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Abstract

Modern smartphone cameras are equipped with multiple camera modules. These

modules are typically five millimetres in length limiting the focal length of the

lens. To preserve resolution the entrance pupil of these lenses are relatively large

compared to the focal length. Large apertures are subject to large amplitudes of

optical aberrations. These perturbations can only be compensated within a short

total track length by the use of high order polynomial surfaces. Fast lenses char-

acteristically have a shallow depth of field whereby a small region in object space

is adequately in-focus. This can be an undesirable effect for spatially-dependent

imaging applications such as biometric sensing and user authentication. A large

depth of field can reduce the need for mechanical refocusing and computation-

ally intensive focusing algorithms. Traditionally in photographic optics, reducing

pupil diameter directly results in an increased depth of field. However, due to res-

olution requirements the aperture cannot be stopped down. This thesis proposes

novel approaches to extending depth of field for fast miniaturised camera lenses

by employing optical design methods in whole or in major part. Utilising the lens

parameters to increase the usable depth of field offers low-cost solutions that can

possible replace voice coil motors and reduce the power consumption in camera

modules.
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Chapter 1

Introduction

1.1 Mobile Imaging Camera Modules

Modern smart devices are equipped with multiple camera modules to enhance

user security and imaging experiences. Compact camera modules are fast optical

systems comprised of four to six plastic moulded lens elements that are shaped

by high order aspheric surfaces. Lenses purposely designed for mobile device ap-

plications typically have F-numbers that range between of F/1.7 to F/2.7, having

large apertures relative to the focal length of the lens module. Low F-numbers

are desirable for photon collection to increase resolution and signal-to-noise ratio.

Not all effects of fast lenses are positive, reduction in the depth of field and an

increase of optical aberrations can be limiting consequences for these lenses. A

limited depth of field can be somewhat compensated with modified phase ele-

ments, tunable mechanical refocusing elements and digital image processing tech-

niques, which are discussed in Section 1.2. However, the growth in the number

of active camera modules per device requiring digital assistance is increasingly

computationally demanding. Therefore, new low-cost approaches are needed to

lower power consumption and to offer realistic solutions for the modern consumer

market.

Optical design for modern commercial imaging systems is not a trivial task.

Fast imaging systems such as those found in mobile devices are fundamentally

determined by the the thickness of the device. That is, the allowable module

design space between the front and back housing of the device in which the total

track length (TTL) for the lens is located, shown in Fig. 1.1. Most current mobile

devices allow between four to five millimetres for the TTL, although modest

increases in design space of one millimetre have been allocated in larger devices

of late. A large entrance pupil diameter is required to ensure that sufficient light
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TTL

AS

CCD

Figure 1.1: Traditional smartphone camera lens with labelled aperture stop (AS), total

track length (TTL) and detector. Re-optimised in Zemax from design presented in [1].

is collected to maximise resolution and signal-to-noise ratio. The limit to which

the diameter can be increased is related to the diffraction-limited image formed

by the lens. The minimum acceptable entrance pupil is based on the angular

resolution of the human eye. Therefore, the smallest acceptable pupil diameter

is two millimetres. The sampling theorem governs the minimum usable Airy

disk diameter from the detector pixel size. It can be deduced that the camera

module has two critical parameters for which the optical designer must work from,

the thickness of the device housing and detector pixel pitch. All remaining lens

parameters are designed in such a way to maximise the performance of the system.

One parameter that is determined by the spatial limitations of the lens module

is the aperture stop, which is positioned at the front vertex of the lens. Stop

position is a result of space restriction within the lens. The horizontal field of

view (FOV) of these camera lenses is on average 70◦ which yields large principal

ray angles with the detector. Detector manufacturers provide guidelines for the
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maximum principal ray angle for their product. Current complementary metal-

oxide-semiconductor (CMOS) detectors have a maximum acceptance principal

ray angle with a value of approximately 35◦. Ray angles that do not match the

guidelines are subject to cross-talk producing undesirable effects in the image.

The range of refractive indices for imaging optical polymers is ever increasing.

At the beginning of this project, the range of available optical plastics was limited

which restricted effective balancing of chromatic aberration in plastic-only lenses.

Colour correction often required a combination of glass and plastic elements. In

many cases, when chromatic aberration would be reduced sufficiently residual

effects were cleaned up by computational means. This is more successful with

lateral colour than axial colour. The advancement in the polymer industry can

now offer higher refractive indices through means of doping optical polymers.

In this chapter a brief introduction to the fundamental concepts in photo-

graphic optics is presented. A clear understanding of the background frames the

challenges and limitations associated with commercial camera modules and the

performance trade-offs required to increase the depth of field by optical means.

Fundamental Concepts of Photographic Optics

Diffraction is the fundamental limit of image forming optical systems. Circular

apertures are the most common aperture shape found in photographic optics. The

Fraunhofer diffraction pattern of a circular aperture with radius a is known as

the Airy pattern, which has a characteristic central intensity peak surrounded by

concentric rings of decreasing intensity with increasing radius. The intensity dis-

tribution at the Gaussian focus plane of a diffraction-limited lens with a uniformly

illuminated circular aperture is described by:

I(r) =

[
2J1(v)

v

]2

, (1.1)

where v = (2πar)/(λl′) is a dimensionless optical parameter, r =
√
x2 + y2 is the

image plane coordinate, l′ is the distance to the focus plane, λ is the illumination

wavelength and J1 is a Bessel function of the first order which mathematically

describes the spacing of the rings in the Airy pattern. The first zero point of the
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diffraction pattern occurs at v = 3.833. The radius of the first minimum can be

found by l′ ≈ f ′ for an infinitely conjugated object:

rAiry = 1.22λ
f ′

D
, (1.2)

where f ′ is the focal length of the lens, D is the EnP diameter and λ is the mean

wavelength, usually taken as 0.55µm. Rayleigh defined a criterion for resolution

which states that two closely located image points of equal intensity can be re-

solved if the central maximum of one Airy disk falls on the first zero of the other

[6]. This criterion is a limiting factor that determines the resolution of image

forming optical systems. For two incoherent object points the minimum separa-

tion distance for resolving the images individually is described by Eq. (1.2). It

is clear that the Airy disk size depends upon the lens parameters, focal length

and entrance pupil (EnP) diameter. It is assumed that the edge of the EnP co-

incides with the lens aperture. The ratio of the focal length to the diameter seen

in Eq.(1.2) is called the lens F-number and is commonly used in photography to

described the light collecting ability of the lens. For an object located at infinity,

the F-number of a lens is written as:

F# =
f ′

D
, (1.3)

where f ′ is the focal length of the lens and D is the diameter of the entrance

pupil [7]. Equation (1.3) indicates that for a constant focal length, an increase in

entrance pupil diameter forms an Airy disk with a reduced diameter on the image

plane. For finite conjugate imaging systems, the definition for the traditional

F-number in Eq. (1.3) no longer holds. The focal plane cannot be considered as

the image plane for an object that is positioned at a finite distance l in front of

the lens, therefore the back focal distance (BFD) denoted by l′ is substituted in

for the new image position. This relationship is known as the working F-number

given by:

FW# =
l′

D
. (1.4)

A lens is considered faster with decreasing F-number. Equations (1.3) and (1.4)

denote that for a small F-number the distance of the image plane from the lens ap-

proaches the diameter of the EnP. Adhering to mobile device housing restrictions,

the lenses found in mobile devices have a small F-number with values between
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F# = 1.7 to F# = 2.7 , having a short focal length and large diameter. In

contrast, an astronomical telescope has a much longer focal length which is im-

perative for aberration control and mounting restrictions. Astronomical imaging

instruments are known be slow systems with an F-number of usually at least

F# = 10.

u

v

(!/2, 0)(-!/2, 0)

pupilpupil overlap

Figure 1.2: Geometrical interpretation of autocorrelating the pupil function.

The performance of a photographic lens is quantified by measuring the spa-

tial frequencies transmitted by the lens. Input and output irradiance functions,

F (νx, νy) and G(νx, νy) respectively, of an optical system are related by the system

response function T (νx, νy) known as the optical transfer function (OTF):

G(νx, νy) = F (νx, νy) · T (νx, νy). (1.5)

The OTF is the normalised Fourier transform of the system impulse response

function, which is known as the intensity point spread function (PSF) h(x, y) in

optics. The OTF is defined as:

T (νx, νy) =

∞∫
−∞

∞∫
−∞

h(x, y)e−2πi(xνx+yνy)dxdy, (1.6)

5



Chapter 1. Introduction

where (νx, νy) are spatial frequencies, which have the relation νx = u
λf ′ and νy =

v
λf ′ with u and v being pupil coordinates. A measure of the OTF is obtained by

auto-correlating the pupil function of the optical system [8]. This can either be

carried out by Fourier transform methods or by direct calculation from a Duffieux

integral. A pupil with coordinates (u, v) can be described by the pupil function

[9]:

P(u, v) = P (u, v) exp(−ikW (u, v)), (1.7)

where P (u, v) is the amplitude variation over the pupil, k = 2π/λ, W (u, v) is the

wavefront variation [10]. The amplitude is assumed to be unity within the pupil

of diameter D and zero outside:

P (u, v) =

1, P ⊂ D

0, P 6⊂ D.
(1.8)

The OTF is then an integration over the common area of two sheared pupils

described by:

T (ν) =
1

A

∫ ∫
P

(
u+

ν

2
, v

)
P∗
(
u− ν

2
, v

)
dudv (1.9)

where A is the total pupil area and spatial frequency is denoted as ν. Equation

(1.9) can be expanded into the Duffieux integral which can be used for direct

calculation of the OTF:

T (νx, νy) =

∞∫
−∞

∞∫
−∞
P

(
u+ λfνx

2 , v +
λfνy

2

)
P∗
(
u− λfνx

2 , v − λfνy
2

)
dudv

∞∫
−∞

∞∫
−∞
|P(u, v)|2dudv

(1.10)

For diffraction limited systems, the aberration function is zero, and T (u, v) is

plotted as a continuous blue line in Fig. 1.3. For real optical systems, where the

aberration function has a non-zero value, a decrease in contrast is found, which

is represented with defocus by the coloured lines in Fig. 1.3. An optical system

is tolerable to a finite amplitude of residual aberrations without experiencing

detrimental effects. This is discussed in the next section.

The OTF is a complex function composed of two parts, the MTF and phase

transfer function (PTF) which are related to the OTF by:

T (νx, νy) = M(νx, νy)e
iP (νx,νy). (1.11)
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Figure 1.3: MTF for an F/2 paraxial lens with a non-obscured aperture in the presence

of defocus at W020 = 0λ (blue), W020 = 0.25λ (pink) and W020 = 0.5λ (yellow).

The MTF is the modulus of the OTF:

MTF (ν) = |T (ν)|, (1.12)

and is always normalised to be unity at zero spatial frequency. This normalisation

retains the contrast while eliminating the information about the absolute intensity

values. The MTF is the only component of the OTF that is discussed in this thesis

as it is a standard measure of the spatial frequency response of photographic

lenses. The frequency ν in Eq.(1.9) is normalised to have a value of ν = 2 for the

maximum resolvable spatial frequency. For a diffraction limited lens the MTF

falls to zero at a critical cut-off frequency νc = 1/(λF#), with units of lp/mm or

cy/mm. MTF fall-off is affected by the presence of optical aberrations. Figure

1.3 shows how the MTF curve is modified in the presence of defocus (W020).

The sensor is typically the most expensive component of a commercial camera

module. Therefore, the lens is designed to the specifications of the sensor. Ac-

cording to the sampling theorem, the maximum frequency that can be faithfully
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reconstructed is:

νN =
1

2δx
, (1.13)

where δx is the pixel pitch of the detector [9]. All frequencies below Nyquist (νN )

can be reconstructed while all frequencies above are aliased. Rearranging Eq.

(1.13) and substituting for νc, the minimum pixel pitch is:

δx =
f ′λ

2D
. (1.14)

In order to sample the PSF correctly, the resolution of the lens is considered from

Eq. (1.2). For a given Airy radius r, the minimum number of pixels to satisfy

the Nyquist sampling is r ≥ 2 pixels. Pixel size for these camera modules are

commonly 1.1µm, which is determined by the semiconductor industry. Though

advancements towards decreasing pixel size is ongoing with the current limit set

at 0.8 µm in sensors such as the Sony IMX586 CMOS.

Depth of Focus and Depth of Field

In a paraxial or perfect imaging system a point object forms a perfect point

image where the coordinate systems are proportional to one another. However,

this relationship does not extend to systems compromised by optical aberrations.

Wavefront deformations due to optical aberrations can generate image shifts and

cause changes to image spot geometry. Optical aberrations and their subsequent

effects are discussed further in Chapter 2.

A perfectly spherical wavefront located in the exit pupil of the optical system

focused by an ideal lens forms a rotationally symmetric diffraction-limited image

spot at the Gaussian image plane. A defocus-perturbed wavefront that departs

from the reference sphere in the exit pupil generates a change in the optical path

difference (OPD), which in turn causes a longitudinal shift of the image from the

ideal image plane by a distance ∆l′. For small amplitudes of defocus, the longi-

tudinal displacement of the image focus can be examined through considering a

change in the OPD between the reference sphere WR and a spherical wavefront

W020. The reference sphere has a radius of curvature R, and the spherical wave-

front in the presence of defocus has a radius of curvature of R020 at a distance ∆l′

from R. The OPD between the two wavefronts at a height h is OPD = [W020WR].
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ExP 

R020 

W020 

WR 

h 

OPD/n 

Uʹ 

lʹ ∆lʹ 

R 

P1 P2 

Figure 1.4: Longitudinal focus shift by ∆l′ caused by the departure of W020 from the

Gaussian reference sphere WR.

As the optical path is the geometrical path multiplied by the refractive index (RI)

n, the optical path length between P1 and P2 is:

OPD = nP1P2. (1.15)

The OPD can be described as the difference in sag between the two spherical

wavefronts written as δsag = z020 − zR, which is measured along the ray. The

sag of a sphere is described as h2/2R where h is the marginal ray height. The

difference in wavefront sag is expanded from Eq.(1.15):

OPD =
nh2

2R020
− nh2

2R
. (1.16)

Collecting the common variables, and substituting in R020 = R −∆l′, the OPD

is:

OPD =
nh2

2

(
1

R−∆l′
− 1

R

)
. (1.17)

Rearranging Eq.(1.17) yields the expression:

OPD =
nh2

2

∆l′

2R(R−∆l′)
. (1.18)

For ∆l′ � R and h2/R2 = sin2 U ′, then the OPD between wavefronts can be

expressed as:

OPD = −1

2
n sin2 U ′∆l′, (1.19)
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illustrated in Fig. 1.4. The calculation is made for a mean wavelength λ within

a given refractive index n for λ, and U ′ is the angle of the marginal ray incident

on the image plane. The marginal ray is used for calculations as the maximum

amount of aberration is induced at the edge of the pupil.

The Rayleigh criterion describes an optical system as being diffraction limited

provided that the peak to valley (P-V) wavefront error (WFE) is smaller than λ/4

and is referred to as the Rayleigh quarter wavelength rule, |WP−V | = λ/4. This

rule was originally derived to show that an increase in spherical aberration in the

P-V WFE in the exit pupil reduces the irradiance of the central peak of the Airy

disk by twenty percent, it can also serve as rough guideline for other aberrations,

such as defocus.

Equation (1.19) can be equated to a quarter wavelength to derive the max-

imum tolerable axial displacement of the image with respect to the ideal image

position:
λ0

4n
= −1

2
n sin2 U ′∆l′. (1.20)

Rearranging Eq.(1.20) and solving for ∆l′, the axial displacement of the image

point is:

∆l′ = − 2λ0

4n2 sin2 U ′
. (1.21)

The numerical aperture (NA) of an optical system is NA = n sinU ′ and the F-

number is therefore related by F# = n/(2NA). The refractive index is taken as

n = 1 for an image formed in air. Substituting in to Eq.(1.21), a simple expression

for depth of focus can be found:

∆l′ = ± 2λ0

(2NA)2
= 2λ0F#2. (1.22)

A simple substitution of variables ∆z = ∆l′ gives the conventional represen-

tation for depth of focus and is defined to be maximum axial shift of the detector

from the ideal image plane. That is, the maximum acceptable blur in the image

without noticeably degrading the sharpness of the image. The depth of focus can

also be geometrically estimated by the maximum acceptable blur diameter of the

image spot on the detector:

∆z = c′F#, (1.23)
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where c′ is the image sided circle of least confusion. The pixel size of the detector

will then determine the circle of least confusion. In a typical smartphone the

value of c′ is approximately one to two pixels in diameter.

PP

l l’

∆z ∆z
∆Z*∆Z�

C

D

Figure 1.5: Depth of field and depth of focus for a simple thin lens.

In many spatially dependent applications whereby the maximum axial region

from the object is required to be known, the DOF becomes an important parame-

ter. Just as the maximum allowable distance in image space is the depth of focus,

DOF is used when describing the allowable blur in object space [11]. The depth

of field can be defined as:

∆Z =
∆z

m̄
=

1

m̄

(
∆f ′

∆D

)
, (1.24)

where m̄ is the axial magnification, ∆f ′ is the variation in focal length and ∆D is

the variation in entrance pupil diameter. Here it is clear to see the dependency of

DOF on F-number, the importance of aperture diameter to be more exact. For a

constant focal length, DOF is inversely proportional to the entrance pupil diam-

eter. For large photographic lenses, such as those found in DSLR cameras, depth

of field can be extended or reduced by varying a mechanical iris within the lens.

The longitudinal magnification from image space to object space typically has a

value of m̄ � 1 in miniature cameras. For a small depth of field, the longitudi-

nal magnification can be approximated by the square of the lateral magnification

m̄ = m2, where:

m =
l′

l
=
f ′

l
, (1.25)
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and l is the object position. Combining Eq. (1.24) and Eq. (1.25), under the

condition l′ = f ′, the total depth of field is expressed as:

∆Z = ±2λ
l2

D2
. (1.26)

Equation (1.26) assumes that the depth of field is symmetric about the object

point similar to the depth of focus. However, this is not an accurate representation

of the ratio between near and far regions of focus about the point in the DOF.

The points in image space which mark the limits for the depth of focus are

conjugate to two object points which are the limiting points to the depth of

field. The symmetric expression for depth of focus given in Eq. (1.22) yields

an asymmetric expression for depth of field due to the difference in longitudinal

magnification. The near and far regions of the DOF are defined with respect to

the front vertex of the lens, as shown in Fig. 1.5.

When known, the circle of least confusion can also be use to calculate depth

of field [12; 13]. The hyperfocal distance H is the distance at which the lens must

be focused so that the depth of field extends to infinity. In the case of H � f ′ and

H = l, the image is acceptably sharp from H/2 to infinity [11; 12]. The diffraction

dependent hyperfocal distance is given by:

H =
f ′2

2λF#2
=
f ′2

∆z
, (1.27)

where f ′ is the focal length and F# is the lens F-number. Eq. (1.23) can be

substituted in to Eq. (1.27) in order to gain an approximation for the geometrical

hyperfocal distance as dependent on the acceptable blur diameter. For l � f ′,

the near and far regions can then be written separately:

Z∗ =
Hl

H + l − f ′
(1.28)

and

Z� =
Hl

H − l + f ′
, (1.29)

where Z∗ denotes the near DOF region and Z� is the far region. The sum of

(Z∗ + Z�)/2 is equal to the total DOF value of ∆Z found from Eq. (1.26). It is

important to note that for objects positioned in close proximity to the lens the

difference in near and far regions of the depth of field is negligible as their ratio
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approaches unity. The asymmetry in near and far regions of the depth of field

increases as the object approaches the hyperfocal distance.

For finite conjugate thin lenses an exact derivation for the asymmetric regions

of the DOF are derived in Chapter 3. This derivation is diffraction dependent

and also independent of the hyperfocal distance. Instead, the derivation uses the

diffraction depth of focus.

1.2 Methods to Extend Depth of Field

In classical terms, the depth of field and depth of focus can be increased or de-

creased by varying the diameter of the EnP as interpreted from Eq.(1.22). In

large photographic objective lenses, the DOF can be controlled by stopping down

the physical aperture therefore changing the F-number of the lens. Annular aper-

tures have proved beneficial for extending focal depth [14]. However, obstructing

the aperture significantly reduces the light throughput. A physical change to the

stop is not always feasible. A full aperture is needed for lenses with restricted

design space or resolution threshold. Physical lens movements and specific phase

elements aided by computational image reconstruction can provide alternative

methods to achieve an extended DOF. The following sections are divided into

EDOF methods including the use of phase masks, the physical movement of ele-

ments, and post-processing and computational image reconstruction, as shown in

Fig. 1.6.

1.2.1 Phase masks

Phase masks are employed in EDOF systems to introduce a known amount of

aberration whereby the scene is blurred evenly over a designated axial separation

in object space. A priori knowledge of the optical system aberrations allows for

an image of the scene to be reconstructed from intermediate images using the

PSF or OTF.

A well established method that utilises a combination of physical elements and

computational post-processing is a technique called wavefront coding. Wavefront

coding is the name given to modifying the phase of an incoherent wave by a mask
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Figure 1.6: Methods to extend depth of field covered in this chapter.

within the pupil of the optical system. The modified system is understood to

achieve near-diffraction limited performance over an extended depth of field. The

concept of wavefront coding was introduced by Cathey and Dowski [15]. In their

method, a phase mask is positioned in the pupil of the optical system producing

modified intermediate images. Here, an intermediate image refers to an image

requiring post-processing. The phase mask changes the phase through the optical

system which in turn modifies the PSF and OTF such that both are insensitive

to a change in focus. Post-processing by way of digital filtering is carried out on

the intermediate images delivering a near diffraction-limited performance over an

extended depth of field.

Extensions and variations to Cathey and Dowski’s method have given rise

to a wavefront coding research field. Such modifications have been developed to

include polychromatic imaging. A binary phase mask of annular rings that gener-

ate a π-phase shift for incoherent light was proposed initially for monochromatic

light [16]. In this method the phase mask was designed for a designated central

wavelength and optimised for a minimum contrast value. As a consequence of pri-

oritising a single wavelength, other wavelengths underwent different phase shifts

to the central. The out of focus criterion is described by the term ψ and defined

by the lens parameters as the maximum phase error of the spherical wavefront at

the boundary of a circular aperture of diameter D:
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ψ =
πR2

λ

(
1

z′
+

1

z
− 1

f ′

)
, (1.30)

where f ′ is the focal length of the lens, λ is the central wavelength, R is the

pupil radius, z and z′ are the object and image distances respectively. Wavelength

variations influence both the phase and defocus parameter as shown in Eq. (1.30).

Each wavelength produced different values for ψ. Chromatic effects noted by the

authors resulted in terming the first iteration as a monochromatic phase mask

(MPM). Addressing the variation in phase with wavelength, a modified phase

mask consisting of annular rings was designed to introduce a π-phase shift for

three selected wavelengths, called polychromatic composite masks (PCM) [17].

The PCM radii are optimised for a minimum cut-off frequency over the depth

of field for three sampled wavelengths in the visible region. An improvement

in MTF performance can be seen at 450 nm and 650 nm at the expense of the

performance at 550 nm. Two PCM elements of inverse profiles, one generating a

negative phase shift with positive dispersion and one positive phase shift with low

dispersion, placed together in the pupil can achieve almost constant phase shift

for the entire illumination bandwidth.

Pre-determined wavelength dependent phase shifts can be induced by a custom

designed RGB phase mask [18]. This approach is dependent on producing three

different responses for each colour band of RGB, such that all colour channels

are in focus for different regions in object space generating an extended depth of

field. Combining RGB phase masks with post-processing algorithms similar to

the work of Haim et. al. shows that the image scene can be restored using a blur

modelled as a piecewise-constant kernel, which is defined by a defocus parameter

determined from an object in the scene [19].

Milgrom et al. introduced an algorithm for designing imaging systems with

circular symmetry to extend the depth of field and produce high resolution images

using polychromatic incoherent illumination [20]. The authors address previous

attempts to extend the depth of field for monochromatic light [21], and introduce

a binary phase pupil mask that provides imaging at the highest cut-off spatial

frequency while delivering an extended depth of field with the highest attainable

contrast. The algorithm to select the best phase mask is designed to incorporate
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a cut-off frequency at three discrete wavelengths.

A phase mask shaped by general polynomials can increase the depth of field.

This particular type of phase mask is composed of a general polynomial with a

high number of odd orders and converges to a stable solution [22]. The mask is

optimised using an iteratively defined MTF target. The authors state that the

resulting phase profile is similar to a cubic phase mask, but closely resembles

an exponential mask. It has been shown to work for a microscope with central

wavelength λ = 470 nm. Employing this approach for a slow optical system such

as a microscope offers an extension in the achievable depth of field by a factor of

ten.

