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Abstract: Long-term exposure to a diabetic environment leads to changes in bone metabolism and 11 

impaired bone micro-architecture through a variety of mechanisms on molecular and structural 12 
levels. These changes predispose the bone to an increased fracture risk and impaired osseus healing. 13 
In a clinical practice, adequate control of diabetes mellitus is essential for preventing detrimental 14 
effects on bone health. Alternative fracture risk assessment tools may be needed to accurately 15 
determine fracture risk in patients living with diabetes mellitus. Currently, there is no conclusive 16 
model explaining the mechanism of action of diabetes mellitus on bone health, particularly in view 17 
of progenitor cells. In this review, the best available literature on the impact of diabetes mellitus on 18 
bone health in vitro and in vivo is summarised with an emphasis on future translational research 19 
opportunities in this field. 20 

Keywords: diabetes mellitus; type 1 complications; type 2 complications; bone remodeling; fracture 21 
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 23 

1. Introduction 24 

Impaired bone quality and increased fracture risk have become recognized complications of 25 
diabetes mellitus [1]. Two meta-analyses involving a total of 7,832,213 participants found an 26 
increased incidence of hip fractures in individuals living with diabetes mellitus compared to the 27 
general population, whereby those living with type 1 diabetes mellitus (T1DM) (relative risk (RR)= 28 
5.76–6.3) show a higher incidence than individuals living with type 2 diabetes mellitus (T2DM) (RR 29 
= 1.34–1.7) [2,3]. In addition, diabetic fracture risk benefits significantly from effective clinical 30 
management, as fracture risk is higher in diabetes mellitus with poor glycemic control compared to 31 
adequately controlled diabetes mellitus [4,5].  32 

The increased fracture risk in individuals living with diabetes mellitus is compounded by 33 
impaired fracture healing. Specifically, alterations in bone metabolism and the development of 34 
microvascular disease can prolong healing time by 87% [6]. Additionally, patients living with 35 
diabetes mellitus are predisposed to an increased risk of complications such as delayed wound 36 
closure [7], infectious complications [8], and peri-operative cardiovascular events [9]. Considering 37 
the higher incidence of diabetes mellitus and the considerable socioeconomic burden generated by 38 
fragility fractures [10], these findings draw attention to the need for an improved awareness of the 39 
factors that determine bone health and the risk of fracture in patients living with diabetes mellitus. 40 
The aim of this narrative review is to summarise the best available topical literature in order to create 41 
a better understanding of the interaction of bone health and diabetes mellitus on a molecular level, 42 
and to draw attention to future areas of research in this field. To achieve this aim, publications 43 
containing the terms “bone AND diabetes” were evaluated using PubMed Central. The search was 44 
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limited to title or abstract between the years 2000 and 2019. Reference lists of the identified 45 
publications were evaluated to identify additional relevant studies. 46 

2. Bone Mineral Density 47 

Patients living with T1DM are affected by a complete failure of β-cells of the pancreas combined 48 
with low levels of insulin-like growth factor 1 (IGF1). Both the lack of insulin, among other pancreatic 49 
anabolic hormones, and low IGF1 levels suppress the terminal differentiation of mesenchymal stem 50 
cells (MSCs) into osteoblasts in addition to osteoblastic activity [11]. Therefore, this inhibits skeletal 51 
growth at a young age, which leads to an inadequate accrual of peak bone mass [12–16]. On the 52 
contrary, T2DM affects bone health in advanced stages of the disease where many factors such as 53 
insulinopenia, hyperglycemia, the development of advanced glycation end products (AGEs), chronic 54 
inflammation, and microvascular disease coincide to negatively affect bone architecture and 55 
biomechanical properties of the bone (Figure 1) [17,18]. As a result, the relative risk of sustaining a 56 
hip fracture increases over the course of T2DM [1]. 57 

Whereas T1DM is associated with modest reductions in bone mineral density (BMD) (Hip Z-58 
scores of −0.37  ±  0.16)[19] and an increase in fracture risk [20], patients living with T2DM have higher 59 
BMD (Hip Z-scores of 0.27 ± 0.16 [19]) with an increased fracture risk [19,21,22]. This contradiction 60 
can be explained as follows. Individuals living with diabetes mellitus suffer from a higher incidence 61 
of falls due to long-term complications. However, in a meta-analysis, after factoring out for increased 62 
falls as well as other confounders, such as hypoglycemic episodes and the use of anti-diabetic 63 
medications, patients with T2DM still had an increased risk of a fracture [23,24]. Therefore, the 64 
literature suggests that there is independence of fracture risk in diabetes mellitus to both changes in 65 
BMD and increased risk of falls. This can be explained by impairments of bone architecture [24]. 66 

