (V ′,E ′,s, t) is a Henneberg type 1 extension of Γ. If u and v are

distinct, then we call the graph (V ′,E ′,s, t) a simple Henneberg type 1 extension of Γ.

Definition 4.1.3. Let Γ = (V,E,s, t) be a graph. Let u,v,w,x ∈ V and e, f ∈ E such that

s(e) = u,s( f ) = w, t(e) = v and t( f ) = x. Define V ′ =V ∪{z} (where z is a ’new’ vertex)

and E ′ = (E−{e, f})∪{g,h, i, j}. Extend s, t to E as follows: s(g) = u,s(h) = v,s(i) =

w,s( j) = x, t(g) = t(h) = t(i) = t( j) = z. We say that the graph (V ′,E ′,s, t) is a Henneberg

type 2 extension of Γ. If u and v are distinct, then we call the graph (V ′,E ′,s, t) a simple

Henneberg type 2 extension of Γ.
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Figure 4.1 clarifies the above three Henneberg moves.

H0

(a)

H1

(b)

H2

(c)

u

u v

v

u

v

u

v

u

v

w x

u v

w x

z z

z

w we

e

f

f

f

gh

g h

i j

Figure 4.1: (a) Henneberg type 0 move, H0. (b) Henneberg type 1 move, H1. (c) Hen-
neberg type 2 move, H2.

Definition 4.1.4. A graph Γ with vertex set V and edge set E is called a Laman graph if

it is (2,3)-tight.

Laman [59] and Henneberg [49] proved independently the following inductive con-
struction.

Theorem 4.1.5. A graph Γ is a Laman graph if and only if it can be constructed from a

single edge by a sequence of simple Henneberg type 0 or simple Henneberg type 1 moves.

See Figure 4.2 which provides an inductive construction of a (2,3)-tight graph with 7
vertices.

Inductive constructions for various classes of (2,l)-tight graphs

Here we briefly survey some inductive constructions from the existing literature. There
are various different types of "moves" were used. Rather than give a complete description
we have illustrated some examples of each type of the moves in Figure 4.3. For detailed
descriptions the reader should refer to the cited sources.
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H0 H0

H1

H1H1

Figure 4.2: Constructing a (2,3)-tight graph from a single edge by Henneberg type 0 (H0)
and Henneberg type 1 (H1) moves.

Theorem 4.1.6. [74] A simple graph Γ is (2,2)-tight if and only if Γ can be derived

from K4 by a sequence of simple Henneberg type 0, simple Henneberg type 1 and graph

extension.

The following is an alternative construction for the previous construction of (2,2)-
tight graphs.

Theorem 4.1.7. [73] A simple graph Γ is (2,2)-tight if and only if Γ can be constructed

from K4 by the simple Henneberg 0, simple Henneberg 1, vertex-to-K4 and edge-to-K3

moves.

We emphasise here that the two previous constructions of (2,2)-tight graphs are non
topological inductive constructions. Indeed, this thesis will provide a topological induc-
tive construction of (2,2)-tight graphs which are embedded in the torus.

Theorem 4.1.8. [73] A simple graph Γ is (2,1)-tight if and only if Γ can be constructed

from K5−e or K4tK4 by a sequence of simple Henneberg type 0, simple Henneberg type

1, vertex-to-K4, edge joining or edge-to-K4 moves.
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edge− to−K3

(a)

vertex− to−K4

edge joining

(b)

(c)

H Ku v
H Ku v

e

e
u

v

u

v1 v2

v

Figure 4.3: (a) This move replaces the edge e by K3. This move is the inverse of a triangle
contraction move. (b) This move replaces a vertex by K4. Following [74], this is an
example of graph extension. (c) This move forms the graph Γ by joining two (2,1)-tight
graphs H respectively K with an edge e of endpoints u and v where u respectively v is a
vertex in H respectively K.

4.1.2 Inductive constructions of some tight surface graphs

In this subsection, We first define the topological version of the Henneberg moves that we
stated in the previous subsection, i.e. topological Henneberg moves. Also, we state the
relationship between these three topological moves and the digon, triangle and quadrilat-
eral contraction moves. Moreover, we restate some known results of constructing some
class of surface graphs using some topological inductive moves.

Topological Henneberg moves

In the following, we redefine Henneberg moves but this time on surface graphs. We
also highlight the relationship between these topological Henneberg moves with the three
contraction moves that we dealt with in the previous chapter, i.e. digon, triangle and
quadrilateral contractions.

Definition 4.1.9. Let G = (Γ,φ) be a cellular Σ-graph with Γ = (V,E,s, t). Let F be

a face in G and u,v ∈ V such that φ(u) and φ(v) be two vertices on the boundary of

F. Let Γ′ = (V ′,E ′,s, t) be a graph where V ′ = V ∪{z} (where z is a ’new’ vertex) and
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E ′ = E ∪{e, f}. s, t are extended to E ′ as follows. s(e) = u,s( f ) = v, t(e) = t( f ) = z. Let

GH0 = (Γ′,φ ′) where φ ′||Γ| = φ , φ ′(z) is any element of F, φ ′(e) respectively φ ′( f ) is a

path joins φ ′(z) and φ ′(u) respectively φ ′(v) in F. We say that GH0 is the Σ-graph that is

obtained from G by a topological Henneberg type 0 move.

If u and v are distinct, then we say that GH0 is the Σ-graph that is obtained from G by

a simple topological Henneberg type 0 move.

It is clear that the topological Henneberg operation preserves (2, l)-sparseness for l ≤
2. This is because topological Henneberg type 0 is the inverse move to divalent vertex
move which preserves (2, l)-sparseness for all l. See Figure 4.4.

φ(u)

F

G G′

φ(v)

φ ′(u)

φ ′(v)

φ ′(z)

φ ′(e)

φ ′( f )

Figure 4.4: The Σ-graph G has a face F . The Σ-graph GH0 is obtained from G by a
topological Henneberg type 0 move.

Definition 4.1.10. Let G = (Γ,φ) be a cellular Σ-graph with Γ = (V,E,s, t). Let F and

R be two faces in G. Let u,v,w ∈ V such that φ(u),φ(v) and φ(w) be three vertices on

the boundary of F. Let e ∈ E such that φ(e) be an edge on the boundary of F such that

s(e) = u and t(e) = v. Let Γ′ = (V ′,E ′,s, t) be a graph where V ′ = V ∪{z} (where z is

a ’new’ vertex) and E ′ = (E − e)∪{ f ,g,h}. s, t are extended to E ′ as follows. s( f ) =

u,s(g) = v,s(h) = w, t( f ) = t(g) = t(h) = z. Let GH1 = (Γ′,φ ′) where φ ′||Γ| = φ , φ ′(z)

is any element of F ∪ R, φ ′( f ) respectively φ ′(g) and φ ′(h) is a path joins φ ′(z) and

φ ′(u) respectively φ ′(v) and φ ′(w). We say that GH1 is a topological Henneberg type

1 extension of G. We also say that GH1 is the Σ-graph that is obtained from G by a

topological Henneberg type 1 move.
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If u,v and w are distinct, then we say that GH1 is the Σ-graph that is obtained from G

by a simple topological Henneberg type 1 move. See Figure 4.5.

F

G G′

R

φ(u)

φ(v)

φ(w)

φ ′(u)

φ ′(v)

φ ′(w)

φ ′(z)
φ ′( f )

φ ′(g)
φ ′(h)

φ(e)

Figure 4.5: The Σ-graph G has the faces F and R. The Σ-graph GH1 is obtained from G
by a topological Henneberg type 1 move.

Definition 4.1.11. Let G = (Γ,φ) be a cellular Σ-graph with Γ = (V,E,s.t). Let F,R

and S be three faces in G. Let u,v,w,x ∈ V such that φ(u),φ(v),φ(w) and φ(x) be four

vertices on the boundary of F. Let e, f ∈ E such that φ(e) and φ( f ) be two edges on the

boundary of F such that s(e) = u,s( f ) = w, t(e) = v and t( f ) = x. Let Γ′ = (V ′,E ′,s, t) be

F

G

R

S
G′

R′

S′

φ(u) φ(v)

φ(w) φ(x)

φ ′(u) φ ′(v)

φ ′(w) φ ′(x)

φ ′(z)φ ′(g)φ(e)

φ ′(m)

φ ′(h)

φ ′(n)

φ( f )

Figure 4.6: The Σ-graph G has the faces F,R and S. The Σ-graph GH2 is obtained from G
by a topological Henneberg type 2 move.

a graph where V ′=V ∪{z} (where z is a ’new’ vertex) and E ′=(E−{e, f})∪{g,h,m,n}.
s, t are extended to E ′ as follows. s(g) = u,s(h) = v,s(m) = w,s(n) = x, t(g) = t(h) =
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t(m) = t(n) = z. Let GH2 = (Γ′,φ ′) where φ ′||Γ| = φ , φ ′(z) is any element of F ∪R∪ S,

φ ′(g) respectively φ ′(h),φ ′(m) and φ ′(n) is a path joins φ ′(z) and φ ′(u) respectively

φ ′(v),φ ′(w) and φ ′(x). We say that GH2 is a topological Henneberg type 2 extension of G.

We also say that GH2 is the Σ-graph that is obtained from G by a topological Henneberg

type 2 move.

If u,v,w and x are distinct, then we say that GH2 is the Σ-graph that is obtained from

G by a simple topological Henneberg type 2 move. See Figure 4.6.

Note that the constructions described in the previous three definitions depend essen-
tially on the choice of paths between the new vertex and the existing vertices. In fact,
different choices can yield different Σ-graphs. In the Figure 4.7 and Figure 4.8, we give
two examples to point out this issue. On the other hand, we emphasise that even though
this depends on the choice of the path is unavoidable, it does not affect any of the results
of this thesis.

u

w

v

u

w

v

z

u

w

v

z

G

G1 G2

e
u

w

v

G′
F

F ′

Figure 4.7: Deleting the edge e in the T-graph G results noncellular face F ′ in G′. On the
other hand, the two T-graphs G1 and G2 which they are the Hennberg type 1 extensions
of G are not isomorphic to each other.

Example 4.1.12. Consider the degenerate face F of the S-graph G in Figure 4.8. There

are two possible topological Henneberg type 0 extensions such that the new vertex z can
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be embedded in the face F such that it is adjacent to the repeated vertex u and the vertex v.

Specifically, there are two nonhomotopic paths can be chosen, the dashed and the dotted

ones, such that their endpoints are u and z. However, the two ways of embedding the

mentioned paths result two nonisomorphic S-graphs.

G′

z
u v

G

u v
F

Figure 4.8: Topological Henneberg type 0 move with two possible embeddings.

Figure 4.9 clarifies preforming the three topological Henneberg moves on a spherical
graph.

Digon, triangle and quadrilateral contractions vs topological Henneberg moves

We state the relationships between our three topological contraction moves, i.e digon, tri-
angle and quadrilateral contractions, and the topological Henneberg moves that we stated
in the previous subsection. Here we are presuming that no degenerate or noncellular faces
are created during conducting the three topological Henneberg moves that we described
in the previous discussion.

1- Digon contraction vs the topological Henneberg type 0 move: Let G = (Γ,φ) be a
Σ-graph and B, R and S are faces in G. Let B be a digon and u,e,v, f ,u be the boundary
walk of B such that e ∈ ∂B∩∂R and f ∈ ∂B∩∂S. Let G∗ be the dual graph of G. Let e∗

and f ∗ be the dual edge of e respectively f .

Let GB be the Σ-graph which is obtained from G by contracting the digon B. Let z be
the vertex which replaces the vertices u and v in GB.

Now, it is clear that if we delete the edges e∗ and f ∗ and also delete the dual vertex
corresponding to the face B, then ( the resulting ) graph is (GB)

∗. Consequently, we realise
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GG
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u = v
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T H0 T H1 T H2

(a) (b) (c)

e
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Figure 4.9: (a) A topological Henneberg type 0 move. (b) A topological Henneberg type
1 move. (c) A topological Henneberg type 2 move.

that G∗ is obtained from (GB)
∗ by a topological Henneberg type 0 move. Therefore, the

digon contraction is the dual move of the inverse of the topological Henneberg type 0
move.

Figure 4.10 clarifies the above discussion.

2- Triangle contraction vs the topological Henneberg type 1 move: Let G = (Γ,φ) be
a Σ-graph and R, S, T and Y are faces in G. Let T be a triangle and u,e,v, f ,w,g,u be
the boundary walk of T such that e ∈ ∂T ∩ ∂R, f ∈ ∂T ∩ ∂S and g ∈ ∂T ∩ ∂Y . Let e∗

respectively f ∗ and g∗ be the dual of the edge e respectively f and g.

Let GT,e be the triangle contraction of G. Let z be the vertex which replaces the
vertices u and v in GT,e. It is clear that (GT,e)

∗ is obtained from G∗ by deleting the edges
e∗, f ∗ and g∗ and also deleting the vertex T ∗. Then adding an edge h∗ ( such that its
endpoints are the dual of the faces Y and S).
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G GB

G∗ (GB)
∗(T H0)

−1

Digon contraction

B

R

S

u v
e

f

z

e∗

f ∗

B∗

S∗

R∗

S∗

R∗

Figure 4.10: The Σ-graphs G and GB are in black color. On the other hand, the dual
Σ-graphs G∗ and (GB)

∗ are in gray color.

Consequently, we realise that G∗ is obtained from (GT,e)
∗ by a topological Henneberg

type 1 move. Therefore, the triangle contraction is the dual move of the inverse of the
topological Henneberg type 1 move. Figure 4.11 clarifies the above discussion.

G GT,e

G∗
(GT,e)

∗
(T H1)

−1

Triangle contraction
R e∗

Y ∗ S∗

R∗

T
SY

e

f
g

f ∗g∗

T ∗

Y ∗ S∗

R∗

h∗

u v

w w

z

g

Figure 4.11: The Σ-graphs G and GT,e are in black color. On the other hand, the dual
Σ-graphs G∗ and (GT,e)

∗ are in gray color.

3- Quadrilateral contraction vs the topological Henneberg type 2 move: Let G =

(Γ,φ) be a Σ-graph and Q, R, S, T and Y are faces in G. Let Q be a quadrilateral and
u,e,v, f ,w,g,x,h,u be the boundary walk of Q such that e ∈ ∂Q∩ ∂R, f ∈ ∂Q∩ ∂S, g ∈
∂Q∩ ∂T and h ∈ ∂Q∩ ∂Y . Let e∗ respectively f ∗, g∗ and h∗ be the dual edge of e
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respectively f , g and h.
Let GQ,u,w be the quadrilateral contraction of G. Let z be the vertex which replaces the

vertices u and w in GQ,u,w. It is clear that (GQ,u,w)
∗ is obtained from G∗ by deleting the

edges e∗, f ∗, g∗ and h∗ and also deleting the vertex Q∗. Then adding the edges m∗ and n∗

where the endpoints of m∗ respectively n∗ are the dual of the faces R,S respectively Y,T .
Consequently, we realise that G∗ is obtained from (GQ,u,w)

∗ by a topological Hen-
neberg type 2 move. Therefore, the quadrilateral contraction is the dual move of the
inverse of the topological Henneberg type 2 move. Figure 4.12 clarifies the above discus-
sion.

G

m∗

(T H2)
−1

Quadrilateral contraction GQ,u,w

(GQ,u,w)
∗

R

e∗

Y ∗

S∗R∗

T

S

Y

e f

g

f ∗

g∗

T ∗
h

Q

Q∗
h∗ Y ∗

S∗R∗

T ∗

G∗

n∗

u

v

w

x

v

x

z

f

h

Figure 4.12: The Σ-graphs G and GQ,u,w are in black color. On the other hand, the dual
Σ-graphs G∗ and (GQ,u,w)

∗ are in gray color.

Inductive construction of plane Laman graphs

In [28], Fekete, Jordán and Whitely found a topological construction for plane Laman
graphs using the inverse of triangle contraction move. Their result is a major motivation
for us to find a topological inductive construction of (2,2)-tight torus graphs.

Theorem 4.1.13. [28] If G is a plane Laman graph with at least 3 vertices, then there is

some triangular face T and edge e of T such that GT,e is a plane Laman graph.

Corollary 4.1.14. [28] Every plane Laman graph can be constructed from a single edge

by a sequence of triangle splitting moves.
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From the previous theorem, up to homeomorphism, a single edge is the irreducible
graph of plane Laman graphs.

An alternative topological inductive construction for plane Laman graphs was pre-
sented in [46]. The following theorem states such construction.

Theorem 4.1.15. Every plane Laman graph can be constructed from a single edge by a

sequence of simple topological Henneberg type 0 or type 1 moves.

Block and hole graphs

In rigidity theory, the general problem is to characterise the rigidity or minimal rigidity
of generic three-dimensional bar-joint frameworks. Many approaches have been used
to attack such an open problem. One combinatorial approach to solve special cases of
this problem is considering an interesting class of graphs which are derived from convex
polyhedra. The graphs of this class are called block and hole graphs. This class of graphs
was introduced in [97], [30] and [31]. Such graphs arise from a surgery on a triangulated
sphere by removing edges from some triangles and inserting minimal rigid blocks into
some of the resulting holes. Specifically, removing some edges from a triangulated sphere
results in some holes. In [17], such a graph is called a facegraph after labelling all non
triangular faces with B or H.

In [17], a special class of graphs of block and hole graphs, called discus and hole
graphs, was investigated. Each graph in this class is constructed from a facegraph by
substituting a (3,6)-tight graph called simplicial discus in each block, see Figure 4.13.
An inductive construction has been given for minimally rigid discus and hole graphs with
at most one block.

Theorem 4.1.16. A discus and hole graph with at most one block is minimally rigid if

and only if it can be reduced into K4 by a sequence of triangle contractions such that in

each such contraction no multigraph is constructed.

Back to the facegraphs, the authors in [17] characterised (3,6)-tightness of facegraphs
with at most one block by the following theorem.

Theorem 4.1.17. A facegraph with at most one block is (3,6)-tight if and only if its

corresponding discus and hole graph is minimally rigid.
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minimally rigid block subsititution

S

Figure 4.13: A minimally rigid block substitution move performs by inserting the (3,6)-
tight graph (which is called simplicial discus in [17]) S in the block B.

Notice that the class of facegraphs has many irreducible graphs. The irreducibility
here is subject to the triangle contraction move. For example, there are many irreducible
graphs in which contracting an edge which lies in two adjacent triangles, called T T edge,
can not be performed. Specifically, contracting T T edges for such irreducible graphs
result a facegraph such that its corresponding discus and hole graph is not (3,6)-tight,
Figure 4.14.

B

H
H

H

H

H
B H

BH

(a) (b)

T
T

Figure 4.14: Two irreducible spherical facegraphs.

Cruickshank, Kitson and Power in [18] investigated triangulated torus graphs with a
single hole. They presented the following construction.

Theorem 4.1.18. [18] Let G = (Γ,φ) be a T-graph such that Γ is a triangulation. Sup-

pose a single disc removed from G. Then G is minimally rigid if and only if G is (3,6)-
tight.
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The authors found that there are 17 irreducible graphs for such class of torus graphs.
Figure 4.15 provides two of such irreducible graphs.

(a) (b)

Figure 4.15: Two irreducible facegraphs among the 17 irreducible T-graphs that are pro-
vided in [18].

Topological triangulations

In the following we briefly survey minimal triangulations of surfaces and summarise some
well-known results of this topic.

Definition 4.1.19. A surface triangulation is a Σ-graph G = (Γ,φ) such that Γ is a simple

graph. Each face of G is a nondegenerate triangle and each two triangles in G intersect

either on a single edge, a single vertex or they are disjoint.

Definition 4.1.20. A surface triangulation G is called minimal if for every edge e in G

there is a blocker for the triangle contraction move G−→ GT,e.

In the following, we briefly summarise some results related to the number of mini-
mal surface triangulations in the literature. Barnette and Allan [8] proved the following
theorem.

Theorem 4.1.21. If Σ is a surface of genus g, then there are finitely many minimal surface

triangulations of Σ.
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In a similar vein, Nakamoto and Ota, [69], have given a bound for the size of an
irreducible quadrangulation of a compact boundaryless surface. In [12], minimal trian-
gulations of surfaces with boundary have been investigated. It has been shown that the
number of vertices of such a minimal triangulation admits an upper bound that is linear
in the genus and the number of boundaries of the surface.

The previous results were partly motivated us to set a conjecture at the end of this
chapter for existing a finite number of irreducible (2, l)-tight Σ-graphs for any surface
with finite topological property for 0≤ l ≤ 3. In Table 4.1, we end this survey section by
providing a summary of some known results of the number of minimal surface triangula-
tions of some low genus surfaces.

Surface no. of minimal surface triangulations Author Reference
Sphere 1 Steintz [83]
Projective plane 2 Barrnette [7]
Torus 21 Lawercenko [61]
Klein bottle 29 Sulanke [85]

Table 4.1: A summary of minimal triangulations of some surfaces of low genus.

Figure 4.16 illustrates the minimal triangulation of th sphere and one of the 21 minimal
triangulations of the torus.

(a) (b)

Figure 4.16: (a) The minimal triangulation of the sphere, [83]. (b) One of the 21 minimal
triangulations of the torus, [61].
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4.2 (2,2)-tight sphere graphs

In this section we give an inductive construction for the class of (2,2)-tight sphere graphs.
We start by presenting some simple results and facts of such class of spherical graphs.

Lemma 4.2.1. Suppose that G is a (2,2)-sparse S-graph with at least two vertices. If

γ2(G)≤ 3, then G is cellular.

Proof. By Lemma 3.1.8, G is connected. But S has genus 0. It follows that G is cellular.

Lemma 4.2.2. Suppose that G is a (2,2)-sparse S-graph with at least two vertices. If

γ2(G) = 2, then

2 f2 + f3 = 4+ f5 +2 f6 + . . .

Proof. By Lemma 4.2.1, G is cellular. Since G is (2,2)-sparse, then by Lemma 3.1.4,
f1 = 0. Now apply Lemma 2.4.4.