Non-rotationally symmetric phase masks offer an extension in DOF up to five

times across the field of view. Dong-mei Zho et al. employed a cubic phase plate

to increase the depth of field of an integral imaging system, such as light field

cameras [23]. It was proposed that a non-rotationally symmetric cubic phase

plate placed in the pupil of each micro-lens in an array can enlarge the depth of

field. This approach may increase depth of field but the imaging characteristics

of the integral imaging system with the phase plate has not been analysed. With

the increase of the defocus, a small variation in the MTF is shown over the

extended depth of field and does not appear to have a zero point. The DOF of

the microlens unit was shown to increase five times, ranging from 80 mm to 200

mm, when compared to a system of similar optical system parameters.

Tolerancing of optical elements is a central step in the design process and

dictates the maximum errors tolerable by the system. Larivière-Bastien et. al.

examined the tolerances of a cubic phase mask together with residual primary

aberrations [24]. From this study, it was recommend that the residual aberra-

tions of a hybrid system containing a cubic phase mask have a maximum of 1λ

of primary spherical aberration, coma and astigmatism while maintaining field

curvature below 1λ. The effect of system residual higher order aberrations has

yet to be examined.

The use of multiple phase masks produce promising DOF extension. A pair

of hyperbolic phase masks have been shown to decrease focus sensitivity and

increase the area under the MTF [25]. A single hyperbolic mask acting as a

spatial filter, together with a sub-Gaussian apodizer, can reduce the sensitivity
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to defocus and reduce artefact noise while attaining a high area under the MTF

curve. Ledesma showed that a pair of hyperbolic phase masks with thickness of

λ/2 can be mechanically shifted using the Lohmann-Alvarez method, which can

alter the depth of field while retaining a full aperture. The authors note that the

light throughput is decreased by half using a pair of masks.

End-to-end design and experimental validation of an extended depth-of-field

high definition camera with an f-number of F/1.2 over the visible spectrum was

developed by Burcklen et. al for the visible and near infrared (NIR) bands [26].

The depth of field was increased by combining a six-ring pyramidal phase mask

in the aperture of the lens with digital deconvolution. The phase mask and de-

convolution algorithm were optimised together to achieve maximum performance

over the EDOF range. Real-time deconvolution were carried out on an FPGA

that requires a relatively low power consumption of 600mW compared to the 5W

power consumption of the camera used in the experiment. A 2.5x extension in

DOF was achieved.

Pupil aberrations have inspired custom non-rotationally symmetric phase el-

ements. Positioning such elements in the pupil yields a direct modification of

the wave aberration. Phase plates shaped with trefoil have shown to be advan-

tageous in EDOF imaging systems for inducing spherical aberration and trefoil

in monochromatic imaging. Chromatic aberration limits the benefit of such ele-

ments. Optimisation of trefoil phase plates can improve the performance of the

element design for colour wavefront coding [27]. PMMA is chosen for the phase

plate material which is responsible for inducing the optimal amount of spherical

aberration and and chromatic aberration. In polychromatic imaging the effective

depth of focus is limited by the shallow depth of focus for the shortest wave-

length. It is necessary for the RGB depths of focus to overlap. Optimisation of

a phase mask which extends the depth of focus is carried out by adding a fourth

order polynomial to the plate shape. To simulate colour images, the intermediate

blurred images are convolved with the PSF’s for each channel at the correspond-

ing image plane. The images are then deconvolved with a Wiener filter to show

the performance of the corrected mask.
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1.2.2 Optimisation methods using optical aberrations

A known amplitude of pupil aberrations can be used to minimise the search for a

global minimum in optimisation routines. A combination of superimposed Zernike

polynomial terms can generate a custom phase mask to be placed in the pupil of an

optical imaging system [28]. A combination of aberrations chosen for the mask

include Zernike aberration terms primary coma and trefoil, Z7, Z8, Z9 and Z10

according to Mahajan notation [6]. The approach was numerical for a quasi-point

source for λ = 550 nm in a microscope, the mean value of the visible spectrum.

The proposed method allowed for an increase in the depth of field over a large

bandwidth when simulated, even for off-axis objects.

The use of intrinsic aberrations in the lens can create a spatially invariant

PSF without the need of a phase mask [29]. Bergkoetter and Bentley showed that

a three element lens can be optimised to produce a similar effect to wavefront

coding. A Cooke triplet was optimised in the presence of a comatic phase mask

of opposite sign than desired for application. After optimisation the mask was

removed and the depth of field was shown to be twice that of the starting design.

Originating in ophthalmic optics [30], spherical aberration can be used for

EDOF. Mezouari and Harvey combined spherical aberration and defocus terms in

a radially symmetric phase mask [31]. From this, Mouroulis showed that spherical

aberration can be induced within a microscope lens and demonstrated to extend

the depth of field while retaining resolution within half the maximum diffraction-

limited spatial frequency [32]. An extension in depth of field equivalent to ±0.88λ

in terms of wavefront error was proven, showing comparable results without using

phase elements. The lens is also achromatic over the visible band.

A compound system of lenslets was designed to simulate the eye as an imaging

system. A spherical array of lenslets with deconvolution post-processing was

shown to be capable of extending the depth of field and the field of view [33]. The

spherical superposition compound-eye optics captures an optically superposed

image of an object with different focusing distances and optical axes using a

spherical array of erect imaging optics. Due to the three dimensionally space-

invariant PSFs, deconvolution can be used to reproduce the image with a single

filter from the simple captured image.
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Utilising optical aberrations has been proposed for EDOF photographic optics

[34]. Tang et al. discuss the value of using the PSFs to preserve the frequency

content in the presence of defocus. Aberrated PSFs can consist of sharp edges

that vary spatially with increasing anisotropicity with departure from the centre

of the image. Therefore, defocus also varies spatially, where uneven high spatial

frequency losses are observed in some directions. The authors use off-the-shelf

photographic lenses to capture wide aperture images from short exposures. The

depth of field is then extended by restoring the image blur using single lens cali-

bration PSFs. Exploiting the aberrations from each object position the scene can

be recreated.

For large object distances aberrations can be included in the design process

while retaining a wide aperture diameter. A new design method was developed

for a large depth of field lens with a large aperture diameter [35]. The lens has

an F-number of 0.75, of focal length 58 mm and operates in the visible region.

The depth of field of their lens ranges from 50 m to 3000 m, effectively extending

to infinity. Raytracing through the system mimics the effect of wavefront coding,

where the combined element aberrations simulate the effect of a phase mask. In

this work the aberrations are optimised for aberration modulation. Experimental

results show a larger signal-to-noise ratio on the image plane and the MTF plots

are consistent over the EDOF region.

A central obscuration in the aperture is understood to assist in extending the

depth of field of imaging systems. Obscuring the aperture is not ideal for low

light applications. Chu et al. designed a glass plate whose thickness varies with

annular zone [36]. This pupil partitioning of a conventional camera lens induces

an unbalanced OPD through the optical system. Experimental evidence shows

the relative invariance to the PSF to a change in object position. It is noted that

a loss of contrast is observed from the partitioned element.

1.2.3 Hybrid methods using polarisation and scatter-

ing

Exploiting polarisation allows for non-conventional EDOF techniques. Chi et al.

uses polarisation to extend the depth of field [37]. Polarisation states can be
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modified at the aperture of an optical system to achieve greater image quality.

In Chi’s method a configuration is described, where the polarisation is rotated by

90◦ for a portion of the aperture and kept the same for the remaining aperture,

where the PSF is a combination of the circular aperture and ring aperture PSFs.

There is no interference between polarisations in orthogonal directions, and so this

‘coded aperture’ is comparable to the addition of two singular apertures. This

principle can be applied for unpolarised and linearly polarised light. Using this

approach of coded aperture with polarisation the extended depth of field imaging

of a diffraction limited lens can be achieved without completely sacrificing detector

light intensity. This is especially advantageous for low light level imaging.

The field of microscopy has been known to successfully use this extended depth

of field for difficult imaging purposes. Chromatic aberration has been used to dis-

sect images as a function of depth [38]. A system with strong chromatic aberration

disperses light into tissue and enables volumetric imaging for non transparent tis-

sues.

The scattering properties of an optical element in the pupil can offer an al-

ternative to amplitude and phase variations. Cossairt et al. employ a diffuser

element to the lens pupil [39]. Diffusers, like phase plates are relatively non-

absorbtive and preserve intensity. The authors formulate diffusion as a kernel

which is applied to a light field. This kernel guides the design of the diffuser

which produces a depth-invariant PSF. The theory was tested using a Canon 450

D sensor and 50 mm f/1.8 Canon lens with deblurring algorithms.

Birefringent lenses produce effects that can alter DOF [40] [41]. A birefringent

lens positioned between two linear polarisers has the ability to preserve Strehl

ratio across a depth of focus [42]. In the case that the crystal optic axis of the

birefringent material is perpendicular to the principle axis of the lens, the optical

system behaves as a bifocus lens with proper orientation of the polarisers. Varying

the birefringent lens parameters can alter the separation between the foci [40],

where both foci are shifted equally on both sides from the Gaussian image plane.

The Sparrow criterion of resolution is employed for finding the optimum separation

of the two foci, the first and second derivatives of the combined intensity pattern

disappear such that there exists no curvature between the two point intensity

distributions [43]. Fulfilling this condition, the Strehl ratio versus defocus remains
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constant over a wider region than a conventional lens with an identical PSF (IPSF)

with a constant Strehl ratio.

1.2.4 Dedicated optical elements

Physical movement of optical elements within an optical system can facilitate an

increase in the usable depth of field. Such mechanical modifications can refocus

the optical system for direct imaging or assist in capturing multiple images with

varying depths in a scene to be computationally fused post-capture.

The simplest physical modification that one can employ to extend the depth

of field, or refocus an imaging system is to introduce a solid plate element with a

refractive index n1 6= n0, where n0 is the medium surrounding the optical system.

For most imaging systems n0 is air and has a value of 1. Wang et al. presented

a simple solution to extend the depth of field of an imaging microscope with a

series of glass plate elements of various thicknesses [44]. A shift in focus is directly

proportional to the thickness of the plate introduced, shown in Fig. 1.7. Eleven

plates with thickness increasing in increments of 1 mm are mounted on a rotary

disk. Twelve images are captured of a test target, one with each plate and one

image without any plate. The EDOF image is generated by computationally

combining the captured images.

Electronically controlled tunable lenses are commonly incorporated into op-

tical systems to reposition the image plane. Electrically tunable focusing liquid

crystal (LC) lens shows promise in increasing the DOF of an endoscope [45]. The

LC lens can be tuned to be a positive or negative lens by altering the spatial

distribution of the effective refractive indices and thereby effectively imaging dif-

ferent objects from various distances onto the detector. This increase in depth

of field can also positively affect the spatial depth perception of the scene. Chen

and Lin designed an endoscopic system which is optimised for effective aberration

correction consisting of a polariser, an LC lens and an imaging lens module. For

three separate discrete lens powers of the LC lens, the total depth of field of the

endoscopic system ranges from 76.4 mm to 12.4 mm maintaining an acceptable

contrast. The experiments show that depth of field is doubled compared to a

standard optical setup.
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Figure 1.7: Shift of focus by parallel glass plate where the longitudinal shift is determined

by the thickness of the glass plate ∆f = t(n′−1
n′ ).

The advantage of LC lenses over liquid lenses is that the aperture diameter is

not limited by the surface tension at a liquid-liquid interface found in liquid lenses.

This characteristic is ideal for low-light applications and fast optical systems such

as mobile phone cameras. Galstian et al. exploit the potential of tunable LC lenses

for motion-free autofocus for mobile phone applications [46]. The tunable LC lens

is positioned at the aperture stop with diameter up to 2 mm. The compound lens

module shows an improvement in spherical aberration by a factor of two and

maintaining an acceptable image quality for near object distances at 10 cm. The

authors highlight the low-cost manufacturing of maximum 0.05 US dollars, which

is desirable for integrating an autofocus solution into cameras dedicated to the

consumer market.

Liquid crystal multi-lens arrays (LCMLA)s have been shown to aid EDOF by

making wavefront measurements [47]. Two LCMLAs are each divided into 2x2

sub-regions and stacked. The layered LCMLAs allow for two objects to be imaged

at different depths within the same scene by applying different voltage signals to

each area. The EDOF scene is therefore reconstructed by stitching the clearest

sub-images with the sub-region composite wavefront.

An alternative to mechanical movement is to apply heat across the optical

elements to increase the depth of field [48]. Sheil utilises plastics characteristic of
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low thermal conductivity to show that defocus can be introduced by heating an

optical element. A plastic F/2 gradient index (GRIN) plate with a fixed focus is

chosen as the high thermal resistance of plastics are desirable. Heating the plate

to 50◦C for 0.4 s yields visible improvement of the consistency of the MTF for the

object distances nearest to the plate. The author addresses that this approach

is not intended for rapid refocusing but rather as a low-cost solution for high

accuracy tuning.

In cases where mechanical movement is not desirable or feasible, the optical

system can be designed to include designated elements intended for a particular

application. Such elements may trade spatial parameters such as field of view

to achieve a more acceptable DOF. One approach to extend the focal segment

of an optical system is to introduce a refracting axicon into the optical system

[49]. This utilises the traditional sense of the refractive axicon, where the EDOF

effect is required along the optical axis. The authors place an axicon before

the CCD, with the planar side faced toward the object and apex positioned on

the optical axis pointed to the CCD plane. It can be shown that for an object

moving longitudinally along the optical axis, all rays that emerge from the lens

are optimally refracted toward the CCD by a finite incident ray height on the

axicon which is determined by the object position. This is only true for a selected

range of object distances, where the image contrast is preferable at larger object

distances. A variation in object position generates a change in the structure of

the PSF across the image, which in turn causes an undesirable loss of contrast

in these regions. Weiner filtering is employed to increase spatial resolution of the

image in these regions.

A split pixel method uses a single microlens array positioned in front of a

single detector [50] . The microlens array is designed in two halves, one having a

longer focal length than the other. The first half acts as a traditional plenoptic

camera where 50% is transmitted through the first beamsplitter angled at 45◦

and the remaining 50% reflected to the second 45◦ beamsplitter on the other half

of the sensor. The second beamsplitter is purely reflective. The aperture of the

system matches only half the sensor size. Objects located at a near object position

will fall in focus on the second microlens array with a blurred image produced by

the first microlens array. Objects positioned further away are in focus on the first
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microlens array and blurred on the second microlens array. The image is taken

from the sharp pixels and one array compensates for the loss of resolution in the

other.

Digital image restoration can be an undesirable requirement in real-time imag-

ing systems or high-speed imaging systems. Therefore, an optical solution that is

free from post-processing would be beneficial in such imaging applications. Ben-

Eliezer et al. propose an all-optical imaging system consisting of a combination of

sixteen Fresnel lenses, that are spatially multiplexed and mutually exclusive [21].

The optical system is designed such that each Fresnel lens works with the the pri-

mary imaging lens to produce a sharp image for a given object distance. Summing

the effect of all the Fresnel lenses the DOF can be extended. The authors state

that the resulting image has a reduced resolution whereby no post-processing was

applied to the captured images. However, the image remains sharper than an

image from a clear aperture imaging system of comparable pupil size. The design

is limited in imaging by the use of a single wavelength but is sufficient for the

application of a barcode reader.

Alvarez lenses are a well established system consisting of a pair of optical ele-

ments used for adjustable focus in ophthalmic optics. The combination of lenses

provide a variation in optical power with lateral shift with one lens with respect

to the other [51]. Ojeda-Castañeda et al. induced defocus into a photographic

optical system with an Alvarez-Lohmann element pair [52]. The Lohmann lenses

come from the invention of an alternative lens pair with a cubic profile that was

aimed at zoom lens systems rather than defocus [53]. The variable focus lens is

used to compensate for the focus error of imaging objects beyond the standard

depth of field of the optical system. The proposed technique preserves the full

aperture maintaining a constant intensity and does not affect the lateral magnifi-

cation of the optical system. Multiple images capture the scene with varying levels

of defocus and are superimposed to generate the EDOF image. An Alvarez-based

diffractive optical element (DOE) was developed to accommodate high speed re-

focusing with the use of a galvo-mirror [54]. The diffractive Alvarez element is

divided into sub-elements, whereby a given combination of the sub-elements gen-

erates a change in optical power. The galvo-mirror images one subsection onto

another in a 4−f configuration, where the combination is then imaged by a CCD.
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This approach avoids the traditional lateral displacement of the elements while

offering an optical power variation of ±50D.

Zhou et al. demonstrate the advantage of laterally translating a phase mask

in the pupil of the optical system to introduce defocus [55]. The authors relate

the lateral shift in cubic phase mask to the induced system defocus such that a

defocus map can be generated. The theoretical proposition is realised with an

F/4 cubic phase mask coded lens where the acceptable defocus range lies between

±4λ, whereby the images are reconstructed after capture. This approach claims

to avoid errors that typically arise in directly shifting the ideal image plane.

Although lateral translations of the masks gives rise to distortion and edge effects.

1.2.5 Computational methods

Computational enhancement of consumer imaging is increasingly attractive as it

can provide a low-cost solution which can be improved incrementally with few or

no modifications to the optical system. Post-processing algorithms are discussed

in this section where the digital reconstruction approaches are featured as the

main theme. Most approaches to computational EDOF are facilitated by some

form of spatial adjustment, and only mentioned where necessary.

The DOF is often limited by the optical system. Even in systems with large

F-numbers, where the ratio of the diameter to the focal length has a large value

(e.g. F# ≥ 10), optical aberrations can limit the usable DOF. Computational

algorithms can assist in minimising some of these limitations.

Focal sweep is a technique in which the focal plane is translated during through

the image exposure. Employing such a method of image capture produces a space-

invariant PSF that also is quasi depth-invariant [56]. This PSF is then used to

deconvolve the image to achieve an increased depth of field without sacrificing the

signal to noise ratio. Catadioptric imaging systems are known to have residual

astigmatism and field curvature which causes a spatially varying blur in the im-

age. For a single spherical mirror and an single-lens reflex (SLR) F/2.8, 50 mm

lens combination, it is observed that the shape of the IPSFs are almost depth in-

dependent although spatially varying as the focal plane is shifted along the optical

axis [57]. The range in which focal sweep is applied is limited to the preservation
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of high frequencies and limiting image artefacts that arise from deconvolution.

Yokoya et al. determine the optimal sweep range from the amount of astigma-

tism tolerated by the optical system. A feasibility study of the proposed theory

showed that if the image sensor is translated over a distance of 0.69 mm, the

spherical mirror-lens combination has a usable DOF retaining a sharp image from

0.3 m to 10 m when deconvolved with the IPSF. This approach has also been

demonstrated on a parabolic mirror and for an off-axis parabolic mirror.

Cossairt et al. employed a chromatic inspired focal sweep and is termed by the

authors as Spectral Focal Sweep (SFS) [58]. A doublet lens was used for SFS where

the parameters were optimised to generate a large amplitude of axial chromatic

aberration and minimise other residual aberrations. Optimisation generates a

range of discrete focus positions for consecutive wavelengths where the PSF of

the SFS camera is the continuous sum of concentric disks scaled as a function of

wavelengths. For fifty sampled wavelengths, the authors simulate a PSF for twelve

depth locations, where the range is chosen so that the magnitude of spot defocus

of the center wavelength is the same as the maximum chromatic defocus. The

image is then deconvolved using a Weiner filter. While the study shows promise

for both greyscale images and colour imaging, it is documented that artefacts are

introduced to the reconstructed image when applied to narrowband spectra.

Axial chromatic aberration assisted EDOF has been applied to fields such as

microscopy and commercial imaging. DxO (DxO, France) proposed a technique

of colour transportation to extend the DOF across colour channels [59]. This

approach appears to increase the longitudinal chromatic aberration such that for

a given object distance, at least one colour plane of the RGB image lies in-focus.

The lens is designed in such a way that the red image is in focus for objects at

infinity, green image for intermediate distances, and blue is sharp for close objects.

A sharpness comparison across colours can give a relative estimation of the object

distance and can allow for correct choice of digital filters with the information

received from the object distance. The processing steps include estimating the

depth map. The depth map guides the image filtering, where the regions of blur in

one image is compensated by copying the high frequencies from the sharpest image

to the others. Following the sharpness-transportation step, all the images have a

comparable MTF, which in turn resembles the MTF of the lens at the optimal
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focus. Restoration algorithms can be applied to improve the MTF further and

filters to remove noise, but is not necessary.

A combination of image exposures and focus distances provides more infor-

mation to faithfully recreate a scene with a large DOF and high dynamic range.

Qian and Gunturk combine focus stacking and high dynamic range (HDR) imag-

ing to produce an extended depth of field and dynamic range from a set of images

with a range of various exposures over a variation of focus positions [60]. The

focus stacking procedure is independent of exposure value. The process follows a

pixel by pixel weight calculation for photometric and spatial registration. Focus

stacking is then applied to images of different exposure levels. A standard HDR

creation algorithm is used to generate a focused image with an accurate exposure

with respect to the reference image.

Stereo imaging has become increasingly popular in mobile devices. The low

cost sensors found in these devices can be used to generate EDOF effects in a

smartphone [61]. Image pairs are captured by two adjacent cameras conjugated

to different object positions. The images can then be combined to obtain low-

resolution disparity maps, that is the pixel difference between the two stereo

images. The map is then upsampled and combined with the raw image to create

light fields.

Developments in the area of image reconstruction constantly improve the sup-

pression of artefacts that arise as a consequence of subtle variations in PSF caused

by defocus. Complimentary kernel matching is a technique proposed by Zammit

et al. based on capturing two images with different phase masks that respond

differently to defocus thus producing complimentary PSFs [62]. Complimentary

kernel matching restores the images by deconvolution using the PSFs correspond-

ing to a uniform defocus and spatially varying defocus which creates a disparity

map between the images. Both simulation and experimental results are in agree-

ment for producing artefact free imaging even in the case of large amounts of

defocus.

The depth of field can be extended using both amplitude and phase modula-

tion of the pupil function [63]. Bagheri et al. found that amplitude modulation

is best suited to extending the total or traditional depth of field, while phase

modulation is more suited to partially extending the DOF. The methodology
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uses a combination of an annular aperture for amplitude modulation and the

cubic, fourth and fifth order for phase modulation. A combination of the two

modulations did not increase the MTF, however phase modulation alone made

it possible. Amplitude modulation performs well when a small increase in DOF

is required, generally 1 wave of defocus, and preserves spatial frequency in all

directions. Alternatively, phase modulation performs well when a large increase

in DOF is needed (few waves of defocus) and preserves spatial frequency on some

line segments, referred to as extending the partial DOF.

Focus stacking is heavily dependent on capturing a stabilised sequence of

images. Zhang developed a novel method which uses focus stacking in a hand held

device despite changes in position and focus [64]. Hand held cameras are difficult

to stabilise and therefore traditional focus stacking cannot be used. For a stack

of images captured over a variation of focus positions, the inertial measurement

unit of the phone can be used to select suitable images for combination. Images

aligned in such a way that pixels in focus at a certain object position can be fused.

An improvement in global sharpness is seen when comparing to other image fusing

methods.

Neural networks are becoming increasingly popular in image registration and

computational imaging. Elmalem et al. proposed applying deep learning to train

the imaging system to restore phase mask coded images to achieve an extended

DOF [65]. The phase element is encoded to induce axial chromatic aberration,

which creates defocus in each image yielding a variation in depth. Traditionally,

the phase element is designed first, and then the image is restored. Here, the

design of the phase mask is incorporated in the training of the convoluted neural

network. This is realised by using the parameters, radii and phase, of the mask

as weights for the neural network. In doing so, a comprehensive system design is

achieved. The authors discuss the ease of introducing such an approach to existing

lens systems, while showing an improvement in reconstructed image sharpness and

a tenfold reduction in runtime compared to previous phase modulated approaches.

Combining a stack of images for EDOF is well-established in the field of post-

processing. However, a single image captured at maximum aperture has been

shown to yield EDOF with high resolution. A complex amplitude mask can

be applied during pre-processing, which eliminates the requirement to capture
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a stack of images [66]. The mask consists of a cubic-phase mask and Gaussian

amplitude filter, which helps to reduce the system sensitivity to focus errors, as

the Gaussian amplitude filter decreases the MTF oscillations induced by the cubic

phase mask. The combination of filters shows a reduction in the modulation of

the system, amount of light collected, therefore post-processing is recommended.

A field programmable gate array (FPGA) was used to demonstrate the feasibility

of this EDOF approach. The experimental study illustrated the susceptibility of

the system to noise-contamination, which in turn can affect the post-processing

stage. Although contamination may be reduced by the promise of this approach

to be adjusted for other implementation platforms.

Edge blur is a concern when reconstructing images in computationally assisted

EDOF imaging techniques. A technique posed by Piao et al. use multi-focus

elemental imaging to capture images from different perspectives over a range of

focal lengths to create an all-in focus image [67]. The spatially varying images

are geometrically aligned so that the objects are exactly overlapping in the scene.

The EDOF image is then formed by fusing the aligned images.