The investigation of bone architecture in individuals living with diabetes mellitus has been 67 
facilitated by the development of non-invasive imaging techniques [25,26]. A study using high-68 
resolution peripheral quantitative computer tomography shows T2DM is associated with a 10% 69 
higher trabecular BMD and an increase in intracortical porosity [27]. Some recent imaging studies 70 
suggest higher adiposity and an increased fraction of saturated fat in the bone marrow of patients 71 
living with diabetes mellitus. However, so far, these studies have not adjusted for obesity-related 72 
bone marrow adiposity [28,29]. Recently, changes in bone structure were directly confirmed using in 73 
vivo micro-indentation of the tibia to measure bone micro-architecture in patients with T2DM 74 
compared to the controls. These patients showed significantly increased cortical porosity and a 75 
significantly lower bone mineral strength than healthy controls [30]. 76 

3. Biochemical Impact on Bone Micro-Architecture  77 

Extracellular bone matrix is composed of two materials. The inorganic mineral component, 78 
consisting mainly of hydroxyapatite, provides stiffness, which is the quality that is measured by a 79 
conventional BMD scan. The organic component, composed predominantly of interconnecting 80 
collagen fibers [31], provides tensile strength and counteracts shear stresses [32]. These material 81 
properties of bone tissue are regulated by cellular activity, bone tissue turnover rate, and collagen 82 
cross-link formation [32,33]. Meanwhile, these cellular activities are influenced by many 83 
environmental factors, including circulating hormones, oxidative stress, and level of glycation [34–84 
36], as summarised in Figure 1. 85 
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Figure 1. The interaction between osteoblasts, adipocytes, MSCs, and the marrow environment is 87 
altered in diabetes mellitus. Hyperglycemia directly alters gene expression associated with osteoblast 88 
activity by the inhibition of MSC maturation and metabolism, and indirectly alters bone metabolism 89 
by tampering with the PTH and Vitamin D system. Insulinopenia and low levels of IGF-1 exert an 90 
additional inhibitory effect on osteoblasts at different stages of diabetes mellitus. Increased 91 
production of adipocytes feed the cycle of chronic inflammation by producing ROS and inflammatory 92 
cytokines, which induce osteoblast apoptosis. ROS upholds this process by facilitating MSC 93 
differentiation into adipocytes by mediating PPAR- 𝛾 and reducing WNT transcription. Additionally, 94 
increased production of AGEs leads to non-enzymatic cross-links between collagen fibers and 95 
increased inflammation by the activation of RAGE. The accumulation of these patho-mechanisms 96 
ultimately leads to decreased bone quality and bone turnover in diabetes mellitus. 97 
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Indirectly, many additional factors associated with hyperglycemia affect bone micro-98 
architecture in diabetes mellitus. For example, glycosuria proportionally increases calcium excretion 99 
in urine [37]. Additionally, the interaction of hyperglycemia with the parathyroid hormone (PTH) 100 
and vitamin D system affects bone turnover in the population of patients living with diabetes mellitus 101 
(Figure 1) [34,38]. One meta-analysis in 2007 found evidence that vitamin D and calcium 102 
supplementation may be important for preventing T2DM in patients with impaired glucose tolerance 103 
[39]. 104 

Insulin Signalling 105 

The literature suggests that insulin, as well as other pancreatic hormones, serve as anabolic 106 
factors in bone formation [34,40]. In one in vitro study, conditional disruption of the gene encoding 107 
for the IGF1 receptor in osteoblasts negatively impacts their proliferation and mineralisation. 108 
However, this defect was rescued by insulin treatment. Additionally, in vivo evidence in a murine 109 
model suggests that IGF1 plays a central role in the terminal differentiation of MSCs into osteoblasts 110 
[11]. Therefore, insulin exerts direct action in the regulation of osteoblastic activity by activation of 111 
its cell surface receptor, and IGF1 modulates the strength of the insulin-generated signal through 112 
interactions with the IGF1 receptor (Figure 1) [40]. In T1DM, absolute insulinopenia in combination 113 
with low levels/low action of IGF1 decrease bone formation by exerting an inhibitory effect on 114 
osteoblasts and their progenitor cells in the early stages of the disease [17]. However, in T2DM, this 115 
inhibitory effect caused by insulinopenia and low levels of IGF1 would be expected in advanced 116 
stages of the disease [17]. Since T1DM typically occurs in children, adolescents, and young adults, 117 
the state of absolute insulinopenia corresponds with a stage of skeletal maturation. Therefore, these 118 
studies suggest that particularly inadequately controlled T1DM will impact bone accrual and the 119 
development of peak bone mass [34].  120 

Hyperglycemia and AGEs 121 

A hyperglycemic environment exerts a direct and indirect effect on the function and 122 
differentiation of osteoblasts [41,42]. In vitro studies show hyperglycemia directly affects the 123 
metabolism and maturation of osteoblasts by altering gene expression [41,42] and, thereby, 124 
diminishing the quality of the bone mineral [43]. Additionally, it has been demonstrated that 125 
hyperglycemia increases the level of pro-inflammatory cytokines in humans, such as tumor necrosis 126 
factor alpha (TNF-α), interleukin 1 beta, interleukin 6, interleukin 8, and interleukin 8 [43,44] while 127 
simultaneously increasing the receptor activator of nuclear factor kappa-Β ligand (RANKL) 128 
expression [43], which mediates osteoblast death and osteoclastogenesis, respectively (Figure 1) [35]. 129 
Since inflammatory factors are elevated in the early stages of T1DM [45], the above named pro-130 
inflammatory cytokines could play a role in the inhibited accrual of bone mass [46]. 131 

