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Abstract 
 

In this dissertation, a comprehensive evaluation framework for remote eye gaze estimation systems 

that are implemented in consumer electronics applications is developed.  For this, firstly, a detailed 

literature review was made which helped to gain deep insights about the current state-of-the-art in eye 

gaze estimation algorithms and applications, by categorizing eye gaze research works into different 

consumer use cases. The wide range of existing gaze estimation algorithms were classified and their 

applications in interdisciplinary areas such as human computer interactions, cognitive studies and 

consumer electronics platforms like automotive, handheld devices, augmented and virtual reality were 

summarised. The review further identified the major challenges faced by contemporary remote gaze 

estimation systems, which include variable operating conditions such as user distance from tracker, 

viewing angle, head pose and platform movements that have significant impact on a gaze tracker’s 

performance. Other issues include deficit of common evaluation methodologies, standard metrics or 

any comprehensive tools or software which may be used for quantitatively evaluating gaze data 

quality and studying impact of the various challenging operating conditions on gaze estimation 

accuracy. 

 

Based on the outcomes of this review, the concept of a dedicated performance evaluation framework 

for remote eye gaze estimation systems was formulated. This framework was implemented in this 

thesis work through the following steps: a) defining new experimental protocols for collection of data 

from a remote eye tracker operating under several challenging operating conditions b) collection of 

gaze data from a number of participants using a commercial remote eye tracker under variable 

operating conditions  c) development of a set of numerical metrics and visualization methods using 

the collected data to express gaze tracking accuracy in homogeneous units and quantitatively explore 

gaze data characteristics and quality d) implementing machine learning models using the collected 

gaze datasets to identify and predict error patterns produced in gaze data by different operating 

conditions  e) development of a software and web-application that incorporates the developed metrics 

and visualization methods into user-friendly graphical interfaces f) creation of open source code and 

data repositories containing the performance evaluation tools and methods developed in this thesis, so 

that they can be used by researchers and engineers working with remote gaze estimation systems. 

 

The aim of this dissertation is to present a set of methods, data, tools and algorithms as analytical 

resources for the eye gaze research community to use for better understanding of eye tracking data 

quality, detection of anomalous gaze data and prediction of possible error levels under various 

operating conditions of an eye tracker. Overall, these methods are envisioned to improve the quality 

and reliability of eye tracking systems operating under practical and challenging scenarios in current 

and future consumer applications.  
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Chapter 1  

Introduction- Performance evaluation of eye trackers and gaze 
data quality  

 

 

 

 

Eye gaze research has evolved into a potential avenue for human computer interactions and 

understanding human attention, interest and cognitive processes [1] [2] since eye gaze provides rich 

information on human behaviour, affect, intent or even personality traits [3]. A wide range of eye 

tracking systems and algorithms have been developed till now [4] [5] and the applications of eye gaze 

changed from mainly clinical uses in the 1990’s [6] to growing applications in consumer electronics 

[7],  such as in gaming, virtual or augmented reality and e-commerce to name a few [8] [7] [9].  

 

An eye tracker’s accuracy and system behaviour play critical roles in determining the reliability and 

usability of eye gaze data obtained from them [10][11]. However, in contemporary eye gaze research, 

there exists a lot of ambiguity in the definitions of gaze estimation accuracy and lack of well-defined 

methods for evaluating the performance of eye tracking systems [12] [13]. As a result practical 

accuracy levels of eye trackers may differ significantly from expected values [14] and eye gaze 

information may lose its applicability in different scientific and consumer use cases [15] [16].  

 

In this dissertation, this critical area of eye gaze research is addressed, i.e. comprehensive 

performance evaluation of gaze estimation systems and quantitative analysis of gaze data quality 

through development of experimental methods, data analysis algorithms and relevant software tools. 

This chapter presents a brief summary of eye gaze uses cases existing in present day consumer 

electronics as well as describes the fundamentals of gaze estimation techniques used for remote eye 

trackers- which forms the main eye gaze use case for investigation in this thesis. The major challenges 

faced by remote eye tracking systems in various consumer applications are highlighted, followed by 

describing the contributions in this thesis towards addressing these challenges. The thesis structure is 

discussed and a list of publications made as part of this thesis work that have been done or are 

currently under review, is presented. 
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1.1 Eye tracking fundamentals 

Eye gaze estimation systems broadly fall in two main categories: the remote or screen based trackers 

[17] [18] and the wearable or head mounted trackers [19] [20].  The works in this thesis are based on 

remote eye trackers and all the data collection, analysis and developmental aspects have been done 

within the scope of these trackers. The reason for focussing on remote eye trackers is the availability 

of suitable equipment and also due to the relevance with the projects ongoing at the industry partner 

Fotonation Ltd. A summary of currently existing eye gaze use cases is provided below, followed by 

description of basic concepts related to remote eye tracking setups, the gaze estimation process and 

various eye movement measures commonly used in gaze applications.   

 

1.1.1 Eye gaze use cases  

Gaze estimation systems can be broadly classified into several use cases, based on their setup and 

applications in various consumer electronics systems. A literature review paper [12] which was 

compiled in the beginning of this thesis work gives a more detailed description of these eye gaze use 

cases. A summary of consumer electronics use cases of gaze tracking systems is provided below. 

 

A. Head mounted systems 

This type of gaze trackers requires that the user wears a head mounted device and the tracking setup is 

very close and in a fixed position relative to the user eye. Such systems can detect gaze points with 

high accuracy [21] [22].  The general setup includes two cameras; one (eye camera) pointed at the 

wearer’s eye, to detect the pupil; and the other (scene camera) capturing the wearer’s point of view, 

with sometimes additional components like NIR light sources and hot mirrors.[23] [24]  Key 

applications of these setups are in Virtual and Augmented reality (VR and AR respectively) research 

[25][26]. The main problems in head mounted setups occur from motion and depth of field blur, loss 

of calibration and errors due to parallax. 

 

B. Remote or screen based gaze tracking systems 

This is the type of eye tracker used in this thesis work. These systems use a fixed platform to position 

the gaze estimation setups, which are generally placed around 1 meter of distance from the users. 

These systems are typically used for gaze estimation on desktop computers [27] or smart TVs [28]. 

Applications of eye gaze on desktop systems have been done for computer communication [29], 

password entry [30], psychoanalysis and for object selection as a substitute for mouse [31] as gaze 

based pointing has higher speed and accuracy than manual pointing. On large displays and smart TVs 

eye movements can be used to select and navigate menus, modify display properties, switch channels 

and understand user interests. Major problems in desktop eye tracking arise from Midas touch [32], 

user head movements and large errors at high visual angles near corners of the display screen.  
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C. Handheld gaze estimation systems 

In recent times eye tracking has been implemented on mobile devices like smartphones or tablets 

where they are  used to capture user’s gaze information as an input modality [33] [34]. Gaze tracking 

on handheld devices is done using the device front camera, one or more IR light sources and various 

computer vision algorithms like edge detection, Haar classifiers and ellipse fitting to determine the 

eye limbus boundaries. Major problems in this platform occur due to user movement, lighting 

conditions and platform movement.  Gaze information is used to access and highlight menu buttons, 

creation of 3D display effects and gaze based keyboard input, password entry and gaming [9]. 

 

 
Figure 1.1: Applications of eye tracking in (left to right): desktop, tablet and a large screen TV [13]. 
 

D. Eye trackers for automotive environments 

In this eye gaze use case the tracking setup is mounted on a highly dynamic platform, e.g. on the 

dashboard of cars, mainly for monitoring driver behaviour. The setup could be similar to remote eye 

trackers but operating conditions in automotive use cases are very much different [35][36]. Visual 

features of the face and eye regions of an automobile driver provide cues about their degree of 

alertness, perception and vehicle control. Gaze related cues that indicate driver attentiveness include: 

blink rate, temporal gaze variation, speed of eyelid movements and degree of eye openness [37]. Key 

issues affecting eye tracking in automotive are problems in eye detection due to variable illumination, 

occlusion of the eye region due to shadows or eyeglasses, false alarms, and real-time operability [38]. 

 

 
Figure 1.2: (a). Driver monitoring cameras mounted on car dashboard (b) Driver monitoring workflow[9] 
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Actual target  
location 

1.1.2 General setup for remote eye gaze estimation 

 

Remote eye gaze estimation systems are based on capturing video frames of users’ eyes and comprise 

of one or more digital cameras, near infra-red (NIR) LEDs and a computer with its screen displaying a 

user interface where a user’s gaze is tracked [39]. A typical eye gaze tracking setup is shown in 

Figure. 1.3a. The steps involved in passive video based eye tracking include user calibration, 

capturing video frames of the face and eye regions of user, eye detection and mapping with gaze 

coordinates on the computer screen. Common gaze tracking methods involve using NIR LEDs to 

produce glints on the eye cornea surface and then capturing images/videos of the eye region [40]. 

Gaze is estimated from the relative movement between the pupil center and glint positions. Other 

classes of methods use images of the eye regions for extracting shape and texture features or as direct 

input to appearance or machine learning models for estimation of gaze directions [7].  

  
 
 
 
 
 
 
 
 
 
 
 

 

                                    (a)                                                                                                                            (b) 

Figure 1.3: (a) Typical setup of a video based remote eye tracking system  (b) display and eye tracker coordinate systems 

 

In a typical remote eye tracker setup (as used in this work and shown in Figure 1.3b) the display 

coordinate system is aligned with the display of the computer and its origin is the upper left corner of 

the display screen. The eye tracker coordinate system has its origin at the center of the frontal surface 

of the eye tracker which is aligned with the center of the display screen. The tracker x-axis points 

horizontally towards the user’s right, the y-axis points vertically towards the user’s up and the z-axis 

points towards the user, perpendicular to the front surface of the eye tracker. Gaze data comprises of 

eye locations of a user tracked by the eye tracker and mapped into the 2D coordinates of the display 

screen, in units of pixels which may be converted to visual angles if user-tracker distance is known. 
 

Calibration of an eye tracker is a process that helps to accommodate for the differing visual 

characteristics of one individual from another [41]. This difference arises due to the variable deviation 

Camera 
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       Monitor Screen 
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center
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between the human eye’s visual and optical axes (called Kappa angle) from person to person [42]. 

Calibration is generally done by showing the user a set of specific targets distributed over the display 

screen of the setup and the user is asked to gaze at them for a certain amount of time [43]. The tracker 

camera captures the various eye positions of a user for each target which are then mapped to the 

corresponding gaze coordinates using regression models and thus the tracker learns the mapping 

function for each person.  Usually, calibration-free gaze estimation methods are preferred in consumer 

electronics use cases for user convenience [44] and such algorithms have been developed using 

multiple or stereo cameras and 3D eye models or deep learning based methods, such as in [45] [46]. 

Automated calibration techniques for eye trackers have also been proposed in [47] [48].  Another 

calibration approach includes participants selecting a stationary marker in their visual field and 

moving their heads around it in a circular motion, while keeping their gaze fixed at the marker [49]. 

 

1.1.3 Overview on eye movements    

 

The common types of eye movements studied in eye gaze research are the following [50]:  

1. Fixations: These are phases when the eyes are stationary between movements and visual input 

occurs. Fixations are used for studying a user’s browsing and scene perception characteristics.              

2. Saccades: These are rapid and involuntary eye movements that occur between fixations. Saccade 

related parameters include saccade number, amplitude and fixation-saccade ratio. These are used in 

gaze based biometrics and understanding visual search processes [51]. 

3. Scanpath: This includes a series of short fixations and saccades alternating before the eyes reach a 

target location on screen. Measures derived from scanpath include scanpath direction, duration, length 

and area covered [52]. Typical uses of scan paths are in assessing quality and layout of user interfaces        

4. Gaze duration: It is the sum of all fixations made in an area of interest before the eyes leave that 

area and the proportion of time spent in each area. It signifies levels of user engagement and interest.  

5. Pupil size and blink: These are measures used to study cognitive workload [53].  

 

1.2 Performance evaluation of eye trackers 
 
 

In a typical eye gaze tracking operation, a user gazes at an interface on a computer screen which 

provides them with visual stimuli or a set of targets or scene. Gaze tracking accuracy is estimated as 

the average difference between the real stimuli positions and the measured gaze positions, which also 

provides an idea about the performance of the system [54]. There are several factors that affect eye 

tracking accuracy and they are briefly summarized below.  The typical issues arising with respect to 

gaze data quality evaluation in contemporary gaze research are discussed. These lead to the 

formulation of the research problem addressed in this thesis work.  
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1.2.1 Practical challenges faced by eye trackers 

 

Through literature reviews and practical works with eye trackers, several parameters were identified 

in this work, which contribute towards significant increase in gaze estimation errors of remote eye 

trackers. These factors  (also termed as “error sources” in this thesis)  frequently affect eye trackers 

when they operate under practical conditions, such as those found in consumer applications of eye 

tracking, and are discussed in our papers [55] [56].  

 

The error sources typically affecting a remote eye tracker include:  

a) Head pose changes: Random head movement of users lead to distorted appearance of eye-socket 

geometry in captured eye images, alterations in the user’s field of view and for pupil-glint based 

methods may cause LED glints on the cornea to disappear, leading the tracking algorithm to fail [57].  

b) Visual eccentricities: This includes effect of the size of the screen where gaze is tracked and 

distance of the user from setup. It has been experimentally proven that eye tracking accuracy worsens 

at the far corners of the display screen due to high visual eccentricities (or visual angles) at those 

positions [21]. Also if the user is too close to the eye tracker, errors increase as gaze angles are large  

c) Platform movements: Typically observed in high dynamic platforms like automotive and handheld 

devices, variable position, orientation and jitter in the eye tracking setup can disrupt gaze tracking 

[58]. High frequency eye trackers e.g. operating at 120 Hz are more are also very sensitive to 

dislocations of the eye cameras and may report large errors due to slight vibrations [48]. 

d) Changes in illumination: This affects eye feature detection, causes additional glints to appear on 

cornea surface and may cause an eye tracking algorithm to fail.  

e) Human eye limitations-the eyes can fixate as accurately as 10 minutes of visual angle (0.16 degree) 

which sets the accuracy limit of gaze tracking [59]. High frequency eye movements lead to motion 

blur and missing gaze points if the frame-rate of the gaze estimation camera is less than 100 Hz [60].  

 

1.2.2 Eye gaze data quality  

 

In contemporary gaze research, data quality refers to the validity of the gaze data measured and 

reported by an eye tracker [10]. The most common methods of representing gaze data quality are 

accuracy, latency and precision [11]. Accuracy refers to the difference between the true and the 

measured gaze direction and may be classified into spatial or temporal accuracy, depending on the 

deviation between the actual and the measured gaze direction on a sample to sample basis. An eye 

tracker’s data is reported as invalid when relevant eye features could not be detected from the video 

feed of the eye, e.g. due to loss of the eye image, blurring or occlusion. When the eye tracker reports a 

valid sample, spatial accuracy can be defined as the deviation (in visual degrees) between the actual 
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and the measured gaze position of a sample [61]. The difference between the time of actual movement 

of the eye and time reported by the eye tracker is known as the latency or temporal accuracy.  Spatial 

and temporal accuracy measures along with precision determine data quality from an eye tracker. 

There is an important distinction between accuracy and precision. Under repeated measurements of 

gaze, while accuracy is defined as the mean difference between the measured and true gaze positions, 

precision, also called reproducibility or repeatability, is the degree to which the repeated measurement 

of a set of true values produces the same or similar set of measured values regardless of the accuracy 

of these values. Consequently, measurement can be accurate but not precise and vice versa. If both 

accuracy and precision differences are zero, the data quality for a gaze sample is said to be optimal. 

Figure 1.4(b) below denotes the different between accuracy and precision with respect to gaze data.   

 

Another terminology often used in the context of eye tracking data quality is data loss which refers to 

samples that are reported as invalid by the eye tracker and reported as samples with (0; 0) values or 

Not a Number (NaN) values. As mentioned above, data losses occur when features in the eye image, 

e.g. the pupil or the NIR corneal reflections cannot be reliably detected or tracked due to presence of 

glasses, eyelashes etc. that prevent the eye tracker camera from capturing a clear image of the eye. 

                        
                                  (a)                                                                                                            (b)             
Figure 1.4: (a) Example of accuracy and precision with respect to gaze data (b) An example of poor data quality in which 
tracked gaze locations (black) have large deviations with respect to target locations (blue). 
 
 
1.2.3 Current challenges in the evaluation of eye trackers and gaze data quality 

 

From the detailed literature review done in the beginning of this PhD research work [12] several 

critical issues currently existing in eye gaze research were identified. Firstly, it was found that in 

conventional eye gaze literature,  gaze estimation accuracy measures are presented in different ways 

e.g. as angular accuracy in degrees, distance accuracy in centi/millimeter or distances in pixels or 

even gaze detection rates (in percentage). Table 1 below shows the statistics derived from this 

literature review, surveying nearly 200 articles on gaze research and applications, which highlights the 

current diversity in metrics used for representing gaze estimation performance. It can be seen from the 

table that while the commonly used measure is angular resolution (in degrees), other metrics are used 
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frequently. These gaze data accuracy metrics are not interrelated and sometimes not clearly defined. 

Also, metrics like gaze detection rates are difficult to interpret physically and such variety in reporting 

formats makes inter-comparisons between different gaze estimation systems and algorithms 

impossible. Thus, there exist considerable ambiguities in evaluating performances of gaze tracking 

systems and specifications of gaze data quality in a homogeneous and standardized way. 

Table 1.1 Diversity in performance evaluation metrics used in eye gaze research articles [12] 

Eye tracking 
platform 

No. of  
surveyed 
papers 

No of papers 
with metric:  

Degree 

No. of papers with 
metric:  

Percentage 

No. of papers with 
metric: Others (e.g. 

pixels, mm) 
Desktop 69 44 16 9 

Handheld 21 3 9 9 
Automotive 35 11 14 10 

Head-mounted  57 37 2 18 
 

Another sparsely investigated issue in gaze research is about studying the impacts of different error 

sources (i.e., system and user variables) on gaze tracking performance [12] which are discussed above 

in Section 1.2.1. Remote eye trackers, during their operations encounter several variable operating 

conditions, which are not well described in conventional research or product literature. In desktop use 

cases, the factors which possibly influence a tracker and its gaze estimation accuracy include user 

distance, display properties of the screen where gaze is tracked and user head pose variations. On 

other use cases like handheld devices, platform orientation variations may greatly alter the claimed 

accuracy of an eye tracker during practical operations. At present, research works commonly do not 

report impact of these factors, neither are there any dedicated metrics for quantitatively evaluating 

their impact on gaze estimation accuracy. However in their presence, gaze accuracy may differ 

significantly from expected values, as was investigated in our experimental works and reported in 

[13].  Due to the lack of evaluation of these factors, the quality and reliability of gaze data becomes 

questionable during practical operations in different consumer use cases. 

 

The major challenges in gaze research that are identified and addressed in this thesis are therefore:    

1) lack of well-defined and standardized metrics for depiction of gaze estimation accuracy and gaze 

data quality 2) limited studies on the impacts of non-ideal operating conditions on gaze estimation 

accuracy 3) lack of any research on analysing gaze error patterns produced by different operating 

conditions, such as head pose, user distance etc.  4) no existing comprehensive tools or software that 

can evaluate gaze data quality using data samples  from an eye tracker and analysing their spatial and 

temporal characteristics 5) lack of publicly available gaze datasets that contain the signature of  

different challenging operating conditions on gaze data. 
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1.3 Contributions in this Thesis 
 
In this thesis, critical issues existing in contemporary eye gaze research were identified with respect to 

the lack of standardization of gaze data evaluation metrics and methods for evaluation of eye trackers 

under the impact of different operating conditions. Also there exist no gaze datasets, tools or software 

that are dedicated towards studying the accuracy characteristics of eye trackers under variable 

operating conditions. These formed the basis for proposing the concept of a performance evaluation 

framework for gaze estimation systems, which would provide suitable methods for in-depth 

evaluation of gaze data quality and performance of eye trackers, especially those operating under 

unconstrained conditions in consumer applications. 

Development of various components of this evaluation framework has been the focus of this thesis. 

The main contributions in this thesis are described in Chapters 2-5 and are summarized below.  Also 

the papers published as part of this thesis and linked to the contributions are in Appendices A-F. 

 

1.3.1 Identifying the requirements of standardized metrics and methods for 

performance evaluation of eye trackers 

 

A detailed literature review was done at the beginning of this thesis work which identified the deficit 

of standard metrics and evaluation methods for eye trackers implemented in consumer platforms. This 

review  and associated works may be found in [12] [56] [62] which are in Appendix A, B, C and H of 

this thesis. These papers outline the requirements and concept of the performance evaluation 

framework for eye tracking systems and form the foundation for later developments in this thesis. 

 

1.3.2 Defining experimental methodology and developing metrics and visualizations to 

evaluate eye trackers  

    

A set of eye tracking experiments were designed and conducted to collect gaze data and observe the 

impact of various error sources, such as user distance, head pose, and platform orientations on a 

remote eye tracker’s data. Using the data, a set of fundamental gaze accuracy metrics were derived 

and several new gaze data metrics and visualizations were developed which may be used to study the 

impact of multiple operating conditions on a tracker’s gaze data quality. These metrics and 

visualizations are discussed in details in Chapter 4,  and are in the paper [13] of Appendix D. 

 

1.3.3 Development of open source software tools for eye tracking data evaluation 
 

The metrics and visualization methods developed in this work are encapsulated into easy to use 

software and web-application tools for utilization by eye gaze researchers or engineers working in 

many inter-disciplinary areas that involve eye tracking systems. More details on these developments 
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may be found in the paper [63] which is in Appendix E, and summarized in Chapter 4. All the 

software resources related to the methods and tools developed in this work for comprehensive 

analysis and evaluation of gaze data quality are included to build an open code repository. Details of 

this repository are in the paper of Appendix G, and summarized in Chapter 5. 

 

         1.3.4 Building machine learning algorithms for analysing gaze error patterns 
 

With the data collected from the eye tracking experiments, a labelled dataset containing the signature 

of several non-ideal operating conditions (or error sources such as head pose, user distance and 

platform poses) is built. This dataset is then used with supervised classification models to detect the 

presence of anomalous gaze data and regression models to predict the impact of error sources on gaze 

data. Details of the machine learning algorithms used for gaze error pattern recognition and modelling 

may be found in the paper attached in Appendix F and also described in Section 4.4 of Chapter 4. 

 

1.3.5 Creating a benchmark gaze dataset for performance evaluation of eye trackers 
 

A new gaze dataset is created using the labelled gaze data collected during this work which is released 

into an open data repository with detailed documentation. This data is meant for use by gaze 

researchers and engineers to compare the performance of their developed gaze estimation algorithms 

or systems. More details on this are in the paper attached in Appendix G and in Chapter 5. 

 

1.4 Structure of this thesis 
 

This thesis comprises of six chapters including the current one where the research problem and 

adopted methodologies are discussed.  

Chapter 2 presents summaries of several literature reviews made during this thesis work on eye gaze 

applications, currently existing gaze datasets and recent developments in gaze research. This chapter 

is linked to the following papers [12] [9] [62] [60] [64]. 

 

Chapter 3 describes the concepts and components of the performance evaluation framework for eye 

tracking systems proposed and implemented in this thesis. This chapter is linked to papers [12] [56]. 

 

Chapter 4 includes the implementation details of the performance evaluation framework, describing 

the developed methods and algorithms.  This chapter is linked to papers  [13] [63] and papers which 

are currently under review and may be found in Appendices D, E and F.  
 

Chapter 5 presents the open source tools and data repositories created from the research outcomes of 

this thesis. This chapter is linked to the paper which is currently under review and in Appendix G.  

 

Chapter 6 discusses the research outcomes of this thesis and potential future works. 
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1.5  List of Published and “Under Review” Publications 

 

The publications related to this thesis started with an article on eye gaze estimation algorithms and 

applications in consumer electronics, followed by a detailed review that investigated the issue of 

performance evaluation existing in contemporary gaze research. The later articles are linked to the 

development of various components of the performance evaluation framework for eye tracking 

systems which is proposed in this thesis. Co-authored articles are based on the development of gaze 

estimation systems for consumer devices using deep learning methods.  

 

1.5.1 Submitted and under review publications 
 
1. A. Kar; P. Corcoran, “Open source code and data repositories for performance evaluation of eye 
gaze estimation systems”, Submitted to Elsevier SoftwareX, March 2019. 
 
2.“Eye tracking error classification and modelling with machine learning algorithms”, Anuradha Kar, 
Peter Corcoran, Submitted to SPIE Journal of Electronic Imaging, March 2019 

1.5.2 Publications in journals & conferences  
 
1. A. Kar and P. Corcoran, "GazeVisual -a Practical Software Tool and Web Application for 
Performance Evaluation of Eye Tracking Systems," in IEEE Transactions on Consumer Electronics. 
doi: 10.1109/TCE.2019.2912802 
 
2. J. Lemley, A. Kar, A. Drimbarean and P. Corcoran, "Convolutional Neural Network 
Implementation for Eye-Gaze Estimation on Low-Quality Consumer Imaging Systems," in IEEE 
Transactions on Consumer Electronics. doi: 10.1109/TCE.2019.2899869. 
 
3. A. Kar; Corcoran, P. Performance Evaluation Strategies for Eye Gaze Estimation Systems with 
Quantitative Metrics and Visualizations. Sensors 2018, 18, 3151. 
 
4. A. Kar and P. Corcoran, “GazeVisual- A Graphical Software Tool for Performance Evaluation of 
Eye Gaze Estimation Systems,” in 2018 IEEE Games, Entertainment, Media Conference (GEM) 
(2018 IEEE GEM), 2018. 
 
5. J. Lemley, A. Kar, and P. Corcoran, “Eye tracking in augmented spaces: a deep learning approach,” 
in 2018 IEEE Games, Entertainment, Media Conference (GEM). IEEE, 2018, pp. 385–390. 
 

6. A. Kar and P. Corcoran, "A Review and Analysis of Eye-Gaze Estimation Systems, Algorithms and 
Performance Evaluation Methods in Consumer Platforms," in IEEE Access, vol. 5, pp. 16495-16519, 
2017. 
 
7. A. Kar and P. Corcoran, "Towards the development of a standardized performance evaluation 
framework for eye gaze estimation systems in consumer platforms," 2016 IEEE International 
Conference on Systems, Man, and Cybernetics (SMC), Budapest, 2016, pp. 002061-002066. 
 
8. S. Bazrafkan, A. Kar and C. Costache, "Eye Gaze for Consumer Electronics: Controlling and 
commanding intelligent systems.," in IEEE Consumer Electronics Magazine, vol. 4, no. 4, pp. 65-71, 
Oct. 2015. doi: 10.1109/MCE.2015.2464852 
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9. A. Kar, S. Bazrafkan, C. Costache and P. Corcoran, "Eye-gaze systems - An analysis of error 
sources and potential accuracy in consumer electronics use cases," 2016 IEEE International 
Conference on Consumer Electronics (ICCE), Las Vegas, NV, 2016, pp. 319-320. 
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Chapter 2 

A review of consumer eye gaze estimation systems  

 

 

 

 

In this chapter, a brief summary of the literature surveys done as part of this thesis (that are linked to 

various publications) and their main findings are discussed. Supplementary reviews on chronological 

development of eye tracking technology, gaze research for biometrics, existing eye gaze datasets that 

have not been included in the publications are presented. Finally, the most recent works published on 

various eye gaze research areas are summarized and the significance of the developments made in this 

thesis work towards such gaze applications are highlighted. 
 

This chapter is based on a published literature review paper, an article, a technical journal paper and 

two published conference papers, the copies of which are in Appendices A, B, H,I,J. These papers are 

[9] [12] [60] [64] [62]. 

 

2.1 Summary of major literature reviews: Eye gaze estimation algorithms, applications 

and data analysis tools 

 

Several literature reviews were undertaken as part of this dissertation to explore the status of methods 

used for estimating gaze data quality and identifying sources of errors that are commonly faced by eye 

tracking systems in different platforms. For this, literature on various gaze estimation algorithms and 

their applications in consumer platforms like desktop, TV, head-mounted setups and handheld devices 

were collected and categorized according to: a) the type of consumer electronics use cases in which 

the gaze estimation systems are applied b)the types of gaze accuracy metrics used in contemporary 

eye gaze literature  c) the types of operating conditions (or error sources) which are typically 

considered by researchers for evaluating gaze tracking accuracy.  A summary of these error sources 

and use cases are discussed in Chapter 1 and may be found in [12] [9] [62]. 

 
The main findings of the literature reviews were that eye gaze estimation systems have been used in a 

variety of consumer applications and there are several factors which affect eye gaze tracking in 

different consumer platforms, e.g. variable head pose, user distance and platform movement. These 

conditions significantly affect eye tracking accuracy, and produce large and unpredictable gaze error 
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magnitudes. But it was also found that most of the time gaze researchers or designers of gaze based 

systems do not quantitatively evaluate or specify the impact of these unconstrained operating 

conditions on their gaze data quality. Other critical issues in current eye gaze research include lack of 

standard metrics or proper visualization methods for exploring gaze accuracy characteristics and 

deficit of gaze datasets dedicated towards benchmark comparison and analysis of gaze data quality 

from different eye tracking systems. Such issues pose serious questions towards the reliability and 

usability of gaze information in consumer applications. 

 

A survey of existing commercial and open-source software tools for eye trackers was done (included 

in the paper of Appendix D) which showed that most of the software developed so far aim towards 

exploration of eye movement characteristics (detecting fixations, scanpath, saccades, eye movement 

speed, direction, duration), studying eye movement relationships with human behaviour, e.g. building 

attention maps, deriving regions and sequence of interests and analysing cognitive processes. No 

dedicated software was found which could be used for quantitative evaluation of gaze data quality, or 

exploration of gaze data characteristics under variable operating conditions.  

 

These facts learnt from the literature reviews motivated the different research works undertaken as 

part of this thesis, which include development of metrics, visualization methods, gaze datasets and 

data analysis software for quantitative evaluation of gaze data quality and gaze estimation accuracy. 

 

2.2 Supplementary review 1: Chronological developments of eye tracking technologies 

2.2.1 Scleral search coils and Electro-occulography  

Historically, research on eye gaze tracking dates back to the early 1900s starting with intrusive eye 

tracking techniques like electro-occulography and scleral search coils (Figure 2.2a).  The later 

measures eye movement via coils embedded into a fitted contact lens or a rubber ring that adheres to 

the eye surface [65] [66]. With magnets placed around the eye, electric currents are generated in the 

search coils and by measuring the variations in polarity and amplitude of the current the angular 

displacement and position of the eye may be determined. Electro-occulography utilizes the existence 

of an electrical potential difference between the cornea and the fundus of the eye (~ 1mV) which 

varies with the eye position [67]. By placing electrodes near the eye region and measuring these 

potentials, horizontal and vertical eye movements may be recorded. These methods suffer due to their 

invasive or intrusive nature, influence by metabolic changes in the eye, susceptibility to changes in 

skin resistance, surrounding luminance and artefacts due to eyelid and head movement.  

 

2.2.2 Passive video based eye tracking for consumer devices 

Remote video-based eye trackers are the most common systems used in consumer applications which 

could be placed at a specific distance from the user and gaze estimation is achieved by capturing and 
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processing images of the full face or eye region in natural light or using NIR illumination [68]. The 

other class of video based eye trackers are head mounted systems which are portable platforms, 

generally including two cameras [69]. One is the eye camera pointed at the wearer’s eye, to detect the 

pupil; and the other (scene camera) captures the wearer’s point of view. These come across as 

attachment-free, mobile, lightweight devices with simple hardware and are known to provide high 

accuracy gaze information.  

 

2.2.3 Current generation of eye tracking: The “invisible” eye tracker 
 
After a few decades of development in eye tracking technologies, a very recently released eye tracker 

named “Invisible” (Figure 2.1b) claims to require no setup, adjustments or calibration  and perform 

robust eye tracking in outdoor environments, where traditional eye trackers have high failure rates. 

Gaze estimation in this device is implemented using deep neural networks rather than pupil and glint 

imaging as described above. The eye cameras are completely outside of the field of view of the users 

and the device can provide provide scene video and binocular gaze data at 200Hz (compared to 

traditional commercial remote trackers working at 30/60Hz). The device can compensate for 

movement of the glasses to deliver high quality eye tracking data. 

 

 
 
 
 
 
 
 
                 Figure 2.1: (a) A scleral search coil[66]                    (b) The “Invisible” eye tracker released in January 2019[70] 
 
 

2.3 Supplementary review2: Review of applications of eye gaze in biometrics 
 

This is a supplemental literature review that was done to study the prospects of using gaze 

information in biometric studies. This review also helped to learn in great details about the 

significance of different eye movement features and how to detect them in collected gaze data. 

  

Extraction of individual-specific characteristics from eye movements has led to the development of 

the field called “eye movement based biometrics” where eye movement patterns are derived and used 

for person recognition purposes like other biometrics. Inter-person differences in the variability of eye 

movements occur due to (i) physical oculomotor structure of every person and (ii) the brain activity 

related to vision based cognition and perception that varies from person to person. A person who is 

being identified is asked follow certain stimuli on the computer screen and an eye tracking system is 

used to collect information about eye movements (e.g. saccades) during the process that represents a 

subject’s eye physiology as well as perception behaviour while following the stimulus. 
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Eye movement biometrics uses the inter-person dissimilarities in eye movements and deals with the 

formation, comparison, and classification of the respective biometric templates. There are several 

notable advantages of this biometric such as resistance to shoulder surfing and spoofing resistance 

because exact replication of saccades is virtually impossible. Also it allows unnoticeable continuous 

authentication of a person and the identity of the user can be re-authenticated continuously without 

any interaction with the user. 

However, till now the reliability of eye movement biometrics is still not comparable to traditional 

biometric recognition approaches. Most eye-trackers cannot measure the microscopic movements of 

the eye – the tremor, drift, and micro-saccades, due to accuracy and temporal resolution limitations. 

High frequency eye trackers with ~250 Hz sampling frequency are required.  The design of stimulus 

for the person identification has to be done carefully so that it doesn’t take too long to capture the eye 

movements as well there is no learning effect due to viewing the same stimulus. It is also 

unpredictable how the eye movement patterns may change due to age or illness. 

 

The work in [59] describes the different measures that can be used for studying inter-person 

variability using eye movements. Eye movements like saccades, pro-saccades, anti-saccades and 

smooth pursuit are used to derive different measures. Primary pro-saccade measures e.g. the latency 

of a saccade and the relationship between the amplitude and the peak velocity of the saccade, called 

the main sequence measure shows the greatest reliability. The paper in [71] studies saccadic 

movements and associated pre- and post-saccadic lens oscillations (PSO) for differentiation of human 

subjects. These include saccade duration, amplitude, variance, average speed and average acceleration 

etc. Saccade features produce a high 86.1 % accuracy while the combination with oscillation features 

results in 86.4 % accuracy. In [72] both identification and verification is studied based on saccadic 

eye movement signal measurements and identification rates are 80-90% at their best.  Eye movement 

measures like latency, duration, time to maximum velocity, saccade amplitude, maximum angular 

velocity, acceleration and deceleration were computed.  The work in [73] uses a head-mounted 

infrared eye tracker with sampling rate of 250 Hz to collect data from 47 subjects who followed a 

jumping stimulation point presented on a normal computer screen at twelve successive point 

positions. Average recognition rate was found to be about 7 % to 8 %. In [74] several processing steps 

were used to extract dynamic features such as the saccadic velocity and acceleration and finally a 

classification scheme is applied for the identification of the test samples to the subjects.  Local eye 

movement features are derived to represent local differences of the captured gaze time-series data, and 

used jointly with the Mel Frequency Cepstrum Coefficients(MFCC- a well-known method, used in  

speech recognition), which is based on the local phase information of eye movement data. The person 

classification rate improves from 61% to 82% on using this local feature.   
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2.4 Supplementary review 3: A review on eye gaze datasets for building and testing gaze 
estimation methods 
 
A wide variety of eye gaze datasets currently exist, which cater to individual research problems and 

researchers are constantly introducing new datasets. Many datasets have been made publicly available 

but as eye-region data is a personal biometric some are built and maintained within a specific research 

group and access is limited due to legal reasons or due to licensing restrictions.  

 

A survey of gaze datasets was made (and presented below) by including publicly available ones and 

also datasets which have not shared publicly. Several details regarding these datasets were noted- e.g. 

setup, number of participating members, information about parameters other than gaze included in a 

dataset- e.g. head pose, eye movements, user distance, data-type (images/video) etc. It was found that 

gaze datasets can be broadly classified into two types: the ones used for building and testing gaze 

estimation algorithms (Sections 2.4.1 & 2.4.2) and the others that are used for modelling and 

validating user attention patterns, cognitive processes, saliency models etc. (Section 2.4.3). 

 

2.4.1 Publicly available datasets 
 

A list of publicly available datasets in eye gaze research is tabulated below. 
 

Table 2.1:  Publicly available datasets for building gaze estimation algorithms 
 

No. Dataset 
Name 

Data 
type 

Purpose/Special notes Description 

1 CAVE 
[75] 

images Data set built to train a detector 
to sense eye contact in an image 

using a passive, appearance-
based approach. Can be used for 

gaze estimation. 
 

Data includes user wearing 
glasses. Head pose variation is 

calibrated. 

56 different people (32 male, 24 female), 21 of our subjects 
were Asian, 19 White, 8 South Asian, 7 Black, and 4 

Hispanic or Latino. Subjects ranged from 18 to 36 years of 
age, and 21 of them wore prescription glasses. 

5,880 high-resolution images, each image has a resolution 
of 5,184 x 3,456 pixels. For each subject, images acquired 

for each combination of five horizontal head poses  

2. Weidenbacher 
et al [76] 

 

images To be used for evaluations of 
computational methods for head 

pose and eye gaze estimation 
 

Participants with glasses 
included 

Dataset of 20 subjects including faces in various 
combinations of head pose and eye gaze. 

2220 colour images. For each head pose angle –acquired 
nine different gaze conditions.  

3. McMurrough 
et al [77] 

videos To be used as a benchmark for 
Point of Gaze (PoG) detection 

algorithms 
 

No spectacles, free head motion. 
Landmarks not annotated. 
Smooth pursuit recorded. 

20 human subjects as they looked at predefined positions of 
a computer display or followed a moving target. 

 
Videos recorded as human test subjects followed a set of 
predefined points of interest on a computer visual display 

unit. 

4. UT Multiview 
[78] 

 

images Training and testing data for 
appearance-based gaze 

estimation methods 
 

Multiple camera, different gaze 
directions and views 

50 (15 female and 35 male) subjects. 160 gaze directions 
per person were acquired using 8 cameras. 

 
64, 000 (= 50 subjects ×8 views ×160 gaze directions) eye 
images;  8000 (= 50 subjects ×160 gaze directions) 3D eye 
shape models;  1,152, 000 (= 50 subjects ×144 views ×160 

gaze directions)  
5. MPII Gaze 

[79] 
images For appearance-based gaze 

estimation in the wild. 
 

Free head motion, uncontrolled 
illumination 

People:15 participants. 
 

Total 213,659 images. 10,848 image samples manually 
annotated with position of 6 facial landmarks and position 

of two pupil centres for each of above images. 
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6. OMEG: Oulu 
Multi-Pose Eye 
Gaze Dataset 

[80] 

images Evaluating and comparing gaze 
tracking algorithms. 

 
 

People: 50 subjects 
 

Over 40000 images from 50 subjects. Sequences are 
captured under fixed and free head poses. Five landmark 
labels and gaze angles are provided as the ground truth. 

 
7. MSP Gaze 

corpus 
[81] 

video For appearance-based, user-
dependent and independent gaze 

estimators 
 

Recording with/ without head 
movement, different user 

distance, free head motion, no 
gaze location data 

People: 46 subjects 
 

14 recordings per session 
 

8. EYEDIAP 
[82] 

video For the training and evaluation 
of gaze estimation approaches 

 
Changes in ambient and sensing 

condition and types of targets 

People:: 16 people: 12 male and 4 female 
 

The dataset was designed to train and evaluate gaze 
estimation algorithms from RGB and RGB-D data.  94 
session recordings, each with different characteristics. 

9. 3D mask attack 
dataset 

[83] 
 

video Biometric face spoofing 
database with eye positions 

 
Has manually annotated eye 

positions 

People: 17 subjects 
 

76500 frames of 17 persons, recorded using Kinect for both 
real-access and spoofing attacks. 5 videos of 300 frames 

are captured and in each video, the eye-positions are 
manually labelled. 

10. HPEG 
[84] 

videos For head pose and eye gaze 
estimation algorithm testing. 

 
Free movement of subjects 

People: 10, 2 female and 8 male. 
 

20 color video sequences. 

11 Gi4e 
[85] 

images Evaluate Haar classifiers to test 
their ability to detect the eyes 

when they rotate 
 

Note: no head pose information, 
information on illumination. 

People: 103 different subjects, males and females. 
 

1236 colour images. For each user 12 images are recorded. 

 
 

2.4.2 Datasets developed by research groups but not shared publicly 

These gaze datasets have been built by researchers for use cases such as desktop and automotive 

systems but the datasets are not made public.  

Table 2.2:  Non-public datasets for gaze estimation 
 

No. Paper citation Data 
type 

Purpose/Special 
notes 

Description 

1. [86] image Use case: Desktop 
 
Build eye tracking system 
with free head motion. 

People: 5 subjects 
 
34,000 images. Head rotation range around 25 
degrees for yaw 10 degrees for tilt. 

2. [87] images Use case: Desktop 
 
Build and test low-cost eye 
tracking system  

People: 6 
 
300 images taken under varying lighting 
conditions, head positions, with complex 
backgrounds  

3. [88] images Use case: Desktop 
 
Estimate five gazing 
directions  

People: 15 different test subjects. 
 
Facial images with five different gazing directions, 
Total of 1000 images for each gazing direction.  

4. [89] image+ 
video 

Use case: Automotive 
 
Driver alertness monitoring 

People: 5 subjects of different ethnicity and gender 
 

5. [90] images Use case: Automotive 
 
Head pose/ gaze direction 
recognition to control 
headlamps 
 

People: 6 people 
 
Images taken with 30 fps web camera mounted on 
front side of a driver to capture the facial images. 
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6. [91] images Use case: Automotive 
 
Head pose and gaze zone 
estimation   
Note: Illumination, head 
pose variations and users 
with glasses considered, 

People: 2 databases with 12 and 11 subjects 
 
300 000 frames. Database contains images at 
daytime and night-time with subjects wearing 
glasses and sunglasses. Database 1 contains 85 
000 images from 12 subjects. Database 2 contains 
approximately 200 000 frames from 11 subjects.  

7. [92] videos Use case: Automotive 
 
Driver fatigue behaviour 
study 
 

People: 10 subjects 
 
1000 video segments collected, each video 
segment with 30 seconds.  

8. [93] Eye 
tracking 
data 

Use case: Automotive 
 
Monitor driver’s visual and 
mental distraction  

People: 9 participants, 35-55 years old 
 
Eye and driving performance data was collected 
using a Seeing Machines faceLAB eye tracker.  

9. [94]  Use case: Automotive 
 
Determine sensitivity of eye 
movements to in-vehicle  
conditions 

People: 119 subjects 
 
Eye movements measured at 60 Hz with Seeing 
Machines faceLAB, v. 3.0. For another data set, 
eye movements collected with  head-mounted 
system.  

 
2.4.3 Eye gaze datasets for cognitive studies 
 
These datasets have been developed with users looking at a series of images while their eye 

movements/images/videos are recorded. The collected eye movement data is then used for building 

and validating cognitive studies, visual attention patterns, saliency models etc.  

 

Table 2.3:  Eye gaze datasets for cognitive studies 
 

No. Citation Description 
1. [95] Video database for computational models of visual attention.  12 video sequences with eye-tracking data. 

Gaze fixations recorded using a head-mounted eye-tracker 15 participants (2 women and 13 men). 
2. [96] Benchmark for testing gaze modelling algorithms. Contains fixation coordinates and eye movement 

trajectories of 29 observers as they viewed 101 natural calibrated images, and 30 000 fixation points. 
3. [97] Recorded to demonstrate that faces attract significant visual attention while viewing images through free-

viewing, search, and memory tasks.  
4. [98] Comprises of complex photographic images and was used to validate a saliency model predicting 

interesting image regions. The study concluded that early eye fixations are observed in symmetrical 
image areas. 

5. [99] Aims to validate a frequency domain-based saliency detector incorporating scale-space analysis. 
 

6. [100] Publicly available, large-scale eye movement database to aid natural image-related visual attention 
studies. The EFRs are used to validate a supervised saliency model combining top-down/ bottom-up cues. 
 

7. [101] Compiled to study how image resolution affects consistency in eye fixations across observers. The study 
noted that eye fixations are biased towards the image center for all resolutions. 
 

8. [102] Contains a repository of eye fixations to study viewing patterns on semantically rich and diverse images, 
including faces, portraits, indoor/outdoor scenes, and affective content. 