Lemma 4.2.3. Suppose that G is a (2,2)-sparse S-graph with at least two vertices. If

γ2(G) = 3, then

2 f2 + f3 = 2+ f5 +2 f6 + . . .

Proof. By Lemma 4.2.1, G is cellular. By Lemma 3.1.4, f1 = 0. Now apply Lemma
2.4.4.

Corollary 4.2.4. If G is a (2,2)-tight S-graph with at least two vertices, then

2 f2 + f3 ≥ 4

Proof. Since G is (2,2)-tight, then by Lemma 3.1.4, f1 = 0. By Lemma 4.2.1, G is
cellular. Now the required inequality can be derived from Lemma 4.2.2.

Corollary 4.2.5. If G is a simple (2,2)-tight S-graph, then it has at least four triangular

faces.

Proof. Since G is simple, then f2 = 0. So by Lemma 4.2.2 we have f3 = 4+ f5+2 f6+ . . . .
Thus, f3 ≥ 4.

75



CHAPTER 4. FINITENESS THEOREMS

G

Figure 4.17: The S-graph G is the smallest simple (2,2)-tight spherical graph.

It is clear that the S-graph in Figure 4.17 is the smallest simple (2,2)-tight S-graph.

Theorem 4.2.6. Every (2,2)-tight S-graph can be reduced into a single vertex by a se-

quence of digon or triangle contractions.

Proof. Suppose that G has at least two vertices. By Lemma 3.1.8, G is connected and
f1 = 0. By Lemma 4.2.2, 2 f2 + f3 ≥ 4 which means in particular G either has a digon or
a triangle and G is not irreducible.

In Figure 4.18, we include a construction of a (2,2)-tight S-graph.

4.3 Curves in surfaces

In this section, we recall some types of curves in a surface. We focus in particular on
curves in the torus. We start first by reviewing some basic terminology associated to
curves in surfaces. More background on this section can be found in [64], [92], [95], [55]
and [15].

4.3.1 Some definitions

In the following we recall some definitions that concern loops in surfaces, see Definition
2.2.4.

Definition 4.3.1. A simple loop α is nonseparating if Σ− im(α) has the same number of

connected components as Σ.
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Figure 4.18: A sequence of digon and triangle contractions performed on a (2,2)-tight
S-graph. The contraction sequence ends with the irreducible (2,2)-tight S-graph.

In the torus, a simple loop is nonseparating if and only if it does not bound an embed-
ded disc. Figure 4.19 provides various kinds of loops.

In the following we state the definition of homotopy, [64], [92].

Definition 4.3.2. Let α and β be loops in Σ. We say that α and β are homotopic if there

is a continuous function F : [0,1]×S1 −→ Σ such that F(0, t) = α(t) and F(1, t) = β (t)

for all t ∈ S1.

Definition 4.3.3. Let α be a loop in Σ. We say that α is null homotopic if α is homotopic

to a constant map.

Definition 4.3.4. [35] A loop α in Σ is called essential if it is not null homotopic. Other-

wise α is called inessential.

The loop β in Figure 4.19 is essential while the two loops α and γ are inessential.

Definition 4.3.5. [27] Let α and β be two simple loops in Σ. The geometric intersection

number i(α,β ) is defined as follow.
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α

β

γ

Figure 4.19: The loop β is nonseparating while the loops α and γ are separating loops in
T.

i(α,β ) = min{|α ′
⋂

β
′|}

where α ′, respectively β ′ varies over the set of simple loops homotopic to α , respec-

tively β ′.

In Figure 4.20, we provide some examples that illustrate the geometric intersection
number of loops in the sphere and the torus.

α

β

β

α

(a) (b)

α

β

(c)

Figure 4.20: The geometric intersection of α and β , i.e. i(α,β ), in (a) respectively (b), (c) is
0 respectively 0, 1.

Lemma 4.3.6. Suppose that α and β are smooth simple curves in an orientable surface

Σ and that α and β intersect transversely at exactly one point. Then i(α,β ) = 1 and

consequently both α and β are essential loops in the surface.

Proof. [27]
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4.3.2 Cutting and capping surfaces along loops

Let α be a nonseparating loop in an oriented surface Σ without boundary. If we cut Σ

along α , then a new surface Σ′ will be created with two boundary components, see Figure
4.21.

( a ) ( b )

Σ′Σ

α α1 α2

Figure 4.21: (a) The surface Σ (the torus) contains a nonseparating loop α . (b) The surface
Σ′ ( the cylinder) is obtained by cutting Σ along α . The boundary loops of Σ′ are α1 and
α2.

Now, suppose that L is a Σ-graph where Σ has genus g. Suppose that ζ is a nonsepa-
rating loop in Σ that is contained within some face F of L. By cutting Σ along ζ and filling
in the two resulting boundary curves with open discs, we obtain a Σ̃-graph, denoted by L̃,
where Σ̃ is a surface of genus g−1. We call this surgical procedure cutting and capping
along ζ . Notice that if ζ is a separating loop in Σ, then the cutting and capping along ζ

results in two surfaces such that the sum of the genera of the resulting surfaces is equal to
the genus of the original surface in the case of a separating loop .

Lemma 4.3.7. If ζ is nonseparating in F, then L̃ has exactly one face, denoted by F̃, that

is not also a face of L. On the other hand, if ζ is separating in F, then L̃ has exactly two

faces, denoted by F̃+ and F̃− that are not also faces of L.

See Figure 4.22 and Figure 4.23 which describe the previous lemma.
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( a ) ( b )

L

ζ

F

F̃
L̃

Figure 4.22: (a) The loop ζ in the face F of the T-graph L is nonseparating in T. More-
over, ζ is not separating in F . (b) The face F̃ of the S-graph L̃ is generated by cutting T
along ζ and then filling the two boundaries with open discs.

( a ) ( b )

F̃+ F̃−

L̃L

ζ

F

Figure 4.23: (a) The loop ζ in the face F of the T-graph L is nonseparating in T and it
is also separating in F . (b) The two faces F̃+ and F̃− of the S-graph L̃ are generated by
cutting T along ζ and then filling the two boundaries with open discs.

4.4 Structures of irreducible (2,2)-tight torus graphs

In this section we study the structure of an irreducible (2,2)-tight torus graph. We prove
some structural results that will later help us to prove our main finiteness theorem about
irreducible (2,2)-tight T-graphs.

We recall that a (2,2)-tight T-graph G is irreducible if there is no digon, triangle or
quadrilateral contraction of G that is also (2,2)-tight.

Definition 4.4.1. Let c be a cycle in a Σ-graph G = (Γ,φ). The geometric realisation

of c is a subspace in Σ which is homeomorphic to S1. Notice that c has two possible
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orientations. We can find a loop α homotopy to S1 with an orientation that coincides with

the orientation of the cycle c. The loop α is called the associated loop of c.

Definition 4.4.2. A separating, respectively nonseparating cycle c in a Σ-graph G is a

simple closed walk whose associated simple loop is separating, respectively nonseparat-

ing in Σ.

We emphasise here that a cycle in a Σ-graph is distinct from a cycle of a graph. Con-
sequently, a separating cycle in a Σ-graph is distinct from the normal usage in the graph
theory literature. See Figure 4.24.

( a ) ( b )

G

α

G

c αc

Figure 4.24: (a) The nonseparating cycle c is nonseparting in the T-graph G. (b) The
nonseparating cycle c is separating in the T-graph G. The nonseparating loop α is the
associated loop for the cycle c in (a) and (b).

Lemma 4.4.3. Suppose that H is a T-subgraph of a (2,2)-tight T-graph G and that there

is some closed walk in H that is not null homotopic. Then there is a nonseparating cycle

in H.

Proof. Consider all the closed walks in H that are not null homotopic. Choose one of such
closed walks with minimal edge length. Notice that as this closed walk is minimal then
there is no repeated vertex in this walk. Therefore, this closed walk is a nonseparating
cycle in H.

Notation 4.4.4. (Q) Let G be an irreducible (2,2)-tight T-graph. We consider a quadri-

lateral face Q of G with boundary walk

vQ
1 ,e

Q
1 ,v

Q
2 ,e

Q
2 , . . . ,e

Q
4 ,v

Q
5 = vQ

1
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See Figure 4.25.

eQ
1

Q
vQ

1

vQ
2

vQ
3

vQ
4

eQ
2

eQ
3

eQ
4

Figure 4.25: A labelling of a nondegenerate quadrilateral face of an irreducible (2,2)-tight
T-graph.

For the rest of this section, we deal with only one quadrilateral face. Thus, apart from
setting new notations, we remove the superscript Q from all notations that include such
superscript. This applies to only for the rest of this section.

Lemma 4.4.5. Let G be an irreducible (2,2)-tight T-graph. Then Q has a nondegenerate

boundary.

Proof. Since G is (2,2)-tight, then by Lemma 3.1.4, G has no loop. So v1 6= vi+1 for
i = 1, ...,4. Since G is (2,2)-tight, by Lemma 3.1.9, G has no vertex of degree 1, so
ei 6= ei+1 for i = 1,2,3 and e4 6= e1. Suppose that v1 = v3. If v2 = v4, then by the sparsity
of G, the boundary of Q has at most two edges. In this case we see that Q is not adjacent
to any other face, so Q must be the unique face of G. This contradicts Lemma 4.2.2.

Therefore, supposing v1 = v3 indicates that v2 6= v4. Since G is irreducible there is a
blocker, H, for G−→GQ,v2,v4 . Notice that since v1 = v3, then H cannot be a type 1 blocker
and so H is a blocker of type 2. Therefore, v1,v3 /∈ H. It follows that γ2(H ∪ ∂Q) =

γ2(H)+ γ(∂Q)− γ2(H ∩∂Q) = 3+2−4 = 1 which contradicts the sparsity of G. Hence
v1 6= v3. A similar argument can be used to show that v2 6= v4.

We comment that the irreducibility assumption is necessary in Lemma 4.4.5. To see
why, let us consider the example in Figure 4.26.
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(a) (b)

Figure 4.26: (a) The (2,2)-tight T-graph is not irreducible. This T-graph contains a
degenerate quadrilateral face that is bold. Notice that this T-graph can be reduced into the
T-graph in (b).

Notation 4.4.6. (HQ
1 and HQ

2 ) Let G be an irreducible (2,2)-tight T-graph. Since G is

irreducible, by Theorem 3.3.18, there are maximal blockers HQ
1 , respectively HQ

2 , for the

contractions G−→ GQ,v1,v3 , respectively G−→ GQ,v2,v4 .

Lemma 4.4.7. Let G be an irreducible (2,2)-tight T-graph. Then both H1 and H2 are

type 2 blockers for their respective contractions.

Proof. Suppose that H1 is a blocker of type 1. Then H1∩H2 6= /0. Now, if H2 is a blocker
of type 1, then by Lemma 3.1.7 the T-subgraph H1∪H2 is (2,2)-tight. Also, notice that
H1∪H2 misses exactly one edge of ∂Q. Now, by Lemma 3.1.2:

γ2(H1∪H2∪∂Q) = γ2(H1∪H2)+ γ2(∂Q)− γ2((H1∪H2)∩∂Q)

= 2+4−5

= 1

This contradicts the sparsity of G. On the other hand, if H2 is a blocker of type 2, then
H1∪H2 is missing exactly two edges of ∂Q. So

γ2(H1∪H2) = γ2(H1)+ γ2(H2)− γ2(H1∩H2)

≤ 2+3−2 = 3

Therefore,
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γ2(H1∪H2∪∂Q) = γ2(H1∪H2)+ γ2(∂Q)− γ2((H1∪H2)∩∂Q)

≤ 3+4−6

= 1

Which again contradicts the sparsity of G. Therefore, the conclusion is true.

Lemma 4.4.8. Let G be an irreducible (2,2)-tight T-graph and H1 and H2 are the block-

ers of a quadrilateral face Q of G. Then H1
⋂

H2 = /0.

Proof. From Lemma 4.4.7, we notice that each of H1∩∂Q and H2∩∂Q has exactly one
vertex of each of the edges e1,e2,e3,e4. Thus,

2≤ γ2(H1∪H2∪∂Q) = γ2(H1)+ γ2(H2)+ γ2(∂Q)− γ2(H1∩H2)

− γ2(H1∩∂Q)− γ2(H2∩∂Q)+ γ2(H1∩H2∩∂Q)

= 3+3+4− γ2(H1∩H2)−4−4+0

= 2− γ2(H1∩H2)

So γ2(H1∩H2)≤ 0. Therefore, H1∩H2 = /0.

Lemma 4.4.9. Let G be an irreducible (2,2)-tight T-graph. Let H1 and H2 be the blockers

of a quadrilateral face Q of G. Then both H1 and H2 are connected.

Proof. Since G is (2,2)-tight, then H1 and H2 are (2,2)-sparse. But γ2(H1) = γ2(H2) = 3.
Therefore, by Lemma 3.1.8, H1 and H2 are connected.

Lemma 4.4.10. Let G be an irreducible (2,2)-tight T-graph. Then every face of H1 or

H2 is homeomorphic to either an open disc, an open cylinder or a once punctured torus.

Proof. By Lemma 4.4.9, both H1 and H2 are connected. Since T has genus one, then the
required conclusion follows.

Notation 4.4.11. ( α
Q
1 and α

Q
2 ) Consider the maximal blocker H1. Since H1 is connected

we can create a simple loop α
Q
1 in T by concatenating a minimal walk in H1 joining v1

and v3 with the diagonal of Q that joins vQ
1 and vQ

3 . Define α
Q
2 in the obviously analogous

way, see Figures 4.30 and 4.32.
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Notice that αi is not necessarily uniquely defined even up to homotopy class, see
Figure 4.27.

α∗
1

Q
α ′1

Figure 4.27: α ′1 and α∗1 are non homotopic to each other.

Lemma 4.4.12. Consider the simple loops αi, i = 1,2 of a (2,2)-tight T-graph G with a

quadrilateral face Q. Then the geometric intersection number of α1 and α2 is 1. i.e.

i(α1,α2) = 1 (4.1)

Proof. Since H1∩H2 = /0, by construction α1 and α2 intersect transversely at exactly one
point ( where the diagonals of Q meet). Thus, Lemma 4.3.6 gives the desired conclusion.

Lemma 4.4.13. Consider the simple loops αi, i = 1,2 of a (2,2)-tight T-graph G with a

quadrilateral face Q. Then αi is a nonseparating simple loop for i = 1,2.

Proof. In any orientable surface, i(α,β ) = 1 implies that both α and β are nonseparating
loops. Thus, Lemma 4.4.12 gives the required conclusion.

Theorem 4.4.14. Let G be a noncellular irreducible (2,2)-tight T-graph. Then G com-

prises either a single vertex or a pair of parallel edges embedded as a nonseparating

cycle in T.

Proof. Since T has genus one and G is connected (Lemma 3.1.8), then G has exactly one
face that is not an open disc. So G might have only one vertex. Now, suppose that G

has more than one vertex. If the noncellular face is a punctured torus, then Lemma 4.2.2
implies that G has a cellular face that is either a triangle or a digon, contradicting the
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irreducibility of G. Thus, the noncellular face of G must be an open cylinder. Let ζ be a
loop in this face that is nonseparating in T. By cutting and capping along ζ , we obtain G̃

which is a (2,2)-tight S-graph with two faces that are not faces of G. By Lemma 4.2.2,
the two exceptional faces of G must be digons. By using Lemma 4.2.2 again, we see that
any other faces must be quadrilaterals. Now, consider one of these quadrilateral faces,
say Q. Then i(α1,ζ ) = i(α2,ζ ) = 0. But T has genus one. It follows that i(α1,α2) = 0
contradicting Lemma 4.4.12. So G has no quadrilateral faces. Therefore, G comprises
exactly two edges, embedded as a nonseparating cycle.

Figure 4.28 presents the conclusion of the previous theorem.

(a) (b)

Figure 4.28: The conclusion of Theorem 4.4.14: (a) The irreducible (2,2)-tight T-graph
with one vertex. (b) The irreducible (2,2)-tight T-graph with two vertices.

Definition 4.4.15. Let L be a T-subgraph of a (2,2)-tight T-graph G. The T-subgraph L

is called inessential if it is contained in some embedded open disc in T. Otherwise L is

called essential .

In Figure 4.29, we provide examples of essential and inessential torus subgraphs.

Lemma 4.4.16. For a connected T-subgraph L of a (2,2)-tight T-graph G, the following

are equivalent.

1. L is essential.

2. L contains a nonseparating cycle.

3. L does not have any face homeomorphic to a once punctured torus.

86



4.4. STRUCTURES OF IRREDUCIBLE (2,2)-TIGHT TORUS GRAPHS

G

L

G

L

(a) (b)

Figure 4.29: (a) The T-subgraph L of the T-graph G is inessential. (b) The T-subgraph L
of the T-graph G is essential.

Proof. (1)⇒ (3) Since L is essential so it is not contained in an open disc. So there is no
face of L homeomorphic to a once punctured torus.

(2)⇒ (1) Since L contains a nonseparating cycle so L cannot be contained in an open
disc.

(3)⇒ (2) Suppose that (3) is true. Notice that T has genus one and L is connected.
So L is either cellular or has exactly one face that is not a disc and that face is a cylinder.
In either case we can see that there is a closed walk in L that is not null homotopic. By
Lemma 4.4.3 there is a nonseparating cycle in L and so the statement 2 is true.

Notice that if Hi is an essential blocker of a quadrilateral face of an irreducible (2,2)-
tight T-graph, then we may choose a nonseparating cycle ( notation β

Q
i ) βi that lies in Hi.

Since H1
⋂

H2 = /0,
i(βi,α3−i) = 0 for i = 1,2. (4.2)

Given that T has genus one, it follows that βi is unique up to homotopy.

Lemma 4.4.17. Let G be an irreducible (2,2)-tight T-graph with a quadrilateral face Q.

Then at most one of H1 or H2 is essential.

Proof. Suppose that both of H1 and H2 are essential. Observe that i(β1,β2) = i(β1,α2) =

i(α1,β2) = 0. Since T has genus one, so i(α1,α2) = 0 contradicting Lemma 4.4.12.
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H1

H2

Q
α1

α2

v1

v2

v3

v4

β1

Figure 4.30: A summary for the previous notations and concepts in this section. Following
Lemma 4.4.17 the blocker H1 is essential and the blocker H2 is inessential.

4.5 The structure of blockers of quadrilateral faces in ir-
reducible torus graphs

In this section we explore the structure of the blockers of quadrilateral face(s) in an irre-
ducible (2,2)-tight T-graph. Here again, as we deal with only one quadrilateral face, then
we remove the superscript Q from all notations that include such superscript. This applies
to only for the rest of this section. However, We put such superscripts only for setting
new notations.

Notation 4.5.1. ( JQ
i , H̃Q

i , J̃Q
+ and J̃Q

−) Since HQ
i is a maximal blocker, by Lemma 3.4.13,

there is exactly one face, denoted by JQ
i , of HQ

i that is not also a face of G. Observe that, by

construction, JQ
i is a noncellular face of HQ

i since it contains α
Q
3−i which is nonseparating

in T. Therefore, we can form an S-graph H̃Q
1 , respectively H̃Q

2 , by cutting and capping

along α
Q
2 , respectively α

Q
1 . We note that if α

Q
2 is nonseparating in JQ

1 , as opposed to just

in T, then H̃Q
1 has exactly one face, denoted by J̃Q

1 , that is not a face of G. On the other

hand, if α
Q
2 separates JQ

1 , then H̃Q
1 has exactly two faces, denoted by J̃Q

+ and J̃Q
−, that are

not faces of G.

Lemma 4.5.2. Let G be an irreducible (2,2)-tight T-graph. Let Q be a quadrilateral face

of G. Let H1 and H2 be the blockers of Q. If Hi, i = 1,2 is inessential, then it is a single

edge.
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Proof. Assume without loss of generality that H1 is inessential. By Lemma 4.4.16, J1 is
isomorphic to a once punctured torus. So α2 is nonseparating in J1. Now, consider the
S-graph H̃1 and the unique face, J̃1, of H̃1 that is not also a face of G. It is clear that
γ2(H̃1) = 3. Now, by Lemma 4.2.3, H̃1 satisfies 2 f2 + f3 ≥ 2. On the other hand, G is
irreducible, so it has no digonal or triangular faces. In particular, the only face of H̃1 that
could be a digon or a triangle is J̃1. Thus, the only possibility is that J̃1 is in fact a digon.
Now, if the boundary of J̃1 is nondegenerate, then γ2(∂J1) = γ2(∂ J̃1) = 2. Hence by
Theorem 3.2.2, we get γ2(H1) = 2 contradicting γ2(H1) = 3. Therefore, the boundary of
J̃1 must be degenerate. Therefore, H̃1 and H1 also must consist of just a single edge.

Lemma 4.5.3. Let G be an irreducible (2,2)-tight T-graph and Q be a quadrilateral face

of G. Then the graph spanned by the vertices of Q is isomorphic either to K4 or K4 with

one edge deleted.

Proof. By Lemma 4.4.17, at least one of the blockers is inessential. By Lemma 4.5.2, an
inessential blocker is a single edge.

Notation 4.5.4. (cQ
+ and cQ

−) Let G be an irreducible (2,2)-tight T-graph with a quadrilat-

eral face Q. Consider the structure of an essential blocker . Suppose that H1 is essential.

Then JQ
1 is homeomorphic to an open cylinder. Let cQ

+ and cQ
− denote the two boundary

walks for ∂JQ
1 .

Lemma 4.5.5. Consider the boundary walks c+ and c−. If c+ and c− are simple then

they are nonseparating.

Proof. This follows from the fact that H1 is essential.

Lemma 4.5.6. Consider the boundary walks c+ and c−. Then both of these boundary

walks are homotopic to α2.

Proof. This follows from i(c+,α2) = i(c−,α2) = 0.

Lemma 4.5.7. The closed walks c+ and c− satisfy the following inequalities:

2≤ |c+|, |c−| ≤ 4 and |c+|+ |c−| ≤ 6.