The evidence shows that oxidative stress and a hyperglycemic metabolic state, which are 132 
induced and maintained by diabetes mellitus, lead to the accelerated formation of AGEs (for example, 133 
pentosidine) [35,47–49]. AGEs cross-link with collagen fibers in both trabecular and cortical bone [50], 134 
which leads to a more brittle bone with a deterioration of post-yield properties (making bones less 135 
able to deform before fracturing) (Figure 1) [36,51]. In contrast, physiological enzymatic cross-links 136 
between collagen fibers provide a beneficial effect on the quality and strength of the bone [36]. In 137 
spontaneously diabetic WBN/Kob rats, a steady decrease of beneficial enzymatic cross-links coupled 138 
with a steady increase of pentosidine was reported after onset of diabetes mellitus. Additionally, 139 
impaired bone biomechanics coincided with these alterations in collagen cross-linking, despite no 140 
alterations in BMD values [52]. Therefore, AGEs are thought to deteriorate biomechanical function of 141 
the bone by altering the physical properties of bone collagen, which results in bone fragility [53]. 142 

Accompanying the alteration in collagen cross-links, AGEs affect bone tissue by directly 143 
interfering with the development [54] and function [55] of bone cells. AGEs affect the phenotypic 144 
expression of osteoblasts in vitro, in particular inhibiting nodule formation of osteoblasts in a cell 145 
culture [56]. In addition, AGEs may decrease bone resorption by inhibiting osteoclastic differentiation 146 
activity and, thereby, altering the structural integrity of the collagen matrix [57]. It has been 147 
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established that the osteoblastic function is disrupted by AGEs by upregulating the cell surface 148 
receptor for advanced glycation end products (RAGE) located on osteoblasts (Figure 1) [58,59]. These 149 
receptors have been shown to increase the production of pro-inflammatory cytokines, which may 150 
feed a cycle of increased bone resorption and chronic inflammation [60]. Furthermore, one study 151 
shows that treating an osteocytic cell line with AGEs increases sclerostin expression and decreases 152 
RANKL expression. Therefore, this suppresses bone formation and bone resorption, respectively [61]. 153 
These adverse effects of AGEs on bone cells serve to further accelerate bone fragility in diabetes 154 
mellitus [33]. Galectin-3 protein in bone tissue has been shown to play an important role in the uptake 155 
and removal of AGEs whereby Galectin-3 exerts the opposite action on AGE-receptor to RAGE. 156 
Therefore, this potentially serves as a protective factor in diabetes mellitus-related AGE accumulation 157 
[62,63].  158 

4. Epigenetic Changes  159 

Large clinical trials have shown that diabetic complications in T1DM and T2DM continue to 160 
progress after patients return to adequate glycemic control [64–69]. Additionally, it is known that 161 
HbA1c merely accounts for 25% of the variation in the risk of developing complications, which 162 
implies that transient hyperglycemic episodes lead to lasting cellular changes [66,70]. Recent 163 
investigations, particularly in murine models of cardiovascular disease, have begun to shed light on 164 
the patho-mechanism of metabolic memory in diabetes mellitus, which leads to the development of 165 
end-organ damage [64,71–75]. For instance, microRNA (miRNA)-155 was decreased in 166 
streptozotocin-induced diabetic rats and negatively correlated to NF-κB activity and an apoptosis 167 
rate [76]. This was reflected in a study showing a downregulation of miRNA-155 in bone-marrow 168 
derived progenitor cells isolated from humans living with T2DM [77]. In a clinical study, gene 169 
expression of p66Shc in peripheral mononuclear cells was correlated with new onset complications 170 
in patients living with diabetes mellitus with similar baseline characteristics [78]. These recent 171 
findings draw attention to the importance of early and aggressive treatment of uncontrolled diabetes 172 
mellitus. Uncovering epigenetic therapeutic targets will open opportunities for the development of 173 
drugs to improve patients’ outcome after glucose homeostasis has been achieved [65,79,80]. 174 