1.3 Thesis Motivation

Section 1.2 gives an overview of the field of EDOF imaging to the best of the

author’s knowledge. Currently, processes such as zoom and refocusing are car-

ried out computationally in mobile devices. These implementations are usually

cost-beneficial and easy to implement. When considering a single camera, digital

alternatives to zoom and refocus are not computationally intensive. However,

with the increased number of cameras and sensors embedded in mobile devices

the computational power to facilitate all processes can overload the device thus

slowing its operation. From an optical perspective, these digital substitutions for

zoom and refocus are undesirable as the image quality is reduced along with a de-

creased signal-to-noise ratio. As fore-mentioned, these miniature camera modules

are fitted with a voice coil motor (VCM), which adds cost to the manufacturing

and production. This cost is not desirable for multiple imaging modules.

Design restrictions in producing these modern commercial imaging systems
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suggests that new approaches are needed to optically address the limitations re-

lieving computational power and lowering the module cost.

The aim of this thesis is to develop methods of extending the depth of field

using optical design in whole or in major part. By doing so, optical design can

lead to a cost-effective solution for multiple camera module devices while also

lowering the power consumption of the device.

1.4 Thesis Outline

The content of this thesis is presented in the following layout:

• Chapter 2 provides an introduction to optical aberrations and aberration

balancing. The foundations of aberration theory are discussed whereby

the reader can gain an understanding of the underlying principles of the

methodologies used in the following chapters.

• Chapter 3 is based on the concept that dual-flash illumination can be

utilised to extend the depth of field in a simple plano-convex singlet lens.

An analytical method is introduced for designing a dual-wavelength imaging

system where the criteria and limitations are clearly evaluated.

• Chapter 4 addresses the challenge of imaging two irises over an extended

depth of field. The design is based upon the principle that the irises are

always positioned off-axis, only varying in field angle with object distance

from the lens. Sacrificing the central field offers an increase in usable field

of view, that is where the MTF for the fine details of the iris remains about

the pre-fixed spatial frequency criterion. The key element in this design

is an optical plate whose thickness profile displaces all image points to a

region within the CCD depth of focus.

• Chapter 5 introduces a novel smartphone lens element. The element is

a standard rotationally-symmetric widefield lens. The novelty lies in the

location of the lens within the device housing. The proposed design uses

the corner of the device to anchor the front element. This lens orientation
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does not limit the TTL of the lens by device thickness. EDOF can then be

achieved by vignetting the field and including a small refocusing mechanism.

• Chapter 6 discusses the conclusions of the project and summarises the

contribution of the author to the field of optical design and suggests possible

future work.
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Chapter 2

Optical Aberrations

2.1 Introduction to Aberrations

An optical system is considered to be ideal if all rays originating from any object

point P on the ξ− η plane converge to one point P ′ in the ξ′− η′ plane satisfying

Fermat’s principle. This condition states that light travelling from point P to P ′

takes a stationary path. A minimum optical path is an example of a stationary

path and is described as the time taken for light to travel from P to P ′:

t(PP ′) =
1

c

P ′∫
P

ndl, (2.1)

where n is the RI of a homogeneous medium and dl is the geometrical path length

along all line elements of the ray [68; 69]. The integral in Eq. (2.1) is known as the

optical path. The coordinates of point P and P ′ are proportional to one another

under ideal imaging conditions.

# #′
$ $′

W

z
P P′

Figure 2.1: Principle of ideal imaging using both rays and wavefronts.

Wavefronts are surfaces of equal time from the point object, denoted by W in
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Chapter 2. Optical Aberrations

Fig. 2.1. Rays are constructs that are perpendicular to wavefronts and are used

in geometrical optics to trace light through the optical system.

Paraxial optics refers to an approximation valid in a narrow region with small

ray heights relative to the optical axis, where the ray angle is assumed to be i ∼= 0,

shown in Fig. 2.2. In the paraxial region the optical system performs under ideal

imaging conditions. Due to the small angle approximation, Snell’s Law can be

simplified to ni = n′i′ for rays propagating close to the optical axis. Outside this

region the non-linearity of sine arises with the increase of angle i described by a

Taylor expansion series [11; 70]:

sin i = i− i3

6
+

i5

120
. . . , (2.2)

where i is plotted in radians shown in Fig. 2.2. Paraxial approximations

do not faithfully represent the ray path through an optical system. To do so,

finite ray heights must be considered, where optimal performance is governed by

aberration theory.
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Figure 2.2: Non-linearity of sine with small positive values for i as described by Eq. (2.2).

The term aberration refers to optical effects in optical systems, that prevents

attaining perfect imaging. There are many approaches of describing optical aber-

rations, which include wavefront perturbations, angular ray aberrations, trans-
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2.2. Wave Aberrations and the Aberration Function

verse ray aberrations and longitudinal ray aberrations. Sections 2.2 and 2.3 intro-

duce the monochromatic aberrations through wave and geometrical approaches.

Traditionally monochromatic optical aberrations are classed in families; namely

spherical aberration, coma, astigmatism, distortion and field curvature where the

emphasis of discussion is on the primary aberrations with a brief mention of higher

orders. Chromatic aberrations are discussed separately in Section 2.5. This is sim-

ply because of their wavelength dependency. Chromatic aberrations are second

order wave aberrations, but are often grouped with fourth order monochromatic

aberrations as they have similar magnitude. It is important to note that all aber-

rations experience chromatic effects although the magnitude is often negligible

compared to their monochromatic effects.

The art of optical design is effective aberration balancing to achieve the de-

sirable imaging quality. Balancing aberrations refers to minimising the variance

or rms wavefront error (WFE) and transverse ray aberration (TRA). However, in

some cases the aberrations are utilised as another design parameter in the optical

system. In general, the number of degrees of freedom available in the optical

system will determine the effective aberration balancing. The reason for this be-

comes evident by further examining aberration constructs discussed in Sections

2.4 and 2.5.

2.2 Wave Aberrations and the Aberration Func-

tion

An aberrated wavefront is characterised by its deviation from the reference sphere

in the exit pupil of the optical system. The optical path length (OPL) along a

real ray is:

W (x, y) = [Q0Q], (2.3)

where the points Q0 and Q are points at which the real ray intersects the reference

sphere and aberrated wavefront respectively, shown in Fig. 2.3. This statement

is valid as the wave propagates by Helmholtz equation [68].

The measure of image quality of an optical system can be characterised by

three main metrics. The choice of metric depends on the amount of aberration
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Figure 2.3: Propagation of the marginal ray (MR) and principal ray (PR) from object

space to image space where there exists a rotationally symmetric optical system between

the EnP and ExP.

present. Spot diagrams are geometrical metrics for image quality. That is, the

intersection of ray position with the image plane is shown for all rays. Diffraction

is not considered in this case and so are used to depict large amplitudes of aber-

rations. However, the Airy disk is calculated and overlaid on the plot to show the

relative ray position with respect to the ideal diffraction limited image. The OTF

is chosen to assess image quality when residual aberrations appear in the 1− 2λ

range. Section 1.1 provides further information on the OTF and the advantage

of its use in photographic optics. For high performing optical systems, such as

those approaching the diffraction limit, the Strehl ratio can be employed. The

Strehl ratio is the ratio of the measured PSF intensity to the ideal PSF intensity.

Photographic lenses do possess diffraction limited quality, and therefore shall not

be discussed further.

A standard way of quantifying the performance of an imaging system is to

consult the ability of the system to produce an image spot on the image plane,
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2.2. Wave Aberrations and the Aberration Function

known as a spot diagram. The coordinate of the centroid ray is described as:

∆xc = 1
N

∑
i ∆xi and ∆yc = 1

N

∑
i ∆yi, (2.4)

where N is the total number of rays traced and i is the index of the rays. Often the

rms spot diagram is considered in the presence of field aberrations that produce

non-rotational spot diagrams or in the presence of large aberrations. The rms

spot is the root mean square deviation from the centroid ray position (xc, yc) on

the image plane:

∆rrms =

√
1

N
[(∆xi −∆xc)2 + (∆yi −∆yc)2], (2.5)

and the first approximation in the geometrical model of the spot diagram is

Dspot = 2∆rrms [71].

The WFE of an optical system is commonly expressed in two forms, by the

P-V and rms WFE. The P-V WFE is the distance between the maximum and

minimum points on the wavefront and is written as:

WPV = Wmax(xp, yp)−Wmin(xp, yp). (2.6)

For clarity (xp, yp) are used to denote pupil coordinates in this chapter as the

variable u is reserved for paraxial ray angles in keeping with raytracing notation.

The variance of the wavefront can be expressed as:

σ2 = 〈W 2〉 − 〈W 〉2, (2.7)

where σ = Wrms, which can be expanded to describe the rms WFE of the optical

system in terms of the ExP with an area AExP :

Wrms(xp, yp) =

√√√√ 1

AExP

∫ ∫ [
W (xp, yp)− W̄ (xp, yp)

]2

dxpdyp, (2.8)

and the mean wavefront is W̄ (xp, yp) = 1
AExP

∫ ∫
W (xp, yp)dxpdyp. Peak-to-valley

and root mean square WFE do not possess information about spatial frequency

content, which have a large effect on the PSF structure in the presence of optical

aberrations.

An optical system can be described surface by surface with an aberration

function similar to Eq.(2.3). The concept of studying the optical path length
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between two points along a trajectory was introduced by W.R. Hamilton [72; 73].

The aberration functionW (
−→
H,−→ρ ) gives the geometrical wavefront deformation in

the exit pupil as a function of the normalised field and aperture vectors denoted by
−→
H and −→ρ respectively. The field vector is located in the object plane and defines

the starting position of the ray, whereas the aperture vector is typically located

in the exit pupil. The aberration function is scalar and involves the dot products

of the field and aperture vectors in combinations that describe a rotationally

invariant system;
−→
H ·
−→
H ,
−→
H · −→ρ and −→ρ · −→ρ [2; 71; 74]. The dot product depends

on the magnitude of the vectors and on the cosine of the angle between them.

The wavefront can be expanded as a power series with the variables introduced

such that a complete description of the wavefront is written as:

W (
−→
H,−→ρ ) =

∑
j,p,m,n

(Wk,l,m)j(
−→
H ·
−→
H )p(

−→
H · −→ρ )m(−→ρ · −→ρ )n, (2.9)

over all surfaces j, where the sub-indices p,m,n represent integers k = 2p + m,

l = 2n + m and the coefficients are denoted by Wk,l,m and the indices k, l,m

in each coefficient describe the algebraic power of the field, pupil and azimuthal

angle between the vectors. The sum of all aberration terms over all surfaces j is

inclusive of all orders and gives the total wavefront aberration. The variable l has

a positive integer value, not including zero, where l −m = 2n ≥ 0.

The order of a wave aberration term is denoted by i = 2(p + m + n), which

is always an even order in wave aberration notation, and is equal to the degree

in the object and pupil coordinates [75]. Each order contains N terms, where

N = (i + 2)(i + 4)/8 [2], for i = 4 then N = 6. The piston terms for each order

are included in this calculation but are usually omitted from aberration tables.

Ray aberrations have odd ordering as they are taken from the derivative of the

wave aberration.

Each combination of vectors can be reduced to their cartesian coordinates,

the field vector is written as (
−→
H ·
−→
H ) = H2 = ξ2 + η2, here ξ and η are nor-

malised field heights along the x and y planes respectively. The aperture vector

is (−→ρ · −→ρ ) = ρ2, where ρ is a dimensionless parameter that describes the nor-

malised radial coordinate in the pupil 0 ≤ ρ ≤ 1, given as ρ = (rp/rp,max) where

r =
√
x2
p + y2

p and rp,max is the maximum pupil radius. The cross terms can

be simplified (
−→
H · −→ρ ) = H · ρ · cos(φH − φρ), whose cartesian coordinates are
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Ord Aberration Vectorial Scalar p m n

0 Piston W000 W000 0 0 0

2 Mag W111(
−→
H · −→ρ ) W111ηρ cosφ 0 1 0

2 Focus W020(−→ρ · −→ρ ) W020ρ
2 0 0 1

4 Spherical W040(−→ρ · −→ρ )2 W040ρ
4 0 0 2

4 Coma W131(
−→
H · −→ρ )(−→ρ · −→ρ ) W131ηρ

3 cosφ 0 1 1

4 Astigmatism W222(
−→
H · −→ρ )2 W222η

2ρ2 cos2 φ 0 2 0

4 Field Curv W220(
−→
H ·
−→
H )(−→ρ · −→ρ ) W220η

2ρ2 1 0 1

4 Distortion W311(
−→
H ·
−→
H )(
−→
H · −→ρ ) W331η

3ρ cosφ 1 1 0

6 Spherical W060(−→ρ · −→ρ )3 W060ρ
6 0 0 3

6 Lin. Coma W151(
−→
H · −→ρ )(−→ρ · −→ρ )2 W151ηρ

5 cosφ 0 1 2

6 Astigmatism W422(
−→
H ·
−→
H )(
−→
H · −→ρ )2 W422η

4ρ2 cos2 φ 1 2 0

6 Field Curv W420(
−→
H ·
−→
H )2(−→ρ · −→ρ ) W420η

4ρ2 2 0 1

6 Distortion W511(
−→
H ·
−→
H )2(

−→
H · −→ρ ) W531η

5ρ cosφ 2 1 0

6 Obl. SA W242(
−→
H · −→ρ )2(−→ρ · −→ρ ) W242η

2ρ4 cos2 φ 0 2 1

6 Obl. SA W240(
−→
H ·
−→
H )(−→ρ · −→ρ )2 W240η

2ρ4 1 0 2

6 Ell. Coma W331(
−→
H ·
−→
H )(
−→
H · −→ρ )(−→ρ · −→ρ ) W331η

3ρ3 cosφ 1 1 1

6 Ell. Coma W333(
−→
H · −→ρ )3 W333η

3ρ3 cos3 φ 0 3 0

Table 2.1: Zero, second, fourth order and sixth order aberrations listed in vector and

scalar notation including indices.

simply ηxp + ξyp, where yp = r cosφ and xp = r sinφ. The coefficients (Wk,l,m)

represent the maximum amplitude of each aberration expressed in wavelengths.

A list of conversions from wavefront scalar notation to vector notation is provided

in Table 2.1. Vector notation is useful for describing non-meridional tilts and

decenters and thus is normalised according to Nodal aberration theory [75]. How-

ever, vector notation is not always necessary in optical design as is the case with

rotationally symmetric optical systems. That is, aberrations calculated on the

meridional plane are sufficient to describe the wavefront aberration. Therefore,

for simplicity the scalar notation will be used to further describe the aberrations

in this chapter, where the field coordinate will be described in terms of normalised

y coordinate η. In this way, ξ is set to zero, where the aberration function can be

described by a combination of rotational invariant variables in polar coordinates

W (ρ2, ρη cosφ, η2). The aberration function can be expanded as a power series
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to be:

W (H, ρ, φ) =
∑

j,k,m,n

(Wk,l,m)jH
kρl cosm φ, (2.10)

over all surfaces denoted by j. Equation (2.10) takes a scalar form of Eq. (2.9).

Fourth order wave aberration terms are described by the ordering i = 4 and

are commonly known as the primary or Seidel aberrations and are listed in Table

2.1. Sixth order wave aberrations consist of nine terms (N=9) and are known

as the Schwarzschild aberrations. There are two notable additions to the sixth

order aberration terms, oblique spherical aberration and elliptical coma. Oblique

spherical aberration is the sum of W242 +W240 terms and does not possess axial

symmetry due to the field dependence. In cases when aberration correction is not

satisfactory using primary aberrations, one can use the fourth order and sixth

order wave aberrations to balance each other. Higher orders than sixth begin to

deviate from expected pupil and aperture aberrations [71].

First and Second Order Aberrations

The piston terms only appear in the wave aberration notation as they are exam-

ined, when considering the phase of the wavefront. Piston is uniform across the

pupil due to the reference sphere and wavefront passing through the center of the

pupil therefore the OPD must be zero at the origin of the pupil [76]. Magnifi-

cation is simply a term to account for a change in magnification. The wavefront

coefficient is often set to zero as first order optics can accurately describe its effect.

Tilt of the wavefront is addressed in Section 2.4 along with distortion.

The defocus wave aberration is a longitudinal shift in image position that can

be compensated by refocusing. Consider that for an optical system with a circular

exit pupil, the radius of curvature for the reference sphere f is approximately equal

to the radius of curvature l′ for the spherical wave W , where both wavefronts are

located in the exit pupil and centered on two finite separate image positions that

lie on the optical axis. For f ≈ l′ then defocus can be described as:

δW ≈ −ni
2

(
1

f
− 1

l′

)
ρ2, (2.11)

It is important to note that defocus wave aberration has the opposite sign to the

longitudinal defocus of a optical system, illustrated in Fig. 2.4.
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Figure 2.4: Positive defocus wave aberration yields a negative longitudinal defocus.

2.3 Geometrical Aberrations

Geometrical aberrations are calculated by tracing ray paths through the optical

system. The minimum number of rays that can be traced through an optical

system to locate the image position is two, the PR and the marginal ray (MR).

Aberration-free systems traced with geometrical approaches can generate image

spots that are not limited by diffraction effects of the lens, producing an ideal

image.

Derived from the eikonal equation, the theorem of Malus and Dupin states that

a pencil of rays remain at a normal to the wavefront after reflection or refraction

for any number of surfaces [68]. From this theorem it can be deduced that the

wavefront perturbation can be translated to ray paths for generating transverse

ray aberrations. The ray aberration in the image plane is the spatial derivative of

the wavefront multiplied by the radius of curvature. Therefore, integrating under

the TRA curve gives the corresponding wavefront aberration. If the angle between

the ray and the normal to the reference sphere is δU ′, then the y-component of

the TRA can be written as:

δη′ = δU ′R. (2.12)

Since rays are perpendicular to the wavefront, it can be deduced that δU ′ is
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the angle between the normal to the wavefront and the normal to the reference

sphere [76]:

δη′ = −R
n′
∂W

∂y
. (2.13)

Aldi derived equations expressing the TRA components on a finite ray with

respect to the paraxial principal ray. The most applicable use of Aldi’s theorem

is that the formulae can be broken down into the individual surface contributions

which makes locating the source of an aberration extremely useful as the formulae

include all orders of the aberration polynomial [71]. The theorem becomes a

powerful design tool when implemented with Seidel theory.

Seidel aberrations are generally the first introduction to aberration theory.

Although imaging is considered ideal for rays traced in close proximity to the

optical axis, Seidel aberration theory describes the primary aberrations in terms

of ray heights and angles within the paraxial region. The Seidel sums also indicate

the dependency of each aberration on the MR, PR, RI and Lagrange invariant.

The refraction invariants for a surface are described as A = n(hc + u) and Ā =

n(h̄c + ū), where the bar indicates the dependency of the PR, u is the paraxial

angle with respect to the optical axis, c is the surface curvature commonly known

as the inverse of the radius of curvature c = 1/R and h is the paraxial ray height.

The Lagrange invariant is denoted as H = Ah̄ − Āh and holds for all optical

systems [76], this is not to be confused with the field variable in wave notation.

The Seidel aberrations are listed in Table 2.2.

Aberration Seidel Sum

Spherical aberration SI =
∑
A2h∆(un)

Coma SII = −
∑
ĀAh∆(un)

Astigmatism SIII = −
∑
Ā2h∆(un)

Petzval curvature SIV = −
∑
H2c∆( 1

n)

Distortion SV = −
∑ Ā3

A h∆(un) + Ā
AH

2c∆( 1
n)

Axial chromatic aberration CI =
∑
Ah∆( δnn )

Lateral chromatic aberration CII =
∑
Āh∆( δnn )

Table 2.2: Seidel aberrations where the sum is taken for all surfaces in the optical system.

The total aberration in this representation is the summation for each surface.
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Seidel sums can be used to estimate the wave aberration with the help of the

conversion Table 2.3. It is important to note that Petzval curvature is only listed

in the Seidel aberrations. A more complete discussion of Petzval curvature and

field curvature can be found with the introduction of astigmatism.

Aberration Wave Coefficient Seidel Coefficient

Spherical Aberration W040
1
8SI

Coma W131
1
2SII

Astigmatism W222
1
2SIII

Field Curvature W220
1
4(SIII + SIV )

Distortion W331
1
2SV

Table 2.3: Wave aberration coefficient to Seidel notation for the primary monochromatic

aberrations.

The wavefront aberration can therefore be written for the monochromatic

third order aberrations in terms of the Seidel coefficients as [77]:

W =
1

8
SIρ

4+
1

2
SIIηρ

3 cosφ+
1

2
SIIIη

2ρ2 cos2 φ+
1

4
(SIII+SIV )η2ρ2+

1

2
SV η

3ρ cosφ

(2.14)

In general, this description of the wavefront is very advantageous for generat-

ing good starting designs before optimisation.

2.4 Monochromatic Aberrations

In this section each aberration family is described individually assuming all other

aberrations in the system are zero. That is, unless specifically outlined otherwise.

Spherical Aberration

Primary spherical aberration, denoted by the wave aberration as W040ρ
4, is con-

sidered a longitudinal aberration, where the absence of a field variable implies

that the aberration is invariant over the field of view.

Presenting as a variation in focus position as a function of marginal ray height,

a caustic is generated in the focal region, as illustrated in Fig. 2.5. The effect on
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S W

Caustic

Image plane

Optical axis

Figure 2.5: Spherical aberration with caustic along the optical axis (+z) shown close to

the focal plane.

the spot is axially symmetric about the principal ray as the sagittal and tangential

rays have an identical profile in the pupil due to the lack of an azimuth dependence

φ. The TRA for spherical aberration is:

δη′SA =
−4W040R

n
ρ3. (2.15)

It is important to understand the origin of spherical aberration in order to

balance or avoid its effects. The paraxial Delano equation for longitudinal spher-

ical aberration contributions ∆l′SA at a surface can be expanded for finite ray

heights as derived by Kingslake [78]:

∆l′SA = −
i∑

j=1

ni∆Q′

n′iu
′
i sinU ′i

= −
i∑

j=1

2PA[sin 1
2(I ′ + U) sin 1

2(I ′ − I)]A

n′iu
′
i sinU ′i

, (2.16)

where ∆Q = Q′−Q, ni = A the refraction invariant for the marginal ray and the

relation of the angles being I ′ − I = U ′ − U and I ′ + U = I + U ′ shown in Fig.

2.6. The variables Q and Q′ are described by the ray angle Q′ = R(sin I ′− sinU ′)

and Q = R(sin I − sinU) [71].

Interpreting the surface contributions in Eq.(2.16) frames four conditions, for

which a surface is free from spherical aberration. The first condition relates to the

chord PA = 0 in Fig 2.6, where the ray passes through the vertex of the surface.
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Figure 2.6: Spherical aberration contribution at a surface S, where the red ray is the

paraxial ray, green ray corresponds to a marginal ray at a finite height, the orange line

is the chord PA = 0 and the purple and red lines correspond to Q and Q′ respectively.

Recreated with reference to Eq.(2.16).

For the induced spherical aberration to be zero the incident ray has the ray angles

U = −I and U ′ = −I ′.

The second condition states that the spherical aberration contribution is zero

at a surface for angles I ′ = I, meaning that the marginal ray does not undergo

refraction at the surface, this is not true for all rays in the bundle. The third con-

dition is the paraxial case of the second condition, where ni = 0 and the paraxial

marginal ray does not undergo refraction. A surface with this characteristic is

called a concentric surface. The fourth and final condition is an important rule

in optical design where I ′+U = 0. This relation is called the aplanatic condition

and arises when the optical system is free from all orders of spherical aberration

and coma. The Abbe sine condition for a finite conjugate optical system is:

n sinU

n′ sinU ′
=
u

u′
= const, (2.17)

where U is the finite aperture angle, u is the paraxial aperture angle. The sine

condition assumes that Fermat’s principle is satisfied and does not hold unless

there exists no spherical aberration in the optical system. For an infinite conjugate

lens the condition can be written as:

f ′ = − y

sinU ′
, (2.18)

where f ′ is the focal length of the lens and y is the ray height in the aperture.
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Figure 2.7: Spherical aberration and defocus balance. The value of W020/W040 = −1.33

represents the smallest rms spot radius for spherical aberration in the pupil [2].

Spherical aberration and defocus can be combined to balance the presence

of spherical aberration in the system. The paraxial image point is often not the

position of best image quality. By inducing defocus the location of smallest spot

size can be found, this is known as the disk of least confusion [76]. This effect

is not only important for finding the best image position, but also for strategi-

cally blurring the image for computational EDOF methods, discussed in Chapter

1. The aberrated wavefront with spherical aberration and defocus present is

written as the sum W (ρ) = W040ρ
4 +W020ρ

2, where the ratio of defocus to spher-

ical aberration is plotted as a function of normalised pupil radius demonstrating

the balancing effect of the two aberrations in Fig. 2.7. The y-axis is scaled as

W (ρ)/W040 = ρ4 + (W020
W040

)ρ2 [2]. In most cases W040 ≈ −W020 would give a good

balance so that W (ρ) = 0.