Proof. Consider the S-graph H̃1 with faces J̃+ and J̃−. It is clear that c+ respectively c−
is the boundary walk of J̃+ respectively J̃− and γ2(H̃1) = 3. All other faces of H̃1 are
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also faces of G. But G is irreducible so such faces are not digons or triangles. But H̃1

is an S-graph so by Lemma 4.2.3, H̃1 satisfies 2 f2 + f3 ≥ 2+∑
i≥5

(i−4) fi. Therefore, the

required conclusion follows easily.

Lemma 4.5.8. If H1 is essential, then either H1 is isomorphic to the T-graph in Figure

4.31, or c+ and c− are cycles.

Proof. If c+ has a repeated vertex, then since G has no loop edges it follows that |c+| ≥
4. But by Lemma 4.5.7, |c−| = 2 and in that case, let w be the repeated vertex of c+.
This must be a cut vertex of H1. Thus, H1 = X ∪Y where X ∩Y = {w}. Then γ2(X)+

γ2(Y )−2= γ2(H1) = 3. Thus, γ2(X)+γ2(Y ) = 5. Without loss of generality, suppose that
γ2(X) = 2 and γ2(Y ) = 3. So X is a (2,2)-tight T-subgraph of G. By Theorem 5.1.1, X is
irreducible. So X is either isomorphic to the T-graph in Figure 4.28(a) or Figure 4.28(b).
But X has more than one vertex. Therefore, X is isomorphic to the T-graph in Figure
4.28(b). By a similar argument as in the proof of Lemma 4.5.2, Y is a single edge.

Figure 4.31: The T-graph is isomorphic to the blocker H1 provided that c− and c+ are not
cycles.

Notation 4.5.9. ( FQ
+ and FQ

− ) Consider the (2,2)-tight subgraph ∂Q
⋃

H1
⋃

H2. This

T-graph has two faces, denoted by FQ
+ ⊂ JQ

1 and FQ
− ⊂ JQ

1 that may not be faces of G.

We choose our labels so that vQ
1 ∈ FQ

− and v3 ∈ FQ
+ . As a consequence of Lemma 4.5.8,

we see that the boundary walk of FQ
+ is the walk vQ

3 ,e
Q
3 ,v

Q
4 ,H

Q
2 ,vQ

2 ,e
Q
2 ,v

Q
3 followed by a

traverse of cQ
+ back to vQ

3 . In particular, vQ
3 is the only repeated vertex in that boundary

walk. Similar comments apply to the boundary walk of FQ
− . In Figure 4.32 we summarise

the various structural elements associated with a quadrilateral face that has an essential

blocker.
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FQ
−

HQ
2

FQ
+

Q

HQ
1

cQ
+

cQ
+

β1

cQ
−

cQ
−

α
Q
1

α
Q
2

v1

v2

v3

v4

Figure 4.32: A summary for various concepts and notations for the blocker structure.

4.6 (2,2)-tight cylindrical graphs

Here we provide an inductive construction for the class of (2,2)-tight cylindrical graphs.

In this section we prove the following theorem.

Theorem 4.6.1. If G is an irreducible (2,2)-tight cylindrical graph, then G is isomorphic

to one of the cylindrical graphs shown in Figure 4.33.

Proof. Since G is a cylindrical graph, then either G separates the cylinder or does not.
So suppose first that G does not separate the cylinder. Then there is a unique noncellular
face of G, see Figure 4.34(a). By capping this face ( i.e. filling the two boundaries of the
cylinder with two open discs) we create a cellular (2,2)-tight S-graph G̃. By Corollary
4.2.4, we see that either G̃ has a single vertex or it has at least two faces that are digons
or triangles. In both cases, one of these faces must be also a face in G. Thus, if G has at
least two vertices, then G is not irreducible.

Now, suppose that G separates the cylinder. It is clear that G has exactly two noncel-
lular faces, see Figure 4.34(b). By capping the two boundaries of the cylinder, we create
a (2,2)-tight S-graph G̃. By Lemma 4.2.2, G̃ satisfies 2 f2+ f3 = 4+ f5+2 f6+ . . . . Now,
since all but two of the faces of G̃ are also faces of the irreducible G, it follows that the
two exceptional faces of G̃ are digons and all other faces are quadrilateral faces of G.
Thus, it suffices to show that there cannot be any quadrilateral faces in G.
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For a contradiction, suppose that Q is a quadrilateral. Since G is irreducible, both
possible contractions of Q are blocked and we infer the existence of simple loops α1

and α2 as described in Notation 4.4.11. Recall that these loops intersect transversely at
exactly one point and thus α1 is nonseparating in the cylinder. However, the Jordan Curve
Theorem tells that any simple loop in the cylinder must be separating.

( a ) ( b )

Figure 4.33: The two irreducible (2,2)-tight cylindrical graphs.

( a ) ( b )

GG

F F1

F2

Figure 4.34: (a) G does not separate the cylinder. F is the noncelluar face of G. (b) G
separates the cylinder. F1 and F2 are the noncelluar faces of G.

We note that, for any positive integer n, it is straightforward to construct a (2,2)-tight
cylindrical graph that has no digons or triangles, but has n quadrilateral faces, see Figure
4.35. So, in contrast to the case of the sphere, we do require the quadrilateral contraction
move in order to have finitely many irreducible(2,2)-tight cylindrical graphs.
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Figure 4.35: An example of a (2,2)-tight cylindrical graph with no digon faces, triangle
faces or divalent vertices. It is clear that there are infinitely many such pairwise noniso-
morphic examples.

4.7 The finiteness theorem of irreducible (2,2)-tight torus
graphs

In this section, we state and prove the finiteness theorem for the class of (2,2)-tight torus
graphs. Notice that in this section, we consider irreducible (2,2)-tight torus graphs with
more than one quadrilateral faces. Thus, the results on the closed walks c− and c+ are
applied for any quadrilateral face that we consider in this section.

Lemma 4.7.1. Suppose that H is a (2,2)-tight T-subgraph of an irreducible (2,2)-tight

T-graph and that F is a cellular face of H with |F | ≥ 5. Suppose that R is a nondegenerate

quadrilateral face of G that is contained in F and for every vertex v ∈ ∂R such that v ∈ F

there is an edge e ∈ E(G) such that e is incident to v and to ∂F but e /∈ ∂F, u ∈ ∂F.

uv /∈ ∂R. Then v ∈ F for all vertices v ∈ ∂R.

Proof. Since both G and H are (2,2)-tight, then it is clear that H is an induced subgraph
of G. Now, since |R|< |F |, then there is at least one vertex in ∂R does not belong to ∂F .
So there is at least one vertex of ∂R in F . On the other hand, if there is at least one vertex
of ∂R in ∂F , and I is the subgraph of G spanned by H

⋃
∂R, then it is easy to see that

γ2(I)≤ 1 contradicting the sparsity of G. Therefore, all the vertices of ∂R lie in F .

Lemma 4.7.2. Suppose that H is a T-subgraph of an irreducible (2,2)-tight T-graph G

and that F is a cellular face of H. Let v be a vertex of G with v ∈ F and suppose that c is

a nonseparating cycle in G that contains v and such that |c| ≤ 4. Then either
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1. c contains an edge that is incident to both v and some vertex of ∂F, or

2. there is some vertex u ∈ ∂F that is repeated in the boundary walk of F, and such

that c consists of the concatenation of two paths of edge length two in G∩F joining

v to u.

Proof. Since c is nonseparating in T, it cannot be contained within F . Hence the required
conclusion follows easily.

Notation 4.7.3. (R and KQ) Let R be a quadrilateral face of the irreducible (2,2)-tight

T-graph G that is distinct from Q. Following Lemma 4.4.17, we will assume that HR
2 is

inessential and therefore, by Lemma 4.5.2 HQ
2 consists of a single edge joining vR

2 and vR
4 .

Let KQ denote the T-subgraph of G that is spanned by the vertices of Q. By Lemma 4.5.3,

the underlying graph of KQ is either K4 or K4 with one edge deleted.

Lemma 4.7.4. Let G be an irreducible (2,2)-tight T-graph. Consider the T-subgraph

KQ of G. If KQ = K4, then G has no other quadrilateral face.

Proof. It is clear that KQ is a (2,2)-tight T-subgraph of G. Notice that KQ has an octago-
nal face O such that ∂O = KQ. Suppose, for a contradiction, that R is a quadrilateral face
of G and that R ⊂ O. First we deal with the case where both HR

1 and HR
2 are inessential

blockers. By Lemma 4.5.2, each blocker comprises a single edge. Now, αR
1 is a simple

nonseparating loop comprising the edge HR
1 and a diagonal of R. Since αR

1 is nonseparat-
ing, then it cannot be contained within the open disc O. It follows that at least one of the
vertices vR

1 or vR
3 lies in ∂O. We also can observe that if vR

j ∈ O for j = 1 or 3, then HR
1 is

an edge, that is not in ∂R, joining vR
j and a vertex of ∂O. Similar comments apply to the

vertices vR
2 and vR

4 . Thus, we have a quadrilateral face R contained in an octagonal face O

such that at least two vertices of ∂R lie in ∂O, and such that every vertex of ∂R that lies
in O is joined by an edge, that is not an edge of ∂R, to a vertex of ∂O. This contradicts
Lemma 4.7.1.

Now, suppose the case that one of the two blockers is essential, say HR
1 and the blocker

HR
2 is inessential. As in the previous paragraph at least one of vR

2 , vR
4 lies in ∂O and if

vR
j ∈O for j = 2 or 4, then HR

2 is an edge joining vR
j to ∂O. We will suppose that vR

2 = vQ
2

and that vR
4 ∈ O. Similar arguments apply to all other possibilities. Observe that any

simple nonseparating loop that does not intersect αR
2 must contain the vertex vQ

4 , see
Figure 4.36(a).
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Since HR
1 is essential, it contains a simple nonseparating loop that is disjoint from

αR
2 . Thus, vQ

4 ∈ HR
1 . However, vQ

4 is adjacent to vQ
2 = vR

2 and since vR
1 and vR

3 are the
only vertices of HR

1 that are adjacent to vR
2 it follows that either vR

1 = vQ
4 or vR

3 = vQ
4 .

Without loss of generality assume that vR
3 = vQ

4 . So we have the situation depicted in
Figure 4.36(b). Note that vR

1 ∈ O otherwise vR
4 would be triply adjacent to the (2,2)-tight

graph ∂O = KQ, which contradicts the sparsity of G. Now, by applying Lemma 4.7.2 to
the simple nonseparating loop cR

−, we see that there must be an edge incident to vR
1 and

∂O, contradicting Lemma 4.7.1.

c

vR
4

vR
2 = vQ

2

vQ
4 vQ

4

vR
1

vR
2

vR
3 vQ

4

(a) (b)

Figure 4.36: In these diagrams the boundary of the octagon is KQ ∼= K4. If c is a nonsep-
arating loop in G disjoint from αR

2 , then it must contain the vertex vQ
4 .

Remark 4.7.5. If any quadrilateral face of G spans a copy of K4, then that is the only

quadrilateral face. Thus, we may assume from now on that no quadrilateral face spans

a copy of K4. In particular, every quadrilateral face has one inessential blocker and

one essential blocker. Without loss of generality we assume that HR
1 is essential for any

quadrilateral face R of G. So we have faces FQ
+ ,FQ

− of ∂Q
⋃

HQ
1
⋃

HQ
2 as described in the

previous section.

Lemma 4.7.6. If c− and c+ are cycles, then there is no quadrilateral face of an irreducible

(2,2)-tight T-graph G contained in FQ
+ or FQ

− .

Proof. Suppose that R⊂ FQ
+ is a quadrilateral face of G. We will show that the existence

of such a quadrilateral contradicts Lemma 4.7.1. Since HR
2 is inessential, then we can see
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that αR
2 is a nonseparating loop of edge length two. So at least one of vR

2 or vR
4 lies in ∂FQ

+ .
We can assume without loss of generality that vR

2 ∈ ∂FQ
+ .

Now, suppose that vR
4 ∈ FQ

+ . Since αR
2 is a nonseparating simple cycle of length two,

it must be that HR
2 is an edge incident to vR

4 and ∂FQ
+ . Note also that HR

2 is not an edge of
∂R. Moreover, as noted in Notation 4.5.9 that vQ

3 is the only repeated vertex in ∂FQ
+ . So,

if vR
4 ∈ FQ

+ , then vQ
3 ∈ HR

2 .

Now, suppose that vR
1 ∈ FQ

+ . Since cR
− is a simple nonseparating loop that contains vR

1

and has edge length at most 4 (by Lemma 4.5.7). Recall that vQ
3 is the only vertex that

is repeated on the boundary walk FQ
+ . If vQ

3 ∈ αR
2 , then since cR

− is disjoint from αR
2 , it

follows from Lemma 4.7.2. that there is an edge of cR
− that is incident to vR

1 and ∂FQ
+ .

So now we assume that vQ
3 /∈ αR

2 . As observed above it follows that both vR
2 and vR

4

belong to ∂FQ
+ . Recall that the repeated vertex vQ

3 separates the boundary walk of ∂FQ
+

into two simple walks. The first walk is cR
+ ( thought of as a simple walk starting and

ending at vQ
3 ) and the walk is w = vQ

3 ,e
Q
3 ,v

Q
4 ,H

Q
2 ,vQ

2 ,e
Q
2 ,v

Q
3 . Suppose that both vR

2 ,v
R
4 ∈ w.

Since neither of them is equal to vQ
3 , it follows that {vR

2 ,v
R
4}= {v

Q
2 ,v

Q
4 }. Thus, it must be

that HQ
2 is also HR

2 . But it is clear that in this case αR
2 is not a nonseparating loop which

contradicts Lemma 4.4.12. On the other hand, suppose that vR
2 ,v

R
4 ∈ cQ

+. Then at least one
of vR

1 ,v
R
3 lies in FQ

+ and is doubly adjacent to HQ
1 which contradicts the maximality of the

blocker HQ
1 . Thus, we see that one of vR

2 ,v
R
4 lies in {vQ

2 ,v
Q
4 } and the other lies in cQ

+. In
other words the diagonal, d, of R joining vR

2 and vR
4 separates the two occurrences of vQ

3 in
the boundary walk of FQ

+ .

Now, suppose that vR
1 ∈ FQ

+ . We know that cR
− is a nonseparating simple cycle contain-

ing vR
1 and disjoint from d. But since d separates the two occurrences of the only repeated

vertex on the boundary walk of FQ
+ , it follows from Lemma 4.7.2 that some edge of cR

− is
incident to vR

1 and ∂FQ
+ . Such an edge cannot belong to ∂R. Similarly if vR

3 ∈ FQ
+ , then

there is an edge, not in ∂R, that is incident to vR
3 and to ∂FQ

+ .

Thus, we have shown that at least one vertex of ∂R lies in ∂FQ
+ and that any vertex

of ∂R in FQ
+ is adjacent to ∂FQ

+ via an edge that is not in ∂R. This contradicts Lemma
4.7.1.

Lemma 4.7.7. Let G be an irreducible (2,2)-tight T-graph. If G contains a (2,2)-tight T-

subgraph isomorphic to the T-graph shown in Figure 4.37, then there is no quadrilateral

face of G contained in FQ
− and FQ

− .
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Proof. The proof is similar to the proof of Lemma 4.7.6.

FQ
+

FQ
−

Q

Figure 4.37: A T-graph isomorphic to a T-subgraph of an irreducible (2,2)-tight T-graph,
see Lemma 4.7.7.

Notation 4.7.8. ( L1 and L3 ) We can assume from now on that the quadrilateral face

R is also a face of HQ
1 . So vR

1 ,v
R
3 ∈ HQ

1
⋂

HR
1 . Moreover, these vertices lie in distinct

components of HQ
1
⋂

HR
1 since they are separated in HQ

1 by HR
2 which disjoint from HR

1 .

Let Li be the component of HQ
1
⋂

HR
1 in which vR

i lies for i = 1,3. See Figure 4.38.

QR

H1

Q
H1

R⋂

H2
QH2

R

v1
R

v3
R

L1

L2 L1

H1
Q

H1
R

Figure 4.38: A diagram which illustrates L1 and L3.
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Lemma 4.7.9. HQ
1
⋂

HR
1 = L1

⋃
L3 and γ2(L1) = γ2(L3) = 2.

Proof. By the sparsity of G, we get

γ(HQ
1

⋂
HR

1 )≥ γ(L1)+ γ(L3)≥ 4 (4.3)

On the other hand, γ2(H
Q
1
⋂

HR
1 ) = γ2(H

Q
1 )+ γ2(HR

1 )− γ2(H
Q
1
⋃

HR
1 )≤ 3+3−2 = 4.

Thus, we have equality in (4.3) and hence the required conclusion follows.

Lemma 4.7.10. Consider Li for i = 1,3. Then Li is either a single vertex or a nonsepa-

rating cycle of length two.

Proof. Suppose that L1 is inessential. Then it is a (2,2)-tight S-graph such that all but
one of its faces are also faces in G. Since G has no digoal or triangular faces, the only
possibility is that L1 is a single vertex.

Now, suppose that L1 is essential. It has one face that is not also a face of G. By cutting
and capping this face along a nonseparating loop we construct a (2,2)-tight S-graph L̃1.
By Lemma 4.2.4, L̃1 has two digonal faces whose boundary walks must be cQ

+ and cR
− and

all the other faces of L̃1 must be quadrilateral faces.
Suppose that S is a quadrilateral face of L1. Then it is clear that the inessential blocker

HS
2 must lie inside L1, since L1 is (2,2)-tight. Thus, cutting L1 along αS

2 yields two
nonempty subgraphs, M1 and M2 of L1. Notice that the union of M1 and M2 is L1 and
their intersection is a single edge. But

2 = γ2(L1) = γ2(M1∪M2) = γ2(M1)+ γ2(M2)− γ2(M1∩M2)

= γ2(M1)+ γ2(M2)− (2(2)−1)

= γ2(M1)+ γ2(M2)−3

So γ2(M1)+γ2(M2)= 5. Now, suppose without loss of generality that γ2(M1)= 2. Clearly
M1 has one face that is not also a face of G. Thus, by cutting and capping along a non-
separating loop in this face we obtain M̃1. Notice that M̃1 is a (2,2)-tight S-graph that has
one digonal face and one triangular face and such that all other faces are also faces in G.
But then Lemma 4.2.4 implies that M̃1 has another triangular face which is also a face of
G. This contradicts the irreducibility of G.

See Figure 4.39 which presents examples of all possible cases of L1 and L3.
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R Q

L1 L3

v1
R v3

R
v1

R

L1

L3

R
Q

L1 L3

R

Q

v1
R

(a) (b) (c)

Figure 4.39: Examples of the three possible cases of L1 and L3.

Theorem 4.7.11. If G is an irreducible (2,2)-tight T-graph, then G has at most two

quadrilateral faces.

Proof. Suppose that G has three pairwise distinct quadrilateral faces Q,R,S. By Lemma
4.7.4, S is a face of both HQ

1 and HR
1 . Thus, S must be a face of L1 or L3. Clearly either

case contradicts Lemma 4.7.10.

In the following we state and prove the finiteness theorem.

Theorem 4.7.12. If G is an irreducible (2,2)-tight T-graph, then G has at most 8 vertices.

In particular, there are finitely many isomorphism classes of such graphs.

Proof. If G is noncellular, then the required conclusion follows from Theorem 4.4.14.
So we assume that G is cellular. Since G is (2,2)-tight, f1 = 0. Since G is irreducible,
by Lemma 3.4.5, f2 = 0, and by Lemma 3.4.8, f3 = 0. Therefore, by Lemma 2.4.4,
f5+2 f6+3 f7+4 f8 = 4 and fi = 0 for i≥ 9. Moreover, by Theorem 4.7.11, f4 ≤ 2. Now,

2e =4 f4 +5 f5 +6 f6 +7 f7 +8 f8

≤ 4 f4 +5( f5 +2 f6 +3 f7 +4 f8)

≤ 4(2)+5(4) = 28

Thus, e≤ 14. By (2,2)-tightness of G, 2v−2 = e. Hence, v = e+2
2 ≤ 8.
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4.8 Examples and a conjecture

Through this section we exhibit examples of various concepts that we reviewed and intro-
duced in this chapter. Eventually, we end this chapter with a conjecture.

4.8.1 Examples

Reducible and irreducible (2,2)-tight torus graphs

In Figure 4.40, we include two (2,2)-tight T-graphs. One of them is reducible and the
other is irreducible.

B

Q

T

(a) (b)

P

H

Figure 4.40: The T-graph in (a) is reducible. It has the digon B, the triangle T and the
contractible quadrilateral Q. The T-graph in (b) is irreducible with two faces, the pentagon
P and the heptagon H. Notice that the T-graph in (a) can be reduced into the T-graph in
(b).

Blockers for a quadrilateral contraction

In Figure 4.41, we provide an example of a blocker of an irreducible (2,2)-tight T-graph.

Maximal blocker

In Figure 4.42 we depict two blockers of the given irreducible (2,2)-tight torus graph.
One of these blockers is maximal and the other is not.
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Figure 4.41: The T-subgraph in bold of the T-graph is an essential blocker for the quadri-
lateral face.

Q Q

(a) (b)

Figure 4.42: (a) The blocker in bold for the quadrilateral face Q is not maximal. (b) The
blocker in bold for the quadrilateral face Q is maximal.

An example showing the faces FQ
− and FQ

+

Figure 4.43 illustrates the faces FQ
− and FQ

+ . See also Notation 4.5.9.

An example clarifies the cutting and capping procedure along a nonseparating loop

Figure 4.44 illustrates how the procedure of cutting and capping along a nonseparating
loop can be performed on a torus graph.
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F
Q
+F

Q
−

Q

Figure 4.43: The faces FQ
− and FQ

+ are in the two shaded areas.

α
Q
2

Q

J1
Q

G G̃

Figure 4.44: We cut along the nonseparating loop α
Q
2 in the T-graph G. Then we fill the

resulting two boundary curves with open discs to get the S-graph G̃.

