
 
Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-05-15T18:35:15Z

 

Some rights reserved. For more information, please see the item record link above.
 

Title
Numerical simulation and assessment of the effects of inlet
configuration on the flushing time of a potable water service
reservoir

Author(s) O'Neill, Colin J.; Nash, Stephen; Clifford, Eoghan; Mullligan,
Sean

Publication
Date 2018-05-15

Publication
Information

O’ Neill, Colin, Nash, Stephen, Clifford, Eoghan, & Mullligan,
Sean. (2018). Numerical simulation and assessment of the
effects of inlet configuration on the flushing time of a potable
water service reservoir. Paper presented at the ISHS 2018 7th
International Symposium on Hydraulic Structures, Aachen,
Germany, 15-18 May.

Publisher Conferences and Events at DigitalCommons@USU

Link to
publisher's

version
https://dx.doi.org/ 10.15142/T32936

Item record http://hdl.handle.net/10379/15372

DOI http://dx.doi.org/10.15142/T32936

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/


Utah State University
DigitalCommons@USU

International Symposium on Hydraulic Structures

May 17th, 5:00 PM

Numerical Simulation and Assessment of the
Effects of Inlet Configuration on the Flushing Time
of a Potable Water Service Reservoir
C. O'Neill
c.oneill8@nuigalway.ie

Colin James O'Neill Mr
National University of Ireland, Galway, c.oneill8@nuigalway.ie

Follow this and additional works at: https://digitalcommons.usu.edu/ishs

This Event is brought to you for free and open access by the Conferences
and Events at DigitalCommons@USU. It has been accepted for inclusion in
International Symposium on Hydraulic Structures by an authorized
administrator of DigitalCommons@USU. For more information, please
contact dylan.burns@usu.edu.

Recommended Citation
O'Neill, C. (2018). Numerical Simulation and Assessment of the Effects of Inlet Configuration on the Flushing Time of a Potable
Water Service Reservoir. Daniel Bung, Blake Tullis, 7th IAHR International Symposium on Hydraulic Structures, Aachen, Germany,
15-18 May. doi: 10.15142/T32936 (978-0-692-13277-7).

https://digitalcommons.usu.edu?utm_source=digitalcommons.usu.edu%2Fishs%2F2018%2Fsession12-2018%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/ishs?utm_source=digitalcommons.usu.edu%2Fishs%2F2018%2Fsession12-2018%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/ishs?utm_source=digitalcommons.usu.edu%2Fishs%2F2018%2Fsession12-2018%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dylan.burns@usu.edu
http://library.usu.edu/?utm_source=digitalcommons.usu.edu%2Fishs%2F2018%2Fsession12-2018%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.usu.edu/?utm_source=digitalcommons.usu.edu%2Fishs%2F2018%2Fsession12-2018%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages


7th International Symposium on Hydraulic Structures Aachen, Germany, 15-18 May 2018 

ISBN 978-0-692-13277-7                DOI: 10.15142/T32936 

 

Numerical Simulation and Assessment of the Effects of Inlet Configuration on the Flushing 

Time of a Potable Water Service Reservoir 

C. J. O’Neill1, S. Nash2, E. Clifford2 & S. Mulligan1 

1College of Engineering and Informatics, National University of Ireland Galway (NUIG), Galway, Ireland 

 2Ryan Institute, NUI Galway eoghan.clifford@nuigalway.ie *corresponding author 

E-mail: c.oneill8@nuigalway.ie 

Abstract: Service reservoirs provide the dual function of balancing supply with demand and providing adequate pressure in the 

water supply network by maintaining sufficient pressure head. In a potable water service reservoir, the flushing time is a major 

water quality concern due to the potential loss of chlorine residual. The flushing time is closely related to the flow pattern in the 

reservoir. In this study, the influence of change of water inlet configuration and baffling on flushing time was examined. 