A priori knowledge and understanding of surface contributions give rise to

conditions in which spherical aberration can be minimised within the lens. These

approaches include varying ray geometry and minimising the discrepancy between
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the incident ray and surface normal. Fermat’s principle, introduced in Eq. (2.1)

can be applied to correct all orders of spherical aberration. This can be carried

out in a finite conjugate system by ensuring the optical path of all rays from the

object point to the image point are equal. Increasing the number of spherical

surfaces, where refraction is split between the successive lens surfaces, creates

a more gradual refraction of the marginal ray. Gradual refraction can also be

carried out by employing a GRIN lens, where the index variation of the lens

causes refraction within the material reducing the overall spherical aberration.

Increasing RI of lens material reduces spherical aberration in a thin lens, this

dependency is seen by the presence of n in Eq. (2.16) and also in the Seidel sum

formula. In some cases the lens can be split, where a small air-gap is introduced

between two lenses if the surfaces have different radii of curvature, the OPL

undergoes a change with increasing ray height and is ideal to correct spherical

aberration. For a full clear aperture of fixed diameter spherical aberration can

be minimised by modifying a spherical surface to a non-spherical shape such as a

conicoid of revolution generally followed by a set of polynomial terms. The most

common type is a polynomial aspheric surface, which has a sag (z) described by:

z(x, y) =
c(x2 + y2)

1 +
√

1− (1 + κ)c2(x2 + y2)
+
∑
k=1

ak(x
2 + y2)k+1, (2.19)

where c is the surface curvature, κ is the conic constant, ak is a constant.

The second term is a power series sum over the normalised radial coordinate.

Aspherical terms ak have units of mm1−k. Fermat’s condition can also be used to

derive the optimal sag profile for an aspheric surface. Position of the asphere in

the lens will target different aberrations. An asphere located close to the stop can

correct spherical aberration as all field angles are affected nearly equally. When

necessary stopping down the aperture truncating the most peripheral ray zones,

where spherical aberration is most prominent, is an extreme case of correction.

Coma

The second perturbation of the wavefront is coma. It is described byW131ρ
3η cosφ.

Primary coma is a field dependent aberration, where the linearity with field an-

gle quickly limits the usable field of view unless corrected. This odd order field
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aberration arises when the intersection of the rays is not symmetrical with re-

spect to the principal ray. From the azimuth angle dependency, cosφ, the sagittal

component of the wave aberration is often zero, and the tangential component

has a dependency on the pupil radius as ρ3. Coma’s characteristic comet shaped

image spot arises from the sagittal pupil section where the ξ′-component is zero

and the η′-component is found to be similar in amplitude to the η′-component of

the tangential pupil section. The ratio of the two sections are 1 : 3, as seen in Fig

2.8.
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Figure 2.8: Ray construct from pupil to spot diagram.Wave aberration for coma, where

the sagittal wave aberration is zero. The ray aberration for coma is non-zero.

Consider rays passing through the ExP with radius ρ, the principal ray is

located at the Gaussian focus, while the marginal rays form a circle with a radius

that is proportional to ρ2. This circle is also decentered with respect to the

principal ray position O′ by a factor also proportional to ρ2 [71]. The TRA for

coma depicts this pupil dependency:

δξ′c =
−R
n
W131ηρ

2 sin 2φ (2.20)
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and

δη′c =
−R
n
W131ηρ

2(2 + cos 2φ), (2.21)

where the sub-indices indicate the image point displacement in the presence of

coma. The image circle occupies a region which is limited by segments of two

straight lines at 30◦ angle to the radial direction and an arc of the largest aber-

ration circle [68].

If the aplanatic condition is fulfilled for all aperture angles then the surface is

free from all orders of spherical aberration and coma. In reality, this is difficult to

achieve. The offence against the sine condition determines the transverse coma

relative to the height of the paraxial principal ray yielding the residual aberration

of that surface.

Aplanatic surfaces and lenses are characteristically free from coma. Sym-

metrical optical systems about the stop can correct coma as symmetry cancels

aberrations with odd power in the field. It must be noted that in contrast, aberra-

tions that possess field dependencies of even powers are additive in a symmetrical

system. The stop shift equations are a well established approach, where the aper-

ture stop position is utilised as a variable to minimise coma. This approach can

only be applied if there is residual spherical aberration present described by the

stop shift equation as the new value for coma can be calculated as S∗II :

S∗II = SII = δESI , (2.22)

where δE = (h̄new − h̄old)/h is the eccentricity with notation according to Table

2.2. In the case where spherical aberration is corrected, a shift of the stop position

has no effect on coma.

For the stop positioned at the lens, the bending parameter can influence coma

correction as coma depends on the principal ray described by the Seidel sum for

coma in Table 2.2. Intentionally induced coma in a system by bending a lens

can compensate the residual coma aberration elsewhere in the optical system.

The presence of coma can be minimised by introducing tilt, although this is not

correcting coma rather displacing the best centre of light concentration in the

image point [79]. In more complex optical systems, where traditional approaches

cannot be applied, such as fast lenses the introduction of a second aspheric surface
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can be used for coma correction. Like the case of spherical aberration, coma

correction can be distributed among several optical surfaces.

Astigmatism & Field Curvature

Astigmatism and field curvature are often grouped together as they share the

same wavefront dependencies η2ρ2. If both W222 and W220 coefficients are non-

zero the sagittal and tangential focal lines form curved surfaces. The degree of

curvature of the tangential surface is determined by the signs and magnitudes of

the coefficients generating a greater or lesser curvature than the sagittal [76] .

Astigmatism arises from a variation in sagittal and tangential focus positions.

A single point in object space forms two separate line images, one at the sagittal

and one at the tangential image planes. The tangential plane, also known as

the meridional plane, lies in the y − z plane containing the optical axis and the

point object lying on the η axis [76]. The sagittal plane is perpendicular to the

tangential plane and contains the PR.

If W222 is the only aberration present in the optical system, the rays from

the tangential plane in the pupil will form a line image at T perpendicular to the

tangential plane, i.e. on the sagittal plane. Similarly, the rays from the sagittal

plane in the pupil will form a line image S on the tangential image plane, as

illustrated in Fig. 2.9. The difference between the foci is the astigmatism present

in the system. The segment TS increases with the square of the field and is known

as Sturms interval [11].

The TRA for the tangential line image can be found from Eq.(2.13) for δξ′A =

0:

δη′A = −2R

n
W222η

2ρ, (2.23)

which has a length of 4RW222η
2ρ/n. For a variation in focus between focal lines

the expression from Eq.(2.13) is rearranged so thatW020 = −(2R/n)W222η
2. The

η variable vanishes and thus the rays converge to a line image along the ξ section.

Coddington derived equations to describe astigmatism in a ray bundle with

infinitesimally small NA through a surface with skew angle of incidence [71]. These

equations are:
n′ cos2 ī′

l′tan
=
n cos2 ī

ltan
+
n′ cos ī′ − n cos ī

Rtan
(2.24)
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Figure 2.9: Formation of astigmatism where the PR is green, MRs is red and MRt is

blue. The tangential and sagittal images are labelled by T and S, respectively.

and
n′

l′sag
=

n

lsag
+
n′ cos ī′ − n cos ī

Rsag
, (2.25)

where R is the surface radius and indices are denoted by n and n′. The inter-

section length before and after the surface for the small ray bundle in tangential

and sagittal is measured along the principal ray. The only difference between Eqs.

(2.24) and (2.25) is the incident principal ray angle (̄i), so it can be understood

that a change in ī yields a change in astigmatism.
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Figure 2.10: Criterion for quadratic field dependent aberrations traced as a small ray

bundle through the pupil of the optical system.
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As Fermat’s principle and Abbe’s sine condition ensure that an optical system

is free from all orders of spherical aberration and coma, a criterion exists for

correcting all quadratic field dependent aberrations. Satisfying the relation:

s(θ) =
t(θ)

cos2(θ)
= const, (2.26)

where t = O′T and s = O′S illustrated in Fig. 2.10 [80; 81]. Equation

(2.26) shows that the quadratic field dependent aberrations are affected by the

center ray angle θ in image space, which corresponds to a pupil coordinate. From

this relation the condition in Eq. (2.26) can be calculated for each point in the

pupil similar to Fermat’s principle and Abbe sine condition. Figure 2.10 shows the

criterion for a finite object point. It is to be noted that Eq. (2.26) also holds for an

object at infinity. Implementation of this principle uses Coddington’s equations,

where a thin bundle of rays is traced to obtain the tangential and sagittal image

positions. Correcting all orders of spherical aberration, coma and quadratic field

dependent aberrations requires a total of four degrees of freedom.

Bending of a lens to correct astigmatism is dependent on the stop position

relative to the surface. The stop determines the principle ray angle which is critical

for induced astigmatism. Therefore, the correctional ability of bending strongly

depends on stop position. A shift of the stop position can minimise astigmatism,

as shown by the third stop shift equation:

S∗III = SIII + δESII + δE2SI . (2.27)

However, if spherical aberration and coma are corrected a stop shift has no

effect on astigmatism. Cylindrical lenses are often used where the meridional

power of the lenses varies to compensate astigmatism. The introduction of a third

aspheric surface is often used for astigmatism correction and is usually placed away

from the stop due to the astigmatic field dependency.

For an astigmatism-free lens, the tangential and sagittal image planes coincide.

The image has a curved surface due to field curvature that arises from each lens

contribution in the system. This is known as the Petzval surface. For a simple

thin lens, the longitudinal distance between the ideal plane image surface and

the Petzval surface is η2/2nf , although the curvature can be altered due to the

52



2.4. Monochromatic Aberrations

presence of other aberrations. For a system of thin lenses with a small aperture

the Petzval surface has a radius of curvature of:

1

rp
= −

∑
k

1

nkfk
, (2.28)

where nimage = 1, the medium RI in image space is assumed to be air. The

Seidel coefficient for Petzval curvature is SIV . Generally not being considered for

aberration correction, the Petzval condition can be used in generating starting

designs for more complicated systems whose parameters are usually determined

by paraxial optics. In reality, a lens generates a longitudinal positioning of images,

where positive lenses produce image surfaces, which curve toward the lens while

negative lenses produce image surfaces facing in the opposite direction. In the

presence of primary astigmatism the Petzval surface serves only as a reference

surface from which the sagittal and tangential images surfaces are measured.

As can be seen from table 2.4, the tangential astigmatism is associated with

3SIII +SIV , while sagittal astigmatism is only SIII +SIV . The tangential surface

is three times further away from the Petzval surface than the sagittal, illustrated

in Fig.2.11(a). Balancing positive and negative power lenses of selected refractive

indices minimises the field curvature in the image plane. The contribution that

h

(a) (b)

(c)

T S P

∆l’

!

Figure 2.11: (a) longitudinal aberration for astigmatism and positive field curvature (b)

field lens and (c) Cooke triplet.
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Aberration Wave Seidel

Astigmatism W222 SIII

Petzval Curvature W220 −W222 SIV

Sagittal Astigmatism W220 SIII + SIV

Tangential Astigmatism W220 + 2W222 3SIII + SIV

Table 2.4: Coefficients for astigmatism and Petzval curvature.

a lens element makes to the system is proportional to the product of its power

and the height of the marginal ray. For a negative lens introduced in a suitable

position the element power contribution can be substantial while the marginal ray

height remains small. The additional contribution to the overall optical power is

low despite having a significant influence on field curvature. A good example of

such a design is the Cooke triplet illustrated by Fig. 2.11(c), where the negative

element is located between two positive lenses reducing the field curvature [82].

Distortion

Distortion is a lateral displacement of the image point with respect to the parax-

ial image magnification. Distortion increases cubically with the field angle η

described in Table 2.1 as an aberration of the PR W331η
3ρ cosφ. Tilt in the

wavefront generates a linear TRA, δη. Consider two spherical wavefronts with

the same radius of curvature R, but having different tilt.

This tilt introduces a lateral offset of the image point. In reference to Fig. 2.14,

where the image point is η = z tan θ and the tilt in the wavefront is w = ρ tan θ.

Differentiating both image point and tilt, the change in lateral image position and

tilt is:

δη = z sec2 θdθ (2.29)

δw = ρ sec2 θdθ (2.30)

Solving Eqs.(2.29) and (2.30) for sec2 θdθ and setting the expressions equal to

each other, the relationship between wavefront tilt to lateral image position can

be expressed as (δη)/z = (δw)/ρ and rearranged to yield:

dη =
(z
ρ

)
dw. (2.31)
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Figure 2.12: Tilt of the wavefront in the pupil. The wavefront radius is illustrated as

planar for simplification.

If z = f and ρ = D/2 with D being the finite diameter of the pupil, then it

is clear to see that the lateral image displacement is directly proportional to the

F-number and wavefront tilt in the pupil as described by dη = 2(F#)dw [83].

Recalling the equation for TRA in Eq.(2.13), this can be rewritten in terms:

δη′ = −R
ρ
W311η

3. (2.32)

Equation(2.32) can be multiplied across by a factor of (2
2) to encorporate the

full pupil diameter:

δη′ = −2R

2ρ
W311η

3. (2.33)

The relation of 2R/2ρ = 2F# and so the TRA is related to the linear tilt in the

wavefront. When the tilt angle is dw = −W311η
3, the field dependent tilt that is

generated varies cubically over the field.

Distortion appears in two forms; barrel and pincushion named after their

appearance. Sixth order distortion is identical in shape to fourth order. Distortion

is independent of lens bending and conjugate position. It is interesting to note that

distortion is proportional to spherical aberration in the exit pupil. For distortion

to be independent of object position, then pupil spherical aberration must be zero

such that tan Ū ′/ tan Ū = constant for all field angles, where Ū and Ū ′ refer to

the principle angle rays [71]. Distortion on the image plane is calculated by a

simple formula:

Dist =
y′real − y′ideal

y′ideal
, (2.34)

55



Chapter 2. Optical Aberrations
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Figure 2.13: Distortion (a) barrel of hight h′B and (b) pincushion with height h′P .

where distortion can take the form of two shapes, which correspond to a positive

or negative distortion value shown in Fig. 2.14. TV distortion is the amount of

bending of the horizontal line DTV = ∆h/h. For a thin lens the distortion is

heavily dependent on the stop position which is highlighted in Table 2.5.

Element Power (K) Stop Position PR height Distortion

Positive Behind h<0 Positive

Positive Front h>0 Negative

Negative Front h<0 Negative

Negative Front h>0 Positive

Table 2.5: Distortion based on stop position for a thin lens.

2.5 Chromatic Aberration

For monochromatic light, the first five aberration families introduced in Section

2.2 have a RI variable that is generally a reference to the specific wavelength

chosen. When considering polychromatic light, the dependency of RI with wave-

length must be considered. Refractive index n of a material is the ratio of velocity
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of light in a vacuum to the velocity of light in that material:

λ0

λ
=
cf

vf
=
c

v
= n (2.35)

RI varies as a function of wavelength and is known as dispersion. For elements

with positive optical power the focal position, both laterally and axially, varies

spatially as a function of colour [83]. Therefore, images will be formed at discrete

locations in image space for consecutive wavelengths.
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Figure 2.14: Variation of RI and focal length of a thin lens made from BK7 versus

wavelength. The focal length is normalised by the focal length of the d line in the

Fraunhofer spectrum.

All optical glasses and plastics have increasing refractive index with decreasing

wavelength thus shorter wavelengths are refracted at larger angles than longer

wavelengths:
dn

dλ
< 0 (2.36)

The mean deviation is measured from the incoming white light to the dispersed

Fraunhofer d line, which lies between the F and C lines. The dispersiveness of a

material is commonly described by the Abbe Number and defined as:

V =
nd − 1

nF − nC
(2.37)
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where nF , nd and nC are the refractive indices for the Fraunhofer F, d and C lines

corresponding to λ = 486.1 nm , 589.3 nm and 659.3 nm respectively [68]. Optical

glasses have Abbe numbers in the range of 10 to 120. A glass with a low Abbe

number has a high dispersion and a glass with a high Abbe number has a low

dispersion. The Abbe number is a relatively accurate measure of dispersiveness

in the visible spectrum. However, as the Abbe number is weighted in the d line

and therefore does not faithfully represent dispersion in the near infrared (NIR)

range.

For polychromatic light refracted through a surface from one medium to an-

other each wavelength undergoes dispersion described by Eq. (2.36). For a re-

fracting optical surface such as a positive thin lens, the variation in refraction

angle with wavelength gives rise to two effects on the image plane called LCA and

transverse chromatic aberration (TCA). Primary chromatic aberrations appear

in the paraxial approximation as the sum of the power in the pupil and field co-

ordinate expansion is two, yielding the primary chromatic aberrations are second

order wave aberration, and first order TRA.

For chromatic aberrations described in terms of wavefront aberration, the

perturbations can be defined similarly to their monochromatic counterparts. The

reference sphere in the exit pupil of the system for chromatic aberration is defined

with wavelength λ and any departure from this reference wavelength (λ + ∆λ)

will be termed a chromatic aberration with an OPD described by:

δW = [P1P2], (2.38)

where the reference wavefront in Fig. 2.15 is labelled P1 and the aberrated wave-

front P2 [76]. The OPD in the pupil is measured along the ray between the P1

and P2. The ray may correspond to either of the two wavelengths such that the

path length could be n(P1P2) or (n+ δn)(P1P2), since δn� n, then the two are

approximately equal [84].

The chromatic surface contribution for a single refracting surface can be de-

rived from the thin lens equation with transverse magnification M = η′/η =

nl′/n′l to be:
δM

M
=
δη′

η′
=
δn

n
− δn′

n′
δl′

l′
=

(
δn

n
− δn′

n′

)
l′

R
, (2.39)
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Figure 2.15: Axial colour as a wave aberration. The wavefronts are shown as spherical

where the reference wavefront is coloured black and labelled λ while the aberrated wave-

front is red and labelled (λ + ∆λ). The axis labels are ρ which represents pupil height

and has an arbitrary value here, and +z following the sign convention.

where δη′ = η′δM/M on the image plane describes the difference in principal ray

height on the image plane η′λ − η′λ+∆λ between η′1 and η′2 in Fig.2.15(b) showing

that the fractional chromatic variation in magnification does not depend on image

or object height. This chromatic variation in magnification is known as TCA or

lateral colour. The variable δl′ = l′λ − l′λ+∆λ between l′1 and l′2 in Fig. 2.15 (a)

is the longitudinal chromatic aberration. Transverse and longitudinal aberrations

appear together in real optical systems, however to introduce them it is simpler

to discuss them independently.

It can be more intuitive to understand the chromatic aberration surface con-

tributions by looking at Seidel sums within the paraxial region. Recalling that

LCA and TCA Seidel sums are:

CI =
∑
j

Ah∆
(δn
n

)
, (2.40)

and

CII =
∑
j

Āh∆
(δn
n

)
, (2.41)

it can be easily interpreted that surface contributions for chromatic aberration
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are zero when the ray height is zero. For a surface that is concentric with the

stop Ā = 0, or for a surface that is concentric to the object/image the ray does

not undergo refraction and therefore will not induce any chromatic effects.

The wavefront aberration coefficients for chromatic aberration can be con-

verted to Seidel coefficients as shown in Table 2.6. The wavefront aberration,

when considering the chromatic aberrations, can be written in terms of the Seidel

sums found in Table 2.2:

Wλ(η, ρ, φ) =
CI
2
ρ2 + CIIηρ cosφ (2.42)

Aberration Wave Seidel

Longitudinal Chromatic Aberration W020(λ)
1
2CI

Transverse Chromatic Aberration W111(λ) CII

Table 2.6: Wave aberrations to Seidel notation for the primary chromatic aberrations.

The transverse expression for longitudinal chromatic aberration is:

W020(λ)(h) = −W020(λ) tanU ′, (2.43)

where U ′ is the marginal ray angle with the optical axis. Longitudinal chromatic

aberration variation over the field should not be confused with lateral chromatic

aberration. Generally a raytrace through the lens for multiple wavelengths is

considered practical to determine the amount of chromatic aberration in a lens.

Conrady developed a method for calculating chromatic aberration using one wave-

length within certain limitations with exact raytracing [85]. The formula central

to his method is:

Wλ =
∑
i

δni(DPRi −Di), (2.44)

where δn = n′F − n′C for the visible spectrum, DPRi is the length along the

principal ray and Di is the length along an other ray [86]. The summation in

Eq. (2.44) extends over all spaces in the lens. It is noted that Conrady’s formula

applies to any chromatic variation in the optical system not just for LCA and

TRA.
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Transverse Chromatic Aberration

TCA also known as lateral colour is the chromatic change in magnification shown

in Fig. 2.15(b). This effect arises from the chromatic variation of the principle ray

and so has no presence if the principle ray passes through the centre of the lens,

simply interpreted by the Seidel sum for CII . The TRA for the displacement

in image height as a function of λ can be described in terms of the wavefront

aberration coefficient:

δη′λ = − 1

n′u′
W111(λ), (2.45)

where the positive value indicates a decreasing image size with increasing wave-

length [76]. Every description of TCA includes variables outlining a variation in

refractive index δn, which indicates the importance of a suitable material com-

bination for lens groups within the lens. It is repeatedly discussed that TCA is

dependent on the principal ray. Correction methods influencing the principal ray

such as stop position can minimise the lateral chromatic effect. Symmetry about

the stop can be applied due to the linear dependency on field. Higher orders of

TCA will also be corrected by symmetry as they have an odd powered depen-

dency in the field [71]. Stopping down the aperture has no effect on TCA as the

aberration is independent of the aperture variable, the same is true for distortion.

Longitudinal Chromatic Aberration

Longitudinal chromatic aberration, also called axial colour, is a variation of image

position with wavelength, simply a chromatic change in focus [86]. The distance

between the two focus points indicates the amount of axial colour present. From

Fig. 2.15(a), the distance between the chromatic image positions as described in

Eq. (2.38) and so the change in focus at the image plane is denoted by Eq. (2.46).

The displacement of the axial image position in terms of the wave aberration

coefficient is written from interpreting Eq. (2.11):

δl′λ =
1

n′u′
W020(λ), (2.46)

u′ being the marginal ray slope in image space. A positive value for δl′λ in Eq.

(2.46) yields a focal shift toward the lens with an increasing RI. In the absence
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of spherical aberration, a system illuminated with visible light, which has uncor-

rected LCA, forms a symmetrical spot surrounded with a purple halo arising from

the blue and red light for a perfectly focused green image [82]. The image spot is

rotationally symmetric about the optical axis.
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Figure 2.16: Residual chromatic aberration for three lenses with element powers denoted

as positive (P) and negative (N): a BK7 singlet (blue), a P-N BK7-SF5 achromat (ma-

genta) and a P-N-P FPL53-BAK1-SSKN5 apochromat (orange) where the magnitude of

∆l′ is an arbitrary value scaled to fit all plots to the figure.

Figure 2.16 is a plot of the chromatic focal shift for three lenses. The variation

in image distance ∆l′ is an arbitrary value, as it is scaled to fit the plot. The

chromatic focal shift for a singlet lens, plotted in blue, intersects the axis at a

singular wavelength therefore graphically showing LCA about the image plane.

Power combination is central for correcting LCA. Consider that the power of a

thin lens in air denoted by K is written as:

K = (n− 1)

(
1

R1
− 1

R2

)
, (2.47)

where R1 and R2 are the radii of curvature of the singlet lens. Equation (2.47)

indicates that a single glass element does not have the available degrees of freedom

to balance LCA, although LCA can be minimised with a low dispersive glass and
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2.5. Chromatic Aberration

optimum radii selection. To correct LCA for two wavelengths, the variation in

lens power ∆K must be negligible, which requires a minimum of two lenses of

different materials. Ideally the value for ∆K would be zero, although this is not

realistically feasible. The concept can be explained using thin elements of powers

K1 and K2. The variation in optical power is ideally zero and so the criteria for

minimising LCA can be described by:

K∑ =
K1

V1
+
K2

V2
= 0, (2.48)

where V1 and V2 are Abbe numbers of the two materials. It is the ratio of the

Abbe numbers that controls the severity of the radii in the lens. If the variation

between V1 and V2 is large, where the materials have a sufficient ratio, then the

radii of curvature can have a weaker surface shape. Traditionally, one lens takes

a positive shape and the other a negative and are arranged in a cemented doublet

or air-spaced configuration.