An example illustrates α
Q
1 and α

Q
2

In Figure 4.45 we provide an example showing the curves α
Q
1 and α

Q
2 .
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αQ

αQ

1

2

Q

Figure 4.45: The nonseparating loops are illustrated by two different strips.

An example of β
Q
1

In Figure 4.46, we provide an example of the cycle β
Q
1 .

Q

Figure 4.46: The cycle that is bold in the T-graph is an example of β
Q
1 .

cQ
− and cQ

+

In Figure 4.47, we give an example for the the closed walks cQ
− and cQ

+ in case they are
cycles.

Two essential blockers of a quadrilateral face

It is possible for an irreducible (2,2)-tight Σ-graph, where Σ of higher genus, to have two
essential blockers of a quadrilateral face. In Figure 4.48, we provide an example of an
irreducible (2,2)-tight double-torus graph such that the two blockers of a quadrilateral
face are essential.
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cQ
−
cQ
+Q

Figure 4.47: cQ
− and cQ

+

Figure 4.48: An irreducible (2,2)-tight double torus graph with two essential blockers of
the quadrilateral face.

Quadrilateral contractions are necessary

In this section, we include a justification for the necessity of the quadrilateral contractions
in the inductive construction of the class of (2,2)-tight T-graphs. We observe that there
are infinitely many pairwise nonisomorphic (2,2)-tight torus graphs such that each of
these graphs has no digon and no triangle. Moreover, we can construct such a family of
graphs so that none of the graphs have vertices of degree 2, Figure 4.49. Therefore, it
is clear that it is not possible to prove an inductive contraction result for (2,2)-tight T-
graphs using just digon constructions, triangle constructions and divalent vertex deletions
( the inverse of the topological Henneberg type 0 move), at least if we demand a finite set
of irreducible (2,2)-tight torus graphs.
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Figure 4.49: An example of (2,2)-tight torus graph with no digonal faces, triangular faces
or divalent vertices. It is clear that there are infinitely many of such pairwise nonisomor-
phic examples.

4.8.2 Finiteness conjecture

In this section, we post a conjecture concerns with the existing of finite irreducible (2, l)-
tight graphs of any surface with finite topological type. Recall that a surface has finite
topological type if it has finitely many handles, punctures and boundary components, see
Figure 4.50.

Conjecture 4.8.1. For any surface Σ of finite topological type, and for 0 ≤ l ≤ 3, there

are finitely many isomorphism classes of irreducible (2, l)-tight Σ-graphs.
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(b)

(c)

(e)(d)

(a)

Figure 4.50: Some surfaces with finite topological type.
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Chapter 5

Irreducible (2,2) -Tight Torus Graphs

As we have proven in the previous chapter that there are a finite number of irreducible
(2,2)-tight torus graphs, this chapter is devoted to present all such torus graphs and ex-
plain in detail how we found them. Besides, we prove that the list of all nonisomorphic
irreducible (2,2)-tight T-graphs is exhaustive. Specifically, we prove the following theo-
rem.

Theorem 5.0.1. There are exactly 116 nonisomorphic irreducible (2,2)-tight T-graphs.

As in this chapter we specialise to (2,2)-tight graphs. We use γ instead of γ2 from
now on.

5.1 Embedding lemmas in the torus

Finding all embeddings of a given graph in the torus can be a labour intensive task. How-
ever, we can reduce the computations of such embeddings by establishing some rules of
embedding certain subgraphs of the (2,2)-tight graphs. Also, we present and prove the
following theorem.

Theorem 5.1.1. Let H be a T-subgraph of an irreducible (2,2)-tight T-graph G. If H is

(2,2)-tight, then H is irreducible.

We start by introducing some key lemmas that will be used to prove Theorem 5.1.1
and also be used in later sections. We introduce notations for some small graphs in Figure
5.1.
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O1 O2 O3 O4

Figure 5.1: Some cycle graphs.

5.1.1 Cycles of length two and three in (2,2) -tight torus graphs

Here we investigate the possible embeddings of T-subgraphs of an irreducible T-graph
such that their underlying graphs are cycles. To do so, we first recall the construction of
the cutting and capping along nonseparating loops, which was introduced in Subsection
4.3.2.

Let H be a T-subgraph of a (2,2)-tight T-graph G. Suppose that the underlying graph
of H is a cycle and H is separating in the torus. So one face of H, say F , is homomorphic
to a punctured torus. Let K be ˜extG(F), that is the S-graph formed by cutting and capping
along a nonseparating loop in F , see Figure 5.2. Let ki be the number of cellular faces of
K that have degree i.

Lemma 5.1.2. Let H be a T-subgraph of a (2,2)-tight T-graph G. If H is a separating

cycle of length 2 in the torus, then K is (2,2)-tight.

Proof. Notice that γ(extG(F)) = γ( ˜extG(F))

2 = γ(G) = γ(intG(F)∪ extG(F))

= γ(intG(F))+ γ(extG(F))− γ(∂F)

= γ(intG(F))+ γ(extG(F))−2

Hence, γ(intG(F))+ γ(extG(F)) = 4. By Theorem 3.2.2, we get

γ(H ∪ intG(F)) = γ(H)+ γ(intG(F))−2

≤ γ(H)

Hence, γ(intG(F))≤ 2. From the sparsity of G we have γ(intG(F)) = 2.

108



5.1. EMBEDDING LEMMAS IN THE TORUS

Therefore, γ(extG(F)) = γ( ˜extG(F)) = 2. Consequently, γ(K) = 2.

K = ˜extG(F)

Nonseparating
loop

(a) (b)

(c) (d)

G

H ∂FextG(F)

F

Figure 5.2: (a) A T-graph G and a separating cycle H in T. (b) The T-subgraph H has
a face, F , homeomorphic to a punctured torus. This face contains a nonseparating loop
in T. (c) Cutting the T-graph along the nonseparating loop. (d) An S-graph which is
obtained from capping the two boundaries of the graph in (c) with open discs.

Lemma 5.1.3. Let H be a T-subgraph of a (2,2)-tight T-graph G. If H is a separating

cycle of length 3 in the torus, then γ(K) ∈ {2,3}.

Proof. Notice that γ(extG(F)) = γ( ˜extG(F))

2 = γ(G) = γ(intG(F)∪ extG(F))

= γ(intG(F))+ γ(extG(F))− γ(∂F)

= γ(intG(F))+ γ(extG(F))−3
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Hence, γ(intG(F))+ γ(extG(F)) = 5. By Theorem 3.2.2, we get

γ(H ∪ intG(F)) = γ(H)+ γ(intG(F))−3

≤ γ(H)

Hence, γ(intG(F)) ≤ 3. From the sparsity of G we have γ(intG(F)) ∈ {2,3}. Therefore,
γ(extG(F)) = γ( ˜extG(F)) ∈ {2,3}. Consequently, γ(K) ∈ {2,3}.

5.1.2 Subgraphs of irreducible graphs

The scope of the current section is to show that any (2,2)-tight T-subgraph of an irre-
ducible (2,2)-tight T-graph is also irreducible. We start first by presenting some key
lemmas.

Lemma 5.1.4. Let G = (Γ,φ) be an irreducible (2,2)-tight T-graph. Let d be a non-

degenerate 4-cycle in Γ. If d forms a separating loop in T, then d is the boundary of a

quadrilateral face of G.

Proof. Assume that d forms a separating cycle in T. By Theorem 3.2.2, we have

2 = γ(G) = γ(K)+ γ(intG(F))− γ(∂F)

= γ(K)+ γ(intG(F))−4

≤ γ(K)

Therefore, γ(K)≤ 4. Now, by Lemma 2.4.4, we get 2k2+k3−k5−2k6−·· ·= 8−2γ(K).
But k2 = k3 = 0. Hence, k5 + 2k6 + · · · ≤ 0. This means that all the faces of K are
quadrilateral. Pick one of these quadrilateral faces, say Q. Then Q has an inessential
blocker by Lemma 4.4.17. It is clear that this blocker must be an edge of G that joins two
opposite vertices of the 4-cycle d. Since this is true for all faces of K it follows easily
that one of the quadrilaterals has a vertex of degree 2 in G. This clearly contradicts the
irreducibility of G.

Lemma 5.1.5. Let G = (Γ,φ) be an irreducible (2,2)-tight T-graph. Then any 2-cycle in

Γ forms a nonseparating cycle in T.

Proof. Suppose that Ω is a 2-cycle in Γ which forms a separating cycle H in T where
H = φ(Ω). Now, consider the S-graph K = ˜extG(F). By Lemma 5.1.2, γ(K) = 2. Thus,
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K is (2,2)-tight. Now, by Lemma 4.2.2 we have 2k2 + k3 = 4+ k5 +2k6 + · · · ≥ 4. This
means that either k2≥ 2 or k3≥ 2. If k2≥ 2, then at least one digon in K is also a face in G

which contradicts the irreducibility of G. If k3 ≥ 2, then again we get a contradiction.

Lemma 5.1.6. Let G = (Γ,φ) be an irreducible (2,2)-tight T-graph. Then any 3-cycle in

Γ forms a nonseparating cycle in T.

Proof. Suppose, for a contradiction, that Ω is a 3-cycle in Γ forms a separating cycle
H in T where H = φ(Ω). Now, consider the S-graph K = ˜extG(F). By Lemma 5.1.3,
γ(K) ∈ {2,3}. If γ(K) = 2, then as in the proof of Lemma 5.1.5, we get a contradiction.
Hence, suppose that γ(K) = 3. By Lemma 4.2.3, we get 2k2+k3 = 2+k5+2k6+ · · · ≥ 2.
This means that either k2 ≥ 1 or k3 ≥ 2 and in both cases we get a contradiction to the
irreducibility of G.

The following lemma is concerned with embedding two disjoint 2-cycles (O4 in Figure
5.1) in the torus. We assume that both of such cycles are subgraphs of the underlying
graph of an irreducible (2,2)-tight T-graph.

Lemma 5.1.7. Let G = (Γ,φ) be an irreducible (2,2)-tight T-graph. Suppose that O4 is

a subgraph of Γ. Then the embedding of O4 in the torus is isomorphic to the noncellular

T-graph in Figure 5.3.

Proof. By Lemma 5.1.5, each of the two 2-cycles of O4 forms a nonseparating cycle in
T. Now, since these two 2-cycles are disjoint from each other, they are homotopic to each
other.

Figure 5.3: Embedding of the graph O4 such that both of the 2-cycles are embedded as
nonseparating cycles in T.

Now we are ready to present the proof of Theorem 5.1.1.
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Proof. (of Theorem 5.1.1) By Lemma 5.1.5 and 5.1.6, H has no digon or triangle. We
consider the case that H has a quadrilateral face Q. Suppose that Q has a nondegenerate
boundary. Then by Lemma 5.1.4, Q is also a face of G. Now, suppose that H1 and H2 are
blockers for the contractions of Q in G. One readily checks that H1∩H and H2∩H are
blockers for the contraction of Q in H.

In the case that Q has a degenerate boundary, observe first that since H is (2,2)-
tight the other possible degeneracy is that a pair of opposite vertices in the boundary of
Q coincide. In particular, no edges are repeated and ∂Q is a (2,2)-tight graph with 3
vertices and 4 edges, see Figure 5.4. Now, as in the proof of Lemma 5.1.4, we see that
all faces of G that are contained in Q are quadrilaterals. Since all quadrilateral faces of G

are nondegenerate it follows that Q must also contains the inessential blocker of any such
quadrilateral. It would then follow that there is a cycle in G of odd length contained in Q

which contradicts the fact that all faces of G contained in Q are of degree 4. Thus, in fact
Q is a face of G which contradicts the fact from Lemma 4.4.5 that all quadrilateral faces
of G have nondegenerate boundaries. Therefore, H has no digon, triangle or contractible
quadrilateral face.

Q
∂Q

Figure 5.4: A degenerate quadrilateral face, Q.

Figure 5.5 presents two examples of (2,2)-tight T-subgraphs of irreducible (2,2)-tight
T-graphs. Notice that both of the T-graphs in Figure 5.5 are irreducible.

5.1.3 Polygonal representation

In the following we describe a useful way of drawing cellular surface graphs. We use this
kind of drawing to find many irreducible (2,2)-tight T-graphs in the next sections.
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Figure 5.5: Consider the bold (2,2)-tight T-subgraphs in both the given irreducible (2,2)-
tight T-graphs. Each of these T-subgraphs is also irreducible.

Definition 5.1.8. Let G be a cellular surface graph with faces F1,F2, . . . ,Fn. Each face Fi

is a plane polygon with boundary vertices and edges are labelled by vertices and edges of

G. Thus, we can represent G by drawing a labelled collection of polygons. We call such

a drawing a polygon representation .

We call an irreducible (2,2)-tight T-graph G a base if it has no vertex of degree two.
We label the embedding graphs and trace the labelling on the corresponding polygon
representation, see Figure 5.6. We will not include in polygon representations any plane

v2

v4

v3

v1

v2

v1 v2

v3

v1

v3 v4

v4

v1 v2

v3v4

(a) (b) (c)

Figure 5.6: (a) A T-graph. (b) respectively (c) A labelled plane polygon corresponding to
the face of degree eight respectively four in the T-graph in (a). Together (b) and (c) are
called the polygon representation of the T-graph in (a).

polygon corresponding to a quadrilateral face. This is because there is no way to add
more vertices inside such a face, see Figure 5.7. Moreover, if G is a base T-graph and
has faces of degree five, then we will not depict the plane polygons corresponding to such
faces in the polygon representation, see Figure 5.8.
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v2

v4

v3
v1

v2v1v5

v4

v6 v1

v5

v6

v3v2

v5

v6v3

v4

(a) (b)

Figure 5.7: (a) A base irreducible (2,2)-tight T-graph. (b) The polygon representation of
the T-graph in (a). Notice that the plane polygons corresponding to the two quadrilateral
faces are deleted.

v2

v4

v3

v1

v3

v1

v5

v4

v5 v1

v2

v5

Figure 5.8: On the left, a base irreducible (2,2)-tight T-graph. On the right, the cor-
responding polygon representation to the T-graph on the left. The corresponding plane
polygon to the shaded pentagon is not included in the polygon representation.

Generating polygon representations

In the following, we describe a method that we used to find many nonisomorphic irre-
ducible (2,2)-tight T-graphs. We use the plane polygon in Figure 5.9(a) to explain this
method. This plane polygon is a polygon representation of an irreducible (2,2)-tight T-
graph. We would like to add a vertex of degree two that is adjacent to two distinct vertices
such that both of the resulting two faces are of degree greater than four. So we can choose
a vertex on the boundary of the plane polygon to be adjacent to the new vertex, and then
we join the new vertex with another vertex on the boundary of the plane polygon in Figure
5.9(b) to create a face of degree five. Then we look for any other possibility of adjoining
the new vertex with another vertex on the boundary so that the new vertex is still adjacent
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to the vertex that we choose first, see Figure 5.9(b) .
Then we move in a clockwise direction to fix another vertex on the boundary. By

repeating the procedure that we described in the previous paragraph, we can find all pos-
sible polygon representations. See Figure 5.9 (c). We continue this procedure until we
end with isomorphic polygon representations to those we found in the first round.

v3

v2 v1

v2

v3

v2v1

v2

v3

v2 v1

v2

v3

v2v1

v2

v3

v2 v1

v2

v3

v2v1

v2

v4 v4

v4

v4

v4

v4
v4

v4v4

(b) (c) (d)

v3

v2 v1

v2

v3

v2v1

v2

(a)
Figure 5.9: (a) A polygon representation of an irreducible (2,2)-tight T-graph with three
vertices. (b) We fix v1 (inside the shaded circle) and then we add the vertex v4 in the
interior of the plane polygon in (a). Then we adjoin v4 to v2. Notice that the new poly-
gon representation contains a pentagon and a face of degree 7. Thus, the current polygon
representation in (b) is corresponding to an irreducible (2,2)-tight T-graph with four ver-
tices. Now, we keep fixing v1 (inside the shaded circle) and adjoin v4 to v1 (this case is
represented by the dotted path of length 2). Again, we keep fixing v1 (inside the shaded
circle) then we join v4 to v2 by an edge (to form the dashed path of length 2). Now, we
fix the vertex v2 ( inside the shaded circle), then we adjoin v4 to v2 and v1 as in (c). We
continue this process as we did in (b). We also continue fixing vertices on the boundary
and repeat the processes as in (b) and (c) until we fix the last vertex, v2, on the boundary,
see (d). See also Appendix B (Figures B.1, B.2 and B.3) which presents all such possible
cases.

We notice in Figure 5.9 that there are a lot of polygon representations that are congru-
ent to each other and there are 1-1 correspondings between the vertices of such polygon
representations. Any two of such polygon representations are called equivalent to each
other, see Figure 5.10.

Later on, we find non-base irreducible (2,2)-tight T-graphs by declaring their ances-
tors in paths, see Appendix D. We describe such paths according to the polygon represen-
tations of the irreducible (2,2)-tight T-graphs that contain each other. For example, the ir-
reducible (2,2)-tight T-graph in Figure 5.11 (a) is contained in the irreducible (2,2)-tight
T-graph in Figure 5.11 (b). The T-graph in Figure 5.11(b) is contained in the irreducible

115



CHAPTER 5. IRREDUCIBLE (2,2) -TIGHT TORUS GRAPHS

v3

v2 v1

v2

v3

v2v1

v2

v3

v2 v1

v2v1

v2

v4 v4

v2

v3

Figure 5.10: Two polygon representations which are equivalent to each other.

(2,2)-tight T-graph in Figure 5.11(c). The same applies for the corresponding polygon
representations Figure 5.11(d), (e) and (f).

Notice that the T-graph in Figure 5.11(c) is obtained from the T-graph in Figure
5.11(b) by a topological Henneberg type 0 move. Also the T-graph in Figure 5.11(b)
is obtained from the T-graph in Figure 5.11(a) by a topological Henneberg type 0 move.
We also comment that the irreducible (2,2)-tight T-graph in Figure 5.11(a) can be derived
from the noncellular T-graph with a single nonseparating cycle of length 2 by a topolog-
ical Henneberg type 0 move. The noncellular T-graph also can be constructed from the
noncellular T-graph with one vertex by a topological Henneberg type 0 move.

So we mean by (a)− (b)− (c) that the T-graph in Figure 5.11(c) is obtained from the
T-graph in Figure 5.11(b) by a topological Henneberg type 0 move. Also, the T-graph in
Figure 5.11(b) is obtained from the T-graph in Figure 5.11(a) by a topological Henneberg
type 0 move.

5.2 Searching for all irreducible (2,2)-tight torus graphs

We recall that the main goal of this chapter is to explain how we found all the noniso-
morphic irreducible (2,2)-tight T-graphs. Specifically, we employed two independent
approaches to find such irreducible (2,2)-tight T-graphs. One approach is by hand. In
this approach, we employed a mixture of brute force methods and theoretical insight into
the structure of such graphs. The second approach is a computer assisted search. We
have used a computer assisted approach to find all irreducible (2,2)-tight torus graphs
with at most 7 vertices. If we use a powerful computer, we could also find all eight vertex
examples. However, as we shall see the ’by hand’ approach suffices for the eight vertex
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(d) (e) ( f )

Figure 5.11: An example of an ancestor path.

case.

5.2.1 Two independent methods for conducting the search

For finding irreducible (2,2)-tight T-graphs, we used the rich combinatorial information
of such torus graphs. Therefore, the computing by hand is fitted to find such torus graphs.

We recall that a surface graph is a pair of a graph and an embedding of such a graph
in the surface. So it is natural to use the underlying graphs to find irreducible (2,2)-tight
T-graphs. To do so, we tried to embed the (2,2)-tight graphs in the torus so that no digon,
triangle or quadrilateral contraction can be made. This goal seems a very computational
one and the search domain of such graphs looks massive. However, this goal was achieved
by reducing the size of the search domain. We used topological techniques to control the
embedding of (2,2)-tight graphs in the torus. In the previous section, we included some
of the embedding lemmas. Beside that, some other techniques have been recruited to
contribute in reducing the search domain as we discuss that here.
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In summary, our justification for using the two approaches that we mentioned above
backs to the following reasons.

1. The computer assisted approach was necessary for the 6 and 7 vertex graphs since
there are so many possibilities that the ’by hand’ approach becomes extremely la-
borious and also very repetitive to describe.

2. Both methods were carried out for graphs of up to seven vertices, even though
we only describe the ’by hand’ computations up to five vertices. Thus, the two
approches provide validation of our ’by hand’ calculation and also of the imple-
mentation of our algorithm.

3. In the case of graphs with 8 vertices, the computer assisted approach was not pos-
sible on the hardware available. However, in that case our theoretical results were
sufficient to narrow the search space in order to make the ’by hand’ approach rel-
atively easy. Thus, we were fortunate that the two methods complemented each
other perfectly in this case to complete the entire seach for irreducible (2,2)-tight
torus graphs.

5.2.2 Basic technical results for both methods

In the following, we list some basic facts related to the number of faces and the vertices
of all irreducible (2,2)-tight T-graphs. The following theorem determines the number of
faces of specific degrees of irreducible (2,2)-tight T-graphs with no quadrilateral face.
See also Figure 5.12.

Theorem 5.2.1. Let G be a cellular irreducible (2,2)-tight T-graph with f4 = 0. Then G

satisfies:

( f5, f6, f7, f8) ∈
{
(0,0,0,1),(0,2,0,0),(2,1,0,0),(1,0,1,0),(4,0,0,0)

}
Proof. Since G is (2,2)-tight, f1 = 0. Since G is irreducible, by Lemma 3.4.5, f2 = 0 and
by Lemma 3.4.8, f3 = 0. Therefore, by Lemma 2.4.4, f5+2 f6+3 f7+4 f8 = 4 and fi = 0
for all i≥ 9. Now, because of f4 = 0, the conclusion follows.