5. Bone Turnover 175 

The effect of a diabetic environment on bone metabolism can be indirectly measured through 176 
bone turnover markers. Specifically, osteocalcin is produced by osteoblasts and is a marker of bone 177 
formation [81]. Children suffering from T1DM were found to have low levels of osteocalcin, which 178 
were negatively correlated with HbA1c levels [82,83]. Derivatives of furanocoumarins reversed the 179 
suppression of osteocalcin and diabetes mellitus-associated decreased trabecular thickness in diabetic 180 
mice, in addition to significantly suppressing osteoclast-related gene expression such as RANKL [84]. 181 
When comparing T1DM and T2DM, osteocalcin serum levels are decreased in individuals living with 182 
T1DM and significantly decreased in T2DM compared to healthy controls [82,85–87]. Alternatively, 183 
sclerostin is a marker for bone resorption [81] and is inversely correlated to bone turnover markers 184 
for bone formation in patients living with T2DM [88–90]. However, changes in sclerostin levels have 185 
not been confirmed for individuals living with T1DM [88]. Bone turnover markers could potentially 186 
be a means of predicting the fracture risk in patients living with diabetes mellitus in the future [91–187 
93].  188 

“Signature miRNAs” of bone turnover, such as miR-148a-3p, are known as biomarkers in 189 
primary osteoporosis [94–96]. In 2016, Heilmeyer et al. studied circulating miRNAs and identified 190 
combinations of miR-550a-5p, miR-96-5p, miR-382-3p, and miR-181c-5p associated with T2DM-191 
induced fragility fractures with a high specificity and sensitivity [97]. This study also included an in 192 
vitro analysis to measure the effect of miR-550a-5p, miR-382-3p, and miR-188-3p on adipose tissue-193 
derived MSCs. Interestingly, miR-382-3p was found to stimulate osteogenic differentiation and 194 
inhibit adipogenesis. This could be explained by the fact that the level of miR-382-3p was seven times 195 
lower in fractured patients living with T2DM compared to T2DM without a history of fragility 196 
fractures. On the contrary, miR-550a-5p was upregulated 22-fold in the diabetes fracture group 197 
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compared to non-fracturing patients living with T2DM, and was shown to be a strong inhibitor of 198 
osteogenesis [97]. In T1DM, hyperexpression of miR-148a and miR-21-5p was observed in the sera of 199 
patients, which was associated with decreased BMD and increased circulating PTH levels [98].  200 

Studies examining the effect of diabetes mellitus on osteoclasts are not conclusive. In vitro and 201 
animal studies report an unaltered rate of bone resorption [99,100], whereas some studies have 202 
suggested increased osteoclastic activity in diabetes mellitus under certain conditions, such as 203 
periodontal disease [101] and osteoporosis [102]. Other studies have even reported inhibited 204 
osteoclast function and differentiation in a diabetic environment [103–105]. Due to the conflicting 205 
evidence and generally negligent effect that has been observed in osteoclasts, it seems likely that the 206 
impaired bone formation in diabetes mellitus is primarily due to inhibited osteoblastic and 207 
progenitor cell activity rather than an alteration of bone resorption. However, further research is 208 
needed to clarify the effect of diabetes mellitus on osteoclastic function and differentiation.  209 

6. Fracture Risk 210 

Altered biomechanical properties of the bone due to deteriorations in bone microarchitecture 211 
predispose individuals living with diabetes mellitus to fragility fractures [106–108]. Individuals 212 
living with T2DM and T1DM carry a higher risk of sustaining a fracture at most skeletal locations 213 
compared to the general population, whereby hip fractures in T2DM has been most extensively 214 
examined [109–111]. T1DM is reported to be associated with a higher odds ratio for hip fractures 215 
compared to hip fractures in patients living with T2DM in a meta-analysis [19]. When fractures are 216 
compared by anatomical location in T2DM, women living with diabetes mellitus have a significantly 217 
increased risk of hip, pelvis, upper leg, foot, and vertebral fractures [112]. Additionally, diabetes 218 
mellitus is a negative prognostic factor for post-fracture mortality among patients with hip fractures 219 
[17,113,114]. However, despite the increased fracture risk, patients with T2DM show a higher BMD 220 
at the femoral neck and lumbar spine in conventional Dual-energy X-ray absorptiometry (DEXA) 221 
scans [115]. 222 

Accumulation of AGEs, specifically pentosidine, is associated with a fracture incidence in older 223 
adults living with diabetes mellitus, as demonstrated by Schwartz et al. in the Health Aging and Body 224 
Composition study [116]. Similarly, a high level of urinary excretion of pentosidine in non-diabetic 225 
patients was an independent risk factor for vertebral fractures [117]. One clinical study shows 226 
increased cortical bone AGEs in T2DM patients [118]. Additionally, another study reports that 227 
trabecular bone from fracturing T1DM patients has significantly higher levels of pentosidine than 228 
non-fracturing T1DM [119], even though this does not imply causality. Large retrospective studies 229 
have shown that conventional models for predicting fracture risk such as BMD and the Fracture Risk 230 
Assessment Tool (FRAX) underestimate the fracture risk for patients living with diabetes mellitus 231 
due to secondary impairments in bone micro-architecture [120,121]. However, the trabecular bone 232 
score, which is related to the bone micro-architecture, was shown to predict fractures in patients 233 
suffering from diabetes mellitus with greater accuracy [122–124].  234 

