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A central challenge in cancer biology is to un-
derstand of the strategies followed by cells to 
overcome the effect of anticancer drugs (Smith, 
Khan, & Errington, 2009). Cancer, a highly 
complex and heterogeneous disease (Heppner, 
1984; Rubin, 1990), can be described as an 
evolving system, that can be best illustrated by 
cell lineages. In experimental terms, a cell lineage 
reflects the relationship between descendents 
from a common progenitor that was exposed to 
a given influence, such as a bioactive drug, for 
a time period. The behaviour of both the pro-
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ABstrAct
In this paper, the authors identify the strategies that resistant subpopulations of cancer cells undertake to 
overcome the effect of the anticancer drug Topotecan. For the analyses of cell lineage data encoded from 
timelapse microscopy, data mining tools are chosen that generate interpretable models of the data, address-
ing their statistical significance. By interpreting the short-term and long-term cytotoxic effect of Topotecan 
through these data models, the authors reveal the strategies that resistant subpopulations of cells undertake 
to maximize their clonal expansion potential. In this context, this paper identifies a pattern of cell death 
independent of cytotoxic effect. Finally, it is observed that cells exposed to Topotecan have higher movement 
over time, indicating a putative relationship between cytotoxic effect and cell motility.

genitor and the evolving progeny reveals the 
time-integrated response to this influence (i.e., 
the pharmacodynamic response). The study of 
cell lineages has been, and remains, of importance 
in developmental biology (Stern & Fraser, 2001; 
Alvarez-Buylla, García-Verdugo, & Tramontin, 
2001; Anderson, Gage, & Weissman, 2001; 
Ardavín et al., 2001; Dor, Brown, Martinez, & 
Melton, 2004; Kim & Shibata, 2002; Noctor, 
Flint, Weissman, Dammerman, & Kriegstein, 
2001) and medicine (Bernards & Weinberg, 
2002; Hope, Jin, & Dick, 2004; Tang et al., 2003; 
Weigelt et al., 2003; Yamamoto et al., 2003).
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Here we select and apply appropriate data 
mining techniques that provide interpretable 
models on previously encoded cell lineage data 
(Khan et al., 2007), in order to to reveal the degree 
of heterogeneity of a tumour system in response 
to therapy, as well as the strategies (or patterns) 
the resistant fraction incorporates in order to 
overcome the effect of the anticancer drug and 
thus maximize their clonal expansion potential.

dAtA

Biological sample preparation

The human osteosarcoma cell line [U-2 OS 
(ATCC HTB 96)23], derived from a 15-year-old 
Caucasian female and transfected with a fluo-
rescent reporter cyclin B1 GFP, is selected. The 
cells are maintained at 37 ºC and 5% CO2 using 
standard tissue culture techniques. Media used 
is McCoys 5A modified (Sigma) supplemented 
with 2 mM glutamine, 100 units/ml penicillin, 
100 mg/ml streptomycin, 10% fetal calf serum 
and 1000 mg/ml geneticin.

Cells are treated with 1 µM and 10 µM 
bolus dose of anticancer agent Topotecan (TPT) 
(Bailly, 2000). TPT is a water soluble derivative 
of the alkaloid Camptothecin and act as a topoi-
somerase I, a nuclear enzyme involved in DNA 
replication and repair, inhibitor (Wang, 1996). 
TPT is used for the treatment of a wide range of 
cancers, including lung (Ichinose et al., 2010), 
breast (Cheung et al., 2008), ovarian (Lorusso 
et al., 2010) and bone (Seibel et al., 2007), both 
in experimental and clinical contexts.

An hour post treatment, the cultured dishes 
are placed onto a time lapse instrument designed 
to capture transmission phase images from multi 
well plates. Image sequences are taken for 115 
hours at 15-minute time intervals. The cell lin-
eage data is encoded by ProgeniTRAK (Khan 
et al., 2006) and is retrieved from a cell lineage 
database ProgeniDB (Khan et al., 2007).

cell lineage data

Information from 253 lineages is available: 
168 are Control, 37 are 1µM and 48 are 10µM 

lineages. Each lineage is characterised as a tree 
where the genealogy of the Progenitor cell and 
its offspring is represented.

Figure 1 shows an example of a Control 
lineage along the experiment; we observe 
that Sixth Generation is reached in the 115 
hours. Figure 2 shows the encoding, along 
with the labeling convention (refer to Table 1 
for notation): an arc between two successive 
nodes, where both nodes represents dividing 
(mitosis) cells, indicates the cell cycle time or 
inter-mitotic-time (IMT). In labeling terms, 
for example, Cell3_1 and Cell3_2 in Figure 2 are 
sisters; both are daughters of Cell2_1, which is a 
daughter of Cell1_1, which is again a daughter of 
a Progenitor cell. The daughters of a Progenitor 
are termed First Generation cells (Cell1_1 and 
Cell1_2 in Figure 2). The daughters of the First 
Generation cells are termed Second Generation 
cells (Cell2_1,…, Cell2_4 in Figure 2), and so on. 
For this work, we consider nodes or cells up to 
the Fourth Generation, with the assumption that 
any living cells after Third Generation can be 
considered to be part of the resistant population. 
By the Third Generation, due to the amount of 
time elapsed since the administration of the 
drug and the cell proliferation rate, the cytotoxic 
effect of the drug is diminished.

We record the status of each cell in the 
lineage; see Table 2 for possible statuses and 
their definitions. When a cell divides, both the 
IMT and its inter-mitotic displacement (IMD) 
are recorded. IMT refers to the time taken by 
a cell to divide, while IMD refers to its displace-
ment during that time. The time needed by the 
Progenitor cell to divide is recorded as DIV and 
its displacement from the start of the experiment 
until it divides is recorded as DIV_D.