Multiphase Computational Fluid Dynamics (CFD) was used to simulate service conditions and predict flow patterns. To 

determine the flushing time, two identical fluids with the properties of water were used in the simulation with one fluid in the 

reservoir initially and the other fluid introduced through the inlet. The volume fraction of the initial fluid at the ideal flushing 

time was used to determine the effects of inlet configuration and baffling. A laboratory scale model was used to validate results 

produced from the CFD model. In the physical model, a saline solution was used as the initial fluid in the reservoir and fresh 

water was introduced through the inlet. A time series of the conductivity of the solution was measured at a specific point and was 

compared to a volume fraction monitor point in the numerical simulation to validate results. Four different scenarios were 

assessed with different inlet configurations and locations including a baffle wall located near the inlet to direct the flow.  

Keywords: Computational Fluid Dynamics, service reservoir, water quality, flushing time, inlet configuration.  

1. Introduction  

Once water has been treated in a water treatment plant and is potable, it must be conveyed to consumers. As demand 

in each catchment varies greatly throughout the day and over the course of a week, maintaining constant water pressure 

in an area is achieved using service reservoirs and water tower structures. A trunk main usually supplies a service 

reservoir directly from the water treatment plant; the service reservoir then in turn supplies the local area through a 

series of distribution mains. Service reservoirs are usually located at the highest elevation in the area to provide 

adequate pressure head to the distribution network while also maintaining supply to the area should the treatment plant 

or pumps breakdown.  

After the treatment process, the water maintains a chlorine residual which acts as a safeguard against additional 

microbial contamination that could occur in the distribution process. This chlorine residual will decay over time; 

therefore, reducing the residence time of the distribution network is important for ensuring that there is a high quality 

of water for the consumers. Therefore, the study of flow in a service reservoir is of major interest in the design of the 

reservoir to improve water distribution and to prevent short circuiting within the reservoir. Completely mixed flow is 

desirable in a service reservoir as it minimizes the potential loss of disinfectant (Grayman et al. 2004). Ideally this can 

be achieved simply by modifying the geometry of the tank or the inlet and outlet configuration thus removing the need 

for mixers or agitators which induce high energy and maintenance costs. 

The shape of the reservoir has a significant influence on the flow conditions in the reservoir and previous studies have 

shown that a rectangular tank with an inlet at one end and an outlet at the other is the best design when considering 

mixing and age distribution (Lee et al., 2014). Increasing the length to width ratio for rectangular reservoirs causes 

the flow conditions in a reservoir to resemble plug flow for a vertical inlet (Yeung, 2001). Using a series of four 

distributed inlets was found to be a viable measure to preserve water quality in a circular tank (Montoya-Pachongo et 

al., 2016). 

The effect of installing baffle walls to improve mixing and residence time in a service reservoir still remains 

inconclusive with contradictory results found in previous studies. One study found that while baffle walls retrofitted 

to areas prone to recirculation tended to break up the vortices and shorten the flow path, the water velocity is reduced 

after flowing past the baffle walls (Zhang et al. 2013). It is recommended that under most circumstances baffles should 

not be used in service reservoirs where they can inhibit mixing, especially in fill-and-draw reservoirs (Grayman et al. 

2004). 



 

 

Computational Fluid Dynamics (CFD) offers an effective tool to allow parameterization and optimization of flow 

control geometry in reservoirs (Jarman et al., 2008; Dewals et al., 2008; Dufresne et al. 2011). The majority of previous 

studies adopting CFD to evaluate the residence time of a service reservoir used ‘tracer tests’ to calculate the residence 

time. This consisted of injecting a pulse of tracer through the inlet and measuring the concentration at the outlet (Yeung 

2001, Montoya-Pachongo et al. 2016). However, this method does not give a clear indication as to the flushing time 

of the reservoir and a tracer test alone may not be indicative of the mixing and age distribution in the reservoir. 

Flushing time, residence time and age are not consistently defined in literature as transport time scales and they can 

often be confused (Monsen et al. 2002). In this study, four different inlet configurations are compared to evaluate the 

effect they have on the flushing time of a reservoir with consistent geometry. 