Figure 5.12 presents some irreducible (2,2)-tight T-graphs which satisfy the counting
of faces given in Lemma 5.2.1.
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(a) (b)

(c) (d)

Figure 5.12: The graph in (a) satisfies (1,0,1,0). The graph in (b) satisfies (2,1,0,0).
The graph in (c) satisfies (4,0,0,0). The graph in (d) satisfies (0,2,0,0).

Lemma 5.2.2. Let G be an irreducible (2,2)-tight T-graph with f4 = 0. Then G has at

most 6 vertices.

Proof. If G is not cellular, then by Theorem 4.4.14, G has either one vertex or two
vertices. Now, suppose that G is cellular. By a similar argument to that one in the
proof of Theorem 5.2.1, we have that f5 + 2 f6 + 3 f7 + 4 f8 = 4 and fi = 0 for all i ∈
{1,2,3,4,9,10, . . .}. So

2e = 5 f5 +6 f6 +7 f7 +8 f8

≤ 5( f5 +2 f6 +3 f7 +4 f8)

≤ 5(4) = 20

Hence, e≤ 10 and v = e+2
2 ≤ 6.

Lemma 5.2.3. Let G be an irreducible (2,2)-tight T-graph with f4 = 1. Then G has at

least 4 vertices and at most 7 vertices.
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Proof. It is clear that G is cellular. By a similar argument to that one in the proof of The-
orem 5.2.1, we have that f5+2 f6+3 f7+4 f8 = 4 and fi = 0 for all i ∈ {1,2,3,9,10, . . .}.
So

2e = 4 f4 +5 f5 +6 f6 +7 f7 +8 f8

≤ 4 f4 +5( f5 +2 f6 +3 f7 +4 f8)

≤ 4+5(4) = 24

Hence, e≤ 12 and v = e+2
2 ≤ 7. By Lemma 4.5.3, G has at least 4 vertices.

Lemma 5.2.4. Let G be an irreducible (2,2)-tight T-graph with f4 = 2. Then G has at

least 6 vertices and at most 8 vertices.

Proof. Clearly G is cellular. By a similar argument to that one in the proof of Theorem
5.2.1, we have that f5 +2 f6 +3 f7 +4 f8 = 4 and fi = 0 for all i ∈ {1,2,3,9,10, . . .}. So

2e = 4 f4 +5 f5 +6 f6 +7 f7 +8 f8

≤ 8+5( f5 +2 f6 +3 f7 +4 f8)

≤ 8+5(4) = 28

Hence, e≤ 14 and v = e+2
2 ≤ 8. Now, consider Lemma 4.7.10. We have three cases.

1. Each of L1 and L3 is a single vertex, so v≥ 6.

2. One of Li is a single vertex and the other is a nonseparating cycle of length two.
Hence, v≥ 7.

3. For i = 1,2, each of L1 and L3 is a nonseparating cycle of length two. Thus, v = 8.

5.2.3 Computations by hand

Here we describe the first approach that we adopted to find all irreducible (2,2)-tight T-
graphs. In this approach, we used a mixture of brute force methods and theoretical insight
into the structure of such torus graphs.
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Structuring the irreducible (2,2)-tight torus graphs

In the following we sketch our plan of organising all nonisomorphic irreducible (2,2)-
tight T-graphs and also describe the way that we used to denote each irreducible (2,2)-
tight T-graph. Such a strategy of organising the irreducible (2,2)-tight T-graphs con-
tributes in checking that we find all nonisomorphic irreducible (2,2)-tight T-graphs.

We use the number of 2-cycles of the underlying graphs of the irreducible (2,2)-tight
T-graphs to organise these irreducible (2,2)-tight T-graphs with n vertices. Notice that
by Theorem 4.7.12, n is at most 8.

We structure the irreducible (2,2)-tight T-graphs firstly according to their order. We
have an exception to this rule here as we combine irreducible (2,2)-tight T-graphs of
order 1, 2 and 3 in one group. Secondly, we categorise irreducible (2,2)-tight T-graphs
with order n according to the minimum degree of such T-graphs. Apart from noncellular
(2,2)-tight T-graph with one vertex, we consider two groups of irreducible (2,2)-tight
T-graphs; one with minimum degree 3 and the other one with minimum degree 2. For
each of the previous two groups, we categorise irreducible (2,2)-tight T-graphs according
to the number of 2-cycles in their underlying graphs. See Figure 5.13.

Graphs with n vertices

Minimum degree 3 Minimum degree 2

No
2− cycle

1
2− cycle

2
2− cycles

No
2− cycle

1
2− cycle

2
2− cycles

3
2− cycles

Figure 5.13: The structure of organising the irreducible (2,2)-tight T-graphs.

Now we describe how the irreducible (2,2)-tight T-graphs are denoted according to
their orders and an indexing that we choose to distinguish nonisomorphic irreducible
(2,2)-tight T-graphs of the same orders from each other.

Notation 5.2.5. We denote each irreducible (2,2)-tight T-graph as Gi
j where i refers to
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the number of vertices of G and j is an index which is used to distinguish between the

nonisomorphic irreducible (2,2)-tight T-graphs with i vertices.

See the examples in Figure 5.14 of organising and notating two irreducible (2,2)-tight
T-graphs.

G5
2 G5

21

2-
cy

cle

G5
2

One

G5
21

Three 2-cycles

T he
underlying

graph o f G5
21 .

T he underlying
graph o f G5

2 .

Graphs with 5 vertices

Minimum degree 3 Minimum degree 2

No
2− cycle

1
2− cycle

2
2− cycles

No
2− cycle

1
2− cycle

2
2− cycles

3
2− cycles

Figure 5.14: The T-graph G5
2 respectively G5

21 is an irreducible (2,2)-tight T-graph with
five vertices such that its underlying graph has one 2-cycle respectively three 2-cycles.

5.2.4 Computer search approach

The second approach that we used to find all the irreducible (2,2)-tight T-graphs with less
than eight vertices is a computer assisted search. We used the SageMath computer algebra
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system to automate the search, [100], [50]. Here we outline the basic data structures and
algorithms that we used for calculating the irreducible (2,2)-tight T-graphs, [19].

Graphs: the MyGraph class

The standard graph data structures that ship with the SageMath system are not particu-
larly well adapted for our purposes, so we have implemented the MyGraph class which
subclasses the SageMath Graph class. This models a graph as a set of darts (half-edges)
D, together with a pair of partitions of D, V and E . The parts of V correspond to vertices
of the graph and the parts of E are all 2-sets that correspond to the edges of the graph.
MyGraph has the following methods (this list is not exhaustive, we only mention the most
important methods):

• digon_split: this returns a MyGraph object that is obtained by splitting a vertex
of self into two vertices joined by a pair of parallel edges. We also must specify
how the darts of the vertex are to be divided among the new vertices.

• zero_extension: returns a MyGraph object corresponding to a Henneberg type 0
extension of self.

• one_extension: returns a MyGraph object corresponding to a Henneberg type 1
extension of self.

• edge_deletion: returns a MyGraphs object that is obtained by deleting an edge of
self.

• vertex_deletion: returns a MyGraphs object that is obtained by deleting a vertex
of self.

We also have some class methods (in the Python sense of that term). In particular:

• isomorphism_class_reps: this is a class method that takes a list of MyGraphs
and filters out isomorphism. Here we have adapted SageMaths built in graph iso-
morphism checker to check for an isomorphism between two MyGraph objects.

• extensions_of: this returns a list of all possible digon splits, Henneberg type 0
extensions and Henneberg type 1 extensions of a given MyGraph instance.

123



CHAPTER 5. IRREDUCIBLE (2,2) -TIGHT TORUS GRAPHS

The following lemma utilises constructing (2,2)-tight graphs up to 7 vertices inductively.
However, let us recall some moves in Figure 5.15.

(a) (b) (c)

Figure 5.15: (a) A vertex-to-2-cycle which is the inverse of 2-cycle contraction move. (b)
Henneberg 0-extension (Henneberg type 0 move). (c) Henneberg 1-extension (Henneberg
type 1 move).

Lemma 5.2.6. Every (2,2)-tight graph can be constructed from a vertex by a sequence

of vertex-to-2-cycle, Henneberg 0-extension or Henneberg 1-extension.

As a consequence of Lemma 5.2.6, using the class methods digon_split, extensions_of
and isomorphism_class_reps, we can inductively construct lists of (2,2)-tight graphs
with up to seven vertices.

5.2.5 Surface graphs: the OrientedRotationSystem class

Let Sn be the group of permutations of {1, · · · ,n}. Recall that an oriented rotation system
is a pair of permutations σ ,τ ∈ S2e where τ is a fixed point free involution.

We have also implemented a version of the pebble game algorithm of Lee and Streinu
[62]. If Σ is an oriented surface and G is a cellular Σ-graph, then G gives rise to an oriented
rotation system as follows. Label the darts of G by 1, · · · ,2|E|. Now, let σ(i) be the dart
that is next to i with respect to the clockwise ordering of the darts around the vertex of i.
Let τ(i) be the other dart in the edge of i. Oriented rotation systems are a convenient way
to represent cellular surface graphs in a computer algebra system. We have implemented
the class OrientedRotationSystem in Sagemath, along with the following methods for
computing various invariants associated to the corresponding surface graph.

• components: returns a list of components of self. Note that components of an
oriented rotation system correspond to orbits of group generated by σ and τ . Here
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(and elsewhere) we make use of SageMath’s built in permutation group functional-
ity (which is based on an interface to the GAP computer algebra system).

• vertices: this returns the partition of {1, · · · ,2|E|} induced by the cycles of σ .

• edges: this returns the partition of {1, · · · ,2|E|} induced by the cycles of τ .

• faces: this returns the partition of {1, · · · ,2|E|} induced by the cycles of στ .

• genus: computes the genus of the underlying surface using Euler’s formula 2−
2g = f − e+ v.

• edge_contraction and edge_deletion: these return OrientedRotationSystem
objects corresponding to the contraction and deletion operations defined for surface
graphs, see Definitions 3.4.1, 3.4.2.

• edge_insertion: this inserts an edge in a face. We must specify where the corre-
sponding darts are to be inserted into the appropriate vertex cycles.

• based_isomorphism: this checks for an isomorphism between two rotation sys-
tems for which the image of one of the darts is specified. This is quite fast to check
and proceeds by extending the mapping one dart at a time using the vertex and
edge permutations of the rotation systems. If the mapping can be extended over the
whole dart set, then the rotation systems are isomorphic.

We have also implemented a standalone function is_irreducible which takes an
OrientedRotationSystem whose graph is known to be (2,2)-tight and checks if the
corresponding surface graph is irreducible. We summarise the algorithm for this as fol-
lows.

1. Check for any digon faces or triangle faces. If they exist return False.

2. Now find all quadrilateral faces using the faces method

• if there is a degenerate quadrilateral, then return False.

• check all possible contractions of the quadrilateral faces to see if any of these
have a (2,2)-sparse graph. Here we use our implementation of the Pebble
Game to check sparsity. If we find a sparse contraction Return False
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3. Return True

See [20] for the SageMath code together with data files describing the rotation systems
corresponding to each of cellular irreducible torus graphs and corresponding diagrams.

5.2.6 A sample interactive session

In the following we give a sample computation using our code to demonstrate the basic
functionality.

In [1]: from sparsity import MyGraph

In [2]: vertex_parts = [[1,2,7],[3,4,8],[5,6]]

edge_parts = [[1,3],[2,5],[4,6],[7,8]]

g = MyGraph(dart_partitions=[vertex_parts,edge_parts])

In [3]: g.edges()

Out[3]: [(0, 1, 0), (0, 1, 3), (0, 2, 1), (1, 2, 2)]

In [4]: g.plot()

Out[4]:
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In [5]: from sparsity import PebbleGame

In [6]: p = PebbleGame(g.vertices(),2,2)

In [7]: p.run(g)

Out[7]:

In [8]: from rotation import OrientedRotationSystem

In [9]: l = OrientedRotationSystem.from_mygraph(g)

In [10]: l

Out[10]: [<rotation.OrientedRotationSystem object at 0x7f265720db50>]

In [11]: ors = l[0]

In [12]: ors.faces()

Out[12]: [[1, 5, 4, 7, 3, 6, 2, 8]]

In [ ]: # so this ors has a single face of degree 8
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5.3 Irreducible (2,2)-tight torus graphs with less than
three vertices

In this section we list the irreducible (2,2)-tight T-graphs with less than four vertices.
By Theorem 4.4.14, up to isomorphism, the only irreducible (2,2)-tight T-graph with
one respectively two vertices is given in Figure 4.28 (a) respectively (b). We denote the
irreducible (2,2)-tight T-graphs in Figure 4.28 (a) and Figure 4.28(b) by G1

1 and G2
1,

respectively.
Now, we consider the possible embeddings of the graphs Ω1 and Ω2, see Figure 5.16,

as irreducible (2,2)-tight T-graphs. In fact, we shall show that there are exactly two
nonisomorphic irreducible (2,2)-tight T-graphs with three vertices. Notice that the graphs
Ω1 and Ω2 in Figure 5.16 are the only two nonisomorphic (2,2)-tight graphs with three
vertices.

Ω1 Ω2

Figure 5.16: The graphs Ω1 and Ω2 are (2,2)-tight graphs with three vertices.

Lemma 5.3.1. Up to isomorphism, there is a unique embedding of Ω1 as an irreducible

(2,2)-tight T-graph.

Proof. By Lemma 5.1.5, each of the 2-cycles of Ω1 is a nonseparating cycle. To embed
the two 2-cycles as nonseparating cycles there are only two ways to do that. Either they are
homotopic to each other or they are not. The former embedding leads to a reducible (2,2)-
tight torus graph, see Figure 5.17(a), while the latter embedding yields an irreducible
(2,2)-tight torus graph, see Figure 5.17(b).

We denote the irreducible embedding of Ω1 in the torus which is given in Lemma
5.3.1 by G3

1.
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(a) (b)

Figure 5.17: (a) The two 2-cycles of Ω1 are embedded homotopic to each other. It is clear
that the quadrilateral face is contractible. (b) The two 2-cycles of Ω1 are not homotopic
to each other.

Lemma 5.3.2. Up to isomorphism, there is a unique embedding of Ω2 as an irreducible

(2,2)-tight T-graph.

Proof. Consider the 2 respectively 3-cycle in Ω2. By Lemma 5.1.5, respectively, Lemma
5.1.6, each of these two cycles forms a nonseparating cycle in T. To embed the two cycles
as nonseparating cycles, there are only two ways to do that. Either they are homotopic to
each other or they are not. The former embedding leads to a reducible (2,2)-tight torus
graph, see Figure 5.18(a), while the latter embedding yields an irreducible (2,2)-tight
torus graph, see Figure 5.18(b).

We denote the irreducible embedding of Ω2 which is given in Lemma 5.3.2 by G3
2.

Hence, we have the following theorem.

Theorem 5.3.3. There are exactly two irreducible (2,2)-tight T-graphs with three ver-

tices.

Lemma 5.3.4. Let K be a T-subgraph of an irreducible (2,2)-tight T-graph G whose

underlying graph is Ω1 respectively Ω2. Then K is isomorphic to G3
1 respectively G3

2.

Proof. This follows immediately from Lemmas 5.3.1, 5.3.2 and Theorem 5.1.1.

In Figure 5.19(b) respectively 5.19(d), we present the polygon representation corre-
sponding to the irreducible (2,2)-tight T-graph G3

1 respectively G3
2.
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(a) (b)

Figure 5.18: (a) The embedding of the 2 and 3-cycle of Ω2 are homotopic to each other.
(b) The embedding of the 2 and 3-cycle of Ω2 are not homotopic to each other.

v2

v3

v1
v3

v2 v1

v2

v3

v2v1

v2

v2

v3

v1

v2

v1 v2

v3

v1

v2v1

v3

(a) (b) (c) (d)

Figure 5.19: (a) A labelling of G3
1. (b) The polygon representation of G3

1 in (a). (c) A
labelling of G3

2. (d) The polygon representation of G3
2 in (c).

The following lemma is another tool that we used to utilise the search for irreducible
(2,2)-tight T-graphs with vertices greater than 3. Consider the 2-cycle graph, O1, which
is given in Figure 5.1.

Lemma 5.3.5. Let Γ be a (2,2)-tight graph that contains a subgraph Π that is isomorphic

to either Ω1 or Ω2 and a subgraph Θ that is isomorphic to O1. If Π and Θ are disjoint,

then Γ cannot be embedded as an irreducible (2,2)-tight T-graph.

Proof. It is clear that Θ must be embedded as a separating 2-cycle contained in a face of
G3

1 (or G3
2). By Lemma 5.3.1, this means that there is some digon in the embedding so it

is not irreducible.
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Figure 5.20 summarise Lemma 5.3.5. We use the polygon representation of G3
1 to

visualise the embedding of Θ.

v3

v2 v1

v2

v3v2

v2v1

v1 v2 v3

(a) (b)

Γ
Θ

Π

Figure 5.20: (a) A (2,2)-tight graph Γ that contains Π and Θ as subgraphs. (b) The
polygon representation of G3

1 and a digon in its interior.

5.4 Irreducible (2,2)-tight torus graphs with four vertices

In this section we present all the irreducible (2,2)-tight T-graphs with four vertices. Con-
sequently, we prove the following theorem.

Theorem 5.4.1. There are 9 nonisomorphic irreducible (2,2)-tight T-graphs with four

vertices.

Notice that there are 9 nonisomorphic (2,2)-tight graphs with four vertices. These
graphs are displayed in Figure 5.21. Table 5.1 contains the notations that we choose to
notate the (2,2)-tight graphs with four vertices. Table 5.2, contains the notations of the
nine irreducible (2,2)-tight T-graphs with four vertices.

Gr. Ref. Gr. Ref. Gr. Ref.
Θ1 Fig. 5.21, Lem. 5.4.2 Θ4 Fig. 5.21, Lem. 5.4.5 Θ7 Fig. 5.21, Lem. 5.4.5
Θ2 Fig. 5.21, Lem. 5.4.2 Θ5 Fig. 5.21, Lem. 5.4.5 Θ8 Fig. 5.21, Lem. 5.4.5
Θ3 Fig. 5.21, Lem. 5.4.5 Θ6 Fig. 5.21, Lem. 5.4.5 Θ9 Fig. 5.21, Lem. 5.4.6

Table 5.1: The notations for all nonisomorphic (2,2)-tight graphs with four vertices. Ab-
breviations: Gr.=Graph, Ref.=Reference(s).
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Gr. Ref. Gr. Ref. Gr. Ref.
G4

1 Lem. 5.4.2 G4
4 Lem. 5.4.5, Fig. 5.27 G4

7 Lem. 5.4.5, Fig. 5.27
G4

2 Lem. 5.4.4 G4
5 Lem. 5.4.5, Fig. 5.27 G4

8 Lem. 5.4.5, Fig. 5.26
G4

3 Lem. 5.4.5, Fig. 5.27 G4
6 Lem.5.4.5, Fig. 5.26 G4

9 Lem. 5.4.5, Fig. 5.26

Table 5.2: The notations for all nonisomorphic irreducible (2,2)-tight T-graphs with four
vertices. Abbreviations: Gr.=T-Graph, Ref.=Reference(s).

Θ1 Θ2 Θ3 Θ4

Θ7Θ6Θ5

Θ8 Θ9

Figure 5.21: All nonisomorphic (2,2)-tight graphs with four vertices.

5.4.1 Embedding Θ1

In the following we show that Θ1, see Figure 5.21, can be embedded in the torus as an
irreducible (2,2)-tight T-graph.

Lemma 5.4.2. Let G be an irreducible (2,2)-tight T-graph with f4 = 1 and its underlying

graph is Θ1. Then G is isomorphic to the T-graph shown in Figure 5.22.

Proof. The proof follows from Lemma 4.5.3.

132



5.4. IRREDUCIBLE (2,2)-TIGHT TORUS GRAPHS WITH FOUR VERTICES

Consider the irreducible embedding of Θ1 in Lemma 5.4.2. We denote this embedding
by G4

1 .

v2

v4

v3

v1

G4
1

v2

v1 v2

v3

v1

v3 v4

v4

Figure 5.22: The embedding of Θ1 as an irreducible (2,2)-tight T-graph ( G4
1 ).

Lemma 5.4.3. Θ1 cannot be embedded as an irreducible (2,2)-tight T-graph with f4 = 0.

Proof. Assume that Θ1 can be embedded as an irreducible (2,2)-tight T-graph with f4 =

0. Let us label Θ1 as in Figure 5.23(a). By Lemma 5.1.4, any 4-cycle in Θ1 has to be
embedded as nonseparating cycle in T. Let us consider the subgraph Θ1− j. So the
embedding of its nondegenerate 4-cycle has to be embedded as a nonseparating cycle as
in Figure 5.23(b). We embed the edge in the noncellular face as it is depicted in Figure
5.23(b) which represents the embedding of Θ1− j. It follows that the cellular embedding
of Θ1− j gives rise to a polygon representation which is depicted in Figure 5.23(c). We
can see that it is impossible to add the edge j in the 10-gon without creating a triangle or
a quadrilateral face in the interior of this polygon.

5.4.2 Embedding Θ2

In the following we consider the embedding of Θ2, see Figure 5.21, as an irreducible
(2,2)-tight T-graph. Notice that this graph has O4, see Figure 5.1, as a subgraph.

Lemma 5.4.4. Θ2 can be embedded as an irreducible (2,2)-tight T-graph. This embed-

ding is unique up to isomorphism.

Proof. Consider the labelled Θ2 in Figure 5.24(a). By Lemma 5.1.7, the two 2-cycles
together forms two disjoint nonseparating cycles, see Figure 5.24(b). The two edges e

and f have to be embedded as in Figure 5.24(b).
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(a)
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v3v2

v1

v3

v4

(b)

(d)

v2

v4

v3

v1

v1

v3v2

v1

v3

v4

(c)

e f

g
h i

j

e

f

j

j

j

j

i

h
g

Figure 5.23: Embedding Θ1 with f4 = 0: (a) A labelling of Θ1. (b) The embedding of the
subgraph Θ− j in the torus. (c) The polygon representation of the embedding in (b). (d)
All possible cases of inserting the edge j inside the polygon representation of the T-graph
in (b).

