<table>
<thead>
<tr>
<th>Title</th>
<th>Edge-AI: Rise of the neural accelerators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Corcoran, Peter</td>
</tr>
<tr>
<td>Publication Date</td>
<td>2019-08-29</td>
</tr>
<tr>
<td>Publisher</td>
<td>EMAI 2019 Emerging Memory and Artificial Intelligence Workshop</td>
</tr>
<tr>
<td>Link to publisher's version</td>
<td>https://emai19.sites.stanford.edu/workshop-presentations</td>
</tr>
<tr>
<td>Item record</td>
<td>http://hdl.handle.net/10379/15489</td>
</tr>
</tbody>
</table>

Some rights reserved. For more information, please see the item record link above.
EMAI 2019
EMERGING MEMORY AND ARTIFICIAL INTELLIGENCE WORKSHOP

Prof. Peter Corcoran, National University of Ireland Galway
WHO AM I?

• IEEE Volunteer (Electronic & ICT Engineer)
 • Board Member of IEEE Consumer Electronics Society (6 years)
 • Editor-in-Chief of IEEE Consumer Electronics Magazine (2010-2016)
 • IEEE Fellow in 2010 (Contributions to Digital Camera Technology)
 • IEEE Distinguished Lecturer, Conference Chair, Editor & Reviewer

• Day Job(s):
 • University Professor & Former Vice-Dean *(H-Index 85; 20k citations)*
 • Active Researcher *(currently 8 PhD & 3 PostDoctoral researchers)*
 • Entrepreneur, Inventor & Technologist; *(300+ patents)*
 • Industry Consultant

• Contact Information
 • E-Mail: dr.peter.Corcoran@ieee.org
 peter.corcoran@nuigalway.ie
 • Twitter: @pcor LinkedIn:
 • Google Scholar:
 https://scholar.google.com/citations?hl=en&user=J6YWBB4AAAAJ
WHAT IS IN THIS TALK?

1) How Big Data became Fool’s Gold …
2) … and Artificial Intelligence is moving to the Edge
3) What’s inside a Camera? (<$1)
 Today’s camera tech provides good examples of where Edge-AI is headed …
4) AI + Camera < $5 ➔ Distruptive Edge Tech
5) But new, disruptive applications will need Training Data!
 Data Acquisition is complex, difficult to get right and expensive to collect
 Driver Monitoring System as an Example (Face Pose, Eye-Gaze, Gestures)
6) Solutions to the Data Problem
7) Thoughts & Take-Aways on Storage & Data Bandwidth
RISE OF THE NEURAL ACCELERATORS

Why AI at the Edge will drive the need for Storage & Bandwidth

THERE WAS A TIME WHEN COMPUTERS WERE SIMPLE …
THEN EVERYTHING CHANGED ...

2000’s – Virtual Machines

By mid-2000’s – The Cloud

A computer was no longer a computer …

And data started to disappear into the network …
AND CHANGED SOME MORE ...

2010's – Phones got Smart ...

And started to take over our daily lives ...

& became very, Sophisticated ...

Driving the cutting edge of real-time sensing & data analytics ...
EVERYTHING MOVED INTO THE CLOUD ...

2015+ – Data got BIG ...

& Speakers got Smart ...

Driving a new wave of Artificial Intelligence ...
AND ARTIFICIAL INTELLIGENCE TURNED DATA INTO GOLD
COMPANIES GOT FAT ON DATA....
THEN "PRIVACY" HIT THE FAN …
EUROPEAN SOCIAL RESPONSIBILITY (AKA. REGULATORS) FOUGHT BACK …

€4.3B fine
POINT #1 FROM TODAY’S TALK: THE NEW “AGE OF PRIVACY” HAS ARRIVED – GATHERING CENTRALIZED DATA JUST BECAME A FOOL’S ERAND

BUT TECHNOLOGY MARCHES ON ...

• Neural Accelerators are here ...

• Now you can analyze data where & when it is created ...

• At the Edge
THIS ISN’T THE END OF THE CLOUD …

• But it is an important ‘saddle point’ for ICT Technology
• This is Important because it enables “on-chip” Memory-Driven computing performed IN the Memory Fabric!
NOW POSSIBLE TO PROGRAM AI NETWORKS INTO SD CARD FOOTPRINT WITH 2 ORDERS OF MAGNITUDE LOWER ENERGY USE THAN GPUs …
POINT #2 FROM TODAY’S TALK: AI HAS STARTED TO MOVE TOWARDS THE EDGE OF THE NETWORK AND ABANDON THE CENTRALIZED CLOUD PARADIGM

WHAT IS INSIDE A CAMERA?