Equation (2.48) generates the condition whereby an achromat can correct LCA

for two wavelengths, shown in Fig. 2.16 by the magenta line crossing the image

plane twice. The intersection points with the image plane (∆l′ = 0) determine

the corrected wavelengths. However, considering that visible light is represented

by the F,d and C lines, the achromat is not corrected for green light d and so

its residual is still present in the lens. This is referred to as the secondary spec-

trum. Calculating the extent of the secondary spectrum involves manipulation

and reverse-engineering of Eq. (2.48), where the power of the lenses are equal

for C and F lines KC = K = F . The variation in power responsible for the

secondary spectrum ∆Kss between the corrected point and the residual image

point is ∆Kss = Kd−KC . The addition of another lens to balance the secondary

spectrum requires a particular choice of glass which can be determined by the

relative partial dispersion:

Pλ =
nd − nF
nF − nC

, (2.49)

where the dispersion of the glass for C and F lines is established relative to the d

line. A condition can be established from Eq. (2.49) which outlines the criteria

for correcting three wavelengths using the total refractive power K1 +K2 +K3:

T = V1+2 − V3, (2.50)
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where V1+2 is the artificial Abbe number of the achromat. Reducing Eq. (2.50)

into its constituent terms:

V1+2 =
V1(P2 − P3) + V2(P3 − P1)

P2 − P1
− V3, (2.51)

where the sub-indices refer to the element number [71]. The variable T is the

measure of the distance between the Abbe number of the third element V3 and

the combined Abbe number of the achromat V1+2 on the glass map. Large values

of T are the most effective. The correction ability of an apochromat is shown

in Fig. 2.16, where the curve intersects the axis three times corresponding the

corrected image points of lines F, d and C.

It is necessary to mention that axial colour exists beyond the chromatic vari-

ation of focal length. An example of this is spherochromatism; the variation of

spherical aberration with wavelength. Other aberrations also exhibit chromatic

effects although they are not considered as their impact is minimal on image

quality.

2.6 Description of Optical Surfaces

The shape of an optical surface is referred to as the sagitta, or sag, of the surface.

The sag is described as the distance of the surface from the vertex of the surface

as a function of surface height y, shown in Fig 2.17.

The most common surface shape are spherical surfaces, which can be mathe-

matically described as:

z(r) =
cr2

1 +
√

1− c2r2
, (2.52)

where r =
√
x2 + y2. A conicoid of revolution, often called a conic constant (κ),

is a deviation from spherical surfaces that varies in eccentricity (ε):

κ = −ε2 =

(
b

a

)2

− 1, (2.53)

with a and b being the semi-axes of the surface. The radius of curvature of a

surface at the vertex of R = (1
c ) = ( b

2

a ), where c is the surface curvature. The

shape of the surface can then be assigned to a conic constant as described in Table

2.7.
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Conic constant (κ) Surface shape

κ<-1 Hyperboloid

κ = -1 Paraboloid

κ=0 Sphere

κ> 0 Oblate ellipsoid

0>κ>-1 Prolate ellipsoid

Table 2.7: Conic constant values and related surface shapes.

Spherical and parabolic surfaces can be approximated to have equal sag for

surfaces with equal radii of curvature R at the vertex and small surface heights,

given as z(y) = y2

2R . An optical surface with a conic constant that deviates from

spherical can be described by:

z(r) =
cr2

1 +
√

1− (1 + κ)c2r2
. (2.54)

A suitable choice of conic constant can reduce the use of excessive aspheric terms

or other polynomial type terms. When designing optical surfaces with more com-

y 

z 

z(y) 
Δz k=0 

k=-1 

Figure 2.17: Surface sag of a spherical surface (k = 0) and parabolic surface (κ = −1).

The variation in sag (∆z) between the sphere and parabola increases with surface height,

which makes a parabolic surface suitable for correcting spherical aberration by modifying

the intersection angles of the incident marginal rays with the surface.
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plex surface descriptions, the deviation from the base shape is introduced by

polynomial terms that are superimposed on the best fit sphere.

2.7 Zernike Polynomials

The aberration function for a circular aperture can be expanded using Zernike

polynomials. These polynomials are orthonormal over the unit circle of constant

weighting function. Defined in polar coordinates composed of a radial term R(ρ)

is dependent on azimuthal angle φ, Zernike polynomials are defined as:

Zmn (ρ, φ) =


√

2n+ 1Rmn (ρ) cosmφ, for m > 0
√

2n+ 1Rmn (ρ) sinmφ, for m < 0
√
n+ 1Rm0 (ρ), for m=0

(2.55)

where the radial term can be calculated from:

Rmn (ρ) =

(n−m)/2∑
s=0

(−1)s(n− s)!

s!
[

(n+m)
2 − s

]
!
[

(n−m)
2 − s

]
!
· ρn−2s (2.56)

Indices n andm are both integers and are both even or odd, fulfilling the condition

(n−m) always being even.

Zernike Fringe polynomials are a set of 37 low order terms based on the stan-

dard Zernike polynomials but are ordered following aberration theory. In the

Zernike fringe notation, the angle φ is measured anti-clockwise from the local +x

axis and the radial coordinate is the normalised dimensionless parameter ρ = 1

[87]. A conversion between the first fifteen standard and fringe terms are listed

in Table 2.8.

Zernike polynomials are useful in optical design as they are orthogonal and

complete polynomials [88]. The sag of a surface described by Zernike Fringe

polynomials is a superposition of the terms described as:

z =
cr2

1 +
√

1− (1 + κ)c2r2
+

8∑
i=1

αir
2i +

N∑
i=1

AiZi(ρ, φ), (2.57)

where c is the curvature of the surface, r is the radius where r2 = x2 + y2, κ is

the conic of revolution, the aspheric coefficient terms are denoted by αi, Ai is the

coefficient on the ith Zernike Fringe term.
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Fringe Zi(ρ, φ) Polynomial Standard Zmn (ρ, φ)

Z1(ρ, φ) 1 Z0
0(ρ, φ)

Z2(ρ, φ) ρ cosφ Z1
1(ρ, φ)

Z3(ρ, φ) ρ sinφ Z−1
1 (ρ, φ)

Z4(ρ, φ) 2ρ2 − 1 Z0
2(ρ, φ)

Z5(ρ, φ) ρ2 cos(2φ) Z2
2(ρ, φ)

Z6(ρ, φ) ρ2 sin(2φ) Z−2
2 (ρ, φ)

Z7(ρ, φ) (3ρ3 − 2ρ) cosφ Z1
3(ρ, φ)

Z8(ρ, φ) (3ρ3 − 2ρ) sinφ Z−1
3 (ρ, φ)

Z9(ρ, φ) 6ρ2 − 6ρ2 + 1 Z0
4(ρ, φ)

Z10(ρ, φ) ρ3 cos 3φ Z3
3(ρ, φ)

Z11(ρ, φ) ρ3 sin 3φ Z−3
3 (ρ, φ)

Z12(ρ, φ) (4ρ4 − 3ρ2) cos 2φ Z2
4(ρ, φ)

Z13(ρ, φ) (4ρ4 − 3ρ2) sin 2φ Z−2
4 (ρ, φ)

Z14(ρ, φ) (10ρ5 − 12ρ3 + 3ρ) cosφ Z1
5(ρ, φ)

Z15(ρ, φ) (10ρ5 − 12ρ3 + 3ρ) sinφ Z−1
5 (ρ, φ)

Table 2.8: Conversion between Fringe and standard Zernike polynomial ordering.
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Chapter 3

Dual-Wavelength Illumination for

Extended Depth of Field

3.1 Introduction

Longitudinal chromatic aberration has been demonstrated to facilitate an exten-

sion in depth of field for fixed focus lenses. However, previous approaches are

generally realised with the aid of post-processing and image reconstruction. A

comprehensive review of these approaches are presented in Chapter 1. For cur-

rent commercial devices computational algorithms can be increasingly demanding

on the device battery. In this chapter a method of extending the depth of field

using dual-wavelength illumination is presented. The aim of this study was to de-

sign a low-cost mobile phone lens for a front-facing camera with the purpose of iris

recognition in user authentication. The iris is illuminated with two NIR LEDs and

imaged with a singlet lens whose parameters are designed with a known longitudi-

nal chromatic aberration. The singlet lens focuses both illumination wavelengths

on to a fixed image plane from two separate finite distances in object space. The

material featured in this chapter is a combined study of peer reviewed work from

Optics Express [89] and the International Optical Design Conference [90].

An introduction to chromatic aberration and associated effects in imaging are

discussed in Section 2.5. In most cases, longitudinal chromatic aberration is an

undesirable effect due to the limitation of digital correction. However, LCA has

positive uses in depth sensing and imaging in areas such as microscopy.

The theory presented in this chapter introduces the approach of how a plano-

convex singlet can be used to generate the desired axial chromatic aberration

to increase the range of distances in object space that are in focus on the im-
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age plane. To finely tailor the induced chromatic aberration, a second lens can

be added, whereby depending on the glass and power of the lens induced chro-

matic aberration can be tuned by extending or reducing the separation of the

wavelengths.

Depth of Field Asymmetry in a Thin Lens

Establishing the asymmetry between the near and far depth of field regions about

the object point with respect to the front vertex of a thin lens is central to this

study. Chapter 1 introduced a widely used pair of equations, Eqs. (1.28) and

(1.29) found in Smith and Laikin [7][12], to calculate the near and far regions

for the depth of field of photographic lenses. The following derivation shows the

foundation of the depth of field equations for a thin lens which are derived for the

purpose of this study. The proof begins with the thin lens equation:

1

l′
+

1

l
=

1

f
, (3.1)

where l is the object position, l′ is the image position and f is the focal distance

of a thin lens. Rearranging Eq. (3.1) the reciprocal of the image distance can be

isolated:

1

l′
=

1

f
− 1

l
. (3.2)

Equation 3.2 can be further simplified to isolate the expression for image

distance:

l′ =
fl

−f + l
. (3.3)

Recalling depth of focus ∆z for finite conjugate lenses discussed in Chapter 1

described by Eq. (1.22), is denoted as:

∆z = 1.22λ
l′2

D2
× 2 ≈ 2λ

l′2

D2
, (3.4)

where the angular term for the Airy disk is multiplied by the image distance

l′ as for finite conjugate systems.
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Conjugating the depth of field and depth of focus regions of the lens for

finite object position, the thin lens equation can be modified such that the image

position is represented by l′ ±∆z and object region by l ±∆Z:

(
1

l′ + ∆z

)
+

(
1

l −∆Z

)
=

1

f
. (3.5)

Rearranging Eq. (3.5) so that the object side parameters are separated from

the image side parameters, the expression yields:

(
1

l′ + ∆z

)
− 1

f
= −

(
1

l −∆Z

)
. (3.6)

Simplifying Eq. (3.6) similar to Eq. (3.3) gives:

l −∆Z = − f(l′ + ∆z)

f − l′ −∆z
. (3.7)

Inserting the expression for the depth of focus from Eq. (3.4) into Eq. (3.7)

an expression for the depth of field can be generated as:

∆Z� = l +
f(l′ + 2λ(l′2/D2))

l′ + 2λ(l′2/D2)− f
. (3.8)

It is important to note the sign convention in the derivation for conjugating

depth of focus to depth of field, Equation (3.8) can be rearranged to contain

grouped variables:

∆Z� = l +
f(1 + 2λ(l′/D2))

1 + 2λ(l′/D2)− f/l′
(3.9)

Considering that the image distance can be described by rearranging the thin

lens equation in Eq. (3.3), a new variable can be defined as Z̄:

Z̄ = 2λ

(
l2

D2

)
, (3.10)

where this expression is commonly known as the average depth of field. Sub-

stituting this relation into Eq. (3.9) yielding the thin lens expressions for the near

and far depth of field are derived, Eqs. (3.11) and (3.12).

∆Z� = l − l2 + fZ̄

(Z̄ + l)
= −Z̄ l + f

l + Z̄
(3.11)
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∆Z∗ = −l − l2 − fZ̄
(Z̄ − l)

= −Z̄ l − f
l + Z̄

(3.12)

In this notation, the near region is denoted by ∆Z� and the far region by

∆Z∗, as shown in Fig. 3.1. They have to be derived separately as they do not

share the same symmetric property as the depth of focus. Rather, ∆Z∗ > ∆Z�,

for l ≈ f then ∆Z∗ ≈ ∆Z�. However, for l� f , ∆Z∗ departs from ∆Z�.

Equation (3.10) describes the average value of the depth of field two regions;

∆Z =
(∆Z� + ∆Z∗)

2
= Z̄ (3.13)

In the case where the individual regions do not need to be known separately

but rather the overall sum, then Eq. (3.10) can be used. It is to be noted that

this relation holds for Z̄ ≤ l, where l is much smaller than the hyperfocal distance

[12].

Figure 3.1: Effective depth of field for object position l(λ̄), where λ̄ is the average of the

chosen illumination wavelengths. The lens is reversed for clarity when referencing the

following reverse raytrace method.

3.2 Dual-wavelength illumination and Iris Imag-

ing

In this section the method of extending depth of field relies on intrinsic LCA by

means of a dual-wavelength illumination. Refocussing in this approach is carried
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3.2. Dual-wavelength illumination and Iris Imaging

out by simply changing the position of the user relative to the front vertex of the

lens, as shown in Fig. 3.2.

Lens
Cornea

(a) 

(b) 

Figure 3.2: (a)EDOF concept: the dual-wavelength flash illuminates the iris which then

reflects the NIR light. The lens is designed with a predefined amount of axial chromatic

aberration such that the iris image remains in focus in one of the two colours shown in

the top schematic which is not to scale. (b) Zemax raytrace to scale from the detector

into object space showing the cornea and the iris.

The difference in this approach compared to previous methods of extending

depth of field using LCA is that the sharp image is obtained in real time without

computationally intensive algorithms.

Plastic commercial lenses can be mass-moulded for a few cents therefore using

this method the lens can avoid requiring a refocusing system with voice coils.

Mechanical refocusing can increase the cost of the camera module in a mobile

phone by 10 %.

The illumination wavelengths were determined by the physical properties of

the eye, shown graphically in Fig. 3.3. In the near infrared (NIR) the iris shows

more structural detail, which is essential for iris recognition and authentication

of the user [3]. Another advantage of illuminating in the NIR is the fact that in

this spectral region there is a reduction in solar radiation, which helps to reduce

the unwanted NIR background in daylight imaging (λ = 880 nm to 920 nm).
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Figure 3.3: Percentage transmittance of the human eye, recreated with reference to [3].

The concept of EDOF using dual-wavelength illumination is presented by

considering a plano-convex singlet. Iris illumination is formed by two commercial

NIR LEDs, λ1 and λ2, of known bandwidth ∆λ, where λ1 < λ2 and ∆λ� λ2−λ1.

In a conventional singlet lens, illuminating with a finite bandwidth introduces

longitudinal chromatic aberration (LCA). One can exploit that feature with dual-

wavelength illumination where consideration is given to the dispersive nature of

the glass when optimising LCA of the lens. For a fixed image plane one could form

either sharp image at λ1 from a near distance and image at λ2 from a far distance

with both images being sharp at the conjoined plane between them located at

(λ1 + λ2)/2 in object space. Determining the limits of this region is presented

analytically and lens examples are discussed.

3.3 Analytical derivation of lens parameters

To describe the analytical method, paraxial raytracing using Welford’s notation

[76] is used to trace a marginal ray through the lens:
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3.3. Analytical derivation of lens parameters

n′ju
′
j − njuj = −hjφj (3.14)

hj+1 = hj + u′jd
′
j , (3.15)

where u is marginal ray angle, h is ray height at the surface and φ is the optical

power of the surface, described as φj = (n′j − nj)/Rj with Rj being the radius

of curvature. The refractive index of the medium before and after the surface is

denoted by nj and n′j , respectively.

Figure 3.4: Reverse marginal ray trace through a plano-convex singlet showing LCA and

the depth of field regions of l(λ1) and l(λ2).

Figure 3.4 shows the raytrace of a marginal ray through a plano-convex lens

for wavelengths λ1 and λ2. Note that our approach employs reversed raytracing,

that is the ray starts at the detector and propagates through the lens into object

space. The principal planes of the singlet are drawn by dashed purple lines, where

the front principal plane coincides with the vertex of the front surface of the lens.

The second principal plane can be found by calculating the separation of the

planes, δ, known as the interstitium [76].

Following the sign convention in optics, the radius of curvature for the poste-

rior refracting surface of the singlet in air is negative (Rj < 0), the optical power

of the surface is then written as:

φj =
(1− nj)
Rj

. (3.16)
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In the case of a plano-convex singlet, Eq. (3.16) determines the overall optical

power of the lens. Further consideration must be given to the use of multiple

lenses and the ratio of the optical power for each surface with respect to the other

yielding the overall desired induced LCA. This is discussed later in the chapter.

Reverse raytracing allows us to derive an expression for the final angles u′(λ1)

and u′(λ2) for illumination wavelengths of λ1 and λ2, which correspond to different

object positions due to LCA, see Fig. 3.4. The intrinsic amount of chromatic

aberration in the singlet is denoted by the difference in chromatic object positions,

∆l = l(λ2)− l(λ1), where l(λ1) is chosen at the initial design stage.The choice of

l(λ1) determines the radius of curvature R in the singlet for a chosen refractive

index, n(λ1). The far object point is then a product of the lens material chosen,

as the dispersion in the NIR is known. The choice of lens material is discussed in

Section 3.4.

Using paraxial raytracing Eqs.(3.14), (3.15) the ray path can be derived

through the plano-convex singlet lens for the two illumination wavelengths, λ1

and λ2 as:

u′(λ1) =
1

f(λ1)
+
n(λ1)− 1

R
= − 1

l(λ1)
(3.17)

and

u′(λ2) =
1

f(λ2)
+
n(λ2)− 1

R
= − 1

l(λ2)
(3.18)

The focal length f in Eqs. (3.17) and (3.18) is an unknown so to find its value

for a thin lens, we note first that the separation of the principal planes δ is found

as:

δ(λ) = d− d

n(λ)
, (3.19)

where d is the central thickness of the lens. It should be noted that the above

equation, Eq. (3.19), is an approximation since the quadratic term with respect to

d has been omitted due to its dependency on optical power, which is an unknown

in our approach. Using Eq. (3.19) and selecting the distance from the detector to

the flat surface of the lens, which is the BFD in imaging mode, the focal length

of the lens is found as:
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f(λ) = BFD + d/n(λ), (3.20)

which is illustrated in Fig. 3.4. For a chosen l(λ1), the radius of curvature is

isolated from Eq. (3.17) to give:

R = f(λ1)l(λ1)(1− n(λ1))/(f(λ1) + l(λ1)) (3.21)

For a selected lens material, whose dispersion properties are characteristic to

that material, and the second illumination wavelength λ2, one can calculate the

refractive index as a function of wavelength n(λ2) and find the object position

corresponding to that wavelength l(λ2) from Eqs. (3.21) and (3.18):

l(λ2) = R/(1− n(λ2)−R/f(λ1)) (3.22)

The analytical method outlined above provides three lens parameters, namely,

f , R and l(λ2) when λ1, λ2, lens material, n(λ1), n(λ2) as well as BFD and d

are known from lens design specification. The depth of field associated with both

object positions must overlap to ensure sufficient sharpness over the extended

region ∆l + ∆Z�(λ2) + ∆Z∗(λ1) in object space, see Fig. 3.4.

To avoid excessive defocus in the mid region one requires to fulfil the condition

for having no gap between ∆Z∗(λ1) and ∆Z�(λ2), that is:

∆Z�(λ2) + ∆Z∗(λ1) ≥ ∆l. (3.23)

Using the approximation for depth of field where both regions are of equal

distance, ∆Z�= ∆Z∗ = ∆Z and ∆Z is found from Eq. (3.10), assuming λ = λ1,

we can find the largest pupil diameter that satisfies this condition:

2λ1

(
l2(λ1)

D2
+
l2(λ2)

D2

)
≥ ∆l, (3.24)

which is equivalent to the expression D2 ≤ 2λ1[l2(λ1) + l2(λ2)]/∆l. The

condition for F-number is modified to be:

F#2 ≥ f2∆l

2λ1[l2(λ1) + l2(λ2)]
(3.25)
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If the F-number from Eq. (3.25) is too large, i.e.the lens is too slow, it

is possible to reduce λ2 and therefore decrease ∆l at the price of reducing the

extension of EDOF for the lens. A trade-off exists between increasing ∆l and

attaining competitively low F-number, this is discussed further in the next section.

3.4 Optical system examples

The validity of the proposed analytical method is demonstrated with two ex-

amples using a plano-convex lens made of highly dispersing flint, N-SF5, and a

commercially available moulded plastic, E48R.
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Figure 3.5: Dispersion plot for N-SF5, N-BK7 and E48R. Data provided from Schott [4]

and Zeon [5].

For the chosen wavelengths to image the iris at λ1 = 780 ± 15 nm and λ2 =

870 ± 20 nm, according to the dispersion plot shown in Fig. 3.5 to maximise the

longitudinal chromatic aberration in object space a highly dispersive glass should

be chosen, thus leading to a larger depth of field. N-SF5 glass is a dense flint

which is highly dispersive. The user defined input parameters are listed in Table

3.1.
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Parameter Abbe # d (mm) back focal length (BFL) (mm) l(λ1) (mm)

Value 32.2 1.5 4 300 mm

Table 3.1: Input parameters for plano-convex singlet

Knowing the input parameters Eqs. (3.20) - (3.22) can be used to find the

parameters for the lens as listed in Table 3.2.

Parameter f R l(λ2) ∆l = l(λ2)− l(λ1)

Value 4.90 mm -3.182 mm 432.37 mm 132.37 mm

Table 3.2: Lens parameters for plano-convex singlet solved from Eqs. (3.20) - (3.22)

The condition for the F-number from Eq. (3.25) yields F# ≥ 2.72. For the

smallest value F# = 2.72, the corresponding diameter of the lens is D = 1.8

mm. The approximate formula predicts the depth of field as ∆l + 2(λ1l(λ1)2 +

λ2l(λ2)2)/D2 = 275 mm. Note that at the near object distance l(λ1) the F#

and working F# differ by approximately 1.5% and this discrepancy is to some

extent compensated by the approximation of the principal planes made in Eq.

(3.19). The exact value for the focal length verified in Zemax is f = 4.825 mm

with corresponding F-number for an object at infinity is F# = 2.68 and working

F-number Fw#= 2.72.

Equations (3.11) and (3.12) are used to determine the exact depth of field is

∆l + ∆Z�(λ1) + ∆Z∗(λ2) = 302 mm. Figure 3.6 shows the exact depth of field

where the near object point is taken as the origin for the horizontal axis. Depth

of field at the far object point is 2.4 times longer than that of the near object

point. Thus it is always more challenging to extend depth of field at near object

distances.

Considering a single wave illumination at λ̄ = (λ1 +λ2)/2, which corresponds

to the object distance l(λ̄) = 359.8 mm, depth of field is ∆Z� ¯(λ) + ∆Z∗ ¯(λ) =

144.6 mm. For this average wavelength (λ̄), lens design with the dual wavelength

illumination offers depth of field 2.09 times longer than that of single wavelength

(λ1) illumination design. Most importantly this extended depth of field allows
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the user to exploit object distances in a closer proximity to the lens.
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Figure 3.6: Plot in object space showing the depth of field for an N-SF5 singlet fulfilling

the no-gap criterion for dual-wavelength enabled EDOF.

The singlet is assigned two aspheric surfaces, described by the following equa-

tion:

z = y2/2R+Ay4 +By6 (3.26)

The front surface of the lens has A = 1.6736x10−3 mm−3, B = 2.877x10−4

mm−5 and conic constant κ = −1. The posterior surface has a conic constant

κ = −1, A = 2.7392x10−4 mm−3 and B = 6.9758x10−4 mm−5. Two aspherical

surfaces allow to correct for spherical aberration and coma. The full field of view is

limited by astigmatism to approximately 6 deg, while attaining diffraction-limited

image quality. At the near object distance, l(λ1) the maximum object size is 32

mm for 6 deg flat field, which is sufficient to image the full iris of a single eye.

Figure 3.8 shows the aberration correction on the detector when the lens is

in the imaging mode. The image quality is limited by astigmatism, but this does

not compromise the centering of the eye on the detector as can be seen from

Fig. 3.7, where we used Zemax raytracing software to simulate the impact of the

lens aberrations on the image of the eye. Axial colour resulting from the finite

bandwidths (30 and 40 nm) of the illumination sources is well within the depth of
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focus and does not reduce image quality of the lens, see Fig. 3.6. For aberration

analysis in Fig. 3.8 we assumed that the object is not a plane but a paraboloid

of revolution with 1.63 mm radius of curvature at the vertex. This object surface

indicates the optimum off-axis eye placement with respect to the lens when one

needs to take into account the curvature of the object field as indicated by the

solid lines in Fig 3.6. The iris is modelled as a flat surface. This allows one to

widen the field of view to approximately 8◦ and also accounts for protruding facial

features such as the eyebrow and nose.

Figure 3.7: Iris imaging with an aspheric, plano-convex singlet lens described in Table

3.2. The features of the iris required for identification remain sharp, while the effect of

astigmatism is noticeable outside the central field.

The spot diagrams for the two object distances l(λ1) and l(λ2) shown in Fig.