7. Fracture Healing 235 

In usual fracture healing, a stabilising callus is formed, in which cartilage is formed and then 236 
reabsorbed and replaced by bone tissue. This is facilitated by blood supply to the healing site [125]. 237 
In animal models of fracture healing, many studies have suggested diabetes mellitus is associated 238 
with an impaired healing response [126–130]. In a diabetic murine model, the animals were shown 239 
to have an increased concentration of TNF-α at the fracture site, which was linked to an increased 240 
rate of cartilage resorption [127]. Additionally, a diabetic cell environment may lead to a reduction in 241 
callus size and bone formation and, thereby, a decrease in the mechanical strength of the repaired 242 
fracture site [126–128]. In one in vivo study, decreased cell proliferation as well as decreased 243 
mechanical stiffness was shown at the fracture site of poorly controlled diabetic rats. However, rats 244 
with a tight insulin treatment maintained physiological fracture healing [131]. In healthy human 245 
individuals, there is a fracture response during the first few weeks of recovery marked by a peak in 246 
osteocalcin, alkaline phosphatase (ALP), and IGF1, which indicates increased bone turnover 247 



Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 7 of 23 

 

[132,133]. However, in individuals living with diabetes mellitus, bone turnover markers post-fracture 248 
are diminished [134], which could possibly be a symptom of disturbed fracture consolidation.  249 

Fracture healing is intimately associated with progenitor cell population and functionality 250 
[135,136]. One study demonstrates atrophic non-union fractures are associated with a decreased pool 251 
of MSCs, which alters the level of chemokines involved in fracture healing [137]. Therefore, 252 
insufficient MSC availability may impede callus remodeling and result in callus material that is 253 
biomechanically inferior in patients living with diabetes mellitus [130,138–140]. Long-term 254 
complications of patients living with diabetes mellitus include microvascular complications [141], 255 
where complications such as fracture non-union are linked to vascular insufficiencies in the fracture 256 
site [142,143]. Since vascularization is mediated by MSCs [144,145], vascular deficiencies may be 257 
further impaired in diabetic fracture healing due to the reduced population and potential of 258 
progenitor cells and chronic inflammatory environment. Several studies have shown a decreased 259 
expression of angiogenic genes (VEGF-A, VEGF-C, angiopoietin 1, and angiopoietin 2) and proteins 260 
in MSCs isolated from humans living with diabetes mellitus [146,147]. In addition to these 261 
impediments, patients living with diabetes mellitus have a greater risk of wound infection, local post-262 
operative complications such as impaired wound healing, and peri-operative cardiovascular 263 
complications compared to non-diabetic individuals [6,8,9,148]. 264 

8. Effect of Diabetes on Progenitor Cells  265 

Adipocytes and osteoblasts are derived from a common precursor, the MSC. The differentiation 266 
of MSC is influenced by the interaction of several different pathways (Figure 1). The WNT signaling 267 
and peroxisome proliferator-activated receptor gamma (PPAR-𝛾) pathways regulate a fine balance 268 
between adipogenesis and osteo-blastogenesis [149]. The activation of the WNT signaling pathway 269 
promotes osteogenesis and inhibits adipogenesis. On the contrary, PPAR-𝛾, which is mediated by 270 
reactive oxygen species (ROS)[150], facilitates the differentiation of MSCs into adipocytes [18]. In one 271 
study, muscle-derived MSCs cultured in high glucose media showed a higher expression of 272 
adipogenesis markers (PPAR- 𝛾, LPL, adiponectin, GLUT4, and SREBP1c) and a down-regulation of 273 
chondrogenic and osteogenic markers compared to cells cultured in a low glucose media [150]. In a 274 
similar model, gene expression associated with osteoblast differentiation was decreased, with a 275 
simultaneous increase in cells of an adipocyte phenotype in a hyperglycemic environment [151]. A 276 
recent study utilising rat bone-marrow derived (BM-)MSCs has suggested that hyperglycemia 277 
activates the Notch2 signaling pathway, which was negatively correlated with ALP expression levels. 278 
This inhibited osteo-blastogenesis [152]. Additionally, hyperglycemia has been shown to increase 279 
production of sclerostin, which induces adipogenesis by inhibiting WNT signaling in human BM-280 
MSCs [153].  281 

Some recent animal studies have shown higher bone marrow adiposity in diabetic models 282 
[151,154], which suggests the hypothesis that bone marrow fat composition may be a mechanism of 283 
diabetic fragility fractures [155,156]. In humans, one study measured a significantly higher bone 284 
marrow fat content in addition to predominant saturated lipid fraction in the diabetes mellitus group 285 
compared to healthy controls using proton magnetic resonance spectroscopy [157]. Similarly, another 286 
study demonstrated an alteration of bone marrow saturated to unsaturated fat composition using 287 
magnetic resonance imaging [29]. However, first, animal models are not consistently predicative of 288 
human responses [158], and, second, clinical studies showing increased bone marrow adiposity in 289 
diabetes mellitus have not ruled out obesity as a confounding factor. Patho-physiologically, T2DM is 290 
associated with insulin resistance. Therefore, cells from patients living with diabetes mellitus are less 291 
likely to accumulate lipids [159]. Increased bone marrow adiposity is known to correlate with altered 292 
levels of growth hormones, increased visceral adiposity, increased circulating lipids, and 293 
hypoleptinemia [28]. However, there is currently no evidence that suggests that diabetes mellitus 294 
directly accounts for increased bone marrow adiposity in humans.  295 