Data Transformation. Sister cells are sorted 
according their statuses (following the 
order given in Table 2) and when both cells 
divide, the one with shorter IMT goes first. 
For example, if both First Generation cells 
divide, the one with shorter IMT is labeled 
as Cell1_1 and the other as Cell1_2. The 
daughters of Cell1_1 are called Cell2_1 and 
Cell2_2, and are sorted according their 
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statuses and IMTs as before. IMT and IMD 
numbering follow their cell numbering; 
for example, IMT3_5 refers to the IMT of 
Cell3_5 (see Table 1). Lineage information 
is codified in a vector of 44 variables:

1.  DIV, DIV_D: all progenitor cells divide in 
our dataset.

2.  StatusI_J (14 variables, one for each cell 
apart from the Progenitor cell; see Table 
2 for their possible values).

3.  IMTI_J and IMDI_J (28 variables): these are 
numeric values except if a cell does not 
divide, in which case the missing value is 
recorded.

Implications. The sorting of the data have 
some implications: since Divided is the last 
status in the ordering, if the first sister divides, 
the second sister also divides, and has a larger 

IMT. Of course, if the second sister does not 
divide, neither does the first and their statuses 
are dependent according the ordering in Table 
2. For example, If Status3_5 equals Divided that 
implies that Cell3_6 also divided; and it implies 
that Cell2_3 divided (its mother) and this last fact 
implies that Cell2_4 divided; and finally than 
Cell1_2 divided. Therefore, when we say that 
Cell3_5 divided we are implicitly saying that 
Cell1_2, Cell2_3, Cell2_4 and Cell3_6 also divided, 
which makes this a very informative event.

studIes

The data are analysed to understand the be-
haviour of Control lineages, and we explore 
any deviations from this behaviour that arise 
when the drug is applied. We have selected 
four main studies, as described below: (1) cell 
death in Control lineages; (2) cytotoxic effect 

Figure 1. A lineage encoded from a real progenitor cell using ProgeniTRAK, spanning up to six 
generations, where each green node represents cell division, red node cell death



International Journal of Knowledge Discovery in Bioinformatics, 1(4), 26-53, October-December 2010   29

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

of the drug; (3) characterization of Stressed 
lineages; and (4) classification of Control versus 
Perturbed lineages.

study of cell death in 
control lineages

The goal of this study is to explore Death events 
in Control lineages. The question considered is: 

‘is there any discernible pattern in the Death 
events?’ For this analysis, we divide the cells 
into two groups: the first contains the mothers 
of cell sisters where at least one sister dies, 
while in the second contains the mothers of cell 
sisters where both of the sisters survive. For 
each generation, the cell death factor, defined 
as the ratio of Death cells to Divided cells, 

Figure 2. Generalized labeling convention for transforming real lineages into machine learning 
terms. For this work we included lineage data up to the third generation.

Table 1. Notation and definitions 

Variable Definition

CellI_J Cell J in Generation I.

IMT Inter-Mitotic Time. The time needed by a cell to divide.

IMD Inter-Mitotic Displacement. The distance travelled by a cell until its division.

DIV The elapsed time from the start of the experiment until division of a Progenitor cell.

DIV_D The distance travelled by a Progenitor cell from the start of the experiment until division.

StatusI_J Status of Cell J in Generation I.

IMTI_J The IMT for cell J in Generation I.

IMDI_J The IMD for cell J in Generation I.

Resistant Cells whose descendants reach Fourth Generation. When applied to lineages, lineages that reach 
Fourth Generation.

Stressed The opposite to resistant.

Control Cells (lineages) that have not been exposed to drug.

Perturbed Cells (lineages) that have been exposed to drug.

Drug A variable that carries information to distinguish the type of lineage.
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and the dynamical behaviour of the mothers 
of Death and Non-Death cells (those with any 
status except Death, Never–Born or Lost) are 
measured and compared. Also, we construct 
classifiers to predict whether a cell pair is going 
to have at least one Death, given their ancestors’ 
information. Note that it is not possible in this 
classification task to distinguish between sisters, 
as they share the same ancestors’ information, 
even though they can be different: for example, 
one might divide while the other dies. Accord-
ingly, the task is inherently noisy.

study of the cytotoxic 
effect of topotecan

The goal of this study is to determine the 
effectiveness of the drug. We consider the 
difference of ratios of cell events in Control, 
1µM and 10µM lineages, by focusing on the 
following measures:

1.  The ratio of Death Cells to Non-Death 
Cells measures the catastrophic cytotoxic 
effect of the drug.

2.  The ratio of Stressed Cells to Resistant 
Cells. Stressed cells are those that manage 
to divide but whose offspring does not have 
Third Generation dividing cells. Resistant 

cells have an offspring with at least one 
Third Generation dividing cell. This ratio 
measures the cytotoxic effect on the current 
generation based on the outcome in the 
Third Generation, which can be interpreted 
as a moderated cytotoxic effect.

3.  The ratio of Full Clonal Potential Cells 
(FCP) to Partial Clonal Potential Cells 
(PCP). FCP cells are those whose offspring 
in the Third Generation are all dividing 
cells. For cells at the First Generation, full 
clonal potential means that they have four 
descendants that divide in Third Genera-
tion, and obviously for cells in the Second 
Generation, full clonal potential means they 
have two descendants that divide in the 
Third Generation. Partial clonal potential 
cells are those whose offspring have at least 
one Third Generation dividing cell but are 
not full clonal potential. This proportion 
measures the cytotoxic effect on the cur-
rent generation based on the outcome in 
Third Generation resistant cells; in other 
words, it measures the cytotoxic effect on 
the cells’ clonal potential.

In addition, the effect of the drug on the 
cell dynamics (IMT and IMD) is investigated.

Table 2. Possible statuses for cells 

Cell status Definition

M4 The cell divides into four daughters.

M3 The cell divides into three daughters.

Unresolved The cell status could not be measured.

Polyploidy The cell divides into one cell.

Re–fused The cell divides but its daughters cells fuse together.

Arrested The cell survives without dividing until the end of the experiment.

Lost The cell is lost from the field of view of the microscope.

Never–Born The mother of the cell does not divide.

Death The cell dies due to apoptosis (programmed cell death) or necrosis (uncontrolled cell death).