3.8 are plotted for on axis and approximately 4 deg off-axis field at six wavelengths,

λ1 = 780 ± 15 nm and λ2 = 870 ± 20 nm. Block 1 shows six spot diagrams for

near distance l = l(λ1) being in focus (λ1 shown in blue), with the upper row for

on axis and lower row for 3.7 deg off-axis field point. Block 2 corresponds to far

object distance l = l(λ2) being in focus (λ2 shown in green). Spherical aberration

and coma are well balanced, whereas astigmatism and axial colour are present, as

can be seen in the bar diagram for Seidel aberrations in Fig. 3.8.

An optical polymer can also be used as an example to explore the feasibility

of extending depth of field. E48R from the Zeon catalogue has an Abbe number

of 56.04, thus having a similar dispersive nature to a crown glass such as N-BK7.

Table 3.3 lists lens parameters for both lens designs for comparison. Since the

plastic material is less dispersive than N-SF5 glass, the plastic lens has a smaller

∆l = 61.74 mm for the same illumination sources. As a result one can use an

F-number as fast as 2.1.
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Spherical Coma Astigmatism Field Curvature Distortion Axial Color Lateral Color

STO 2 SUM

0.0000 (deg)

3.7000 (deg)

Wavelength:

Field

0.756000 0.780000 0.795000 0.850000 0.870000 0.890000

Surface: IMA
Scale Bar: 20

Figure 3.8: Seidel aberrations for the high dispersion N-SF5 singlet in image space (top).

Maximum aberration scale is 0.00500 mm. The Block 1 and 2 of spot diagrams for the

dual flash illumination on the image plane (bottom). The Airy disk is shown in black

with a radius of 2.376 µm.

The illumination scheme is such that the image is obtained in a sequential

manner. The sharper image can be selected based on sharpness criterion or the

interpupilary distance if it can be found from the image. In practice, the method

with the least power consumption will be chosen. For the mid position where

both images are equally defocussed, we take the image with the longer distance
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n(λ1) n(λ2) f R l(λ2) ∆l D F# 2 ω

(mm) (mm) (mm) (mm) (mm) (deg)

N-SF5 1.6595 1.6560 4.90 -3.182 432.36 132.36 1.9 2.7 7.5◦

E48R 1.52505 1.52348 4.98 -2.573 361.74 61.74 2.36 2.1 6◦

Table 3.3: N-SF5 glass and E48R optical plastic aspheric singlets with parabolic object

surface.

flash which ensures more flux and greater signal to noise ratio.

Visual representation of the data provided in Table 3.3. Figure 3.9 shows how

the variation in object separation ∆l changes with F-number to fulfil the no-gap

criteria.
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Figure 3.9: ∆l dependencies of N-BK7 and N-SF5 singlet lenses on F#.

The effect of near object position on the extended depth of field is shown in

Fig. 3.10 for two plano-convex singlets made from N-SF5 glass and E48R plastic.

Cornea effects

The cornea was modelled in Zemax with data from previously published papers

[91],[92]. Figure 3.11 shows the rms wavefront error in waves for λ1 ±∆λ. The
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Figure 3.10: Extended depth of field as a function of object position l(λ1).

diffraction limit of the system when imaging through the cornea is 0.072 waves

outlined by the Nijboer-Maréchal criterion [69], corresponding to 0.056 µm at λ1

= 780 nm. A minimum of 2 cy/mm is required to image the fine details of the

iris which corresponds to 150 cy/mm on the detector. This is outlined by the ISO

requirements [93].

Figure 3.12 is the MTF of the lens and cornea where the modulus of the

OTF at 150 cy/mm is 0.56. In our model, the presence of the cornea does not

compromise image quality. A -9% distortion was induced by imaging through the

cornea which can be easily corrected computationally as distortion does not blur

the image. We also assume here that the detector has a pixel size of 1.19 µm to

satisfy the Nyquist sampling criterion for the Airy disk radius of 2.38 µm.

The impact of lens shape factor and near object position

Optimising for a parabolic object surface allows one to have additional depth

of field by decentering the eye and bringing it closer to the lens. That is by

increasing the height in object space and following the curvature of the parabolic

surface, see Fig. 3.6, one gains extra depth of field at the near object point.

However, this parabolic surface lies between tangential and sagittal foci (for lens
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Figure 3.11: Rms wavefront error vs field for the singlet illuminated by λ1 ± ∆λ. The

effect of introducing the cornea on the rms wavefront error is seen by the dashed purple

line.
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Figure 3.12: MTF for singlet lens and cornea.

working in reverse mode). Therefore, with increasing object height the possibility

of imaging the iris as a whole becomes more challenging due to the astigmatism.

The image quality of the iris imaged at 15 mm off-axis when the eye is positioned

on the parabolic surface with a radius of 1.63 mm at 240 mm, shown in Fig. 3.14,
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Figure 3.13: Iris imaging with an aspheric, plano-convex singlet lens centred at object

height 15 mm positioned on the parabolic object surface at a distance 240 mm from the

lens where l is the sag of the parabola at h=15 mm.

gaining additional 60 mm in depth of field at the near object point.

The plano-convex singlet presented in this study is chosen for the requirement

of having F# ≤ 2.7. We have considered the use of other singlet lenses with

different shape factor and studied its impact on our application, seen in Fig 3.15.

A singlet with a back surface being concentric to the lens focus can offer a small

reduction in ∆l. For this lens design, the effect of each wavelength on object

distance l can be calculated using the equation where the front radius R is solved

as a function of λ1 and then one could find l(λ2) as a function of λ2 and R.

Reversing the orientation of the plano-convex lens such that the planar surface

is facing the object has the capability to increase ∆l and field of view shown in

table 3.4. The radius of curvature and far object point l(λ2) can be calculated

Figure 3.14: Iris imaging with a aspheric, plano-convex singlet lens centred at object

height 15 mm positioned at l(λ1)= 240 mm.
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from u′(λ) = 1/f(λ) + (n(λ)− 1)/R = −1/(l(λ)− d/n(λ)) where R and l(λ2) are

found as a function of λ1 and λ2 respectively.

n(λ)

(BFD + d)
+

(1− n(λ))

R
=
−1

l(λ)
, (3.27)

where the front radius R is solved as a function of λ1 and then one could find

l(λ2) as a function of λ2 and R. Reversing the orientation of the plano-convex lens,

such that the planar surface is facing the object, has the capability to increase ∆l

and field of view shown in table 3.4. The radius of curvature and far object point

l(λ2) can be calculated from:

u′(λ) =
1

f(λ)
+

(n(λ)− 1)

R
=

−1

(l(λ)− d/n(λ))
(3.28)

where R and l(λ2) are found as a function of λ1 and λ2 respectively.

Freeing both radii in a singlet lens allows one to find an optimum lens shape

for best aberration correction. In this case, the front object point is anchored at

(a) (b) (c)

Figure 3.15: Singlet lenses in imaging mode: (a) concentric surface singlet, (b) reverse

plano-convex singlet and (c) meniscus singlet.
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Singlet Concentric Plano-Convex Rev Plano-Convex Meniscus

∆l 126.1 mm 132.37 mm 202.79 mm 230 mm

2ω CP 7.4 ◦ 7.4◦ 12.8◦ 13◦

2ω FP 6 ◦ 6.5◦ 9.8◦ 10.3◦

F # 2.6 2.7 3 3.1

SF 3.35 -1 1 -1.30

Table 3.4: Shape factor: Lens data for N-SF5 singlet where CP for the object surface as

a parabola, FP is a flat object plane, SF is shape factor and 2ω is the full field of view

l(λ1)=300 mm and the lens is optimised for parabolic object surface. The singlet

lens geometry converges to a negative meniscus lens with an increased diffraction

limited field to 13◦ and 10◦ for a planar object. The separation of object points,

∆l, increases to approximately twice ∆l of the initial plano-convex lens example.

This extension in ∆l occurs at the expense of increased F-number, as larger ∆l
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Figure 3.16: Optimised radius for Parabolic object surface for N-SF5 singlet lenses with

different shape factor.
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requires a slower lens. Table 3.4 includes a list of design parameters for different

shape factors of a singlet made from N-SF5 having different shape factors:

SF =
R2 +R1

R2 −R1
, (3.29)

where Rn is the radius of curvature of the nth surface. Each singlet lens

requires an optimised parabolic object surface with a specific radius shown in

Fig. 3.16

A singlet lens with aspherical surfaces has the degrees of freedom to correct

spherical aberration and coma. However, the residual astigmatism can be min-

imised by optimising the parabolic object surface. Four variations on the singlet

is presented; plano-convex, reversed plano-convex, meniscus and concentric. The

concentric lens is orientated such that the back surface is concentric to the lens

focus.

A visual representation of the variation in parabolic object surface with shape

factor is then shown in Fig. 3.16. The surfaces correspond to Table 3.4.

Out[256]=

lHl1L vs Dl
200 250 300 350 400 450 500
0

100

200

300

400

500

lHl1 L HmmL

D
lHm

mL

lHl1L vs F
2.45

2.50

2.55

2.60

2.65

2.70

2.75

2.80

F

Figure 3.17: Changes to F-number and ∆l as the distance of the near object point is

varied.

Special constraints must be introduced when applying this methodology to
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the visible spectrum. LCA in the visible region must be controlled such that ∆l

does not exceed a certain value to avoid a slow lens associated with a larger ∆l.

The separation of LED central wavelength of the two sources can be reduced to

50 nm in the mid region (yellow) of the visible spectrum where slope of refractive

index versus wavelength is not as steep compared to shorter wavelengths (blue

region), thus one could achieve a usable F-number suitable for a mobile phone

camera. Additionally, materials of high Abbe number can be chosen inducing

low dispersion that brings ∆l to similar values as we presented for the NIR re-

gion. Alternatively, one could consider introducing two elements with a partial

compensation of axial chromatic aberration to gain better control of chromatic

aberration in the visible.

It is interesting to note that one could also vary the near object distance to

control ∆l, however as one can see from Fig. 3.17 bringing near point closer to

the lens reduces ∆l and depth of field and at the same time increases F-number

which again shows the challenge of extending the depth of field at regions closest

to the lens.

3.5 Conclusion

An extension in depth of field has been analytically derived and shown for a singlet

lens. The method presented in this chapter focuses on a singlet lens which uses

dual-wavelength illumination to extend the depth of field. This study includes the

feasibility of both low and high dispersion materials and their effect in achieving

an extended depth of field. The performance of this method also includes a

model of the cornea and the possibility of induced aberrations by reflecting from

the cornea. This analysis shows that -9% distortion is introduced and does not

deteriorate the MTF.
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Chapter 4

Two Iris Imaging over an

Extended Depth of Field

4.1 Introduction

A single iris imaged in Chapter 3 is feasible due to the small FOV needed. A

singlet lens was shown to have enough degrees of freedom to carry out such a

task. A larger FOV is required to capture two irises. An increased FOV gives

rise to higher amplitudes of field dependent aberrations. Increasing the degrees of

freedom in the lens, that is introducing a mixture of surfaces and lens materials,

these aberrations can be minimised on the image plane.

Stop

D

lnear

lfar

Plate

CCD

l’near

l’far

Modified plate sag

Figure 4.1: Schematic for off axis behaviour of image surfaces. The continuous curved line

represents the image surface produced by a planar plate while the dashed line corresponds

to the shift in the displacement of the image point due to a variation in the plate thickness

as a function of height.

A lens-plate design combination for imaging two irises over an extended depth
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of field is introduced in this chapter. The novelty of the design is central to a

variable thickness planar element adjacent to the CCD plane, a simplified illus-

tration is shown in Fig. 4.1. The preceding elements with non-zero optical power

are responsible for aberration correction. These elements are also optimised for

specific regions in the field corresponding to iris locations separated by a fixed

interpupilary distance (IPD). In the case where the lens has no residual aberra-

tions present, one can consider that a variation in object position will affect the

image position in a non-linear profile due to the Petzval curvature in the field.

The planar element is responsible for displacing the image points by varying the

thickness with respect to the principal ray of each field angle by a well known

relation for thickness variation of a planar plate determining the shift in image

position along the optical axis. Varying the thickness for a range of principal ray

angles corresponding to the iris movement in object space, therefore creates a

continuous region in which the irises can move along the optical axis with respect

to the lens with a sagittal field containing the irises. The work presented in this

chapter is an extended study based on a proceedings paper presented at SPIE

Optical Systems Design [94].

4.2 Iris positioning for plate design

In Chapter 3 it was shown that multiple individual regions of focus from discrete

wavelengths can be summed together to extend the depth of field by using the

lens parameters [89]. Such intermediate calculations can be avoided by generating

a continuous depth of field from a single illumination source. In this chapter a

range of elements are presented which have the capability of extending depth

of field up to 3 times compared to a conventional lens conjugate to the same

object. The EDOF element is positioned adjacent to the detector plane after the

main refracting elements of the lens. Two spatially varying object configurations

are presented, images that horizontally vary across the detector and images that

vary both vertically and horizontally with respect to object position. Figure 4.2

illustrates the two geometries used in designing the elements by illustrating the

image position on the detector plane. The first orientation (shown in red) is based
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!’

"’

Vertical iris position
Horizontal iris position

Figure 4.2: Iris image positions on the CCD plane. The red circles indicate the movement

of the head along the optical axis, where the the separation of iris images is dependent on

the principal ray angle. The green circles correspond to the head repositioning laterally

with respect to central object position in order to further separate the images formed on

the sensor.

on the iris movement parallel to the optical axis, fundamentally relying on the

variation in principal ray angle to separate the images on the CCD. The second

(shown in green) introduces a small lateral variation in iris position from the

optical axis (±y) to utilise more of the detector for EDOF. As the irises shift

axially, the PR is modified to a skew ray whose incident angle varies with respect

to iris distance from the lens. The circle shown in red with green edge is the lens

conjugate position centred at y=0 and x=±Dp/2. PR incident angle on the image

plane ranges from (−ξ,+η), (0, η), (+ξ,−η) as the irises move from the nearest

to furthest resolvable distance from the lens ln → lf , for simplicity notation here

follows Fig. 4.4.
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Figure 4.3: X-Z coordinate system illustration for imaging two irises over an extended

depth of field.

4.3 EDOF plate for radially varying iris im-

ages

The first object orientation is based on the simple geometry that, for a fixed

interpupillary distance, an axial variation in object distance yields a change in

the PR angle illustrated in Fig 4.3.

According to ideal imaging, a point object positioned at O in the field i.e. has

non-zero x coordinate, at +x from the optical axis forms a perfect point image O′

at −x′ in image space. However, departing from the paraxial region aberrations

influence the performance of the optical system. Consider an object positioned

at an object distance l with a fixed horizontal position +x from the optical axis

in object space, its image is formed at −x′ from the axis on the image plane at

l′. Intuitively, an object positioned at l ±∆l at that same fixed height will form

an image at l′±∆l′ with at a lateral position of x′±∆x′. For a range of discrete

object distances l1, l2...ln with a fixed height +x from the optical axis, the field

angle θ varies with respect to the object position, see Fig. 4.3. This change in
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PR angle produces a lateral shift (along x’) in image position with respect to

the object. For two-iris imaging applications, the fixed horizontal position is half

the IPD at ±x. The variation in object position ∆l will also cause a longitudinal

displacement of the image whose profile is dependent upon the lens. The presence

of residual field curvature in the lens can influence the longitudinal shift in image

position. In this application, the distribution of images laterally is advantageous

for the correction of the longitudinal image displacements as a radial variation

in thickness along an element adjacent to the sensor can individually compensate

this error. The lateral displacement also allows for each iris position to be imaged

at separate discrete positions on the CCD.

1 2 3 4 5 6 

7 8 

CCD 

Figure 4.4: Zemax layout for the lens and PP for the prescription in Table 4.1 for objects

positioned at ± 41 mm, ± 35 mm and ± 29 mm in x from the optical axis at maximum

image height on the CCD.

4.3.1 Lens for axially varying iris images

The lens presented in this section was designed for the purpose of this study. Once

optimally designed, the lens for imaging the axial iris movement is presented at

the beginning of the study as the lens will remain fixed while the plate designs
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Chapter 4. Two Iris Imaging over an Extended Depth of Field

are modified. The lens data is provided in Table 4.1. Surfaces 7 and 8 are shown

as a parallel plate for the initial design with a fixed central thickness such that

any modifications to the plate will retain the overall track length. This study

includes a comparison between profile modifications to surface 8, labelled in Fig.

4.4. It is important to note that once optimised, the lens parameters and aspheric

terms for surfaces 1 to 6 are fixed for the study. Therefore, the comparative study

exists between the ability of each plate surface to improve the spatial frequency

response for the designated iris region over the EDOF region.

Design simplicity of the lens and material choice is due to the nature of the

application. The lens is aimed at a high yield market and so the lenses are designed

in plastic which is commonly moulded for consumer optics. For iris imaging, the

fine details of the iris are captured in the NIR and so illumination is provided

by a commercially available narrowband NIR light emitting diode (LED) with

wavelength λ = 940± 20nm.
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Figure 4.5: Variation in image position with respect to object position for the lens with

parallel plate listed in Table 4.1.

The track length of the lens is 4.67 mm, with an entrance pupil diameter of

2.0 mm and focal length of 3.59 mm, fitting within the current design space for

smartphone cameras. The stop is located at the front surface as is typical for

fast systems such as smartphone lenses to control the principal ray angle. The
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4.3. EDOF plate for radially varying iris images

average working F-number for this lens is F#w = 1.81. The average F-number

is quoted as the working F-number is dependent on object position, which varies

in this application. The discrepancy in F#w ≤ 0.014 for the largest separation

of object positions |lf − ln| = 200 to 400 mm. The back focal distance for the

lens is chosen conjugate based on the image position such that the plate will not

collide with the CCD plane. In this study the conjugate distance is chosen to be

260 mm, as the BFD intersects the image plane at this point shown in Fig. 4.5.

Surf Rad (mm) Thick (mm) Material Conic

1 2.0233 0.7000 PMMA -1

2 3.9039 0.0327 Air -1

3 3.0250 0.7000 E48R -1

4 3.7860 1.0000 Air -1

5 1.6975 0.7436 E48R -1

6 2.6900 1.3122 Air -1

7 Infinity 0.1000 E48R 0

8 Infinity 0.0825 Air 0

Table 4.1: Lens data for lens and parallel plate with horizontal iris positioning.

Surf A (mm−3) B (mm−5) C (mm−7) D (mm−9)

1 5.4171×10−3 -4.094 ×10−4 -1.207×10−3 -1.212 ×10−3

2 -7.871×10−4 -1.038×10−3 -8.575×10−4 -3.139×10−3

3 3.0920 ×10−3 2.4618 ×10−3 7.6209 ×10−4 1.4719 ×10−3

4 -0.0106 -5.785 ×10−3 7.7281×10−3 5.1188×10−3

5 9.0604 ×10−3 -0.0127 -8.518×10−3 7.1745 ×10−3

6 0.0702 -0.0255 9.8339×10−3 8.591×10−3

7 0 0 0 0

8 0 0 0 0

Table 4.2: Aspheric coefficients for lens presented in Table 4.1 with horizontal iris posi-

tioning 4th, 6th, 8th and 10th.

Irises are a good example of objects positioned off-axis at a fixed position. This

position is known as the IPD denoted by Dp ranges from 58-70 mm for the average
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Chapter 4. Two Iris Imaging over an Extended Depth of Field

person. We define the separation of the fixed object horizontally positioned from

the axis origin as half the interpupillary distance Dp/2 = ±x = 35 ± 6 mm.

The allowable image height in our design ±y is ±5 mm enclosing the iris and

accounting for the eyelid obstruction of the upper and lower segments of the iris.

A good starting design is critical to the performance of any imaging system.

The lens was designed for optimal aberration correction. The lens with the parallel

plate is optimised for off-axis points only between ±29 to 41 mm along the sagittal

plane, where the irises are located with respect to the optical axis. The selected

field containing the irises are weighted during optimisation, where the central

field is neglected as it is not useful in this application. The central field can be

sacrificed to boost the MTF of the more peripheral regions that contain biometric

information.

The lens parameters are provided in Table 4.1, and aspheric coefficients in

Table 4.2. The simplicity of the lens design and material choice is due to the

nature of the application. The lens is aimed at a high yield market and so the

lenses are designed in plastic which is commonly moulded for consumer optics. For

iris imaging, the fine details of the iris are captured in the near infrared therefore

illumination is provided by a commercially available narrowband NIR LED with

wavelength λ = 940± 20nm. As a consequence of imaging in the NIR, the choice

of plastics is limited to those that provide refractive index vs. wavelength data

for the NIR spectrum.

The first element in the lens is an air-spaced doublet, where two plastics are

chosen to be achromatic with the lens, shown in Fig. 4.4, for a chosen light source.

The lens has -0.15 µm of lateral colour that comfortably lies inside the Airy disk.

The Airy radius has a value of 2.09µm at the largest PR angle. The lens and

plate combination has a maximum distortion of 0.4% at l = 200 mm in the area

of interest which encloses the irises, decreasing with an increasing value of l.

As the lens is conjugate to a fixed position in object space, for l = 260 mm

the average depth of field would be described by Eq.(1.26) for central wavelength

λ = 0.94 µm and have a value of ∆Z= 63.54 mm. All extensions in EDOF for

horizontally varying iris images will we compared to this calculation throughout

our study.

For this lens, inclusive with the parallel plate, the back focal position varies
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4.3. EDOF plate for radially varying iris images

Out[7908]=

0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0

Spatial Frequency HcyêmmL

M
od
ul
us
of
th
e
O
TF

200 mm PP

Diff Lim

Tan 41mm

Sag 41mm

Tan 35mm

Sag 35mm

Tan 29mm

Sag 29mm

Out[7929]=

0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0

Spatial Frequency HcyêmmL

M
od
ul
us
of
th
e
O
TF

300 mm PP

Diff Lim

Tan 41mm

Sag 41mm

Tan 35mm

Sag 35mm

Tan 29mm

Sag 29mm

Out[7964]=

0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0

Spatial Frequency HcyêmmL

M
od
ul
us
of
th
e
O
TF

400 mm PP

Diff Lim

Tan 41mm

Sag 41mm

Tan 35mm

Sag 35mm

Tan 29mm

Figure 4.6: MTF for object positions with PP plate for discrete object positions of 200,

300 and 400 mm.

with object position. The off-axis object-image relation is shown in Figure 4.25.

The discrepancy in back focal position is ∆l′ = 0.0083 mm. This variation in

back focal distance can be compensated by inserting a plate which has a variation

in thickness as a function of plate height.

In the following sections an EDOF plate is introduced which does not have

optical power but instead, a variation in thickness is introduced through a non-

planar surface described by high order polynomials. These polynomial surfaces

create a continuous depth of field region by displacing the discrete image positions

with respect to the ray height.

Table 4.3 lists the spatial frequency requirements for imaging the iris in image

space at 2 lp/mm. The optical power of the lens remains constant, therefore the

spatial frequency requirements are listed for 200 ≤ l ≤ 400 mm as follows.

The MTF plots in Fig. 4.6 show the lens performance for three selected object

positions, 200, 300 and 400 mm. From Table 4.3 it can be interpreted that the

lens has the capability for sufficiently imaging the irises at 2 lp/mm at 200 to 300
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Chapter 4. Two Iris Imaging over an Extended Depth of Field

Object (mm) Spatial Frequency (lp/mm)

200 110

300 165

400 221

Table 4.3: Image space spatial frequency requirements for 2 lp/mm in object space

imaged with the lens presented in Table 4.1.

mm but does not satisfy the spatial frequency requirement at 400 mm.

4.3.2 High order polynomial plate (AP)

The first iteration of minimising the variation in BFD is assigning an aspheric

polynomial consisting of only odd terms to surface 8. Throughout the study this

plate will have the acronym AP. The first linear term and the second quadratic

term are neglected as shaping the slope of the central region is not required

when the rays do not propagate through this area. It is interesting to note that

the non-continuous apex that arises from the use of the first linear term does

not generate a faithful representation of the plate performance as the parabasal

ray cannot be used as a reference ray. The change in slope desired to generate

the thickness variation for compensating image displacement with respect to iris

position is provided towards the peripheral region of the plate. The sag of an

aspheric surface is described by Eq. 2.19. As the plate has no optical power the

first term vanishes and leaves the sum of the remaining terms to determine the

shape the surface.

The depth of focus is defined with respect to the optical axis. Imaging off-axis

objects introduces a small deviation in the principal ray angle, where the depth

of focus is defined with respect to. However, this angle is small so we can apply

the small angle approximation and treat the depth of focus parallel to the image

surface.