9. [103] Contains eye movement recordings while viewing natural scenes to validate a visual saliency model 
based on the principle of maximizing scene information. 

10. [104] Provides eye-tracking data for reference images from 3 image quality databases to validate the hypothesis 
that salient image regions should contribute more to objective image quality metrics 

11. [105] Two subject groups– an active group of 12 subjects performed action recognition, while a second group 
of 4 subjects free-viewed the videos. Fixation patterns of free and active  

12. USC CRCNS 
Datasets 

Designed to investigate the role of factors such as memory on visual attention in dynamic scenes. Eye 
movements were recorded as users viewed normal and scrambled video contents.  
Found at: https://crcns.org/data-sets/eye/eye-1  

13. [106] Saliency in Context eye tracking dataset, 1000 images with eye-tracking data in 80 image classes. 

14. [107] 74 video sequences of 5 mins each, captured and annotated more than 500,000 frames. The labeling 
contains drivers’ gaze fixations and their temporal integration  

15. [108] 700 images, 5551 segmented objects, eye tracking data 
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From the above survey, several characteristics of currently available gaze datasets are observed.  

Apart from gaze coordinates or eye images/video, other eye region features included in the datasets 

are pupil size, eye corners, iris, blink rate, eye closure, fixation or smooth pursuit.  Commonly setups 

use a single camera, while some use stereo, HD or multi-camera systems, while some use a RGBD 

camera or Kinect. Number of participants varies from 4 to 119-with common numbers being 20-50. 

Private datasets developed by individual research groups generally have a smaller number of people.  

 

The size of datasets range from 200 images or sequences to over a 100,000. A lot of datasets include 

head pose information while some others do not. Some of the datasets use 3D head models, others use 

markers or gyro sensors to estimate head pose. Some gaze datasets capture “free-head motion” of 

users, i.e., the exact angular positions of the head are not known, whereas some datasets give details 

about the angular position of head. Few datasets  report head poses at +/-10 degrees interval while 

some others at +/-5 degrees or at +/-20 degrees interval. Some datasets have facial features like pupils, 

eye corners, nose tip, and mouth corners annotated, while most others do not. Datasets using 3D head 

models usually have automatically annotated facial and eye features whereas some datasets have been 

annotated manually.  

 

Several datasets include variations of different parameters- such as users with/without glasses, change 

in illumination and background, varying user distance, race, age etc.  Some datasets only record 2D 

eye tracking data but few datasets include a 3D target to record 3D gaze data. Nearly half the number 

of datasets consists of images, the others of video frames. Some datasets have eye tracking data 

included with the eye images and videos while most others do not.  

 

Another major inference from this survey is also that currently there exist no eye tracking dataset that 

contains labelled eye gaze and ground truth data collected under calibrated variations of user distance, 

head pose or platform movement, or gaze datasets built specifically for performance evaluation of eye 

trackers. This formed the basis for the data collection experiments and building of a new eye tracking 

dataset as part of this work, which is described in later chapters of this thesis. 

 

2.5 Recent trends and developments in eye tracking research 
 

Eye gaze research is currently a rapidly progressing field and is finding newer consumer applications 

every year in fields like human-computer and human-robot interaction, augmented and virtual reality, 

driver monitoring and hand-held devices. With rapidly expanding fields of applications, the quality 

and reliability of gaze data forms an even bigger question since each new application brings with it 

newer challenges in operating conditions and requirements for high accuracy and reliability. Some 

recent works on gaze applications are summarized below, and the ways in which they could benefit 

from the quantitative evaluation methods and datasets developed in this thesis work are discussed.  
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In human–human and human–agent interaction, gaze information has proven to be a substantial cue to 

inform ongoing interaction status and study the reactions of  humans or agents with their interaction 

partners. In [109], human eye gaze is used to understand the communication of intent during human-

human and human robot interaction in a quantitative manner. The authors experiment with humans 

performing a set of goal oriented actions and recordings of the upper body and eye gaze motion are 

used to develop a computational model of the human actions. It was found that for certain actions 

with just eye gaze information 85% of subjects could read the intentions of the other humans 

correctly. In [110] significant differences are found between the gaze behaviours of individuals with 

autism and those without.  This work investigates how children with autism disorder initiate joint 

attention with a gaze contingent robot. In this, participants with and without autism are made to 

follow and direct an avatar’s gaze to a series of referent images. Observing pupil diameter and gaze 

location data, the two participant groups were classified and their different eye-movement behaviours 

were used to improve child–robot interaction. The paper [111] also describes results from a study 

which analyses the visual attention of the participants during periods of eye-hand dis-coordination and 

develop pathways for more intuitive and faster human-robot interaction. [112] describes a multimodal 

input method for hands-free interaction using gaze and voice inputs to achieve improved web 

browsing. Gaze information was seen to provide a better experience with interactions that require 

spatial context, for example the user could intuitively scroll through the desired positions following 

gaze orientation, whereas with voice, users need to use numerous commands and distractions. The 

work in [113] investigates how key size reduction of virtual keyboards affects the accuracy and speed 

performance of text entry in a gaze-controlled and head-controlled keyboard, in an effort to improve 

design of such systems. The authors in [114] focus on estimating and tracking visual focus of 

attention which is a prominent conversational cue in multi-party social interactions.  This paper 

proposes a method that exploits the correlation between eye gaze and head movements to 

simultaneously track gaze and visual focus. The work [115] investigates individual, collaborative and 

competitive visual search with visualization of search partners’ gaze. Participants were instructed to 

search a grid of Gabor patches while being eye tracked. It was found that early in collaboration trials, 

searchers rarely fixated the same elements and reaction patterns of individuals vary, compared to 

when the tasks are performed with partners.  
 

In the gaze applications described above, poor gaze data quality can result is completely wrong 

inferential results about the relations between human vision and cognitive aspects. Therefore, to 

ensure the quality of gaze data used in these studies, the evaluation methods which are developed in 

this thesis could be useful for gaze researchers as they can readily test the noise, scatter or accuracy 

levels of their gaze data without any extra effort, before embarking on further analysis of the data. 
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Potentials of gaze information in a VR environment are explored in [116] which demonstrates the 

effectiveness of gaze guidance and sensitivity of peripheral vision  to different stimuli. A novel 

content delivery method for provision of 360degree video streaming on mobile VR headsets is shown 

in [117] which relies on eye-gaze information from integrated eye trackers to provide high quality 

video  in the proximity of users’ fixations points, while lowering the quality at the periphery of the 

users’ fields of view. This helps to achieve a trade-off between bandwidth consumption and Quality 

of Experience (QoE) associated VR content presentation. Similar approach was shown by [118] [55] 

which reviews the factors limiting the resolution off-axis in AR/VR, in particular the impact of the 

eye lens. Authors in [119] aims to apply eye tracking to determine the mental processes of a test 

subject and assess their cognitive abilities in a VR environment. A deep-learning based method for 

eye tracking in augmented spaces was proposed in [60] which also showed the impact of various eye 

image qualities on the accuracy of the algorithm. 

 

In the field of driver monitoring, high sensitivity and real-time assessment properties of eye tracking 

and eye movement analysis has been utilized in recent works like [35]. This work is based on the 

development of a novel automatic system for driver fatigue detection using features like average 

fixation time and the pupil area with KNN algorithm.  In [120], the authors suggest that a driver’s 

gaze patterns appear prior to and correlate with the driving behaviours, which could be useful for 

driving behaviour prediction. A monitoring and prediction framework is also proposed for driving 

assistance applications that extracts the gaze information through analysing facial features, with a 

deep learning architecture. In [121], a probabilistic relationship is established between the orientation 

and position of driver head and continuous gaze angles through dense prediction with CNNs. The 

proposed model obtains the gaze regions with 95% accuracy and can estimates driver visual attention. 

 

Eye tracking in dynamic platforms like automotive and VR accompanies a lot of challenges owing to 

frequent loss of calibration and noisy data due to factors like user head pose variations and platform 

movement. Therefore gaze data quality needs to be constantly monitored if eye tracking is to be done 

reliably. One of the works developed in this thesis described in Chapter 4 comprises of a gaze data 

evaluation software that allows live capture of gaze data samples from an eye tracker and do near real 

time evaluation of its quality. This tool is released as a ready to use open source software, which 

could be useful for evaluating data from gaze applications in dynamic platforms described above. 

 

Eye gaze applications for smartphone and tablet platforms are being considered as the future of 

personalized gaze tracking, as mentioned by [122],  provided mobile device manufacturers include 

gaze tracking on these platforms. Eye gaze on mobile devices can link entertainment and smart home 

systems for example by providing gaze based interaction with relevant devices via any 

communication protocol. In [123], user gaze is tracked on a smartphone or tablet to make adjustments 
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such as screen magnification, orientations, focus and moving the screen contents depending on eye 

position. Works like [124] describe usage of eye tracking to observe effect of screen size on 

immersion and derive conclusions. The paper in [125]  presents a new method to determine gaze and 

compensate for the effects of platform orientation on gaze tracking accuracy. Experimental results on 

a prototype infrared smartphone show that the new method achieves about 1 degree of accuracy 

compared to 3.5 degrees accuracy when platform orientation is not considered.  

 

Like the VR or automotive cases, handheld devices also represent a highly dynamic user platform for 

eye tracking where eye tracker orientations may vary due to hand pose changes. In this work, a 

quantitative study of the impact of tablet orientations on the accuracy of an eye tracker is made which 

gives a lot of insight into the way platform orientations affect gaze data quality. Also a web-

application is developed in this work, which runs on mobile operating systems to evaluate gaze data 

quality. This web-application could help in the evaluation of eye trackers mounted on tablet devices 

as described above.  Both of these developments are presented in Chapter 4.  

 

A publicly available eye gaze dataset named I2Head was developed recently [126] which contains 

ground truth data for head pose, gaze and simplified user face models of 12 subjects. A webcam (30 

fps) is used along with head pose sensors, and relative position between the user and camera is 

calibrated. For each user, 8 sessions are recorded under controlled and free head movements on point 

grids containing 17 and 65 fixations. The dataset videos are provided in MPEG-4 format. 

 

The eye gaze dataset developed in this thesis work could be used by researchers for benchmark testing 

and comparison of quality of other gaze datasets as well as of other eye tracking systems. The dataset 

details are presented in Chapter 5. 

 

2.6 Conclusion 

 

In this chapter, a summary of the main literature reviews conducted as part of this thesis work is 

provided. We discuss the main findings from the reviews and explain how they created a context and 

rationale for the subsequent research works and contributions of this thesis. Also supplemental 

literature reviews are presented and discussed in the context of the research contributions of this 

thesis. The following inferences were drawn from the literature reviews: 

• Gaze data quality and performance evaluation of eye trackers are such fields which were found to 

lack dedicated methodologies and standardized protocols.  

• There are no public datasets which contains eye tracking data relevant to performance evaluation of 

eye trackers or corresponding numerical or statistical algorithms that enable systematic studies of the 

impact of environment and operating conditions on gaze data quality.  
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• There is a lack of standardized gaze data analysis software that can help researchers or engineers to 

examine and compare gaze dataset characteristics and specify data quality in standardized metrics.   

• New gaze based consumer applications are being developed every year which mostly work in 

unconstrained environments and where gaze data quality gets frequently affected by multiple factors. 

All these factors, as established through the detailed literature surveys discussed here helped to shape 

the research questions addressed in this thesis and formed the motivation towards building a range of 

gaze data quality evaluation algorithms, gaze datasets and software tools for performance evaluation 

of eye trackers. that are presented in Chapters 3-5 of this thesis. 
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Chapter 3 

Proposing the concept of an evaluation framework for eye 
tracking systems 

 

 
 
 

 
This chapter presents the concept of a performance evaluation framework that is intended to enable all 

round evaluation of generic and commercial remote eye trackers and their data quality. This 

framework would be beneficial to gaze researchers as well as engineers building gaze tracking 

systems or applications, for quantitative estimation and prediction of gaze tracking performance and 

data quality. 

 

This chapter is based on a published literature review paper and a published conference paper, which 

are in Appendix A and C, [12] [56]. 

3.1 Rationale and design criteria for developing performance evaluation strategies for 
gaze estimation systems 
 

Eye gaze estimation is currently a highly interdisciplinary area of research that has received quite a lot 

of interest from consumer electronics (CE) owing to the easy availability of computing and hardware 

resources and increasing demands from fields like human computer and robotic interactions[5] [127].   

Most of these CE applications operate under several challenging operating conditions (or error 

sources), which are discussed in Chapter 1 in Section 1.2.1, and these factors affect the accuracy of 

gaze estimation algorithms and worsen the quality and reliability of gaze data from them. Other 

critical issues that exist with respect to systematic performance evaluation of eye trackers are 

highlighted in Section 1.2.3 of Chapter 1 and in the Conclusion section (Section 2.6) of Chapter 2.  

Considering all these factors, the development of comprehensive evaluation strategies for gaze 

tracking systems appears to be necessary for several reasons:  

          a. to evaluate impact of various error sources on a gaze tracker’s system performance  

          b. to report system performance quantitatively in uniform and quantitative formats    

c. visualize, quantify and compare results from different eye tracking systems under different 

operating conditions  

         d. to identify the main challenging factors for a certain eye tracking user platform.  
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We present here the concept of such an evaluation framework that comprises of methods, tools and 

algorithms, that would provide practical performance estimates of remote gaze tracking systems and 

adopt a uniform set of accuracy metrics for specifying their performance.  

 

3.2 Concept of a performance evaluation framework for gaze estimation systems 
 

The evaluation framework developed in this work comprises of methods to quantitatively estimate the 

performance of remote gaze tracking systems, through collection and analysis of gaze data obtained 

from them. The framework is built around dedicated gaze data collection experiments and 

development of numerical metrics, visualization tools, benchmark gaze datasets and pattern 

recognition algorithms.  The purpose of these developments is to enable evaluation of the practical 

capabilities and limits of a given gaze tracking system (especially under the influence of various error 

sources) and specification of gaze estimation accuracy in standard units (angular resolutions). 

 

The structure of the framework is outlined in Figure 3.1. The advantage of having such a framework 

is that it can answer critical queries related to gaze estimation system design and performance, e.g.:  

a) How does a particular system perform when compared with other systems under 

certain operating conditions?  

Our approach: To address this query, in this work, standard gaze accuracy estimates are 

derived starting from raw gaze data. Also a set of metrics and visualizations are developed 

which can be implemented using the raw data from any (remote) eye tracker and system 

variables of the eye tracking setups. These methods can be used on gaze data collected from 

two or multiple eye trackers, or using data from the same tracker operating under different 

operating conditions, for comparison of the data characteristics numerically and visually.  

b) Which operating conditions affect the performance in a particular use-case?  

Our approach: In this work a remote eye tracker is used to collect gaze data by subjecting it 

to operate under several challenging conditions (one at a time). Using the developed metrics 

and visualization methods, the magnitudes of gaze estimation errors caused by each operating 

condition can be estimated and relative impacts of the different conditions can be compared. 

          c) How will an eye tracking algorithm designed for one platform perform in another?  

Our approach:  In this work, two consumer platforms- a desktop and a tablet, are used to 

collect gaze data under similar operating conditions from the same remote eye tracker. Gaze 

data characteristics of the two platforms are then analysed with the developed metrics and 

visualizations for in depth comparison. 

In this way, the framework developed in this thesis can answer many of such queries by adopting a 

unified approach towards gaze data analysis and evaluation. 
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Figure 3.1: An overview of the framework proposed in this work for performance evaluation of eye gaze estimation systems 
is shown here. Aim of this framework is to test the practical performance limits (accuracy) of a gaze tracking algorithm or 
system under the influence of various user, system and environmental parameters and specify gaze accuracy in standardized 
and homogeneous units. The components of the evaluation process include experimental methods to collect sample data 
from an eye tracker, numerical and statistical algorithms to analyse the collected data and machine learning algorithms to 
study error patterns in the datasets due to different operating conditions.  

 

 

 

 

 

 

 

 

 
 

 

 

Figure 3.2: Workflow of the performance evaluation framework developed in this work. The variable operating conditions 
or parameters which are considered in this work are user distance from the tracker, user head pose and platform orientations. 
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3.3 Components and functioning of the evaluation framework 
 

A schematic and conceptual diagram of the performance evaluation framework is shown in Figure 

3.1. A typical eye tracking setup comprises of the user, a gaze tracker mounted on a computer with a 

display screen and the tracking environment (which varies according to the eye tracking platform, e.g. 

desktop, automotive etc.). Each of these parts of the setup may influence the performance of the eye 

tracker by introducing a large number of variable factors which are also listed in Figure 3.1. The 

proposed evaluation framework takes into consideration a set of these factors and develops eye 

tracker evaluation methods by collecting and analysing data from an eye tracker under test.  

The evaluation workflow is shown in Figure 3.2 in which firstly sample data from the eye tracking 

system under different operating conditions is collected and secondly, the eye tracking experiments 

are repeated with a number of participants to collect sufficient data for analysis.  

 

A typical “experiment” or evaluation workflow as shown in Figure 3.2 consists of the following steps: 

1) A user is asked to sit in front of the eye tracker setup (discussed in Chapter1), and a certain 

operating condition (e.g. head pose or user distance) is introduced. User eyes are calibrated for the eye 

tracker for the current session. The process of eye tracker calibration has been discussed in Chapter 1. 

2) The user is presented with a graphical user interface (or UI as in Figure 3.2) which presents visual 

stimuli to the user. The UI and eye tracker are then started simultaneously. The eye tracker records the 

gaze coordinates of the user as the user gazes at the UI stimuli points on the screen.  

3) The gaze data from the eye tracker is saved. The ground truth data is also collected which 

comprises of the screen coordinates of UI stimuli points appearing during gaze data collection. The 

collected gaze and ground truth data are used to estimate gaze error in degrees as the shift between 

ground truth and tracked gaze locations. The next steps of evaluation are based on analysing the gaze 

error magnitudes and studying its variability under different conditions.  

4)These steps are then repeated with a new operating condition or a new user. 

 

The main components of the evaluation framework developed in this thesis work are the following:  

a) new experimental methods for eye tracking data collection that contains signatures of 

different operating conditions  

              b) a range of gaze error metrics and visualizations derived from raw gaze data  

              c) open source tools for analysis and visualization of collected gaze data samples  

              d) pattern recognition algorithms for detecting and predicting gaze error levels.  

                    e) a new eye gaze dataset created for benchmark testing and evaluation of eye trackers 

The components of the framework are shown in Figure 3.3, and discussed in brief below.  Details on 

the implementation of the framework are presented in Chapter 4. 
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Figure 3.3: Components of the evaluation framework for remote eye gaze estimation systems developed in this thesis. 

 

3.3.1 New experiments for eye tracking data collection 

A set of new eye tracking experiments were designed to simulate and observe the impact of various 

error sources on gaze data from two user platforms, a desktop and a tablet. These experiments are 

based on studying effects of (i) head pose variations (ii) user distance variations and (iii) platform 

orientations, (e.g. when eye tracking is done on portable devices like smartphones or tablets). In these 

experiments a commercial remote eye tracker is used; it works with a Windows desktop and tablet 

system and has a specified gaze tracking accuracy of 0.5 degree. Table 3.1 provides the list of eye 

tracking experiments done as part of this thesis for data collection, the operating conditions that were 

varied during the experiments and the number of subjects for each variation. 

Table 3.1: Details of experiments for gaze data collection 

Platform Desktop  Tablet  

Conditions User distance Head pose User distance  Tablet orientation 

Number of variable 

conditions 

4 user distances, 

50, 60, 70, 80 cm 

6+ 1 neutral= 7 

Roll +/- 20 degree 

Pitch +/- 20 degree 

Yaw +/- 20 degree 

4 user distances,  

50, 60, 70, 80 cm 

6+ 1 neutral= 7 

Roll +/- 20 degree 

Pitch +/- 20 degree 

Yaw +/- 20 degree 

Number of 

participants 

for each variation 

20 20 20 20 
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3.3.2 Developing well-defined gaze-data evaluation metrics  
 

As has been highlighted in the beginning of this chapter, there are definite requirements of methods 

for quantitative analysis of eye tracking data and characterising an eye tracker’s performance under 

variable operating conditions. As also described in Chapter 1 in Section 1.2.3, the metrics that are 

currently used to represent eye tracking performance are diverse, not fully defined  and also there are 

no metrics that represent the impact of variable operating conditions on gaze data. Therefore, well 

defined gaze accuracy metrics and visualization methods are necessary for standardized evaluation of 

eye tracking performance and gaze data quality.  

 

In this work, the gaze accuracy metrics are derived from basic gaze data coordinates (collected from 

eye tracking experiments as described above) in standard units of angular resolutions and several 

other metrics (e.g. sensitivity, spatial density and efficiency) are defined using these gaze accuracy 

values. Also, visualization methods are developed by graphically representing the gaze error 

magnitudes to understand and visually compare gaze data quality. With these metrics and 

visualizations, data from any eye tracker setup may be evaluated and compared in a standardized way 

and gaze data characteristics can be studied in detail. 

 

3.3.3 Gaze error pattern recognition and modelling algorithms 
 

Raw gaze data doesn’t clearly reflect the pattern of gaze errors occurring in a dataset. Even metrics 

and visualizations may not be sufficient to understand if gaze data is affected by one or more 

operating conditions or error sources.  

 

To detect error patterns in gaze data caused by different operating conditions, machine learning 

algorithms are used on the experimentally collected gaze datasets. Gaze data is first cleaned using 

outlier removal methods, then classifier models such as SVM, K-nearest neighbours and neural 

networks are used on the datasets to distinguish error patterns, for example, differentiating between 

errors caused by head pose from errors caused by user distance variations. Along with this, regression 

algorithms, such as linear, polynomial and neural network based regressors are used to model the 

error patterns corresponding to the different operating conditions.  

 

The utility of these classification and modelling approaches are that with them, eye gaze researchers 

can detect the presence of different error sources and predict the possible gaze error levels caused by 

these. This in turn can help researchers or engineers to design methods to mitigate or correct the 

impact of these error sources and improve the quality and reliability of eye tracking systems. Details 

of implementations of these methods are in Chapter 4. 
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3.3.4 Open source gaze data evaluation tools and labelled gaze datasets 

 

As discussed in Chapter 1 and 2, there are currently no software tools that can be used for the 

evaluation of gaze data quality. Also there are no labelled gaze datasets representing the impact of 

different eye tracking conditions on gaze data. Therefore, the gaze data accuracy metrics and 

visualization methods developed in this thesis work are released into an open source repository for 

use, modification and upgradation by eye gaze researchers and engineers. Details of this code 

repository are discussed in Chapter 5. 

 

In addition, all the gaze datasets collected under different operating conditions are made publicly 

available through an open data repository. This dataset may be used for benchmark comparison of 

performance of other eye trackers, for example under the influence of varying head poses or user 

distances or for further research on building advanced gaze data evaluation metrics or understanding 

error patterns. The contents and details of this dataset and labelling aspects are discussed in Chapter 5. 

 

3.4 Conclusion 

 

The concept and design principles of the performance evaluation framework for eye gaze estimation 

systems, which forms the core developmental aspect of this thesis are presented here. The components 

of this framework comprise of experimental protocols, numerical methods, machine learning models 

and software tools for all round evaluation and characterisation of eye tracking data. This chapter 

provides an overview of the framework components and the individual components are described with 

further details in Chapter 4. 
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Chapter 4 

Implementation of the performance evaluation framework  

 

 

 

 

This chapter describes experimental methods which were implemented to collect gaze data from a 

remote eye tracker while it operated under different operating conditions such as various head poses, 

user distances and platform orientations. (discussed in Section 4.1). Several new metrics and 

visualizations for analysing gaze data quality and eye tracker performance were developed using this 

data. A summary of these metrics and visualizations are provided in Section 4.2 of this chapter. 

 

Data collected from these experiments were used to create a labelled gaze dataset which was then 

used for training a set of machine learning models to analyse gaze error patterns caused by the 

different operating conditions mentioned above. Concept and implementation details of the various 

machine learning algorithms for investigating and predicting gaze error patterns, and the results 

obtained from these learning algorithms is summarized in Section 4.4 of this Chapter. Details of the 

labelled gaze dataset are discussed later in Chapter 5. 

 

Apart from these, a software application and its web-application were built as part of this work, which 

are meant for use by gaze researchers and engineers for quick, easy and quantitative evaluation of 

gaze data from any remote eye tracker device (description of a generic remote eye tracker setup is 

described in Chapter 1) or gaze based application. Section 4.3 of this chapter provides details about 

the developed software and web application. This software, the metrics and visualizations presented in 

this chapter are released as open resources for use by gaze researchers and engineers for gaze data 

analysis and evaluation. Details of these open resources are in Chapter 5. 

 

This chapter is based on a published technical paper [13] and a published conference paper [63], and 

two technical papers which are under review. The copies of the papers are in Appendix D,E, F,G. At 

several places within this chapter, the relevant sections of these papers are referenced where more 

background and details may be found regarding the different works discussed in this chapter. 
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4.1 Summary of experiments for gaze data collection 
 

Details about the gaze data collection experiments done in this work are in the sub-sections below. 
 

4.1.1. Remote eye tracker setup and user platforms for the experiments 

For this work, two commercial remote eye trackers were initially selected and tested through pilot 

gaze data collection experiments to study their individual pros and cons. It was found that out of the 

two trackers; only one could provide consistent gaze data with sufficient accuracy, and for long user-

tracker distances. Therefore, this eye tracker was used for rest of the gaze data collection experiments 

in this work and its specifications are in Column1of of Table 4.1. More discussions about the different 

eye trackers used in this work and their gaze data characteristics are presented in sub-section B. 
 

During the experiments, the chosen eye tracker’s calibration (as discussed in Chapter 1) was done 

using the software provided by the tracker’s manufacturer which uses 9 static calibration stimuli dots 

appearing at the corners, top and bottom locations of the display (significance of the eye tracker 

calibration process is discussed in Chapter 1). After calibration, gaze data collection experiments with 

the eye tracker are done on two user platforms, a desktop and a tablet. Specifications of the desktop 

and tablet computer systems used in this work are in Column 4 of Table 4.1. Eye gaze data was 

collected from the remote eye-tracker while it was mounted on the screen of the desktop or the tablet 

device and a user was positioned in front of the mounted tracker as shown in Figure 4.2. The head 

pose of a user was fixed with a chin rest, and user-tracker distance was measured for all experiments. 

 

4.1.2 Eye trackers used in this work 

Gaze data collection experiments for this work started with comparing two remote eye trackers, which 

were Tobii EyeX 4C (Tobii technologies [16]) and the other was Eyetribe [15] (a company currently 

owned by Occulus VR). Both of these are “bar type” remote screen mountable trackers with specified 

gaze accuracies of 0.5-1 degree (Figure 4.2). Both the trackers have one or more eye facing cameras 

and several NIR LEDs. The trackers provide no eye videos and eye camera frame rates of 30Hz are 

used by both. Operating principles of the trackers are not disclosed by manufacturers. 

Pilot data collection was done from both trackers with 10 participants to study and compare their 

output data quality and characteristics. It was found that both trackers provide left and right eye 

coordinates and estimated gaze locations (in screen coordinates). For the Tobii tracker gaze data could 

be obtained for a user-tracker distance range of 50-80 cm but Eyetribe’s data quality worsened after 

user distances of 55-60 cm and it also had connection issues, along with frequent data loss. 

Specifications of the remote Tobii tracker which is finally used for all experiments in this work are in 

Table 4.1. Data comparison of the Tobii and Eye tribe trackers are in Appendix K, where the 

difference in data quality of these two eye trackers may be clearly seen. 
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In addition to the remote trackers, a head mounted tracker from Pupil labs (Figure 4.2c) was also used 

in this work briefly to study its data characteristics. Another motivation was to see if the developed 

methods and software in this work could be used on data from this tracker as well, since its setup 

characteristics are very different from the other two remote eye trackers. The Pupil labs tracker [70] is 

binocular with two eye facing cameras and a world facing camera [24]. 

It was found that the head mounted Pupil labs eye tracker’s output data format is different from that of 

the remote eye trackers. This tracker provides eye and scene videos, and also gaze data streams in the 

form of normalized device coordinates [128] which then had to be transformed into the display screen 

coordinates where gaze was tracked. A discussion on data from this tracker is provided in the paper of 

Appendix E in its Section V.  
 

The frame rate of the Pupil labs tracker’s world camera could be varied between 30-120 Hz and its 

eye cameras have a frame rate of 200Hz. The tracker’s specified gaze accuracy is 0.60 degrees.  The 

major problems faced during experiments with this tracker were frequent loss of calibration due to 

even slight head movement, requirement for adjustments of eye-camera focus (using in-built 

focussing ring) for each participant which was quite time-consuming. For these reasons, this tracker 

was not used for further data collections. 
 

4.1.3 Visual stimuli used for the experiments 

Column 2 of Table 4.1 describes the visual stimuli presented to users for data collection [13]in this 

work. The screen of the desktop or tablet systems displays the visual stimulus interface (also called 

UI). The UI comprises of a dot moving sequentially on a grid of (5x3) locations (also called areas of 

interest or AOIs) over the display screen, as shown in Figure 4.1a. The UI dot radius is 10 pixels and 

it stops at each location for 3 seconds before moving on to the next. The angular extent of the UI 

stimulus grid is 30 degrees of visual angle at 45 cm distance. The UI runtime is synchronized with a 

data-logging routine for the eye tracker to collect gaze data while a user gazes at the dots of the UI.  
 

 

                                                                 

                                   (a)                                                                                                               (b) 
 Figure 4.1:  (a) Static view of the UI where gaze is tracked. (b) Flowchart of a single eye tracking experimental session. 
The on-screen positions traced by the UI dot are known (in screen pixel coordinates).   
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4.1.4 Experimental workflow 

The list of experiments done in this work was presented in Table 3.1 of Chapter 3. Eye gaze data is 

collected from two platforms –desktop and tablet under 4 different user distances, 17 head poses and 6 

platform poses.  Additional gaze data under for 4 user distances was also collected from a laptop 

(screen size 14inch, resolution 1366x768 pixels) and is included in the labelled gaze dataset which is 

an outcome of this work (described in Chapter 5).  For all experiments, gaze data from the same set of 

20 volunteer participants were collected, in which there were 15 male and 5 female candidates. The 

participants didn’t wear spectacles and the illumination conditions were also same for all experiments.  

 

A typical experimental workflow is shown in Figure 4.1b which was also discussed in Chapter 3 and 

shown in Figure 3.2.  Each gaze data collection session comprised of a user being positioned in front 

of the eye tracker setup (with desktop or tablet) with a chin rest (Figure 4.2a, 4.2b) and calibrating 

their eyes. During the data collection session, the UI described above is run on the desktop or tablet 

screen and users were asked to follow the stimulus dot as it moves. This ensured that the user’s 

fixation distance is closest to stimuli locations. After completion of each session, certain system or 

user parameter was changed, e.g. registering a new user, varying user distance or head pose and then 

the experimental sessions are repeated with the new condition.  

 

Table 4.1 : Details of experimental setup with desktop and tablet platforms 
Eye Tracker 
and UI setup 

Details Display and Hardware 
Characteristics 

Details Experimental 
Variables 

Tracker type Desktop based, NIR LEDs +     
1 Camera, 30Hz frame rate 

Screen Size Desktop: 22 inch 
Tablet: 10.1 inch 

20 participants for all 
experiments 

Calibration 6 point Screen Resolution Desktop: 1680 × 1050 
Tablet: 1920 × 1200 

Fixed and variable 
user distance 

Tolerance Maximum user distance: 80 cm, 
spectacles allowed, chin-rest 

used 

Screen properties Desktop: 21.5 inch 
diagonal, width × height = 

18.5” × 11.5” 
Tablet: 10.1 inch diagonal, 

width × height = 8.5” × 
5.5” 

Fixed and variable 
head pose 

User interface 15 AOI locations, AOI radius: 
10 pixels 

Pixel sizes of desktop 
and tablet screens 

Desktop: 0.275 mm 
Tablet: 0.113 mm 

Screen resolution and 
pixel size 

Eye data type Fixation, AOI duration: 3 s, 
blinks allowed between AOIs 

Hardware details for 
desktop and tablet 

Desktop: Core i7, 3.6 GHz, 
16 GB ram 

Tablet: Intel Atom X5, 1.44 
GHz,4 GB ram 

Platform orientation 

 

  
 (a)                                                                                       (b) 
Figure 4.2: Gaze data collection setup showing eye tracker and UI on  (a) desktop  (b) tablet. 
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4.1.5 Description of experiments and operating conditions 
 
Eye tracking experiments were performed under different arrangements of the user and/or the eye 

tracker setup, which are termed as “operating conditions” in this thesis. The gaze data collection 

experiments done under different user-tracker configurations are described below.  

(a) User distance experiments: In these, gaze data was collected at user-eye tracker distances of 50, 

60, 70 and 80 cm. These experiments were designed to study variability of gaze tracking accuracy 

with visual angle which is inversely related to user-tracker distance. These experiments were 

performed on both the desktop and tablet setup. 
 

(b) Head-pose variability experiments: This is relevant to studying the effect of a user’s head pose on 

gaze tracking accuracy of the eye tracker. By head pose, the position of a user’s head in 3D space in 

terms of roll, pitch and yaw (RPY) angles is meant. These experiments were done with the desktop 

setup. A user was seated at a fixed distance (60 cm) from the eye tracker and was asked to vary their 

head position to different rotation angles (head pose in roll, pitch, yaw and neutral) while looking at 

the UI on the display and their gaze locations on the UI were tracked (Figure 4.2c). The head position 

is also tracked simultaneously using a head pose model that measures head pose angles in RPY values 

with 1 degree of accuracy. Gaze data were recorded for each participant as follows: 

 Head roll (R) plus (10, 20, 30 degree), roll (R)  minus (10, 20, 30 degree) 
 Head pitch (P) plus (10, 20 degree), pitch (P)  minus (10, 20 degree) 
 Head yaw (Y) plus (10, 20, 30 degree), yaw (Y)  minus (10, 20, 30 degree) 
 Neutral: The neutral pose is the frontal head pose where RPY= 0.  

The various head poses are shown in Figure 4.2 c.   
 

                                   

                                                   

     

 

 

 
 

 

                                              

                                              

                                       

 

                                              (c)                                                                                      (d) 
Figure 4.2: (c) Face model showing different head poses (d) different platform poses of tablet with the eye tracker mounted. 

 

(c) Platform orientation experiments: To quantize the impact of the orientation of an eye tracking 

setup on gaze data, experiments were performed in which the orientation of the tablet device 

(mounted with the eye tracker) was varied with respect to the user at fixed platform roll, pitch and 
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yaw angles. The tracker-tablet setup was placed on a flexible tripod mount such that the setup 

orientation could be varied as shown in Figure 4.2 d. Eye tracking data was collected for each tablet 

orientation with the same test UI as used for the desktop system. Gaze data in these experiments were 

collected for the following tablet-tracker poses: 

 Tablet roll plus 20 degree, roll minus 20 degree 
 Tablet pitch plus 10 degree,  pitch plus 20 degree 
 Tablet yaw plus 20 degree, yaw minus 20 degree 
 Neutral where tablet roll, pitch, yaw = 0 degree. 

 

In all the above experiments, for each variation of the setup or experiment condition, eye tracker 

calibration was done and calibration quality was tested.  This was done using the validation option 

provided in the Tobii eye tracker’s software. This option provided a set of validation targets, where 

the quality of calibration could be tested.  The validation test was done after every calibration process 

to ensure the tracked user gaze is within the target boundaries of the validation screen. If the deviation 

was large, the calibration process was re-run.  

 

The data collected from each experimental session in this work comprises of a participant’s gaze 

coordinates, left and right eye positions and corresponding time stamps as estimated by the eye 

tracker. The ground truth data comprises of the stimuli locations of the UI in screen pixel coordinates.  

All data are stored in comma separated values or CSV files.  Each data file has a naming convention 

which helps to label the data according to the operating conditions under which it was collected. More 

details about the collected dataset and labelling are described in Chapter 5. 

 

4.2 Development of metrics and visualizations for gaze data evaluation 

 

Eye tracking accuracy is typically measured in terms of the difference between the real stimuli (or 

target) positions and corresponding measured gaze positions. Several metrics that express eye tracking 

accuracy in angular measures, provide information about an eye tracker’s inherent characteristics and 

also impact of variable operating conditions are developed in this work. These metrics are built using 

raw gaze data collected from the experiments described above and aim at quantitatively describing the 

quality of eye gaze data and its variabilities due to different operating conditions. These are 

summarized in Section 4.2.1.  

In addition to the gaze accuracy metrics, developing data visualization methods are crucial for 

aggregating large volumes of gaze data that are collected from eye tracking experiments, and for 

comparing gaze data characteristics like error magnitudes, biases and impact of variable operating 

conditions. Using the data collected from the eye tracking experiments described above, several 

graphical methods are developed in this work and described in Section 4.2.2. These visual tools may 

be used to explore the data characteristics of one or more eye trackers and study gaze estimation error 
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patterns when any operating condition is altered. Overall these visualizations are designed to aid in 

detailed characterization and comparison of gaze data quality from single or multiple eye trackers. 

All these metrics and visualizations have been discussed in different sections of the paper [13] . 
 

4.2.1 Summary of developed gaze data evaluation metrics 
 

A. Gaze angular accuracy and yaw/ pitch accuracy metrics 

A full derivation of gaze estimation accuracy (in degrees) and several gaze angular variables is made 

in Section 4.1.1 of the paper [13] which is in Appendix D of this thesis. Accuracy is estimated from 

the angular deviation between ground truth and tracked gaze location data from the experiments. The 

accuracy (or “gaze error”) forms the fundamental variable for further analysis in this thesis.   

The eye also undergoes rotational motion which leads to different eye orientations relative to the 

head. The two eye rotational variables are gaze yaw and pitch, where the yaw variation corresponds to 

left-right and pitch variation corresponds to top-bottom eye movements. The example errors 

corresponding to yaw and pitch movements of the eye are estimated and plotted in Figure 4.3 below.  

 
                                                            (a)                                                                             (b) 
Figure 4.3: (a) Gaze yaw angle variations and (b) pitch angle variations  overlaid on respective ground truth. The data is 
from one single experimental session for one person. 
 
 

B. Statistical Metrics 

A range of gaze error statistical measures are presented in Section 2 of the paper [13] (also in 

Appendix D) to analyse gaze errors from data collected for a group of individuals as done in this 

work.  In practice, gaze experiments are performed on a group of subjects with group sizes ranging 

from 5–30 participants for improving test reliability. For analysing gaze data from numerous subjects, 

various statistical parameters must be evaluated to gain insight into gaze error patterns. In this work, 

apart from mean and standard deviation, statistical measures like 95% confidence interval and Z-score 

of gaze accuracy are shown to be significant indicators of gaze data quality. A large confidence 

interval indicates higher data variability and vice versa. The Z-score indicates the level of unusual 

data points or outliers within the dataset [129], and a high Z-score indicates noisy and scattered data.  
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Histogram based metrics are proposed as additional statistical methods for evaluating and comparing 

gaze data[130] [131].  If H1 and H2 are the histograms of gaze errors from two gaze datasets, then 

correlation and intersection measures and Bhattacharya distance measure may be used to observe the 

similarity or divergence between the two datasets. This metric may be used to compare data from 

either two eye trackers, or between collected gaze data and reference gaze datasets.  

Example results from using three different histogram based comparison techniques have been 

presented in Section 4.2.2 of the paper [13] (in Appendix D) where similarity between gaze datasets 

collected from different user distance experiments are analysed using this metric.  

 

C. Sensitivity metrics 

Data from our experiments were used to define and test two gaze-error-sensitivity metrics 

(representing head pose and platform pose sensitivity). The derivations of these metrics are described 

in details in Section 4.3.1 and 4.3.2 of [13] (in Appendix D). The concept and utilities of these two 

metrics are summarized below. 

 

The head pose sensitivity metric is defined to represent how the variations of a user’s head pose may 

affect the accuracy of an eye tracker under test. The manufacturers or designers building eye trackers 

do not quantitatively specify how much the tracking accuracy may deteriorate if user head pose is 

varied. For deriving this metric, data from our head-pose variability experiments is used. The head 

pose sensitivity curves for the eye tracker used in our work are shown in Figure 4.4 (a). It is seen that 

lowest errors occur for frontal head positions and errors increase rapidly as magnitude of head pose 

angles increase. Overall this metric shows that the head pose tolerance of our used eye tracker is quite 

low, and to achieve reliable gaze tracking, a user head movements must be constrained. 
 

    

                                                              (a)                                                                             (b) 
Figure 4.4: (a) Variation of head pose sensitivity as a function of head pose angles. (b) the gaze error sensitivity to 
orientations of the tablet. Black markers in the plots show the head and platform poses for which gaze data were collected.  
 
To study the impact of platform orientations on the accuracy of an eye tracker, the platform pose 

sensitivity metric is defined (detailed derivation of this metric may be found in Section 4.3.2 of [13] 
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or in Appendix D). This metric is useful for eye tracking and gaze applications on handheld devices 

like smartphones and tablets, which face reliability issues due to the highly dynamic nature of the 

devices. The metric is implemented on the data collected from our tablet pose experiments and the 

plot of platform orientation sensitivity as a function of platform pose angles is shown in Figure 4.4b. 
 

 

D. Gaze tracking efficiency metric 

This metric is relevant to studying the impact of user distance and viewing angle on gaze estimation 

error. For implementing this metric, data from our user distance experiments done with the desktop 

setup is used. The gaze tracking efficiency as a function of user distance is plotted in Figure 4.5(a) 

below. Mathematical derivation of this metric and its background concepts may be found in Section 

4.3.3 of [13] or in Appendix D).  In a remote eye tracking setup, it is not known where the users 

should be ideally positioned in front of the eye tracker to achieve best results. The gaze tracking 

efficiency metric may be useful to quantitatively estimate for which user-tracker distance the best 

tracking accuracy can be obtained for a given tracker. Figure 4.5 (a) shows that gaze tracking 

efficiency increases as the user distance from the eye tracker increases until a certain value, after 

which gaze errors show an increasing trend. The best gaze tracking performance is achieved between 

user distances of 65–70 cm for the tracker used in our study. 

 
                                                      (a)                                                                                            (b) 

Figure 4.5: (a) Gaze tracking efficiency vs user distance (black markers are points where gaze data were collected, i.e. 45, 
60, 75 cm) (b) spatial gaze error heat map for the display screen where gaze was tracked during the experiments. 
 
E. Error Spatial Density metric 

Gaze error magnitudes or statistics do not provide estimates about the spatial dependence of gaze 

error values on the screen where a user’s gaze is tracked. For this purpose, a gaze spatial error density 

metric is defined to represent the area wise distribution of gaze errors on the screen. The metric is 

implemented using gaze data from our experiments and presented as an error heatmap shown in 

Figure 4.5 (b). Detailed derivation of this metric, including calculation of error spatial density from 

collected gaze data may be found in Section 4.3.4 of [13] or in Appendix D).  



 

 

Implementation of the performance evaluation framework 

41 
 

This metric can help to identify whether the gaze tracking accuracy is uniform over the monitor 

display and detect most probable locations on the screen where errors are large. This may help to 

improve gaze tracking performance, for example by checking the display screen quality, eye tracker 

mounting issues or compensating for errors if non-uniform error densities are observed.  

 
F. ROC Metric for subjective performance evaluation of eye tracking systems 

For in-depth performance analysis of an eye tracker using its data, the concept of a subjective 

performance evaluation metric is introduced in this work. Objective or absolute performance 

measures like angular accuracy are independent of any criteria set by an observer while subjective 

performance measures may depend on specific accuracy thresholds set by the observer. Benefit of 

using a subjective evaluation measure like the ROC metric developed in this work is that with these 

metric, users can set and observe the effect of varying gaze error thresholds and determine how to 

obtain best performance from a given tracker. They may also know if a certain tracker is suitable for 

them according to the required error threshold for a specific application. 

This metric is presented in details in Section 4.3.5 of [13] or in Appendix D, where the mathematical 

background for deriving this metric is established and example data from user distance experiments is 

used for establishing the functioning and utility of this new subjective metric for gaze data evaluation. 

Also, illustrative examples are provided to discuss how this new metric may be used by researchers or 

system designers for judging whether a given tracker is suitable for their application. 

 

4.2.2 Summary of visualizations developed for exploring gaze data  

 

A. Plot of gaze error as a function of visual eccentricity  

The locations of gaze targets on the display screen of an eye tracking setup may have a significant 

effect on the quality of gaze data obtained from an eye tracker. A given tracker may show good 

accuracy in lower visual eccentricity areas (near the center of the display) and worse performance in 

high eccentricity areas (towards corners of the screen). Therefore, measuring gaze error characteristics 

with respect to stimulus eccentricity is valuable in specifying the level of gaze errors under various 

operating conditions for a given tracker. 