Divided Normal division. The cell divides into two daughters.
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study of stressed lineages

The goal of this study is to identify the com-
mon strategies followed by the cells to reach 
the Fourth Generation. Lineages are divided 
into a Stressed group, which do not reach this 
generation, and a Resistant group (the others). 
Then, classification rules that identify both 
groups are induced.

study of control versus 
perturbed lineages

When the drug is applied, cell lineages are ex-
pected to be perturbed. The goal of this study is 
to identify what lineages have been perturbed. 
That is, what differences can be identified be-
tween Control and Perturbed lineages. For this 
study, the data is separated into two classes, one 
containing the Control lineages and the other 
containing both 1µM and 10µM lineages.

MetHods

To compare proportions of events among lineage 
types, the events are counted and arranged in 
contingency tables, and the Fisher test is used to 
asses if the difference between the proportions 
is statistically significant (Campbell, 2007). 
The null hypothesis is: both lineage types have 
the same proportion on these events, and the 
alternative hypothesis is: the proportions are 
different. As several tests are performed, the 
false discovery rate (FDR) must be controlled 
(Benjamini & Hochberg, 1995; Benjamini & 
Yekutieli, 2001). The FDR is the expected 
number of false rejections among all rejections 
of the null hypothesis. To control the FDR with 
Fisher tests, we use the method proposed in 
Carlson, Heckerman, and Shani (2009), with 
an FDR value of 0.1.

To compare the dynamic behaviours of 
lineages we select the empirical cumulative 
distribution function (ECDF), which approxi-
mates the probability that a variable is equal 
to or lower than any threshold. The ECDF 
converges to the actual cumulative distribu-

tion function as the number of samples tends 
to infinity (Vapnik, 1998). To compare ECDF 
distributions, the Kolmogorov-Smirnov two-
sample test (Smirnov, 1939) is used. The null hy-
pothesis is: both samples come from a common 
distribution, and we choose as the alternative 
hypothesis: both samples come from different 
distributions. To control the FDR of these tests, 
the general method proposed in (Benjamini 
& Yekutieli, 2001, Theorem 1.3) is used. The 
reason for using two different methods to con-
trol the FDR (one for the Fisher tests and other 
for the Kolmogorov-Smirnov test) is because 
the method proposed in Carlson et al. (2009) 
is more appropriate (and has more power) for 
contingency tables than the general procedure. 
To learn patterns from the data, we use RIPPER 
(Cohen, 1995), which is a rule inducer, and C4.5 
(Quinlan, 1996), which is an algorithm to build 
tree classifiers, because these algorithms can 
provide interpretable representations of their 
classification decisions.

Data is also explored using Bayesian net-
works (Charniak, 1991; Pearl, 1988; Howard 
& Matheson, 2005). Continuous models are 
avoided because the distribution of the data is 
unknown. Instead, we consider the following 
methods for data discretization: equal-width 
bins, equal-frequency bins and the supervised 
discretization proposed in (Fayyad & Irani, 
1993). After learning the Bayesian network 
from the data, the probability distributions of 
the variables given the values of their mothers 
provide valuable information about the data.

The performance of the classification 
algorithms is measured by leave-one-out cross-
validation, and all processing steps in the data 
are done inside the leave-one-out loop. Finally, 
models that are presented for discussion in this 
paper are induced from all the data.

results

In this section, we show the results of applying 
the different methods to the data, with the aim 
of addressing the research questions identified 
above.



32   International Journal of Knowledge Discovery in Bioinformatics, 1(4), 26-53, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

study of cell death in 
control lineages

Table 3 summarises the results for cell death 
in Control lineages. There is a clear increase in 
the cell death factor in the Second Generation. 
However, the most important observation here 
is that cell death occurs spontaneously as part of 
the regulation of the population growth in the 
Control group. Given that there are 10 possible 
statuses and Death is not a particularly frequent 
one, an important pattern is found in death cells: 
Death-Death sisters pairs account for almost 
half of deaths in the First Generation (6 out of 
13), more than half in the Second Generation 
(28 out of 51) and half in the Third Generation 
(20 out of 40).

The next analysis focuses on cell dynamics. 
IMT1 (both IMT1_1 and IMT1_2) is divided into 
two groups:

1.  IMT1 of cells where at least one daughter 
dies.

2.  IMT1 of cells where neither of the two 
daughters die.

Figure 3 shows the ECDFs of both 
groups. When comparing both curves with the 
Kolmogorov-Smirnov test, the p-value is 0.003, 
which provides statistical evidence against the 
null hypothesis: both datasets come from the 
same distribution. The IMT1 distribution of cells 
in Group 1 tends to be delayed with respect to 
the IMT1 distribution of Group 2. For example, 
78% of cells in Group 2 have an IMT1 below 
22.5 hours, but only 46% of cells in Group 1 
have an IMT1 below this threshold. A similar 
effect, also statistically significant, is observed 
in the cells of the Third Generation (Figure 4): 

78% of cells in Group 2 have an IMT2 lower 
than 21 hours, but only 48% of cells in Group 
1 have an IMT2 below this threshold.

Now moving to the prediction of Death 
events in the Second Generation, we use the 
RIPPER algorithm with inputs DIV and IMT1 
to discover the following rule set:

1.  If (IMT1 <= 18.75 hours), no daughter cell 
dies.

2.  Else if (DIV >= 21.5 hours), no daughter 
cell dies.

3.  Else if (21.75 <= IMT1 <= 22.25) hours, 
no daughter cell dies.

4.  Else if (19.25 <= IMT1 <= 21.25) hours 
and (DIV <= 12.5 hours), no daughter cell 
dies.

5.  Else (DIV <= 4.5 hours), no daughter cell 
dies.

6.  Else at least one daughter cell dies.

(Note that to apply a RIPPER rule set to 
a database, the prediction of the first rule that 
fires is taken.) Using this rule set, the overall 
prediction accuracy is 75% (159 out of 213), 
where the accuracy for Non-Death cells is 78% 
(135 out of 176) and the accuracy for the other 
class is 65% (24 out of 37)1. We use the WEKA 
(Hall et al., 2009) implementation of RIPPER 
(called JRIP) with default parameters2. Be-
cause of high class imbalance, a cost-sensitive3 
classifier is used, where zero cost is assigned 
to correct classifications and a cost inversely 
proportional to the size of the actual class is 
assigned to errors. Our aim is to require the 
classifier to learn both classes. We find a similar 
result when predicting Third Generation Death 
events. The rule set from JRIP is in this case:

Table 3. Cell death factor for Control lineages 

Gen. 1 Gen. 2 Gen. 3

Status=Death 13 51 40

Status=Divided 234 363 591

Cell death factor 5.5% 14% 6.7%
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1.  If (IMT1 <= 22 hours) and (IMT2 <= 21.75 
hours), no daughter cell dies.