• & Why are they everywhere in new Consumer Technologies & Use Cases?
 • Smartphones
 • AR Headsets (user-facing cameras)
 • Driver Monitoring Systems
 • Smart-City Applications
 • IoT Devices (Security, Elderly Monitoring, etc)
DIGITAL CAMERA TECHNOLOGIES #1
BASICS – THE OPTICAL IMAGE PATH #1

• Multi-Element Lens
 • Typically at least 5-element
 • Telecentric (see reading #1)
 • Small Point-Spread Function (PSF)

• Anti-Aliasing Filter
 • Removes High-Frequency (Spatial) Artifacts

• Infrared Cutoff Filter
 • Silicon is sensitive to NIR
 • NIR focus is different to Visible

• Sensor
 • Bayer Color Filter Array (CFA)
 • Back-Illuminated
DIGITAL CAMERA SENSORS #2
BAYER IMAGE

• A Bayer array consists of alternating rows of red-green and green-blue filters.
• Notice how the Bayer array contains twice as many green as red or blue sensors.
• Each primary color does not receive an equal fraction of the total area because the human eye is more sensitive to green light than both red and blue light.
• Redundancy with green pixels produces an image which appears less noisy and has finer detail than could be accomplished if each color were treated equally.
 • Noise in the green channel is less than for the other two primary colors simply because there are twice as many pixels.
• Bayer’s technique is > 30 years old – clearly a robust engineering approximation!
To fully understand the complexity of what happens in a modern digital camera, we need to illustrate the concept of the image processing pipeline (IPP) – the sequence of digital manipulations of the original image data to get to the image that you see on the main camera screen.
DIGITAL IMAGE & COMPRESSION BASICS #6

COMPRESSION - JPEG #1

• **JPEG** is a commonly used method of lossy compression for digital images, particularly for those images produced by digital photography.

• The degree of compression can be adjusted, allowing a selectable tradeoff between storage size and image quality.
 - JPEG typically achieves 10:1 compression with little perceptible loss in image quality.

• **JPEG/Exif** is the most common image format used by digital cameras and other photographic image capture devices; along with JPEG/JFIF, it is the most common format for storing and transmitting photographic images on the World Wide Web.

• The term "JPEG" is an acronym for the **Joint Photographic Experts Group**, which created the standard.

• As the typical use of JPEG is a lossy compression method, which somewhat reduces the image fidelity, it should not be used in scenarios where the exact reproduction of the data is required (such as some scientific and medical imaging applications and certain technical image processing work).
DIGITAL IMAGE & COMPRESSION BASICS

COMPRESSION - JPEG #3

- **JPEG encoding example:** Although a JPEG file can be encoded in various ways, most commonly it is done with JFIF encoding. The encoding process consists of several steps:
 - **Color Space Transformation:** the representation of the colors in the image is converted from RGB to YCBCR. (This step is sometimes skipped.)
 - **Chroma Downsampling:** the resolution of the chroma data is reduced, usually by a factor of 2 or 3. This reflects the fact that the eye is less sensitive to fine color details than to fine brightness details.
 - **Block Splitting & DCT:** The image is split into blocks of 8x8 pixels, and on each block, each of the Y, CB, and CR data undergo a discrete cosine transform (DCT). A DCT is similar to a Fourier transform in the sense that it produces a form of **spatial frequency spectrum.**
 - **Quantization:** the amplitudes of frequency components are quantized - human vision system (HVS) is more sensitive to small variations in color or brightness over large areas than to high-frequency (edge) variations. Thus, the magnitudes of high-frequency components are stored with lower accuracy than low-frequency components.
 - The quality setting of the encoder affects to what extent the resolution of each frequency component is reduced. If a very low quality setting is used, the high-frequency components may be discarded altogether.
 - **Entropy Encoding:** The resulting data for all 8x8 blocks is further compressed with a lossless algorithm, a form of **Huffman encoding.**

- The decoding process reverses these steps, except the quantization because it is irreversible. Also, modern devices with larger image sensors may use 16x16 or larger DCT blocks.
 - A detailed example is given at: https://en.wikipedia.org/wiki/JPEG

The DCT transforms an 8x8 block of input values to a linear combination of these 64 patterns. The patterns are referred to as the 2D DCT basis functions, and the output values are transform coefficients. The horizontal index is u and the vertical index is v.
POINT #3 FROM TODAY’S TALK:
CAMERA TECH IS INCREDIBLY SOPHISTICATED, BUT TODAY IT IS A VERY LOW-COST SENSING COMMODITY!
THE NEXT GENERATION OF CAMERAS?

CONVOLUTIONAL NEURAL NETWORKS (CNNS) …
THIS IS A GOOD EXAMPLE OF WHAT I REFER TO AS “EDGE AI” …

“Edge AI”

“Mobile/Edge AI”

“Edge to Cloud AI”

Internet of Things

Mobile Devices

Fog Systems

The Cloud
IN FACT WE LIKE EDGE-AI SO MUCH WE BUILT A HANDHELD DEVICE TO SHOW WHAT IT IS CAPABLE OF …
POINT #4 FROM TODAY’S TALK: CHEAP CAMERA TECH + ARTIFICIAL INTELLIGENCE LEADS TO MANY NEW USE CASES & APPLICATIONS – HIGHLY DISRUPTIVE!

And this is just one example of AI disruption at the edge!
WHAT DOES THIS ALL MEAN FOR MEMORY TECHNOLOGY?

- The AI Chips themselves feature novel, memory-centric architectures
 - New design opportunities & challenges
 - Some architectures will become big winners and create new ‘memory standards’

- But, IMHO, this is the thin edge of the wedge for Memory Technology opportunities
AI HAS TO BE TRAINED!