 

The concept of using visual eccentricity to map gaze errors is presented in Section 4.4 of [13] or in the 

paper of Appendix D. Figure 4.6a below shows the corresponding visualization, which is polar plot 

where gaze error levels are plotted with respect to visual eccentricity values (varying between 5 to 30 

degrees) on the display screen, using data from user distance experiment. The gaze errors at the center 

are found to be minimum and they increase with higher visual eccentricities near the corners. 
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                   (a)                                                                           (b)                                (c) 
  

Figure 4.6: (a) Polar plot of gaze error (degrees) mapped with respect to visual eccentricity (degrees) (b) visual angles of a 
user (degrees) color-mapped according to gaze error (degrees). (c) 3D plot of gaze errors (degrees) s a function of display X, 
Y dimensions (pixels) 
 

B. Plot of gaze error vs. visual field 

A plot of the dependence of gaze estimation accuracy on user visual angle (red sectors) and user 

distance from an eye tracker was described in Section 5.1.3 of [13] (in Appendix D)  and shown in 

Figure 4.6b, which is implemented using data from our user distance experiments on desktop. The 

plot shows the reduction in user viewing angle with increasing user distance from tracker (shown by 

narrowing sectors). Also it shows that the eye tracker achieves best accuracy at a narrow visual angle 

of less than 20 degrees. These plots, along with plots like Figure 4.6a can help to know where to 

position a user in front of an eye tracker for best tracking results. 

 

C. 3D gaze error distribution plot 

A 3D gaze error distribution plot is constructed using gaze data from a user distance experiment and is 

shown in Figure 4.6c which is also presented in Section 5.1.4 of [13] (in Appendix D). It shows the 

magnitude of gaze errors as a function of X and Y dimensions (in pixels) of the viewing area on the 

display screen, while the gaze errors are plotted along Z axis. These plots help to diagnose gaze error 

levels over the display area. For example Figure 4.6c shows that high error values occur near the 

display corners and near the screen borders which could be due to high visual angles in those regions.  

 

D. Tolerance plots 

The concept of head pose and platform movement tolerance conics are discussed and implemented in 

Section 5.1.5 and 5.1.5  of [13] (Appendix D). These are shown below in Figure 4.7a and 4.7b 

respectively. The platform movement tolerance conics represent the degrees of freedom of movement 

“allowed” in a handheld device about its central axis if eye tracking is to be done on it with sufficient 

accuracy. Gaze error values obtained from platform orientation experiments are used for this plot. The 

utility of this visualization is that it shows the practical movement limits and pose variations that are 

allowed for a certain tablet-tracker setup to perform reliable eye tracking on it. 
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The head pose tolerance plot of Figure 4.7 b is implemented using data from head pose variability 

experiments. In the plot, the larger box shows the maximum degree of head movement (in roll-pitch-

yaw angles) possible by an average user. The plot also shows that for reliable gaze estimation with the 

given tracker, the head pose of a user must be limited within the smaller “box”, i.e. within 10 degrees 

in each angular direction to maintain gaze error magnitudes of 0.5 degrees. Such plots help to study 

the head-movement tolerances of eye trackers quantitatively. 

 
                                                  (a)                                                                                  (b)    
Figure 4.7: (a) Visualization showing platform orientation tolerance of an eye tracker mounted on a tablet. The conics 
represent the maximum pose angles to which the tablet can be oriented while maintaining 1 degree of eye tracking accuracy. 
It is seen that platform pitch variations are more limited compared to yaw or roll variations, as derived using data from our 
platform pose experiments. (b) Head pose tolerance of an eye tracker shown graphically. The small bounding box represents 
the maximum head poses allowed for the given eye tracker while maintaining 0.5 degree of gaze error. The larger box 
represents head pose angles allowed under free head movement.  
 

E. Data aggregation plots for multiple eye tracking experiments 

In order to visualize data from more than one eye tracking experiment and when there are more than 

one factor to measure and compare while reporting eye tracker performance, angular charts as of 

Figure 4.8a could be useful. This chart is implemented using data from  user distance (desktop) and 

head pose experiments and described in more details in Section 5.2.3 of [13] (Appendix D). 

 
                                                          (a)                                                                                      (b) 
Figure 4.8: Visualizations for gaze data aggregation. (a) An angular chart that shows the relative magnitudes of gaze error 
from different operating conditions (b) A very compact representation of gaze error data from all desktop experiments for 6 
participants clustered into a single plot. These plots could be useful for comparing multiple tracking systems based on 
multiple criteria and help identify the better ones.  
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Another type of plot (Figure 4.8b) is implemented in Section 5.2.4 of [13] (Appendix D) to aggregate 

data of multiple persons from our user distance and head pose experiments to study and compare the 

gaze error levels of individuals across different experimental conditions. In the plot, different 

experiments are coded by colours with respective error values represented by bar heights, plotted 

along Z axis. This kind of plot can help inspecting data from several participants and judge overall 

eye tracking performance and draw quick and meaningful inferences about multiple experiments. 
 

4.3 Software tools developed for performance evaluation of eye trackers  

A new software tool, named GazeVisual is developed as part of this thesis work, specifically for the 

evaluation of an eye tracker’s data characteristics and to quantitatively estimate and visualize the 

impacts of practical operating conditions on its performance. The software is in the form of a 

graphical user interface or GUI application which has a suite of statistical and visualization functions 

for in-depth analysis of eye tracker data. GazeVisual is built using Python programming language and 

Python libraries, and its main components are Python functions for 1) creation of the GUI application 

interface 2) incorporation of the GUI elements in the interface to input gaze data in CSV formats      

3) implementation of methods from various Python data analysis and graphics libraries on the input 

gaze data to produce numerical measures and statistics of gaze accuracy levels and visualizations of 

gaze data characteristics.  4) possible generation of visual stimuli which can be displayed on screen to 

collect sample data from an eye tracker and also possibilities for direct interfacing of the software 

with an eye tracker for direct data collection. Details of the concept of this software, motivation for 

building it and description of its components and functionalities may be found in [63] and in the paper 

of Appendix E of this thesis. The source code of the GazeVisual software is also provided in an open 

repository on GitHub for eye gaze researchers or engineers to upgrade and extend (more details of this 

open repository are in Chapter 5).  The link to the repository is:  

https://github.com/anuradhakar49/GazeVisual-Lib/tree/master/Code%20repository/GazeVisual%20GUI%20tool  

 

4.3.1 The GazeVisual software application tool 

The GazeVisual software is intended to be a unified platform for quantitative and standardized 

evaluation of eye trackers using only their data. The gaze data format accepted by the software is 

described in more details in Chapter 5 and also in the paper of Appendix E. It has been tested with 

various samples of gaze and ground truth data from our experiments to produce numerical and 

graphical evaluation results and comparison of multiple eye gaze datasets. It has also been interfaced 

with an Eyetribe eye tracker to collect sample gaze data through its API (Figure 4.9d).These aspects 

are discussed in more details in Sections IV and V of the paper of Appendix E.  

The architecture of the GazeVisual software is shown in Figure 4.9a below.  The software has four 

separate windows. The major analytical and graphical functions of the software tool may be found in 
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the “Data analysis” and “Visualizations” windows. The Test UI window contains functions for 

generating static or dynamic stimuli, connecting to an eye tracker and saving of the collected gaze 

data. Each window works independently and is designed to be easy to navigate and use by generic 

users. Plots generated from the “Data analysis” and “Visualizations” windows may be saved in PNG 

file formats. Evaluation results printed in the output consoles may be saved in text files. 

 

Detailed description of the components of the “Data analysis” and “Visualizations” windows of 

GazeVisual software may be found in subsections A and B of Section IV of the paper in Appendix E. 

Details about the TestUI & LiveTracking concept and implementation are in Section 4C. Evaluations 

of the GazeVisual software using data from three different eye trackers are in Section V of this paper. 

Demo videos of the software have been created to show how the above different windows of this 

software may be used. Links to the videos may be found in the following GitHub repository. 

https://github.com/anuradhakar49/GazeVisual-Lib/blob/master/Code%20repository/GazeVisual%20GUI%20tool/Sample%20videos  

 

 
                                                          (a)                                                                                            (b) 

Figure 4.9: (a) Four windows of GazeVisual GUI tool and their functions   (b) View of the Data Analysis window. 

 

 

                                          (c)                                                                                                     (d) 

Figure 4.9: (c) Visualizations window of GazeVisual (d) Test UI window of GazeVisual interfaced with an eye tracker 
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4.3.2 The GazeVisualApp web-application tool 
 

In addition to the software tool, a web application named GazeVisualApp is developed in this work to 

implement a basic set of functions present in the GazeVisual GUI software over a cloud environment. 

This has several advantages, e.g. possibility of eye tracker evaluation on both desktop and mobile 

operating systems[132], accessing the evaluation functions independent of Python installations, 

ubiquitous accessibility and continuous updates of evaluation functions.  
 

GazeVisualApp has similar analysis and visualization capabilities as the GazeVisual desktop GUI 

application and accepts raw gaze data in CSV format to provide corresponding gaze data quality 

metrics and visualizations through a web-browser.  The web interface contains a single file upload 

button bar (Figure 4.10a). A user only needs to browse and upload a single CSV file having the gaze 

and ground truth data via this file upload button. The contents of the CSV file are used to estimate 

gaze data accuracy metrics and visualizations as done in the GazeVisual GUI tool. Input format of the 

CSV file for the web-application is similar as the input format for the GazeVisual GUI software. 
 

After uploading the CSV file, the file contents are displayed on the browser window along with 

several data statistical measures (Figure 10a)) and six plots are created below the file upload bar 

(Figure 4.10b). All functions of the web-application take place on a single web browser page and all 

the plots may be saved in PNG format.  

More details about the web-application design and implementation may be found in Section VI of the 

paper in Appendix E. The web application is hosted on a web server and currently live for 

testing at the address: http://gazevisual.pythonanywhere.com  
 

 
Figure 4.10: (a) View of the GazeVisualApp web application 
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Figure 4.10: (b) Output plots and data statistics obtained from the GazeVisualApp 

 

 
Figure 4.10: (c) GazeVisualApp displaying data in tabular form after uploading 

 

 
Figure 4.10:  (d) A sample gaze error histogram plot obtained from the GazeVisualApp after uploading a gaze data file. 
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4.4 Machine learning models for analysing error patterns in gaze data 
 
As discussed in this and the previous chapters, gaze data obtained from eye trackers operating on 

various consumer platforms is frequently affected by a multitude of factors, also termed as error 

sources in this thesis. As discussed in this chapter in subsections 4.1 to 4.3, a variety of methods and 

tools were developed as part of this thesis to quantitatively evaluate gaze data quality and study the 

impact of variable operating conditions on it. However, numerical metrics and visualizations often do 

not give adequate idea how gaze error patterns are caused due to different operating conditions. This 

is another aspect which is very sparsely explored in eye gaze research, i.e., identification and 

prediction of gaze error patterns caused by different operating conditions or error sources. In addition, 

there are currently no eye gaze datasets which have been collected under the influence of these error 

sources and labelled correspondingly, so that gaze error patterns induced by each distinct operating 

condition may be classified. 

Based on the above observations, in this thesis work, statistical and machine learning algorithms are 

implemented to identify error patterns in eye gaze data, classify gaze error types and predict errors 

produced by an eye tracker when they operate under practical unconstrained scenarios. For this, the 

gaze datasets acquired from the desktop and tablet platform (as discussed in Section 4.1) were used. 

These datasets were labelled with the different conditions (user distances, head pose, platform pose) 

and classifiers were trained on them to identify the influence of these conditions. Also, regression 

models were built to predict the variability in gaze error levels under the influence of these conditions.  

 

This section presents a summary of the methods which were developed to pre-process raw eye gaze 

data and successively detect and predict gaze error patterns caused by multiple operating conditions 

using classifier and regression models. These methods are aimed to provide in-depth knowledge 

above an eye tracker’s gaze data characteristics and improve the quality and reliability of eye trackers 

operating under unconstrained operating conditions. 

 

Full details about the background concepts on gaze error pattern recognition, preparation of gaze 

datasets for the learning algorithms and results from the algorithms may be found in the paper which 

is in Appendix F of this thesis. 

 

4.4.1 Research questions on gaze error pattern recognition 

With respect to studying gaze error patterns, the following research questions were identified which 

have not been previously addressed in gaze research. 1) Do the different error sources produce any 

particular pattern of gaze errors or if the nature of gaze errors follows any statistical distribution or are 

they simply random. 2) How can suitable features be extracted from gaze error data to identify the 

error sources 3) how can gaze errors caused by one error source be distinguished from those caused 



 

 

Implementation of the performance evaluation framework 

49 
 

by another 4) how can the presence of different error sources in a gaze dataset be detected without 

prior knowledge 5) is it possible to predict the level of gaze errors caused by different error sources.  

 

4.4.2 Steps for implementing machine learning for gaze error pattern analysis 

With raw gaze data, it is impossible to see any existing error patterns in the data, since data from very 

different operating conditions often look similar and vice versa. Further, raw data is always corrupted 

with varied levels of outliers. Raw gaze data collected from our different experiments cannot be input 

directly to machine learning models for classification or prediction. Therefore, the data processing 

pipeline shown in Figure 4.11 is implemented. More details on the data preparation and exploration 

steps are discussed in Section 2.4 and 2.5 of the paper in Appendix F of this thesis. 

 
 
 
 
 
 
 
 

 

Figure 4.11:  Data processing pipeline for gaze error analysis using machine learning 

 

Data collected from the user distance and head pose experiments from desktop and user distance and 

platform pose experiments from tablet were used for the pattern recognition tasks. Firstly, outliers 

were removed using median filtering [133], followed by feature extraction from the data [134]. The 

following feature set is computed for all datasets:  

        [Error_AOI-1, Error_AOI-2...Error_AOI-15, µ, σ, IQR, 95% conf upper, 95% conf lower]sample      

Where Error_ AOI-1 to Error_ AOI-15 are the mean gaze errors at the 15 AOI locations (shown in 

Figure 4.1) and the other values are the statistical measures computed on each data sample. After 

feature estimation, samples from desktop datasets corresponding to 4 user distance and 3 head pose 

classes are mixed, and similarly data from 4 tablet distance and 3 platform pose classes are mixed. 

Details about feature extraction from collected gaze datasets is discussed in Section 3.3 of the paper in 

Appendix F. A comparison of gaze data from the desktop and tablet platforms under different head 

poses, user distances and platform poses are in Appendix K. 

 

The following classification tasks were implemented on the desktop datasets: 1) classification of 

errors patterns for different user distances (i.e. between 4 user distance classes) (2) classification of 

head pose error patterns (i.e. between 4 head pose classes of neutral, roll, pitch, yaw), (3)classification 

between head pose and user distance errors patterns (7 class classification). 

Prediction

Classification 
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The following classification tasks were implemented on the tablet datasets: 1) classification of error 

patterns for different user distances (i.e. between 4 classes) (2) classification of tablet pose error 

patterns (i.e. between 4 tablet pose classes: neutral, roll, pitch, yaw), (3) classification between tablet 

pose and user distance errors patterns (7 class classification). 

 

The prediction task included using regression models[135] to map between the different gaze angular 

variables with gaze error values from both desktop and tablet datasets, defined as below: 

                                              [Gaze_Angle, Gaze_Yaw, Gaze_Pitch] → Gaze error                              

The regression models were trained and tested on datasets belonging to the same category (i.e, user 

distance, head pose, platform pose) and model fit qualities were estimated from RMSE values. 

 

4.4.3  Classification and regression models for gaze error pattern analysis 

Three different machine learning models were used for the above classification tasks. These included 

k-Nearest Neighbours [136], SVMs [137] and Neural networks [135]. The models were optimized 

through experiments to select the set of hyper-parameters that best improve their cross validation 

scores. The classification problems where datasets from different categories were mixed were found 

to have complex feature distributions with little separation between classes. However, the machine 

learning models were still able to distinguish between features from the different datasets. Detailed 

discussions about these classifier models may be found in Section 3.4 of the paper in Appendix F.  

For prediction of errors, six different regression models were used including linear, polynomial, 

Ridge, Lasso, ElasticNet and Neural network regressors [138] [139]. More details about these 

regression models are presented in Section 4 of the paper in Appendix F. 

 

4.4.4 Outcomes of the learning models 

The classifier models achieved on average a classification accuracy of 90% with 10 fold cross 

validation (Figure 4.12a) with the KNN and neural networks achieving close performance for all 

datasets. The classification results for the desktop and tablet datasets are presented and analysed in lot 

more details in Sections 3.5 and 3.6 of the paper in Appendix F, where aspects such as model hyper-

parameter tuning, testing and cross-validation of model scores are discussed. 

 

Out of the prediction models, ElasticNet showed the lowest RMSE of 0.7 for most of the prediction 

tasks (Figure 4.12b). All the models were seen to be highly sensitive to the presence of outliers and all 

the features therefore had to be standardized before input to the models. The results from the 

regression models are analysed in details in Section 4.1 (for models trained on desktop datasets) and 

Section 4.2 (for models trained on tablet datasets) of the paper in Appendix F.  
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                                       (a)                                                                                                        (b) 
Figure 4.12: (a) Classification result from using Neural networks to distinguish between desktop user distance and head 

pose datasets (b) Output from a prediction task where head pose pitch error data was modelled using various regressors. 

 

4.5 Conclusion 

 

In this chapter, the implementation details of the proposed performance evaluation framework for 

remote eye tracking systems are summarized. The various concepts and components of the framework 

are presented in a condensed summary form and more detailed descriptions of the developed methods 

and software may be found in the referenced papers.  

 

Researchers, engineers and designers working with gaze based systems can use the methods to find 

out the practical capabilities and limits of their eye trackers, perform in-depth assessment of eye gaze 

data collected from an eye tracker and understand under what circumstances their trackers can provide 

best results (or lowest gaze errors). The methods and tools, developed as part of this thesis work are 

given out as open resources for the eye gaze research community to use and upgrade. Details of the 

open repository containing resources for implementing these methods as well as the collected gaze 

datasets are discussed in Chapter 5. 
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Chapter 5  

Open repository of resources for performance evaluation of eye 
trackers 

 
 
 

 
 
 
In contemporary eye gaze research, there is a marked deficiency of open source tools, datasets and 

software which can be used for consistent evaluation of eye trackers and gaze data quality. 

Considering these requirements, several gaze data evaluation algorithms, visualizations and software 

tools which were developed as part of this thesis work are released into an open source repository on 

GitHub, and named GazeVisual-Lib. (https://github.com/anuradhakar49/GazeVisual-Lib/). This 

repository contains a range of resources implemented as Python codes that may be used to process 

raw gaze data collected from an eye tracker, estimate several gaze angular variables and accuracy in 

units of angular resolution and implement multiple evaluation metrics and visualizations. Further, the 

source code of the GazeVisual GUI software (described in Chapter 4) is also included in the 

repository. The GazeVisual-Lib repository is aimed to allow generic eye tracker users from a broad 

range of interdisciplinary areas to freely access different gaze data evaluation methods and also let 

researchers and advanced programmers working in these fields to modify the codes to suit their own 

application or upgrade them to more sophisticated forms.  

 

In addition to the code repository, the datasets collected from our different eye tracking experiments 

as described in Chapters 3 and 4 are aggregated into an open data repository hosted on Mendeley Data 

named NUIG_EyeGaze01(Labelled eye gaze dataset). Link to the dataset is below. 

https://data.mendeley.com/datasets/2txnw3y6gs/draft?a=b8ab5ca4-4d5e-463e-b5fc-a463d548102d  

This is a new development in gaze research as the dataset is labelled with a wide range of operating 

conditions and could be of significant interest to gaze researchers and engineers for comparison and 

benchmarking of gaze tracking performance. 

This chapter describes the concept and organization of the code and data repositories developed as 

part of this thesis, their components, data input and output formats and guidelines on how to use them. 

Also the utilities of the repositories towards gaze data analysis and evaluation are highlighted. 
 

This chapter is based on one paper which is published [13] and two papers which are currently under 

review, and copies of which are in Appendices D, E, G. 
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5.1 A GitHub repository for gaze data evaluation methods 
 

The GazeVisual-Lib repository provides a fully defined set of numerical and visual methods for in-

depth evaluation and comparison of the data quality from generic/commercial gaze tracking systems. 

The methods are implemented as fully documented Python codes and sample data files and demo 

videos are also provided in the repository for using and testing the codes. The organization of the 

repository is shown in Figure 5.1, followed by description of its components and functionalities. 

 

         Sub-folders                   Component details 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Organization of the GazeVisual-Lib code repository on GitHub 

 
The GazeVisual-Lib repository is meant to provide easy to use gaze data evaluation resources in 

Python programming language, for free use, modification and upgradation by eye gaze researchers 

and engineers. The Python codes and supporting information for using the numerical methods and 

visualizations are included in the repository in different folders. The contents of these folders and 

their functionalities are provided below. 

 

5.1.1 “Gaze data pre-processing” folder  

The Python codes in this folder and their functions are in Section 2.2 A of the paper in Appendix G. 

There are three Python files which are used for data conversion and pre-processing. Data conversion 

refers to the estimation of gaze angular variables and accuracy from raw gaze data and corresponding  

ground truth data, as discussed in Section 4.1 of  [13].  Data conversion methods are included in the 

main_proc.py file of this folder. The output of the data conversion process is a CSV (comma 

separated values) file which contains 16 columns of data derived from the raw gaze and ground truth 
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data. A sample output CSV file (named user_data_proc.csv) is also provided within this folder. The 

headers and contents of this output CSV file are shown below in Table 5.1. 

  

Table 5.1: Description of column contents of “user_data_proc.csv” file 

Header no. Header title Description of column values 

1. TIM REL Relative time stamp for each gaze data point in the file 

2. "GTX" Ground truth x positions in pixels 

3.  "GTY" Ground truth y positions in pixels 

4. "XRAW" Raw gaze data x coordinates in pixels 

5. "YRAW" Raw gaze data y coordinates in pixels 

6. "GT Xmm" Ground truth x positions in mm 

7. "GT Ymm" Ground truth y positions in mm 

8. "Xmm" Gaze x positions in mm 

9. "Ymm" Gaze y positions in mm 

10. "YAW GT” Ground truth yaw angles from ground truth data 

11. "YAW DATA" Estimated yaw angles from input gaze data 

12. "PITCH GT"  Ground truth pitch angles from ground truth data 

13. "PITCH DATA" Estimated gaze angles from input gaze data 

14. "GAZE GT” Ground truth gaze angles from ground truth data 

15. "GAZE ANG" Estimated gaze angles from input gaze data 

16. "DIFF GZ" Difference between ground truth and estimated gaze angles 

 

From the data columns in the CSV file, gaze yaw and pitch angular accuracy values can be calculated 

by subtracting "YAW GT" from "YAW DATA" or "PITCH GT" from "PITCH DATA" columns. 

Input gaze x,y coordinates should have value 0,0 at the center of the display screen and the data 

should be free from invalid or “NAN” entries.  

 

Another code in this folder is the “outlier_removal.py” file which implements three different outlier 

detection and removal strategies on collected gaze data. These are: 1D Median filtering, use of median 

absolute deviation and outlier detection using the interquartile range method [13].   

 

The third code file in this folder is the data_augmentation.py which contains methods that may be 

used to expand an eye gaze dataset. These methods include addition of white and coloured noise, data 

interpolation, time-shifting, data convolution with cosine kernels and a combination of these[140]. 

Augmented or synthetic gaze datasets may be used for a variety of purposes such as use of machine 

learning algorithms[137] to model gaze data patterns of a tracker or errors caused by different factors.  
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5.1.2 “Gaze accuracy metrics” folder 

The components of this folder are described in Section 2.2 B of the paper in Appendix G. In this 

folder, there are three python files (data_statistics.py, data_similarity.py, spatial_density.py) which 

may be used to compute gaze data statistics, similarity between gaze datasets and gaze error spatial 

density on the display screen where gaze was tracked.  The data similarity calculations are based on 

correlation, intersection and Bhattacharya distance [13] computed on histograms of two gaze datasets. 

The scatter_density.py file helps to create a gaze data density plot using raw gaze data that allows 

users a quick look into the relative scatter of data points on the display screen during data collection, 

which makes it easier to interpret gaze data patterns and detect any anomaly. 

 
5.1.3 “Gaze data visualizations” folder 

The details of the visualization methods present in this folder are described in Section 2.2 C of the 

paper in Appendix G. In this folder there are three python codes that implement various visualizations 

as described in [13]. The file 3D_plot.py takes in the gaze error values (i.e. data from the “DIFF GZ" 

column of the user_data_proc.csv file) and creates a 3D distribution of gaze error magnitudes (plotted 

along Z axis) as a function of X and Y dimensions of the display screen. This plot helps to investigate 

and compare gaze error levels over the display area where gaze was tracked.  

 

The eccentricity.py file creates a plot of gaze error levels mapped as a function of gaze yaw and pitch 

angle values on the display screen. This program may be used to study how gaze errors vary with 

visual angles, especially if user distance from the tracker is increased or decreased. Usually for shorter 

distances gaze errors are more sensitive to visual eccentricities, whereas gaze errors for long distances 

(e.g. at 80 cm) show less sensitivity to eccentricities [13]. 

 

The file 3D_histogram.py plots stacked data distributions using data from two or more trackers, 

persons or experiments in a single plot. It helps to understand and compare data patterns, and gain 

insight into data characteristics such as where error values are concentrated or presence of data 

extremes. The output of the code shows three gaze angular variables plotted together as stacked 3D 

histograms using a bin size of 20 (which can be varied).   

 

5.1.4 “GazeVisual GUI Tool” folder 

This folder contains the source code for the GazeVisual GUI software described in Chapter 4. The 

purpose and functions of this software are discussed in detail in the paper attached in Appendix E. 
 

The input data format for GazeVisual software is shown in Figure 5.2. It comprises of columns for 

raw gaze and ground truth data coordinates, display screen resolution and pixel pitch of the display 

(where gaze was tracked) and user distance from the tracker. Two sample gaze data files that can be 



 

 

Open repository of resources for performance evaluation of eye trackers 

56 
 

used as input to the GazeVisual software are provided in the folder. Links to demo videos showing 

how users may navigate through and implement different functions of the software are also included. 
 

GazeVisual can run as a desktop application on any operating system having Python 2.7 and with 

Python libraries such as Tkinter, Pygame, Statsmodels and Seaborn installed. For interfacing an eye 

tracker with GazeVisual , it is required that the tracker’s Software Development. Kit (SDK) and 

calibration routines are installed in the computer where GazeVisual runs. GazeVisual can also run 

alone using the gaze (and ground truth) data collected beforehand on the same or different computer.  
 

   
                                                  (a)                                                                                    (b) 

Figure 5.2: (a) View of the “Data Analysis” window of the GazeVisual GUI tool (b) input data format for the software 

5.1.5 Cross-applicability of the evaluation methods for different eye-trackers 

 

The gaze data evaluation methods in GazeVisual-Lib are based on calculations using data from both 

eyes and centralized gaze coordinates as provided by our eye tracker. If any eye tracker provides only 

monocular data or only the centralized gaze coordinates without the left/right eye position values, then 

the repository codes can still be used for gaze angle and accuracy calculations after minor changes. 

Thus, with monocular data (which are still gaze coordinates at the target points but using single eye 

data), the metrics will work but results may vary from the case when binocular tracker data is used. 

 

The GazeVisual GUI application has been tested with data from two remote eye trackers and a head 

mounted eye tracker as described in Section V of the paper in Appendix E. The remote trackers and 

the head mounted tracker have different frame rates but both provide fixation data or estimated gaze 

coordinates. The GazeVisual software is seen to produce consistent results for both types of trackers 

with the requirements that: a) input gaze data comprises of fixation data and corresponding ground 

truth data b) input gaze and ground truth data coordinates have their origin at display center c) input 

data is arranged in the format shown in Figure 5.2b, d) the data is free from non-numeric or NAN 

values e) gaze and ground truth data have same lengths (number of data rows).   
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5.2 An open data repository for new benchmark eye gaze datasets 

 

A rich and diverse gaze dataset, using the eye tracking data collected during our experiments under 

wide range of operating conditions (described in detail in Chapter 3 and 4) is built and presented in an 

open data repository as part of this thesis work. The dataset is named: NUIG_EyeGaze01(A labelled 

benchmark eye gaze dataset) and is hosted in the Mendeley open data repository. The organization of 

the dataset is shown in Figure 5.3. This is a new kind of dataset, collected from three user platforms 

(desktop, laptop, tablet) under the influence of one condition at a time, using a commercial remote eye 

tracker.  The conditions include, 17 different head poses, 4 user distances, 6 platform poses and 3 

display screen size and resolutions.  

 

                                                           Platform             Operating conditions              Sub-classes 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.3:  Dataset organization in the NUIG_EyeGaze01 repository on Mendeley data 

 

Each gaze data file in the repository is labelled with the type of operating conditions under which it 

was collected. Name of each file has convention:  USERNUMBER_CONDITION_PLATFORM.CSV 

(e.g. us01_80_desk.csv). Gaze data from 20 participants (15 male, 5 female) were collected for each 

condition mentioned above. Ground truth data for each platform is provided in the respective files, 

which are the actual locations of the stimuli dots appearing on display screen during gaze data 

collection. Each gaze data file contains 21 data columns (shown in Figure 5.4) corresponding to raw 

gaze data along with timestamps, gaze angular variables like gaze yaw, pitch values and gaze 

estimation accuracy for each gaze data point as well as for each stimuli location. 

Details of the data collection process are in [13] and in Chapter 3 and 4 of the thesis. Other details 

regarding this repository are in Table 5.2; which are also provided in the main page of the online 

repository on Mendeley data. Link to this data repository is provided in the beginning of this chapter. 
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50, 60, 70, 80 cm

User distance: 
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Table 5.2: Details of the NUIG_EyeGaze01 dataset capture conditions 

Dataset parameter Description 

Data type Fixations 

Data file type  CSV 

Collection device:  Tobii EyeX 4C tracker.Specified accuracy : 0.5 degrees (frontal head pose). 

Collection platforms:  Desktop, tablet, laptop 

Screen resolutions of 

platforms 

22 inch (Desktop, 1680 x1050 pixels),  14 inch (Laptop, 1366x 768 pixels) 

10.1 inch (Tablet, 1920 x 800 pixels) 

Ambient illumination Constant, 60 Lux 

Others Chin rest used for all sessions. No participants wore glasses. 

 

 

  

                                                   
     

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: A screenshot of the data format in each CSV file of the NUIG_EyeGaze01 dataset 
 

 

Meaning of the data columns 1-16 are explained in Table 5.1above. The last 5 fields signify the 

locations of the stimuli dots and gaze error statistics measured at those points.  User distance or other 

operating conditions during collection of data can be extracted from the respective file names. 
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5.3 How to use the repositories 

To run the codes in the GazeVisual-lib code repository, users must have Python 2.7 and the different 

libraries (mentioned in Section 5.1) in their latest versions installed in their computers. All the codes 

are in the “Code repository” folder (Figure 5.5 below) which has several “README” files in various 

sub-folders that provide details about how to format an input data file and use it with the codes. The 

README file of the root folder is the main documentation for the repository, which has details about 

how the codes may be run and also the current version of the live repository. Researchers should 

check this main README file to learn about current and subsequent version updates. 

Gaze data from any source (e.g. eye tracking device, application or algorithm) must be formatted as 

per the instructions in the README files and used first with the main_proc.py in the “Data pre-

processing” sub-folder to produce an output CSV file. Rest of the codes’ functions are based on this 

output CSV file. Similarly, to use the GazeVisual GUI tool, users should copy and save the 

GazeVisual_v101.py file into any directory of their computer and run it as regular python codes, and 

make sure all the imported libraries are pre-installed. 

 

Sample CSV files that can be used to test the codes are provided in each sub-folder of the repository 

for guidance. Input files format for the GUI tool is different and input data samples are included in the 

repository for users to understand the format. Links to sample videos showing the operation of the 

different windows of the GazeVisual GUI tool are in the “Sample videos” file of the GUI folder.  

 

For the data repository on Mendeley, the data CSV files are labelled with the participant number, 

platform name and operating condition. They can be simply downloaded and the different column 

values in the files can be read to use or visualize them. A data documentation is also provided on the 

main page of the repository (as shown in Figure 5.5b, which appears when users visit the repository 

link provided in the beginning of this chapter). 
 

       
                                                 (a)                                                                                                     (b) 

Figure 5.5: (a) View of GazeVisual-Lib code repository on GitHub (b) NUIG-Eyegaze01 data repository on Mendeley data. 
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5.4 Licensing information  

GazeVisual-Lib is released as an open source repository under GNU-GPL v3.0 license which allows 

the users freedom to run, study, share and modify the software and the source codes in the repository. 

The users are requested to cite papers of Appendix A, D and G in their works. 

 

The new gaze data repository is published under CC BY-NC 3.0 license. According to this license, 

Licensees may copy and distribute the material if they give the licensor the credits (attribution). 

Licensees may distribute derivative works only under a license identical to the license that governs the 

original work. The license also specifies that Licensees may use the data only for non-commercial 

purposes and there is also the condition that Licensees may copy, distribute, display and perform only 

verbatim copies of the work, not derivative works of it. 

 

5.5 Utility and impact of open resources towards eye tracker and gaze data evaluation 

The open code and data repositories developed and presented in this thesis are resources that would 

enable other researchers to explore and answer critical questions related to contemporary eye gaze 

research. For example, what are the performance limits and tolerances of a given eye tracker? How 

much (quantitatively) is an eye tracker’s accuracy affected when operating under non ideal operating 

conditions? Which operating conditions affect the tracker’s performance in a particular use-case? 

How can two gaze datasets, or the performance of two gaze estimation systems be compared 

quantitatively? What are the performance bottlenecks of individual gaze estimation algorithms? How 

can gaze error patterns be detected and predicted? The coding resources and the desktop application 

tool from the GazeVisual-Lib repository can help eye gaze researchers or engineer to find answers to 

these questions.  

 

Since knowing the quality of gaze data is essential for ensuring the reliability of any gaze based 

application, the evaluation routines of the repository can be used to constantly monitor the data 

quality of any eye tracker, especially during practical operations under variable operating conditions.  

 

Using the GazeVisual GUI, users can perform in depth gaze data evaluation without the need for 

detailed programming knowledge owing to its simple interface. This is particularly important due to 

the inter-disciplinary nature of gaze research where eye trackers are used widely by members from 

non-technological fields. The intended user group of GazeVisual-lib is quite diverse, ranging from 

developers of gaze estimation algorithms to researchers from fields like human-computer interaction, 

psychology and cognitive studies. Incidentally, gaze data quality is a critical aspect that affects all the 

stages of gaze data analysis, and the codes from GazeVisual-lib could be useful in this respect.   
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The experiments done as part of this thesis work have helped to develop and introduce a new eye gaze 

dataset which can aid in identifying the capabilities and limits of different eye tracking systems. Such 

labelled gaze datasets containing signatures of different operating conditions that frequently affect 

gaze data quality on different user platforms do not exist yet and keeping this in mind, the NUIG-

Eyegaze01 dataset has been made available. The data can be put to a wide range of uses, including 

modelling and comparing error patterns, development and testing of gaze anomaly detection 

algorithms or gaze error compensation algorithms to name a few.  The data can be put to a wide range 

of uses, including modelling and comparing gaze error patterns, development and testing of gaze 

anomaly detection algorithms or gaze error compensation methods to name a few.  These are all 

sparsely explored areas in gaze research which could benefit from our open data repository.  

 

The final and major significance of both the data and code repositories is that they are meant to 

encourage research towards practical and realistic performance evaluation of eye trackers, 

standardization of gaze research results and building of more open source tools for this purpose. The 

aim of presenting the open resources is to foster collaborative development and adoption of even 

better resources in this direction of gaze research, which ultimately can strengthen the usability and 

reliability of gaze estimation systems in their diverse range of applications.  
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Chapter 6 

Discussions and future work 

 
 
 

 
 
 
 

6.1 Summary and discussions 

 

In this dissertation, several new strategies towards practical evaluation of generic commercial remote 

eye tracking systems and eye gaze data quality were proposed and developed. Firstly, through several 

literature reviews, the strong need for standardization and development of performance evaluation 

tools or protocols in contemporary gaze research were identified. This helped to lay the foundation for 

the later developmental parts of this thesis, which centred around the development of a performance 

evaluation framework for remote gaze estimation systems. 

This framework provides a set of well-defined algorithms, software, datasets and experimental 

methods which can be used by the interdisciplinary eye gaze research and technology community for 

detailed evaluation of gaze data quality and eye tracking systems implemented on various 

applications, hardware or platforms.  

 

The results from developing this evaluation framework include several new metrics and visualization 

methods for in-depth analysis of an eye tracking system’s performance.  The existing metrics that 

have been traditionally used for representing gaze estimation accuracy were found to be quite non-

uniform and inadequate to express the impact of external conditions on gaze data or interpret 

underlying data patterns.  Also previously, graphical representations of gaze accuracy or data quality 

variations were nearly non-existent.  

The metrics developed as part of this work, as described in [13] and Chapter 4 (Section 4.2) are fully 

derived from raw gaze and ground truth data and may be used to quantitatively express the impact of 

several external conditions on gaze data characteristics from generic remote trackers. Some of these 

metrics may help in numerical comparison of data from multiple eye trackers or individuals while the 

ROC based metric proposed and developed in this thesis may be used to subjectively evaluate an eye 

tracker’s performance, by setting user defined accuracy thresholds.  The key benefit of these 

developments is that since full definitions of all these metrics are provided, these can be adopted 
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easily by any gaze researcher or system developer for their own gaze tracking systems. In addition, a 

set of visualizations are presented in Chapter 4, Section 4.3, which may be used to study gaze data 

quality, visually inspect for data anomalies or irregularities and summarize gaze data characteristics 

from multiple individuals and experiments. These are meant for quick and easy monitoring of an eye 

tracker’s performance, especially during unconstrained operations. 

Another result from this framework development comprise of software tools and a web-application 

which are presented in Chapter 4, Section 4.3.  These were built to make the above mentioned metrics 

and visualizations easily accessible to generic users and gaze researchers. These tools are designed to 

provide standardized evaluation results using gaze data samples from an eye tracker as input, so that 

developers of any gaze based system or application may frequently monitor their gaze data quality 

without requiring specialized skills or programming knowledge.   

It was also found that no such software tools or browser based applications for evaluating gaze data 

quality currently exist. This formed the motivation to put the software resources developed in this 

thesis work together in a GitHub code repository for use by the eye gaze research community, to 

increase the practical utility of the developed methods as well as to improve their outreach and scope 

for further development.   
 

A new study was undertaken (described in Chapter 4, Section 4.4) as part of this thesis, by using the 

gaze datasets collected during the eye tracking experiments (described in Chapter 4, Section 4.1) for 

training machine learning models like SVM, KNN and neural networks. The purpose was to 

understand gaze error patterns produced by various "error sources" such as head pose, user distance 

and platform pose.  

This study provided additional insights regarding gaze error characteristics and formed an important 

component of the evaluation framework, by including several methods for gaze data processing, 

augmentation, feature creation and classification. It was observed through this study that different 

error sources produce different gaze error distributions (in terms error magnitudes as well as spatial 

characteristics)and machine learning models are robust to detect the presence of different error 

sources in a complex gaze dataset where more than one source of error is present.  Also regression 

models were built which could be used to predict gaze errors produced by two different error sources 

head pose and platform pose. Inputs for the prediction models were gaze angular variables and output 

was gaze error levels and it was observed that the ElasticNet model produced best prediction results.  

 
Most of the materials developed as part of thesis have been released as open resources for the eye 

gaze community to use, extend and upgrade (discussed in Chapter 5). This includes the code 

repository described above containing the software implementation of gaze data evaluation metrics 
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and visualizations, and gaze data processing methods like outlier removal and augmentation with full 

documentation. Apart from this, the fully labelled gaze datasets, collected during this thesis work are 

made available for research use. The purpose of these open resources is to allow gaze researchers and 

system developers to use them to evaluate their gaze data in a homogeneous and standardized manner, 

and also use the gaze datasets for benchmark comparison of their gaze data quality. This is also 

intended to foster further and collaborative development towards standardization of gaze estimation 

systems and their outputs. 

 

6.2 Future work 

 

In this dissertation, the work was focussed on addressing the performance evaluation aspect of gaze 

estimation systems from multiple directions. However, as discussed before, gaze tracking is now a 

highly diverse and interdisciplinary field and the variety in eye tracking scenarios, operating platforms 

and system related issues is large. Therefore there still remain plenty of avenues for future work 

towards developing more sophisticated performance evaluation methods.   

 

Firstly, the developed numerical metrics can be extended towards compound metrics which may be 

created by linear or non-linear combination of more than one metric. Examples are QoS or quality of 

service metrics which may include factors like noise, latency and gaze estimation accuracy to report 

performance of an eye tracker. QoS metrics are objective measures representing the overall 

performance of a system depending on several system-related characteristics. As discussed in Chapter 

1, eye tracking has been implemented on several different use cases in consumer electronics, and thus 

QoS metrics may be developed for each use case based on their individual features. For example, for 

desktop systems, parameters determining QoS may be dependent on accuracy, head pose tolerance 

and visual angle dependence. For automotive systems, QoS may depend on accuracy, head pose and 

platform vibration tolerance, whereas for handheld devices, QoS could be a function of head pose and 

platform pose tolerance as well as accuracy.  

Another direction could be developing entropy based metrics which would denote the degree of 

“order or disorder” in any given system and therefore can be used to observe the change in an eye 

tracker’s system behaviour when any operating conditions are changed.   

 

The dataset developed as part of this work could be extended to include more complex conditions 

such as when more than one error source are present. For example, gaze data may be collected when 

head pose and platform pose change simultaneously (e.g. in a tablet platform) or under the conditions 

of head pose variations and random platform vibrations(e.g. in an automotive platform).  
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Similarly, gaze data from head-mounted trackers under the simple and complex scenarios may be 

collected and compared with remote eye trackers, which may reveal unique, positive as well as 

problematic features in the gaze data from both these eye tracker types for different applications.  

 

From the literature survey on publicly available gaze datasets, it was observed that there exists a 

deficit of gaze datasets for AR/VR systems, containing very near eye image frames and corresponding 

ground truths. Gaze data collected from an AR/VR setup under varied levels of head movement could 

be useful in studying gaze behaviours for these use cases. In addition, gaze data in virtual 

environments may be collected while a user performs a variety of tasks like walking or in a gaming 

scenario. These can then be used for identifying error sources arising in such unique use cases. 

 
Apart from the experimental methods, there is a lot of scope to progress research on eye tracker 

performance evaluation through numerical modelling approaches. These could involve developing 

system models for different eye tracking use cases so that impact of component perturbations may be 

studied, building error compensation models for different operating conditions that may affect an eye 

tracker and using machine learning for unsupervised detection of gaze data anomalies (a part of which 

has been done in this thesis, discussed in Chapter 4, Section 4.4) to name a few.  

 

Overall at this point on the roadmap of eye gaze research, realistic evaluation of gaze tracking systems 

and gaze data quality stands as a highly important milestone that needs to be covered through 

dedicated inter-disciplinary research in the days to come. This requires attention of researchers, 

developers, engineers and users alike, since gaze data quality, performance of eye trackers, usability 

of gaze information and advancement of gaze applications are all elements interconnected in a tight 

loop that will ultimately determine the future of eye gaze science and technology. 
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ABSTRACT In this paper, a review is presented for the research on eye gaze estimation techniques and
applications, which has progressed in diverse ways over the past two decades. Several generic eye gaze
use-cases are identified: desktop, TV, head-mounted, automotive, and handheld devices. Analysis of the
literature leads to the identification of several platform specific factors that influence gaze tracking accuracy.
A key outcome from this review is the realization of a need to develop standardized methodologies for
the performance evaluation of gaze tracking systems and achieve consistency in their specification and
comparative evaluation. To address this need, the concept of a methodological framework for practical
evaluation of different gaze tracking systems is proposed.

INDEX TERMS Eye gaze, gaze estimation, accuracy, error sources, performance evaluation, user platforms.

I. INTRODUCTION
Advances in eye gaze tracking technology over the past
few decades have led to the development of promising gaze
estimation techniques and applications for human computer
interaction. Historically, research on gaze tracking dates
back to the early 1900s, starting with invasive eye track-
ing techniques. These included electro-occulography using
pairs of electrodes placed around the eyes or the scleral
search methods that include coils embedded into a contact
lens adhering to the eyes. The first video based eye track-
ing study was made on pilots operating airplane controls
in the 1940s [1]. Research on head-mounted eye trackers
advanced in the 1960s and gaze tracking developed further
in the 1970s with focus on improving accuracy and reducing
the constraints on users. With increasing computing power
in devices, real time operation of eye trackers became pos-
sible during the 1980s. However till this time, owing to
limited availability of computers, eye tracking was mainly
limited to psychological and cognitive studies and medi-
cal research. The application focus towards general purpose
human computer interaction was sparse. This changed in
the 1990s as eye gaze found applications in computer input
and control [2]. Post 2000, rapid advancements in comput-
ing speed, digital video processing and low cost hardware

brought gaze tracking equipment closer to users, with appli-
cations in gaming, virtual reality and web-advertisements [3].