2.  Else if (22.75 <= IMT1 <= 26.5) hours, no 
daughter cell dies.

3.  Else if (IMT2 <= 17.75 hours), no daughter 
cell dies.

4.  Else if (23.75 <= IMT2 <= 26) hours, no 
daughter cell dies.

5.  Else at least one daughter cell dies.

The overall accuracy in this case is 80% 
(256 out of 320), while the accuracy for Death 
and Non-Death cell classes are respectively 
67% (20 out of 30) and 81% (236 out of 290).

study of the cytotoxic 
effect of topotecan

The results are summarised in Table 4 where 
“Gen.’’ stands for Generation. It is statistically 
evident that the drug is killing more cells in 
the Perturbed lineages than in Controls in 
the First Generation, but there is no statisti-

cal evidence to say the same in the Second 
Generation. Surprisingly, the proportion of 
Deaths in the Second Generation for 1µM is 
lower than that for Control and 10µM. For 
Stressed versus Resistant and Full Clonal 
Potential (FCP) versus Partial Clonal Potential 
(PCP), there is a trend from Control to 10µM 
in both generations: as more drug is added, 
there are more Stressed cells and fewer FCP 
cells. However, possibly due to the small 
sample size, we found the differences to be 
statistically significant only when comparing 
the Control and 10µM groups. The values of 
the proportions are shown in Table 5.

Cell Dynamic Behaviour. Here, we consider 
the dynamic behaviour of cells: that is, 
how the ECDFs of DIV, IMT1, IMT2 and 
IMT3 change when the system is perturbed 
with the drug. To compute the ECDF of 
each lineage type in each generation, the 
cells that have successfully divided in that 
generation are considered.

Figure 3. Comparison of the ECDFs of IMT1  for cells that die and cells that do not
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Figure 5 shows the ECDF of DIV for 
Control, 1µM and 10µM lineages. It shows 
a big discrepancy among the distributions of 
Control, 1µM and 10µM starting at 10 hours. 
1µM is delayed and 10µM is greatly delayed 
when compared to Control. The Kolmogorov-
Smirnov test finds statistical evidence against 
the null hypothesis for both Control versus 1µM 
(p-value < 10-3) and Control versus 10µM (p-
value < 10-5). Just to illustrate this difference, 
91% of the Control group’s DIV times are less 
than to 22 hours, but only 73% of the 1µM 
group’s DIV and 50% of the 10µM group’s 
DIV are below that threshold. The maximum 
difference between Control and 1µM ECDFs 
is 35%, which is at 19.25 hours; and between 
Control and 10µM ECDFs is 41%, which oc-
curs at 22 hours.

Figure 6 shows the ECDF of IMT1 for 
Control, 1µM and 10µM lineages. We observe 
that 1µM is slightly delayed with respect to 
Control, and 10µM is slightly delayed with 

respect to 1µM. The Kolmogorov-Smirnov test 
finds statistical evidence showing that the 
distribution of IMT1 is different in Control and 
10µM (p-value <10-5). 57% of Control IMT1 
are lower than 20.5 hours, but only 44% of 1µM 
IMT1 and 18% of 10µM IMT1 are below that 
threshold. The maximum difference between 
Control and 10µM is 39%, which is located at 
20.5 hours.

Figure 7 shows the ECDFs of IMT2. We 
observe that 1µM is very similar to Control (it 
almost follows the Control distribution) and 
10µM is delayed. The Kolmogorov-Smirnov 
test finds statistical evidence showing that the 
distribution of IMT2 is different in Control group 
and 10µM group (p-value <10-5). There is also 
statistical evidence showing that the distribution 
of 1µM and 10µM are different (p-value <10-3). 
60% of Controls and 58% of 1µM IMT2 are 
less than 19.5 hours, but only 27% of 10µM 
IMT2 are less than this threshold. The maximum 
difference between Controls and 10µM is 33%, 

Figure 4. Comparison of the ECDFs of IMT2  for cells that die and cells that do not
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Table 4. Cytotoxic effect in the First and Second Generations for 1µM and 10µM. Those with 
statistically different proportions with respect to Control are shown in boldface. The values in 
parentheses are the corresponding p-values.

Proportion Gen. Control 1µM 10µM

Death/Non-Death
1st 13/293 8/63 (0.038) 9/76 (0.033)

2nd 51/384 11/99 18/93

Stressed/Resistant
1st 35/178 10/40 15/38

2nd 29/318 11/65 19/58 (<0.0002)

FCP/PCP
1st 88/23 13/4 4/7 (<0.005)

2nd 196/13 30/3 11/6 (0.001)

Table 5. The values of proportions from Table 4

Proportion Gen. Control 1µM 10µM

Death/Non-Death
1st 0.0444 0.1270 0.1184

2nd 0.1328 0.1111 0.1935

Stressed/Resistant
1st 0.1966 0.2500 0.3947

2nd 0.0912 0.1692 0.3276

FCP/PCP
1st 3.8261 3.2500 0.5714

2nd 15.0769 10.0000 1.8333

Figure 5. Comparison of the ECDFs of the Progenitor division time
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which occurs at 19.5 hours; and between 1µM 
and 10µM is 32%, which is at 17.5 hours.