2. Methodology  

2.1. Physical Geometry  

The physical geometry of the reservoir was based on a new 7.5 Ml reservoir proposed to be constructed in the United 

Kingdom. This new reservoir is to serve as an ancillary cell to an existing 15 Ml reservoir adjacent to the proposed 

site. Therefore, the physical geometry of the proposed design had to be similar to the existing structure with the same 

roof height. The proposed reservoir has dimensions of 50 m in length, 30 m in width and 5 m in height to the top water 

level. The height of the roof of the reservoir is sufficiently higher (0.59 m) than the top water level. Roof support 

columns, 0.35 m square, are spaced at approximately 5 m center spanning in both directions. The proposed inlet is a 

0.45 m diameter ductile iron pipe that enters the reservoir vertically from underground from one side of the tank and 

overspills a bell-mouth on top from above the top water level. The outlet is situated at the other end of the tank in a 

sump. Similar to the inlet, the outlet comprised of a 0.45 m diameter ductile iron pipe with a bell-mouth at the entry, 

the top of which is level with the base of the reservoir. Both the inlet and outlet are offset to the centerline of the tank 

on opposite sides. Because making changes to the physical geometry of the reservoir is restrained by the existing 

reservoir, a number of different inlet configurations were to be evaluated and analyzed to improve flushing time in the 

reservoir. 

 

 

Figure 1.  Schematic layout of the proposed service reservoir. 

2.1.1. Test Scenarios 

Four different inlet configurations were analyzed to determine the most suitable using a 3D numerical model. Scenario 

1 (S1) is as outlined above in the original proposal with the inlet over-spilling a bell-mouth set above the top water 

level. Scenario 2 (S2) has the inlet in the same 𝑥 − 𝑦 position but is located at the base level similar to the outlet. 

Scenario 3 (S3) has the same inlet as S1 but has a baffle wall across the support columns immediately adjacent to the 

inlet, transverse to the long side wall. The purpose of the baffle was to direct flow into the corners of the reservoir. 

Outlet at base 

Support columns 

Inlet at TWL 



 

 

Scenario 4 (S4) has a horizontal inlet normal to the back wall of the tank at the same 𝑦 dimension as the S1 and 0.5 m 

above the base. The different test scenarios are outlined in Figure 2 (a-d) below. 

 

 

  

 

(a)  (b) 

 

(c)                (d) 

 

Figure 2.  Schematic layout of each test scenario with Qi showing the inlet location and direction and Qo showing the outlet. (a) 

Scenario 1, (b) Scenario 2, (c) Scenario 3 and (d) Scenario 4. 

2.2. Numerical Simulation Methodology 

Three-dimensional numerical modelling was undertaken using Ansys CFX 18.1 software with a high-performance 

computer used to solve the simulation. In each simulation, the full tank domain was modelled including the columns 

An unstructured tetrahedral dominant mesh grid was constructed to mesh the domain. Grids were refined close walls 

such as the inlet, outlet, walls and columns through either inflation or face sizing to ensure fine resolution to capture 

the boundary layer. The mesh comprised of approximately 664,000 nodes and 3,471,000 elements for each scenario, 

varying slightly depending on the geometric scenario under consideration. A mesh sensitivity analysis was carried out 

initially to determine to appropriate mesh density to provide a mesh independent solution. For this analysis, monitor 

points were used to measure time averaged velocity for various mesh refinements starting at a relatively course mesh 

and refining it each time until the results were independent of the mesh resolution. 
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Figure 3.  Typical computational mesh used for numerical simulations. Denser mesh grids around boundary conditions and 

walls. 

For the purpose of this simulation, the air-water interface was assumed to be a constant fixed lid or horizontal plane 

positioned at the top water level. This is a valid approximation given that sloshing of water or other dynamic effects 

of the air water interface would most likely be absent in order to avoid additional computational cost of modelling the 

water-air interface (Zhang et al. 2011). The top water level plane is specified as a smooth wall with free-slip conditions. 

The main boundary conditions are outlined in Table 1. All walls and columns were specified as smooth no-slip walls. 

Although the reservoir is a concrete structure, given the low velocity and relatively laminar flow, applying a roughness 

factor to the surface was deemed unnecessary and for the bed of the reservoir the friction factor is only considered 

important when the water depth is very low (Dufresne et al. 2011) 

Table 1. Boundary Conditions. 