Eye gaze information is used in a variety of user platforms.
The main use cases may be broadly classified into (i) desk-
top computers [4]–[6], (ii) TV panels [7], [8], (iii) head
mounted [9]–[12] (iv) automotive setups [13]–[17] (v) hand-
held devices [18], [19]. Applications based on desktop plat-
forms involve using eye gaze for computer communication
and text entry, computer control and entering gaze based
passwords [20]. Remote eye tracking has recently been used
on TV panels to achieve gaze controlled functions, for exam-
ple selecting and navigating menus and switching chan-
nels. Head-mounted gaze tracking setups usually comprise of
two or more cameras mounted on a support framework worn
by the user. Such systems have been extensively employed in
user attention and cognitive studies, psychoanalysis, occulo-
motor measurements [2], virtual and augmented reality appli-
cations [21], [22]. Real time gaze and eye state tracking on
automotive platforms is used in driver support systems to
evaluate driver vigilance and drowsiness levels. These use
eye tracking setups mounted on a car’s dashboard along with
computing hardware running machine vision algorithms.
In handheld devices such as smartphones or tablets, the front
camera is used to track user gaze to activate functions such
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as locking/unlocking phones, interactive displays, dimming
backlights or suspending sensors [18], [23].

Within each of these use cases there exists a wide range
of system configurations, operating conditions and varying
quality of imaging and optical components. Furthermore,
the variations in eye-movement and biological aspects of
individuals lead to challenges in achieving consistent and
repeatable performance from gaze tracking methods. Thus,
despite several decades of development in eye gaze research,
performance evaluation and comparison of different gaze
estimation techniques across different platforms is a still a
difficult task [24], [25].

In order to provide insight into the current status of eye
gaze research and outcomes, this paper presents a detailed
literature review and analysis that considers algorithms, sys-
tem configuration, user conditions and performance issues for
existing gaze tracking systems. Specifically, use-cases based
on five different eye gaze platforms are considered.

The aim of this work is to gain a realistic overview of
the diversity currently existing in this field and to identify
the factors that affect the practical usability of gaze tracking
systems. Further, this review highlights the need for develop-
ing standardized measurement protocols to enable evaluation
and comparison of the performance and operational charac-
teristics of different gaze tracking systems. In this paper, first
the diversity and standardization issues in different aspects of
eye gaze research are discussed and then the idea of a per-
formance evaluation framework is proposed. This framework
includes several planned and ongoing experiments that are
aimed at practical evaluation of any gaze tracker. Our goal is
to encourage further discussion and additional contributions
from researchers in this field.

There have been detailed reviewworks on eye gazemade in
the last few years such as [3] and [26]–[28] which discussed
about recent developments in gaze tracking methods, com-
paring different estimation techniques, setups, applications
and challenges involved in using gaze as an input modality.
Hansen and Ji [26] provides an in-depth review on differ-
ent eye models, eye detection techniques and models for
gaze estimation, along with a summary of gaze applica-
tions. It also discusses inaccuracies in gaze tracking arising
from the eye model components, jitter and refraction due to
user wearing glasses. However, our work differs on several
grounds from these reviews. Firstly, our review is specifi-
cally aimed towards highlighting the issues affecting realistic
performance evaluation of gaze tracking systems, such as
ambiguous accuracy metrics and un-accounted error sources.
Secondly, we do a detailed classification of four different
eye gaze research platforms. Extensive literature resources
are collected and analyzed for each platform with the aim to
understand the factors that affect the performance of a gaze
based system in each of these. Thirdly, we present our survey
in a statistical format that shows the lack of standardization
in eye gaze research as a quantitative observation. Also our
survey includes research works published until 2017 to make
it exhaustive and up-to-date. Finally, our review not only

provides an overview of the current status of eye gaze
research but also forms the foundation of a performance
evaluation framework for eye gaze systemswhich is proposed
by us in Section VI of this work and is currently under
development.

The paper is organized as follows: Section II presents
a brief overview on eye movements, gaze tracking sys-
tems and accuracy measures used in contemporary gaze
research. In Sections III and IV, several gaze tracking algo-
rithms are categorized and key research works on the imple-
mentation of gaze tracking in five different user platforms
are reviewed. In Section V, the factors limiting practical
performance of gaze tracking in different user platforms are
analyzed and issues with diversity in gaze accuracy metrics
are discussed. The background and concept of a methodolog-
ical framework for practical evaluation of eye gaze systems
is presented in Section VI. We note here that the scope of
this review excludes gaze tracking for clinical and neurolog-
ical directions, retinal imaging and studies on children and
patients.

II. EYE GAZE TRACKING FUNDAMENTALS
A. TYPES OF EYE MOVEMENTS STUDIED
Several types of eye movements are studied in eye gaze
research and applications to collect information about user
intent, cognitive processes, behavior and attention anal-
ysis [28]–[31]. These are broadly classified as follows:
1. Fixations: These are phases when the eyes are stationary
between movements and visual input occurs. Fixation related
measurement variables include total fixation duration, mean
fixation duration, fixation spatial density, number of areas
fixated, fixation sequences and fixation rate. 2. Saccades:
These are rapid and involuntary eye movements that occur
between fixations. Measurable saccade related parameters
include saccade number, amplitude and fixation-saccade ratio
3. Scanpath: This includes a series of short fixations and
saccades alternating before the eyes reach a target location
on the screen. Movement measures derived from scanpath
include scanpath direction, duration, length and area covered
4. Gaze duration: It refers to the sum of all fixations made in
an area of interest before the eyes leave that area and also the
proportion of time spent in each area. 5. Pupil size and blink:
Pupil size and blink rate are measures used to study cognitive
workload. Table 1 presents the characteristics of different eye
movements and their applications.

B. BASIC SETUP AND METHOD USED FOR
EYE GAZE ESTIMATION
Video based eye gaze tracking systems comprise fundamen-
tally of one or more digital cameras, near infra-red (NIR)
LEDs and a computer with screen displaying a user interface
where the user gaze is tracked. A typical eye gaze tracking
setup is shown in Fig. 1. The steps commonly involved
in passive video based eye tracking include user calibra-
tion, capturing video frames of the face and eye regions
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TABLE 1. Classification of eye movements.

FIGURE 1. Schematic diagram of a typical gaze tracking system. P is the
pupil of the human eye ball and G is the glint location formed on the
cornea, which are imaged on the camera plane. The figure also shows
the error in gaze estimation as the deviation between actual & estimated
gaze locations.

of user, eye detection and mapping with gaze coordinates
on screen. The common methodology (called Pupil Center
Corneal Reflection or PCCR method) involves using NIR
LEDs to produce glints on the eye cornea surface and then
capturing images/videos of the eye region [26], [32]. Gaze
is estimated from the relative movement between the pupil
center and glint positions. External NIR illumination with
single/multiple LEDs (wavelengths typically in the range
850+/− 30 nm with some works such as [33] using 940 nm)
is often used to achieve better contrast and avoid effects due to
variations induced by natural light.Webcams aremostly used;
those operate at 30/60 fps frame rate and have infrared (IR)
transmission filters to block out the visible light. Different
gaze tracking methods are discussed in detail in Section III.

The user-interface for gaze tracking can be active or pas-
sive, single or multimodal [34]–[36]. In an active user

interface, the user’s gaze can be tracked to activate a func-
tion and gaze information can be used as an input modality.
A passive interface is a non-command interface where eye
gaze data is collected to understand user interest or attention.
Single modal gaze tracking interfaces use gaze as the only
input variable whereas a multimodal interface combines gaze
input along with mouse, keyboard, touch, or blink inputs for
command.

C. CALIBRATION
A generalized structure and model of a human eye is shown
in Fig. 4a. The eye parameters typically required in gaze
estimation are pupil center, center of curvature of cornea,
the optical and the visual axes [32]. The posterior of the
eyeball is called retina and the center of the retina with highest
visual sensitivity is called the Fovea. The line joining the
fovea with the center of corneal curvature is called the visual
axis. Optical axis is the line passing through the pupil center
and center of corneal curvature as shown in Fig 4a. The visual
axis determines the direction of gaze and deviates from the
optical axis. This offset is known as the kappa angle and
measures around 5 degrees [37] but is dependent on each
user. In gaze estimation, the pan and tilt components of the
kappa angle are unique to each user and the visual axis cannot
be estimated directly. The visual axis and the kappa angle
therefore have to be obtained for each person though a process
called calibration which has to be done at the start of an
eye tracking procedure. Calibration is performed by showing
the user a set of specific targets distributed over the front
screen (as shown in Fig. 2) and the user is asked to gaze at
them for a certain amount of time [38]. The tracker camera
captures the various eye positions for each target point which
are then mapped to the corresponding gaze coordinates and
thus the tracker learns this mapping function. Calibration
routines differ in the number and layout of target points, user
fixation duration at each point and type of mapping algorithm
used.
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FIGURE 2. Calibration screen with 3, 5, 9, 13 target points.

D. CORRESPONDENCE OF EYE GAZE WITH
HEAD POSITIONS
The gaze location of a user depends both on the gaze direction
and also on the head orientation [39]. In methods which use
PCCR techniques, if the user moves their head with respect
to the tracker-camera axis while looking at the same point on
the front screen, the glint vectors with respect to the pupil
centers (for two different eye locations produced by head
movement) will be different from each other. There-
fore the estimated gaze locations will be inaccurate.
Eqn 1 presents the relationship between user reference gaze
directions (dkref), head pose direction dk and actual gaze
direction (dkgaze) which is a result of both head and eye
rotation, as shown in Fig. 3. The effect of head movement
has to be compensated before applying the gaze mapping
algorithm or a chin rest for fixing head pose has to be used.

dk − dkref = k
(
dkgaze − dkref

)
(1)

where k is a parameter related to head pan and tilt reported
in [39] with values 0.5 and 0.4 respectively.

FIGURE 3. Relation between gaze direction & head pose.

E. ESTIMATION OF GAZE TRACKING ACCURACY
In a typical eye gaze tracking operation, a user gazes at an
interface on a computer screen which provides them with
visual stimulus in the form of a set of targets or a scene.
Gaze tracking accuracy is estimated as the average difference
between the real stimuli positions and the measured gaze
positions, which also provides an idea about the performance
of the system.

In conventional literature gaze tracking accuracy measures
are presented in different ways e.g. angular accuracy in
degrees, distance accuracy in cm or distances in pixels. These
accuracy estimate calculations are shown below. In practice,
calculations are made separately for both eyes. For brevity,
single calculations are presented and the same equation holds
for both right and left eye.POG·Xleft ,POG·Yleft ,POG·Xright ,
POG ·Yright are the measured X,Y coordinates of the left and

right eye’s point of gaze (PoG). The mean gaze coordinates
considering both eyes are POG · X and POG · Y . dist is
the distance of the eye from the screen and mean_dist is the
mean distance of eye from the tracker. The x/y pixels are the
pixel shifts in x/y directions and offset is the distance between
the tracker sensor and lower edge of display screen. Further
details on these calculations can be found in [40].

Gaze point coordinates:

POG · X = mean
(
POG · Xleft + POG · Xright

2

)
(2)

POG · Y = mean
(
POG · Yleft + POG · Yright

2

)
(3)

Pixel accuracy (Pix_acc):

Pix_acc

=
√
(
(target · X− POG · X)2 + (target · Y− POG · Y)

2
)
(4)

On Screen Distance (OSD):

OSD = pixelsize

×

√√√√((POG·X− xpixels
2

)2
+

(
ypixels−POG·Y+

offset
pixelsize

)2)
(5)

Angular accuracy (Ang_acc):

Gaze angle (θ ) = tan−1(OSD/dist) (6)

Ang_acc = (pixelsize ∗ Pix_acc ∗ cos(mean(θ ))2)

/mean_dist (7)

III. EYE GAZE ESTIMATION ALGORITHMS
Eye gaze tracking algorithms comprise of corneal reflection
based methods which use NIR illumination to estimate
the gaze direction or the point of gaze using polyno-
mial functions, or a geometrical model of the human eye.
2D regression, 3D model, and Cross ratio based methods fall
into this category. Another class of methods uses visible light
and content information (e.g. local features, shape, texture
of eye regions) to estimate gaze direction, e.g. appearance
and shape based methods. The five different gaze tracking
methods have their own advantages and disadvantages which
are briefly discussed at the end of this section and summary
of some key works on the development of these algorithms
are presented in Table 2.

A. 2D REGRESSION BASED METHODS
In regression based methods, the vector between pupil
center and corneal glint is mapped to corresponding gaze
coordinates on the frontal screen using a polynomial trans-
formation function. This mapping function can be stated
as: f: (Xe, Ye) → (Xs, Ys) where Xe, Ye & Xs, Ys are
equipment and screen coordinates respectively. The relation
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TABLE 2. Classification of gaze estimation algorithms.

can be presented as described in [41] and [42]:

Xs = a0 +
n∑

p=1

∗

p∑
i=0

a(i,p)X
p−i
e Yi

e (8)

Ys = b0 +
n∑

p=1

∗

p∑
i=0

b(i,p)X
p−i
e Yi

e (9)

Where n represents polynomial order, ai & bi are the coef-
ficients. The polynomial is optimized through calibration in
which a user is asked to gaze at certain fixed points on the
frontal screen. The order and coefficients are then chosen
to minimize mean squared difference (ε) between the esti-
mated and actual screen coordinates (with known camera
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FIGURE 4. (a) Model of a human eye ball, eye parameters and setup elements used in 3D eye gaze tracking [32], [56]. The optical axis is shown as the
line joining the center of curvature of the cornea with the pupil center. The visual axis passes through the fovea and the center of corneal curvature.
Kappa angle is the angular deviation between the optical and visual axis. (b) An aspherical model of the cornea, as a surface of revolution about the
optical axis of the eye [59].

coordinates of user gaze), which is stated as:

ε = (Xs −Ma)T (Xs −Ma)+ (Ys −Mb)T (Ys −Mb)

(10)

Where a and b are the coefficient vectors and M is the
transformation matrix given by:

aT = [a0a1 . . . am], bT = [b0b1 . . . bm] (11)

M =


1 Xe1 Ye1 · · · Xn

e1 · · · Xn−i
e1 Yi

e1 · · · Yn
e1

1 Xe2 Ye2 · · · Xn
e2 · · · Xn−i

e2 Yi
e2 · · · Yn

e2
...

...
... · · ·

... · · · · · · · · · · · ·

1 XeL YeL · · · Xn
eL · · · X

n−i
eL Yi

eL · · · Y
n
eL


(12)

Where M is the transformation matrix, m the number of
coefficients and L the number of calibration points [42]. The
coefficients can be obtained by inverting thematrixM as [43]:

A = M−1Xs, b = M−1Ys (13)

Cherif et al. [42] used a 5×5 point calibration rou-
tine and 2 higher order polynomial transformations while
Cerrolaza et al. [44] studied effects of head movement on
system accuracy with a 4×4 and 8×8 grid. Blignaut [41] also
compared several mapping functions and calibration config-
urations with a 15×9 point grid and determined that number
and arrangement of calibration targets and components of the
mapping function play very important roles in determining
overall accuracy of tracker. Robust and accurate gaze estima-
tion under head movement was also achieved using neural
networks by Zhu and Ji [45] and Jian-nan et al. [46].
Some other keyworks in this class of gaze estimationmeth-

ods include Ma et al. [47] which introduces a 2D mapping
algorithm that can handle unconstrained head movements
and distorted corneal reflections due to various noise effects.
It uses multiple geometrical transformation based mapping
of CRs and demonstrates high reliability measures for differ-
ent user distances and loss of CRs due to head/eye motion.
A calibration free algorithm is detailed in Zhu et al. [48]

using SVMs which is robust to natural head movement and
achieves high accuracy (1.5 degrees) in presence of head
movement Cerrolaza et al. [44] provided an exhaustive and
detailed review of mapping equations and their impact on
gaze tracking system response. The paper reports 400000 cal-
ibration functions, mapping orders and features to compare
their impact on accuracy measures. Another important work
is by Zhu and Yang [49] which presents a very high reso-
lution gaze estimation method resistant to head pose without
requiring geometrical models. In [50] an improved three layer
artificial neural network is used to estimate the mapping
function between gaze coordinates and the pupil-glint vector.
This method is shown to achieve better accuracy than simple
regression based methods. A new approach involving only
2 light sources instead of four is implemented in [51] where
two IR LED induced glints are real and the other two are
virtual ones computed mathematically. This is done to make
the algorithm more suitable for consumer applications and
simplify hardware. The PoG is then estimated using map-
ping function to relate the four glint locations and screen
through a calibration process. A modified PCCR method is
implemented in [52] to have improved tracking accuracy and
suitable for indoor and outdoor use. In this, adaptive exposure
control is proposed since the IR LED brightness variations
within a PCCR based setup affects pupil detection and gaze
tracking to a large extent.

B. 3D MODEL BASED METHODS
These methods use a geometrical model of the human eye
to estimate the center of the cornea, optical and visual axes
of the eye (Fig. 4a) and estimate the gaze coordinates as
points of intersection where the visual axes meets the scene.
3D model based methods can be categorized on the basis of
whether they use single or multiple cameras and type of user
calibration required.
3D model based methods using single camera have been

reported by Meyer et al. [53], Guestrin and Eizenman [32]
and Hennessey et al. [54]. Single camera systems have simple
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system geometry, no moving parts and fast re-acquisition
capabilities. For 3D gaze estimation in Meyer et al. [53]
a single camera and LED are used to achieve an accuracy
of 0.5 degrees with user calibration. Guestrin presents a
mathematical model to reconstruct the optical and visual
axes of the user’s eyes from the centres of the pupil and
glint in the captured video frames and configuration of a
remote gaze tracking system. The model considers single and
multiple cameras and light sources in estimation of the point
of gaze. It then demonstrates the gaze tracking performance
of a system implemented using two NIR light sources and
one camera using the model .Their method achieves an accu-
racy of around 0.9 degrees. The system proposed by Hen-
nessey includes a single camera andmultiple LEDs to achieve
3D gaze tracking with free head motion.

Multi camera methods achieve high accuracy and robust-
ness against head movement but require elaborate system
calibration procedures including calibration of cameras for
3Dmeasurements, estimating positioning of LEDs and deter-
mining the geometric properties of the monitors and their
relation with the cameras. Some key works using two or more
cameras include Lai et al. [55], Ohno and Mukawa [56],
Beymer and Flickner [57] and Zhu and Ji [37]. Ohno
describes 3D gaze tracking allowing free head motion using
simple two point calibration and a two camera system com-
prising of an eye positioning unit and a gaze detection unit.
The eye positioning unit uses narrow field stereo cameras and
controls direction of the gaze positioning unit to achieve head
motion independent tracking.

A head pose free gaze tracking system is also implemented
by Beymer with a wide angle stereo system for eye posi-
tioning and narrow angle stereo system for gaze detection.
Pan and tilt directions of the narrow angle camera
are controlled using rotating mirrors with galvo-motors.
Shih and Liu [58] used a simplified eye model by Le Grand
with two cameras and two LEDs to estimate the optical axis of
the eye through solving linear equations. It uses single point
calibration. The method in Zhu uses a gaze mapping function
along with a dynamic head compensation model to update the
gaze mapping function whenever the head moves to achieve
tracking under natural headmovement. It uses a 2 camera sys-
tem with one time user calibration. With respect to the model
of human eye, [32] provided evidence that a fully spherical
corneal model will result in no impact of head movements on
gaze estimation. They assumed an ellipsoidal model of the
cornea and reported that gaze estimation errors increase with
corneal asphericity and this also results in sensitivity of gaze
estimation to head movements. An aspherical model of the
cornea [59] is shown in Fig 4b and it is a surface of revolution
about the optical axis of the eye. Use of this model showed to
result in better accuracy, especially near the display corners
as compared to a traditional 3D model based method.

Calibration free gaze estimation techniques have been pro-
posed by Nagamatsu et al. [60], Model and Eizenman [61]
and Morimoto et al. [4]. In [60], a calibration-free method
is proposed using two pairs of stereo cameras, light sources

and a spherical model of the cornea. One pair of cameras
and two light sources are used for each eye to estimate the
eye optical axis and the position of the center of the cornea.
Optical axes of both eyes are measured using a binocular
3D eye model to estimate the point of gaze, achieving an
accuracy of around 2.0◦. Model & Eizenman also proposed
a multiple camera based system to capture stereo images
of the eye with corneal reflections. From the stereo eye
images, eye features, such as the center of the pupil and
corneal reflections are used to estimate subject-specific eye
parameters. These parameters are then used with the eye
features to estimate PoG. Their method is calibration free,
has a tracking range of 3 to 5 meters and accuracy of less
than 2 degrees. Morimoto proposed a method using two light
sources and one camera that doesn’t require user calibration
for every session. It uses the Gullstrand model of the eye
and ray tracing techniques to estimate the cornea and pupil
centers. It achieves an accuracy of 2-4 degrees of visual angle
dependent on the position of the light sources.

A new class of 3D gaze tracking has recently emerged
with the usage of depth sensors in several works. These
sensors comprise of an RGB camera and an infra-red
depth camera. Typically resolution for the RGB camera is
640 × 480 pixels, with 45 degrees vertical and 58 degrees
horizontal field of view. The depth camera resolution is
about 1.5 mm at 50 cm. Gaze tracking using the consumer
grade depth sensor (Kinect) is proposed in [62]. The method
uses an eye model; 3D coordinates of eye features are
obtained from Kinect and eye parameters like eyeball and
pupil center are derived from a user calibration process. With
this, 3D gaze coordinates are tracked in real time with a
simple setup. Another work [63] reports the use of Kinect
and a simple low cost setup for 3D model based gaze esti-
mation allowing free head motion. It derives the 3D model
parameters using convolution based means of gradients iris
center localization method and uses a geometric constraints-
basedmethod to estimate the eyeball center. They assume that
iris center points are distributed on a sphere originated from
the eyeball center and the sizes of two eyeballs of a subject
are identical. Kinect data is used to obtain 3D positions of
person’s head pose, iris and eyeball centers. Reference [64]
also uses a Kinect sensor and a model to estimate eyeball
center by making users look at a target in 3D space. Kinect
is used to build a head model to determine the eyeball center,
detect the pupil center and determine 3D eye gaze coordinates
in conjunction with the eye model.

C. CROSS-RATIO BASED METHODS
These methods work by projecting a known rectangular pat-
tern of NIR lights on the eye of the user and estimating the
gaze position using invariant property of projective geometry.
Four LEDs on four corners of a computer screen are used to
produce glints on the surface of the cornea (Fig. 5). From the
glint positions, the pupil and the size of the monitor screen,
gaze location is estimated using two perspective projections.
The first projection comprises of the virtual images of the
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FIGURE 5. Setup for implementing cross ratio based gaze tracking [67].
Four light sources are used at four corners of the monitor screen (only
one is shown here. V1 and R1 are the virtual projection and corneal
reflection of L1, Rc is the reflection and the virtual projection of the
LED fixed at the camera’s optical axis. V1, R1 and Rc are projected to the
image plane as Uv1, Ur1, and Urc.

corneal reflections of the LEDs (scene plane). The second
projection is the camera projection, that is the images of the
corneal reflections on the camera’s imaging plane. With these
two projections a single projective transformation relating
the scene and camera image plane is obtained. Then the
projection of the PoG on the scene plane to the image of the
pupil center on the camera plane can be estimated [65].

Key works on the development and experimental verifi-
cation of the cross ratio based methods can be found in
Yoo and Chung [66] and Hansen et al. [6]. Coutinho et al.
presents a detailed analysis of methods and comparison of
their accuracy in [67] and [68]. They also suggest improve-
ments by including a fifth LED on the optical axis of the
camera and using a calibration procedure to improve accu-
racy [68]. Error compensation with polynomial-based regres-
sion have been proposed by Cerrolaza et al. [44] or Gaussian
process regression [6]. Error correction by homography map-
ping that eliminates the need of the fifth light source has been
proposed by Kang et al. [69].

D. APPEARANCE BASED METHODS
In appearance based methods the information from the eye
region is represented using a model trained with a set of
features extracted from eye images. In Bacivarov et al. [70],
a statistical model is used to represent shape and texture
variations and trained using images of the eye region anno-
tated with landmark points (Fig.6). The shape vector is the
concatenated coordinates of all landmark points, stated as

s = (x1, x2, . . . , xL, y1, y2, . . . , yL)T (14)

where L is the number of landmark points. The shape model
is obtained by applying Principal Component Analysis (PCA)
on the set of aligned shapes (equations derived from [70]):

s = S̄+ ϕsbs,

S̄ = 1/Ns

Ns∑
i=1

si (15)

FIGURE 6. Image fitted with an Active Appearance model of the eye
region [70].

where S̄ is the mean shape vector, and Ns is the number
of shape observations; ϕ s is the matrix having the eigen-
vectors as its columns; bs is the set of shape parameters.
Similarly, the texture vector defined for each training image
is: t=(t1,t2, . . . , tp)T (p : number of texture samples). The
texture model is derived by means of PCA on the texture
vectors as (Nt:: number of texture observations, T̄ : mean
texture vector)

t = T̄+ ϕtbt

T̄ = 1/Nt

Nt∑
i=1

ti (16)

The sets of shape and texture parameters (bt) describe the
appearance variability of the model:

c =
(
Wsbs
bt

)
(17)

(Ws is the vector of weights). This is the statistical model that
an Active Appearance Model (AAM) algorithm uses to best
fit the model to a new eye image.

An active appearance based method for retrieving eye gaze
from low resolution videos is presented in [71]. Global and
local appearance models are trained and fitted for the whole
face as well for capturing variance of the face and eye regions.
For classifying the eye gaze into six directions, two different
approaches are adopted. Gaussian Mixture Models (GMMs)
are trained for large changes in gaze angles and for small gaze
changes a Histograms of Oriented Gradients based method
are tested. A method for 3D gaze tracking without use of
active illumination is proposed in [72]. In this a synthetic
iris appearance fitting method is introduced that computes the
3D gaze direction from iris shape. The method synthesizes a
set of iris appearances and then fits the best solution to the
captured eye image. This is claimed to remove unreliable iris
contour detection problems arising in simple ellipse fitting
and requirement of high resolution images by other methods.
Once the iris contour is accurately estimated, a 3D eyeball
model is used to estimate gaze from the captured eye image
using the iris center/shape information.

Several appearance based methods report use of local fea-
tures with Support Vector Machine (SVM)s for classification
of gaze direction. These include Wu et al. [73] in which
an AAM is used to locate the eye region using 36 feature
points that represent the contour of eyes, iris size, iris loca-
tion, and position of pupils. Gaze direction is estimated from
2D coordinates of feature points and is classified using
an SVM. In Lu et al. [74] Local-Binary-Pattern (LBP) is used
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to calculate the texture features and a dual camera system
is used to detect the space coordinates of the eyes. These
two sets of information are fed into an SVM to classify the
gaze direction under natural head movement. A novel method
based on Local Binary Pattern Histogram (LBPH), is used
in [75]. LBPH and PCA are used to extract eye appearance
features and several classification methods based on SVM,
neural networks and k-Nearest Neighbor (k-NN)s are tested
for accuracy on a collected dataset for gaze estimation. The
LBPH with SVM yields best accuracy. Chen and Liu [76]
reports the use of a special kind of discriminatory Haar fea-
tures and efficient SVMs (eSVMs) for implementing a com-
putationally efficient gaze tracking method. Haar cascade is
also used in [77] for real time gaze tracking. Rectangular
features of the eye region are calculated to extract eye and
pupil regions in an image which are mapped with the gaze
coordinates on screen.

Neural network based approaches are used in [78] for
head-pose tolerant gaze tracking. Training data comprised of
cropped eye images of a user gazing at a given point on a
computer screen and corresponding coordinates of that point.
Neural networks are used along with a skin color model
to detect the face and eye regions in [79]. An improved
artificial neural network optimized using the Particle Swarm
Optimization approach is used for fast, high accurate and
robust gaze estimationwith low resolution eye images in [80].

Some methods include use of 3D face models as in
Lai et al. [81] in which head pose free gaze estimation
is implemented using a such a face model with head and
eye coordinate systems. Both eye appearance and head pose
are considered as components of a high dimensional head
pose and eye appearance (HPEA) space. A Neighbourhood
Approximation Forests (NAF) approach is used to model
the neighbour structure of the HPEA space followed by
Adaptive Linear Regression to estimate gaze direction. Other
approaches report use of a deformable model [76] and
Genetic algorithms [83].

In recent times, deep learning (DL) and convolutional neu-
ral network (CNN) based methods have been proposed for
gaze estimation. In [84], a three stage CNN model is used
to classify seven gaze directions from images taken with low
cost webcams without need for calibration. Gaze tracking for
a near eye display robust to illumination, skin and eye color
variations and occlusion is implemented using CNNs in [85].
The CNN is used to learn the mapping from eye images to
gaze position and comprises of two convolutional layers and
two pooling with a fully connected layer at the end.

In [86] a smartphone based app is created to collect
eye images from 1450 participants which is used to train
a CNN based gaze tracker that can run in real time and
without calibration. The dataset comprises of images with
widely varying backgrounds, lighting and head motion and
the network is trained with crops of both eyes and the face
region.

In [87] an extensive eye gaze dataset is built and a multi-
modal CNN based method is tested. The dataset contains

more than 200,000 images with variable illumination levels
and eye appearances. The CNN uses a convolutional layer
followed by a max-pooling layer and second convolution
layer followed by a max-pooling layer, finally with a fully
connected layer. The CNN learns the mapping between input
parameters, i.e., 2D head angle, eye image and gaze angle
(output).

E. SHAPE BASED METHODS
These methods employ deformable templates of the eye
region, using two parabolas for eye contours (Fig.7) and circle
for the iris, and fitting them to an eye image [88]–[91]. The
procedure is to find the similarity between the template of a
chosen region with images of that region.

FIGURE 7. Template of an eye -region [88]. Xc,, Yc & Xe,, Ye represent the
center of the pupil and the eye respectively. P1 and P2 are foci of two
parabolic sections and a, b, c and θ their parameters, r is the radius
of the pupil.

This can be done by normalized cross-correlation, mod-
ified cross-correlation or by mean square error calcula-
tion [89]. If the template of pixel intensities of a region is
represented by T(u,v) and I(i,j) represents that of the cap-
tured image then S(i,j) is the similarity measure between the
template and image. If cross correlation is used as similarity
measure, then S is given by:

S (i, j) =
< T×IT > − < T >< IT >

σ (T)σ (IT)
(18) (18)

where <> is the average operator and < x > is the
pixel-by -pixel product given by:

< T > =
1
n

∑
u,v

T(u, v)

< T× IT > =
1
n

∑
u,v

T (u, v)I(i+ u, j+ v) (19)

σ is the standard deviation of the area being matched.

σ 2 (T) =
1

n− 1

∑
u,v

(T (u, v))2 −< T >2 (20)

The mean squared error similarity measure is given by:

S (i, j) =
1
n

∑
u,v

(T (u, v)−I(i+ u, j+ v))2 (21)
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F. SUMMARY AND DISCUSSIONS
The different gaze estimation algorithms presented above
have distinct characteristics, advantages and disadvantages.

The 2D regression based methods utilize the features of
the human eye, like eye geometry, pupil contours and corneal
reflections and can be implemented using a single camera
and a few NIR LEDs. However, these techniques are very
vulnerable to head movements and require users to hold
their head very still using a head rest, chin rest or bite
bar.

3Dmodel based methods have tolerance towards user head
movement and most of them allow free head motion. How-
ever the hardware requirements for implementing 3D and
stereo gaze tracking methods are high as they need several
light sources or multiple cameras.

Cross ratio based methods have advantages, e.g. they do
not need an eye model or hardware calibration and allow
free head motion. But they are affected by problems such
as increased error with distance of user and user dependent
factors.

Appearance model-based algorithms are non-PCCR meth-
ods that use the shape and texture properties of the eyes and
position of the pupils relative to the eye corners to estimate
gaze. These methods have low hardware requirements which
make them suitable for implementation on platforms without
a high-resolution camera or additional light sources. The
disadvantage is that their accuracy ismostly lower than PCCR
based methods that degrade with head movements, variation
in illumination levels and for robust performance they need
large training image databases.

Shape based methods have been implemented for 2D
gaze estimation with low-resolution webcam images achiev-
ing accuracy around 2◦. However, downside of these
methods include problems due to head pose variations
and eye occlusions, adapting to largely variable eye
shapes, computational complexity and issues with model
initialization.

In Table 2, some key research works on the above
gaze tracking algorithms are presented. Column II presents
the reference to the individual papers; Columns III to V
presents various characteristics of the methods reported in
them. The table highlights basic features and differences
among different gaze tracking algorithms. 2D regression and
appearance based methods have simple setups but typically
offer accuracy values around 2 or 3 degrees. The accuracy
of 2D regression based methods can be improved by increas-
ing number of calibration points and using a chin rest to
obtain fixed head position. On the other hand, 3D and cross
ratio methods require more elaborate setups but offer much
better accuracy (around 0.5 degrees) and most of them allow
head movement.

IV. USER PLATFORMS IMPLEMENTING GAZE TRACKING
In this section, the user platforms where eye gaze
tracking has been implemented are described and
classified.

A. DESKTOP BASED SYSTEMS
Applications of eye gaze on desktop systems fall into several
categories, such as computer communication, password entry
and psychoanalysis. Sibert and Jacob [35] developed gaze
based fast object selection as a substitute for mouse. A gaze
based application called MAGIC (Manual And Gaze Input
Cascaded) is presented by Zhai et al. [92] in which gaze based
pointing is reported to have higher speed and accuracy than
manual pointing. In Ghani et al. [93], a Hough transform
based pupil detection for gaze based control of a mouse
pointer is proposed. In Agustin et al. [94] evaluation studies
on the use of eye gaze in video gaming control for target
acquisition and tracking are made. Gaze input had a similar
performance to the mouse and joysticks for big targets.

Kasprowski and K. Harężlak [95] and Kumar et al. [96]
reported the use of gaze to enter a password using gaze
tracking. A series of user fixations on specified digits formed
the password sequence. Methods robust to shoulder surfing
problem were reported by Bulling et al. [97] where a compu-
tational model of visual attention is used to increase security.
Applications of using eye gaze patterns for identifying user
tasks, mental workload and inferring context of events and
user distraction were reported by Iqbal and Bailey [98] and
Doshi and Trivedi [99].

B. TV AND LARGE DISPLAY PANELS
There are recent applications of long range gaze estima-
tion that use corneal reflection (CR) techniques for tracking
gaze on large displays and smart TVs. Gaze movements
can be used to select and navigate menus, modify display
properties, switch channels and understand user interests.
In Gwon et al. [7] a robust pupil detection method for gaze
tracking on large display is presented using a wide and a nar-
row view camera with Adaboost and CAMShift algorithms.
In another work, Lee et al. [8] reports a system for gaze
tracking on a large-screen 60 inch TV based on a 2D method
with geometric transform, using pupil center and four corneal
specular reflections.

C. HEAD-MOUNTED SETUPS
Head mounted gaze trackers are portable platforms with
applications ranging from computer input, interactions in
virtual environments, gaming controls, augmented reality
and neuro/psychological research. The general setup includes
two cameras; one (eye camera) pointed at the wearer’s eye,
to detect the pupil; and the other (scene camera) capturing
the wearer’s point of view, with sometimes additional compo-
nents like NIR light sources and hot mirrors. Head-mounted
gaze trackers have been implemented as attachment-free,
mobile, low-cost, lightweight devices with simple hardware
and software. Also they are known to provide high accuracy
gaze information in unconstrained settings.

3D gaze estimation with head-mounted trackers have
been reported in several papers including [9], [100]–[104].
Algorithms for high accuracy and 3D eye tracking proposed
by Lee et al. [100] are based on 3D human eye model
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and Purkinje images. Pupil size and Purkinje images are
fed as inputs to a multi-layer perceptron to estimate the
depth location of gaze followed by 2D gaze coordinates.
Takamatsu et al. [104] describes a Visual SLAM technique to
estimate the user head pose and determine 3D point of regard
of the user. It also includes a 3D environment to detect objects
of focus and visualization of a 3D attention map in a real
environment. Lanata et al. [9] presents a stereo-vision based
method that implements a novel binocular system comprising
of two mapping functions: linear and quadratic for depth
estimation of gaze locations in 3D space.

The performance compared to other 3D methods show
significant improvement in accuracy. In [103], 3D gaze track-
ing with multiple calibration planes is implemented with a
single eye view camera and four IR markers. The system
operates in monocular and binocular mode independently.
A low-cost 3D eye tracking solution is provided by [101] in
which images from two eye cameras are used with intensity
thresholding and blob-contour detection to determine pupil
center coordinates. The 2D gaze location is then obtained
by polynomial mapping and 3D gaze is obtained from the
meeting point of the gaze vectors of both eyes.

2D methods and applications with head-mounted
eye tracking have been proposed in a several works.
Reference [10] reports an ultra-low cost 2 camera based gaze
tracking system that is easy to assemble and aligns scene and
eye videos by using synchronized flashing lights. A novel
smooth-pursuit-based calibration methodology is proposed
that works with pupil detection to track gaze. A new high
speed binocular eye localization scheme using simple com-
ponents was proposed by Long et al. [105] using two cam-
eras and two hot mirrors. It shows speed advancement over
contemporary slow systems that do offline processing. Other
advanced methods are proposed in Schneider et al. [106]
where a head mounted camera system tracks and follows
the user’s gaze direction for natural exploration of a visual
scene by capturing the perspective of the mobile user.
Applications of this system include documentation of med-
ical processes, sports etc. In Virtual and Augmented real-
ity (VR and AR respectively) research, gaze tracking and
gaze based functions are used to make the user experiences
more immersive, natural and user interactions fast and effi-
cient in a VR/AR environment. Applications for Augmented
Reality are described in Lee et al. [107] where the device
uses a scene camera and eye tracker to estimate user gaze
and blink-state for interacting with the AR environment.
A head mounted system that employs gaze tracking for
immersive and realistic gaming experience is proposed by
Lee et al. [108] where cursor aiming in the gaming environ-
ment is controlled by gaze tracking. A wearable gaze track-
ing device for determining effectiveness of text layout and
line spacing for analyzing reading behavior is described in
Toyama et al. [109]. Li et al. [11] presents the development of
a head mounted system called OpenEyes with open hardware
and software tools for gaze tracking. Several types of eye and
head gestures, such as saccades, smooth pursuit and nod-roll

are studied in [110] as interaction methods in a head mounted
VR device. A head mounted display coupled with an eye
tracker is used to study which of these gestures result in better
user experience in a VR environment.

A facial re-enactment method for gaze aware VR system is
presented in [111]. It does real time facial motion capture of
a user wearing an HMD along with monocular eye tracking.
The purpose is to achieve real time photo-realistic rendering
of face and eye appearances as users change facial expres-
sions and gaze directions. Gaze is estimated from images
taken using monocular camera and IR LEDs using a hierar-
chical classification method. In [112] eye tracking is used to
develop an immersive 3D user interface for VR and imple-
ment several multimedia applications along with usability
testing. Eye gaze pattern is extracted along with fixations to
implement 3D virtual menu selection and eye based typing
for mail composition using a virtual keyboard. A saliency
based gaze localization approach using deep learning has
been proposed in [113]. In this, image features and head
movements are inputs to a convolutional neural network to
estimate gaze coordinates in a VR system.

To make eye tracking in HMD systems flexible with
respect to various users, HMD drifts and tracker camera
adjustments, [114] presents a method for automatic calibra-
tion of the eye camera in the HMD. With this, the users
need not maintain a fixed head pose and relative movements
of HMD and eye camera can be tolerated for reliable eye
tracking. Reference [115] makes use of gaze, dwell time
and half blink information for the purpose of hands-free
object selection with an optical see through head mounted
AR device. The multiple input parameters are used to avoid
accidental/unintentional selection of items. Pupil motion is
tracked to estimate a user’s viewing point, with dwell time
and half blink detection successively used for the object
selection process. Kalman filtering is used minimize pupil
jitter and drifts. The gaze tracking accuracy of the system is
reported to improve with more calibration points with the best
being 0.39 degrees.

An innovative AR application combining eye tracking with
a smartwatch for implementing a wearable context aware
messaging service is done in [116]. A head-mounted eye
tracker estimates the gaze and together with data from a
scene camera it is used to track where the user is looking
in the real world. The smartwatch works as a message input
and output device in conjunction with the tracking device
to embed/display messages with the ‘‘augmented objects.
An AR application for reading and document retrieval using
a head-mounted eye tracker along with a see through dis-
play is shown in [109]. Eye tracking helps to estimate the
section of the document the reader is focused into, in real
time. Associated information on the specific part of the doc-
ument is retrieved and displayed on the HMD. A calibration
procedure for the HMD is also mentioned. In this, a user
is presented with several dots in the HMD and he/she has
to click the position of each dot in a calibration window.
The homography between the scene image and the HMD is
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then estimated to map the gaze position on the scene to that
on the HMD. The system achieves accuracy sufficient to
distinguish between alternate lines in a document. A hard-
ware and software framework for AR displays implement-
ing eye tracking and gaze based interactions can be found
in [117]. In this, a see through HMD is integrated with stereo
eye tracking and configurable optics for various see through
configurations. The system is designed to have on demand
zoom and FOV expansion in a see through AR system. Eye
related parameters like gaze, squint and blinks are tracked for
activating different functions such as binary, sub-regional and
gradual zoom and capturing snapshots of the AR view.

D. AUTOMOTIVE
Visual features of the face and eye regions of an automobile
driver provide cues about their degree of alertness, perception
and vehicle control. Knowledge about driver cognitive state
helps to predict if the driver intends to change lanes or is
aware about obstacles and thereby avoid fatal accidents. Gaze
related cues that indicate driver attentiveness include: blink
rate, temporal gaze variation, speed of eyelid movements and
degree of eye openness. Several works for driver assistance
systems have been reported that are based on video based
gaze tracking using a variety of classifiers.

SVM based gaze classification is common on automo-
tive platforms and has been reported in Liu et al. [118],
Lee et al. [119] and Chuang et al. [120]. A real time
gaze tracking method robust to variable illumination levels
and driver wearing glasses in an automotive environment is
reported in [118]. It uses Kalman filtering and mean-shift
method to track driver eyes based on their locations in a
previous frame. SVM with linear, polynomial and Gaussian
kernels are used for eye verification. Lee et al. [119] proposed
a robust SVM based driver gaze zone estimation system that
works during day and night conditions and is robust to driver
wearing eyeglasses. A multiclass SVM constructed from
multiple two class (binary) SVMs was constructed to classify
18 driver gaze zones using a large database of 18000 gaze
feature vectors. Another SVM based gaze zone classifier
that takes face parts, i.e., mouth, eyes, and nose locations
is reported in Chuang et al. [120]. A multiclass linear SVM
is used which inputs the feature descriptor to output 8 gaze
directions. Use of other type of classifiers is reported in
Tawari and Trivedi [121] and Oh and Kwak [122]. In [121]
a distributed camera setup is used for estimating gaze zones
combined with head pose dynamics. A random forest clas-
sifier is used with static and dynamic features (head pose
angles and time series statistics) to classify 8 gaze zones for
the driver. In [122] Viola Jones method is used to detect the
face followed by using linear discriminant analysis (LDA)
to extract features from the eye region for classification.
k-nearest neighbour method with Euclidean norm is used to
classify the obtained features into seven gaze directions.

Gaze estimation in automotive using Purkinje images
and PCCR methods are reported in Ji and Yang [17],
Salvucci and Liu [123], Batista [14], Choi and Kim [124] and

Ji et al. [125]. Several papers report the application of gaze
information along with other facial and visual parameters
for derivation of driver psychological/cognitive state. Key
works include Bergasa and Nuevo [126] which reports a
method for driver vigilance estimation using fuzzy classifier
taking six parameters: Percent eye closure (PERCLOS), eye
closure duration, blink frequency, nodding frequency, face
position, and fixed gaze. A dynamic Bayesian Neural net-
work approach is used in Sung et al. [127] for driver fatigue
detection using gaze location along with face detection, eye
positioning and iris tracking. Ji et al. [125] combines features
such as eyelid and head movement, gaze, and facial expres-
sions with a Bayesian network to determine driver fatigue.
Another important work that considers eye movements for
deriving driver cognitive state is [16]. It takes into consid-
eration eye movement features like fixations, saccades, and
smooth pursuits and calculates 16 different eye movement
features. These are then fed to an SVM, static and dynamic
Bayesian networks to do their performance comparison for
prediction of driver distraction state. Reference [128] presents
a low cost system to detect eyes-off-the road condition of
a driver using facial feature tracking, 3D head pose and
gaze estimation. A monocular camera is installed close to
the steering wheel for tracking a driver’s facial landmarks
and accurate estimation of driver pose, location and gaze
direction. Then, with 3D analysis of car/driver geometry
the driver’s eyes off the road condition is predicted in real
time. In [129], driver gaze behaviour is studied to evaluate
driving performance of a user when they had to interact with
a portable navigation systemwhile driving. Glance frequency
and glance time were estimated to study impact of varying
display sizes and positions of the navigation device while
in use during driving. A portable driver assistance system
involving driver drowsiness detection and eye gaze tracking
is implemented using a Raspberry Pi and machine vision
algorithms in [130]. A new multi-depth calibration approach
is presented in [131] for obtaining 3D user PoG with stereo
face cameras and monocular scene cameras for performing
driver intent and actions prediction.