Figure 8 shows the ECDFs of IMT3. We 
observe the same trends as in Figure 7: the 1µM 
group is very close to the Control group and 
the 10µM group is closer to the Control group 
than before. The Kolmogorov-Smirnov test 
finds statistical evidence showing that the 
distribution of IMT3 is different in Control and 
10µM (p-value <10-5). There is also evidence 
showing that the distribution of 1µM and 10µM 
are different (p-value <10-4). 59% of 1µM IMT3 
and 57% of Control IMT3 are lower than 19.5 
hours, but only 29% of 10µM IMT3 are lower 
than this threshold. The maximum difference 
between Control and 10µM is 28%, which is 
at 19.5 hours; and between 1µM and 10µM is 
30%, which is at the same time point.

study of stressed lineages

We now consider patterns that can be used to 
predict whether a lineage is Stressed or Resis-
tant. We construct a series of classifiers using 
the following inputs:

1.  Progenitor: Drug and DIV are used as input 
to the classifier.

2.  First: Drug, DIV and First Generation 
information are used.

3.  Second: Drug, DIV, First and Second 
Generations information are used.

Drug is the lineage type: Control, 1µM 
or 10µM.

The experiments are summarised in Table 
6. The overall accuracy and the accuracy per 
class (Stressed and Resistant) are provided. 
The default parameters are used in WEKA’s 
J484 and JRIP. In this case, it is not necessary 
to handle class imbalance. We observe that 
the classifiers with the best accuracies are 
those that include Second Generation inputs. 
However, the classifiers using Second Genera-
tion information are not considered because 
the rules they provide are obvious and do not 
add more insight into lineages’ behaviour. 
Therefore, the classifiers for the First input 

data set are selected. The final rule set induced 
using JRIP for this input data is:

1.  If (Status1_1 = Arrested), the lineage is 
Stressed.

2.  Else if (IMT1_2 >= 39.5 hours), the 
lineage is Stressed.

3.  Else if (Status1_2 = Death), the lineage is 
Stressed.

4.  Else if (Status1_1 = Unresolved), the 
lineage is Stressed.

5.  Else the lineage is Resistant.

The first rule identifies that many of the 
Arrested cells in the First Generation have 
also an Arrested sister and therefore there 
are neither Second nor Third Generations in 
those lineages. The second rule shows that 
Stress lineages have at least one cell in the 
First Generation with a very long IMT1 (the 
threshold is fixed to 39.5 hours). The next rule 
is obvious: if one cell’s status is Death, then 
the other does not divide and the lineage must 
be stressed. The fourth rule is an artifact of the 
dataset: it happens in the data that when one 
cell in the First Generation is Unresolved the 
lineage is stressed.

The classifier resulting from the J48 algo-
rithm is shown in Figure 9. This tree, which is 
also very simple, complements the JRIP ruleset 
for the Resistant lineages: they have at least 
one First Generation cell with an IMT lower 
than 36.5 hours.

study of control versus perturbed 
lineages

When we follow the procedure described in 
the previous section (training a series of classi-
fiers with incremental generation information) 
to distinguish between Control and Perturbed 
lineages, the best result is given by J48 using all 
but Third Generation information. The overall 
accuracy of this classifier (Figure 10) is 78.4% 
(196 out of 250), where the accuracies on the 
Control and Perturbed lineages are 81.8% (135 
out of 165) and 71.8% (61 out of 85) respectively. 
This classifier uses information of the time to 
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Figure 6. Comparison of the ECDFs of the first generation cells IMT

Figure 7. Comparison of the ECDFs of the second generation cells IMT
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divide (DIV) and displacement (DIV_D) of the 
progenitor as its most discriminative features. 
For example, if a lineage progenitor cell takes 
longer than 20.7 hours to divide and moves 
more than 30.41 microns, the lineage is declared 
Perturbed. In addition uses Cell1_2, Cell2_4 and 
the number Second Generation Divisions to 
classify the lineages.

As it appears that using all the available 
information for training the classifier does not 
result in the best possible performance, next 
we explore Bayesian network modelling to find 
a suitable subset of variables.

Bayesian Network Modelling. In a Bayesian 
Network, the Markov Blanket of a variable 
T is the set that consist of its parents, its 
children and its children’s parents (where 
these refer to the relationships between 
nodes in the Bayesian network, and are not 
to be confused with relationships between 
cells). If the values of the variables in the 
Markov Blanket are known, the rest of 
variables in the Bayesian Network become 
irrelevant for predicting the value of T.

Figure 11 shows the Markov Blanket of the 
best automatically learned network that we have 
induced from the data. This network is the result 
of applying to the data the supervised discreti-
zation proposed in Fayyad and Irani, (1993), 
followed by a local hill climbing search starting 
with the naive Bayes network. All those steps 
were done in WEKA. The overall accuracy of 
this network is 76% (190 out of 250), and the 
accuracy for Control and Perturbed classes are 
respectively 83% (137 out of 165) and 62.3% 
(53 out of 85).

The probability distribution tables provide 
further insights on the data. Table 7 shows that 
the events with a high probability for Control 
lineages have Status1_2=Divided with the excep-
tion of Status3_5=Arrested. This probability 
reaches its maximum value (0.8) when both 
statuses are Divided. The events that show high 
probability for Perturbed lineages are 
Status1_2=Death. In addition, the Arrested event 
in the First Generation is more associated with 

Control lineages but the Arrested event in the 
Third Generation is more associated with Per-
turbed lineages.

Table 8 shows that the supervised dis-
cretization procedure selects a threshold for 
IMT1_2 at 19.1 hours (which suggest that this 
threshold is informative for this task). We also 
observe that: (1) Control and Perturbed lin-
eages behave differently when the Cell2_4 cell 
is Arrested, as in the case of Control cells it is 
more probable that their mothers need less than 
19.1 hours to divide but the opposite is more 
probable for Perturbed cells; (2) Control and 
Perturbed lineages behave similarly when a 
Cell2_4 dies, as in both cases is very probable 
that its mother needs more than 19.1 hours to 
divide; (3) When the Cell2_4 divides, there is a 
probability of 1/3 of IMT1_2 being lower than 
19.1 hours for Control lineages, but the prob-
ability of the same event is less than 1/12 for 
Perturbed lineages.

Table 9 shows that the supervised dis-
cretization selects a threshold for DIV at 9.4 
hours and another one at 20.9 hours. We observe 
that most Control, as opposed to Perturbed, 
cells divide some time between 9.4 and 20.9 
hours. We also observe that there is a positive 
correlation between DIV and DIV_D. Table 10 
shows that the selected threshold for DIV_D is 
59.4 microns. We observe that when the lineage 
is Control, the cell moves less than this thresh-
old 91% of the time.