We denote the embedding given in Lemma 5.4.2 by G4
2. Consider the labelling of G4

2

in Figure 5.24(b). The polygon representation of G4
2 is depicted in Figure 5.24(c).

5.4.3 Irreducible (2,2)-tight T-graphs that are derived from either
G3

1 or G3
2

In the following we show that there are exactly 7 nonisomorphic (2,2)-tight T-graphs
where either G3

1, see Figure 5.17(b), or G3
2, see Figure 5.18(b), is a T-subgraph of each of

them. We use polygon representations of G3
1 and G3

2 to find such irreducible (2,2)-tight
T-graphs.

Consider the (2,2)-tight graphs with four vertices such that either Ω1, see Figure
5.16, or Ω2, see Figure 5.16, is a subgraph of each them. In Figure 5.25, we categorise
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v2

v4

v3

v1

G4
2

v2

v2
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v1
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v4
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v3

v1

v4

v4

Θ2

v2

v4 v3

v1

(a) (b)

(c)
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g
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g

h

i

j

e

f

Figure 5.24: (a) A labelling of Θ2. (b) The embedding of Θ1 as an irreducible (2,2)-tight
T-graph, i.e. G4

2. (c) The polygon representation of G4
2

such graphs into three groups. We use this categorisation to find irreducible (2,2)-tight
T-graphs such that their underlying graphs are from these three groups.

Lemma 5.4.5. There are 7 nonisomorphic irreducible (2,2)-tight T-graphs with four

vertices in which either G3
1 or G3

2 is a T-subgraph of each of them.

Proof. Consider the seven (2,2)-tight graphs in Figure 5.25. We use the polygon repre-
sentation of G3

1 to decide if the graphs Θ6,Θ7 and Θ8 can be embedded as an irreducible
(2,2)-tight T-graphs. We use the method that we described in Subsection 5.1.3. See also
Appendix B, which contains all possible polygon representations that can be generated
from the polygon representation of G3

1. Of course many of them are equivalent. We found
up to isomorphism that for each of Θ6 respectively, Θ7 and Θ8, see Figure 5.21, there is
a unique embedding as an irreducible (2,2)-tight T-graph G4

6 respectively G4
8 and G4

9, see
Figure 5.26.

Now, for the graphs Θ3,Θ4 and Θ5, we find from the polygon representation of G3
2
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Ω1 Ω2 Ω2Ω1 and

Θ3

Θ4

Θ5

Θ7

Θ8

Θ6

Figure 5.25: The six nonisomorphic (2,2)-tight graphs of order 4 that contain either Ω1,
see Figure 5.16, or Ω2, see Figure 5.16, as a subgraph. We group them in three groups.

the following. The graph Θ3 is the underlying graph of two nonisomorphic irreducible
(2,2)-tight T-graphs, G4

3 and G4
4, see Figure 5.27. Moreover, up to isomorphism, for Θ4

respectively, Θ5 there is a unique embedding as an irreducible (2,2)-tight T-graph, which
is denoted by G4

5 respectively G4
7, see Figure 5.27.
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Figure 5.26: The irreducible (2,2)-tight T-graphs G4
6,G

4
8 and G4

9.

5.4.4 The smallest (2,2)-tight graph with no irreducible embedding

Consider the last (2,2)-tight graph in Figure 5.21, Θ9. Although Ω1 is a subgraph of Θ9,
we see in the following that Θ9 cannot be embedded as an irreducible (2,2)-tight T-graph.

Lemma 5.4.6. Θ9 cannot be embedded as an irreducible (2,2)-tight T-graph.

Proof. Notice that Ω1 is a subgraph of Θ9. So let us consider the polygon representation
of G3

1 and the labelled Θ9 in Figure 5.28(a). Now, we have to embed the vertex v4 and its
two adjacent edges in the interior of the plane polygon in Figure 5.28(b). It is clear that
there is no way to do so without creating a quadrilateral. Thus, the conclusion follows.

Lemma 5.4.7. Let Γ be a (2,2)-tight graph. If Θ9 is a subgraph of Γ, then Γ cannot be

embedded as an irreducible (2,2)-tight T-graph.

Proof. The conclusion follows from Theorem 5.1.1.

Consequently, we notice that Θ9 is the smallest (2,2)-tight graph which cannot be
embedded in the torus as an irreducible (2,2)-tight T-graph.
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Figure 5.27: The irreducible (2,2)-tight T-graphs G4
3,G

4
4,G

4
5 and G4

7.

Hence, we proved Theorem 5.4.1. We present the notations for all irreducible (2,2)-
tight T-graphs with four vertices in Figure 5.29. In Appendix E (E.2), we present the
irreducible (2,2)-tight T-graphs with four vertices in one group. Figure 5.29 shows how
the notations of all irreducible (2,2)-tight T-graphs with four vertices are categorised.

5.5 Irreducible (2,2)-tight torus graphs with five vertices

In this section we present all the irreducible (2,2)-tight T-graphs with five vertices. We
prove the following theorem.

Theorem 5.5.1. There are 23 nonisomorphic irreducible (2,2)-tight T-graphs with five

vertices.

Table 5.3 contains all the notations of the irreducible (2,2)-tight T-graphs with five
vertices.
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v3v2v1

v4

Figure 5.28: (a) A labelling of Θ9. (b) The polygon representation of G3
1 which is used to

show that Θ9 cannot be embedded as an irreducible (2,2)-tight T-graph.

|V|=4

G4
2G4

1 G4
3

G4
4

G4
5
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Min. deg. =3 Min. deg. =2

One
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Two
2-cycles

Zero
2-cycle

One
2-cycle

Two
2-cycles

Three
2-cycles

Zero
2-cyle

Figure 5.29: Notations of all nonisomorphic irreducible (2,2)-tight T-graphs with four
vertices.

We observe that there are only two simple (2,2)-tight graphs with five vertices, [80].
These graphs are ∆1 and ∆2, see Figure 5.30. Also, we observe that the graph ∆3, Figure
5.30, is the only nonsimple underlying graph with minimum degree three among all the
other underlying (2,2)-tight graphs of irreducible (2,2)-tight T-graphs with five vertices.

5.5.1 Embedding ∆1

In the following we investigate the embedding ∆1, see Figure 5.30, as an irreducible
(2,2)-tight T-graph.
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Gr. Ref. Gr. Ref. Gr. Ref.
G5

1 Fig. 5.31(d) G5
9 Fig. 5.42 G5

17 Fig. 5.43
G5

2 Fig. 5.34(b) G5
10 Fig. 5.42 G5

18 Fig. 5.43
G5

3 Fig. 5.32(b) G5
11 Fig. 5.35(c) G5

19 Fig. 5.36
G5

4 Fig. 5.32(c) G5
12 Fig. 5.40 G5

20 Fig. 5.36
G5

5 Fig. 5.40 G5
13 Fig. 5.41 G5

21 Fig. 5.38
G5

6 Fig. 5.42 G5
14 Fig. 5.37 G5

22 Fig. 5.39
G5

7 Fig. 5.42 G5
15 Fig. 5.37 G5

23 Fig. 5.39
G5

8 Fig. 5.42 G5
16 Fig. 5.37

Table 5.3: The notations of all nonisomorphic irreducible (2,2)-tight T-graphs with five
vertices. Abbreviations: Gr.=T-Graph, Ref.=Reference(s).

∆1 ∆2 ∆3 ∆4

Figure 5.30: Some (2,2)-tight graphs with five vertices.

Lemma 5.5.2. Up to isomorphism, there is a unique embedding for the graph ∆1 as an

irreducible (2,2)-tight T-graph.

Proof. Let us label the graph ∆1 as in Figure 5.31(a). Let K be the subgraph K4 minus
one edge with the vertices v1,v2,v4,v5. By a similar argument to the one in the proof of
Lemma 5.4.3, we embed K as in Figure 5.31(b).

Now, consider the polygon representation of the embedding of K. We need to embed
the vertex v3 together with its adjacent three edges g,k and l. We do that on the polygon
representation of the embedding of K. Let us first insert the edge g. As v2 appears on
the boundary of the polygon representation of the embedding of K twice, we have an
arbitrary choice to pick between these two. Let us fix one of these vertices, see Figure
5.31(c). Now, let us consider inserting the edge l in the polygon representation. We can
see that the vertex v4 appears on the boundary of the polygon twice. Notice that we can
choose the one which is distanced from v2 by two. But this choice creates a triangle. So
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we choose the other one. Finally, the edge k is enforced to be inserted as depicted in
the Figure 5.31(c). Consequently, we get a polygon representation for a graph with five
vertices such that the embedding corresponding to such polygon representation satisfies
the 5-tuple ( f4, f5, f6, f7, f8) = (0,2,1,0,0). This embedding which is depicted in Figure
5.31(d) is an irreducible embedding for the graph ∆1.

We denote the embedding of ∆1 given in the previous lemma by G5
1.

(a)

v1 v2

v3v4

v5

v5

v2

v4

v1

v5

v1 v2

v1

v4
v5v2

v1

v5

v4

v3

(b) (c)

e

f

g

h

i
j

k
l

i v2

v4
v3

v1

v5

G5
1

(d)

i
k

g

h

Figure 5.31: (a) A labelling of ∆1. (b) The embedding of K4 minus one edge with vertices
v1,v2,v5 and v4 which is a subgraph of ∆1. (c) The polygon representation of the T-graph,
G5

1. (d) Embedding ∆1 as an irreducible (2,2)-tight T-graph, G5
1.

5.5.2 Embedding ∆2

In the following we consider the embedding of the graph ∆2, see Figure 5.30, in the torus.

Lemma 5.5.3. ∆2 has two nonisomorphic embeddings in T as an irreducible (2,2)-tight

T-graphs.

Proof. Consider the labelled ∆2 in Figure 5.32(a). Notice that ∆2 contains Θ1, as a sub-
graph. So ∆2 cannot be embedded as an irreducible (2,2)-tight T-graph with f4 = 0. Now,
let us consider the polygon representation of G4

1. From the labelling 5.32(a), we have to
insert the vertex v5 and its two adjacent edges in the polygon representation of G4

1. It is
clear that there are only two possible non-equivalent polygon representations we can get.
These polygon presentations are depicted in Figure 5.32(b) and (c). Consequently, their

141



CHAPTER 5. IRREDUCIBLE (2,2) -TIGHT TORUS GRAPHS

corresponding T-graphs are nonisomorphic irreducible (2,2)-tight torus graphs with five
vertices, Figure 5.32(b) and (c).

We denote the irreducible (2,2)-tight T-graph in Figure 5.32(b) respectively 5.32(c)
by G5

3 respectively G5
4.

Notice that ∆2 cannot be embedded as an irreducible (2,2)-tight torus graph with
f4 = 0.

v1

v3

v2

v4

v5 v2

v4

v3

v1

G5
3

v2

v1 v2

v3

v1

v3 v4

v4

v2

v4

v3

v1

G5
4

v2

v1 v2

v3

v1

v3 v4

v4

v5

v5

v5

v5

Labelled ∆2

(a) (b) (c)

Figure 5.32: (a) A labelling of ∆2. (b) G5
3 and its polygon representation. (c) G5

4 and its
polygon representation.

5.5.3 Embedding ∆3

Consider the graph ∆3 in Figure 5.30. In the following, we investigate the embedding of
this graph.

Lemma 5.5.4. Suppose f4 = 0. Then the graph ∆3 cannot be embedded as an irreducible

(2,2)-tight T-graph.
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Proof. Consider the subgraph K4 minus one edge of ∆3 with vertices v1,v2,v3 and v4, see
Figure 5.33(a). The embedding of this graph is depicted in Figure 5.33(b). Consider the
polygon representation of this embedding in Figure 5.33(c). Notice that v5 is adjacent
to v2 with two edges. Therefore, we add these two edges and v5 inside the polygon
representation. We can notice that there is no way to add the edge e inside the polygon
representation without creating a contractible quadrilateral, see Figure 5.33(c).

v2

v4

v1

v5

v1

v2

v1

v4

v5

v3

v2

v4

v4

v3

(b) (c)

v3 v2

v4

v1

v3

v3

(a)

e

Figure 5.33: (a) A labelling of ∆3. (b) The embedding of K4 minus one edge with vertices
v1,v2,v3 and v4 which is a subgraph of ∆3 ( the graph in (a)). (c) The polygon represen-
tation of the embedding in (b). Notice that in both cases of trying to insert the edge e,
quadrilateral faces will be created.

Lemma 5.5.5. Suppose that f4 = 1, up to isomorphism, ∆3 has a unique embedding as

an irreducible (2,2)-tight T-graph.

Proof. Consider the subgraph K4 minus one edge with vertices v1,v2,v3 and v4. This
graph can be embedded in the torus as an irreducible as shown in Figure 5.34(b). Now,
we build an essential blocker for the quadrilateral face. We first add v5 in the noncellular
face. Notice that the 2-cycle with vertices v2 and v5 has to be embedded as a nonseparating
loop, Lemma 5.1.5. Finally, the edge e should be embedded as it is shown in Figure
5.34(b).

We denote the embedding of ∆3 by G5
2.
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v2

v4

v1

v5

v3

v2

v4

v3

v1

G5
2

v3

v1

v5

v4

v5 v1

v2

v5

(a) (b) (c)

e

Figure 5.34: (a) A labelling of ∆3. (b) The irreducible embedding of ∆ with one quadri-
lateral face. (c) The polygon representation of the embedding in (b).

5.5.4 Embedding ∆4

In the following we investigate the embedding of the graph ∆4, see Figure 5.30, in the
torus as an irreducible (2,2)-tight T-graph. Notice that since Θ1, see Figure 5.21, is a
subgraph of ∆4, ∆4 cannot be embedded as an irreducible (2,2)-tight T-graph with f4 = 0,
Lemma 5.4.3. So let us examine embedding this graph with f4 = 1 in the following
lemma.

Lemma 5.5.6. Up to isomorphism, ∆4 has a unique embedding as a T-graph.

Proof. The proof follows from the polygon representation of G4
1, see Figure 5.35.

We denote the embedding shown in Figure 5.35(c) by G5
11.
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v3

v1

G5
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v2

v1 v2

v3

v1

v3 v4
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v5
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v1

v3

v2

v4

v5

(a) (b) (c)

Figure 5.35: (a) A labelling of ∆4. (b) The polygon representation of the embedding of
∆4 in (c). (c) The embedding of ∆4 as an irreducible (2,2)-tight T-graph, i.e. G5

11.

5.5.5 Irreducible (2,2)-tight torus graphs in which G4
2 is a torus sub-

graph of each of them

In the following we find all nonisomorphic irreducible (2,2)-tight T-graph with five ver-
tices such that G4

2, see Figure 5.24(b), is a T-subgraph of each of them.

Lemma 5.5.7. There are 2 nonisomorphic irreducible (2,2)-tight T-graphs such that

each of such T-graphs contains G4
2 as a T-subgraph.

Proof. The conclusion follows from the polygon representation of G4
2, see Figure 5.36.

We denote the two irreducible (2,2)-tight T-graphs by G5
19 and G5

20, see Figure 5.36.
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Figure 5.36: G5
19 and G5

20 their polygon representations.

5.5.6 Irreducible (2,2)-tight torus graphs which are derived from G3
1

or G3
2

In the following, we find all nonisomorphic irreducible (2,2)-tight T-graphs that are de-
rived from G3

1, see Figure 5.17(b), or G3
2, see Figure 5.18(b).

See also Figure 5.44 which presents an organisation of the notations of all such T-
graphs.

We check all possible polygon representations that can be generated from the poly-
gon representations of G3

1 and G3
2. From these polygon representations, we find all non-

equivalent ones, and then we find the corresponding nonisomorphic irreducible (2,2)-
tight T-graphs. In the following we list these irreducible (2,2)-tight T-graphs by declar-
ing their ancestors paths (Subsection 5.1.3).

Via G3
1−G4

6

The irreducible (2,2)-tight T-graphs in Figure 5.37 are derived from G4
6, (Figure 5.26).
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Figure 5.37: Irreducible T-graphs that are derived from G4
6.

Via G3
1−G4

8

The irreducible (2,2)-tight T-graph in Figure 5.38 is derived from G4
8 (Figure 5.26).
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21

v5
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Figure 5.38: Irreducible T-graph that is derived from G4
8.

Via G3
1−G4

9

The irreducible (2,2)-tight T-graphs in Figure 5.39 are derived from G4
9 ( Figure 5.26).
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23
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Figure 5.39: Irreducible T-graphs that are derived from G4
9.

Via G3
2−G4

3

The irreducible (2,2)-tight T-graphs in Figure 5.40 are derived from G4
3 ( see Figure 5.27).

Via G3
2−G4

4

The irreducible (2,2)-tight T-graph in Figure 5.41 is derived from G4
4 ( see Figure 5.27).
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Figure 5.40: Irreducible T-graphs that are derived from G4
3.
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Figure 5.41: Irreducible T-graph that is derived from G4
4.

Via G3
2−G4

5

The irreducible (2,2)-tight T-graphs in Figure 5.42 are derived from G4
5 ( see Figure 5.27).
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Figure 5.42: Irreducible T-graphs that are derived from G4
5.
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Via G3
2−G4

7

The irreducible (2,2)-tight T-graphs in Figure 5.43 are derived from G4
7 ( see Figure 5.27).
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Figure 5.43: Irreducible T-graph that are derived from G4
7.

The diagram in Figure 5.44 includes a summary of the ancestor paths that we previ-
ously discussed.
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8 G4
9

G3
1

G4
3 G4

4 G4
5 G4
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Figure 5.44: Irreducible (2,2)-tight T-graphs that are derived from G3
1 or G3

2.

151



CHAPTER 5. IRREDUCIBLE (2,2) -TIGHT TORUS GRAPHS

At this stage, we finished proving Theorem 5.5.1. We present the notations of all the
irreducible (2,2)-tight T-graphs with five vertices in Figure 5.45. In Appendix E(E.3, E.4
and E.5), we present the irreducible (2,2)-tight T-graphs with five vertices.

|V|=5
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2 G5
3
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4

Min. deg. =3 Min. deg. =2
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Two
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Two
2-cycles

Three
2-cycles

Zero
2-cyle

Figure 5.45: All nonisomorphic irreducible (2,2)-tight T-graphs with five vertices.

5.6 Irreducible (2,2) -tight torus graphs with six and seven
vertices

In this part of this chapter, we explain how we found all nonisomorphic irreducible (2,2)-
tight (2,2)-tight T-graphs with six and seven vertices. These irreducible (2,2)-tight T-
graphs were found by using the SageMath code which is described in Subsection 5.2.4.
We found 47 irreducible (2,2)-tight T-graphs with 6 vertices and 27 irreducible (2,2)-
tight T-graphs with 7 vertices. These are shown in Appendix E (E.6, E.7,E.8,E.9,E.10
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and E.11) and Appendix E (E.12, E.13 and E.14 ) respectively. We have also verified
these lists independently by hand - we omit the details of these calculations here. We
found that both hand calculations and computer assisted searches yield the same list of
irreducible (2,2)-tight T-graphs.

In the following, we give an idea of how we compared the results of both approaches.
Consider the irreducible (2,2)-tight T-graph in Figure 5.46 that we found by hand com-
puting. We label all the half edges in an anti-clockwise order. Then we record the rotation
system of this T-graph as follows.

σ =[[1,2,3], [4,5,6,7], [8,9,10,11,12], [13,14,15,16],

[17,18,19,20], [21,22], [23,24]]

τ =[[1,10], [2,7], [6,8], [12,14], [3,13], [4,24], [19,23],

[18,21], [16,22], [5,15], [9,20], [11,17]]

1

G7
15

2
3

4

56
7

8

9
10

11
12

13
1415

16

17

18

19

20
21

22

24

23

Figure 5.46: One irreducible (2,2)-tight T-graph with seven vertices. All half edges are
labelled with specific numbers.

Figure 5.47 presents a SageMath session to test the irreducibility of the T-graph in
Figure 5.46.

We present the notations for all irreducible (2,2)-tight T-graphs with six respectively
seven vertices in Appendix C Figure C.1 respectively Figure C.2.
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Figure 5.47: The output of the OrientedRotationSystem class shows that the (2,2)-tight
T-graph in Figure 5.46 is irreducible.

5.7 Irreducible (2,2)-tight torus graphs with eight ver-
tices

This section is devoted to present all the irreducible (2,2)-tight T-graphs with eight ver-
tices. We prove the following theorem.

Theorem 5.7.1. There are exactly 6 nonisomorphic irreducible (2,2)-tight T-graphs with

eight vertices.

We use the hand computations to reach our goal of proving Theorem 5.7.1. We start
by presenting two simple lemmas.

Lemma 5.7.2. Let G be an irreducible (2,2)-tight T-graph with eight vertices. Then there

are exactly two quadrilateral faces in G.

Proof. It is clear that G is cellular and e = 14. By a similar argument to the one in
the proof of Theorem 5.2.1, we have that f5 + 2 f6 + 3 f7 + 4 f8 = 4 and fi = 0 for all
i ∈ {1,2,3,9,10, . . .}. So

2e = 4 f4 +5 f5 +6 f6 +7 f7 +8 f8

≤ 4 f4 +5( f5 +2 f6 +3 f7 +4 f8)

≤ 4 f4 +5(4)

Thus, f4 ≥ 28−20
4 = 2. However f4 ≤ 2, Theorem 4.7.11. Thus, f4 = 2.
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Lemma 5.7.3. Let G be an irreducible (2,2)-tight T-graph with eight vertices. Then the

faces of G, other than the two quadrilateral faces, are pentagons and there are exactly

four of them.

Proof. By a similar argument to the one of the proof of Lemma 5.7.2, 28 = 4 f4 +5 f5 +

6 f6 +7 f7 +8 f8. But f4 = 2, thus f5 = 4.

Now we prove Theorem 5.7.1.