Several works study the dynamics between head pose and
gaze behavior of drivers. In [132] the relationship between
gaze and head pose are studied and regression models are
developed to predict gaze location from the position and
orientation of a driver’s head. In [133] head and eye poses
of 40 driving participants are estimated frommonocular video
and relative significance of head vs eye movements in gaze
classification is studied. It is observed that driver behavior
can be grouped into two cases, i.e., when the head moves a
lot and gaze classification is mostly affected by head pose.
The other case is when the head stays still and only the eyes
move and thus accurate classification requires study of eye
pose.

E. HAND-HELD DEVICES
Smartphones and tablets provide a unique paradigm for
gaze tracking applications. Gaze tracking on handheld
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FIGURE 8. Driver monitoring cameras mounted on car dashboard [124].

devices is done using the device front camera, one or more
IR light sources and various computer vision algorithms.
Key approaches for handheld-eye tracking are reported by
Vaitukaitis and Bulling [134] for tracking 3D gaze location
from a video using a face and eye detector followed by
edge detection and ellipse fitting to determine the eye limbus
boundaries. In Lukander [135] a commercial eye tracker is
integrated with a magnetic position tracking device to track
positions of head and eyes. Holland et al. [136] uses a single
perceptron neural network that maps the features of the eye
region to a position on the screen. In Imabuchi et al. [137]
eye tracking on a tablet is realized with blob and contour
detection for deriving iris contours. Then center and planar
homography transform is used to convert the coordinate of
iris center to display coordinates.

Several works use the Haar classifiers/Viola-Jones tech-
nique [138] such as Elleuch et al. [139] which describes a
system for android tablets to track head motions and eye
gaze gestures from video captured using device front camera.
The system is claimed to be robust to user movement and
lighting conditions. In Pino and Kavasidis [140] eye track-
ing for tablets is implemented using a Haar classifier based
eye detection module in conjunction with the CAMSHIFT
algorithm.

Potential applications of eye gaze in handheld devices are
presented in Nagamatsu et al. [19] describing a user-interface
called Mobigaze that uses gaze to operate a handheld device.
The system combines gaze and touch for operating the device
interface thereby eliminating the Midas touch problem [31].
The Midas touch effect [31] refers to the phenomenon in
which an eye-gaze-sensitive user interface cannot distinguish
between user glances for collecting visual information and
those for command input. Thus every user fixation may lead
to activation even without the actual user intention. Another
multimodal gaze based interaction method is presented by
Drewes and Schmidt [141] for monitoring applications using
dwell-time and gaze gesture. The EyePhone introduced by
Miluzzo et al. [142] controls the phone functions with only
gaze and blinks and is free of user touch. It describes an
application (Eyemenu) in which gaze direction is used to
selectively access and highlight menu buttons. A gaze based
user authentication scheme for smartphones is implemented

FIGURE 9. Eye tracking implemented in near real-time on a tablet. The
tracking algorithm uses cascade classifiers and shape-based approaches
to determine the eye region and centers. Elliptical model-fitting and 3D
back-projections are then used to determine the eye optical axes and
point-of-gaze [18].

in Liu et al. [143] by making the user eyes to follow a moving
target on the device screen. In Sun et al. [144], a 3D image
display is combined with gaze estimation to achieve adaptive
3D display on a mobile phone that shows different views
to corresponding viewing angles. In Imabuchi et al. [137] a
gaze based communication interface is implemented for gaze
based keyboard input and gaming.

Table 3 presents key information obtained from selected
papers based on five gaze user platforms. It can be seen
that different research works present their results in widely
different formats and describe performance of their system
under varying operating conditions.

F. USER PLATFORMS FOR GAZE TRACKING: SUMMARY
OF USER CONFIGURATIONS
The user conditions while they are using gaze tracking in
the above five platforms are completely different. Similarly,
the operating environment and tracking setup are also unique
to each platform. Table 4 presents typical system and user
configurations for the five gaze tracking platforms including
users’ postures and viewing angles, screen sizes, typical dis-
tance between the user and the screen-camera setup. It can be
seen that gaze tracking on different user platforms encounter
wide range of operating conditions and therefore have diverse
performance measures.

Apart from the differences seen in Table 4 above,
Table 3 also shows the inconsistency in performance report-
ing formats among the different user platforms. Accuracies
are reported in varied units –such as degrees, pixels, percent-
age of correct detection etc. Another feature as seen from
Column 5 of this table is that only a few papers study the
impact of operating conditions on the system performance.
Further discussions about these aspects of gaze research are
made in Section V.

Amongst the papers reporting in degree measures, a trend
is seen in the accuracies for different eye gaze user platforms.
Typically, it is seen that head mounted systems report better
tracking accuracies of less than one degree amongst other
platforms. For desktop systems it varies from 0.5 to 2 degrees
of angular resolution and above 2 degrees for more dynamic
platforms like automotive and handheld devices. Further, all
platforms have unique setup requirements and users may
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TABLE 3. Summary of research on eye gaze use cases in various platforms.
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TABLE 3. Continued. Summary of research on eye gaze use cases in various platforms.
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assume various physical poses as seen in Table 4. Therefore,
a general eye tracker may produce significantly different
results depending on platforms.

TABLE 4. Features of gaze estimation systems in different user platforms.

V. PERFORMANCE METRICS AND PLATFORM SPECIFIC
ERROR SOURCES IN EYE GAZE RESEARCH
A. DIVERSITY OF GAZE ESTIMATION PERFORMANCE
METRICS IN DIFFERENT USER PLATFORMS
In contemporary literature, research works on gaze tracking
present the results of their algorithm or application in several
ways. The common measures used are angular resolution (in
degrees), gaze recognition rates (in percentage) andminimum
pixel shifts/distance between gaze and target locations. These
metrics are no way correlated to each other and each research
work defines some metrics, for example percent recognition
rates or error rates in their own way. The consequence is that
most gaze estimation methods cannot be inter-compared.

To better understand the diversity of performancemeasures
used in gaze research, an information statistics is collected
from our reviewed papers and presented in Table 5. Firstly,
the papers are grouped according to platforms and then the
performance measures reported in each paper are classified
according to the categories: degrees, percentage and ‘‘others’’
(pixel shifts/distance in mm). In Table 5, Column 2 has the
total number of research papers that was considered in the
survey for each platform. Columns 3, 4 & 5 provide reference
to papers that reported their performance measures in either
‘‘degrees’’, ‘‘percentage’’, or ‘‘other’’ formats respectively.
Fig. 10 presents this statistics i.e. number of papers that
reported accuracies in various formats for four different user
platforms.

What can be observed from Table 5 is that there is no
standard convention that is used to represent performance
scores of eye gaze estimation algorithms in contemporary
eye gaze research. For example, as seen in the table, out of
total 69 papers from desktop/TV platform, 44 papers report
tracking accuracy in degrees while 16 papers report them
as gaze recognition rates and 9 papers in mixed units. Also
this discrepancy is found in literature for all user platforms

FIGURE 10. Diversity in metrics used for representing performance in
different platforms (Head-M is head-mounted, Auto is for automotive
systems and Hand-H represents handheld devices like smartphones and
tablets that implement gaze tracking). The figure shows that although
degree measures are most common format of measurement, results are
reported in several other formats which cannot be linked to each other.
The inhomogeneity is majorly observed in automotive and handheld
platforms.

as seen from the rows 3 to 5 of the table and Fig. 10.
From Fig. 10, we observe that degree measures are common
units used for desktop and head-mounted platforms, whereas
the representation is completely heterogeneous for automo-
tive or handheld devices. The result of this inhomogeneity is
that, the stated performance from a large volume of research
in this field can neither be compared nor interpreted quanti-
tatively.

B. PLATFORM SPECIFIC FACTORS AFFECTING USABILITY
OF GAZE TRACKING SYSTEMS
Eye gaze estimation systems on various user platforms and
applications face a broad range of operating conditions that
are rarely taken into consideration or characterized during
their development. The practical performance of a gaze track-
ing system in reality may be affected by several factors (or we
may call them: sources of errors) that are common or unique
to each platform. Some of these factors and their effects have
been discussed in our earlier work [24].

For example, the major sources of errors in desktop are
head movements. In head-mounted trackers, errors may arise
due to ‘‘Midas-touch’’ effect [31], miss-calibration or tracker
latency. Errors in automotive systems may arise from plat-
form and user head movements, variable illumination, occlu-
sion due to shadows or user wearing glasses. In handheld
devices, eye tracking gets highly challenged by changing
positions of the user with respect to the device, head pose,
hand jitter, variable illumination, and Midas-touch.

In gaze research, effects of some of these conditions such
as head-pose changes, user distance and viewing angle are
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TABLE 5. Diversity in performance metrics in gaze estimation systems.

studied but other factors such as display properties i.e. size
and pixel resolution of the screen where gaze is tracked,
platform movement and jitter, illumination changes, camera
quality and human eye limitations are very sparsely reported.
To study this scenario, Table 6 presents an information statis-
tics on practical conditions that may affect gaze tracking
and the extent to which they have been studied. Firstly the
different error sources are listed in Column I. Then the papers
are categorized according to platforms to identify the research
works where these error sources have been reported. This
information is presented in the different columns of Table 6.

It is seen from the table that each user platform encounters
at least 5-6 different conditions which can affect their perfor-
mance but their impacts are very sparsely studied for all user
platforms. Head-pose is the most studied factor out of all but
very few papers analyze the impact of others error sources.

Further in presence of these factors, the real performance
of an eye tracker can deviate significantly and unpredictably
from the scores reported under ideal conditions. Hence,
unless these error sources are adequately evaluated, the accu-
racy achieved by a gaze tracking system cannot be reliably
specified.

VI. A PERFORMANCE EVALUATION FRAMEWORK FOR
EYE GAZE ESTIMATION SYSTEMS
A. NEED AND RATIONALE FOR DEVELOPING
COMPREHENSIVE PERFORMANCE EVALUATION
STRATEGIES FOR GAZE ESTIMATION SYSTEMS
From the sections and tables above it is seen that currently
there exists a large diversity among gaze tracking methods,
setup, implementation platforms and accuracy metrics.

An important issue that becomes apparent is that there is
currently no comprehensive practice for realistic performance
evaluation of gaze tracking systems. Most research works

do not assess their systems under the impact of various
error sources or provide adequate details about their sys-
tem configurations. For example, Table 6 shows that only
35 out of 69 papers on desktop based systems and 16 out
of 57 papers on head-mounted systems report effect of head
pose variations. Only 2 works in each of desktop and head-
mounted platforms report effect of display properties of the
gaze tracking setup. Effect of illumination changes is reported
in 4 papers in desktop and one in head-mounted systems.
In dynamic platforms like automotive and hand-held devices,
where external conditions are more variable, the evaluation
statistics is even poorer, as seen from Table 6. Another issue
observed is that the accuracy scores for gaze based sys-
tems are presented using varied formats and metrics, such as
angular resolution, correct detection rate, pixel and physical
distances etc. which makes them difficult to interpret and
inter-compare. For example: Table 5 and Fig. 10 show that
out of 182 total research works across all platforms, 95 papers
report gaze accuracy scores in degrees whereas 41 papers
report in percentages (correct detection rates) and 46 papers
use other heterogeneous units.

There is also considerable ambiguity in terminologies used
in eye gaze research. For example, mentioning ‘‘slight head
movement’’ (as in [43] [78], and [145]) or ‘‘large head move-
ment’’ (in [45], [47], and [66]) and free head movement
(in [53], [56], and [67]) gives no quantitative idea about the
real extent of head pose variations tolerated by these gaze
tracking systems.

Considering these factors, the development of comprehen-
sive evaluation strategies for gaze tracking systems seems
necessary for several reasons: a. to study impact of various
error sources on system performance b. to report system
performance quantitatively in uniform formats c. compare
results from different eye tracking systems under different
operating conditions d. to identify the main bottlenecks for
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TABLE 6. Sources of errors in gaze estimation systems and literature where they are reported.

each platform. We present here the concept of such an evalu-
ation framework in the sections below.

B. CONCEPT OF A PERFORMANCE EVALUATION
FRAMEWORK FOR GAZE ESTIMATION SYSTEMS
The framework is to be built around a set of standardized
experiments for evaluating various gaze tracking systems.
Through the experiments, practical performance limits of a
given gaze tracking algorithm or system can be tested under
the influence of various parameters: such as variations of
head pose, viewing angle, screen size and resolution, eye-
occlusion, platformmovement and illumination changes. The
structure of the framework is outlined in Fig.11. The advan-
tage of having such a framework is that it can answer sev-
eral critical queries related to eye gaze system design and
performance.

For example, which system parameters affect the perfor-
mance in a particular use-case? How does a particular system
perform when compared with similar systems under certain
operating conditions or in a particular use-case? Can an algo-
rithm designed for one platform be ported and implemented
effectively in another platform? What are the performance
bottlenecks of individual algorithms? At present it is chal-
lenging to answer such questions as there are no resources
that allow us to do practical comparative testing of gaze
estimation systems.

C. METHODOLOGY
A typical eye tracking setup comprises of the user, gaze
tracker and the tracking environment and each of these com-
ponents may influence the overall eye tracking performance.
A schematic diagram of such a setup and these factors are
listed in Fig.11. The proposed experimental framework aims
to test impacts of these factors on a tracker’s accuracy. A typ-
ical ‘‘experiment’’ consists of the following steps: a user
is asked to sit in front of the eye tracker and their eyes
are calibrated for a session. The user is presented with a
graphical user interface when the tracker records their gaze
coordinates as the user gazes at several points on the screen.
The gaze error in degrees is calculated from the shift between
ground truth and tracked gaze locations. Some evaluation
experiments done and planned with commercial eye trackers
are presented here. Preliminary results can be found in [24].

1) ESTIMATING IMPACT OF HEAD POSE
A user is positioned in front of the eye tracker while a video
camera captures the position of the user’s head simultane-
ously. The user’s head pose in roll, pitch and yaw angles
are obtained from the video using an appearance model as
shown in Fig.12. Then the user is asked to turn their head to
specific fixed positions (in roll pitch yaw angles) and their
gaze is tracked on the same interface again. The gaze accu-
racy scores corresponding to various head pose angles are
presented in Fig 13. For a particular tracker it was observed
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FIGURE 11. Outline concept of a methodological framework for performance evaluation of eye gaze systems.

FIGURE 12. Steps of quantifying head pose tolerance limits of a given eye tracking system.

that for reliable gaze tracking, head pose must be restricted
within 20 degrees of movement in 3 directions and in this
way, the practical head-pose tolerance limits of the tracker
could be estimated.

2) USER DISTANCE AND VIEWING ANGLE
For this experiment, the users are positioned at successively
increasing distances from the tracker - computer screen
setup (40 cm to 100 cm in 15 cm interval) and the gaze
tracking accuracy data are recorded for each user position for
fixed frontal head poses. The user viewing angle decreases as
the user moves away from the screen and the gaze tracking

errors are seen to increase with increasing viewing angles.
Tracking stops when users are closer than 40 cm.

3) ILLUMINATION LEVELS
Several different illumination levels can be introduced dur-
ing the experiments. There are cool temperature fluo-
rescents (color temperature ∼6400K), warm incandescent
lamps (color temperature ∼ 2500 K) and mixed lamps (color
temperature∼ 5500K) that are available at various intensities
(100-3500 lux). Eye tracking experiments will be repeated
under these illumination levels to study impact on tracking
accuracy.
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FIGURE 13. The plot shows the gaze tracking errors arising due to user
head motion while using a commercial eye tracker during our
experiments. The human head has a degree of flexibility in the order of
∼40 degrees of angular movement in each of the roll, pitch and yaw
directions. However the plot implies that for reliable gaze tracking with
the given tracker, a user needs to keep their head position limited within
a fixed angular range in each of these three directions. Through our
evaluation process, we estimated this head movement limitation to be
equivalent to ∼20 degrees about the central position. If the user’s head
moves beyond these angles, gaze tracking errors of the tracker rises
above acceptable levels. However, another feature observed from this
plot is that the impact of head roll and pitch on tracking error are
relatively more pronounced than yaw variations.

4) DISPLAY SIZE AND RESOLUTION
The eye tracking experiment is run on displays of various
sizes (9, 11, 13.5, 15 inches) and resolutions (800×600,
1024×768, 1280×768, 1366×768) and the corresponding
gaze tracking errors are estimated. We have plans for includ-
ing a 44 inch TV with a specialized tracker intended for gaze
tracking for large screens in our testing framework and study
impacts of user viewing angles and display sizes.

5) OCCLUSION
We have already observed certain eye trackers having prob-
lems with data collection from a user wearing glasses while
another tracker has no such issues. Therefore, the level
of tolerance of a tracker to user wearing glasses have
to be evaluated by operating both trackers simultaneously
while doing the gaze experiment for users with and without
glasses.

6) PLATFORM MOVEMENTS
The operating conditions faced by a gaze tracker on a static
platform like desktop is largely different from that of a
dynamic platform like a smartphone or head-mounted setup.
We therefore plan to evaluate performance of eye trackers
running on such dynamic platforms to realistically observe
the difference in performance, study impact of platform
movements and other influencing factors.

D. STUDYING DYNAMIC EYE MOVEMENT
CHARACTERISTICS
In reality, during a given task the human eyes are constantly
moving and therefore sequential eye movements can be stud-
ied as a statistical process. Through our framework, we aim

to do dynamic eye measurements in a video for studying
smooth pursuits besides regular fixations. This is a planned
inclusion in which the user will be presented with a ’moving
target’ for the eyes to followwhile capturing video of the eye-
movements.

This framework is under development at the moment and
preliminary results from some of the experiments have been
published by us in [24]. The focus of this paper is mainly to
highlight the issue of realistic performance evaluation of eye
gaze systems through the literature review. Therefore only
limited details about the methodology and implementation
of the framework are presented here. A more comprehensive
paper on the technical details of the framework is under
preparation and will have more information.

VII. CONCLUSION AND FUTURE WORK
Eye gaze estimation is an interdisciplinary area of research
and development which has received quite a lot of interest
from academic, industrial and general user communities in
the last decades owing to the ease of availability of computing
and hardware resources and increasing demands for human
computer interaction methods. In this paper, a detailed lit-
erature review is made on the recent advances in eye gaze
research, and information in statistical format is presented to
highlight the diversity in various aspects such as platforms,
setups, users, algorithms and performance measures existing
between different branches of this field.

Several different gaze tracking algorithms and their
respective advantages and disadvantages were analyzed in
Section III. Currently gaze based HCI systems are capable
of achieving high speed input and control operations, leading
to their implementation in a variety of user platforms and
applications, which were discussed in Section IV. Typically,
gaze tracking systems at present are capable of determin-
ing 3D point of gaze in real time with unconstrained head
movement and achieve around 0.5 degrees of angular res-
olution. However, limitations arising due to gaze tracking
camera quality, random illumination changes, user wearing
glasses and platform vibrations are not well characterized in
contemporary eye gaze research.

The literature review also raises a major question with
respect to the consistency and accuracy that can be obtained
from the gaze estimation systems when they operate under
real world conditions, if they are not properly evaluated.

A variety of factors may affect eye gaze tracking in differ-
ent platforms, making their performance unpredictable and
ultimately questioning their usability in present and future
applications. Effects of head movement, user distance and
viewing angle, display properties of the setup are still poorly
studied, as discussed in Section V. In their presence, practical
system performance may differ significantly from expected
values and eye gaze may lose its applicability in different
consumer use cases.

Further, there is a clear lack of homogeneity in gaze per-
formance metrics as pointed out in the tables of Section V.
Some performance measures used, for example: detection
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rate or accuracy percentage is difficult to interpret physically
and the variety in reporting formats makes inter-comparisons
between different systems and algorithms impossible.

Keeping these in mind, the concept of a performance
evaluation framework is proposed that will provide practical
performance estimates of gaze tracking systems and adopt a
uniform set of accuracy metrics for specifying performance.
This is an on-going research activity and the details of the
evaluation methods to be included in this framework are
currently under development for different gaze estimation
platforms, and will be included in a subsequent paper.
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Abstract— Several generic CE use cases and corresponding 
techniques for eye gaze estimation (EGE) are reviewed. The 
optimal approaches for each use case are determined from a 
review of recent literature. In addition, the most probable error 
sources for EGE are determined and the impact of these error 
sources is quantified. A discussion and analysis of the research 
outcome is given and future work outlined. 
Keywords: eye gaze estimation methods, gaze estimation error 
sources, eye-trackers, smartphones. 

I. INTRODUCTION 
In the consumer electronics sector, research on eye gaze 

estimation techniques and applications have so far been 
focused on static setups- e.g. desktop computer, TV panels [4], 
or gaming applications [5]. However, with the broad adoption 
of smartphone devices the consumer electronics industry has 
recently begun to focus on the use of eye gaze for HCI in 
dynamic platforms [6]. Commercial adaptation of gaze 
tracking in handheld devices is extremely challenging and has 
been less than successful so far, because of poor accuracy, 
reliability and usability issues.   

In this paper we examine and broadly quantify a range of 
error sources that affect eye gaze estimation in consumer 
devices. Two main use cases are considered – the static case 
for TV or game consoles and the dynamic use case for 
handheld devices or automotive applications. It is shown that 
the cumulative errors are significant and call into question the 
practicality of eye gaze as means of HCI in many use cases. 
The review and analysis of the algorithms and error sources 
will be of interest to engineers and researchers working in this 
field and should provide a useful reference when defining 
design criteria for specific consumer electronics use cases. 

II. EYE GAZE ESTIMATION APPROACHES 

A. Eye gaze estimation methods 
There are two main approaches for video-based EGE:  
1) Appearance based methods 

Appearance based methods  [6] detect and track eye gaze  
based on the photometric appearance (color distribution or 
filter responses) of the eye-region, using images or video 
sequences. The main advantage is simple hardware available 
in most devices (e.g. laptops, tablets, and smartphones) 
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whereas the downside is low accuracy, requirement of large 
training datasets and sensitivity to head pose variations [2].  

2) Feature based methods 
These require more sophisticated hardware such as one or 

more near infrared (NIR) cameras and NIR LEDs and use the 
LED glints on the cornea and pupil to estimate the eye gaze 
[1]. There are two main approaches [3]: (i) regression based 
methods that map image features to gaze co-ordinates in either 
polynomial or non-parametric forms; (ii) model based 
methods that use a geometrical model of the eye to estimate 
gaze direction vector and its intersection with scene geometry.  
B. Eye gaze use cases 

Based on potential error sources, any EGE problem can be 
associated with three main types of use cases. 

1) Head mounted eye gaze systems 
This EGE scheme (used in gaming and virtual reality 

applications) requires that the user wears a head mounted 
device so that the camera is in a fixed position relative to the 
user eye and can detect gaze points with high accuracy [10]. 

2) Fixed gaze tracking systems 
These systems use a fixed platform to position the 

camera(s) and LED(s) and use either appearance or feature-
based methods. These systems are currently used in IPTVs, 
desktop based and driver-assist systems [3-4]. These systems 
can compensate for minor changes in head poses, but the 
overall accuracy is lower as described in section III. 

3) Mobile gaze tracking systems 
    Design and implementation of EGE on mobile devices is a 
non-trivial task. Information on device motion and user head 
position is needed and several unique error sources combine to 
significantly affect the tracking accuracy and resolution [5].  

III. SOURCES OF ERROR 

A. Head pose changes 
Head pose variations lead to failure in eye gaze tracking by 

changing in eye-socket geometry and to the user field of view 
or causing the LED glints in the cornea- surface to disappear 
[8]. Table 1 shows the tolerance of head pose variations for 
various EGE techniques.  
B. Hand movements – position, orientation and jitter 

    Additional error sources, especially for handheld devices 
are changes in hand pose, i.e., the way a user holds the device 
and hand- jitter (low frequency hand vibrations) which vary 
according to user habits and physical characteristics.   
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   Table 1: Accuracy under head pose variations in various EGE methods 
Method Platform Accuracy 
Appearance based [7] Desktop, 

webcam(1280x1024) 
1deg(fixed head) 
2deg(slight head pose) 

Feature(model)based [12] 2 cameras 
ring of LEDs for each 
camera 

0.7deg(fixed head) 
1.5deg(slight head 
motion) 

Feature(regression)based 
[9] 

1 camera 
1NIR source 

0.4 deg(fixed head) 
1 deg(slight head pose) 

 

C. Eye socket resolution 
The pixel resolution of the eye image captured by the EGE 

camera will define the gaze accuracy that can be achieved. 
Factors such as camera resolution, image contrast, distance of 
the device from the eye affects the amount of eye details in the 
captured image and hence the accuracy of gaze tracking. For 
example, the typical pixel resolution for the iris region in 
images taken by a 5 MP front camera of a smartphone, at arm 
distance (45 cm), with indoor illumination is around 30 pixels.  

 
Fig. 1. Pixel resolution of eye images taken with a smartphone camera 

D. Human eye limitations 
Human eyes can fixate as accurately as 10 minutes of visual 

angle (0.16 deg) and therefore theoretically EGE systems 
cannot exceed this accuracy limit. Also high frequency eye 
movements or saccades lead to motion blur and missing gaze 
points if frame-rate of EGE camera is lower than 100 Hz [11].  
E. Changes in illumination 

Unpredictable changes in illumination will affect eye 
feature detection, and may cause additional glints to appear on 
the eye cornea surface, disturbing the feature based algorithms 
[8].  
F. Other sources of error 

These include eye occlusion from wearing glasses, facial 
expressions and skin color, which introduce errors that 
propagate throughout the gaze estimation procedure. For each 
use case, combinations of these error sources may exist.  

Table 2 shows the error sources encountered for each use 
case. It is seen that handheld devices experience a wider range 
of error sources compared to head mounted systems and 
present a much more challenging problem to realize EGE. 

Table 2: Existence of error for different use cases 
Error source\use cases Head mounted Fixed Mobile
Eye socket resolution x x x
Head pose -- x x
Algorithm error x x x
Hand jitter -- -- x
Hand pose -- -- x
Change in illumination -- x x
Human limitation x x x
Other sources -- x x

IV. EXPERIMENTAL SETUP 
 
                                   Table 3: Eye-tracker specifications 

 
 

Fig.2 A portable eye tracker for EGE studies and specifications 
Our setup includes a portable eye-tracker mountable on 
desktop computers or tablets, for studying the errors in static 
and dynamic EGE use cases, along with the front cameras and 
motion sensors of several smartphone models. 

V. CONCLUSION  
For fixed EGE setups, some of the error sources have been 

quantified, but there is limited information about such error 
estimates for devices operating under dynamic conditions.  As 
some of these error sources are not completely independent 
(e.g. eye socket resolution- a function of camera resolution 
and distance from eye to device, is also dependent on hand 
and head movements), it is not possible to determine the total 
error by a linear combination of individual errors.  

Additional details on specific use-cases of EGE will be 
presented at the ICCE including a detailed discussion on the 
non-linear nature of some error sources based on CE devices, 
with design guidance for engineers seeking to introduce real-
time eye-gaze as HCI component in these platforms.  
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Abstract— There is a need to standardize the performance 
of eye gaze estimation (EGE) methods in various platforms 
for human computer interaction (HCI). Because of lack of 
consistent schemes or protocols for summative evaluation of 
EGE systems, performance results in this field can neither 
be compared nor reproduced with any consistency. In 
contemporary literature, gaze tracking accuracy is 
measured under non-identical sets of conditions, with 
variable metrics and most results do not report the impact 
of system meta-parameters that significantly affect tracking 
performances. In this work, the diverse nature of these 
research outcomes and system parameters which affect gaze 
tracking in different platforms is investigated and their 
error contributions are estimated quantitatively. Then the 
concept and development of a performance evaluation 
framework is proposed- that can define design criteria and 
benchmark quality measures for the eye gaze research 
community. 

I. INTRODUCTION 
The prolific and interdisciplinary nature of research on 
eye gaze estimation in the past decades has resulted in the 
development of a wide range of techniques and 
applications [1-4]. Most of the recent developments in 
this field comprise of passive video-based gaze tracking 
methods which estimate the gaze direction or the point of 
gaze by capturing and processing images of the eye 
region in natural light or under active near infrared (NIR) 
illumination. Eye gaze based applications are also 
implemented in a variety of consumer platforms such as  
desktop setups (for text entry, attention analysis, gaze 
based passwords), head-mounted equipment (gaming, 
virtual and augmented reality), automotive systems 
(driver alertness monitoring) and handheld devices (gaze 
based scrolling, content navigation) [5-15]. 
In spite of the large volume of research on EGE 
techniques over the years, currently there are no unified 
standard schemes to evaluate the performance of gaze 
tracking algorithms or setups in research across various 
platforms. Few works report the impact of system 
parameters such as camera and screen resolution, viewing 
angle and platform movements- that play significant roles 
in determining the ultimate accuracy of a gaze tracking 
system. Also there is no agreement on the metrics of 
accuracy across various methods. Therefore it is difficult 
to state with certainty if the results of a recent design 

would perform better than conventional ones and under 
what conditions certain research claims are valid.  
      The aim of the work presented in this paper is to 
address the challenges of standardization in the 
development and performance evaluation of gaze based 
HCI systems. First a literature review is provided where it 
is described how the implementation and outcomes in eye 
gaze research differ-to the extent that they are neither 
comparable nor reproducible. Then several sources of 
error including head pose variations, viewing angle, 
camera resolution are identified and their impact is 
quantified experimentally. Finally the development of a 
framework for evaluating the performance of EGE setups 
is outlined. Such a concept can be used to provide reliable 
estimates of error and standardized accuracy scores to 
users and designers of gaze based systems. 

II. LITERATURE REVIEW 
A comprehensive literature review on the development of 
EGE techniques and applications for different consumer 
platforms was made and the diversity in the algorithms, 
research outcomes, setups, sources of errors and accuracy 
measures for different platforms is presented below. 

A. Eye gaze tracking algorithms in literature 
These fall broadly into the following classes [1]:             
1) Feature based: These use single or multiple near 
infrared (NIR) cameras and LEDs to produce glints on 
the cornea and use the vector between the pupil center 
and glint positions to track the eye gaze. These are further 
subdivided as: (i) regression based methods that use a 
polynomial regression function to map the vector to gaze 
coordinates on screen (ii) 3D model based methods that 
use a geometrical model of the eye to develop accurate 
ray tracing to estimate gaze direction. Feature based 
methods typically have good accuracy (0.5 to 1 degree) 
but need elaborate hardware. 2) Appearance based: These 
utilize the shape and appearance features of the eye 
region to train a model which is then used to match with 
captured eye images for estimating gaze. These methods 
need simple hardware but have lower accuracy [40].    
 
B. Eye gaze use cases in consumer platforms  
Use of eye gaze information has found applications in a 
variety of user platforms –some of them are described 
along with their recent and popular applications. 
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a) Desktop based: Majority of eye gaze tracking methods 
have been developed for desktop based systems [30-32] 
wherein one or more cameras with NIR LEDs  are used to 
track a user‘s eye gaze on the computer screen-with the 
user seated in front of the computer. Some methods allow 
free head movement whereas some require a fixed user 
head position for accurate tracking. Typical tracking 
methods- like PCCR (pupil center corneal reflection) or 
appearance models are used for gaze based applications 
ranging from assistive technologies for the physically 
impaired, understanding the development of psychiatric 
disorders, e-learning, studying consumer attention 
patterns, e-commerce and web-design [2].  
b) TV panels: Gaze controlled intelligent TVs have 
recently been introduced [33-36] that uses PCCR 
techniques for gaze localization. In these systems, a user 
can select and navigate menus and switch channels by 
looking at icons shown on the TV’s display.  
c) Automotive: Interactive driver support systems have 
been developed based on actively tracking driver gaze or 
blinking patterns to evaluate driver vigilance and 
drowsiness levels [37-39]. The setups employ machine 
vision algorithms, appearance models or PCCR 
techniques using cameras and NIR light sources mounted 
on the car’s dashboard. 
d) Handheld devices: Methods for detecting user gaze 
location and patterns have been developed for 
smartphone and tablets [40-42] to activate functions such 
as locking and unlocking devices, interactive displays, 
dimming backlights or suspending sensors based on user 
attention. The operating principles rely on PCCR 
methods, appearance models or ellipse fitting techniques 
using IR light sources and the device front camera. 
e) Head-mounted setups: These usually comprise of two 
or more cameras mounted on a head unit – one facing the 
user and recording the eye gaze (called the 'eye camera'), 
while the other facing outward, recording the scene 
(called 'scene camera'). These setups allow free head 
movements. Major applications include virtual and 
augmented reality, observing user attention, 
psychoanalysis and occulo-motor movements [43-45]. In 
Table I the characteristics of setups for gaze estimation in 
various use cases are summarized. 
 
                                    TABLE I 
 FEATURES OF EGE SYSTEMS IN VARIOUS USE CASES 

 
C. Sources of errors in EGE systems 
A variety of error sources affect gaze tracking accuracy in 
different platforms. These include: a) Head-pose changes- 
which alters the eye-socket geometry, user field of view, 
causes LED glints on cornea-surface to disappear [8].          

b) Camera resolution- affects amount of eye details and 
contrast in the eye image captured by the EGE setup        
c) Display properties and viewing angle-includes effect of 
size and pixel resolution of the screen where gaze is 
tracked and distance of the user from setup d) Platform 
movements–may cause variable position, orientation and 
jitter in the setup e) Changes in illumination- affects eye 
feature detection, causes additional glints to appear on 
cornea surface. f) Human eye limitations-the eyes can 
fixate as accurately as 10 minutes of visual angle (0.16 
degree) which sets the accuracy limit of gaze tracking. 
High frequency eye movements or saccades lead to 
motion blur and missing gaze points if the frame-rate of 
the gaze estimation camera is less than 100 Hz [29].   
However the problem is that only a few of these factors 
are reported in literature while the impact of the others is 
not considered at all. As an illustrative example, the 
effect of head pose variations are considered in [8-10] 
whereas impact of factors such as camera quality, display 
size and resolution, user viewing angle and platform 
movements are inadequately characterized and therefore 
it is not possible to know as to how an algorithm would 
perform under their influence. The occurrence of the 
various error sources in different user platforms are 
tabulated below.  

TABLE II 
SOURCES OF ERRORS IN EGE SYSTEMS 

 

D. Diversity in research outcomes in EGE literature 
The metrics used to represent performance scores of gaze 
estimation algorithms for different CE platforms were 
studied and it was found that a large number of reported 
results cannot be compared in any meaningful way as the 
system performance is reported in varied formats. Some 
papers [16-20] report tracking accuracy in degrees while 
others report them as gaze recognition rates [21-24]. 
Again there are results where accuracy is reported in 
heterogeneous formats-e.g. relative pixel/distance shifts 
or rate of correct detections which have relevance solely 
to the procedure stated in the paper [25-28]. Apart from 
this, wide variations in setup configurations are noted in 
terms of the number of cameras and light sources used-
varying between 1 to 4 cameras and 1 to 16 LEDs. It is 
also observed that head mounted setups appear to have a 
lower mean error (~1.08 degree) compared to desktop 
based (~1.87 degree) or dynamic platforms (~4.8 degree). 
However each platform is affected by several error 
sources and unique operating conditions as described in 
the previous sections, and therefore the absolute validity 
of these results are uncertain.  

EGE use cases Distance between 
eye and tracker 

Viewing 
angle (deg) 

Screen size 
(inch) 

Desktop 30-50 cm ~40 14-17 
TV panels 2-5 m 60-120 26-70 

Automotive 50 cm 40-60 -- 
Handheld 
devices 

20-40 cm 5-12 5-10 

Head mounted 2-5 cm 55-75 -- 

Error Sources Head  
Mounted 

Desktop Dynamic 

Head pose -- X X 
Camera resolution X X X 
Display properties -- X X 

Viewing angle -- X X 
Platform motion -- -- X 

Illumination changes -- X X 
Human eye limitation X X X 
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III. QUANTIFYING EFFECTS OF ERROR SOURCES IN EGE 
A set of eye tracking experiments were conducted to 
simulate and observe the impact of various error sources 
mentioned above. These include studying head pose 
tolerance levels and effects of viewing angle, display 
characteristics and camera resolution on gaze tracking 
accuracy. For the setup a commercial eye tracker that 
works with a laptop or desktop system and has a specified 
gaze tracking accuracy of 0.5 degree was used. Eye 
tracking data is collected from users who were asked to sit 
in front of the eye tracker connected to a computer as 
shown in Fig. 1 and an eye calibration routine for the user 
is run first. The experimental flowchart is shown in Fig3 
where each experiment in general comprises of recording 
the eye gaze coordinates from the tracker when the user 
gazes and clicks on fixed points on the screen. The gaze 
error in degrees is calculated from the shift between click 
and gaze locations on the screen as shown in Fig 2 Further 
details of the setup and experiments are described below.  

A. Head pose tolerance  
In this experiment a user is asked to sit in front of the 

tracker with their head initially positioned frontally. A 
video camera is used to capture the position of the head 
and the head pose in roll, pitch and yaw angles is obtained 
from an appearance model as shown in Fig 4. For each 
position gaze accuracy data is recorded. Then the user is 
asked to turn their head to specific fixed positions (in roll 
pitch yaw angles) and perform the gaze tracking 
experiment described above. Gaze accuracy measures 
corresponding to various head pose angles are recorded. 
The results are presented in Fig.5 below. It is observed 
that the gaze tracking accuracy significantly decreases as 
the head moves slightly beyond 20 degrees in either 
directions of roll, pitch and yaw angles.  

 
Fig.1 Experimental setup with the user, laptop and eye-
tracker with the user head fixed with a chin-rest 

 
Fig2. Output from an eye tracking experiment 

 
Fig.3 Experimental flowchart 
 

 
 
Fig.4 Estimating head pose angles using a face model 
 

 

 

 
Fig5 Variation of gaze angular error with head pose angles  
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Fig6 Head pose tolerance limits of the eye tracker 
 
The human head has considerable degree of flexibility in 
the order of nearly 40 degrees of angular movement. 
However the above results imply that for reliable eye 
tracking results with the given tracker, the user needs to 
keep their head position limited within an angular “box”-
equivalent to ~20 degrees about the central position in 3 
directions as shown in Fig. 6 or the gaze tracking 
performance will drop below acceptable levels. 

B. Viewing angle 
For this experiment, the users were positioned at 

successively increasing distances from the tracker - 
computer screen setup (40 cm to 100 cm in 10 cm 
interval) and the gaze tracking accuracy data were 
recorded for each user position for fixed frontal head 
poses and plotted in Fig 7 below. The user viewing angle 
decreases as the user moves away from the screen as 
shown in Fig. 7(top). It is observed that for the tracker, the 
accuracy decreases rapidly with an increased viewing 
angle. However it is also found that the tracker errors are 
high when the user is too close to the tracker-that is the 
user to tracker-screen setup is less than 40 cm. 

 

 
Fig7. Top: Variation of user viewing angle with distance 
from screen. Bottom: Variation of gaze accuracy as a 
function of user distance. 

C. Display size and resolution 
    The eye tracking experiment was run on displays of 
various sizes (9, 11, 13.5, 15 inches) and resolutions 
(800x600, 1024x768, 1280x768, 1366x768) and the 
corresponding gaze tracking errors are shown below. 
 

 
Fig.8 Gaze accuracy variation with display resolution 

D. Camera resolution 
     Every gaze tracking device has one or more cameras 
to capture images of the eye region and the camera 
resolution directly affects the amount of eye details in the 
captured image and hence the accuracy of gaze tracking 
[29].To study the effect of camera resolution on gaze 
estimation errors, eye images were captured using camera 
resolutions starting from 1.3 to 24 megapixels for 
different distances between the camera and user under 
constant illumination as shown in Fig.9.  
 

 
Fig9 Eye images taken with different camera resolutions 
at different distances from the user 
 

 
Fig10. Details of the eye socket region in an eye image 
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The eye details in an image are estimated as the eye 
socket width in pixels as shown in Fig. 10 above. The 
eye-details as a function of distance from the camera are 
estimated and plotted in Fig.11 & 12. It is observed that 
for a camera with low resolution the eye details are 
inherently low and the image quality reduces drastically 
as the eyes move away from the camera. With a high 
quality camera the eye details remains nearly constant 
with distance. To observe how the camera quality might 
affect eye gaze tracking- a pupil detection algorithm on 
cropped eye images was applied using circular Hough 
transform (Fig.13). The shift in positions between the 
actual and detected pupil centers is estimated as pupil 
detection errors. The plot of errors as a function of 
camera resolution is shown in Fig14. It is seen that pupil 
detection errors reduce with better camera quality-but 
levels off around 8 MP which could be an optimal camera 
resolution that can be used to build reliable remote eye 
trackers operating in the horizontal range of 1meter. 
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IV. DISCUSSIONS AND FUTURE WORK 
In this paper, the diverse range of algorithms, 
performance metrics and system specifications of gaze 
based HCI systems was investigated. Then a set of 
experiments were designed and implemented to estimate 
the impact of various sources of errors that affect EGE 
performance. The major contribution of our study was 
identifying two main issues that affect realistic 
performance evaluation of conventional gaze based 
systems. Firstly there is a lack of protocols for reporting 
research outcomes and accuracy scores in literature.  

 

 
Fig.13 Top: Applying pupil detection on eye images. 
Bottom: Pupil detection in good and poor quality images 
 

 
Fig14. Pupil detection errors as a function of camera 
resolution and distance from the user. 
 
Secondly, there are several parameters in EGE system 
development that potentially affect tracking performance, 
but their impacts are very sparsely evaluated and reported 
by researchers in this field. Our studies on various error 
sources showed that error contribution from these 
parameters are significant and it can be concluded that the 
reported results on gaze tracking techniques that are 
measured under controlled setup conditions do not give a 
correct estimate about the overall accuracy of the system. 
    With this background we are designing a unified 
framework that would provide standardized performance 
scores of gaze tracking systems in different platforms 
while taking into consideration the multiple error sources 
that may affect such a system. The framework is expected 
to operate through multiple control experiments wherein 
each error source is evaluated separately.  It may be 
extended to estimate the summative error in the system as 
a measure of its true performance. Through such a 
framework it will be possible to evaluate and compare the 
performance of multiple algorithms while measuring 
specific gaze behavior/actions (e.g. pursuit/fixation), 
under uniform experimental conditions and identify 
performance bottlenecks of different algorithms when 
they perform under identical circumstances. The ultimate 
aim is to provide more reliable performance measures 
and design guidelines that will facilitate both the future 
users and designers of advanced EGE systems. 
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Abstract: An eye tracker’s accuracy and system behavior play critical roles in determining the
reliability and usability of eye gaze data obtained from them. However, in contemporary eye gaze
research, there exists a lot of ambiguity in the definitions of gaze estimation accuracy parameters
and lack of well-defined methods for evaluating the performance of eye tracking systems. In this
paper, a set of fully defined evaluation metrics are therefore developed and presented for complete
performance characterization of generic commercial eye trackers, when they operate under varying
conditions on desktop or mobile platforms. In addition, some useful visualization methods are
implemented, which will help in studying the performance and data quality of eye trackers
irrespective of their design principles and application areas. Also the concept of a graphical user
interface software named GazeVisual v1.1 is proposed that would integrate all these methods and
enable general users to effortlessly access the described metrics, generate visualizations and extract
valuable information from their own gaze datasets. We intend to present these tools as open resources
in future to the eye gaze research community for use and further advancement, as a contribution
towards standardization of gaze research outputs and analysis.

Keywords: eye gaze estimation; eye tracker; performance evaluation; metrics; visualizations; mobile
devices; graphical user interface; open source; standardization

1. Introduction

Research works on eye gaze estimation typically present their results in a wide range of ways.
While the commonly used measure of gaze tracking accuracy is angular resolution (in degrees), other
metrics such as gaze recognition rates (in percentage) and shifts between estimated and target gaze
locations (in pixels or mms) are used frequently. These metrics are not interrelated and sometimes
not clearly defined, which leads to ambiguities in evaluating and comparing performances of gaze
tracking systems. Table 1 below shows the statistics derived from a recent literature review done
by the authors [1] surveying nearly 200 research articles on gaze based algorithms and applications,
which highlights the current diversity in metrics used for representing gaze estimation performance.
It may be observed from the table that although use of angular resolution as a metric is common, the
uncorrelated metrics like percentage recognition rates and pixel distances are also used in many works.
Column 2 of the table shows the total number of papers surveyed for each consumer platform or eye
gaze use-case category. The other columns present the different metrics, with the number in each cell
of them representing the number of papers where each type of metric is used. Figure 1 below shows
illustrations of eye gaze applications in different consumer platforms like desktop, mobile devices,
automotive and head mounted systems.
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Table 1. Diversity in performance evaluation metrics used in eye gaze research articles.