JRIP Result with Bayesian Variable Selec-
tion. If the data is assumed to be generated 
using a Bayesian network, all the relevant 
information about a variable is found in its 
Markov Blanket. Therefore, the Bayesian 
Network modeling can be used as a variable 
selection procedure, i.e., only the variables 
in the Markov Blanket of Drug are used 
to predict its outcome. Accordingly, we 
combine this variable selection procedure 
with a JRIP classifier (with both being 
performed inside the leave-one-out loop). 
Table 11 shows how many times each 
variable was selected. This method is 
consistent in all the leave-one-out itera-
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Figure 8. Comparison of the ECDFs of the third generation cells IMT

Table 6. Per-class and overall accuracies, leave-one-out result, for JRIP and J48 using inputs 
until generation “Gen.” (inclusive) 

Gen. Method Overall Stressed Resistant

Progenitor
JRIP 76.0% 36.8% 90.0%

J48 65.9% 0.0% 89.4%

First
JRIP 91.2% 75.4% 96.9%

J48 92.2% 75.4% 98.1%

Second
JRIP 94.9% 89.5% 96.9%

J48 95.8% 89.5% 98.1%

Figure 9. Tree classifier for the prediction of resistant versus stressed lineages using Progenitor 
and first generation information
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Figure 10. Tree classifier for the prediction of control versus perturbed lineages using Progeni-
tor, first and second generations information

Figure 11. Markov Blanket of the automatically–learned Bayesian network for classifying per-
turbed versus control lineages (Drug)
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Table 7. Extract of the probability distribution of Drug given Status3_5 and Status1_2 for the 
network in Figure 11

Drug

Status3_5 Status1_2 Control Perturbed

Refused Divided 75.0% 25.0%

Arrested Divided 34.6% 65.4%

Lost Lost 81.3% 18.8%

Lost Divided 47.6% 52.4%

Never–Born Unresolved 75.0% 25.0%

Never–Born Arrested 87.9% 12.1%

Never–Born Death 29.2% 70.8%

Never–Born Divided 63.5% 36.5%

Death Divided 59.1% 40.9%

Divided Divided 80.4% 19.6%

Table 8. Extract of the probability distribution of IMT1_2 given Drug and Status2_4 for the network 
in Figure 11

IMT1_2

Drug Status2_4 (0, 19.1] (19.1, ∞)

Control Arrested 70.0% 30.0%

Control Death 10.0% 90.0%

Control Divided 32.9% 67.1%

Perturbed Arrested 16.7% 83.3%

Perturbed Death 5.0% 95.0%

Perturbed Divided 7.8% 92.2%

Table 9. Probability distribution of DIV given drug and DIV_D for the network in Figure 11

DIV

Drug DIV_D (0,9.4] (9.4,20.9] (20.9,inf)

Control (0,59.4] 29.8% 60.0% 10.2%

Control (59.4,inf) 3.2% 67.7% 29.0%

Perturbed (0,59.4] 50.4% 16.2% 33.3%

Perturbed (59.4,inf) 11.9% 15.3% 72.9%
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tions: the same variables are selected in 
almost all the iterations. In some iterations, 
however, some other variables are included, 
but this happens less than 2% of the time.

This procedure’s overall accuracy is 81% 
(203 out of 250), and the accuracy on Control 
and Perturbed classes are respectively 87.3% 
(144 out of 165) and 69.4% (59 out of 85). In 
this case, the JRIP rule set is:

1.  If (DIV >= 21 hours) and (DIV_D >= 32.25 
microns), the lineage is Perturbed.

2.  Else if (DIV <= 10 hours) and (IMT1_2 >= 
22.7 hours), the lineage is Perturbed.

3.  Else the lineage is Control.

Performing variable selection using the 
Markov blanket in this way has yielded an ef-
fective and simple model of the data that has 
better accuracy than previous ones.

Dynamic Behaviour. IMD is the Euclidean 
distance from point where a cell is born 
to the point where a cell divides. This is 
not the same as the total cell displace-
ment, because the cell can move in any 
direction and doesn’t have to maintain one 
direction. However, we can assume that 
this movement can be characterised by an 
unknown probability distribution; as we 
have samples from this distribution, we 
can compare perturbed and unperturbed 
populations with the ECDF. The ECDFs 
of the ‘displacement’ of the cells (IMD) 
are now considered for Progenitor to Third 
Generation. These complement the IMT 
ECDFs that were shown in Figures 5 to 8.

Figure 12 shows the ECDFs of the dis-
placement of Progenitor cells. We observe a 
clear difference between the distributions of 
the movements among Control, 1µM and 10µM 
groups, with Control cells having the lowest 
displacements and 10µM cells having the great-
est displacements. For example, 77% Controls, 
65% 1µM and 44% 10µM are lower than 37 
microns. The maximum difference between 
Control and 1µM is 26%, which is located at 
27 microns. The maximum difference between 
Control and 10µM is 33%, which is located at 
37 microns. The differences between Control 
and 1µM and between Control and 10µM are 
statistically significant using a Kolmogorov-
Smirnov test (p-values <10-3). Comparing this 
figure with Figure 5, we observe that the ECDFs 
have different profiles; for example, 10µM and 
Controls are separated from the beginning of 
the graph in Figure 12.

Figure 13 shows the ECDFs of the First 
Generation cells IMD, the distributions are 
closer to each other and no statistical evidence 
is found for a difference between them. Again, 
these ECDFs have a different profile to the 
corresponding IMT ones in Figure 6.

Figure 14 shows the ECDFs of Second 
Generation cells IMD. The ECDFs are even 
closer to each other in this generation and 1µM 
cells are delayed more than 10µM cells over 
some ranges. We found no statistically signifi-
cant differences between the curves using a 
Kolmogorov-Smirnov test. There is a notable 
difference between these ECDFs and its IMT: 
in Figure 7 the 1µM distribution is almost 
overlaid with the Control distribution, but this 
is not the case in its IMD counterpart.