Boundary Type Conditions 

Inlet Normal 

velocity = 

0.884 m/s 

Outlet Static 

Pressure = 0 

Pa 

Wall Smooth, no-

slip 

Top water level Smooth, slip 

wall 

 

For the inlet condition, a constant normal speed of 0.884 m/s was applied. This boundary condition was calculated 

using Eq. (1) to determine the ideal flushing of this tank over a 12 h period where τf is the ideal flushing time and 𝑉 

is the volume of the tank. For the outlet condition, a static gauge pressure of 0 Pa was applied. 

          𝑄 =  
𝑉

𝜏𝑓
 (1) 



 

 

Multiphase analysis was used to determine the flushing time of the model. Two fluids with the same properties as 

water were used, with Fluid 1 in the reservoir initially and Fluid 2 being introduced through the inlet after the flow 

was fully developed. The in-homogenous Eulerian-Eulerian Model was used to model interphase mixing in the system 

(ANSYS CFX-Solver Theory Guide 2011). The standard Shear Stress Transport (SST) was adopted to model 

turbulence. The Transient Model was allowed to run for a 12 h period (prototype) plus time (the equivalent of 1 h in 

prototype scale) for the flow to fully develop initially. 

Monitor points were positioned in the center of the tank and the volume fraction of each fluid was monitored over the 

period of the simulation together with the average volume fraction for each fluid for the whole domain. When the 

volume fraction of Fluid 1 was equal to zero, the flushing time of the tank would be realized. However, for this study 

the scenario that had the smallest volume fraction of Fluid 1 remaining after a 12 h period was determined to be the 

most suitable design. 

2.3. Physical Model Methodology 

To validate the numerical model simulation, a 1:50 scale physical model of the reservoir was constructed in the 

laboratory for Scenario 1. The physical scale model was made using perspex for the walls and treated timber to 

simulate the roof support columns. Although in reality the inlet and outlet discharge fluctuated over time, to simplify 

the model a steady inlet and outlet flow was assumed. A header tank and ball-valve was used at the inlet to maintain 

a steady flow and a ball-valve was used at the outlet as shown in Figure 4. 

The physical parameters of the model were calculated using Froude similitude due to it being a free surface problem 

(Chanson, 1999). The inlet discharge (𝑄i) was set to 0.01 l/s which would give an ideal flushing time (τf) of 12 hours 

in the full-scale prototype. The outlet discharge (𝑄o) was set equal to the inlet to maintain constant depth. 

Red food colouring was added to the header tank and a time-lapse video recording of plan view was obtained to give 

an indication of the flow patterns for qualitative comparisons with the numerical model. To quantitatively measure 

the flushing time of the scale model, a conductivity probe was set up in the center of the tank at the same location as 

the monitor point for the numerical model for comparative purposes. Central tank and outlet readings were obtained 

at one minute and three-minute time intervals, respectively. Table salt was added (0.4 g/l) to the fresh water in the 

tank to increase the conductivity and the tank was mixed thoroughly to ensure an even distribution. The header tank 

was filled with fresh water and the outlet was opened. The model was allowed to flow for 10 minutes to allow the 

flow to fully develop before the probe started recording conductivity measurements. The experiment was repeated 

three times to ensure repeatability and accuracy of results. 



 

 

 

Figure 4.  Physical scale model setup in the hydraulics laboratory. 

3. Results and Discussion 

3.1. Validation of Numerical Model Methodology 

The physical model results were used to initially assess the validity of the numerical model. Figure 5 below shows a 

qualitative comparison between the flow in the physical model compared to the numerical model. Food colouring was 

added to the header tank in the physical model to show the flow pattern in the model and volume rendering was used 

in the numerical model at specific time steps to show the flow of Fluid 2 in the domain. From visual inspection alone, 

these results agree well qualitatively with poorly mixed regions matching approximately at the various timesteps 

 



 

 

 

  (a) 

 

 
  (b) 

Figure 5.  CFD volume rendering and food colouring test for time steps (a) t = 4 h (b) t = 10 h. 