Eye Tracking
Platform

No. of Surveyed
Papers

No of Papers with
Metric: Degree

No. of Papers with
Metric: Percentage

No. of Papers with Metric:
Others (e.g., pixels, mm)

Desktop 69 44 16 9
Handheld 21 3 9 9

Automotive 35 11 14 10
Head-mounted 57 37 2 18
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Figure 1. Eye gaze applications in various consumer platforms (from left: (a) desktop [2], (b) tablet [3],
(c) automotive [4], (d) head-mounted [5] eye tracking setups).

Another sparsely investigated issue in gaze research is about studying the impacts of different
error sources (i.e., system and user variables) on gaze tracking performance. It was highlighted in [1]
that gaze estimation systems on various user platforms face varied operating conditions, which are not
well described in conventional research or product literature. Such factors which possibly influence
a gaze estimation system’s accuracy include user distance, display properties of the screen where
gaze is tracked and user head pose variations. Additionally, for eye tracking on mobile platforms like
handheld devices, platform motion and orientation may greatly alter the claimed accuracy of an eye
tracker during real life operations. At present, research works commonly do not report impact of these
factors or present their results in any uniform graphical format.

1.1. Problem Statement

As described above, there are definite requirements of methods, firstly for detailed analysis of
eye tracking data to learn about the tracker system characteristics under variable operating conditions
and secondly for attaining homogeneous and fully defined gaze accuracy metrics. Therefore in this
work, for comprehensive evaluation of generic eye trackers, a set of metrics and visualization methods
are derived by analyzing the data collected from an eye tracker. To develop these metrics and visual
tools, experiments with the eye tracker are performed with a group of subjects on two different user
platforms (desktop and tablet). The gaze experiments are done on the desktop and tablet devices
under controlled variation of tracking conditions such as changes in user distance, user head-pose
and platform orientations to study their impacts on gaze tracking accuracy of the tracker. Using the
gaze data collected from experiments, several metrics are derived which not only specify tracking
accuracy but also look for specific trends in the gaze data that indicate ways to achieve best tracking
performance from the tracker. Visualization tools are then built by aggregating the experimental data
to understand and compare tracking performance under these varying circumstances. Finally, all the
described metrics and visual methods are built into a graphical user interface software with which
users can readily explore their own collected gaze datasets, study their tracker characteristics and save
the results without delving into details of the source code.

1.2. Purpose, Scope and Structure of the Paper

The purpose of this paper is to introduce some metrics and visualizations that may be helpful
to determine the data quality from generic eye trackers when they operate under variable operating
conditions. For this, a series of experiments are done to collect data from a commercial eye tracker and
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its operating conditions were varied, to build specific metrics and visuals that reflect these conditions.
Two platforms were used, a desktop and a tablet mounted with the eye tracker to collect gaze data
using the same stimuli and data logging process. The tablet was used to especially study the impact
of platform orientation variations which is unique to this platform. The metrics defined here were
applied on the collected data and the results are used to demonstrate how these metrics may be used
by any eye tracker. Similarly, the visualizations are meant to show how these may be used in any gaze
tracking experiment to visually inspect gaze data quality and aggregate test results.

At this point it is also important to outline the scope of this work. It may be noted that in this
work we do not intend to evaluate a particular eye tracker. We neither want to classify the used tracker
or its data as good or bad or determine their suitability for any application. In other words, here we
are not judging an eye tracker itself, but are only using eye tracking data to implement our proposed
metrics and visuals. We note that eye tracker data patterns change with varying operating conditions
and we expect the developed metrics to represent these changes quantitatively and the visualizations
to show this graphically. Aspects like why the tracker behaved in a certain way under certain operating
conditions, or analyzing if the accuracy levels are acceptable, are out of scope for this work. This is
because analyzing the underlying reasons for data variability is a dedicated body of research, but
comprises of a different direction of work with respect to the topic presented here.

As for the structure and organization of the paper contents, there are two major sections here,
Section 4 on the Metrics and Section 5 on the Visualizations. Section 4 has several Sections 4.1–4.4 and
sub-subsections such as Sections 4.1.1, 4.1.2, 4.2.1, 4.2.2 and 4.3.1, Sections 4.3.2–4.3.4. Each of these
sub-subsections present a gaze data evaluation metric and corresponding results from implementing
the metric on gaze data collected from relevant experiments. For each metric description, the content
is split into “Method” which describes the concept of the metric and “Example results” which displays
the outcome from testing the metric on collected data in tabular or graphical form. Similarly, in
Section 5 the contents of Sections 5.1.1–5.1.5 and 5.2.1, Sections 5.2.2–5.2.4 are split into “Method” and
“Example results”. A summary of related research is provided in Section 2, the experimental details in
Section 3 and conclusion to this work is in Section 6.

2. Related Works: Accuracy Estimates and Visualizations in Gaze Research

In this section, the status of accuracy metrics and data visualizations used in contemporary eye
gaze research works is reviewed in Sections 2.1 and 2.2, and the contributions of this work in this
direction are highlighted in Section 2.3.

2.1. Previous Work on Evaluation of Gaze Estimation Systems

Eye gaze research has progressed to include multiple user platforms with increasing number
of applications in human computer interactions [6–8] marketing, psychology and ecommerce [9,10].
A major aim of eye tracking system design is to achieve high accuracy and consistency in results.
A wide range of eye tracking systems and algorithms have been developed over the past few decades
which have been reviewed in [11,12]. Dedicated research works on evaluation and reporting of gaze
data quality and standardization of has been presented in [13–16]. More works such as [17–19] discuss
on the systematic performance evaluation of eye tracking systems including frameworks, databases
and virtual environments.

Reference [13] discusses the lack of common standard measures in for eye data quality which
affect eye tracker usage and research on eye movements. It provides a detailed description of what is
meant by eye data quality and how data accuracy and precision affects measurements of eye movement
features such as dwell time, number and duration of fixations and pupil size and further describes
standardized means of reporting data quality. Reference [14] describes the use of an artificial eye to
implement methods for objective evaluation of eye tracking data quality. First, the temporal accuracy
and latency of an eye tracker is tested using an artificial saccade generator. Then an artificial pupil is
mounted on a computer controlled moving platform to provide biologically similar eye movements.
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Reference [15] studies the impact of eye data collection conditions on the factors such as calibration,
pupil identification, fixation detection and gaze analysis. They implement mobile eye tracking in an
outdoor environment and report that all stages of processing eye tracking data must be tailored to the
data collection conditions. Reference [16] discusses the need for development of a standard application
programming interface API for eye trackers in order to build applications using gaze data. The aim is
to have a unified way to interact with eye-tracking systems and receive gaze data using same protocol
regardless of the eye tracker.

Works such as [20–24] present results from the evaluation of specific commercial eye trackers
from companies such as Eyetribe, SMI, Tobii and GazePoint. Reference [20] compares the accuracy,
precision and sampling rates of the Eye Tribe (The Eye Tribe ApS, Copenhagen, Denmark) and SMI
RED eye trackers (SensoMotoric Instruments, Teltow, Germany) and shows the impact of system
setups such as user sitting position, height of stimulus screen, height of eye tracker, user tracker
distance and frame rate on the data from the trackers. Reference [21] also discusses the evaluation
and comparison of the EyeTribe and SMI RED eye trackers by concurrently recording data from them
and measuring parameters like accuracy, data loss and fixation counts for application in cartographic
research. Reference [22] presents the comparison of several eye trackers such as Eye Tribe, Tobii EyeX
(Tobii Technology Inc., Danderyd, Sweden), Seeing Machines faceLAB (Seeing Machines, Fyshwick,
Australia), Smart Eye Pro and Smart Eye Aurora (Smart Eye AB, Gothenburg, Sweden) to study
features such as gaze tracking accuracy, precision, impact of glasses and data loss. Reference [23]
discusses the objective evaluation of the Gazepoint GP3 eye tracker (Gazepoint Research Inc.,
Vancouver, BC, Canada), and studies its capabilities with respect to pupil dilation metrics under
cognitive loads and luminance conditions, whereas [24] evaluates the Tobii EyeX tracker for accuracy,
precision and latency parameters to determine its suitability for behavioral studies.

However, from these works, it may be observed that apart from accuracy, precision and latency,
no other evaluation metrics for eye tracker evaluation have been studied in detail. Also within these
works there remains inhomogeneity in the definition of performance metrics as some of them report
gaze accuracy in degrees while some in pixel measures. These aspects have been discussed in our
previous paper [1] which describes the existing inhomogeneity in gaze data accuracy measures and
the need for development of more intricate gaze tracking performance metrics. It also proposed the
concept of a dedicated evaluation framework for all round performance assessment of eye trackers.

2.2. Data Visualizations in Gaze Research

In [25] a comprehensive overview and classification of gaze data visualization methods is
presented. The methods are grouped on the basis of visualization type (e.g., statistical/spatio-temporal,
2D vs. 3D visualizations), eye tracking data type (fixation, scanpath, smooth pursuit, saccades) and
stimuli (point-based for studying gaze distribution and areas of interest (AOI)-based for understanding
AOI interrelationships). Other classifications include: static (image based) and dynamic (video based),
active and passive stimulus based visualizations. Conventionally gaze data is aggregated using
heat maps and fixation maps, on which several improvements have been proposed, such as in [26]
(modifying transparency of the heat map depending on gaze data) and [27] (real-time heatmap
generation and visualization of 3D gaze data). In [28], gaze visualization with parallelized rendering
on a GPU (graphics processing unit) platform is proposed. The aim is to speedup heatmap creation on
video stimulus, while [29] proposes dynamic heatmap visualizations coupled with user visual focus
information on different backgrounds (dark, blurred, fog). Several novel visual approaches have in
been reported in [30–32]. In [30,31] gaze stripes and color bands are described in which a sequence of
gaze point images are aligned in a timeline to analyze and compare the viewing behavior of multiple
participants in a clutter-free manner. Kurzhals et al in [32] presents a visual analytics method to
interpret eye movement data recorded for dynamic stimuli such as video or animation. Scanpath is
an useful gaze data visualization method which is used in [33] to differentiate scanning behavior of
participants over stimulus images. It is a very detailed work on studying viewing patterns of users
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looking at natural scene images by applying scanpath comparison metrics like string edit distance,
sample based, linear distance etc. on eye tracking data. Other innovative gaze data representations
can be found in [34,35] and a popular open source gaze data analyzer is described in [36].

The above literature survey shows that a wide range of state-of-the-art methods for gaze data
analysis and techniques for visualization are currently present in gaze research. However, it can be seen
that these methods are mostly directed towards exploration of eye movement characteristics (such as
speed, direction and duration), understanding its relation to human behavior [37] such as attention,
cognitive load assessment, regions and sequence of interests [38] or studying visual saliency [39].
No visualization work is found which is dedicated towards evaluation of eye trackers themselves,
or studying the data characteristics of eye trackers under variable operating conditions.

2.3. Requirement of Well-Defined Accuracy Metrics and Performance Visualization Tools in Eye Gaze Research:
Contributions in This Work

It is observed that currently there is a lack of well-defined metrics for comprehensive evaluation
of eye trackers and standard open source visualization methods for understanding their performance
characteristics are also not available. Keeping these in mind, this paper puts forward some effective
solutions for current and future gaze researchers for complete characterization of their eye tracking
devices. The contribution in this paper includes the development and description of a set of accuracy
metrics and visualization methods, and a software user interface for accessing these to produce and
save results, with all of these being meant for use on data from any generic eye/gaze tracker to
completely specify its performance.

Benefits of the metrics presented in this paper include: (a) derivable simply from eye gaze spatial
coordinates and corresponding ground truth data (b) provide quantitative measures of an eye tracker’s
performance and therefore can be used to compare multiple eye tracking systems and algorithms
(c) can help to estimate impact of operating conditions on eye tracking data (d) can be adapted
to different computing systems, display sizes and resolutions (e) may be used irrespective of eye
tracking algorithm and hardware (f) reveal specific trends in gaze data which indicate ways to improve
tracking performance.

With the proposed visualization methods, one may: (a) have a quick look at an eye tracker’s
data characteristics without going deeper into the tracking system/algorithm (b) visually compare
tracking performance and data quality of multiple eye trackers (c) present volumes of experimental
data in single or few figures. With the graphical user interface named GazeVisual developed in this
work, which is described in more detail in later sections of the paper, a generic user of any gaze based
application may implement all the metrics and visualization functions described in this work on their
gaze data without going into details of source code. Also, owing to the open source nature of the
software, it may be adapted by eye gaze researchers to suit their individual research purposes, while
advanced programmers may also contribute towards its functional extensions.

3. Experimental Methodology

3.1. Experimental Setup and Workflow

Eye tracking experiments are performed on desktop and tablet platforms for gaze data collection.
The setup details are provided in Table 2 and comprises of a remote eye-tracker mounted on the screen
of a desktop or a tablet device, which display a visual stimulus interface (UI). In the UI, a moving dot
sequentially traces a grid of (5× 3) locations over the display screen as shown in Figure 2a (it shows the
static view of the screen locations traced by the dot). The UI dot radius is 10 pixels and it stops at each
location for 3 s before moving on to the next. The angular extent of the UI stimulus grid is 30 degrees
of visual angle at 45 cm distance. The UI is synchronized with the eye tracker to collect gaze data
during an experimental session. The locations traced by the dot are henceforth called areas of interest
or AOIs whose on-screen positions are known in pixel coordinates. The collected data comprises of
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a participant’s gaze coordinates on the display and corresponding time stamps as estimated by the
tracker, while AOI locations form the ground truth. All data are stored in comma separated values
(CSV) files.

Experiments are done by positioning users in front of a computer screen mounted with the tracker
while their head is fixed with a chin rest. During the experiments, the UI is run on the desktop or tablet
screen and users are asked to follow the moving dot as it moves. This ensures that the user’s fixation
distance is closest to stimuli locations. The eye tracker calibration uses 9 points and the calibration
stimulus comprises of dots appearing at the corners, top and bottom locations of the display. The AOI
stimulus dot size is comparable to the eye tracker calibration stimulus dot. After the calibration
procedure, the calibration quality is validated using a validation procedure provided by the eye tracker
software, and for poor calibration, the process is repeated.
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Figure 2. (a) Shows the layout of the stimulus interface (UI) with AOIs (circles) where a user has to
look during data collection. (b) Shows the experiment flowchart for data collection.

A typical experimental workflow is shown in Figure 2b. The procedure followed during one
complete experimental session is presented in the top three blocks. After completion of each session,
certain system or user parameter is changed, such as registering a new user, varying user distance or
head pose, and then the experimental sessions are repeated with the new condition. Outcome of the
experiments is the collected gaze dataset (block on bottom right corner) which is then analyzed and
used for development of metrics and visualizations for performance evaluation of the eye tracker.

Table 2. Experimental setup details.

Eye Tracker
and UI setup Details

Display and
Hardware

Characteristics
Details Experimental

Variables

Tracker type Desktop based, NIR
LEDs + 1 Camera, 3 ps Screen Size Desktop: 22 inch

Tablet: 10.1 inch
Single user,

multiple user

Calibration 6 point Screen Resolution Desktop: 1680 × 1050
Tablet: 1920 × 1200

Fixed and variable
user distance

Tolerance

Maximum user
distance: 80 cm,

spectacles allowed,
chin-rest used

Screen properties

Desktop: 21.5 inch diagonal,
width × height = 18.5” × 11.5”

Tablet: 10.1 inch diagonal,
width × height = 8.5” × 5.5”

Fixed and variable
head pose

User interface 15 AOI locations, AOI
radius: 10 pixels

Pixel sizes of desktop
and tablet screens

Desktop: 0.275 mm
Tablet: 0.113 mm

Screen resolution
and pixel size

Eye data type
Fixation, AOI duration:

3 s, blinks allowed
between AOIs

Hardware details for
desktop and tablet

Desktop: Core i7, 3.6 GHz,
16 GB ram

Tablet: Intel Atom X5,
1.44 GHz,4 GB ram

Platform
orientation
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3.2. Setup Coordinate System and Eye Movements

Figure 3a,b show the experimental environment, while Figure 3c explains the setup coordinate
system in which gaze data is collected during experiments. The display screen is the area used to show
the stimulus points from both the UI and tracker calibration routines. The display coordinate system
is aligned with the display of the desktop or tablet used in this work and its origin is the upper left
corner of the display screen. The eye tracker coordinate system has its origin at the center of the frontal
surface of the eye tracker which is aligned with the center of the display screen. The tracker x-axis
points horizontally towards the user’s right, the y-axis points vertically towards the user’s up and the
z-axis points towards the user, perpendicular to the front surface of the eye tracker. The gaze data
comprise of eye locations of a user tracked by the eye tracker and mapped into the 2D coordinates of
the display screen. The gaze x, y data of user eye locations using this coordinate system has (0,0) at
the display screen center and z data represents the user distance from the tracker starting from 0 at
the tracker.

Sensors 2018, 18, x 7 of 34 

 

x-axis points horizontally towards the user’s right, the y-axis points vertically towards the user’s up 

and the z-axis points towards the user, perpendicular to the front surface of the eye tracker. The gaze 

data comprise of eye locations of a user tracked by the eye tracker and mapped into the 2D 

coordinates of the display screen. The gaze x, y data of user eye locations using this coordinate system 

has (0,0) at the display screen center and z data represents the user distance from the tracker starting 

from 0 at the tracker. 

Describing the kinematics of the eye requires the definition of reference positions and coordinate 

systems. Primary position of the eye is one such reference and defined as the position the eye assumes 

when the subject is looking straight ahead, while the head is kept upright. Movements of the eye 

around the primary position may be defined using several coordinate systems such as Fick’s, 

Helmholtz and Euler [40]. Out of these, in this work, the Fick’s coordinate system is assumed for 

describing eye movements along with the Listing’s plane (Figure 3d). The axes of Fick have a head-

fixed vertical axis and eye-fixed horizontal axis [41]. In the Fick’s axes, the x-axis is the transverse axis 

passing through the center of the eye at the equator and vertical rotations of the eye occur about it. 

The y-axis passes through the pupil and torsional rotations occur about this axis. The z-axis is a 

vertical axis; and horizontal rotations occur about this. Listing’s equatorial plane contains the center 

of eye rotation and the x and z axes while the y-axis is perpendicular to it. Eye-fixed reference frames 

as the Fick’s axes [42] are similar to mechanical mounting system like gimbals where one axis is for 

panning left or right (yaw or horizontal axis) and one for tilting up or down (pitch or vertical axis). 

Torsional movements of the eye are not considered in this work.  

  
(a) (b) 

 
 

(c) (d) 

Figure 3. The figure on top left (a) shows the eye tracker under test mounted on a desktop computer 

display along with a participant seated in front of it (desktop screen shows the AOI layout in static 

form). (b) Shows a tablet mounted with the eye tracker using the same UI and experimental workflow 

as that used for the desktop. (c) Shows the display and eye tracker coordinate systems for this work 

and (d) shows the eye movement coordinate systems with Listing’s plane and Fick’s axes. 

Figure 3. The figure on top left (a) shows the eye tracker under test mounted on a desktop computer
display along with a participant seated in front of it (desktop screen shows the AOI layout in static
form). (b) Shows a tablet mounted with the eye tracker using the same UI and experimental workflow
as that used for the desktop. (c) Shows the display and eye tracker coordinate systems for this work
and (d) shows the eye movement coordinate systems with Listing’s plane and Fick’s axes.

Describing the kinematics of the eye requires the definition of reference positions and coordinate
systems. Primary position of the eye is one such reference and defined as the position the eye assumes
when the subject is looking straight ahead, while the head is kept upright. Movements of the eye
around the primary position may be defined using several coordinate systems such as Fick’s, Helmholtz
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and Euler [40]. Out of these, in this work, the Fick’s coordinate system is assumed for describing eye
movements along with the Listing’s plane (Figure 3d). The axes of Fick have a head-fixed vertical
axis and eye-fixed horizontal axis [41]. In the Fick’s axes, the x-axis is the transverse axis passing
through the center of the eye at the equator and vertical rotations of the eye occur about it. The y-axis
passes through the pupil and torsional rotations occur about this axis. The z-axis is a vertical axis; and
horizontal rotations occur about this. Listing’s equatorial plane contains the center of eye rotation and
the x and z axes while the y-axis is perpendicular to it. Eye-fixed reference frames as the Fick’s axes [42]
are similar to mechanical mounting system like gimbals where one axis is for panning left or right
(yaw or horizontal axis) and one for tilting up or down (pitch or vertical axis). Torsional movements of
the eye are not considered in this work.

3.3. Eye Tracking Experiments Conducted for the Development of Gaze Accuracy Metrics and Visual Tools

The purpose of the experiments described in this work is to collect eye tracking data under
variable operating conditions that may affect an eye tracker working on a desktop or tablet platform.
The collected data is used to implement and test evaluation metrics and visualizations and described
in Sections 4 and 5. The following experiments were conducted in this work. (a) User distance
variability experiments: In these experiments, gaze data is collected with user-eye tracker distances of
45, 60 and 75 cm. The terminologies “UD45”, “UD60”, “UD75” are used in this paper for referring
to experiments/datasets obtained from the tracker at the distances of 45, 60 and 75 cm, respectively.
(b) Head-pose variability experiments: This is relevant to studying the effect of a user’s head pose
on gaze tracking accuracy of the eye tracker. By head pose, the position of a user’s head in 3D
space in terms of roll, pitch and yaw (RPY) angles is meant here. During the experiments, a user
is seated at a fixed distance (60 cm) from the tracker and is asked to vary their head position to
different rotation angles (head pose in roll, pitch, yaw) while looking at the UI on the display screen
and their gaze is tracked on the UI. The head position is also tracked simultaneously using a head
pose model that measures head pose angles in RPY values with 1 degree of accuracy. Gaze tracking
errors corresponding to different head-poses are then analyzed (c) Platform orientation experiments:
Eye tracking on dynamic platforms like tablets face some unique challenges since their positions vary
frequently and result in variable orientation of eye trackers which are mounted with the tablet screen.
To quantize the impact of tracker orientation on gaze data, experiments are performed in which the
orientation of the tablet device mounted with the eye tracker is varied with respect to the user at fixed
platform roll, pitch and yaw angles. Eye tracking data is collected for each tablet orientation with the
same test UI as used for the desktop system. The objective of these experiments is to study impact of
platform orientation variations on eye tracking data characteristics.

4. Deriving Evaluation Metrics for Eye Tracking Devices and Algorithms

Eye tracking accuracy is typically measured in terms of the difference between the real stimuli
positions and the corresponding measured gaze positions and expressed as angular, pixel or distance
measures. However, accuracy expressed in this way provides little information about detailed tracker
characteristics and impact of variable operating conditions. Therefore, a set of metrics are derived and
presented here, which aim at describing the quality of eye gaze data by taking the characteristics of
a gaze tracking system into consideration. The metrics derived in this work are classified into four
categories, namely angular accuracy metrics, statistical metrics, sensitivity metrics and a new metric
based on Receiver Operating Characteristic (ROC), which are described in the subsections below.

4.1. Angular Accuracy Metrics

4.1.1. Gaze Angular Accuracy

Different research groups working in eye gaze most often use independent accuracy metrics or
do not describe their accuracy calculation in detail. In order to facilitate the interpretation of a generic

121



Sensors 2018, 18, 3151 9 of 35

eye tracker’s specifications, as well as to provide an objective way to compare different systems, it is
important that the same accuracy metrics are used by everyone and each metric be clearly described.
That is, eye tracking data must be analyzed in a standard and consistent way. The purpose of this
section and its sub-sections is to describe such a common set of calculations, which may be used to
measure and compare the accuracy of eye trackers by using only their raw data outputs (and ground
truth locations), irrespective of their tracking algorithm or platform.

Method:

Starting from raw gaze x,y pixel coordinates of the left and right eye (Xleft, Yleft & Xright, Yright
respectively) obtained from the tracker, the angular accuracy of gaze tracking is derived below [43]:

Gaze Point Coordinates in Pixels:

GazeX = mean
(X left+ Xright

2

)
, GazeY = mean

( Yleft + Yright

2

)
(1)

Gaze Position in mm of on Screen Distance:

XPos (mm) = µ * GazeX, YPos (mm) = µ * GazeY (2)

where µ is the pixel size of the particular monitor which is calculated depending on the monitor screen
dimensions and pixel resolution. The calculation for the factor µ is shown as: µ = dm/dp where dp is
the screen diagonal size in pixels as obtained from Equation (3) below, wp is the screen width in pixels,
hp is the screen height in pixels and dm is the diagonal size in mm (converted from inches):

dp =
√

w2
p + h2

p (3)

For example, when our experiments were performed on a 22 inch (diagonal) monitor operating at
1680 × 1080 pixel resolution, we had dp = 1981, dm = 558.8 and µ = 0.28.

On Screen Distance (OSD):

When the origin of the gaze coordinate system is at (xpixels, ypixels), the on-screen distance of a
user’s gaze point is the distance between the origin and a certain gaze point. It is given by Equation (4),
with the offset being defined as the distance between the tracker sensor and lower edge of display
screen. In our case, the tracker is attached directly below the screens so the offset value is 0 and
xpixels,ypixels = (0,0), i.e., origin is the center of the screen:

OSD (mm) = µ

√√√√((GazeX −
xpixels

2

)2
+

(
ypixels − GazeY +

offset
pixelsize

)2
)

(4)

Gaze Angle Relative to the Eyes:

Using trigonometry, the gaze angle of a point on screen relative to a user’s eyes is calculated as:

Gaze angle (θ) = tan−1(OSD/Z) (5)

where Z is the distance of the eye from the screen. The distance between the eye and the gaze-point
(mentioned as EGP) is estimated from 3D Cartesian geometry as:

EGP (mm) =

√
((GazeX )2 + ( GazeY)2 + (Z)2) (6)
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Pixel Distance between Ground Truth and Estimated Gaze Point (pix_dist):

As described in Section 3, the AOI locations (x, y coordinates) displayed on the screen during the
experiment form the ground truth for data collections. Using Cartesian geometry, the shift between
the ground truth coordinates (GT.X, GT.Y) and tracked gaze locations (GazeX, GazeY) is given by:

pix_dist (pixels) = √((GT.X − GazeX)2 + (GT.Y − GazeY)2) (7)

Angular Accuracy:

The gaze estimation accuracy (or error as referred in this paper) of an eye tracker is expressed in
absolute units (degrees) as the angular deviation between ground truth and estimated gaze locations.
Using the estimates of gaze angle, pixel distance and the distance between eye and the gaze point from
Equations (5)–(7), the formula for estimating gaze tracking accuracy may be calculated as:

(µ ∗ pix_dist ∗ cos(mean(θ))2)/EGP (8)

Example Results:

Using these equations and data from our experiments, the mean angular accuracy of the eye
tracker used in this work is found to be between 3 to 5 degrees for a user tracker distance of 45 cm,
2 degrees for a distance of 60 cm and 0.9 to 2 degrees for 75 cm respectively. The results from the above
calculations are also used to estimate gaze error throughout this paper to compute other gaze data
metrics and implement visualizations.

4.1.2. Gaze Yaw and Pitch Angular Accuracies

The calculations in Section 4.1.1 indicate user gaze angular accuracy by considering a primary eye
position. The eye also undergoes rotational motion which leads to different eye orientations relative to
the head. The two eye rotation variables are gaze yaw and pitch, where the yaw variation corresponds
to left-right and pitch variation corresponds to top-bottom eye movements.

Method:

The gaze yaw and pitch angles are derived as follows:

Gaze pitch(θpitch) = tan−1(GazeY/Z), Gaze yaw (θyaw) = tan−1(GazeX/Z) (9)

where, GazeX, GazeY and Z are defined above in Equations (1), (2) and (5). To estimate the gaze yaw
and pitch errors from the experiments, the ground truth yaw and pitch angles are first calculated using
the position of the AOI dots as they appear and move on the screen. The ground truth pitch and yaw
value for each AOI dot with screen coordinates (AOIx, AOIy) are given by:

AOI pitch = tan−1(AOIy/Z), AOI yaw = tan−1(AOIx/Z) (10)

Example Results:

Using Equations (9) and (10), the gaze yaw and pitch angle values along with ground truth yaw
and pitch values for one user gaze data during one experimental session are plotted against time
in Figure 4a,b, respectively. In Figure 4a, the blue line represents the ground truth yaw angles, as
calculated from Equation (10). Each step in the curve represents a different AOI position on the screen.
The black line shows the variation of a user’s gaze yaw angle with time as estimated by Equation (9).
In Figure 4b, ground truth AOI pitch angles are shown in blue and estimated gaze pitch angles in black.
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Figure 4. (a) On the left shows the gaze yaw angle variations (overlaid with ground truth) with time as
recorded for one person during one complete experimental session (i.e., time starts when the user starts
gazing at AOI locations appearing on the screen and stops at the last AOI). (b) On the right shows the
gaze pitch (and ground truth) variations during one session.

The maximum and minimum (±) gaze yaw and pitch values for 5 users seated at 45 cm from
our tracker were found to be ±22 degrees and ±12 degrees respectively. Gaze pitch errors are seen
to be higher in magnitude than gaze yaw error values, and are about 4.5 degrees at 45 cm while yaw
error is about 2.6 degrees. Thus, gaze tracking errors are not just scalar values but also have directional
components which are not reflected if only mean error values are considered.

4.2. Statistical Metrics

4.2.1. Statistical Measures of Eye Tracking Performance

Gaze experiments are usually performed on a group of subjects with group sizes ranging between
5–15 or even 20–30 participants for improving test reliability. For analyzing gaze data from the
numerous subjects, relevant statistical parameters on the collected data must be evaluated to draw
significant inferences on collective data characteristics and insight into error patterns.

Method:

The following statistical parameters were used to evaluate our eye tracking system:

Mean (ϕ) : 1/n
n

∑
i=1

xi, Z score (σ) : (xi − ϕ)/σ, 95% confidence : ϕ ± 1.96σ/
√

n

where σ is the standard deviation and n is the number of data points. The 95% confidence interval
signifies the certainty that the mean error value would lie within the upper and lower bound of this
interval. A larger confidence interval indicates higher variability in the data, whereas a small interval
indicates more consistency of results. The Z score indicates the presence of unusual data points within
the dataset, as gaze data quality may vary from person to person. It might be noted that typical
research works in eye gaze rarely analyze their results using detailed statistical methods other than
specifying the mean error values.

Example Results:

Examples of statistical analysis on gaze data are shown in Table 3 and Figure 5a–c. Data collected
from user distances experiments (for 45 and 75 cm) are used for analysis. Implementing the metrics
on gaze data reveals some important characteristics of the eye tracker under the impact of variable
user distance conditions. It is seen that maximum gaze angle and mean gaze errors are higher when
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users are closer to the tracker (at 45 cm) than when they are further away (75 cm). Also, the confidence
intervals are lower in UD75 than in UD45 experimental data, which means that error variability is
more at lower user-tracker distances. Use of statistical metrics may therefore help to know how to get
optimal good accuracy and better consistency of results from any given tracker.

Table 3. Gaze data error statistics for two user distances, data from same five users.

User Distance = 45 cm Max Gaze Angle
(degree)

Mean Error
(degree)

95% Confidence
Interval

User 1 34.24 3.63 3.54–3.71
User 2 32.83 3.96 3.88–4.04
User 3 39.04 3.42 3.35–3.49
User 4 32.99 4.61 4.51–4.70
User 5 34.69 3.52 3.44–3.59

User Distance = 75 cm Max Gaze Angle
(degree)

Mean Error
(degree)

95% Confidence
Interval

User 1 22.97 0.91 0.85–0.96
User 2 23.36 0.98 0.93–1.02
User 3 24.28 0.94 0.89–0.99
User 4 22.47 1.84 1.79–1.89
User 5 23.36 2.08 2.02–2.12

A box plot is a valuable method to compare several error statistical attributes from multiple
experimental datasets [44]. A box plot of the data from the three user distance experiments (45, 60,
75 cm) is shown in Figure 5a. It presents the statistical result summary, i.e., minimum, first quartile,
median, third quartile, and maximum error values for the UD45, UD60 and UD75 experiments in a
single figure. In each box the minimum and maximum data values represent the endpoints of the
vertical line and height of the box shows interquartile range. A small interquartile range indicates that
data is centered while a larger range means that the data is more scattered. The result of using box plot
on UD45 and UD75 data indicates that UD45 dataset is more scattered in nature than UD75 data, and
the error magnitudes are also higher. Another statistical metric, called Z scores analysis is done on
UD45 gaze data to estimate the level of scatter in data points at different AOI positions and is shown
in Figure 5c, which helps to reveal person-to-person variation of gaze data properties.
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=
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𝐽
 

(11) 

Figure 5. These plots demonstrate the use of statistical metrics to evaluate data from eye tracking
experiment. (a) Shows a box plot of gaze data from three experiments UD45, UD60, UD75. (b) Shows
the variation of ground truth angular positions of the AOIs during one experimental session done at
45 cm, as a function of time. (c) Shows the corresponding Z score variations of gaze angles for 5 users
(P1–P5). The Z score represents how many standard deviations each data point is away from the mean
and therefore shows the number of unusual points or outliers in the dataset. (c) Shows that level of
gaze data scatter varies from person to person for same experimental conditions.
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4.2.2. Histogram Based Metrics

To study the similarity between data from different eye trackers, experiments or comparison of
data from a test experiment with a reference dataset, certain data similarity metrics based on histograms
can be used. Such metrics for histogram comparison include correlation [45], intersection [46] and
Bhattacharya distance [47].

Method:

If H1 and H2 are the histograms gaze errors from two datasets from the experiments, then d(H1,
H2) is the histogram comparison metric and N is bin size. For the correlation and intersection measure,
higher the result, the more accurate is the match whereas for Bhattacharya distances, lower the result,
the better the match. The expressions for three different similarity measures for comparing two
histograms are given below:

Correlation : d(H1, H2) =
∑I (H1(I) − H1)(H2(I) − H2)√

∑I (H1(I) − H1) ∑I (H2(I) − H2)
where Hk =

1
N ∑J HK(J) (11)

Intersection : d(H1, H2) = ∑I min(H1(I), H2(I)) (12)

Bhattacharya distance : d(H1, H2) =

√√√√1− 1√
H1H2N2

∑I (H1(I) − H2(I)) (13)

Example Results:

Using these three metrics, the similarity measures between the gaze error data from a pair-wise
choice of the user distance experiments (e.g., UD45-UD60, UD45-UD75, total 6 pairs) are calculated
and presented below in Table 4. The values in each cell are the results obtained from using the above
Equations (11)–(13) on a pair of histograms calculated on gaze error data from the experiments. It is
observed that match between data from UD45 and UD75 experiments is low. Results from UD60 and
UD75 experiments have better correspondence. This metric could be especially useful to compare data
from multiple eye trackers captured under a wide range of operating conditions, in which it is difficult
to assess data characteristics or correspondence by looking at just the error magnitudes.

Table 4. Histogram comparison results between different user distance datasets.

Similarity Metric
Datasets Taken at User Distances 45, 60, 75 cm

45–45 45–60 45–75 60–60 60–75 75–75

Correlation 1.0 0.31327 0.18693 1.0 0.61210 1.0
Intersection 2457.07 1131.38 970.69 2502.46 1565.38 2514.01

Bhattacharyya 0.0 0.47526 0.52651 8.10 × 10−10 0.34091 8.10 × 10−10

4.3. Sensitivity Metrics

Gaze estimation systems operating in real life face several non-ideal conditions like changes in user
head pose, user distance, variation in display size and resolution and if eye tracking is done on a mobile
platform, then variation in platform orientation as well. Currently, there exist no quantitative metric to
indicate how the accuracy of an eye tracker may be affected due to presence of each of these factors.
Therefore, by running experiments on these factors (head pose, user distance, platform orientation
variations, display characteristics) and using the collected data, several gaze-error-sensitivity metrics
are derived, tested and presented in the subsections below.
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4.3.1. Head Pose Sensitivity

Head pose sensitivity analysis is done in this work to determine how the variations of a user’s head
pose may affect the gaze tracking accuracy of a tracker under test. This is because the manufacturers
or designers building the eye trackers do not quantitatively specify how much the tracking accuracy
may deteriorate if user head pose is varied. For deriving this metric, data is used from our head-pose
variability experiments as described in Section 3 above.

Method:

The head pose sensitivity for head pose variation in roll, pitch, yaw (r, p, y) angles is defined as:

Sr =
∂Er

∂Hr
, Sp =

∂Ep

∂Hp
, Sy =

∂Ey

∂Hy
(14)

where Sr, Sp and Sy are the sensitivities with respect to head pose roll, pitch and yaw angles respectively.
Hr, Hp and Hy are the head pose angles in roll, pitch and yaw directions and Er, Ep and Ey are the
corresponding gaze estimation errors (in degrees). The plot of gaze error vs. head pose angles is shown
in Figure 6a and the head-pose sensitivity plots for head pose changes in roll, pitch and yaw directions
are shown in Figure 6b.

Example Results:

From the head pose sensitivity experiments, it is seen that lowest errors occur for frontal head
positions and sensitivity increases as magnitude of the head pose angles increases. Figure 6a also
shows that the roll and pitch component of head motion affects gaze errors more strongly than yaw
movements. Overall this metric helps to show that the head pose tolerance of the given eye tracker
is quite low, and to achieve reliable gaze tracking, a user head movements must be constrained, and
therefore the use of chin rest is essential.
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Figure 6. (a) Shows the variation of gaze estimation error as a function of head pose angles in roll, pitch,
yaw directions. (b) Shows the variation of head pose sensitivity as a function of head pose. These plots
help to know how much head movement is allowed to keep gaze error within limits.

4.3.2. Platform Orientation Sensitivity

This is a new kind of study in which the impact of platform orientation on the accuracy of an eye
tracker mounted on a tablet platform is observed. This is a vital analysis for eye tracking and gaze
applications on handheld devices like smartphones and tablets, which face reliability issues due to
the highly dynamic nature of these devices. However, the quantitative impact of device pose and its
variation on eye tracking applications running on such platforms has not been explored yet.
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Method:

For deriving this metric, the eye tracking experiment is run on a tablet mounted with the tracker
and the platform orientation (in roll, pitch yaw angles) is altered. Some of the tablet pose variations
(variation in roll, pitch and yaw angles with respect to the neutral frontal position of the tablet where
roll, pitch, yaw = 0) for the eye tracking study are shown in Figure 7a. The tablet is mounted on a
tripod along with the eye tracker and its orientations are changed. Then the same UI and workflow as
shown in Figure 1 is used with participants to collect gaze data from the tracker and gaze errors are
estimated for each platform position. The platform motion sensitivity metric is shown below:

Spr =
∂Epr

∂Pr
, Spp =

∂Epp

∂Pp
, Spy =

∂Epy

∂Py
(15)

where Spr, Spp and Spy are the platform orientation sensitivities with respect to platform orientation
roll, pitch and yaw angles respectively. Pr, Pp and Py are the platform pose angles in roll, pitch and
yaw directions and Epr, Epp and Epy are the corresponding gaze estimation errors (in degrees).
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Figure 7. (a) Shows the different orientations of the tablet mounted with the eye tracker in neutral
position (top left) and (clockwise from top) roll, pitch and yaw variations of the tablet+ tracker setup.
(b) Shows the gaze error sensitivity to orientations of the tablet when eye tracking is performed on it.

Example Results:

It is seen that for tablets, the gaze errors are most sensitive to pitch angle variations of the tablet +
tracker pose (rotation about Y axis) while roll and yaw variations do not have appreciable effect.

4.3.3. Gaze Tracking Efficiency (Gaze Error Sensitivity to User Distance and Gaze Angle)

This metric is relevant to studying the impact of user distance and viewing angle on gaze error.
Data from UD 45, UD60 and UD75 experiments are used to derive and test this metric.

Method:

Gaze data was collected from 9 participants (named P1 to P9) at 3 different user tracker distances
(45, 60, 75 cm) for each person. The gaze estimation error vs. user gaze angle is plotted in Figure 8a
below. An efficiency metric essentially gives an idea about how to obtain maximum output for given
range of inputs. In this case, for a certain user distance, the gaze tracking efficiency measure is given by:

(Max gaze angle)distance/(mean error)distance (16)

The gaze angles are estimated by Equation (5) above and interpolated for the user distances.
The mean error here is the averaged gaze estimation error for a particular user for a certain user-tracker
distance. Gaze efficiency for the different user distances is plotted in Figure 8b below.
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Example Results:
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Figure 8. (a) On the left shows the variation of gaze estimation error (estimated using Equation (8))
with user-tracker distance for 9 users (Each line shows error data for one user). (b) Shows the gaze
tracking efficiency varying with user distance from tracker, estimated using Equation (16). (b) Shows
that for most users, the tracking efficiency reaches a peak at a distance of 65–75 cm from the tracker.
This indicates the best operating distance for the tracker at which gaze errors are minimum.

In a remote gaze tracking setup, it is not known where the users should be ideally positioned
in front of the tracker to achieve best results. The gaze tracking efficiency metric defined here may
be useful to quantitatively estimate for which user distance and viewing angles the best tracking
accuracy can be obtained for a given tracker for a range of user-tracker distances. Figure 8 shows
that gaze tracking errors reduce (and efficiency increases) as the user distance from the eye tracker
increases until a certain value, after which tracking errors show an increasing trend, with the best
gaze tracking performance achieved between the distances 65–70 cm for the given tracker. This can be
explained, as above a user-tracker distance of 70 cm, the errors increase (and tracking is ultimately lost
around 80 cm) because user eyes are poorly detected by the eye tracker cameras. The possible reason
for having worse errors at closer distances for the remote eye tracker could be explained by the fact
that at shorter distances or larger viewing angles the eye tracker may not detect the eye pupil center
accurately because the eye rotation angles are large. Similar results have been reported in [48,49].
However, for head-mounted eye trackers that have a scene camera, the gaze estimation errors may
actually increase with user distance due to the influence of parallax errors which happens due to the
spatial offset between the eye and the scene camera [50].

It may be noted that the exact dependency of gaze tracking errors on user distance for every
tracker may be different depending on the tracker design or components (e.g., camera quality), and so
this metric needs to be evaluated quantitatively for each tracker to obtain their best performance.

4.3.4. Error Spatial Density (Sensitivity to Spatial Locations of Targets on the Display)

Error magnitudes or statistics do not provide any idea about the actual spatial dependence of gaze
error values on the screen where a user’s gaze is tracked. It cannot be understood if the error is uniform
over the screen area or some parts of the screen are prone to more errors because of variability in the
users’ visual acuity or due to display properties of the screen being used. For this purpose, a spatial
error density metric is derived to represent the area wise distribution of gaze errors on the screen.
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Method:

The frontal display screen used during the experiments is divided into rectangular blocks around
each AOI or stimulus target on screen. The error spatial density at each AOI is given by:(

∑m
i=1

Ei
m

(µ ∗ number of x pixels) ∗ (µ ∗ number of y pixels)

)
AOI

(17)

where, m is the number of gaze data points recorded by the tracker around each AOI (m ~90) while a
user looks at them during an experiment session, Ei is the error at each data point estimated using
Equation (8). The numerator therefore represents the mean error around each AOI (in degrees) and
denominator is the total area of the rectangular block containing the AOI.

Example Results:

This metric is further discussed along with visualization in Section 5, where the results from
this metric are depicted as a heat-map of gaze error densities plotted around each AOI on the entire
monitor screen area.

4.4. Gaze Error Analysis with Respect to Visual Eccentricity

The location of gaze targets on the display screen may have a significant effect on the quality
of gaze data obtained from an eye tracker. Visual performance of human eye is improved (fast and
accurate) when a stimulus target is presented more centrally to the fovea, and worsens when the target
is further in the periphery of the retina. Accordingly, a given tracker may show good accuracy in lower
visual eccentricity areas and worse performance in high eccentricity areas. Therefore, measuring gaze
error characteristics with respect to stimulus eccentricity is valuable in specifying the level of gaze
errors under various operating conditions for a given tracker.