Figure 15 shows the ECDFs of Third 
Generation cells IMD: the distributions of 1µM 

Table 10. Probability distribution of DIV_D given drug for the network in Figure 11

DIV_D

Drug (0,59.4] (59.4,inf)

Control 91.3% 8.7%

Perturbed 66.9% 33.1%
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and 10µM IMD are, surprisingly, more delayed 
than in previous generations with respect to 
Control, breaking the trend that was observed 
in the previous generations. For example, 71% 
Controls, 52% 1µM and 44% 10µM are lower 
than 51 microns. The maximum difference 
between Control and 1µM is 20% and it is 
located at 55 microns. The maximum difference 
between Control and 10µM is 27% and it is 
located at 51 microns. Both differences are 
statistically significant using a Kolmogorov-
Smirnov test (p-values <10-3). As before, we 
observe that the behaviour is different to that 
of the corresponding IMT graph (Figure 8).

Cell ‘Speed’ and cytotoxic level. The previous 
subsection shows that the distribution of 
IMD are different for Control and Perturbed 
populations. Here we show that the relative 
‘speed’ distributions of the cell are also 
different. We define the speed of any par-
ticular cell as the ratio of its IMD to its 
IMT. Figures 16 to 19 show the empirical 
distribution of this ratio.

Figure 16 and Figure 17 show this differ-
ence for Progenitor and First Generation cells. 
We observe that 10µM moves slightly faster 
than Controls, but we do not find this difference 
to be statistically significant with a Kolmogo-
rov-Smirnov test.

Figure 18 shows this difference for Second 
Generation cells. Again, we observe that there 
appear to be slight differences between the 
distributions, but these are not found to be 
statistically significant with a Kolmogorov-
Smirnov test.

Figure 19 shows this difference for Third 
Generation cells. We observe that 1µM moves 
slightly faster than Controls and 10µM moves 
faster than both. This time, both differences are 
statistically significant with a Kolmogorov-
Smirnov test when compared to Control (p-
values < 3∙10-4). For example, 73% Controls, 
54% 1µM and 49% 10µM are lower than 2.7 
micron/hour. The maximum difference between 
Control and 1µM is 21% and it is located at 2.8 
micron/hour. The maximum difference between 
Control and 10µM is 24% and it is located at 
2.7 micron/hour.

Table 11. Bayesian variable selection in each leave-one-out iteration. The number of times a 
variable is selected by the procedure is recorded

Variable number of times selected

DIV 250

IMT1_1 5

IMT1_2 250

DIV_D 250

IMD2_2 250

IMD3_8 250

Status1_2 250

Status2_2 249

Status2_4 243

Status3_4 1

Status3_5 250

Status3_8 250
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dIscussIon

Here we analyse the results and propose some 
hypotheses that might be worthy to explore 
further.

study of cell death in 
control lineages

Cell death, is deemed to be a part of the regu-
latory mechanism of tumour system, which 
invokes detailed investigation of such dynamic 
system. This work has revealed the following 
patterns for the Death event for Control lineages: 
Firstly, there is a strong pattern of paired sister 
death, i.e. when one cell dies, it is very probable 
that its sister also dies; Secondly, cell death in 
general can be related with longer cell cycle 
duration of the corresponding mother cell.

study of the cytotoxic 
effect of topotecan

The cytotoxic effect of the drug is prominent 
in 10µM, where statistically significant differ-
ences between Control and 10µM lineages are 
found in almost all tests. On the other hand, the 
effect of the drug in 1µM has only a statistical 
significant impact in the Death to Non-Death 
proportion and in the ECDFs of DIV and IMT1. 
Death Non-Death proportion in the Second 
Generation is lower for 1µM than both Control 
and 10µM. This might be an artifact of the data 
or something to be further investigated: does a 
low dosage of drug result in fewer cells death 
the Second Generation after the drug admin-
istration is stopped? The trends in the other 
cases suggest that in low dose, i.e., 1µM has 
still some cytotoxic effect, but it is almost lost 
in the Second Generation, as we see in Figure 
7 where 1µM IMT2 distribution is very close 
to IMT2 Control distribution (although its IMD 
is still affected as shown in Figure 14). The 
greatest variation between Control and 10µM is 
found in the proportion of Full Clonal Potential 
to Partial Clonal Potential. 10µM drug dosage 
makes this proportion 6.7 times lower than 
Control for the First Generation and 8.2 times 
lower for the Second Generation.

There is an interesting relationship found 
in the ECDF of DIV (Figure 5): For progenitor 
cells, TPT prevents division between the times 
T=10 hours and T=20 hours, establishing the 
S-phase specific cytotoxic effect of TPT (Pom-
mier, 2006). When TPT was administered, the 
progenitor cells were distributed in all 3 phases 
(G2, S and G2M) phases of the cell cycle, and 
from the start of the experiment the cohorts of 
progenitor cells that delivers to mitosis within 
the first 0–10 h zone could be considered to be 
in G2 during the drug treatment, S-phase if time 
to mitosis occurred between 11–18 h and G1 
if delivery occurred after 18 h. (Feeney et al., 
2003; Errington, Marquez, Chappell, Wiltshire, 
& Smith, 2005).

study of stressed lineages

In the algorithms to classify the lineages (Con-
trol population also has stressed lineages), the 
Drug variable is not selected, which suggests, 
as the accuracy of the classifiers is quite high, 
that we do not learn much from the Drug vari-
able after considering the other data. The key 
factor that explains whether a lineage will be 
stressed is the behaviour of the lineage in First 
Generation, for all lineage types. In addition, 
Arrested cells tend to appear as sister pairs in 
the First Generation. For example, for Control 
lineages, 48 out of 49 Arrested cells come from 
Arrested sister pairs.

study of control versus 
perturbed lineages

When we analyse a data set with a small 
number of examples relative to the number 
of variables, we might expect to encounter 
the well-known curse of dimensionality. In 
general, as the number of variables increases, 
the number of possible hypotheses to explain 
the data increases (assuming a sufficiently rich 
representation language), which increases the 
risk of discovering hypotheses that are based 
just on artefacts of the data, which in turn 
leads to models having lower accuracies. In 
addition, correlated variables, noisy variables 
and partially redundant variables all increase 
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Figure 12. Comparison of the ECDFs of the Progenitor displacement

Figure 13. Comparison of the ECDFs of the first generation cells IMD
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the hypotheses search space, making the search 
harder, without providing new information. 
We suggest that this is the reason why we get 
models with better accuracy when we follow 
the common practice of feature selection, rather 
than using all the variables.