For the aspheric terms described by Eq. 2.19 the corresponding values are

listed in Table 4.4. The sag of the aspheric surface is shown in Fig. 4.7, both

cross-sectional profile (left) and a full surface sag profile (right). The aspheric
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4.3. EDOF plate for radially varying iris images

Term Value Term Value

y3 3.0725 ×10−4 mm−2 y11 3.96516×10−10 mm−10

y5 -3.525×10−5 mm−4 y13 -2.034×10−12 mm−12

y7 1.5388×10−6 mm−6 y15 6.1903×10−16 mm−14

y9 -3.406×10−8 mm−8 y17 2.1191×10−17 mm−16

Table 4.4: Aspheric coefficients used in the high order EDOF AP.

element is rotationally symmetric therefore the radial angle at which the cross

section is taken is irrelevant. The plate creates an annular region imaging the field

which allocates equal weighing in optimisation for x and y, although containing no

biometric information along the vertical plane.The P-V difference in the optimised

aspheric surface sag is 0.0251 mm for the region involved in iris imaging.

Out[638]=

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
-0.01

0.00

0.01

0.02

0.03

x-coordinate HmmL

Sa
g
Hm
m
L

Figure 4.7: Cross section of the sag and surface sag profile for the AP.

The lens and aspheric plate design has a maximum of 1.27% distortion in the

region where the irises are located in the field. The MTF response are plotted in

Fig. 4.8 for discrete object positions of 200, 300 and 400 mm in the presence of

the aspheric plate. Analysing the improvement over the usable EDOF shows a

degradation in image quality for images formed at small field angles seen in Fig.

4.9. This is noticable for both original PP and AP MTF plots for 400 mm in Fig.

4.6 and Fig 4.8. This degradation is due to the nature of the polynomial when

attempting to compensate the peripheral images.

The plate is optimised for an object range of 200 mm to 400 mm. From Fig.
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Figure 4.8: MTF for object positions for AP

4.9, it can be interpreted that the effective EDOF extension for the aspheric plate

is limited to 200 to 350 mm by the spatial frequency requirement for iris imaging

which is 40% contrast at 2 cy/mm in object space. This gives an extension to

the depth of field by a factor of 2.3 times when compared to a lens conjugate to
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Figure 4.9: MTF variation across desired object region of the AP for maximum inter-

pupillary distance Dp = 70 mm.
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4.3. EDOF plate for radially varying iris images

a finite object position with the same lens parameters.

� 

Figure 4.10: Iris separation over the AP with misalignment, where the x and y within

the red dashed circle are the height and width if the imaging region.

For generalised off-axis imaging over an extended depth of field, the rota-

tionally symmetric EDOF plate element has many advantages. One is that the

element allows one to ustilise misalignment for adaption to different user inter-

pupillary distances, as seen in Fig. 4.10. The initial design has set the inter-

pupillary distance as Dp =70 mm. To allow for the variation in interpupillary

distance the eyes can be displaced within the same annular zone which allows for

a reduction in interpupillary distance. The orientation of blurring for the edge of

the irises is dependent on the angle φ as indicated in Fig. 4.10.

The usable EDOF region for the displaced irises shown in Fig. 4.11 ranges

from 260 to 400 mm yielding an extension of 2.2 times within a region further

from the front vertex of the lens.

4.3.3 Zernike fringe polynomial plate (ZP)

An introduction to Zernike polynomials is given in Chapter 2. Imaging two off-

axis objects of a fixed height with rotationally symmetric optics can offer the

advantage of compromising the central region of the field to achieve a higher spa-

103



Chapter 4. Two Iris Imaging over an Extended Depth of Field
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Figure 4.11: MTF variation at 2 lp/mm across desired object region of the AP for

displaced irises with x = 32± 6 mm and y=4± 6 mm corresponding to an interpupillary

distance of Dp = 60 mm labelled in Fig.4.10

tial frequency towards the peripheral of the field, where the irises are located.

Departing from classical optics can benefit the range of field points required for

EDOF imaging. Non-rotationally symmetric surface profiles can boost the spatial

frequencies in the targeted areas of interest containing ray bundles at the expense

of the performance at the unwanted regions of the field. This is employed by

introducing Zernike polynomials to describe the surface, where terms with a de-

pendency in x are a priority. The basis shape for the surface must be plane

symmetric about the vertical meridian as the irises are assumed identical from

the bridge of the nose. This plate will be referred to as ZP in all associated plots.

Already established that the image position changes in ξ’ with object position l,

we can also note that the relative change in η’ is small. As an annular field is not

a requirement, we can prioritise the meridian in x as this plane determines the

field of view. Therefore, breaking rotational symmetry can offer a boost to the

MTF of the lens across a range field angles along the sagittal plane. A circular

aperture is most common in photography thus the reasoning behind the choice of

polynomials is clear. As the modified surface, Surface 8, is simply described by a

combination of Zernike terms, the sag of the plate is reduced to the sum of the

terms:

z =
N∑
i=1

AiZi(ρ, φ) (4.1)
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4.3. EDOF plate for radially varying iris images

Zernike polynomials are widely used for surface description in freeform optics for

aberration correction[95; 96]. In this application, the non-rotationally symmetric

nature for a combination of polynomial terms can be advantageous for displacing

multiple ray bundles by a single surface. Surface 8 is assigned a Zernike Fringe

surface, where the base terms used to create the sag have a dependency on x,

primarily the astigmatism family, and additional terms to compensate for the y

field listed in Table 4.5. The plate is optimised for the same object region ranging

from 200 to 400 mm,as described in Section 4.3.2,.

Out[624]=

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

0.00

0.01

0.02

0.03

x-coordinate HmmL

Sa
g
Hm
m
L

Figure 4.12: Cross section of the sag of the Zernike surface along the x-axis and surface

sag profile.

Zernike Term Coefficient Value (Waves)

4 2ρ2 − 1 7.7714×10−5

5 ρ2 cosφ 8.3556×10−4

11 ρ3 sin 3φ -1.960×10−4

12 (4ρ2 − 3)ρ2 cosφ -5.037×10−6

20 (5ρ2 − 4)ρ3 cos 3φ -4.696×10−8

21 (15ρ4 − 20ρ2 + 6)ρ2 cos 2φ 6.1341×10−9

27 ρ5 sin 5φ 1.354 ×10−6

28 (6ρ2 − 5)ρ4 sin 4φ -1.005×10−8

32 (56ρ6 − 105ρ4 + 60ρ2 − 10)ρ2 cos 2φ 9.1824×10−12

Table 4.5: Zernike terms for the non-rotationally symmetric plates.

A cross section along the sagittal plane is also shown in Fig. 4.12 (left). The
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Chapter 4. Two Iris Imaging over an Extended Depth of Field

sag difference in the meridian of interest, along x, is 0.034 mm. Sag peaks visible

on the top and bottom of the surface profile are a consequence of optimisation

for a non-rotationally symmetric image area. This sag could be modified at the

manufacturing stage to exclude the sag peaks, the regions shown in red. That

is, the cross-sectional area of interest on the ZP in which the ray bundles for

imaging the iris can be prescribed in ISO drawings. Areas of the ZP that include

element sag not required for imaging critical ray bundles can be manufactured or

polished to have a gradual slope inclination that is more suitable for tolerancing

and opto-mechanical mounting. Distortion along the ξ-meridian has a maximum

value of 0.21% in the regions where the irises are imaged.
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Figure 4.13: MTF for object positions with ZP plate

The improvement in spatial frequency response for the three chosen discrete

object positions is shown in Fig. 4.13. The MTF at the critical spatial frequency

for iris imaging across a range of object positions is shown in Fig. 4.14

The Zernike plate has the capability to image the two irises from 200 to 400

mm inclusive yielding an increase in depth of field of ∆Z = 3.1 times that of the

conventional lens introduced in Section 4.3.1.
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Figure 4.14: MTF variation across desired object region for Zernike modified plate.

4.3.4 Curved plate (CP)

The compensatory effect of a curved plate is compared to the planar plate with

a singular polynomial surface for EDOF in Section 4.3.1, and is denoted as CP.

The three proceeding lenses, surfaces 1− 6, remain unchanged from the examples

previously presented in this study, where central thickness of surface 7 element

and the back focal distance of surface 8 are constant. The radii of curvature for

surfaces 7 and 8 are optimised, for the condition where R7 = R8 with a conicoid

of revolution of κ = −1 on both.

Surface Radius Thickness Material Conic

7 -5.0387 0.1 E48R -1

8 -5.0387 0.0825 Air -1

Table 4.6: Lens data for the curved-plate system, all lens data including thicknesses

remain the same as all other solutions. Surfaces 7 and 8 are optimised to have radii of

curvature R7 = R8.

The lens data for the curved plate is presented in Table 4.6. For the modified

lens the optical power is modified thus the focal length is decreased to f = 3.61

mm and F#w = 1.825, reducing the speed of the lens-plate combination compared

to the planar versions due to the additional power provided by the curved plate.

Surface 8 is also assigned a polynomial surface described by Zernike polynomials

in Eq. (2.57) where the terms are listed in Table 4.7.
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Chapter 4. Two Iris Imaging over an Extended Depth of Field

Zernike Term Coefficient Value (Waves)

5 ρ2 cosφ 0.0157

11 ρ3 sin 3φ -0.0630

12 (4ρ2 − 3)ρ2 cosφ 0.0194

21 (15ρ4 − 20ρ2 + 6)ρ2 cos 2φ 2.2845 ×10−3

Table 4.7: Zernike terms for the non-rotationally symmetric curved plate.

The ag difference of the curved plate including the Zernike surface is shown in

Fig.4.15. The maximum sag deviation of the curved plate along the x-meridian is

0.030 mm, which can be attributed to the radius of curvature of the two surfaces.
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Figure 4.15: Cross-section sag difference between surfaces of the CP. Surface sag of

surface 10, where the sag is the combined radius of curvature and Zernike fringe terms.

Critical spatial frequency of 40% modulation is different from the planar plate

designs as the optical power is altered with a non-zero radius of curvature for

surface 7 and 8 . The modified spatial frequencies are listed in Table 4.8.

Object (mm) Spat Freq (lp/mm)

200 109

300 164

400 220

Table 4.8: Spatial frequency in image space required to image the iris at 2 lp/mm.

MTF plots shown in Fig. 4.8 show the curved plate performing well at larger

object distances and reducing quality with increased image height from the axis.
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4.3. EDOF plate for radially varying iris images

This can be attributed to the radius of curvature suiting images formed in close

proximity to the optical axis.
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Figure 4.16: MTF for object positions with curved plate CP

The EDOF region in which the irises can be sufficiently detected ranges from

240 - 400 mm, shown in Fig. 4.17, yielding an improvement of ∆Z = 2.5 times.
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Figure 4.17: Usable EDOF region with curved plate CP.
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Comparative analysis of radial plates

The polychromatic rms wavefront error (WFE) across the field for all plates is

presented in Fig. 4.18. For the full field plot (top), it can be clearly seen that

the regions about the axis can be compromised for larger field angles, which have

rms WFE values visibly above 0.4 waves. It is noted that the aspheric plate at

200 mm, plotted in a continuous blue line, has a sharp increase in rms WFE at

the field point ±38 mm.
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Figure 4.18: Comparison of rms vs field (+x) for λ = 0.94µm with PP - planar plate,

AP - aspheric plate, ZP - Zernike plate.

The region of interest is the area surrounding the irises, ±x= 35 ± 6 mm. The

plot containing the irises (bottom) shows that the initial lens with the parallel

plate can capture 350 and 400 mm while performing very poorly at large field

angles as the irises approach the lens at 200 mm. An increase in WFE arises

with the aspheric surface struggling with the variation in radial profile required

to compensate the image position.
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Figure 4.19: Sag difference of all modified plates, full element diameter (left) and the the

illuminated region shown (right).

The aspheric plate shows that for the regions of interest the contrast at 200

remains low although shows an improvement on the parallel plate for the same re-

gion. This is reiterating the incapability of the lens and aspheric plate combination

to meet the 40% at 2 cy/mm in object space for large field angles. The difference

in sag for the iris region of interest can then be plotted, shown in Fig. 4.19. In the

case that the y-field is zero, the surface sag of the three elements would appear

similar in shape with varying surface slopes. However, due to the non-zero y-field

that encloses the height of the irises the ZP and CP can be modified by adding

y-dependent polynomial terms in Eq.(4.1), which adjusts the sag encompassing

all field points. The aspheric plate does not share this characteristic, described

by Eq.(2.19).

The extended range of object positions over which the lens can image the irises

is one metric for determining the suitability of the plates to the application. The

extension in depth of field can be quantified by comparing the MTF performance

between 200 mm and 400 mm as shown in Fig. 4.20. The optimised lens with the

parallel plate is shown to struggle with large field angles but achieve an increase

of two-fold in depth of field. The aspheric lens can correct for the large field

angles, but cannot compensate for the long object distances. The Zernike plate

shows a variation in performance across the EDOF range while all are above 40%

contrast.

The combined lens and plate sensitivity to misalignment of the user is plotted

by the dashed lines in Fig. 4.20. The CP and ZP can be seen to be unaffected by
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Figure 4.20: MTF as a function of object position for misalignment or iris position

the misalignments. The misalignment of the Zernike plate by +3 mm vertically

falls below the limit of iris recognition at distances closer to the lens. From Fig.

4.12 (right) it can be seen that the sag changes toward the bottom of the surface

such that a decenter with a positive height (+y) will generate a lateral shift in the

image in the opposite direction generating a longitudinal image shift that moves

the image point further from the CCD plane. It can also be noted that a tilt of

the head with respect to the lens, which is within the depth of field and below

a 10 percent tilt will have a negligible effect as both irises will be positioned in

different zones of the lens and so remain imaged. Figure 4.20 shows the apparent

inability of the curved plate to image with good quality at large field angles. The

radius of curvature which was initially thought to aid the refraction angles for

imaging lowering image quality.

The back surface of the plate in this design is solely responsible for image

point displacement with respect to the object positions. Figure. 4.22 shows a

footprint diagram of Surface 8, where all ray bundles propagate through the plate

surface together. It can be observed that the ray bundles are overlapping, in
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4.3. EDOF plate for radially varying iris images
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Figure 4.21: BFD vs object position for all plate designs

particular as the bundles approach the center of the plate. These overlapping

ray bundles create a demanding variation in sag across the element surface. This

solution proves too sensitive to misalignment for use in miniature devices due to

the natural movement of the user and the handheld device. However, for a fixed

1.53 mm 

Figure 4.22: Footprint of EDOF element with horizontal variation taken from Zemax.
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Chapter 4. Two Iris Imaging over an Extended Depth of Field

position camera such as in automotive biometric cameras this design could prove

to be a valuable asset for refocusing.

4.4 Irises varying in height

The second configuration presented in Section 4.2 is the vertically varying iris

position. The iris images on the detector are now separated spatially in both x and

y. Re-optimisation of the lens from Section 4.3.1 is carried to suit modifications

made in object positioning in the field. The corresponding data is presented in

Table 4.9 and 4.10. The lens consists of three plastic components where the first

is an air-spaced doublet which is achromatic within the lens compensating for

chromatic aberration induced by the plate and third lens. The lens parameters

are optimised for the object distances and respective heights as listed in Table 4.11

with a parallel plate, indicated by surfaces 7 and 8. These surfaces are modified

during the study in Sections 4.4.1 and 4.4.2.

Surf Rad (mm) Thick (mm) Glass Conic

1 3.0032 0.7000 PMMA -1

2 -27.7637 0.0327 Air -1

3 1.2552 0.7000 E48R -1

4 0.7984 1.000 Air -1

5 2.2545 0.7436 E48R -1

6 -5.8871 1.3122 Air -1

7 Infinity 0.1000 E48R 0

8 Infinity 0.0875 Air 0

Table 4.9: Lens data for lens and parallel plate with the vertical positioning of irises with

object position.

Figure 4.23 presents the lens layout as modelled in Zemax with an entrance

pupil diameter of 2 mm and a focal length of 3.48 mm, yielding an average work-

ing F-number of F#w=1.76. The average F-number is taken as multiple object

positions are imaged with this lens. The total track length of the lens is 4.67

mm where the stop is positioned on Surface 1. For vertical iris movement the
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4.4. Irises varying in height

Surf A (mm−3) B (mm−5) C (mm−7) D (mm−9)

1 0.0254 1.1204 ×10−3 -3.941 ×10−3 -2.445×10−5

2 0.0212 -7.258 ×10−3 -4.273 ×10−3 -8.878 ×10−6

3 -6.818 ×10−3 -0.0220 -3.429×10−3 -1.6362 ×10−5

4 0.0205 -0.0629 8.8140×10−3 -1.126×10−4

5 -0.0133 -0.0207 -1.508×10−3 8.0644×10−5

6 8.3403×10−3 -0.0275 3.8030×10−3 1.1654×10−4

7 0 0 0 0

8 0 0 0 0

Table 4.10: Aspheric coefficients for lens and parallel plate with the vertical positioning

of irises with object position, where A, B and are even aspheric coefficients of 4th, 6th,

8th and 10th.

performance of the modified lens-parallel plate combination will be denoted as

PPV.

1 2
3 4

5 6
7 8

7 8

CCD

CCD

Figure 4.23: Lens layout from Zemax with prescription from Table 4.9 with a y-z coor-

dinate system. The diagram corresponds to the irises positioned at 300 mm from the

vertex of the lens in the main diagram. All three object-image conjugates are shown in

the red box where the red bundle of rays corresponds to an object at 400 mm, green at

300 mm and blue at 200 mm with heights according to Table 4.11.

The lens has -0.26 µm of lateral colour which lies inside the Airy disk of radius
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Chapter 4. Two Iris Imaging over an Extended Depth of Field

2.02 µm at the largest field angle. A maximum distortion of -0.69% is induced at

l = 200 mm around the area of interest enclosing the irises, decreasing with an

increasing value of l.

Object (mm) Y-Field (mm) X-Field (mm)

200 − 15 32 ± 6

300 0 32 ± 6

400 + 15 32 ± 6

Table 4.11: Iris positioning in object space, where the average interpupillary distance is

taken as 32 mm.

The back focal distance for the lens presented in Table 4.9 over a range of

object distances from 200 to 400 mm is plotted in Fig. 4.25. The choice of the

furthest distance of 400 mm is the to the limit of angular resolution of the lens

with a fixed diameter of 2 mm. The shift in back focal distance is ∆BFD= 0.0187

mm. The lens presented here has a depth of focus of ∆z = 0.0062 mm, meaning

that the nearest and furthest object distances of the parallel plate design will lie

outside the depth of focus, resulting in a blurred image in which the irises cannot

be resolved. As the image blur is a result of defocus, a shift in the image position

to within the depth of focus can image quality to sufficiently resolve the irises.

It is clear from Fig. 4.25 that a parallel plate does not influence a change in the

BFD therefore the profile of the BFD with a displacement of image position is

Figure 4.24: Visual representation of Table 4.11 where the irises for discrete object

positions are positioned at separate heights in the field to be imaged on the separate

regions of the detector.
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4.4. Irises varying in height

determined by the lens and aspheric terms. To compensate the BFD variation

shown in Fig.4.25, two solutions are proposed. The first is a simple wedge element

where the planar surface of Surface 8 is tilted in Section 4.4.1. The second is a

cylindrical-wedge element where Surface 7 is cylindrical and Surface 8 is tilted,

this is presented in Section 4.4.2.
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Figure 4.25: Variation in image position with respect to object position for the lens with

parallel plate listed in Table 4.1. The linear trend produced by the parallel plate can

be compensated by replacing the plate with a novel optical element. Comparative study

includes parallel plate with vertical iris position (PPV), linear wedge plate (WP), and

cylindrical lens (CL).

The image is conjugate to an object at positioned at 300 mm. The total depth

of field for this lens would be ∆Z = 69.91 mm. All extensions in depth of field

for this design orientation will be compared to this value.

4.4.1 Planar wedge element (WP)

The irises are positioned at a fixed vertical height with respect to object distance

with positions laid out in Table 4.11, and visually represented in Fig. 4.24. To

compensate the variation in the back focal distance, a simple wedge solution is

proposed where the thickness of the wedge decreases from bottom to top, abbre-

viated in all figures as WP.
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7 8 CCD

Figure 4.26: Lens with planar wedge where the tilt of surface 8 is optimised to compensate

the variation in BFD

A tilt about x of -1.56 deg is assigned to Surface 8 creating a wedge element

which keeps the original central thickness but now is thicker towards the bottom

and thinner at the top compensating for the irises when positioned as in Table

4.11, shown in Fig. 4.26. The wedge element has the same horizontal profile ±x

with a change in ±y and so the interpupillary distance correction is dependent on

the field correction of the preceding lenses. The variation in BFL for this element

is shown in Fig. 4.25 (plotted in purple) which shows that on-axis the wedge

solution can displace the image points sufficiently to resolve the irises over the

given object range. To analyse the performance of the wedge the the irises are

misaligned and the results are shown in Fig. 4.27. The wedge offers an extension

in depth of field of 2.15 times compared to a lens of similar parameters.

Misaligning the eyes with respect to the lens results in a loss in contrast at the

furthest object regions, reducing the usable depth of field for the wedge. Further

consideration is required to make the wedge more robust and less sensitive to

misalignment. The wedge and lens have -0.2559 µm of lateral colour and an Airy

radius that varies from 2.02 to 2.01 µm which indicates that lateral colour is not

problematic in this design. The maximum field curvature present is 0.60% for the

field containing the irises.

118



4.4. Irises varying in height
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Figure 4.27: Misalignment of irises with respect to the lens and plastic wedge element.

4.4.2 Cylindrical wedge element (CL)

To increase the EDOF region of the simple wedge, a solution is proposed to

minimise the refraction through the plate. This is done by conjugating surface

7, the front surface of the plate, to the aperture stop, creating a CL. When

considering the principal ray, the exit pupil is the conjugation plane, however the

aperture stop is chosen here as the best position for minimising refraction of both

principal and marginal rays.

The front surface of the wedge is assigned a biconic surface, which can be

described as:

z(x, y)biconic =
cxx

2 + cyy
2

1 +
√

[1− (1 + k)c2
x(x2 + y2)− (1 + k)c2

y(x
2 + y2)]

, (4.2)

where the radius of curvature Rx = 1/cx is set to zero to generate a cylindrical

surface:

z(x, y)cylinder =
cyy

2

1 +
√

[1− (1 + k)c2
y(x

2 + y2)]
. (4.3)

The vertical radius is concentric to the exit pupil of the lens with Ry= -4.589 mm

and the horizontal radius Rx remains planar. As Ry is concentric to the aperture

stop, the refraction angles of the principal ray and marginal rays are reduced at
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Chapter 4. Two Iris Imaging over an Extended Depth of Field

Surface 7. The back surface is optimised for a tilt to create the optimum thickness

variation with height over the wedge to compensate the variation in BFD, the tilt

on the wedge in our design is -3.13 deg. The lens and cylindrical plate combination

has a maximum of -0.53% in x for the closest object position. The Airy radius

has a value of 2.04 to 2.02 µm for the object range 200 to 400 mm. A maximum

of -0.2 µm of lateral colour is induced which can be considered negligible when

compared to the diameter of the Airy disk.

7 8 CCD

Figure 4.28: Lens with biconic wedge where the Ry of surface 7 is concentric to the exit

pupil of the lens. The tilt of surface 8 is optimised to compensate the variation in BFD

The cylindrical lens can achieve an imaging range of 200 to 400 mm object

space, yielding an extension in depth of field of 2.9 times compared to the initial

PP design.

Figure 4.29 shows that the irises can be misaligned with respect to the lens

and remain above the imaging criteria. The plate is also insensitive to varying

IPD as this would depend on the ability of the lens to balance field dependent

aberrations. As this element accommodates all IPDs, this plate would be suited

to a commercial market since the plate can be applied to any user without prior

knowledge of the user IPD.
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4.4. Irises varying in height

4.4.3 Comparative analysis of wedge plates

Figure 4.30 shows the rms wavefront error over the horizontal field. From this

plot, it can be seen that the peripheral regions of the field, which contain the irises,

are prioritised in the design of the lens. It is understood that the three elements

preceding the EDOF plate are responsible for correcting the field aberrations.

It is also evident that the performance about the optical axis is compromised,

especially at large field angles when the irises are positioned at 200 mm yielding

an rms WFE of 0.45 waves at λ= 940 nm.

There is very little difference in performance between the tilted wedge and

biconic wedge elements with central positioning of the irises i.e. positioned within

the designated region. The rms WFE for all object distances varies from 0.02 to

0.025 waves. However, the main difference between the wedge and cylindrical

elements lies in the sensitivity to misalignment. Comparing misalignment of the

irises for both elements is shown in the respective sections. Figure 4.27 represents

the achievable MTF for the spatial frequency at 2 lp/mm for imaging the iris.

As expected the irises can be misaligned with respect to the lens-plate com-

bination with little decrease in MTF. It is also seen that the wedge cannot
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Figure 4.29: MTF over the EDOF region with iris misalignments.
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Figure 4.30: Root mean squared wavefront error across field (+x) for the tilted wedge

WP and cylindrical lens CL. Little effect between the wedge and biconic designs on-axis.

compensate the image position for large object distances with a tilt of Surface 8.