Method:

For this, our stimulus grid shown in Figure 2a was used to create an eccentricity map for the
stimuli points and gaze error was analyzed separately for each eccentricity region. Figure 9a below
shows our stimulus grid with its AOI (or stimuli) locations named AOI-1 to AOI-15. Figure 9b
shows the rectangular stimulus grid superimposed with ellipses corresponding to the eccentricity of
different stimuli locations. The parametric equation for ellipses centered around (0,0) may be stated as
Equation (18) below, where a is the length of its semi-major axis and b is the length of its semi-minor
axis and θ ranges from 0 to 2π:

x = a cos(θ), y = b sin(θ) (18)

In our case, the two elliptical regions R1 and R2 in Figure 9b were obtained by converting AOI
locations of the rectangular grid of Figure 9a to respective polar coordinates using Equation (18).
Coordinates of AOI numbers 3, 7, 9, 13 form the central (dark blue) ellipse which corresponds to
lowest visual angles while AOI numbers 6, 10 fall in the higher visual angle regions of the light blue
ellipse. AOIs outside the larger blue ellipse (e.g., AOI numbers 1, 5, 11, 15) are regions of maximum
visual eccentricity. This way the rectangular stimuli area is split into different regions corresponding
to different visual eccentricity values and gaze errors in each of these areas are separately analyzed.
The magnitudes of visual eccentricities for each region are shown through the colormap of Figure 9b,
where dark colors represent a lower visual angle and vice versa. For studying the impact of visual
eccentricity on gaze errors, data from UD45, UD 60 and UD 75 experiments are taken and an example
gaze error map for the eccentricity regions is presented in Figure 9c below. Table 5 shows the results
comprising of visual angles corresponding to three eccentricity regions of the screen and corresponding
gaze error values for 4 participants, using data from three experiments (UD45, 60, 75).
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 User1 15.47 2.65 12.5 1.28 10.04 1.06 

 User2 20.32 2.19 12.99 0.8 9.98 1.12 

 User3 15.95 2.16 13.31 1.27 10.14 0.96 

 User4 15.8 2.32 12.75 1.04 10.19 0.91 
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 User2 26.39 2.37 21.01 1.08 16.90 0.90 

 User3 24.83 3.9 20.18 1.91 17.16 0.71 
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 User1 32.10 4.58 26.08 2.14 21.70 1.15 

 User2 32.72 3.96 29.46 1.24 21.94 0.91 

 User3 32.27 4.41 25.40 2.82 21.69 1.16 
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Table 5 above shows gaze error results from our UD45-75 experiments for four users, when the 

stimulus AOIs are split into different visual eccentricity regions. The table shows several significant 

gaze error characteristics when gaze data is analyzed with respect to visual eccentricity. Firstly it is 

seen that for all user distances, the Region 3 has the highest visual angles and also correspond to the 

high error levels for any participant. Therefore Region 3 which comprises of screen corners is not 

Figure 9. (a) The rectangular stimulus grid used in our experiments showing AOIs and AOI
numbers. (b) Shows an eccentricity map constructed on the same stimulus grid, using data from
UD75 experiments as an example. The dark blue inner ellipse region R1 has lowest visual eccentricity
(11 degrees). The light blue larger ellipse region R2 has higher values (18 degrees) and the region
outside R2 (region R3) has highest eccentricity (above 22 degrees). (c) This figure shows a polar plot of
gaze error levels mapped with respect to visual eccentricity values (varying between 5 to 30 degrees)
on the display screen, using data from UD45 experiment. It is seen that the gaze errors at the center
are minimum and they increase to higher values with increasing visual eccentricities. The colorbar
represents gaze error levels starting from low (blue) to high (red). (d) Shows the variation of gaze
errors with visual eccentricity plotted using data from three user distances (45, 60, 75 cm). It is seen
that when the user is close to the screen, gaze errors are more sensitive to visual eccentricities, whereas
data for long user distances (e.g., UD 75) shows less sensitivity to eccentricities.
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Example Results and Discussion

Table 5. Gaze error analysis with respect to visual eccentricity, data from 4 users for 3 user distances.
Units of visual angles in columns 3, 5, 7 are in degrees.

Eccentricity
Region

User.
Number

Visual
Angles at

45 cm

Mean
Error

for 45 cm
(degrees)

Visual
Angles at

60 cm

Mean
Error

for 60 cm
(degrees)

Visual
Angles at

75 cm

Mean
Error

for 75 cm
(degrees)

R1
User1 15.47 2.65 12.5 1.28 10.04 1.06
User2 20.32 2.19 12.99 0.8 9.98 1.12
User3 15.95 2.16 13.31 1.27 10.14 0.96
User4 15.8 2.32 12.75 1.04 10.19 0.91

R2
User1 25.15 3.6 20.55 1.54 16.91 0.96
User2 26.39 2.37 21.01 1.08 16.90 0.90
User3 24.83 3.9 20.18 1.91 17.16 0.71
User4 25.19 3.57 20.13 1.96 16.99 0.88

R3
User1 32.10 4.58 26.08 2.14 21.70 1.15
User2 32.72 3.96 29.46 1.24 21.94 0.91
User3 32.27 4.41 25.40 2.82 21.69 1.16
User4 32.02 4.66 25.34 2.88 21.90 0.96

Table 5 above shows gaze error results from our UD45-75 experiments for four users, when the
stimulus AOIs are split into different visual eccentricity regions. The table shows several significant
gaze error characteristics when gaze data is analyzed with respect to visual eccentricity. Firstly it is seen
that for all user distances, the Region 3 has the highest visual angles and also correspond to the high
error levels for any participant. Therefore Region 3 which comprises of screen corners is not suitable
for reliable gaze tracking for the given tracker, whereas Region 1 (or central regions of low visual
angles) are more reliable. Secondly, it is seen that gaze errors at 75 cm distance are low and mostly
similar for all eccentricity regions for all users. On the other hand, errors at 45 and 60 cm distance are
strongly sensitive to stimulus eccentricity. This has the implication that at longer user-tracker distances
(75 cm), the entire screen area may be used for reliable gaze tracking, whereas if a user is positioned
closer (e.g., less than 60 cm), errors may increase sharply with stimulus eccentricities, and so the entire
screen area may not be usable. For such close user distances eye tracking has to be limited within
certain low eccentricity angles (e.g., within regions 1 or 2).

The variation of gaze error with visual eccentricity is shown in Figure 9c above where gaze errors
are interpolated and mapped to visual eccentricity values (starting with low values at the center to
larger values outwards). This plot is created using UD45 data. Figure 9d shows the sensitivity of
gaze error to visual eccentricity using data from three experiments (UD45, UD60, UD75). This plot
signifies that for data collected above 60 cm, tracking accuracy is more uniform over the screen area,
whereas for lower user distances, gaze errors are more sensitive to eccentricities. It may again be noted
that these are example results and each tracker will have its own error characteristics with respect
to eccentricities. Here the main aim is to present the eccentricity based tracker performance analysis
procedure and demonstrate its significance using collected data.

4.5. The ROC Metric: Diagnostic or Subjective Performance Evaluation of Eye Tracking Systems

For in-depth performance analysis of an eye tracker using its data, the concept of a subjective
performance evaluation metric rather than an objective one is introduced for the first time in this work.
Objective or absolute performance measures like angular accuracy are independent of any prevalent
criteria set by an observer while subjective performance measures may depend on specific accuracy
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thresholds set by the observer (observer is the person evaluating the system). With respect to eye
trackers, this means that the absolute accuracy values may not be sufficient to know if a tracker is good
or not, as a tracker may have different performance at different accuracy thresholds.

For example, if a specific gaze application needs a minimum angular accuracy of 1 degree, a gaze
tracker’s performance may be termed “bad” if there are a lot of data points where errors are higher
than 1 degree. However, for the same tracker, if the minimum required accuracy by the application
(or the accuracy threshold) is set to be 2 degrees, the performance may be called “good” if there are a
very few number of points where errors are higher than 2 degrees. In other words, the tracker can
track reliably if the accuracy threshold is set to 2 degrees, but will produce mostly errors if desired
accuracy level is set at 1 degree. Thus performance is subjective to the set error threshold. However,
there needs to be a method to know how a tracker would perform if these desired accuracy thresholds
are set and varied between high and low. Such a method is described below.

Method: The ROC (Receiver Operating Characteristic) Concept for Performance Evaluation

To estimate a tracker’s performance with respect to different accuracy thresholds, the concept
of ROC or Receiver Operating Characteristics [51,52] is implemented here using data from our
gaze tracking experiments. Traditionally, ROC has been used in several cross-disciplinary fields
like medicine [53] bio-informatics [54] and also computer vision for describing classification
performance [55]. In this work, the ROC is used in determining the performance of our tracker
when certain accuracy thresholds are set on its output data. This method proposed in this work is a
new and experimental study and such an approach for evaluating eye tracking systems is different
from any conventional analysis technique that has been done before. However, it opens up a novel
way to look at performance characterization of eye trackers and helps to assess a tracker’s usability.

Example Results: Implementation of Roc Concept for Subjective Evaluation

To estimate a tracker’s performance with respect to different accuracy thresholds, the ROC concept
is applied here. An ROC curve is plotted with the True Positive Rate (TPR) vs. False Positive Rate
(FPR). In order to estimate the values of the TPR and FPR, one needs to estimate the number of true
positives, true negatives, false positives and false negatives from the gaze tracker’s data.

For estimating the true positives and negatives, we follow the analogy of estimating ROC for
classifiers which need the Predicted values and Actual values. Starting with only raw error data for
each gaze data point, we define the predicted values with respect to pre-set error threshold (ET) and
actual values with respect to data mean M using the logic below:

The predicted value for a data point is positive if gaze error for that point > ET
The actual value for a data point is positive if gaze error for that point < M
The predicted value for a data point is negative if gaze error for that point < ET
The actual value for a data point is negative if gaze error for that point > M

The true positive (TP), true negative (TN), false positive (FP) and false negative (FN) values are
therefore obtained as shown below in Table 6:

Table 6. Estimating the values of TP, TN, FP and FN using gaze error threshold.

Variables Logic for Estimation

TP Logical AND (Gaze error > ET, gaze error ≤M)
FP Logical AND (Gaze error > ET, gaze error > M)
TN Logical AND (Gaze error < ET, gaze error > M)
FN Logical AND (Gaze error < ET, gaze error ≤M)
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Then, for constructing an ROC curve, the TPR and FPR values are defined as:

True Positive Rate =
TP

TP + FN
, False positive rate =

FP
FP + TN

(19)

To validate the proposed subjective performance evaluation principle, these equations are used to
plot the ROC curves below for six different preset threshold error values (ET) of 0.5, 1.0, 2.0, 3.0, 4.0,
5.0 degrees on each of two gaze datasets from UD45 and UD75 experiments. The plots below show the
effect of setting respective error thresholds (ET) to estimate TP, TN, FP, FN values and TPR and FPR
estimates using the logic described above, and the corresponding changes in characteristics of ROC
curves are clearly visible in the subsequent plots.

Explanation and Analysis of Results

Several error threshold values between 0.5 to 5 degrees are applied to construct the ROC curves.
The area under the ROC curve (called AUC) is computed for all the plots. It is seen that for UD45 data,
highest AUC values are obtained at error thresholds between 3 to 5 degrees. But the highest AUC
values for UD75 data are found between threshold values of 0.5–1.0 degree. The changing AUC values
for the two datasets, as seen from the Figure 10a–l indicate that for the UD45 data the probability of
achieving best performance lies between 3 to 5 degrees of gaze tracking accuracy, whereas for UD75
data, best achievable accuracy lies between 0.5–1.0 degrees. The threshold intervals can be made
even shorter (e.g., 0.5 degrees) to study corresponding variation of AUC values and determine best
obtainable accuracy from the eye tracker. Similar results are observed for data from 13 participants.
It may be noted that the data statistics computed on these two datasets (UD45 and UD75) and presented
in Sections 4.2.1 and 4.4 supports the ROC metric result. However, the benefit of the ROC technique is
that users can set and observe the effect of varying error thresholds and determine how to obtain best
performance from the tracker. They may also know if a certain tracker is suitable for them according to
the required error threshold for a specific application.
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4.6. Discussion

This section introduced and defined several new gaze data metrics and analysis procedures that
may reflect the all-round performance of a gaze estimation system by inspecting its data in great
details to reveal patterns that are not visible by just looking at simple average accuracy measures.
The methods described in this section use only the raw eye gaze data (x, y coordinates of tracked gaze
locations) and ground truth (AOI locations on the UI) and therefore are independent of the tracking
system or algorithm. This type of analytical methods may be useful to all kinds of gaze research and
developmental works for complete evaluation of a gaze tracker’s system behavior and understanding
of system capabilities and limits. The codes for the implementing the methods and metrics will be
published in the project repository (https://github.com/anuradhakar49/GazeVisual) for use by the
eye gaze research community in the coming months.

A few points regarding applicability of the metrics described above need to be discussed. In this
work, the derivations of the gaze accuracy metrics have been done using data from both left and right
eye. However, there may be eye tracking systems and gaze data collection software which provide
only monocular data, i.e., data from one eye only. In these cases, the metrics will still work on the
monocular gaze data, but the results might be different than that from using both eye data.

Another aspect is that there may be different tracker intrinsic parameters which affect eye tracking
data quality and accuracy. These include choice of fixation detection settings, noise reduction and
averaging window parameters to name a few. However, in this work we focused on studying the
impact of extrinsic conditions on the tracker data characteristics, which arise mainly from changes
in the operating environment of the tracker. The reason is firstly that impact of these operating
conditions are sparsely investigated and quantitatively evaluated in eye gaze research. Secondly, there
are commercial eye trackers which do not allow access to their device software or data parser settings
and therefore there is no way to study the impact of intrinsic parameters on their data. Therefore, in
order to propose a set of evaluation methods that can be applicable to any kind of eye tracker, the
scope of this work is limited to studying tracker independent factors only.

Apart from defining quantitative metrics, the aspect of gaze error sensitivity to visual eccentricity
is studied in Section 4.4, as it may have significant implications on the level of gaze accuracy obtainable
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from a tracker. A tracker may show low error levels at low visual eccentricities and high errors when
eccentricities increase. The analysis method in Section 4.4 was therefore described which may be
useful for eye tracking researchers as a basis for comparison of eye trackers as well as for determining
tolerable eccentricities for a tracker under various operating conditions and also for designing proper
stimuli for eye tracking applications.

5. Visualizations for Evaluating Gaze Estimation Systems

Graphical tools are key to viewing large volumes of gaze data and understanding data
characteristics like error magnitude, bias and impact of variable operating conditions [29,56].
Researchers commonly design their individual test routines and report occurrence of errors mostly
in statistical or tabular format. While software packages exist for gaze data analysis in some
interdisciplinary areas like psychology, perception and usability research [57], there are no standard
performance visualization/analysis tools available for researchers or developers working on gaze
tracking algorithm/applications. Below, therefore some visualization methods are presented which
may be used to study the accuracy of a generic gaze tracking system under variable operating
conditions and estimate its overall performance. These visualization concepts are inspired from
research fields like data science, visual analytics and statistics [58–60] and are implemented on data
collected from our user distance, head-pose and platform movement experiments done using the
test UI and workflow as shown in Figure 2a,b. The visualizations used in gaze research till now, as
described in Section 2 are mostly focused on relating eye tracking data to human cognitive aspects
(like attention, search patterns and interest) in the form of heat maps and fixation maps. However,
dedicated visualizations for eye tracking performance analysis using raw gaze data from a tracker
under test have not been developed in this much detail before.

The visualizations presented in this work are divided into three subsections. The 1st subsection
(A) comprises of methods for visualizing data from individual data files (e.g., files containing data of a
single user or on a single experimental variable). The 2nd subsection (B) comprises of methods for
aggregating and visualizing data (and its various properties) from multiple files (e.g., files containing
data from multiple experiments or from multiple users or both). The 3rd subsection (C) presents the
concept of the graphical software interface named GazeVisual which is being currently developed for
easily accessing the gaze data metrics and visualization tools. As done in the previous Section 4 each
visualization sub-subsection is split into “Method” describing the concept and “Results” describing
the outcome and significance of the visuals tested on data from our different experiments.

5.1. Plots for Data Visualization from Single Eye Tracking Experiments

Subcategories in this include point and spatial error density maps, plotting of gaze angular field
in the tracking space and 3D error magnitude plots. Special visualizations have been designed to
represent impacts of head pose and platform orientation on gaze error levels.

5.1.1. Data Density Maps

Using data density maps, raw gaze data (gaze x, y coordinates collected at each target location of
UI shown in Figure 1a) can be plotted as data point clusters, color-mapped according to point densities
(calculated using histograms) around each AOI.

Method:

Gaze errors are estimated using Equations (1)–(8) on data from UD45 experiment. This is then
used to plot a color-mapped density plot from one participant and shown in Figure 11a.

Example Results:

Figure 11a shows the gaze data point density around each target location on the overall screen
area (data from UD45 experiment), with the scale alongside showing number of data points mapped
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to colors. This type of plots give a quick look into the relative scatter of data points at each AOI with a
number scale alongside, which makes it easier to interpret the data patterns and detect any anomaly.

5.1.2. Spatial Error Heat Maps

The concept of gaze spatial error density was discussed in Section 4.3.4, where the formula for
gaze error density around each AOI on the display screen (Equation (17)) was derived.

Method:

For visualizing the spatial distribution of errors on the display screen, a plot with gaze error
densities around AOIs (using Equation (17) and data from UD60 experiment) color-mapped with
values is shown in Figure 11b. The scale represents the color-map of error density values in degree/cm2.

Example Results:

The gaze spatial error analysis heatmap can help to identify whether the gaze tracking accuracy
is uniform over the monitor display and detect most probable locations for error on the screen.
For example, from our study, the top left corners of the monitor were found to be prone to higher error
values for all participants. This type of plots may help eye tracker users to improve gaze tracking
performance, for example by checking the display screen quality, eye tracker mounting issues or
compensating for the tracker’s performance at certain gaze angles if non-uniform or anomalous error
densities are observed. It may be noted that error heat-maps are different from data density maps of
Figure 11a, as the heat-maps take into account the display properties (screen size and resolution) of the
computer screen where gaze is tracked.Sensors 2018, 18, x 24 of 34 
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Figure 11. (a) Scatter density plot of gaze errors. (b) Shows a spatial error heat map for all AOI locations
on the display screen (coordinate of screen center is 0,0) constructed from UD75 data. The gaze error
density at all AOI locations has the units of degree/cm2.

5.1.3. Gaze Error vs. Visual Field

The visual field describes the extent of the observable area that is seen at any given moment.
The UD45-75 experiments revealed dependence of gaze error values on user-tracker distances and
user visual angles quantitatively, as discussed in Section 4.3.3.

Method:

The variation of the visual angle with user distance from the tracker is shown as angular sectors
in Figure 12a which also shows the dependence of gaze estimation accuracy on the user visual
field. The tracker position with respect to the user is marked as tracker distance or “TD” in the plot.
The magnitude of gaze estimation errors (derived from UD45-75 experiment data) for each visual
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angle is represented by the color intensity of the sectors. The corresponding color-map of gaze errors
(in which low intensity of color means lower error) is shown alongside.

Example Results:

This visualization of Figure 12a shows several interesting features, firstly the reduction in user
viewing angle with increasing user distance from tracker (shown by narrowing sectors). Secondly, it
shows that the given tracker achieves best accuracy at a narrow visual angle of less than 20 degrees
(compared to normal human field of view which is about 60 degrees on either side of frontal eye
position). It also shows that gaze errors increase significantly with even slight increase in user visual
angles (demonstrating the tracker’s sensitivity to user distance). These kinds of plots, along with the
visual eccentricity plots described in Section 4.4 (Figure 9c) can help eye tracking researchers to know
where to position a user in front of an eye tracker for best tracking results.

5.1.4. 3D Gaze Error Distribution Plot

Method:

The 3D gaze error distribution plot shows the magnitude of gaze errors as a function of X and Y
dimensions of the viewing area on the display screen. The gaze errors are plotted along Z axis and X
and Y axis of the plot represent horizontal and vertical dimensions of the display in pixels, as shown
in Figure 12b. Data from UD75 experiment for one user is used for the plot. The scale alongside shows
the color-mapped magnitudes of gaze error values over the display screen area.

Example Results:

These plots help to diagnose gaze error levels over the display area. For example high error
values are found to occur near the display corners and near the screen borders which could be due
to high visual angles in those regions. Impact of display screen locations where gaze is tracked on
corresponding gaze error levels has been reported in [61] which shows that gaze errors may increase
by 33% on the screen border regions compared to those in the central regions.
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Figure 12. The sectors in the plot (a) on the left represent the visual angles of a user in degrees and
are color-mapped according to gaze error obtained for each visual angle. The color-bar alongside
shows the mapping to the magnitude of gaze errors in degrees. (b) Shows a 3D plot of gaze errors
as a function of display X, Y dimensions (in pixels) for data from UD45 experiment along with error
magnitudes mapped in a color bar alongside.
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5.1.5. Platform Movement Tolerance Conics

A set of conics are used here to represent the degrees of freedom of movement “allowed” in
a handheld device about its central axis if eye tracking is to be done on it with sufficient accuracy.
The tablet angular pose variations in each of roll, pitch yaw directions, and corresponding gaze error
values are derived from platform orientation sensitivity experiments as described in Section 4.3.2.

Method:

Data from the platform orientation experiments are used to plot the conics in Figure 13a. The cones
represent the range of platform angular pose variations (in roll, pitch, yaw directions), which occur
due to variable hand poses when the tablet is held by a generic user. The aperture (or vertex angle) of
each cone represents the maximum angle to which the edges of the device can be tilted with respect to
the frontal position (where roll, pitch, yaw = 0) without gaze errors exceeding 1 degree.

Example Results:

As observed from the platform orientation sensitivity curves in Figure 7b, the vertex angle of the
cone corresponding to platform pitch movement is the smallest and about 5 degrees while the cone
angle is about 10 degrees in the other directions of tablet roll and yaw. The utility of this visualization
is that it shows the practical movement limits and maximum platform pose variations that are allowed
for a certain tablet-tracker setup to perform reliable eye tracking on it.

5.1.6. Head-Pose Tolerance Box

Method:

This tolerance box visualization (Figure 13b) shows the degree of head pose variations allowed by
the given eye tracker while maintaining acceptable accuracy levels and is implemented using data
from our head-pose experiments as described in Sections 2 and 4.3.1.

Example Results:

In the visualization of Figure 13b, the larger box shows the maximum degree of head movement
(in roll-pitch-yaw angles) possible by an average user (whose head is shown by the yellow sphere)
which is in the order of 30 degrees of angular movement in each direction of roll-pitch-yaw. The plot
also shows that for reliable gaze estimation with the given tracker, the head pose of a user must
be limited within the smaller “box”, the dimensions of which are about 10 degrees in each angular
direction and correspond to gaze error values of 0.5 degrees. Such plots constructed for eye trackers
may help to understand their head-movement tolerances quantitatively.
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Figure 13. (a) Shows the freedom of movement of a dynamic platform like a tablet if one intends to
perform eye tracking on it with sufficient accuracy. As seen from our experiments, gaze errors increase
sharply with variations in the platform pose pitch angles and so the pitch movement of the tablet + eye
tracker setup has to be kept within tight limits. As the impacts of yaw and roll variations are not very
significant, larger pose variations is possible in those directions. (b) Shows the limits imposed by eye
tracking on a desktop platform on head movement of a participant which has to be constrained within
the small red box space to achieve reliable tracking accuracy.

5.2. Plots for Data Aggregation from Multiple Eye Tracking Experiments

These plots are useful in clustering results from the multiple eye tracking experiments to derive
inferences about gaze error patterns and dependence on various experimental variables, conditions etc.

5.2.1. Stacked Multi-Graphs

These kinds of plots could be used for displaying multiple parameters from several participants
from one or more experiments on a single plot [62]. These reduce the need for creating a large number
of separate plots and make it easier for a viewer to retrieve, understand and compare information
obtained from multiple users.

Method:

A stacked horizontal bar chart is constructed from our user distance experiments and shown in
Figure 14a. In this, the mean gaze error and maximum gaze angles for three different distances for
13 different users (participant ID 1-13) are plotted together. The three colored bars represent three
distances, the black bars’ length shows mean error levels for each user, and the length of the colored
bars’ stands for the maximum gaze angle for each user.

Example Results:

This kind of plot helps to gain a quick look into a large gaze dataset obtained from any gaze
experiment done with multiple users and draw inferences about the person-to-person variations of
gaze data quality.
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experiments quantitatively, as shown in (Figure15a), and the aim is to make it easy to identify which 

experimental variables result in higher errors.  

Figure 14. The figure on the left (a) shows gaze error and maximum gaze angle data from multiple
experiments (UD45-75) for 13 participants (participant ID P1-P13) plotted together for easy visualization
and comparison of results. (b) Shows gaze error data distributions from UD45-75 experiments plotted
as 3D stacked histograms.

5.2.2. Stacked Distributions

For understanding data patterns, histograms provide more insight into data characteristics
comparable to numerical values or statistics.

Method:

Histograms are constructed using gaze error data from the experiments UD45, UD60 and UD75,
and plotted together as stacked 3D histograms in Figure 14b. These histograms offer information on
where error values are concentrated, presence of data extremes or unusual data patterns.

Example Results:

The Figure 14b displays binned error values (number of bins = 20) for three different user
distances and shows that with increasing distance, the errors move closer to lower error magnitudes.
Stacked histograms plotted together on data collected from different experiments done under different
conditions helps to see differences in gaze error patterns clearly and fast. These visuals could be useful
to study impact of multiple experimental conditions on gaze errors from one person.

5.2.3. Angular Error Charts for Multiple Experimental Variables

An angular chart can act as a powerful visualization method for plotting multivariate data while
reporting performance of eye trackers [63]. When there is more than one factor, such as user distance,
head pose angles that one needs to measure and compare while reporting tracker performance, this
type of charts can come handy. In these charts, each variable under consideration is plotted on an axis
that radiates out from a point (center value zero), with equal increments along each axis. These charts
provide a compelling way of looking at data than simple tabular representations.

Method:

Angular charts are implemented here to compare multiple variables from a number of our gaze
experiments quantitatively, as shown in (Figure15a), and the aim is to make it easy to identify which
experimental variables result in higher errors.
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Example Results:

This chart helps to understand the relative impact of factors like head movement, user distance
etc. on the final gaze accuracy of the tracker. Each error source (e.g., each head pose direction or user
distance) is treated as a “variable” plotted on an axis starting from the center (representing units of
gaze angular accuracy) and all the variables are connected together to form a polygon [64]. All axes
are equidistant and maintain same scale of angular accuracy on them. For example, from Figure 15a
which aggregates data from our desktop based experiments, one can get the idea that the major error
contributions in gaze error come from head roll and low user distances out of all other factors.
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Figure 15. The figure (a) on the left shows the relative magnitudes of mean gaze error from different
experiments for one person plotted on an angular chart. (b) On the right shows a very compact
representation of data from all our experiments for 6 participants clustered into a single plot. HPY, HPP
and HPR refer to head pose yaw pitch and roll experiments respectively.

5.2.4. 3D Bar Clusters

Method:

This type of plot (Figure 15b) is implemented to aggregate data from multiple persons and all
of our desktop based experiments to study and compare the gaze error levels of individuals across
different experimental sessions. In the plot, different experiments are coded by colors with respective
error values represented by bar heights, plotted along the Z axis.

Example Results:

This kind of plot can be useful in inspecting data from a large number of experiments, done
with multiple participants and judge overall eye tracking performance by gaze error levels which is
shown along the Z axis. For example, the plot 15(b) helps to draw several meaningful inferences about
our multiple experiments. It shows that minimum error levels occur from head pause yaw variation
experiments and highest ones from UD45 experiments for majority of participants. Also it is seen that
participant P2 has lower errors in all experiments compared to other participants.

5.3. GazeVisual v1.1: Concept of a Performance Evaluation Tool for Eye Trackers

This work is currently underway in which the metrics and visualizations presented in this paper
are being packaged into a composite graphical user interface or GUI [65] format named GazeVisual
v1.1, and a snapshot of its current look and operational features is shown in Figure 16 below. Using this
GUI, a user will be able to browse and load the specific gaze data files along with ground truth data,
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compute and display results of various metrics (described in Sections 4 and 5) by clicking on the
buttons and see the visualizations in the plot window.
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Figure 16. A snapshot of the graphical user interface GazeVisual v1.1 which is currently being
developed for implementing the accuracy metrics and visualization concepts as discussed in Sections 4
and 5 above. A sample histogram plot using data from UD45, UD60 and UD75 experiments is displayed
in the plot area of the GUI. Other visualizations are also to be shown in this area and the plots can be
saved. A demo video of the software demonstrating a set of its functionalities may be found in the
GitHub link: https://github.com/anuradhakar49/GazeVisual/tree/Demo-videos.

5.4. Discussion

In this section, different methods for visualization of eye gaze data from several experiments
with an eye tracker are presented. These visual analysis techniques would enable effective inspection
of data characteristics of a gaze tracker and means for studying error pattern variations when any
operating condition, such as user distance, screen properties, head movements is altered. Overall these
visualizations are designed to aid in the complete characterization as well as comparison of multiple
eye trackers. It may be noted that the only ingredient needed to implement these plots are gaze
error magnitudes computed using Equations (1)–(8) from raw gaze and ground truth data and some
experimental variables like user distance and display properties. This makes these visuals easily
adaptable for any eye tracking system using its data samples and ground truth.

It may however be noted that this paper does not go deeper into the gaze data characteristics of
the used eye tracker itself but only uses the collected gaze datasets to demonstrate the implementation
of proposed visual techniques. The reasons for it are explained at the end of the Introduction section
where we define the purpose and scope for our work.

The visualization concepts presented in this section are inspired from interdisciplinary areas like
data mining, image processing and visual analytics. As per our knowledge, there hasn’t been any
detailed work in gaze research so far for developing visualizations for studying data quality (especially
to gain insight into gaze error levels, its distributions and spatial patterns) from generic eye trackers.
The visualizations in this paper and the graphical software interface GazeVisual aids in this direction
as also there is currently no publicly available software for performance evaluation of eye trackers.
The implementation resources of the visualizations will be available in the open repository of the
project (https://github.com/anuradhakar49/GazeVisual), for use and further development by the eye
gaze community. The overall aim is to encourage eye gaze researchers to adopt more detailed ways of
analyzing their eye tracker characteristics and providing open source tools and software for the same.
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6. Conclusions

There is a strong need for standard open source tools and common methods for measurement and
data analysis in eye gaze research, without which each researcher has to develop their own methods or
rely on expensive software which does not allow customizations. This leads to presence of inadequate
details in gaze research results and increased diversity in reporting formats, making the interpretation
of research results difficult and cross-validation of outcomes nearly impossible. There also needs to
be an agreement in the metrics used for reporting gaze accuracy and standard methods for complete
characterization of eye trackers under different operating conditions.

Keeping these aspects in mind, in this paper, it is shown how the all-round performance of generic
gaze tracking systems can be evaluated and compared numerically and visually. Several measures
and visual methods for meaningful understanding of a gaze tracking system’s behavior, solely from
its data outputs are presented. Some of these metrics are linked to visualizations while some are
independent and vice versa, which shows that metrics and visuals are tightly related and both are
essential for complete system description of an eye tracker. These methods could be useful for any
researcher or developer of eye gaze systems to estimate and validate the performance of their system
under widely variable influencing conditions. Especially, these evaluation tests may help to study the
robustness of an eye tracker and degree of change in its data quality quantitatively, when operating
under unpredictable and harsh conditions in unconstrained eye tracking applications. Also these
can better describe the reliability of a newly designed system rather than error values expressed in
simple numerical formats. Overall the presented metrics and visualizations are expected to help
researchers as well as common users in understanding and improving the all-round performance of
generic gaze trackers.

The GazeVisual v1.1 interface is an open source graphical tool which is being designed on the
model of standard data visualization software but till date no such publicly available software for
performance evaluation of gaze trackers exist. This interface would make the evaluation methods
described in this paper extremely easy to use for a general user, who simply needs to load their gaze
and ground truth data to the software to access all the evaluation metrics and visualizations through a
few button clicks.

The resources for implementing the concepts described in this paper will be released in an open
repository where users can download these tools and modify them according to their own requirements
and provide feedback for their improvement. The software components will be tested and accompany
proper documentation to ensure seamless operation and easy adaptation by researchers. As future
work in this direction, it is intended to include more system and external parameters into the evaluation
criteria and study more user platforms for eye gaze applications such as eye trackers for large displays
and head-mounted devices.
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Abstract— The concept and functionalities of a software tool 
developed for in depth performance evaluation of eye gaze 
estimation systems is presented. The software, GazeVisual has 
capabilities for quantitative, statistical and visual analysis of eye 
gaze data as well as generation of static and dynamic visual 
stimuli for sample gaze data collection. This is a first of its kind 
cross-platform tool for gaze data analysis & evaluation. This 
software is made freely available to the eye gaze research and 
development community to provide a common framework for 
estimating the quality and reliability of data from eye tracking 
systems, especially those implemented in consumer electronics 
(CE) applications. The feasibility of using this software is tested 
through case studies which show that the software can handle eye 
gaze datasets obtained from several different consumer grade eye 
trackers. GazeVisual operates consistently, irrespective of the 
platform, algorithm or hardware of the eye trackers. In addition, 
the GazeVisual software capabilities are also made accessible via 
a web based application enabling performance evaluation of eye 
tracker data over a cloud-based platform.  
 

Index Terms— Eye tracking, eye gaze, performance 
evaluation, data quality, visualizations, web-application  

I. INTRODUCTION 

YE trackers working on various consumer platforms 
including desktop, automotive, wearable and handheld 
devices are frequently affected by factors like user head 

movements, platform orientations, user distance and display 
properties.[1]–[3]. Currently there exist no comprehensive 
tools or software that may be used to evaluate an eye tracker’s 
data quality, or quantitatively estimate the impacts of practical 
operating conditions on its performance. This makes it nearly 
impossible for eye gaze researchers, engineers and application 
developers to understand and compare the capabilities and 
limits of various eye trackers, know their robustness and 
reliability or study their gaze data quality [4].  
This work presents a newly developed software tool, named 
GazeVisual that incorporates a suite of statistical and 
visualization functions for detailed evaluation of consumer  
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grade eye trackers. It is a desktop software application having 
a graphical user interface (GUI) and software components that 
can be used to input and process files containing data from 
commercial eye trackers and inform a user about the accuracy 
and limits of their systems. It can generate visual stimuli to 
collect sample data from an eye tracker and has possibilities 
for direct interfacing with an eye tracker for data logging and 
evaluation. The GazeVisual software only requires a sample of 
gaze and ground truth data from an eye tracker to produce 
multiple numerical and graphical data evaluation results. All 
parts of the software are written in Python language and the 
full source code is provided in an open repository for gaze 
researchers and engineers to use and upgrade. 

In addition to the desktop GUI, a web-application named 
GazeVisualApp is also developed to implement a basic set of 
functions present in the GazeVisual software over a cloud 
based Python environment. This has several advantages, 
which are explained in more details later in this paper; e.g. eye 
tracker evaluation independent of operating system (OS) or 
platform and ubiquitous accessibility.    

Early-stage development of this software was reported in 
our recent works [5][6], and this paper builds on the same 
concepts with additional and improved features. Sample data, 
source code and demo videos of the GazeVisual GUI software 
may be found in the GitHub repository with the address:  
 https://github.com/anuradhakar49/GazeVisual-Lib. 

II.  PRIOR ART IN GAZE DATA ANALYSIS SOFTWARE  

Eye tracking has found uses in a variety of consumer 
electronics (CE) applications such as in automotive (for driver 
monitoring) [7], augmented and virtual reality [8] (for 
foveated rendering and immersive experiences), smartphones 
and TV [9][10] (for gaze based password entry, menu 
selection and navigation). Recent works in this field include 
[11] where gaze patterns are used to assess how easily users 
can navigate an interface of a connected self-injection system. 
Gaze data is used as an indicator to study the usability, 
efficiency and ease of use of the drug delivery device. 
Similarly, the design effectiveness of observation charts in a 
hospital is evaluated in [12] by comparing viewing patterns of 
users derived from eye tracking data. Eye movements and 
pupillary response are used as indicators of cognitive load 
while users answered mathematical questions in [13] and for 
studying cognitive processes and learning aspects in [14]. In 
[15], the influence of emotions on the visual acuity of users 
was studied which showed that eye movements like fixations 
and saccades clearly respond to levels of stress.   
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It was discussed in [4] that eye trackers, especially in CE 
applications face a number of challenging conditions, such as 
head pose variations, platform movements, user distance 
variations, variable display properties to name a few. Under 
such unconstrained operations, gaze estimation errors become 
large and also the level of noise and outliers in gaze data 
increase. This poses serious difficulties towards the reliable 
design of gaze applications and hampers the prospect of using 
eye gaze in CE use cases. Successful use of eye trackers or 
gaze data in CE applications therefore requires frequent and 
in-depth measurement of gaze data quality and studying its 
variability under different operating conditions. 

However, the problem is that, at present there exist no 
dedicated tools or software that can be used to readily evaluate 
an eye tracker’s accuracy levels and data quality. A survey of 
several commercial and open-source software tools for gaze 
data analysis is presented in Table I. The survey reveals that 
most data analysis software for eye trackers are built for 
exploration of eye movement characteristics and cognitive 
processes, but not towards objective evaluation of gaze data 
quality. This forms the motivation for developing the 
GazeVisual software, whose design and functionalities are 
described henceforth. 

 
TABLE I 

A SURVEY OF SOFTWARE TOOLS FOR EYE GAZE DATA ANALYSIS 

Ref. 
Name & type of 

software tool 
Description of main features and capabilities 

of the software tool 

 
[16] 

 
iComponent 
Type: Free 
application 

 
Recording and analysis of data from multiple 
eye trackers. Four types of 2D and one 1D 
visualization of gaze data possible. Heatmap, 
clustering and gaze path replay allowed. 

[17] Heatmap explorer 
Type: Open source 

Study user gaze behavior, visual attention and 
focus. Produces video with heatmap, display 
user visual focus on  various backgrounds 

[18] Ogama 
Type: Open source 

Recording and analyzing of eye and mouse 
tracking data, preprocessing and filtering, 
creation of attention maps, areas-of-interest. 

[19] Pygaze 
Type: Open source 

Creating eye tracking experiments, presenting 
visual and auditory stimuli, response 
collection via keyboard, mouse, joystick, 
saccade detection. 

[20] GazeParser 
Type: Open source 

Gaze position and saccade detection library 
using webcams. 
 

[21] GazeAlyze, Type: 
Open source 

MATLAB toolbox for the analysis of eye 
movement data, detecting events, filtering of 
artefacts, generating regions of interest, path 
plots and fixation heat maps. 

[22] Eyemap 
Type: Free 
application 

Processing binocular eye movement data,  
filtering, and processing gaze data from 
reading and psychology experiments, 
multiple eye tracker support. 

[23] Software by eye 
tracker company-1 
Type: Commercial 

Stimuli presentation, creating eye tracking 
experiments, replay eye tracking videos, 
overlay with gaze points, adjustable fixation 
filters, create AOI statistics, tables, charts.  

[24] Software by eye 
tracker company-2 
Type: Commercial 

Create heatmap and fixation maps, display 
AOI regions, viewed time, revisits, create 
AOI statistics, web data analysis, dynamic 
video creation. 

[25] Custom gaze data 
analysis software-2  
Type: Commercial 

Create stimuli, capture eye data, mouse 
clicks, scroll, key presses, estimate fixations, 
blinks, cognitive workload, pupil size.  

   

 

III. CONCEPT AND DESIGN OF THE GAZEVISUAL SOFTWARE  

A. Rationale for development of the GazeVisual software  

The main objectives of developing the GazeVisual software 
are: 1. Providing methods for detailed analysis and 
visualizations of gaze data quality, accuracy and gaze error 
patterns 2. Evaluating multiple gaze datasets from one or more 
trackers or users 3. Implementing gaze data evaluation 
methods irrespective of eye tracking algorithm, hardware or 
application by just using gaze and ground truth data samples   
4. Generation of static or dynamic stimuli for live gaze data 
capture and possibility of direct collection of sample data from 
an eye tracker under test  5.Integration of all these components 
via an easy to use GUI, which allows creation and saving of 
plots and results. 6. Providing an open-source software for eye 
tracker evaluation to gaze researchers and developers. 

 

B. GazeVisual concept, architecture and dataflow 

For data collection from an eye tracker, a user is positioned 
in front of the tracker which is mounted on the display of a 
computer (Fig. 1a). During a testing session, a set of visual 
targets are presented on the display and the eye tracker under 
test continuously records the gaze data of the user as they look 
at these targets (or stimuli). The recorded user gaze 
coordinates form the test data and the on-screen stimuli 
coordinates form the ground truth data. These two datasets are 
the key inputs used by GazeVisual to implement various 
metrics and visualizations and produce evaluation results. 
Conceptually, GazeVisual software has 4 modules (Fig.1b):  

1. A test user interface (test UI) which displays visual 
targets on a screen where user gaze is tracked.  

2. A data collection module (DCM) which logs data from 
an eye tracker under test while the test UI runs. 

3. A data processing module (DPM) which implements 
numerical metrics and visualizations on collected data 

4. The tool GUI via which a tester can upload data, access 
evaluation tools, display and save results/ plots.  

The dataflow hierarchy model within the GazeVisual tool is 
shown as the pyramid in Fig. 1c. The lowest level has the raw 
gaze and ground truth data and relevant system variables, from 
which the gaze error values are computed. Final output level 
comprises of various accuracy metrics and visuals that serve 
as performance indicators of the eye tracker under test. 
 

C. Software dependencies, hardware requirements 

All components of the GazeVisual GUI tool are written in 
Python language and require Python libraries like Numpy, 
Matplotlib, Tkinter, Pygame Statsmodels, Sklearn and 
Seaborn. It can run as a desktop application on any operating 
system having Python 2.7. For eye tracker data collection, the 
tracker’s Software Development Kit (SDK) and calibration 
routines must be installed in the user computer. Else 
GazeVisual can use gaze data which has been collected from 
the eye tracker beforehand. GazeVisual has been tested to run 
on ordinary PCs with 3.6 GHz processor, with 16 GB RAM. 
To use the live tracking feature, it needs a suitable USB (2.0 
or 3.0) port for connecting the eye tracker and a Python based 
SDK of the tracker to communicate with. 
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D. Input data format  

The input data file format for the GazeVisual software is 
CSV (comma separated values) The first two columns of the 
file must contain the x, y pixel values of ground truth data, 
followed by two columns of gaze x, y pixel coordinates, 
followed by a column having the data collection timestamps 
for each data point and then two columns having the X, Y 
resolution of the display area used for collecting the data 
(ResX and ResY for X,Y screen dimensions in Fig.2). Next a 
column having screen pixel size (µ), a column specifying user-
tracker distance (in mm), and finally a column with a data 
identifier, e.g. user /experiment name have to be included. 
This input file format is followed for implementation of both 
the GUI as well as the web application. Care must be taken 
that the data input file must not have blank entries, the display 
center is chosen as the data origin and header fields for each 
data column are kept as shown below in Fig 2. Several sample 
data files saved in this format are in the GitHub repository’s 
“Sample data” folder, whose link is provided above.  

The “mmpix” or millimeter per pixel (µ) value of the used 
computer display may be computed using Eqn. 1a and 1b, 
where wp and hp are the screen width and height in pixels:    

 
µ = dm/ dp                                                                  (1a)                 

   	                                       (1b) 
where dm is the screen diagonal size in millimeters 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV. ORGANIZATION, LAYOUT AND FUNCTIONALITIES OF THE 

GAZEVISUAL SOFTWARE  
All functionalities of GazeVisual are organized under four 
windows (Fig.3). The major analytical and graphical functions 
are in the “Data analysis” and “Visualizations” windows. The 
Test UI window contains functions for generating static or 
dynamic stimuli, connecting to an eye tracker and saving of 
the collected gaze data. Each window works independently 
and is easy to navigate and use by a generic user.     

 
Fig.3. Four windows of GazeVisual GUI tool and their functions. 

 
The “Home page” provides a brief description of the 
software’s capabilities. The “Help” window provides 
information on data input, output, formatting, references and 
link to the GitHub repository for this project. Descriptions of 
the other windows and their components are presented below. 
Demo videos showing the functions of the different windows 
of the tool may be found in the GazeVisual GitHub repository. 