Proof. Let G be an irreducible (2,2)-tight T-graph with 8 vertices. By Lemma 5.7.2, G

has two quadrilateral faces, say Q and R. Now, by Lemma 4.7.10, for i = 1,3, Li is either
a single vertex or a nonseparating cycle of length two. So we have three cases here.

Case 1: Each of L1 and L3 is a single vertex, see Figure 5.48(a). So we consider the
polygon representation, see Figure 5.48(b), of the T-graph in 5.48(a). There are three
nonisomorphic irreducible (2,2)-tight T-graphs shown in Figure 5.49 and Figure 5.50
which can be derived from the T-graph that is depicted in Figure 5.48(a).

v2

v4

v3
v1

v2v1v5

v4

v6 v1

v5

v6

v3v2

v5

v6v3

v4
QR

(a) (b)

Figure 5.48: An irreducible (2,2)-tight torus graph with two quadrilateral faces such that
both of L1 and L3 are vertices.
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Figure 5.49: An irreducible (2,2)-tight T-graph that is derived from the irreducible T-
graph in Figure 5.48(a).
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Figure 5.50: The two irreducible (2,2)-tight T-graph in (a) and (b) are derived from the
irreducible T-graph in Figure 5.48(a).

Case 2: L1 is a single vertex and L3 is a nonseparating cycle of length two. Therefore,
we have the embedding which is depicted in Figure 5.51(a). It follows from the polygon
representation in Figure 5.51(b) that there are two nonisomorphic irreducible (2,2)-tight
T-graphs, see Figure 5.52(a) and (b), such that the T-graph in Figure 5.51(a) is a T-
subgraph of each of them.
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Figure 5.51: A T-graph with two quadrilaterals such that L1 is a vertex and L3 is a non-
separating cycle of length two. Notice that this is an irreducible (2,2)-tight T-graph with
7 vertices.
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Figure 5.52: The two irreducible (2,2)-tight T-graph in (a) and (b) are derived from the
irreducible T-graph in Figure 5.51(a).

Case 3: Each of L1 and L2 is a nonseparating cycle of length two. So we have the
embedding which is depicted in Figure 5.53.
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Figure 5.53: L1 and L3 are nonseparating cyles of length two.

We present the notations for all irreducible (2,2)-tight T-graphs with eight vertices in
Figure 5.54. In Appendix E ( E.15), we present the irreducible (2,2)-tight T-graphs with
eight vertices in one group.
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Figure 5.54: All nonisomorphic irreducible (2,2)-tight T-graphs with eight vertices.
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We end this chapter by summarising the counting of the irreducible (2,2)-tight T-
graphs according to their order in Table 5.4.

n No. of irreducible (2,2)-tight T-graphs Section

1 1 5.3

2 1 5.3

3 2 5.3

4 9 5.4

5 23 5.5

6 47 5.6

7 27 5.6

8 6 5.7

Table 5.4: Irreducible (2,2)-tight T-graphs with n vertices.

Now we present the following theorem.

Theorem 5.7.4. Every (2,2)-tight torus graph can be constructed from one of the 116

irreducible (2,2)-tight torus graphs by a sequence of digon, triangle or quadrilateral

splitting move.
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Chapter 6

Contacts of Circular Arcs
Representation

One of the fundamental topics in geometric graph theory is the topic of geometric rep-
resentations of graphs. In general, the topic of geometric representations of graphs in-
vestigates whether a given graph admits a certain kind of geometric representation. The
algorithmic aspects of geometric representations are also considered in the topic of geo-
metric representations.

Geometric representations of graphs are indeed related to the theory of intersection
graphs. Specifically, geometric representations of graphs are related to those intersec-
tion graphs that arise from various collections of geometric contexts. For example, if a
graph Γ is the intersection graph of a collection of curves, then Γ admits a curve intersec-
tions representation. In Section 6.1, we briefly survey the theory of intersection graphs.
Special types of intersection graphs are contact graphs. In Section 6.2, we review some
fundamental concepts of contact graphs.

The main goal of this chapter is to investigate the recognition problem for contact
graphs. Specifically, this chapter is designed to find necessary and/or sufficient conditions
for a surface graph to be the contact graph of a collection of curves. The main result of
this chapter is the following theorem.

Theorem 6.0.1. Every (2,2)-tight torus graph is the contact graph of a collection of

circular arcs in the flat torus.
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6.1 Intersection graphs

Intersection graph theory is a major topic in the discipline of graph theory. The studies of
intersection graphs extensively focus on the geometric intersection graphs. The geometric
intersection graphs are intersection graphs of geometric contexts such as curves, lines,
discs defined in the plane. Several classes of geometric intersection graphs have been
applied in many fields such as biology, statistics, psychology and computing [65]. More
background of the intersection graph theory can be found in [39] and [77]. In this section,
we briefly survey some fundamental concepts and results of the theory of intersection
graphs.

6.1.1 Definition of intersection graphs

In the following we review the general definition of the intersection graph.

Definition 6.1.1. [51] Let F be a family of sets. The intersection graph of F is defined

as a simple graph ΓF = (V,E,s, t) such that its vertex set is F and its edge set is the

intersections between sets of F which can be defined as follows. Given Si,S j ∈ F , if

i 6= j and Si∩S j 6= φ , then define an edge e such that s(e) = Si and t(e) = S j.

Definition 6.1.2. [51] A graph Γ is an intersection graph if there exists a family F such

that Γ∼= ΓF .

Example 6.1.3. Consider the family set F = {S1,S2,S3,S4,S5} where S1 = {1}, S2 =

{1,2,3}, S3 = {3,4}, S4 = {1,2,3,4,5} and S5 = {5}. Then the intersection graph ΓF

is illustrated in Figure 6.1.

S1 S2

S3S4

S5

ΓF

Figure 6.1: The intersection graph of the set family F .
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One of the important results of the intersection graph theory presented by Marczewaski
in 1945 is the following.

Theorem 6.1.4. [87] Every graph is an intersection graph.

6.1.2 Intersection graphs of some geometric contexts

Many kinds of geometric contexts have been used in the topic of geometric intersection
graphs. For example, curves, polylines, triangles and so on. The intersection graph of
a collection of specific geometric contexts admits that geometric contexts representation.
For example, if a graph Γ is the intersection graph of a collection of curves, then Γ admits
a curve intersections representation.

The surface where the geometric contexts live plays a role in the theory of intersection
graphs. Most of the known results of geometric intersection graphs considered the flat
plane. One of the main results of that vein is given in [26]: every planar graph is an
intersection graph of curves in the plane, Figure 6.2.

Intersection graphs of line segments in the plane is another type of geometric inter-
section graphs. In [81], the author conjectured that all planar graphs can be represented
as a collection of intersections of line segments in the plane. This conjecture was proven
in [14], see Figure 6.2.

(a)

α

β

γ

ζ
βγ

ζ

α

(b)

β

γ

ζ

α

(c)

Figure 6.2: The graph in (a) is the intersection graph of the collection of curves respec-
tively line segments in (b) respectively (c).
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6.2 Contact graphs

Contact graphs of geometric contexts are special graphs of intersection graphs of geo-
metric contexts. However, the geometric contexts under consideration are not allowed to
cross but only to touch each other. In this section, we review some results of this topic.

6.2.1 Circle packing theorem

The foundational result in the area of contact graphs is the well known Koebe-Andreev-
Thurston circle packing theorem which was proved independently by Koebe in [57], An-
dreev [5], [4] and Thurston in [91]. This theorem about representing planar graphs as
contact graphs of circles in the plane, see Figure 6.3. In the following we restate the circle
packing theorem.

Theorem 6.2.1. Every planar simple graph can be realised as the contact graph of some

arrangement of circles with nonoverlapping interiors in the Euclidean plane.

(a) (b)

Figure 6.3: An example of a simple plane graph and its corresponding circle packing
representation.

6.2.2 Some types of contact representations

After Theorem 6.2.1 was established, many researchers introduced and investigated var-
ious types of geometric representations in the plane. We only state a few of such rep-
resentations. A triangle contact graph is one example of such contact graphs where the
geometric contexts are triangles. De Fraysseix et al. [22] showed that any planar graph
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can be represented as a triangle contact graph. Specifically, every planar graph has a con-
tact representation which is realised by touching isosceles triangles with horizontal bases,
Figure 6.4.

Every bipartite planar graph has a so-called grid intersection representation [47], [21],
which is a contact representation of segments such that the partitions are represented by
horizontal and vertical segments, respectively.

In the next section, we study the contacts of curves representation.

u v

wx

u

v

w
x

(a) (b)

Figure 6.4: (a) A plane (2,3)-tight graph. (b) The contacts of triangles representation of
the graph in (a).

6.3 Contact graphs of curves

This section is devoted to study in more details contact graphs of curves.

6.3.1 Contacts of curves in surfaces

In the following we carefully restate and introduce concepts which are concerned with
curves on surfaces. We also define the contact graph of curves in a surface.

Definition 6.3.1. A curve α : [0,1] −→ Σ is a continuous map from the closed interval

[0,1] into the surface Σ. α(0) and α(1) are called the endpoints of the curve α . For

x ∈ (0,1), α(x) is called an interior point of α . The set of all interior points of α is called

the relative interior of α .

Definition 6.3.2. Two curves α,β : [0,1]−→ Σ have disjoint relative interiors if there are

no x,y ∈ (0,1) such that α(x) = β (y). α and β are in contact if at least one endpoint of

165
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one of the curves lies in the relative interior of the other curve. An endpoint of one curve

which lies in the relative interior of the other curve is called a touching point.

Figure 6.5 depicts two cases of disjoint relative interiors of two curves.

α

β β

α

(a) (b)

Figure 6.5: The curves α and β in (a) and (b) have disjoint relative interior.

Definition 6.3.3. Two curves α,β : [0,1]−→ Σ are nonoverlapping to each other if there

are no x,y ∈ (0,1) such that α(x) = β (y).

Definition 6.3.4. A curve α is called non-self overlapping if there are no x,y∈ (0,1) with

x 6= y such that α(x) = α(y).

Remark 6.3.5. A non-self overlapping curve α is still non-self overlapping even if

it satisfies:

• α(x) = α(y) where x ∈ {0,1} and y ∈ (0,1).

• α(0) = α(1).

Figure 6.6 includes two examples. One example depicts two curves that have a com-
mon endpoint and the other example presents two curves which they have a normal touch-
ing point.

Definition 6.3.6. A collection of curves is nonoverlapping if they are pairwise nonover-

lapping and each curve is non-self overlapping and no single curve whose endpoints are

coincided.

Definition 6.3.7. If α and β are nonoverlapping with α(0) = β (x) for some x ∈ (0,1),
then we say that α touches β . Similarly, if α(1) = β (x), then we say that α touches β .

Figure 6.7 presents various cases of overlapping, self-overlapping, nonoverlapping
curves.
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α

β

β

α

(b)(a)

p

Figure 6.6: (a) The curves α and β have a common endpoint. (b) The curve α touches
the curve β at the point p.

β

α

α

(a) (d)

α

(b) (e)

α

(c)

α

Figure 6.7: (a) The curves α and β are overlapping to each other. (b) The curve α is
self-overlapping. The curve α in (c), (d) and (e) is non-self overlapping.

Definition 6.3.8. A collection of curves C is called nondegenerate if no pair of curves

have a common endpoint and no curve with endpoints coincide.

In case that there is degeneracy in a collection of curves, then it is possible to transform
it into nondegeneracy by an arbitrary small perturbation for each pair that have degenerate
contact, see Figure 6.8.

α α

β β

(a) (b)

Figure 6.8: (a) The pair of curves α and β have a common endpoint. (b) The curve α is
perturbed at the common endpoint with β .

The contacts of a geometric representation induces an orientation for the correspond-
ing contact graph. In the following we recall the definition of orientation of a graph.
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Definition 6.3.9. Consider the graph Γ = (V,E,s, t). The number of targets associated to

a vertex v ∈ V is called the in-degree of v while the number of sources associated to v is

called the out-degree of v. Γ is a 2-orientation if every vertex has an out-degree equal to

2. If every vertex has an out-degree at most 2, then Γ is a 2−-orientation.

See Figure 6.9 which provides two examples of oriented graphs.

(a) (b)

Figure 6.9: (a) A 2-orientation of the given graph. (b) A 2−-orientation of the given graph.

Now we define the contact graph of a collection of curves in a surface.

Definition 6.3.10. Let C be a collection of nonoverlapping curves in a surface Σ. The

corresponding contact graph, denoted by ΓC , is the multigraph (V,E,s, t) such that its

vertex set is C and its edge set is the contacts between curves which can be defined as

follows. Given a contact between α,β ∈ C with α(0) = β (r), where r ∈ (0,1), define an

edge e such that s(e) = α and t(e) = β (this is also applied in the case α(1) = β (r)).

6.3.2 Embedding a contact graph of curves in a surface

It is worthwhile to mention that almost all the studies of geometric representations used
the plane to define the corresponding intersection graphs. However, in our case we are
interested in finding whether a surface graph is a contact graph of curves. Thus, we need
to define the embedding of contact graph in a surface. In the following we give a detailed
definition of the embedding of contact graph ΓC in a surface.

Definition 6.3.11. ( The embedding of ΓC )
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Let C be a collection of nonoverlapping curves. For each α ∈ C we choose a closed

subinterval Jα ⊂ [0,1] satisfying.

• α(Jα) contains all points in the relative interior of α that are endpoints of some

β ∈ C .

• Jα contains 0 (respectively 1) if and only if α(0) (respectively α(1)) is not in the

relative interior of β for any β ∈ C .

Consider the geometric realisation of ΓC , see Definition 2.2.7. Fix α ∈ C . Let q : Σ→
Σ/α(Jα) be the quotient mapping. As a consequence of the Jordan-Schoenflies theorem

([13]), there is a homeomorphism h : Σ/α(Jα)→ Σ such that h◦q and q◦h are homotopic

to the idenitity mappings of Σ respectively Σ/α(Jα).

Now, the subsets α(Jα),α ∈ C are pairwise disjoint Jordan arcs in Σ. Let X be the

space obtained by collapsing each α(Jα) to a point pα . Observe that for each pair of

curves α,β such that α touches β , the restriction of α defines a path in X from pα to

pβ . Therefore, we have an embedding |ΓC | → X. By applying the observations of the

previous paragraph we see that there is a canonical (up to homotopy) homeomorphism

g : X → Σ. We identify Σ and X by means of this homeomorphism and thus we have

constructed an embedding g : |ΓC | → Σ. We denote the embedding of the contact graph

ΓC by GC = (ΓC ,g), Figure 6.10.

pα

pβ pγ

α

β
γ

(a) (b)

Figure 6.10: The construction of the contact graph associated with a collection of curves.
In (a), we have a collection of curves. The shaded section of α represents α(Jα). (b) The
contact graph that is corresponding to the collection of curves in (a).
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Definition 6.3.12. A curve contact representation of a Σ-graph, G, is a collection of

curves C in Σ such that G∼= GC .

Notice that the contacts of curves C give rise an orientation of the graph edges of
the contact graph ΓC . Figure 6.11 presents a collection of curves and its contact graph
and also the embedding of the contact graph. Figure 6.12 also presents an example of a
contact representation of curves and the embedding of the corresponding contact graph to
such representation.

α
β

γ

ζ
α β

γ

ζ

C

pα
pβ

pγ

pζ

ΓC GC

Figure 6.11: A collection of curves, C , in the sphere. The corresponding contact graph,
ΓC , of the collection of curves ΓC . GC is the embedding of the contact graph ΓC .

α

β

γ

ζ

µ

σ

pα

pγ

pσ

pµ

pζ

pβ

(a) (b)

Figure 6.12: (a) A collection of curves, C , on the flat torus. (b) The corresponding
embedding of the contact graph of C in the torus, i.e. GC .
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Sparsity of graphs has been used in the investigation of geometric intersection graphs.
For example, Thomassen in [90] showed that every plane (2,3)-sparse graph is the contact
graph of a collection of line segments in the flat plane: see Figure 6.13.

u v

wx

u

v

w

x

(a) (b)

Figure 6.13: (a) A (2,3)-tight plane graph. (b) A contacts of line segments representation
of the graph in (a).

In [51], Hliněný presented the following lemma.

Lemma 6.3.13. A plane graph G admits a representation of contacts of curves if and only

if G is (2,0)-sparse.

Lemma 6.3.13 can be generalised to other surfaces as in the following lemma. See
also Figure 6.15.

Lemma 6.3.14. Let G be a Σ-graph. Then G∼= GC for some nondegenerate collection of

nonoverlapping curves C if and only if G is (2,0)-sparse.

Notice that if G is (2,0)-sparse, then it is 2−-orientation. Thus, each vertex of G has
an out-degree equal at most 2, see Figure 6.14. Consequently, the proof of Lemma 6.3.14
follows easily.

Here we highlight the difference between Definition 6.1.2 and Definition 6.3.11. In
the literature, the contact graph is typically defined as the intersection graph of a collection
of curves. This definition is equivalent to Definition 6.1.2. Notice that such a definition
works well in the plane. However, for non simply connected surfaces it is more natural to
consider multidigraphs and to define the contact graph as in Definition 6.3.11.

Now suppose that Σ is equipped with a metric of constant curvature. In this context, we
can distinguish many interesting subclasses of non-self overlapping curves. For example,
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G C C CG G
(a) (b) (c)

v v v

Figure 6.14: The out-degree of v in (a), (b) and (c) is 0, 1 and 2 respectively. The corre-
sponding curve of v is bold. We perturb the curves that are corresponding to the edges for
which their targets are v in (a), (b) and (c) respectively.

α

β

γ ζ

α β

γ
ζ

C ΓC

Figure 6.15: A family of curves in the plane, C , and ΓC the contact graph of C . Notice
that ΓC is (2,0)-sparse.

a circular arc is a curve of constant curvature and a line segment is a locally geodesic
curve. For collections of such curves, the representability question can depend on the
embedding of the graph and not on the graph itself (in contrast to Lemma 6.3.14), see the
next example.

Example 6.3.15. Consider the graph in Figure 6.16(a). This graph cannot be represented

as contacts of a collection of line segments in the flat plane. However, this graph can

be embedded as a nonseparating cycle in the torus, Figure 6.16 (b). Then it is easy to

construct a representation of the resulting surface graph as contacts of a collection of

line segments in the flat torus, Figure 6.16(c).
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vu

φ(u)

φ(v)

lu

lv

(a) (b) (c)

Figure 6.16: (a) A (2,2)-tight graph with two vertices. (b) An embedding of the graph
which is depicted in (a) in the torus. (c) A circular arc representation of the torus graph in
(b).

6.4 Contacts of circular arcs representation

In this section, we investigate the contact of circular arcs representations for any surface
graph. We show that digon, triangle and quadrilateral splitting moves are contacts of
circular arcs representable in any surface. We also study representing (2,2)-tight cylinder
graphs as contacts of circular arcs in the flat cylinder. Moreover, in this section we briefly
survey some results on the contacts of circular arcs representations of (2,2)-tight plane
graphs. We use the acronym CCA for contacts of circular arcs.

Definition 6.4.1. Let G be a Σ-graph and let C be a nondegenerate nonoverlapping col-

lection of circular arcs C such that G∼= GC . We say that C is a contacts of circular arcs

representation (CCA representation) of G.

6.4.1 CCA representations of digon, triangle and quadrilateral split-
ting moves

As a part of the proof of Theorem 6.0.1, we need to show that certain topological moves
have CCA representations in certain flat surfaces. Throughout this thesis we deal with
three topological contraction moves; digon, triangle and quadrilateral contraction moves.
Thus, we need to show that the inverse moves of these three contractions are CCA rep-
resentable. In Subsection 3.4.5 we described such moves as digon/triangle/quadrilateral
splits.
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We appeal to the work in [3] which shows that digon and triangle splitting moves are
CCA representable in three flat surfaces, plane, flat cylinder and flat torus, see Figures
6.17 and 6.18. For the quadrilateral splitting move, we appeal to Figure 6.19 which shows
that quadrilateral splitting move is CCA representable by considering three cases.

w

y

u
x

v w

y

u
x

v2
v1

cv1

cv2

cu cwcx

cy

cu cw
cx

cy

cv

Figure 6.17: The first row of figures are snapshots of performing a digon splitting move
on a surface graph. The second row of figures represents the CCA representations of the
bold surface subgraphs of the surface graphs in the first row.
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cy

cu cwcx

cy
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Figure 6.18: The first row of figures are snapshots of performing a triangle splitting move
on a surface graph. The second row of figures represents the CCA representations of the
bold surface subgraphs of the surface graphs in the first row.
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Figure 6.19: CCA representations of quadrilateral splitting move. We consider all cases
of in-degree and out-degree of the vertex v.

Thus, we proved the following lemma.

Lemma 6.4.2. The digon, triangle and quadrilateral splitting moves are CCA repre-

sentable on the flat plane, cylinder and torus.
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6.4.2 CCA representation of (2,2)-tight cylindrical graphs

In the following we show that every (2,2)-tight cylinder graph admits a CCA represen-
tation in the flat cylinder. Consider the two irreducible (2,2)-tight cylinder graphs given
in Figure 4.33. In Figure 6.20, we present CCA representations of these two irreducible
(2,2)-tight cylinder graphs. Now, let us state and prove the following theorem.

(a) (b)

Figure 6.20: (a) respectively (b) is a CCA representation of the irreducible (2,2)-tight
cylinder graph given in Figure 4.33(a) respectively Figure 4.33(b) in the flat cylinder-.

Theorem 6.4.3. Every (2,2)-tight cylinder graph admits a CCA representation in the flat

cylinder.

Proof. By Lemma 6.4.2, digon, triangle and quadrilateral splitting moves are CCA rep-
resentable in the flat cylinder. Also, the two irreducible (2,2)-tight cylinder graphs admit
CCA representations in the flat cylinder. Thus, the result follows from Theorem 4.6.1.

In the following, we survey some results on representing some classes of plane graphs
as contacts of circular arcs in the flat plane. Let us first consider the following definition.

Definition 6.4.4. A plane circular arc is a simple curve α : [0,1] −→ R2 such that there

is some circle C for which im(α)⊂C.