Recent investigations have shed light on impaired metabolic pathways in obesity, which results 296 
in chronic inflammation and insulin resistance. Therefore, this pre-disposes obese individuals to 297 
developing diabetes mellitus. White adipose tissue (WAT) in individuals living with diabetes 298 
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mellitus has been shown to exhibit high levels of inflammation compared to WAT of obese 299 
individuals without diabetes mellitus [160]. Hypoxic conditions in adipose tissue caused by 300 
decreased perfusion of hypertrophic adipocytes leads to an upregulation of hypoxia-inducible factor 301 
1-alpha (HIF-1α) among other inflammatory genes [161,162]. Increased levels of inflammatory 302 
cytokines, in particular TNF-α, has been shown to induce insulin resistance [163,164]. Additionally, 303 
free fatty acids released by adipocytes produce ROS, which, in addition to hyperglycemia, 304 
exacerbates inhibited osteoblast proliferation and function maintained by a diabetic environment 305 
[165–168].  306 

Thus, in vitro models have suggested that chronic inflammation in diabetes mellitus occurs as a 307 
result of a hyperglycemic bone marrow environment combined with oxidative stress, which inhibits 308 
the maturation of osteoblasts, and leads to a shift of MSC differentiation from osteo-blastogenesis to 309 
adipogenesis [136,169,170]. This leads to a vicious cycle of metabolic stress, which upholds a chronic 310 
inflammatory process that may de-mineralise trabecular bone [171], and result in the increased 311 
production of ROS, which has a direct impact on the differentiation and function of MSCs, osteoclasts, 312 
osteoblasts, and osteocytes [172]. In fact, the emerging understanding of T2DM as a cycle of chronic 313 
inflammation has opened windows to the development of anti-inflammatory treatment approaches 314 
[173]. 315 

A streptozotocin-induced T2DM diabetic mouse model showed evidence of suppressed 316 
expression of transcription factors required for the osteoblastic differentiation of MSCs in vitro [134]. 317 
This has been confirmed in a T2DM mouse model, where diabetic animals possessed fewer viable 318 
MSCs, which were functionally impaired ex vivo [174]. Exposing healthy cultured human MSCs to 319 
hyperglycemia, AGEs, and oxidative stress reduces the viable MSC population [54]. Thus far, only 320 
one study has been carried out to compare BM-MSCs isolated from individuals living with T1DM 321 
and healthy controls. This study suggested that BM-MSC cell count, cell morphology, and growth 322 
kinetics are not impaired despite long-term exposure to a diabetic stem cell environment in a young 323 
demographic [175]. However, to date, no studies have shown the effect of a diabetic environment on 324 
human MSCs isolated from individuals living with T2DM [176].  325 

The sympathetic nervous system is responsible for mobilizing hematopoietic stem cells (HSCs) 326 
into the circulation, which have been shown to be inversely correlated with cardiovascular events in 327 
clinical studies [177,178]. It has been suggested that diabetes mellitus leads to remodeling and 328 
autonomic neuropathy of the bone marrow. Therefore, this affects the level of CD34+ cells in the 329 
blood [179]. These changes were averted in p66Shc knockout mice and are associated with the 330 
downregulation of the Sirt1 gene [180–183]. In a murine model, an insulin-resistant hyperglycemic 331 
environment leads to epigenetic changes in bone marrow via activation of JMJD3, a histone H3K27 332 
demethylase, which leads to the increased expression of inflammatory cytokines. These changes 333 
persisted in peripheral monocytes, which leads to the hypothesis that epigenetic changes in the 334 
diabetic bone marrow environment leads to altered macrophage function and persistent wound 335 
inflammation [74]. Dipeptidyl peptidase-4 (DPP-4) inhibition has been shown to increase circulating 336 
HSCs in humans, which suggests that DPP-4 dysregulation plays a central role in diabetes mellitus-337 
induced impaired HSC mobilization [184,185]. 338 