• It needs a ton of data to get good results!
• And real-world data is complex and expensive to obtain ….

• Lets consider a simple example – suppose I want to obtain data to train a Driver Monitoring System (DMS) for an Automotive Manufacturer
 • At minimum the DMS will have:
 • (i) a facial pose estimator,
 • (ii) an eye-gaze tracker
DRIVER MONITORING SYSTEMS REQUIRED IN EU
FROM 2021
DATA WE NEED TO TRAIN EXAMPLE AI

• (i) Capture Video Data of Subjects Face (while driving)
• For each video frame we also need to measure:
 • (ii) Head distance from the camera; also eyes & other facial key-points
 • (iii) Head pose relative to the camera position
 • (iv) Direction of eye-gaze (two eyes)
 • (v) Lighting conditions (ambient & directional - e.g. sun, car headlights, etc)

• & Ideally we need data from 100s of subjects – variations in ethnic origin, gender, face & body sizes, glasses, facial hair, etc …
& WHAT HAPPENS WHEN, FOR EXAMPLE, THE CAMERA LOCATION CHANGES?

• A New Cabin design or Different Model Vehicle?

• Gather Data all over again?
 • 3-4 Engineers working for > 1 month with 100+ subjects, data acquisitions, post-processing

• [Industry team I work with carries datasets around on 10TB HDDs !!!!]
THE “NEW” SD CARD FOR AI ENGINEERS?
POINT #5 FROM TODAY’S TALK: GATHERING TRAINING DATASETS TAKES A LOT OF TIME, EXPERTISE, SUBJECTS AND IS VERY, VERY COSTLY!

>$100,000

BUT, THINKING TANGENTIALLY ….

VIRTUAL REALITY & ANIMATION TOOLS ARE NOW GOOD ENOUGH TO SIMULATE ‘REAL DATA’ …
ULTRA-REALISTIC FACIAL ANIMATIONS

https://youtu.be/TxErDzsIdKI

>$2.7B
FULL BODY CHARACTERS & ANIMATIONS
SOPHISTICATED FACE & EYE MODELS
COMPLEX 3D SCENES, ADJUSTABLE CAMERA FOV & HIGH QUALITY RENDERING ENGINES
MANY BENEFITS OF ‘FAKE DATA’…

• Provides a **more accurate** ground truth (depth, pose angle, object dimensions) than real data, and of as many 3D points as needed …

• Large numbers of **2D viewpoints** can be rendered from a single 3D scene …

• Camera **models, locations & paths** can be controlled and a 3D scene re-rendered with new cameras & locations

• Most **annotations can be automated** as part of the rendering process …

• Data is essentially **free of noise & blur** (but these can be simulated if needed) …
POINT #6 FROM TODAY’S TALK:
FAKE DATA IS BETTER, EASIER AND CHEAPER THAN REAL DATA
BUT THERE ARE SOME CHALLENGES!

- **Uncompressed Data Rates** for generated image frames
 - 16-bit uncompressed 1080p24 4:2:2 file will have the size =
 \[
 \frac{(1920 \times 1080 \times 16 \times 3 \times 1.05)}{(1024 \times 1024 \times 8)} = 12.46 \text{ MB per frame.}
 \]
 - The data rate for such a file = \(12.46 \times 24 \text{ fps} \times 0.667 = 200 \text{ MB/s}\)

- For a **Driver Monitoring System**:
 - 2 fixed camera viewpoints = 400 MB/s
 - + take into account additional data-elements – a 16 bit depth map adds another c.100 MB/s; other metadata (face & eye metadata; lighting info) might add another 30-50 MB/s so lets ballpark at 600 MB/s
 - + assume a 3 minute random head & eye-motion cycle, with **200 subjects** will generate a training dataset of \((600 \times 180 \times 500 \text{ MB}) = 22 \text{ TB dataset}\)
 - About **0.1 TB per subject** – data bandwidth challenges for Training System!
THE “NEW” SD CARD FOR AI ENGINEERS?
POINT #7 FROM TODAY’S TALK:

‘NEW’ STORAGE & DATA BW CHALLENGES FROM TRAINING WITH LARGE VOLUMES OF SYNTHETIC DATA

....

THIS IS STILL VERY MUCH A WORK IN PROGRESS!

?? ?? QUESTIONS ?? ??
SOME ARTICLES TO CONSIDER …

• Privacy, Smartphones & Internet of Things
 • P. Corcoran, “A privacy framework for the Internet of Things”, In Internet of Things (WF-IoT), 2016 IEEE 3rd World Forum on 2016 Dec 12 (pp. 13-18). IEEE.

• Biometrics & Personal Authentication
MORE ARTICLES TO CONSIDER …

• Mobile Edge, IoT & Edge-AI

• Deep Learning & Consumer Electronics use cases

AND EVEN MORE ARTICLES TO CONSIDER ...

• Deep Learning & Biometric use cases
 • Bazrafkan S, Thavalengal S, Corcoran P. An end to end deep neural network for iris segmentation in unconstrained scenarios. Neural Networks. 2018 Oct 1;106:79-95.