Figure 6.21 presents contacts of circular arcs in the plane. Notice that a line segment
can be considered as a circular arc by considering that im(α) ⊂ C where C is a circle
with infinite diameter. In [3], CCA representations of (2,2)-tight plane graphs have been
investigated. The authors presented the following theorem.
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Theorem 6.4.5. Every plane (2,2)-sparse graph has a CCA representation in the flat

plane.

In Figure 6.22, we present two (2,2)-tight plane graphs and their corresponding CCA
representations.

Figure 6.21: A collection of circular arcs in the plane.
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v v u

w xy

(a) (b) (c) (d)

Figure 6.22: The (2,2)-tight plane graph in (a) respectively (c) has a contacts of circular
arcs representation in (b) respectively (d) in the flat plane.

Also, in [3], it has been shown that every plane graph with maximum degree four has
a CCA representation in the plane.
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6.5 CCA representations of (2,2)-tight torus graphs

In this section we prove that every (2,2)-tight T-graph admits a CCA representation on
the flat torus.

In Figure 6.23, we can see a circular arc in flat torus.

(a) (b) (c)

Figure 6.23: (a) A circular arc in the plane. (b) Lifting the circular arcs in (a) into the
universal covering of the torus. (c) Fundamental domain of the torus.

6.5.1 Contacts of circular arcs representations of irreducible (2,2)-
tight torus graphs

Here we show that each irreducible (2,2)-tight torus graph admits a CCA representation
in the flat torus. We state and prove the following theorem.

Theorem 6.5.1. Each irreducible (2,2)-tight T-graph admits a CCA representation in

the flat torus.

Proof. By Theorem 5.0.1, there are 116 irreducible (2,2)-tight T-graphs. Among these
irreducible (2,2)-tight torus graphs, we found that there are exactly 12 of them are bases,
see Subsection 5.1.3. The set B contains the notations of such base irreducible (2,2)-tight
torus graphs.

B = {G1
1,G

4
1,G

4
2,G

5
1,G

5
2,G

6
1,G

6
2,G

6
3,G

6
4,G

6
5,G

7
1,G

8
1}

In Figure 6.26, we present for each element in B a CCA representation in the flat torus.
We observe that each of the 116 irreducible (2,2)-tight T-graphs which are described in
the previous chapter, can be constructed by a sequence of topological Henneberg type 0
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moves from some elements in B. Appendix D provides diagrams which describe the in-
clusion relationships between all the 116 irreducible (2,2)-tight torus graphs. Notice that
such diagrams are not unique as some irreducible (2,2)-tight T-graphs can be obtained
from more than one irreducible (2,2)-tight graph by topological Henneberg type 0 moves.
Also, we observe that at most five topological Henneberg type 0 moves are required to
construct all the 116 irreducible (2,2)-tight T-graphs from the set B.

It remains to show that the required topological Henneberg type 0 moves are CCA
representable, Figure 6.24. For this, it is readily verified that given from the CCA rep-
resentations in Figure 6.26, it is possible to represent all the necessary topological Hen-
neberg type 0 moves that are required to construct CCA representations of the full set of
the 116 irreducible (2,2)-tight torus graphs.

Notice that, in general, topological Henneberg type 0 moves can fail to be CCA rep-
resentable given a fixed CCA representation of the initial surface graph, see Figure 6.25.

In Figure 6.26, we present for each element in B, (see also Appendix A), a CCA
representation in the flat torus. In Appendix F, we present a comprehensive table which
depicts the base irreducible (2,2)-tight torus graphs, their CCA representations and the
equations that realise such representations in the flat torus.
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c1
c2

c3

c4

c5

1 2

3

45

1 2

3

45

6

c6

c1
c2

c3

c4

c5

Figure 6.24: A CCA representation of a topological Henneberg type 0 move. The bold
arc on the right represents the new vertex, that touches two of the initial arcs.

6.5.2 The outline of the main theorem

Now we present the outline of the proof of Theorem 6.0.1

Proof. The proof can be achieved in two steps:

Step 1: By Theorem 6.5.1, we showed that each of the 116 irreducible (2,2)-tight torus
graphs admits a CCA representation.

Step 2: By Lemma 6.4.2, if G −→ G′ is a diagon (respectively triangle or quadrilateral)
splitting operation, then G′ has a CCA representation.

Therefore, by Theorem 5.7.4 we get that every (2,2)-tight torus graph admits a
CCA representation in the flat torus.
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u

v

Figure 6.25: It is impossible to insert a circular arc that touches both u and v. This
illustrates a topological Henneberg type 0 move that cannot be represented by contacts of
circular arcs given this representation of the initial graph.
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C1
1 C4

1 C4
2

C5
1 C5

2 C6
1

C6
2 C6

3 C6
4

C6
5 C7

1 C8
1

Figure 6.26: CCA representations of the 12 irreducible (2,2)-tight T-graphs with no ver-
tices of degree two: Ci

j is a CCA representation of Gi
j.
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Appendix A

Base irreducible (2,2)-tight torus graphs

This appendix presents all base irreducible (2,2)-tight T-graphs, i.e. irreducible (2,2)-
tight torus graphs with no vertices of degree 2.
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APPENDIX A. BASE IRREDUCIBLE (2,2)-TIGHT TORUS GRAPHS
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2G1
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Figure A.1: All the irreducible (2,2)-tight T-graphs with no vertices of degree 2: part 1.

G6
5 G7

1 G8
1

Figure A.2: All the irreducible (2,2)-tight T-graphs with no vertices of degree 2: part 2.
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Appendix B

Polygon representations derived from
G3

1 and G3
2

In this appendix we present all possible cases of adding a new vertex of degree two to the
polygon representations of G3

1 and G3
2.
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APPENDIX B. POLYGON REPRESENTATIONS DERIVED FROM G3
1 AND
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Figure B.1: Polygon representations that are derived from the polygon representation of
G3

1 . The vertex v1 is fixed.
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Figure B.2: Polygon representations that are derived from the polygon representation of
G3

1 . The vertex v2 is fixed.
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APPENDIX B. POLYGON REPRESENTATIONS DERIVED FROM G3
1 AND
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Figure B.3: Polygon representations that are derived from the polygon representation of
G3

1 . The vertex v3 is fixed.
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Figure B.4: Polygon representations that are derived from the polygon representation of
G3

2 . The vertex v1 is fixed.
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APPENDIX B. POLYGON REPRESENTATIONS DERIVED FROM G3
1 AND

G3
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Figure B.5: Polygon representations that are derived from the polygon representation of
G3

2 . The vertex v2 is fixed.
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Figure B.6: Polygon representations that are derived from the polygon representation of
G3

2 . The vertex v3 is fixed.
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2
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Appendix C

Notations for all irreducible (2,2)-tight
torus graphs with 6 and 7 vertices.

In this appendix we present the notations of all irreducible (2,2)-tight torus graphs with
6 and 7 vertices.
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APPENDIX C. NOTATIONS FOR ALL IRREDUCIBLE (2,2)-TIGHT TORUS
GRAPHS WITH 6 AND 7 VERTICES.
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Figure C.1: Notations for irreducible (2,2)-tight torus graphs with 6 vertices.
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|V|=7

0 2-cycles 1 2-cycles 2 2-cycles 0 2-cycles 1 2-cycles 2 2-cycles 3 2-cycles
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Figure C.2: Notations for irreducible (2,2)-tight torus graphs with 7 vertices.
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APPENDIX C. NOTATIONS FOR ALL IRREDUCIBLE (2,2)-TIGHT TORUS
GRAPHS WITH 6 AND 7 VERTICES.
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Appendix D

Ancestor trees for all 116 irreducible
(2,2)-tight torus graphs.

In this appendix we present ancestor trees for the list of all irreducible (2,2)-tight torus
graphs.
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APPENDIX D. ANCESTOR TREES FOR ALL 116 IRREDUCIBLE
(2,2)-TIGHT TORUS GRAPHS.

G4
3 G4

4 G4
5 G4

7G4
6 G4

8 G4
9

G1
1

G2
1

G3
1 G3

2

G5
14

G5
15

G5
16

G6
28

G6
29

G6
30

G6
31

G5
21

G6
43

G6
42

G5
22

G5
23

G6
44

G6
47

G5
5

G6
26G6

14

G5
13

G6
46

G5
6

G6
16

G6
17

G6
15

G6
18

G5
7

G5
8

G5
9

G5
10

G6
19

G6
20

G6
21

G5
17

G6
33

G6
35

G6
32

G6
34

G5
18

G5
12

G6
27

G6
45

Figure D.1: All non-isomorphic (2,2)-tight T-graphs that are derived from G1
1.
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G5
19

G4
2

G6
36

G5
3 G5

4

G4
1

G5
20

G6
37

G6
38

G6
8

G7
13

G7
5

G6
9

G6
7

G7
4

G7
3

G6
12

G7
10

G7
11

G7
6

G7
7

G6
10

G6
13

G7
8

G7
12 G6

41

G7
26

G7
27

G6
22

G7
15

G7
14

G5
11

G6
39

Figure D.2: All the notations of the irreducible (2,2)-tight T-graphs that are derived from
G4

1 and G4
2.
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APPENDIX D. ANCESTOR TREES FOR ALL 116 IRREDUCIBLE
(2,2)-TIGHT TORUS GRAPHS.

G6
23 G6

24 G6
25

G5
2

G7
16

G7
18

G7
17

G7
19

G7
20

G7
21

G6
6 G6

11

G5
1

G6
40

G7
24

G7
25

G7
2 G7

9

G6
1 G6

2 G6
3 G6

4 G6
5

G7
22

G7
23

G8
5 G8

6

G7
1

G8
2

G8
3

G8
1

G8
4

Figure D.3: All the notations of the irreducible (2,2)-tight T-graphs that are derived from
G5

1, G5
2,G

6
1,G

6
2,G

6
3,G

6
4,G

6
5,G

7
1 and G8

1.
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Appendix E

Irreducible (2,2)-tight torus graphs

This appendix contains all irreducible (2,2)-tight torus graphs. They are 116 torus graphs.
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APPENDIX E. IRREDUCIBLE (2,2)-TIGHT TORUS GRAPHS

E.1 Irreducible (2,2)-tight torus graphs with less than 4
vertices.

G1
1 G2

1 G3
1

G3
2

Figure E.1: G1
1,G

2
1,G

3
1 and G3

2.
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E.2. IRREDUCIBLE (2,2)-TIGHT TORUS GRAPHS WITH 4 VERTICES.

E.2 Irreducible (2,2)-tight torus graphs with 4 vertices.

Figures present all non-isomorphic irreducible (2,2)-tight T-graphs with 4 vertices.

G4
1 G4

2 G4
3

G4
4 G4

5 G4
6

G4
7 G4

8 G4
9

Figure E.2: From G4
1 to G4

9.
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APPENDIX E. IRREDUCIBLE (2,2)-TIGHT TORUS GRAPHS

E.3 Irreducible (2,2)-tight torus graphs with 5 vertices.

Figures present all non-isomorphic irreducible (2,2)-tight T-graphs with 5 vertices.

G5
1

G5
2 G5

3

G5
4 G5

5 G5
6

G5
7 G5

8 G5
9

Figure E.3: From G5
1 to G5

9.
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E.3. IRREDUCIBLE (2,2)-TIGHT TORUS GRAPHS WITH 5 VERTICES.

G5
10 G5

11 G5
12

G5
13 G5

14 G5
15

G5
16 G5

17 G5
18

Figure E.4: From G5
10 to G5

18.
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APPENDIX E. IRREDUCIBLE (2,2)-TIGHT TORUS GRAPHS

G5
19 G5

20 G5
21

G5
22 G5

23

Figure E.5: From G5
19 to G5

23.
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E.4. IRREDUCIBLE (2,2)-TIGHT TORUS GRAPHS WITH 6 VERTICES.

E.4 Irreducible (2,2)-tight torus graphs with 6 vertices.

Figures present all non-isomorphic irreducible (2,2)-tight T-graphs with 6 vertices.

G6
1 G6

2 G6
3

G6
4 G6

5 G6
6

G6
7 G6

8 G6
9

Figure E.6: From G6
1 to G6

9.
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APPENDIX E. IRREDUCIBLE (2,2)-TIGHT TORUS GRAPHS

G6
11

G6
12

G6
13 G6

14 G6
15

G6
10

G6
16

G6
17 G6

18

Figure E.7: From G6
10 to G6

18.
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E.4. IRREDUCIBLE (2,2)-TIGHT TORUS GRAPHS WITH 6 VERTICES.

G6
19 G6

20 G6
21

G6
22 G6

23 G6
24

G6
25 G6

26 G6
27

Figure E.8: From G6
19 to G6

27.
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APPENDIX E. IRREDUCIBLE (2,2)-TIGHT TORUS GRAPHS

G6
28 G6

29 G6
30

G6
31 G6

32 G6
33

G6
34 G6

35 G6
36

Figure E.9: From G6
28 to G6

36.

220



E.4. IRREDUCIBLE (2,2)-TIGHT TORUS GRAPHS WITH 6 VERTICES.

G6
37 G6

38 G6
39

G6
40 G6

41 G6
42

G6
43 G6

44 G6
45

Figure E.10: From G6
37 to G6

45.

G6
46 G6

47

Figure E.11: G6
46 and G6

47.
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APPENDIX E. IRREDUCIBLE (2,2)-TIGHT TORUS GRAPHS

E.5 Irreducible (2,2)-tight torus graphs with 7 vertices.

Figures present all non-isomorphic irreducible (2,2)-tight T-graphs with 7 vertices.

G7
1 G7

2 G7
3

G7
4 G7

5 G7
6

G7
7 G7

8 G7
9

Figure E.12: From G7
1 and G7

9.
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E.5. IRREDUCIBLE (2,2)-TIGHT TORUS GRAPHS WITH 7 VERTICES.

G7
10 G7

11 G7
12

G7
13 G7

14 G7
15

G7
16 G7

17 G7
18

Figure E.13: From G7
10 and G7

18.

223



APPENDIX E. IRREDUCIBLE (2,2)-TIGHT TORUS GRAPHS

G7
19 G7

20 G7
21

G7
22 G7

23 G7
24

G7
25 G7

26 G7
27

Figure E.14: From G7
19 and G7

27.
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E.6. IRREDUCIBLE (2,2)-TIGHT TORUS GRAPHS WITH 8 VERTICES.

E.6 Irreducible (2,2)-tight torus graphs with 8 vertices.

Figures present all non-isomorphic irreducible (2,2)-tight T-graphs with 8 vertices.

G8
5 G8

6

G8
1 G8

3

G8
4

G8
2

Figure E.15: From G8
1 and G8

6.
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APPENDIX E. IRREDUCIBLE (2,2)-TIGHT TORUS GRAPHS
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Appendix F

CCA representations of the base
irreducible (2,2)-tight torus graphs

In this appendix we include again the CCA representations of the 12 irreducible (2,2)-
tight T-graphs with no vertices of degree two. In the following table we include the
notation of each of such CCA representations as Ci

j which is a CCA representation of
Gi

j. We label each of such Ci
j according to the labelling of the corresponding irreducible

T-graph Gi
j. Also, we give the equations of each of Ci

j.
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APPENDIX F. CCA REPRESENTATIONS OF THE BASE IRREDUCIBLE
(2,2)-TIGHT TORUS GRAPHS

Name Labelled Torus Graph Labelled Straight Rep. Equations

G1
1

v1

l1

G4
1

v1

v2

v3

v4

l1

l2

l3

l4 l1 : y = 10.64x−18.99
l2 : y = 3.17x+10.33

y = 3.17x+6.33
l4 : y = 0.71x+0.04

l3 : y = 2.2
(1,0,0,0,1)

G4
2

v1 v4

v2 v3

l2
l4

l1
l3

l1 : y = 7.3x+15.64
l2 : y = 2.7x−1.07

y = 2.7x−5.07
l3 : y = 1.16x+3.99

y = 1.16x+4.63
l4 : y = 0.86x−0.22

y = 0.86x+3.21
(0,0,2,0,0)

G5
1

v1

v2

v5

v4

v3

l1

l4

l5
l2

l3

l1 : y = 1.5x+1.18
y = 1.5x+2.82

l2 : y = 5.23+10.57
l3 : y = 1.1x+3.99

y = 1.1x+4.4
l4 : y = 1.68x+6.41
l5 : y = 0.38x+3.24

y = 0.38x+1.72
(0,2,1,0,0)
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Name Labelled Torus Graph Labelled Straight Rep. equations

G5
2

v1

v3

v4

v2

v5

l3
l1

l4

l2
l5

l1 : y = 0.58x+1.98
y = 0.58x−0.35

l2 : x = 1.37
l3 : y = 1.08x+5.05

y = 1.1x+4.4
l4 : y = 0.08x+2.39

l5 : y = 11.91x−31.94
y = 11.91x−27.94

(1,1,0,1,0)

G6
1

v1

v2

v3

v4

v5

v6

l3
l2

l6

l5

l1

l4
l1 : y = 1.58x−2.31

y = 1.58x−0.01
l2 : x = 0.95

l3 : y = 0.29x+2.19
l4 : y = 1.18x+0.15
l5 : y = 3.18x+7.99
y = 3.18x+11.99

l6 : y = 9.54−21.95
(2,0,2,0,0)

G6
2

v1

v2

v3

v4
v5

v6

l2
l6

l4

l1l3
l5

l1 : y = 1.1x+4
y = 1.1x+4.44

l2 : y = 6.03x+11.075
l3 : y = 0.74x+2.66

l4 : y = 1.71
l5 : y = 1.76x−4.76

y = 1.76x−0.76
l6 : y = 0.23x+3.24

y = 0.23x+2.33
(0,4,0,0,0)
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APPENDIX F. CCA REPRESENTATIONS OF THE BASE IRREDUCIBLE
(2,2)-TIGHT TORUS GRAPHS

Name Labelled Torus Graph Labelled Straight Rep. Equations

G6
3

v1

v2

v3

v4

v5

v6 l2

l4

l1

l5

l6

l3

l1 : y = 0.55x+1.05
l2 : y = 1.1x+2.81

l3 : y = 11.62x+11.08
l4 : y = 1.31x−1.22

y = 1.31x−0.01
l5 : y = 1.39x+5.43

y = 1.39x+1.43
l6 : y = 0.59x+1.99

y = 0.59x−0.35
(0,4,0,0,0)

G6
4

v1

v2

v3

v4

v5

v6

l2

l1

l3
l6

l4

l5

l1 : y = 2.09x−2.39
y = 2.09x+1.61

l2 : y = 2.44x+6.13
l3 : y = 0.5x+2.68

l4 : y = 0.18x+3.19
0.18x+2.46

l5 : y = 1.93x−0.74
y = 2.09x−2.39

l6 : y = 1.11x+4.41
y = 1.11x+4
(0,4,0,0,0)

G6
5

v1

v3

v4

v2

v5v6

l3

l5

l5
l2

l1

l6

l4

l1 : y = 1.99
l2 : y = 0.27x+3.57
l3 : y = 0.97x+0.1

l4 : y = 4.22x−8.19
y = 4.22x−4.19

l5 : y = 5.14x−10.63
y = 5.14x−14.63

l6 : y = 3.46x+3.95
y = 3.46x+13.74

(1,2,1,0,0)
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Name Labelled Torus Graph Labelled Straight Rep. Equations

G7
1

v1

v2

v4

v3 v5

v6 v7

l7

l3

l4

l1

l6
l2

l5

l1 : y = 0.4x+1.91
l2 : y = 328.75x+294.95

l3 : y = 1.49x−0.03
y = 1.49x−1.94

l4 : y = 1.17x+0.04
l5 : y = 3.53x−7.47

y = 3.53x−9.1
l6 : y = 8.33x−15.35

y = 8.33x−19.35
l7 : y = 2.38x− .36

(2,2,1,0,0)

G8
1

v1

v2

v3

v4

v5
v6

v7

v8

l1

l3

l4 l7

l6l5

l2l8

l1 : y = 2.02
l2 : y = 612.74x−610.74

l3 : y = 1.08x+4.11
l4 : y = 2.15x−0.6

l5 : y = 10.79x−21.86
y = 10.79x−25.86
l6 : y = 1.26x−4.18

y = 1.26x−0.18
l8 : y = 3.03x+4.03
y = 3.03x+12.08

(2,4,0,0,0)
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Index

contact graph, 166–170
curve contact representation, 168
nonseparating loop, 76
separating loop, 77

associated loop, 78, 79

bar-joint framework, 21, 27, 28
blocker ( for a 3-cycle), 39, 40
blocker of type 1 (for 4-cycle), 43–45
blocker of type 2 (for 4-cycle), 43–45
boundary walk, 17, 18

contact graph, 168

digon contraction, 46–48, 55

edge deletion, 32
edge-disjoint, 26, 27
essential, 75, 84
essential blocker, 85, 87, 88, 101, 102

face, 13

generic, 28
genus, 10, 11, 13, 19, 20
geometric intersection number, 76, 82
geometric realisation, 13, 77
graph decomposition, 21, 27
graph decomposition , 26, 27

half edge, 8, 9, 16, 19

inessential, 84
inessential blocker, 92, 93, 96, 108, 110
involution, 15
irreducible, 77
irreducible , 51

Laman graph, 59
loop, 10, 75, 76

multigraph, 7

nondegenerate boundary, 18
nondegenerate digon, 46
nondegenerate quadrilateral, 49
nondegenerate triangle, 48
nonseparating cycle, 78
nonseparating loop, 11, 76–79, 83, 92–94,

96, 99, 100

orientable surface, 10

permutation, 15
polygon representation, 111–114, 128–130,

132–134, 136, 138–145, 154, 155

quadrilateral contraction, 50, 55

rigid, 28
rotation system, 15, 17, 52–56
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INDEX

separating cycle, 78
separating loop, 77
sparse, 22
surface, 9

tight , 22
topological edge contraction, 45, 46
topological edge deletion, 45, 46
topological Henneberg type 0 move, 176
torus, 10
triangle contraction, 48, 55

walk, 8
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