9. Effects of Insulin and Anti-Diabetic Drugs 339 

Mice lacking an insulin receptor substrate, a mediator of insulin and IGF1 signaling, showed 340 
decreased bone formation and osteopenia due to reduced differentiation of osteoblasts [186,187], 341 
growth retardation, and a 60-fold higher expression of a hepatic IGF binding protein [188]. 342 
Additionally, osteoblasts lacking the insulin receptor substrate gene in an ex vivo model showed an 343 
upregulation of receptor activator of RANKL expression. Therefore, this stimulates osteo-344 
clastogenesis in co-culture [186]. Conversely, a murine model of non-obese T2DM showed a reduced 345 
bone turnover rate, which was recovered by insulin treatment [189]. In humans living with T1DM, 346 
the incidence of osteoporosis or osteopenia was found to be significantly higher in patients before 347 
insulin treatment. After seven years of insulin treatment, bone turnover markers and BMD at all 348 
anatomical sites had significantly improved [190]. Although insulin is anabolic to bone and can 349 
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restore markers of bone turnover and BMD, systematic review have identified no significant fracture 350 
reducing the potential for individuals living with diabetes mellitus on insulin treatment [191,192]. In 351 
fact, some epidemiological reports have shown an increased fracture risk in patients taking insulin, 352 
which may be secondary to an increased falls risk [192].  353 

Metformin is routinely prescribed to patients as a first-line treatment T2DM, as recommended 354 
by consensus guidelines [193]. One population study has described metformin as having a potentially 355 
positive influence on fracture risk [191,194]. However, it is not clear whether this effect is secondary 356 
to blood sugar level optimisation or metformin directly interacting with progenitor cells to affect bone 357 
metabolism. In vitro studies examining the effect of metformin on MSCs have shown conflicting 358 
results. In rodent BM-MSCs, metformin stimulated osteoblastic activity and blocked adipogenesis 359 
[195]. Studies show decreased osteoclastogenesis in murine-derived preosteoclasts using supra-360 
pharmacological concentrations of metformin [196–198]. However, some in vitro studies have shown 361 
MSC apoptosis following transplantation and decreased angiogenic potential of human MSCs treated 362 
with metformin [199,200]. In human-induced pluripotent MSCs, metformin enhanced osteoblastic 363 
activity by increasing ALP activity and mineralized nodule formation, which was partly mediated 364 
by the LKB1/AMPK pathway [201]. Bone turnover markers were measured following treatment with 365 
metformin in a clinical study [202,203], which showed decreased bone resorption (CTX-1) and a large 366 
decrease in bone formation (P1NP). However, this lacked a control arm [203].  367 

After an initial response to metformin, many patients require additional anti-diabetic 368 
medications. Glitazones have detrimental effects on bone health and are, therefore, rarely prescribed 369 
[202,204]. The “incretin effect” (increased stimulation of insulin elicited by oral administration of 370 
glucose [205]) is proven to be significantly lower in diabetes mellitus compared to healthy subjects 371 
after a meal [206]. In murine models, the administration of the glucagon-like peptide 1 (GLP1) , which 372 
is a hormone that facilitates the ‘incretin effect,’ has been shown to increase bone formation markers 373 
[207] and prevent the deterioration of the bone micro-architecture [208]. In vitro studies have shown 374 
GLP1 stimulates the proliferation of human MSCs and inhibits their differentiation into adipocytes 375 
[209] through GLP1 receptors expressed on progenitor cells [209,210].  376 

GLP1 receptor analogues (GLP1RAs) are increasingly used because they aid weight loss and do 377 
not pose a risk of hypoglycemia [211]. One clinical study showed that the serum markers of calcium 378 
homeostasis (ALP, calcium, and phosphate) remained unaffected by exenatide treatment [212]. 379 
Additionally, a recent meta-analysis found no significant relationship between the use of GLP1RAs 380 
and fracture risk in T2DM in humans [213]. DPP-4 inhibitors are the second class of anti-diabetic 381 
drugs, which are designed to increase GLP1 levels. Recent reports have highlighted the impact of 382 
DPP-4 on circulating progenitor cells, which potentially ameliorates cardiovascular risk by 383 
facilitating HSC mobilization [185,214,215]. Nonetheless, thus far, meta-analysis has not established 384 
a cardiovascular benefit using DPP-4 inhibitors in patients [216]. Further translational research is 385 
required to thoroughly investigate the discrepancy between pre-clinical and clinical results. 386 

In contrast, there is a strong evidence suggesting that treatment with sodium glucose 387 
cotransporter- 2 (SGLT-2) inhibitors positively affects cardiovascular and renal outcome in patients 388 
with T2DM [217–219]. Therefore, it has been hypothesized that this protective effect is caused by the 389 
increased mobilization of pro-vascular progenitor cells in bone marrow [220]. In one clinical trial, 390 
circulating CD133+ progenitor cells and monocytes with an anti-inflammatory phenotype were 391 
significantly raised and pro-inflammatory granulocyte precursors were significantly decreased 392 
following six months of treatment with empagliflozin [220]. A similar study measuring the effect of 393 
dapafliflozin showed an increase of CD34+KDR+ endothelial progenitor cells, which concurred with 394 
improvement in HbA1c, whereas circulating stem cells remained stable. This implies that the 395 
cardiovascular benefit may not directly involve circulating progenitor cells [221]. Despite these 396 
important advances, the mechanism of the cardiovascular and renal benefit of SGLT-2 inhibitors is 397 
still unknown. Furthermore, the epigenetic impact of these novel drugs on diabetes mellitus-induced 398 
bone fracture risk remains unexplored [222]. 399 