The conductivity readings from the probe in the center of the tank were used to calculate the flushing time in the 

physical model. The initial conductivity (σi) reading of the saline solution minus the conductivity of fresh water (σw), 

was set equal to one and the subsequent readings (
𝜕𝜎

𝜕𝑡
) were taken as a fraction of the initial reading. This allowed the 

conductivity results from the physical model to be comparable to the volume fraction (VF) results for each monitor 

point in the numerical model (Eq. (2)). Figure 6 shows a graph of these results for S1 with an error bar on the measured 

results calculated by taking the standard deviation of the three physical model tests results plus the tolerance of the 

probe.  

                                                                  

𝜕𝜎

𝜕𝑡

(𝜎𝑖−𝜎𝑤)
= 𝑉𝐹  (2) 

 



 

 

 

Figure 6.  Physical model measured data and CFD output data.  

This numerical model methodology was subsequently applied to S2, S3 and S4 to compare the effect of inlet 

configuration on the flushing time and flow pattern in the model. Figure 7 shows the 3D streamlines from the inlet for 

each scenario. In S1, the jet from the inlet dissipates homogenously for the first half of the tank and the flow seems 

well dispersed. S2 streamlines indicate that when the inlet is at the base the flow follows a more direct route to the 

outlet but is still mixed reasonably well. In S3, the jet from the inlet continues until the flow hits the opposite wall and 

is dispersed into the corners and back down the side walls. There also seems to be large areas of stagnant flow either 

side of the jet in S3. Finally, S4 shows that the baffle directs the flow into the corners initially and up the walls towards 

the outlet; however, like S3, there seems to be large areas of stagnant flow and short circuiting. 

    

(a)                                                (b)                                                 (c)                                                   (d) 

Figure 7.  Plan view of three dimensional streamlines of flow from the inlet for scenarios (a) Scenario 1, (b) Scenario 2, (c) 

Scenario 3 and (d) Scenario 4. 

Figure 8 presents the relationship between the volume fractions of Fluid 1 over time for each of the scenarios. From 

this graph, it is clear that S1 will have the shortest flushing time as the flow is almost fully dispersed and was observed 

in the streamlines of Figure 7. S2 and S3 appear to perform poorly as the flow from the inlet is conveyed almost 

directly to the outlet leaving large areas of the tank stagnant. In S4 the baffle wall blocks the water from going directly 

to the outlet and disperses it into the corners and along the side walls, but the baffle creates recirculation flow around 

it and in the center of the tank. All scenarios show that the rate of flushing reduces exponentially over time. 

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14

V
o

lu
m

e 
Fr

ac
ti

o
n

Time [h]

CFD monitor point

Measured data with
3.45% error bar



 

 

 

Figure 8.  Average volume fraction of Fluid 1 in the domain for each scenario tested. 

4. Conclusion 

In this study, a three-dimensional multiphase numerical model of a reservoir is undertaken to assess mixing patterns 

and flushing times. The numerical model is validated using a 1:50 physical model of the hydraulic structure. The 

numerical and physical models were found to compare qualitatively well.  Four inlet scenarios were investigated based 

on varying the inlet configuration and geometry. The results found that the inlet configuration of a reservoir can have 

a relatively considerable influence on the flushing time and flow patterns. A bell-mouth inlet over-spilling above the 

top water level was found to be the most suitable inlet configuration for this specific reservoir. This was demonstrated 

for examining the volume fractions of mixed fluid phases over a 12-hour simulation period where only 30% of the 

fluid initially in the tank remained. This was almost 13% better than a horizontal inlet under the same conditions and 

also performed more effectively than with a baffle or a base level vertical inlet.  

 

To improve on this study, further investigation into suitable numerical schemes to represent fluid level variations is 

required to accurately represent the flow conditions in reservoirs. It is also recommended that the influence of the 

varying turbulence Schmidt number on the mass turbulent transport be investigated as previous studies have found 

that mixing is highly dependent on this parameter (Valero and Bung, 2016). Nonetheless, this study highlights that 

the proposed numerical approach is an effective method for calculating the flushing time of a reactor such as this. It 

is recommended that for future studies a smaller scale difference be used for validation and possible use of a chemical 

tracer for quantifying the flushing time.  
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