We hypothesise that the extra displacement 
of 1µM and 10µM lineages, when compared 
to Control lineages, may be caused by some 
internal cell mechanism that compels the cell 
to move away from stressful environments. If 
we look at Figure 12, we see that the greater 
the concentration of drug, the greater the dis-
placement, which gives some support to this 
hypothesis. If we look at the movement of the 
cells, the general trend is that Control cells 
move less than 1µM cells, which in turn move 
less than 10µM cells. This does not happen in 
the Second Generation, where 1µM and 10µM 
distributions are interlaced, and over some 
ranges the 10µM distribution is closer to the 
Control distribution (see Figure 14).

When comparing IMD and IMT distribu-
tions, we observe that in the Second Generation, 
the 1µM IMT ECDF is very close to Control 
distribution, but the same does not happen with 
the 1µM IMD ECDF. This is also found in the 
Third Generation. The greatest differences 
among IMD ECDFs are observed in Progenitor 
and Third Generation cells.

When comparing the cell speed distribu-
tions we observe that the difference among 
populations is not only in the distance they 
travel but also in the speed at they move, which 
indicates that perturbed populations not only 
move more but also faster. As a general trend, 
10µM is the fastest population with the excep-
tion of Second Generation (Figure 18) where 
1µM is the fastest one. This is related to what 
we already noted above (see Figure 14) where 
1µM and 10µM IMD distributions are similar, 
but we learn from Figure 18 that 1µM cells are 
moving faster in a shorter IMT. Also surprising 
is that the behaviour of 1µM departs from that 
of the Control group in Second Generation. The 
behaviour of both 1µM and 10µM is clearly 
different (statistically significant) from Control 
in Third Generation (Figure 19).

From these observations, we conclude that 
there is something more than a simple correla-
tion between IMT and IMD. This leads to the 
following new questions and hypothesis to 
explore in the future: Why do Perturbed cells 
move more? Does the drug in small dosages 
make cancer cells expand more rapidly?

The informative events (probabilities close 
to zero or one) in Bayesian networks probability 
tables help us to consider interesting expected 
and unexpected behaviours. In this case we focus 
on the Arrested event: cells exhibit different 
behaviours in Control and Perturbed lineages 
as expected. However, it is surprising how the 
probability of the event changes from the First 
to the Third Generation and how it changes 
depending on the time taken by the mother to 
divide. We also observed that the division time 
of the ancestors has an impact on the probability 
of some future events of their offspring.

By modelling the data with a Bayesian 
Network, we can perform a variable selection 
that allows us to subsequently discover simpler 
and better models using rule-based learners. 
The JRIP model gets to 81% overall accuracy, 
it is simple and uses the displacement informa-
tion. Again, cell movement is important and 
increases accuracy.

conclusIon

Through this work, we have demonstrated how 
data mining procedures can reveal important 
patterns of a dynamic cell system. By our 
analyses, we have found the cytotoxic effect 
of Topotecan on both the dynamics and event 
frequencies of the system. The results reiterate 
the finding that initial cell cycle positioning is 
an important factor for immediate cytotoxic 
response. The results also suggest that by dis-
tributing the cytotoxic effect asymmetrically 
within the progeny, the system adopts strategies 
that facilitate the generation of drug resistance 
progenies, thus maximizing its clonal expan-
sion potential.

We also observe cellular deaths in un-
perturbed condition with well defined patterns, 
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Figure 14. Comparison of the ECDFs of the second generation cells IMD

Figure 15. Comparison of the ECDFs of the third generation cells IMD
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Figure 16. Comparison of the ECDFs of the Progenitor displacement – time to divide ratio

Figure 17. Comparison of the ECDFs of the first generation cells IMD – IMT ratio
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Figure 19. Comparison of the ECDFs of the third generation cells IMD – IMT ratio

Figure 18. Comparison of the ECDFs of the second generation cells IMD – IMT ratio
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indicating the existence of an innate regulation 
mechanism of the tumour system. Investigation 
on such a mechanism requires incorporation 
of gene and protein network data. In addition, 
we have found simple models that can predict 
death in cells in an unperturbed condition, and 
also how inheritance information like the cell 
cycle duration of a mother cell can influence the 
fate of daughters. Our models are successful at 
classifying between perturbed and unperturbed 
lineages, thus revealing the population level 
cytotoxic effect. More importantly, by predict-
ing the clonal potential, we are not only able 
to identify the resistant subpopulation in early 
generations, but we are also able to identify 
strategies that the following generations adopt 
in order to maximize their clonal potential. In 
the spatial context, we have observed a putative 
relationship between cytotoxic effect and cel-
lular movement; such results can be exploited 
to understand the metastasis potential of the 
tumour (Cavanna, Pokorna, Vesely, Gray, & 
Zicha, 2007), which is another important aspect 
of cancer research.
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endnotes
1  The 51 cell deaths in the Second Generation 

are comprised of 14 (Death, Death) sister 
pairs and 23 (Death, non-Death) sister pairs.

2  Default parameters for JRIP are: ‘error rate 
>= ½’ is included in stopping criterion; 1 of 
3 folds is used for pruning; the minimum 
total weight of the instances in a rule is set 
to 2; and the initial seed is 1. We perform 25 
optimization runs to minimise the sensitivity 
to the initial seed.

3  The cost-sensitive classifier, also implemented 
in WEKA (CostSensitiveClassifier), uses the 
resampling method.

4  Default parameters for the J48 are: not binary 
splits on nominal attributes; confidence fac-
tor used for pruning equals 0.25; minimum 
number of instances per leaf equals 2; 1 of 
3 folds using for pruning, the rest for grow-
ing the tree; C.4.5 pruning; sub-tree raising 
operation when pruning.
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