10. Conclusions 400 
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Recent literature shows that the fracture risk in diabetes mellitus increased more significantly 401 
than can be explained by changes in BMD and confounding factors, such as risk of falls [19,23]. Rather 402 
than influencing the mineral phase (BMD), it is thought that a diabetic environment primarily affects 403 
biomechanical properties of the bone by deteriorating its organic composition and bone material 404 
strength [29,30,33]. This occurs either directly through altered cross-link formation or indirectly 405 
through changes of cellular activity in osteoblasts and bone progenitor cells [41,42,50,223,224]. 406 
Besides altering gene expression and activity of osteoblasts [41,42], the diabetic environment 407 
significantly reduces the MSC population and viability [151,171]. In obese individuals living with 408 
T2DM, increased bone marrow fattiness may exacerbate MSC and osteoblast impairment by the 409 
release of cytokines and free fatty acids from hypoxic adipose tissue, which upholds a vicious cycle 410 
of chronic inflammation and inhibited osteoblastic activity (Figure 1) [165,168]. The combination of 411 
these changes eventually affects tensile strength and post-yield properties of the bone, which makes 412 
bone tissue in diabetes mellitus more vulnerable to microdamage accumulation, fragility fractures at 413 
most skeletal sites, and impaired fracture healing [32,225]. Decreased MSC population and impaired 414 
differentiation capacity may be the common link between impaired bone micro-architecture and 415 
higher incidence of non-union in patients living with diabetes mellitus [137,225]. Additionally, since 416 
vascularisation is mediated by MSCs [143,144], the reduced population and potential of progenitor 417 
cells may create vascular deficiencies in the fracture site, which can further impair diabetic fracture 418 
healing. A return to glucose homeostasis does not restore the capacity of previously diabetic MSCs, 419 
which reflects evidence outlining hyperglycemic memory in cells previously exposed to a diabetic 420 
milieu [64–69]. Therefore, it would be interesting to see studies investigating diabetes mellitus-421 
induced epigenetic changes in precursor cells contributing to diabetic osteopathy.  422 

This review highlights the importance of efficient clinical management of patients suffering from 423 
diabetes mellitus, since adequately controlled diabetes mellitus has been consistently implicated to 424 
have a positive effect on bone health, which reverses bone impairments in some studies 425 
[130,189,190,208,226–230]. It is important to bear in mind that patients who are on a treatment regime 426 
causing hypoglycemic episodes are at a greater risk of sustaining fractures [231–233]. In clinical 427 
practice, health care professionals should focus on bone protection interventions and fall prevention 428 
strategies targeting patients at high risk of fracture [234]. Conventional risk assessment tools for 429 
osteoporosis such as BMD measurements and the FRAX score are not valid for predicting fracture 430 
risk in individuals living with diabetes mellitus [120,121,235]. Therefore, there continues to be a dire 431 
need for the investigation of novel methods of risk assessment, which possibly includes 432 
measurements of bone turnover and levels of AGEs, which can adjust for the altered metabolic state 433 
of diabetes mellitus [236,237]. MiRNAs are promising novel serum biomarkers, which could be used 434 
to identify individuals living with diabetes mellitus at a high risk of fragility fractures within the 435 
coming years [97,98]. Recent scientific developments in the understanding of the molecular pathways 436 
involved in diabetes mellitus have opened opportunities in new anti-inflammatory treatment 437 
approaches [173]. Further investigation is needed to clarify the mechanism of action through which 438 
diabetes mellitus affects the viability and differentiation capacity of the progenitor cell population, 439 
which will support translational research in the prevention of fragility fractures in patients suffering 440 
from diabetes mellitus in the future. 441 
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AGE Advanced glycation end products 
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PTH  Parathyroid hormone 

TNF-α Tumor necrosis factor alpha 

RANKL Receptor activator of nuclear factor kappa-Β ligand 

RAGE Receptor for advanced glycation end products 

MiRNA MicroRNA 

DEXA Dual-energy X-ray absorptiometry 

FRAX Fracture Risk Assessment Tool 

ALP Alkaline phosphatase 

PPAR-𝛾 Peroxisome proliferator-activated receptor gamma 

ROS 

BM-MSCs 

Reactive oxygen species 

Bone marrow (BM) derived MSCs 

WAT White adipose tissue 

HIF-1α  

HSC 

DPP-4 

Hypoxia-inducible factor 1-alpha 

Haematopoietic stem cell 

Dipeptidyl peptidase-4 

GLP1 Glucagon-like peptide 1 

GLP1RA GLP1 receptor analogue 

SGLT-2 Sodium glucose cotransporter- 2 
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