Misalignments of the irises for the cylindrical lens is shown in Fig. 4.29. The total

Seidel aberrations at the image plane are shown for all variations of the vertical

plate in Fig. 4.31. A variation in field curvature, shown by the green box, demon-

strates the advantage of implementing the cylindrical surface and tilted surface

combination. This combination also induces coma such that there is a positive

residual, seen in the third column of Fig.4.31. The modification of the plates have

a minimal effect on chromatic aberration and so are not shown. Image surfaces

are shown with respect to the CCD plane in Fig. 4.32. Parabolas are used to

plot the image surfaces for simplicity. The centre field image points are formed

behind the CCD plane which allows for the field curvature to allow for the off-axis

images to be formed about the CCD plane.

Image surfaces can be grouped by conjugate object distance and scaled, shown

in Fig. 4.33. The leftmost box represents the image surfaces produced by irises
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4.4. Irises varying in height
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Figure 4.31: Total lens monochromatic Seidel aberrations for all vertically varying plates:

first column represents the lens-parallel plate PP combination, the second column con-

tains aberrations of the lens-wedge plate WP, and third column shows the monochromatic

aberrations of the lens-cylindrical lens WP combination.

positioned for l = 200 mm at y = −15 mm, l = 300 mm at y = 0 mm in the

centre box, and rightmost box contains the image surfaces for l = 400 mm at

y = +15 mm.

Image surfaces for l = 200 mm show that both the wedge and cylindrical sur-

face modifies the position of the images with respect to the parallel plate images.

Minimal modifications are ideal for objects at 300 mm as the lens is optimised
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Figure 4.32: Image surfaces for objects positioned at (left) 200 mm, (middle) 300 mm

and (right) 400 mm as defined in Table 4.11 with height in +x.

for this position. Wedge and parallel plate image surfaces demonstrate identical

behaviour with coinciding parabolas while the introduction of the cylindrical sur-

face displaces the image surface, due to the decrease in field curvature seen in Fig.

4.31. The rightmost box containing the image surfaces for objects positioned at

l = 400mm. The thickness of the plate required to displace the image points is

larger than the central thickness of the plate. The wedge plate shows a modest

change in surface shape. However, it is the cylindrical lens that successfully dis-

places the image points toward the CCD plane where the images can satisfy the

spatial frequency criterion for imaging the iris at 2 lp/mm, already seen in Fig.

4.29. The modest displacement of image points shown by the wedge explains the

inability of this solution to image the furthest object region, seen in Fig. 4.27.

There is much focus in the consumer industry on principal ray angles incident

on the CCD plane. Detector manufacturers suggest keeping the edge-most PR

angle below 35 degrees for most commercial sensors. Figure 4.34 shows that

the designs presented here adhere to detector guidelines and should not create

problematic crosstalk between pixels.
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4.5. Conclusion

Out[23612]=

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

0.06 0.07 0.08 0.09 0.10
0.0

0.2

0.4

0.6

0.8

Back focaldistance HmmL

Im
ag
e
he
ig
ht
on
CC
D
Hm
m
L

Ê l' 200 CL

Ê l' 200 WP

Ê l' 200 PP
Out[23892]=

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

0.06 0.07 0.08 0.09 0.10
0.0

0.1

0.2

0.3

0.4

0.5

Back focaldistance HmmL

Im
ag
e
he
ig
ht
on
C
C
D
Hm
m
L

Ê l' 300 CL

Ê l' 300 WP

Ê l' 300 PP

Ê l' 300 PP

Out[24412]=

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

0.06 0.07 0.08 0.09 0.10
0.0

0.1

0.2

0.3

0.4

Back focaldistance HmmL

Im
ag
e
he
ig
ht
on
CC
D
Hm
m
L

Ê l' 400 CL

Ê l' 400 WP

Ê l' 400 PP

Out[26240]=

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

0.06 0.07 0.08 0.09 0.10
0.0

0.1

0.2

0.3

0.4

0.5

Back focaldistance HmmL

Im
ag
e
he
ig
ht
on
CC
D
Hm
m
L

Ê l' 300 CL

Ê l' 300 WP

Ê l' 300 PP

Ê l' 300 PP

Out[26290]=

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

0.06 0.07 0.08 0.09 0.10
0.0

0.1

0.2

0.3

0.4

Back focaldistance HmmL

Im
ag
e
he
ig
ht
on
CC
D
Hm
m
L

Ê l' 400 CL

Ê l' 400 WP

Ê l' 400 PP

Out[26197]=

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

0.06 0.07 0.08 0.09 0.10
0.0

0.2

0.4

0.6

0.8

Back focaldistance HmmL

Im
ag
e
he
ig
ht
on
CC
D
Hm
m
L

Ê l' 200 CL

Ê l' 200 WP

Ê l' 200 PP

Figure 4.33: Image surfaces for objects positioned at (left) 200 mm, (middle) 300 mm

and (right) 400 mm as defined in Table 4.11.

4.5 Conclusion

Two design configurations for imaging both irises over an extended depth of field

are presented. Each design configuration presents multiple solutions. The iris

dimensions are chosen for the case of maximum separated irises, an IPD of 35

± 6 mm. A smaller IPD can be chosen for a specific user. Although this design

is based upon simple geometry and therefore decreasing the IPD will decrease
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Figure 4.34: PR angle incident on CCD plane for all plate solutions.

the principle ray angle and so reducing the required image displacement. This

statement only holds for a lens of the same parameters. Considering all lenses,

smaller interpupillary distances have smaller field angles and so do not induce

large amplitudes of field dependent aberrations. It is important to note that the

degree of variation of the sag across the plate surface is fundamentally dependent

on the lens preceding the plate. The sole purpose of the plate element should be

for image point displacement.

Two viable solutions for the high yield consumer market would be the Zernike

radially varying plate and the cylindrical lens vertically-varying plate. Both plates

are capable of extending the depth of field of their associated lenses by 3.1 and

2.9 times respectively. Both solutions show an acceptable tolerance range, where

the Zernike plate shows a critical decrease in MTF at large principle ray angles as

the irises are displaced vertically. One aspect to note in design is that the radially

varying thickness plates should be produced specifically for a user specific IPD

due the demanding sag variation required. This is not the case for the vertically

thickness varying plates as the statistical variation in IPD is corrected for in the

fundamental field dependent aberration correction with aspheres on surfaces 1 to
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4.5. Conclusion

6. It is this reason that the vertically thickness varying plates would be the best

solution for a high yield market such as the consumer imaging market. As the

lens-plate combination can be used by all IPDs, then the specificity for biometric

imaging would be dependent on the calibration and software.

127





Chapter 5

Dual F-Number Widefield Lens

with Variable Depth of Field

5.1 Introduction

This chapter addresses depth of field in widefield photographic lenses for imaging

in the visible spectrum. In contrast to the previous chapters, the lens presented

here is not limited to strict spatial frequency requirements for biometric identifi-

cation. Instead, this work demonstrates more traditional optical design methods

to achieve an extended depth of field over a large field of view.

Traditional smartphone lenses have low F-numbers with four to six plastic

elements comprised of highly aspheric surfaces. The term traditional in this sense

refers to the extreme element shapes required for aberration correction over a

short TTL in miniaturised cameras. The fundamental parameter for these lenses

is the TTL, that is the depth of the lens barrel from the front vertex to the image

plane. The TTL is assigned by the manufacturer of the device. In the past, this

thickness typically had a value of 5 mm. This fundamental design restriction

ultimately formed the guidelines associated with smartphone lens design such as

the aperture stop position at the front lens vertex. Stop position determines the

field dependent aberration correction ability of the lens. The number of elements

within the lens module is restricted to the design space. Wafer level lenses were

proposed, but the resolution proved much lower than standard refractive elements

[97]. To balance aberrations over the FOV current miniature camera lenses take

on extreme shapes described by polynomial series. These shapes are non-intuitive

for optimal aberration balancing and so brute force optimisation methods are

required to find a suitable global minimum solution.
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Advances within the field of optical design for smartphone lenses has resulted

in exploring the feasibility of alternative surface profiles [98] [99], where improve-

ments are effective but small due to the underlying design restrictions. Many

of the recent advances in the field of mobile device imaging are computationally

based, including digital refocusing and image blurring for portraiture imaging. It

is proposed that if the defining parameter of these lenses could be increased, all

subsequent thickness-dependent parameters could be relaxed. With this in mind,

a novel lens orientation is presented where the module is repositioned within the

device housing as shown in Fig. 5.1. Here, the front lens coincides with the corner

of the phone or device.

A reorientation of the lens position which can be incorporated without mod-

ifying the external housing is presented in Fig. 5.1. Employing this new design

concept can offer new possibilities for commercial imaging. The target application

for the proposed lens is video conferencing where a large field of view is desirable.

The field can be sub-sectioned such that the central field has a shallow depth of

field with high resolution. The larger fields prioritise identifying others partici-

pating in the meeting, where the scene has a lower image quality but has a large

depth of field that is less sensitive to a person’s seating position. This effect is

realised by a dual F# lens where the incoming ray bundles are vignetted to reduce

the F# at larger fields. The loss of intensity on the CCD can be recovered by

employing binning at the edge of the scene.

5.2 Dual F-number Widefield Lens Design

A wide angle lens is presented in this section which has a maximum TTL of 15

mm, approximately three times the TTL of camera modules found in current

conventional smartphones. This extra design space is feasible by re-positioning

the lens within the device housing so that the front lens is orientated at the

corner of the phone or device. The combination of design space demonstrates the

possibility of implementing fast lenses that resemble classical optics. An increased

TTL implies that the aperture stop position can become a design parameter.

Freeing the aperture stop position offers a benefit in correction of principal ray
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15 mm
TOTR

device 
length

device width

Figure 5.1: Proposed new position of camera lens within the phone or device. Half of

the device is blank to illustrate the new camera location.

dependent aberrations, discussed in Chapter 2.

The modified lens orientation is not completely free from housing restrictions.

A limitation on element diameters exists for all components, this is the device

thickness. The rectangular front lens must fit within the device such that the

lens height is defined by the device. However, the front lens width does not have

any physical constraints. The optical limitation on the front lens geometry is the

usable field angle. Stop position can also be used to control the diameter of the

internal elements, so that the elements fit upright within the device housing. The

scene is imaged with polychromatic light across a 90◦× 40◦ field of view. Typical
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CCD

1 2

3 4 5 6 7 8 9 

10 11

12 13

AS

Figure 5.2: Widefield lens with total track length of 14.79 mm. All lenses adhere to the

criteria of edge thickness being larger than 1/10 of the central element thickness.

wavelengths used in photographic imaging are 486 nm, 587 nm and 656 nm,

therefore consideration must be given to the choice of lens material to minimise

chromatic effects. The first element in the lens is a glass element labelled as

surface 1 and 2 in Fig 5.2. Glass is chosen for optimal chromatic correction as

the range of available plastics is limited. In addition, the most external lens is

recommended to be made from tough glass to withstand scratching. In the case of

a strong first element, a curved coverglass around the corner enclosing the camera

can be considered.

The entrance pupil has a diameter of 1.72 mm, which is comparable to the

semi-diameter for many of the components in the lens. The large pupil diameter

is not common in wide field imaging due to the strong field dependent aberra-

tions. Although the lens presented here claims a semi-classical solution, multiple

aspherical surfaces are required for a large pupil diameter. It is worth noting that

the polynomial orders here are reduced compared to current mobile phone lenses,

only using up to 8th order and all conicoids of revolution have a value in the range

between −1 ≤ κ ≤ 1.1.
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l

AS
CCD

∆Z0°

∆Z45°

∆Z45°

Figure 5.3: Dual-F# lens vignetted by an elliptical AS with yielding a variation in DOF

across the field.

Function Target Value

Working F-number 2

Ray Height in x 4 mm

Incident Ray Angle 20 deg

Relative Illumination ≥ 50 %

% Distortion ≤ 20 %

Total Track Length 15 mm

Min Edge Thickness in Glass 0.1 mm

Min Edge Thickness in Air 0.1 mm

Table 5.1: Input parameters for optimisation of the panoramic lens.

The lens data is presented in Table 5.2. A large front lens is responsible for

collecting all field angles. Powerful front lenses can reduce the dimensions of the

following elements. This is important as the elements must fit within the device

housing inclusive with their mounting. The largest internal element diameter is
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5.2. Dual F-number Widefield Lens Design

the last element with a semi-diameter of x =3.5 mm. The vertical component

radius can be limited to y = 2 mm which comfortable fits within the device

housing. This type of lens geometry is possible due to plastic moulding.

The lens has an F-number of F# = 2.32 for a full unobscured aperture with

entrance pupil diameter of 1.7 mm and a focal length of f = 3.96 mm. F-numbers

of mobile phone modules are currently pixel limited. The maximum entrance pupil

diameter is therefore determined by adequate pixel sampling of the Airy disk.

Dual channel lenses typically have a central ray path and a secondary path

which is created by a beam-splitting component. This requires a generous design

space, especially when considered within a mobile phone. In this design, strategi-

cally vignetting the incident ray bundles close to the AS can offer a dual F# lens

using only the primary ray path. It is proposed that the central field retain the

original F# while vignetting the larger field stops down the beam effectively in-

creasing the F# of the lens, shown in Fig. 5.4. This approach creates a variation

in depth of field across the scene, where 2(∆Z0◦) ≈ ∆Z45◦ .
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Figure 5.4: Left: Relative illumination for a full clear aperture and for the elliptical stop.

Right: working F# for full aperture and for elliptical aperture.

Vignetting a widefield lens is not a trivial task as the largest fields are com-

pressed and geometrically skewed, as seen in Fig. 5.6. These reduced beam cross
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sections lead to illumination reduction for large field angles with a full clear aper-

ture that follows the cos4 θ illumination drop-off [13]. The field angle (45◦, 20◦)

is the most extreme point in the field of view. For this point the transmitted

illumination is shown by a dashed purple line in Fig. 5.4. The edge illumination

is approximately 50% for a full clear aperture. Introducing an ellipticity to the

stop and vignetting half of the beam reduces the illumination by a further half.

This effect is highlighted by the continuous purple line in Fig. 5.4. This reduction

only exists toward the edge as the central fields are unobstructed.

Figure 5.5: Longitudinal chromatic aberration about the image plane where the origin

represents the CCD plane.

To simulate this effect without a detrimental loss of light to the system, the

incoming ray pencils are modelled in Zemax whereby each field is compressed

in dimensions as appropriate in the presence of the AS. The proposed design

approaches a more classical lens with basic spherical surfaces. Plastic is chosen

for the internal lens material as the elements are lightweight and inexpensive to

manufacture. The range of polymers for imaging is restricted in range of RIs, and

the residual LCA for the lens is plotted in Fig. 5.5.

A schematic for the lens vignetting including the modified aperture stop (AS)

is shown Fig. 5.6. The physical dimensions of the AS are designed to adhere to
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5.2. Dual F-number Widefield Lens Design

the field compression modelled in Zemax. For a conjugate object distance of 1m

the F# for the central field is 2.32. Vignetting is not experienced equally across

the field. Therefore, the F# increases with increasing field angle. That is, the

F# increases as the section of the incoming ray bundle is truncated, where the

largest obstruction happens at 45◦, reducing the beam by half yielding an F# of

4.25. The total DOF for the unobscured fields is calculated from Eq.(1.26) as 744

mm at a mean wavelength of 550 nm, that is ± 371 mm when calculated directly

from the equation. It can be extrapolated that scene has a total DOF of 1.49 m

at the edge of the field.

Spot diagrams for the vignetted ray bundles are shown in Fig. 5.7. It is

apparent that the lens performance diminishes with increasing field angle. A

pixel size of 0.83µm is required to sample at Nyquist frequency. Recent advances

in diminishing pixel size allow for 0.8 µm pixels. The spatial frequency response

of the widefield lens is shown in Fig. 5.8. A sufficient sampling of image points

across the field of view shows that the lens produces good image quality that is

not compromised by aberrations with the exception for the very limiting edge of

the field. This loss in contrast relates to the loss in illumination that was observed

for the same field point in Fig 5.4.

y

x

y

x

elliptical stop

central field

full
aperture

Figure 5.6: Light transmitted through the lens full aperture stop (black) and elliptical

aperture stop (dashed red perimeter) showing the vignetting within the lens to achieve

a central field of F/2.32 while the larger field angles are imaged at F/4.25.
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Figure 5.7: Spot diagrams for the vignetted beams of Airy disk radius 1.67µm.

Distortion control can be challenging in fast lenses. In this lens the design

follows a more conventional approach for widefield lens design where the aperture

stop is located at the center of the lens. This allows for a balance of elements

at both sides of the stop. Residual distortion at the edge of the field is -14.8%

distortion, which can be easily corrected computationally as no image blur is

introduced. Table 5.2 lists multiple strong radii present in this design. A long

TTL allows for optimal balancing of optical power within the lens to effectively

reduce the field curvature on the CCD plane, shown on the right in Fig. 5.9.

Once vignetted, the effect of field dependent aberrations is reduced. The rms

wavefront error across the largest half field is shown in Fig. 5.10, where the

performance across all channels are close to the diffraction limit.
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Figure 5.8: MTF for compressed pencils simulating the presence of the elliptical stop.

Pixel Binning

On-chip binning is the process of summing the charge from groups of adjacent

pixels at the output node capacitor of the CCD [100]. In doing so, the group of

pixels can be considered as one large pixel. Binning is applied to this application to

counteract the loss of intensity experienced by large field angle due to vignetting.

The CCD is divided into sub-sections where the vignetted fields are binned as

4×4, while the central field is not binned. This approach can adequately sample

across the FOV, avoiding under and oversampling of image points. The CCD

sectioning for binning purposes is shown in Fig. 5.11. Implementing this effect in

Zemax, field angles are vignetted by weighting functions, that is where a smaller
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Figure 5.9: Left: percentage distortion across the field.Right: field curvature at the mean

wavelength of λ = 550nm, sagittal deviation from the CCD plane is shown in pink and

tangential deviations in purple.
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Figure 5.10: rms wavefront error across the field of view for the elliptically vignetted

aperture.

cross-section beam propagates through the lens while retaining the intensity of

a full beam. This effectively simulates the output signal from the 4x4 sampled

pixels for large angles.
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90°

40°4x4 4x4

Figure 5.11: Binning of pixels in the F/4.25 and F/2.32 regions.

Zemax simulations cannot faithfully represent the required binning areas, only

for central and edge effects where the fraction of beam truncation is in whole or

half. For a pixel size of 0.8 µm and proposed sensor dimensions of 7.8×4mm

requires an active pixel area of 9750×5000. Detectors of these dimensions can be

manufactured although it is worth noting that the active pixel area is approxi-

mately equal to the two adjacent standard CCD sensors together. A two-sensor

approach could be employed if the discontinuity in the centre of the field is digi-

tally corrected.

Mechanical Refocus

Asymmetry associated with the in-focus regions around the object position is

not a concern in this application if the lens has a VCM. The lens is conjugate

to an object at 1 meter from the front vertex of the lens. Refocusing can be

incorporated by changing the conjugate object position and then shifting the last

element axially by a distance that refocuses the lens maintaining a constant TTL.

A range of object distances from l = 500 mm to l = 5000 mm were chosen to

test the maximum displacement in which the final lens compound must shift to

focus. The largest distances from the original conjugate object point are listed in

Table 5.3. The element is displaced sufficiently to refocus the lens while retaining
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a constant TTL. The last compound lens element is chosen for refocusing as the

angle of refraction is minimal over the three surfaces, labelled as surfaces 12 to

14 in Fig 5.2, and therefore more tolerable to displacement.

Surf Thickness (mm) Thickness Variation 1(mm) Thickness Variation 2(mm)

0 1000 500 5000

11 1.4587 1.4540 1.467

13 0.7520 0.7558 0.75

Table 5.3: Multi-conjugate object distances and refocusing distances.

Distances closer than 500 mm from the lens generates undesirable effects in the

lens such as a reduction in contrast and increase in distortion. Smaller distances

would not be beneficial for video conferencing due to the FOV. Refocusing the

lens allows for a conjugate range of object positions between 500 mm and 5m

without experiencing image deterioration. The maximum translation of the last

component to allow for the full range of defocus is 12µm.
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Figure 5.12: rms across the field with mechanical refocusing
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5.3 Conclusion

A new wide field smartphone camera lens is presented with a novel orientation,

whereby the front lens is positioned at the corner of the phone or device. The

rectangular field of view would be sufficient for a video conferencing application.

The centre field has a high resolution shallow depth of field while the peripheral

regions of the field have a larger depth of field of lower image quality. Partial-

detector binning allows for the compensation of any intensity losses from the

modified stop. In addition to this, the lens can be mechanically refocused without

image quality degradation allowing the extended depth of field to be increased by

a factor of 10. Future designs may introduce a folding element where the CCD

can be positioned on the flat surface of the device.
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Chapter 6

Conclusions & Future Work

An optically-generated extended depth of field is a desirable feature in imaging

systems as it can reduce the dependency on mechanical refocussing and compu-

tational post-processing. Three novel approaches for extending depth of field in

fast miniaturised lenses are proposed in this thesis.

Study 1: Chromatic EDOF

Intrinsic chromatic aberration of a singlet was used to generate object space LCA.

Many previous applications have utilised LCA for EDOF using computational

image reconstruction. The methodology proposed in this chapter introduces a

wavelength dependent approach for extending DOF, which can be systematically

carried out through the analytical proofs. Illumination is provided by two com-

mercially available NIR LEDs with central wavelengths of λ1 = 780 nm and

λ2 = 870 nm, respectively. The use of NIR illumination comes from the require-

ment to resolve the fine details of the iris of the eye, which are lost in the visible

spectrum. As a full analytical methodology is presented, illumination wavelengths

are another design parameter.

The study includes the feasibility of both low and high dispersion materials

and their effect in achieving an extended depth of field. The performance of

this method also includes a model of the cornea and the possibility of induced

aberrations by refracting from the cornea. This analysis shows that -9% distortion

is introduced and does not deteriorate the MTF. The field of view is limited to

6◦. This is acceptable for a singlet lens, as the field is also sufficient to image a

single iris.
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Chapter 6. Conclusions & Future Work

Study 2: Two eye EDOF

Spatially dependent solution to imaging two irises over an extended depth of field.

Two design configurations for imaging both irises over an extended depth of

field are presented. Each design configuration involves multiple solutions. The

iris dimensions are chosen for the case of maximum separated irises, an IPD of 35

± 6 mm. A smaller IPD can be chosen for a specific user. This design is based

upon simple geometry. Decreasing the IPD will decrease the principle ray angle

and thus reduce the required image displacement. This statement only holds

for a lens of the same parameters. Considering fundamental aberration theory,

smaller interpupillary distances have smaller field angle and so do not induce large

amplitudes of field dependent aberrations. It is important to note that the degree

of variation of the sag across the plate surface is fundamentally dependent on the

lens preceding the plate. The sole purpose of the plate element should be for

image point displacement.

Two viable solutions for the high yield consumer market would be a Zernike ra-

dially varying plate and a cylindrical lens with vertically-varying thickness. Both

plates are capable of extending the depth of field of their associated lenses by 3.1

and 2.9 times respectively. Both solutions show an acceptable tolerance range,

where the Zernike plate provides a critical decrease in MTF at large principle

ray angles as the irises are displaced vertically. One aspect to note in design is

that the radially varying thickness plates should be produced specifically for a

user-specific IPD due the demanding sag variation required. This is not the case

for the vertically thickness varying plates as the statistical variation in IPD is

corrected for in the fundamental field dependent aberration correction with as-

pheres on surfaces 1 to 6. It is for this reason that the vertically thickness varying

plates would be the best solution for a high yield market such as the consumer

imaging market. In turn, as the lens-plate combination can be used by all IPDs,

then the specificity for biometric imaging would be dependent on the calibration

and software.
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Study 3: Widefield EDOF

A new lens orientation is presented where the use of vignetting and pixel binning

allows the user to exploit a dual-f-number feature across the field of view. The

proposed novel positioning of the lens, at the corner of the device allows for a

more classical approach to the lens design. Although the necessity for a large

entrance pupil requires high order aspherical surfaces to be employed to minimise

the effect of field dependent aberrations. Residual chromatic effects exist due to

a limitation in available refractive indices for optical polymers. This limitation

still remains a design drawback for commercial applications. Larger sensors are

required with non-standard aspect ratios.

Future Work

The importance of imaging and depth sensing in current smart devices is being

increasingly recognised. This realisation gives rise to an increase in allocated de-

sign space for imaging modules. This increased design space is currently being

used for multiple miniaturised cameras, all of similar dimensions to the five plastic

element designs commonly used today. Multiple cameras can be used for stereo

imaging, and also for the simulation of depth of optical features such as zoom

and DOF. This increase in design space is a tremendous advantage to the opti-

cal designer whereby the designs can be more creative. The optics found within

commercial camera modules may have the option to depart from polynomial de-

pendent surfaces and converge toward more traditional designs possible allowing

for a considerable optical zoom. A shift in fixed camera parameters for both

device manufacturers and commercial miniature lens designers promises that the

field of fast commercial lenses has the prospect of delivering high quality imaging.
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