A. Data Analysis window   

This window provides functions that allow users to upload 
gaze data CSV files (in the format described in Section III.D) 
to the software and estimate gaze tracking accuracy and 
quality from the uploaded dataset.  Several gaze data analysis 
methods are provided, the results of which may be viewed in 
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the “Output Console” and plot area of the window. Using the 
input gaze and ground truth data, gaze angle (at each data 
point) and gaze error statistics like mean, standard deviation, 
Z-score, 95% confidence interval and values of gaze yaw/pitch 
angular variables are estimated using the formulae as below:  

Gaze.Angle (θ) = tan-1(OSD /Z)                   (2) 

            Gaze pitch angle  = tan-1(GazeY /Z)               (3) 

Gaze yaw angle = tan-1(GazeX /Z)                (4) 

Where GazeX, GazeY are the gaze point coordinates, Z is the 
user distance from the screen-tracker setup OSD is the on-
screen distance of a user’s gaze point from the screen origin. 
The gaze error at each data point, which forms the main 
parameter for further analysis in the software is given by:  

Gaze error ( ) = Gaze.Angle – GT. Angle         (5) 

where GT.Angle is the angular position of each ground truth 
data point. The statistical operations made on gaze data are 
  

Mean error(φ):		1/ ∑                      (6)                      
Z-score (σ): 	 /                              (7) 

   95% confidence interval: 	 	 1.96 /√               (8) 
KDE= ∑ K y x /h                             (9) 

Where K is a Gaussian Kernel defined as:  
				K u 			1

√2π
e .                                 (10) 

σ is the error standard deviation and n is the number of data 
points. KDE is the Kernel Density Estimate computed using a 
Gaussian Kernel (K) and bandwidth (h) of 0.2 [20] on gaze 
error values. Detailed explanations on gaze data analysis 
methods may be found in our previous work [6], Section 4. A 
view of the “Data Analysis” window is shown in Fig.4 and 
meanings of text labels and buttons on it are described below:  

a. Load gaze data: Beside this text label is the “Upload csv 
file” button which allows users to browse and select the gaze 
data input CSV file and upload its column values to the GUI 
tool. A scatter plot of the gaze data overlaid with ground truth 
data is then automatically created in the plot area.   

b. Analysis results/plots: There are two buttons beside this 
text label. After uploading the gaze data file, the analysis 
results can be obtained by clicking the “Statistics” button, with 
which users will be shown a plot of the estimated gaze angular 
errors versus time (using timestamps in the input CSV file). 
Statistical measures estimated using Equations (6-8) will be 
displayed in the output console. With the “Yaw/Pitch” button, 
gaze yaw and pitch angles (Equations 3, 4), will be plotted and 
their statistics will be shown on the output console (Fig 4).  

c. Gaze angles/ Z-score:  The “Z score plot” button creates 
two subplots, one with gaze angles vs ground truth and the 
other having the Z-score for each data point.  

d. Upload multiple files: The software allows uploading of 
two CSV data files for their comparison.  Two different gaze 
datasets saved in two CSV files may be uploaded by clicking 
buttons “Data-1” and “Data-2”, which will create scatter plots 
of gaze vs ground truth data for each dataset.  

e. Compare datasets: Beside this label, clicking the 
“Statistics table” button produces a table displaying the data 
statistics from each dataset for direct comparison.     

 
Fig.4. “Data Analysis” window showing the plot of gaze yaw and pitch angles 
and  the output console area showing yaw/pitch statistical results.  
 

f. Plot datasets: The “Gaze Angles” buttons next to this 
label displays gaze angles vs ground truth for the two gaze 
datasets.  The “KDE” button estimates the 1D-KDE (Eqns. 9-
10) on the gaze error from each dataset and plots them 
adjacently for comparison (e.g. shown in Fig. 8b below). 

g. “Output Console” area: The various results of numerical 
analysis functions of the window are displayed in this area. 

h. “Save results” button: Contents in the “Output Console” 
area may be saved in a text file by clicking this button.  

i. “Refresh” button: This clears the “Output Console” and 
plot area of their current contents.  

j. Plot area: This display area is present in both the Data 
Analysis and the Visualizations windows and is used to show 
output plots from the software functions. The plot area shows 
the x, y coordinates of plotted data points on hovering the 
cursor over the plots/ subplots. Buttons embedded below the 
plot area allow users to pan and zoom into plot areas using the 
“Pan Axes”, “Zoom to Rectangle” buttons. All plots can be 
saved in PNG file formats using the “Save the Figure” button. 

 

 
Fig.5. Buttons in the plot area of the tool. Buttons 2 and 3 are for moving 
between plot views and 6 is for formatting subplots. 1,4,5,7 are for resetting 
original view, panning axes, zooming and saving the plot. 
  
B. Visualizations window 

Data aggregation and graphical presentation are essential 
for understanding the characteristics of gaze data that are 
collected in large volumes during experiments. GazeVisual 
software has several visualization functions for studying gaze 
data quality in the “Visualizations” window. Functions of the 
labels and buttons in this window (Fig. 6) are explained here:  

a. Load gaze data: The “Upload csv file” button allows 
users to upload gaze data CSV file values to the software. 

b. Error histogram (and text box alongside): The “Plot” 
button beside this label plots the histogram of gaze error 
values (using the uploaded data) with the bin size value 
entered in the box alongside. The default bin size is 20.   
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c. Data density plot, Mean/SD, 3D plot: Using the “Data 
density plot” button will plot the uploaded raw gaze data as 
data point clusters, color-mapped according to point densities. 
A color bar would show the number of points in a cluster 
mapped by color. The “Mean/SD” button creates an error bar 
plot, which shows the magnitude and standard deviation of 
gaze error by sampling every 100 data points. The 3D plot 
button creates a plot with the magnitudes of gaze errors (in 
degrees) plotted along the Z axis as a function of X and Y 
dimensions (in pixels) of the display screen (Fig. 6). These 
plots help to show the local error patterns in the gaze dataset, 
visualize data quality/noise and detect any irregularity. 

d. Upload multiple files: The Visualizations window also 
allows uploading of two different gaze datasets for which the 
“Data-1” and “Data-2” buttons are provided. 

e. Compare datasets: Beside this label, the button 
“Histograms” plots the gaze error histograms of the two 
uploaded datasets using the bin size entered in the text box 
above. The “Regression” button creates a regression plot of 
the gaze errors from the two datasets. The “Bar plots” button 
may be used to plot the mean gaze error, minimum and 
maximum gaze angles for the two datasets as vertical bars, 
side by side. The “Box plots” button may be used to display 
and compare several gaze error statistical attributes (e.g. 
minimum, first quartile, median, third quartile, and maximum) 
by creating box-plots from the two datasets [6]. The “Error 
line plot” button shows gaze errors from the two datasets for 
each data point. This window also provides several options for 
changing plot color, background, addition of text annotations 
and setting of color maps. These functions are found under 
“Alter plot features”. The “Refresh” button and ones below 
plot area has similar functions as in the Data Analysis page. 

 

 
Fig. 6. “Visualizations” page of GazeVisual showing a 3D gaze error plot. 
 

In gaze based consumer applications, poor gaze data quality 
may result from large gaze estimation errors, data loss or 
scatter, tracker noise etc. These factors may cause failure or 
reliability issues in the overall gaze application. To ensure the 
quality of gaze data at all times, the evaluation functions of the 
Data Analysis and Visualization windows of the GazeVisual 
software could be beneficial. Using them, engineers and 
system developers can easily test the noise, scatter or accuracy 
levels in their gaze data, before and while using the data in 
their applications and also detect sources of the noise/errors. 

C. Test UI and LiveTracking window 

The “Test UI and LiveTracking” window incorporates two 
functions: the first one is for generating visual stimulus for 
sample gaze data collection from an eye tracker (Test UI 
section) and the second one is to allow direct interfacing of an 
eye tracker with the GazeVisual software for direct data-
logging (LiveTracking section).  

In contemporary gaze research, there are no standard or 
common stimuli that are used for gaze data collection and 
researchers build their own stimuli routines to test their eye 
tracking device or algorithm. This leads to difficulties in 
comparing datasets obtained from different researchers due to 
differences in UI characteristics, e.g. dissimilar stimuli target 
size, patterns, velocity or visual eccentricities, which may 
strongly affect eye tracking accuracy [6]. This forms the 
motivation for incorporating the Test UI section in 
GazeVisual, in order to provide a common platform for 
stimuli generation for gaze data collection from eye trackers.  

In the Test UI section, it is possible to configure and 
generate two static UIs and a dynamic UI, which comprise of 
visual stimuli or targets either fixed or moving on different 
locations of the display screen. The on-screen locations of the 
UI targets are known and form the ground truth (x, y) 
coordinates, which can be saved in CSV files.    

The first two text boxes in the section allow entering of the 
size of the UI window in pixels for X,Y dimensions. Then 
there are options for setting the size of the stimulus targets in 
pixels and setting the background color of the stimuli window.  

The Static UI-1 comprises of clickable buttons on the 
display screen where a user has to look and click. The Static 
UI-2 comprises of a ball appearing discretely at fixed locations 
on the Test UI window at certain time intervals. This time 
interval (in seconds) may be changed by putting the desired 
value in the 2nd test box beside the label saying “Set stimulus 
size/speed”. The Dynamic UI comprises of a ball moving 
continuously across the window in multiple rows. The purpose 
of having the different UIs is so that both discrete (fixations) 
and smooth eye movement data may be collected for tracker 
evaluations. Demonstrations of the Static and Dynamic UIs 
with the preset attributes may be made on the adjacent display 
area of the interface by pressing the “Demo” buttons. On 
pressing the “Start” button for one of the UIs, a separate 
window is created to display the target stimuli to users as in 
Fig. 7a (here Test UI window size is 400x 400 pixels).  

The LiveTracking section as shown in Fig.7b presents a 
new concept of direct eye tracker data collection and 
evaluation. This section allows direct interfacing of an eye 
tracker with the GazeVisual software to collect gaze data and 
instantly evaluate the data characteristics. The LiveTracking 
feature comprises of a data-logging routine for eye trackers 
synchronized with one of the Test UIs described above. 
Currently this is possible only for an eye tracker whose SDK 
is available in Python language or which have a Python API 
for communication with the tracker device. For trackers which 
do not have a Python SDK, users may synchronize their 
tracker with a Test UI for gaze data collection.  

As a proof of concept of the Live Tracking feature, a remote 
eye tracker which has Python library support for data logging 
is interfaced with the GazeVisual software and an example 
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operation of this function with Static UI-1 is in Fig.7b(i). After 
connecting the eye tracker and positioning a user in front of it 
(Fig. 1), the “Start Tracking” button is clicked. With this, the 
Static UI-1 is launched and user gaze data is collected from 
the eye tracker as the user clicks the UI buttons. 

 

 
Fig.7a. TestUI section of the GazeVisual software showing an instance of the 
Static UI-2 in a small 400x400 pixel window with the blue stimulus ball. 
 
Gaze data from the tracker and click locations can be seen in 
the “Gaze data output” console of Fig. 7b(ii). “GT” refers to 
the (x, y) coordinates of button click positions and values after 
“Gaze” are gaze data recorded by the eye tracker. A demo 
video of this function may be found in the GitHub repository. 
 

 

 
Fig.7b(i). Shows an eye tracker connected to the computer to test the 
LiveTracking feature and a demo of the Static UI-1 in the “Test UI and 
LiveTracking” window of the GazeVisual software. 7b(ii) shows the “Gaze 
data output console” displaying the ground truth and corresponding gaze 
locations tracked by the connected eye tracker after running Static UI-1. 

D. Discussions   

Eye tracking in consumer platforms like automotive, 
handheld devices and AR/VR faces a lot of challenges during 
practical operations owing to factors like user distance, 
physical movement, head pose variations and platform 
orientation or vibrations. These factors may have large and 
unpredictable impacts on gaze accuracy and gaze data quality. 

Therefore, gaze data needs to be constantly evaluated if eye 
tracking in these systems is to be done reliably. The 
GazeVisual software incorporates several new concepts which 
may be useful to researchers, engineers and generic users of 
consumer grade eye trackers for in-depth, continuous and fast 
evaluation of their eye tracker’s data quality. The data analysis 
and visualization functions of this software may be used 
irrespective of eye tracking hardware or algorithm and the tool 
interface is also simple to use.  It can also be used for setting 
up eye tracking experiments to collect sample gaze data for 
quality analysis. GazeVisual is a new kind of composite 
software, designed solely for the performance evaluation of 
consumer grade eye trackers using their data outputs. It allows 
understanding of an eye tracker’s data quality and tracking 
performance without requiring users to do programming, 
manual scanning of data or invading the eye tracking device.  

V. TESTING THE GAZEVISUAL SOFTWARE WITH CONSUMER 

GRADE EYE TRACKERS 
In this section, the results from testing the GazeVisual 

software on gaze data from three different consumer grade eye 
trackers are presented as case studies below. The tests are 
done to ensure that the software can handle gaze data from 
different eye tracker types and produce consistent numerical 
results and visualizations. The tests also demonstrate how the 
GazeVisual software can quantitatively show the difference in 
quality of gaze data from the different consumer eye trackers, 
operating on different platforms, e.g. desktop, tablet and head-
mounted setups. For the tests, eye gaze datasets are collected 
from 20 participants using two remote eye trackers and a head 
mounted tracker following the protocol shown in Fig. 1. All 
data were saved in the format described in Section III.D. 
Results from these studies are in Table II.     

A. Case study 1: Evaluating data from a remote eye tracker 
   Data from a commercial remote eye tracker (R1, such as 
described in [21]) with a frame rate of 30 Hz is collected from 
a user seated at 45 cm from a desktop screen showing gaze 
targets (Fig. 8a). The tracker is mounted on the screen (size: 
22inch, resolution: 1680x 1050 pixels) and the collected data 
is used with GazeVisual. Fig. 4 shows Yaw and Pitch angles 
estimated from this data and displayed on the Data Analysis 
window of the GazeVisual software. 

B. Case study 2: Comparing eye tracking data from two 
remote eye trackers 

In this, data from two commercial remote eye trackers (R1, 
described in [21], R2 in [22]) are input to GazeVisual. For 
data collection, the two eye trackers were mounted on a 
desktop screen (22inch size, 1680x 1050 pixels resolution) 
during two separate sessions. In both cases, a participant is 
seated at 60 cm from the tracker (Fig. 8a). Fig. 8b shows the 
comparison of error distributions of gaze data obtained from 
the two trackers using “KDE” feature of the software (Eqns. 9, 
10). It is seen that magnitudes and distribution of gaze errors 
from tracker R2 are quite different from that of R1 (Table II).  

C. Case study 3: Comparing eye tracking data obtained from 
a desktop and a tablet platform using the same eye tracker 

In this, a single remote eye tracker (R1) is mounted first on 
a desktop and then on a tablet (display: 10inch, 1200x 800 
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pixels) respectively in two separate experiments (Fig. 8a). 
Gaze data is collected from users sitting at a distance of 60 cm 
from the tracker setup in each case. A comparison of gaze data 
characteristics from the two platforms is done using the “Box 
plots” feature of the Visualizations window (Fig. 8c). It is seen 
that error levels in the tablet-tracker setup are lower than the 
desktop for the same user distance and the inter-quartile range 
of gaze error for the tablet is also lower than the desktop setup 
(Table II). Also the tablet setup has a narrower visual angle 
compared to the desktop for the same user distance. This 
indicates that gaze data quality from the tablet setup is 
superior to that from the desktop setup. 

D. Case study 4: Evaluating and comparing data from a 
binocular head-mounted (HM) eye tracker 

Eye tracking data from a binocular head mounted eye 
tracker [23] is collected and evaluated using the GazeVisual 
software. Data is collected from the head-mounted tracker 
with a frame rate of 120Hz and eye camera resolutions of 640 
x480 pixels, when a user is seated at a distance of 60 cm from 
the gaze targets (Fig.8a). The collected data is brought to the 
common format of Section III D, using Viewport transform 
[24], since the head-mounted tracker produces gaze output 
data in the form of Normalized Device Coordinates (NDC). 
The NDC (Xndc, Yndc) is converted to centered screen pixel 
coordinates (Xp, Yp) using the following relations:  

Xp = (Xndc + 1.0) * ScreenWidth * 0.5 + ScreenTopLeftX 
Yp = (Yndc + 1.0) * ScreenHeight * 0.5 + ScreenTopLeftY  

 

where ScreenTopLeftX and ScreenTopLeftY are (0,0).  Fig 8d 
shows a comparison table (on Data Analysis page) using data 
from remote tracker R1(Dataset1) and HM tracker (Dataset2). 
 

 
Fig.8a. Data collection from a desktop and a tablet (top) and a head mounted 
eye tracker (bottom). Chin rest is used for all cases. The blue screen with the 
black dots is the UI used to collect gaze data. 

 
 

Fig.8b. KDE plots of gaze errors computed on data from two remote eye 
trackers for comparison using the “Data Analysis” window. 

 
Fig.8c. Box plots created on the “Visualizations” window to compare gaze 
data collected from desktop (left) and tablet (right box) platforms. 

 
TABLE II 

 Evaluation results from GazeVisual (columns 2, 4-6 in degrees) 

Case study Ac Sd 
Conf 
int 

Max 
angle 

Yaw 
(max,min) 

 Pitch 
(max-min) 

R1+desktop 2.1 2.0 1.9-2.1 34.2 24, -26 12, -16 
R2+desktop 7.3 6.0 8.8-9.1 33.0 22, -34 15, -24 
R1+Tablet 1.2 0.8 1.1-1.2 13.6 9.23, -9.91 4.5, -6.5 
HM tracker 4.4 0.9 4.4-4.5 41.3 33.76-25.04 24.7-20.4 
       

 

E. Discussions 
It is seen that GazeVisual can handle gaze data from 

different commercial eye trackers, provided their gaze data is 
organized in the format described in Section III.D. GazeVisual 
can quantitatively estimate and differentiate between the data 
quality of multiple trackers which could be highly useful for 
designers of consumer eye tracking applications to select the 
correct eye tracking device for their purposes, and also know 
about the practical limits and capabilities of their systems 
during un-constrained operations. Several data files used here 
are in the “Sample data” folder of the GitHub repository to let 
users understand the input data formatting.  In Table II, Ac 
refers to angular accuracy and Sd is standard deviation. 

VI. A WEB-APPLICATION FOR THE GAZE VISUAL SOFTWARE 
To enhance the usability of the GazeVisual software, a web-

application named GazeVisualApp is developed and deployed 
on a Python based cloud-server. This web-application has 
similar analysis and visualization capabilities as the 
GazeVisual desktop GUI application and accepts raw gaze 
data in the same CSV format to provide gaze data analysis 
results and visualizations through a web-browser. The concept 
and implementation of the web-application is described here. 

A. Rationale for building a web-application for performance 
evaluation of eye trackers.   

There are several benefits of having the capabilities of 
GazeVisual GUI tool available via a web-application (WA)  
These include: 1) Installation: Running the GazeVisual GUI 
software requires installation of Python 2.7 and several Python 
libraries. Many users may not have Python 2.7 or these 
libraries installed, or may not be familiar with Python 
language. Such users may be benefitted from the WA which 
would require only a web browser and internet connection to 
run. 2) Portability: Consumer platforms like tablets use mobile 
operating systems (OS) and may not have adequate hardware 
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resources (processor speed, sufficient disk space and RAM) to 
and run Python packages. With the WA, the benefits of the 
GazeVisual software would be available to users irrespective 
of OS or device hardware. This could be especially handy for 
evaluating eye trackers operating on consumer handheld 
devices like smartphones and tablets which are highly 
dynamic platforms and gaze data quality on these platforms 
may get strongly affected by user motion, hand poses and head 
poses. 3)Flexible access, updates and support: With 
GazeVisualApp, the evaluation methods would be accessible 
to any user all the time and any updates will be immediately 
available to the users. 4)Continuous development: With the 
WA, eye tracker evaluation methods will be open to viewing 
and testing by the eye gaze community who may be able to 
contribute a stream of useful upgrade suggestions to include 
and test with the WA 5) Simplification: GazeVisualApp 
interface is simpler than its desktop version (although the later 
has more functionalities). Thus the WA could be more 
attractive to users who need only basic evaluation methods.   

B. Concept and implementation of GazeVisualApp: A web-
application for performance evaluation of eye trackers 

The web-interface of GazeVisualApp is shown in Fig. 9a 
and using it is very simple. The interface comprises of 
instruction steps for using the application and a single file 
upload button bar. A user only needs to browse and upload a 
single CSV file having the gaze and ground truth data saved in 
the format described in Section III.D, via the file upload 
button. After uploading the CSV file, contents of the file are 
used to estimate gaze accuracy metrics and visualizations in an 
identical manner as done in the GazeVisual desktop 
application, using the same functions, algorithms and Python 
libraries. After uploading the CSV file, contents of the file are 
immediately displayed on the browser window, along with 
display of gaze data statistics and creation of six plots below 
the upload bar (Fig. 9b) The plots are:  1. gaze data vs ground 
truth scatter 2. gaze angles vs ground truth 3. gaze error vs 
time  4. gaze error distribution 5. gaze yaw angles and 6. gaze 
pitch angles vs respective ground truths. All functions of the 
web-application take place on a single web browser page. The 
gaze data used by the app is not stored in any database, but 
resultant plots may be saved in PNG formats during runtime. 
By refreshing the browser tab, the web-app may be restarted. 

 

 
Fig.9a. The GazeVisualApp interface with the data upload bar. 
 

GazeVisualApp is developed using Python 2.7 and Dash 
[25] which is an open source Python library (with MIT license) 

for creating interactive and analytical web applications. Dash is 
built on JavaScript libraries for building graphs and user 
interfaces, and Flask [26], which is a Python framework for 
creating web applications. Dash applications comprise of web 
servers running Flask and communicating JSON packets over 
HTTP requests. Dash allows use of interactive UI elements 
like buttons and graphs as well as coupling of Python data 
analysis libraries like Pandas, Numpy and Scipy. For building 
the GazeVisualApp, the frontend was built using UI elements 
provided by Dash (with HTML/CSS styles) and the backend 
comprised of various Python based analytical and data 
visualization components. Dash was suitable for building 
GazeVisualApp since the GazeVisual software functionalities 
could be easily ported to it, and the outputs of both the desktop 
and web applications could be made homogeneous and 
identical while working on the same gaze data files. Another 
benefit of using the Dash-Python framework is the good 
support of developers and resources, which may in future help 
to expand the GazeVisualApp to include more functionalities. 

 

 
Fig.9b. Output plots and data statistics obtained from the GazeVisualApp after 
uploading gaze and ground truth data 
 
C. Deployment of the GazeVisualApp on a cloud platform 

GazeVisualApp is deployed on a cloud server to make it 
accessible to general users over internet. For this, a  web 
hosting service  provider (with a Platform as a service or PaaS 
model [27]) supporting Python language is chosen that allows 
apps built with Python and Flask (or any WSGI compliant 
framework) to run on hosted servers, and become available to 
multiple users. In the PaaS cloud computing model, a third-
party provider delivers hardware and software tools needed for 
developing or running an application over the internet by 
hosting the required tools on its own infrastructure. Thus, 
users don’t need to install any specific hardware or software 
on their computers to run the web-application, which could be 
a huge benefit for GazeVisual users. 

For deployment, a Python based web hosting service [28] 
was used which provides access to a Linux server where web 
applications written in Python may be hosted and run publicly. 
To host the app, Python code for the web application is saved 
and compiled on the cloud based Python IDE of the hosting 
web server. All dependencies e.g. libraries like Flask and Dash 
are installed by setting up a virtual environment on the web-
host’s portal. The benefit of this hosting service is its support 
of various Python versions and Python libraries and possibility 
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to deploy interactive graphics and data analysis facilities 
through installing required Python packages. Application 
deployment on this hosting service is also easy and fast.  

 

D. Tests and evaluation 
The GazeVisualApp was tested with gaze data in the same 

way as done with the GazeVisual desktop GUI. Results were 
found to be identical to those provided by the GUI software. 
The web app works on desktop and mobile operating systems, 
with all commonly used web browsers. The GazeVisualApp is 
live and users may test the app using CSV files from the 
GitHub repository at:  http://gazevisual.pythonanywhere.com/  

VII. UTILITY AND RELEVANCE OF GAZEVISUAL TOWARDS 

CONSUMER ELECTRONICS APPLICATIONS 

Quality evaluation of consumer devices is a critical aspect 
that affects both users as well system designers. The users 
need to know if a device performance meets their needs, while 
engineers need to learn about the practical limits and 
capabilities of their systems. Works on evaluating consumer 
electronic devices like cameras, assistive technologies, 
biometric systems and wearable sensors are discussed in [34]–
[37] which reflects the significance of evaluation methods in 
consumer electronics use cases.  

Evaluating eye tracking data quality is similarly crucial to 
attain user acceptance and feasibility of using eye trackers, 
especially in unconstrained consumer applications. It has been 
shown in [6] that performance (or level of errors) in an eye 
tracker changes significantly with varying operating 
conditions. Without a dedicated and easily accessible set of 
methods for quality evaluation of eye trackers, there is no way 
for users to know if their eye tracker is delivering optimal 
performance or if their gaze data is reliably accurate. With 
uncertain gaze data quality, any gaze based consumer 
application is likely to fail.  

There are several instances where software frameworks 
have been developed for improving consumer electronics 
systems in various ways. Examples include [38] where a 
software framework is described for driver assistance 
application developments. It reduces software in-homogeneity 
in presence of a variety of electronic control units so that 
application developers can work independent of the hardware 
architecture. In [39] a software framework is presented for 
product lifecycle information acquisition and management to 
help in sustainable and environmentally sensitive product 
design and building intelligent consumer products. In [40] a 
software development kit is developed to easily and efficiently 
port complex desktop based software to handheld platforms. A 
software platform in [41] is designed to allow multiple 
Internet of Things (IoT) based devices to operate on a single 
service platform, to enable interoperability across various IoT 
devices and creation of innovative products. 

The GazeVisual software and its web-application fall into 
such category of software which can be used to improve the 
quality and service of eye tracking systems that are deployed 
in a wide range of consumer devices. The software provides 
multi-criteria evaluation methods for analyzing gaze data and 
thereby possible sources of errors affecting the data output 
from eye trackers may be detected. Also it can handle data 
from different types of commercial eye trackers. GazeVisual 

(and its web-application) can therefore be highly useful tools 
for evaluating the quality and reliability of eye trackers 
implemented in various consumer applications such as 
handheld devices, desktop and head-mounted systems and also 
for identifying ways to improve their performance. 

A comparison of GazeVisual with a state-of-the art open 
source (Pygaze) and a commercial [21] gaze data analysis 
software is shown in Table III. GazeVisual has several 
capabilities for objective evaluation of eye gaze data that are 
not present in other software packages for eye trackers. 

 
TABLE III 

Comparison of GazeVisual capabilities with other gaze data analysis software 

VIII. CONCLUSION  

In this paper, GazeVisual, a freely available software tool 
capable of analyzing eye gaze data quality based on the raw 
data output from an eye tracker is presented. This tool enables 
users to assess and compare their tracker data characteristics 
under varying test conditions. Several case studies are 
documented which provide useful working examples for CE 
engineers on the application of the GazeVisual software for 
the evaluation of eye-trackers in practical use cases.  

A matching web application named GazeVisualApp is 
provided to make the software available via a ubiquitous web 
interface, and thus easy to use and deployable across multiple 
platforms. The desktop GUI as well as the web-application is 
designed to help engineers looking for a common platform for 
evaluation and comparison of eye tracking systems.  

Source code for GazeVisual is available in the GitHub 
repository which will allow researchers and engineers to use, 
adapt and introduce improvements to the software in future. 
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Criteria GazeVisual 
Pygaze 

[15] 
Commercial 
Software [21] 

Gaze accuracy estimation Yes Yes Yes 

Gaze error distribution Yes No No 
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Eye tracking error classification and modelling with machine 
learning algorithms 
 
Anuradha Kar,a,* Peter Corcoran,a  
aNational University of Ireland, Galway, Department of Electrical & Electronic Engineering, University Road, 
Galway, H91TK33, Ireland 

Abstract. Identifying error characteristics in eye gaze data is a critical task as an eye tracker’s accuracy is frequently 
affected by non-ideal operating conditions in various applications and user platforms. In this work, statistical and 
machine learning algorithms are used to classify error patterns in gaze data and predict errors produced by an eye 
tracker when they operate under challenging conditions. For this, gaze data from two platforms, a desktop and a 
tablet were acquired using an eye tracker when the tracker operated under the influence of several factors (also 
called error sources), that are known to affect its accuracy-such as variable head pose, user distance and platform 
orientations. Classifiers were trained on these gaze datasets to identify the impact of different error sources and 
regression models were used to predict the variability in gaze error levels under the influence of these conditions. 
The goal of this work is to present methods which may be used to pre-process raw eye tracking data and 
successively detect and predict the impact of multiple extraneous factors on it. These methods are envisioned to 
provide in-depth knowledge about an eye tracker’s accuracy characteristics and improve quality and reliability of 
eye trackers operating under unconstrained conditions.  

 

Keywords: Eye gaze, gaze data, eye trackers, pattern recognition, classification, modelling, machine learning, SVM, 
neural networks. 
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1 Introduction 

1.1  Research questions and motivation 

Gaze data obtained from eye trackers operating on various consumer platforms is frequently 

affected by a multitude of factors (or error sources) such as head pose, user distance, display 

properties of setup, illumination variations and occlusions. The impact of these factors on gaze 

data are manifested in the form of gaze estimation errors whose characteristics or distributions 

have not been explored adequately in contemporary gaze research [1]. There are no methods 

which may be used for analyzing the pattern of gaze estimation errors and investigating further 

details about their occurrences. For example, it is not known whether the above factors produce 

any particular pattern of errors or if the nature of gaze errors follows any statistical distribution 
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or if they are simply random. These aspects cannot be understood by looking at raw gaze data 

which is almost always corrupted with noise and outliers, or even by studying mean error values.  

 

With respect to gaze error analysis, several questions arise: These include: 1) how can gaze 

errors caused by one error source be distinguished from those caused by another 2) how can the 

presence of different error sources in a certain gaze dataset be detected without prior knowledge 

3) is it possible to predict the level of gaze errors that might be caused by different error sources. 

4) can suitable features be extracted from gaze datasets to identify the different error sources.  

These questions form the main topics that are addressed in this paper. 

 

 

This paper focuses on defining methods for detailed analysis of eye tracking data obtained from 

a generic commercial eye tracker for the detection, identification and prediction of gaze errors. 

The aim of this work is to observe gaze error patterns produced by three error sources which 

commonly affect eye trackers in static and dynamic platforms like desktop and tablets. These 

include head movement, user distance and platform orientation. It was found that there currently 

exists no publicly available gaze dataset which contains raw gaze and ground truth data along 

with signatures of these error sources. Therefore a new eye tracking dataset was built by 

collecting gaze data from 20 subjects using a commercial eye tracker on both a desktop and a 

tablet platform. This dataset may be obtained from the authors on request and is also to be 

published in an open repository for use by the gaze research community (link to the dataset 

webpage is in Section 5 below). During data collection, variations in head pose, user distance 

and platform orientations were introduced sequentially and in a calibrated manner so that gaze 

data contains the influence of one known condition (or error source) at a time. Reference data, 

which does not have the influence of any of these conditions, was collected as well.   

163



3 

For detecting gaze error patterns caused by the different error sources, the collected data is used 

for training machine learning (ML) algorithms by creating training features from the datasets. As 

the operating conditions change, the feature variables in the training data get affected and as a 

result the ML models learn to differentiate between error patterns caused by different sources. In 

this way, anomalous gaze data may be distinguished using classifiers which have been trained 

using both affected and reference gaze datasets. Finally, regression algorithms are built to model 

and predict gaze errors which may be produced by above three error sources. 

1.2 Background and scope 

Pattern classification and modelling approaches have been applied on eye tracking data for 

various purposes. For example, in [2], the effect of video frame rate on viewing behavior and 

visual perception of users is studied by comparing gaze data patterns collected for high and low 

video frame rates.  In [3] a new hybrid fuzzy approach is introduced to distinguish gaze patterns 

when users perform face and text scanning. In [4], dominant gaze characteristics of experienced 

and inexperienced train drivers are classified using Markov Cluster (MCL) algorithm, and 

marked differences are observed between gaze patterns of the two driver classes.  [5] uses a 

Bayesian Mixture Model to learn the gaze behavior of drivers who perform a variety of tasks 

during  conditionally automated driving, by classifying the driver’s fixations and saccades. Gaze 

patterns are used with clustering and classification algorithms to predict user’s intention to 

perform a set of tasks in [6]. 

 

A special de-noising and segmentation algorithm based on Naive Segmented Linear Regression 

and Hidden Markov Models is developed in [7] to classify gaze features into fixations, smooth 

pursuits, saccades and post-saccadic oscillations using good quality as well as noisy data. 
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Automated classification of fixations and saccades were achieved using random forest classifiers 

on high quality as well as noisy gaze datasets in [8]. 

It may be observed that gaze or eye movement pattern modelling are mostly applied towards 

either cognitive studies, i.e. to interpret viewing patterns or distinguish between oculomotor 

event types e.g. saccades, fixations and smooth pursuits. With respect to studying gaze error 

patterns, however only a few works are reported. Examples include [9] which estimates the two-

dimensional gaze error distribution and uses a predictive model to shift gaze according to a 

directional error estimate. This is based on a previous work [10] which proposed a gaze 

estimation error model that can predict gaze error by taking into consideration factors such as 

mapping of pupil positions to scene camera coordinates, marker-based display detection, and 

mapping from scene camera to on-screen gaze coordinates. However, no works till now have 

covered the aspect of classification of gaze error patterns induced by different operating 

conditions and prediction of error levels under their influence, which is presented in this paper. 

 

In this work, the term gaze error is frequently used which is the angular difference between the 

gaze locations estimated by an eye tracker and actual locations of the visual targets, typically 

appearing on a display screen or viewing area. Gaze error patterns in this work signify magnitude 

distributions of the gaze error values over a given number of samples or display area. Error 

sources refer to non-ideal operating conditions such as high degree of head pose variation with 

respect to frontal pose, too long or too short user distances or conditions where an eye tracking 

platform is tilted to different angles as opposed to their neutral positions. Such conditions are 

considered in this work since they occur frequently during practical operations of eye trackers 

and significantly affect an eye tracker’s accuracy, but the patterns of error induced by them on 

gaze data characteristics are unknown till now.  
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In this work, the impact of these error sources on the gaze error patterns produced by a given eye 

tracker is studied. The scope is limited to studying one error source or operating condition at a 

time (i.e. either head pose or user distance or platform pose is varied at a time). However eye 

trackers could face more complex scenarios, for example two or more error sources could occur 

together and affect an eye tracker’s data. Such analysis is not covered in this work as firstly 

relevant data is not available, and secondly occurrences of such complex circumstances are rarer 

than the ones considered here. It is likely that at a time there is only one error source affecting an 

eye tracker with major influence compared to other sources which may or may not be present. 

For example, user distance is fixed in a desktop or automotive based eye tracking systems and 

head motion is the major source of gaze tracking error in these platforms. Our analysis is based 

on data collected from static remote eye tracker setups on desktop and tablet platforms. This 

study is done with participants not wearing glasses, in indoor space and under uniform 

illumination levels, to rule out the impact of occlusion and illumination changes on gaze data 

1.3 Organization of contents 

The paper is organized as follows. Section 2 describes the gaze data collection setup and 

procedure and steps for data pre-processing and exploration. Section 3 provides details about the 

gaze error detection methods using machine learning models and Section 4 presents the various 

regression algorithms used in this work for modelling errors produced by different conditions. 

2       Experimental methodology and data exploration 

The concepts of this work have been implemented in several phases.  Eye tracking data was 

collected through special experiments using two consumer platforms, a desktop and a tablet, 

under different operating conditions. The collected data went through the processing pipeline 
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(Fig. 1) with initial investigation using statistical methods and visualizations before being fed to 

the machine learning models in the final phase. Data collection experiments, experimental setup 

and steps of the data analysis workflow are described below. 

 
 
 
 
 
 
 

 
 
 
 

 Fig.1 Data processing and analysis pipeline followed in this work 

2.1 Eye tracking data collection 

A detailed description of the gaze data collection process and setup using a commercial eye 

tracker has been provided in our previous work [1] in its Section 3.1. For the current work, data 

was collected using the same methodology but from a larger group of 20 participants and for four 

user distances from both the desktop and tablet platforms.  

 

2.2 Eye tracking UI and device 

For eye tracking data collection, an eye tracker coupled with a visual stimulus interface (also 

called UI) is used. The trackers used are a Tobii EyeX 4C and an Eye tribe (for pilot data 

collection) remote eye tracking device which come with their own calibration routines. During 

an experiment session participants are seated in front of the tracker (Fig.3) with a chin rest and 

the UI runs simultaneously with the eye tracker. The UI shows a moving dot which sequentially 

traces a grid of (5x3) known locations (also called area of interest or AOI) over the desktop or 

tablet’s display (Fig 3 right). The dot radius is 10 pixels and it stops at each AOI for 3 seconds 

Prediction

Classification 
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before moving to the next and gaze data is collected while participants look at the dot. Gaze data 

comprises of a participant’s gaze coordinates (x, y positions in pixels) on the (desktop/tablet) 

display and corresponding time stamps as estimated by the tracker. The known on-screen dot 

locations form the ground truth data and are used for accuracy calculations. Chin rest is used for 

stabilizing a participant’s head for all experiments. 

2.3 Setup and experimental details 

The desktop setup consists of the eye tracker mounted on the screen of a desktop computer (Fig 

3, top). The screen diagonal is 22 inches, with a pixel resolution of 1680 x1050. Two different 

experiments are done with this setup. These are: (a) User distance experiments: In these, gaze 

data is collected at user-eye tracker distances of 50, 60, 70 and 80 cm. (b) Head-pose variability 

experiments (Fig 2a): Head pose here refers to the position of a user’s head in 3D space in terms 

of roll, pitch and yaw (RPY) angles. During the experiments, a user is seated at a fixed distance 

(60 cm) from the tracker and is asked to vary their head position to fixed but distinct pose (RPY) 

angles each time, with respect to the frontal position (RPY=0) while looking at the UI on the 

display. Their gaze is tracked on the UI and their head position is tracked simultaneously using 

an active appearance model [11],  that measures head pose RPY angles with 1 degree accuracy. 

It may be noted that neutral head pose gaze data is the same as user distance gaze data at 60 cm. 

 

For the tablet setup, two experiments were implemented with the same test UI as used for the 

desktop. The first ones were the user distance experiments done in the same way as for the 

desktop platform, described above. The other experiment was done for studying the impact of 

variable platform orientation on eye tracker data (Fig. 2b). For this, the tablet device was first 

mounted with the eye tracker and the orientation of this combined setup was varied to known 
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platform roll, pitch and yaw angles (20 degree in each of roll, pitch yaw directions). The user’s 

head and distance from the tablet-tracker setup were kept fixed (Fig. 3). Eye tracking data was 

collected for each tablet orientation (at fixed user-tracker distance of 60 cm). Data for the neutral 

tablet orientation is the same as gaze data at 60 cm from the tablet user distance experiment. The 

tablet screen has a diagonal size of 10.1 inches and pixel resolution of 1920 x800.  

 

Maximum head and platform poses allowed by the eye tracker is 20 degrees and no tracker data 

can be obtained at distances below 50cm or above 80cm.  Data from user distance experiments 

are called UD50, UD60,UD70, UD80 for distances of 50,60,70, 80 cm. “HP” is used to denote 

head pose experiments. The same group of 20 participants (15 male, 5 female) were involved in 

data collection for all experiments. 

                                   
                                                   
     
 
 
 
 
 

                                              
                                              
                                       
 
 
 
 
                                     (a)                                                                                 (b) 
Fig 2. (a) Face model showing different head poses in real time (b) different platform poses of tablet with tracker [1] 

 

The process flow of the experiments comprised of first positioning the user in front of the 

desktop or tablet setup and calibrating their eyes with the calibration software provided for the 

eye tracker.  Next, the UI described above is run along with its data-logging routine to record eye 

tracking data in comma separated values or CSV files, along with millisecond timestamps. Data 

collected from these especially designed experiments is then used for processing and analysis.  
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                     Desktop setup              

     
              

                       Tablet setup 

 
         

                         (a)                                                      (b)                                                                       (c) 

Fig.3 From left a) Experimental setups for desktop and tablet platforms b) (top) list of experiments performed in this 

work (bottom) process flow  for experiments, data collection, analysis c) user interface for gaze data collection 

2.4 Data preparation 

Figure 4 below shows the raw gaze data overlaid on ground truth, as obtained from the different 

experiments described above. It can be seen that it is impossible to decipher error patterns from 

gaze data by simply looking at it in raw form and data from very different operating conditions 

often look similar and vice versa. However, as will be shown next, eye tracking data obtained 

under different operating conditions do have diverse error distributions and statistical properties. 

 
                  (a)                                               (b)                                       (c)                                           (d) 
Fig. 4 Raw gaze data (black points) overlaid on ground truth data(blue lines) for (a) neutral head pose (2)head pose 
with roll of 20 degrees (c), head pitch of 20 degrees (d) head yaw 20 degrees. It can be seen that it is very hard to 
visually distinguish between data from different experiments done under different conditions, unless special pre-

processing steps and learning algorithms are employed to identify the error source affecting the eye tracker. 
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This subsection describes the steps of preparing the gaze datasets to bring them into a suitable 

form before applying machine learning models. The first step to prepare the gaze data for the 

learning tasks is to convert the raw gaze data coordinates (in pixels) into frontal gaze angles and 

gaze yaw and pitch angles. The raw gaze x,y pixel coordinates of the left and right eye (Xleft, Yleft 

& Xright, Yright respectively) obtained from the tracker are used to estimate gaze angle and gaze 

yaw, pitch angles as follows [1]: 

                               GazeX = mean
X left+ Xright

2
,	GazeY = mean

	 	
                               (1) 

The on-screen distance (OSD) of a user’s gaze point is the distance between the origin and a 

certain gaze point with the coordinates GazeX, GazeY). In our case, the tracker is attached 

directly below the screens and the origin is the center of the screen. Therefore: 

OSD (mm)= µ GazeX 2+  GazeY 2  (2) 

Where µ is the pixel pitch of the display where gaze is tracked in units of mm/pixel. 

The gaze angle of a point on screen relative to a user’s eyes is calculated as:  

Gaze angle (θgaze) = tan-1(OSD/Z) (3) 

The ground truth (θgt) gaze angles for the AOI locations with coordinates AOI_X, AOI_Y) are: 

OSD_GT= µ AOI_X 2+  AOI_Y 2  

                                                  Ground truth angle (θgt) = tan-1(OSD_GT/Z)                                  (4) 
 

The gaze yaw and pitch angles are derived as follows: 

                 Gaze pitch(θpitch) = tan-1(GazeY/Z), Gaze yaw (θyaw) = tan-1(GazeX/Z)          (5) 
The ground truth pitch and yaw angular values for each AOI dot with screen coordinates 

(AOI_X, AOI_Y) are given by: 

                                  AOI pitch = tan-1(AOIy/Z), AOI yaw= tan-1(AOIx/Z)                                  (6) 
 

These gaze variables along with their statistics would later be used to construct the feature 

vectors for the learning algorithms. The plots of gaze frontal and rotational angles are shown 

below in Fig. 5.  Throughout this paper, the terminologies gaze angle, gaze yaw and gaze pitch 
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angle will be used to indicate the variables defined by Eqns 3-6 above. Readers must not be 

confused between the terms gaze yaw/pitch and user head roll/yaw/pitch and platform pose 

roll/yaw/pitch which are also used in this paper. 

 
                                   (a)                                                        (b)                                                        (c)  

Fig. 5 Time series of a) gaze angles b)gaze yaw and c) gaze pitch angles (black lines, along with ground truth- in 
blue lines) for one person during one experimental session for neutral pose captured on the desktop setup 

 

The common problems associated with analyzing the collected dataset were: a) presence of 

outliers b) missing or null values c) unequal data row lengths. Therefore, before using the data to 

train the models and yield meaningful results, it was essential that collected data goes through 

certain pre-processing steps. For filling the missing values, a mean substitution was used. For 

outlier removal, the following methods were tested i) 1D Median filtering: This method can 

detect isolated out-of-range values from legitimate data features. In this method, value of a data 

point is replaced by that of the median of all data points in a neighborhood w [12] such that: 

                                                      y[m,n] = median {x[i,j], (i,j) ϵ w}                                              (7) 
                                          

ii) Median absolute deviation: This is calculated by taking the absolute difference between each 

point and the median, and then calculating the median of those differences. This is more robust 

than using standard deviation for outlier detection as standard deviation is itself affected by 

presence of outliers [13].  c) IQR: The concepts of using Z-score and inter-quartile range (IQR) 

for studying outliers have been discussed in our previous work [1]. A data point is denoted as an 

outlier if value for the point is 1.5⋅IQR above the third quartile or below the first quartile of the 
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data. Results from the three outlier removal methods are shown in Fig.6 a-c and it was found that 

median filtering (with a kernel size =41, which is the mean number of data points around each 

AOI) worked best for all of the datasets.. 

 
                                 (a)                                                             (b)                                                  (c) 
Fig. 6 Outlier detection and removal with a) median filtering  b)MAD and c) IQR methods. Median filtering is seen 

to remove nearly all outliers. 
 

2.5 Exploratory data analysis and visualizations 

Since the eye tracking datasets were collected under unconstrained conditions and the nature of 

such data or its distributions are unknown, data exploration was essential to observe any 

underlying patterns before proceeding to the learning step. This is done after the data cleaning 

steps described above as the presence of outliers and null values made it impossible to study any 

meaningful patterns prior to data preprocessing. After null and outlier removal, gaze angular 

errors for frontal and rotational components are computed in absolute units (degrees) as the 

angular deviation between ground truth and estimated gaze angular values using Eqns 3-6, as:   

                                                 (Gaze frontal angular error)i =  (θgaze)i - (θgt)i                             (8) 
                                              (Gaze yaw angle error)i =  (θyaw)i - (AOI_Yaw)i                            (9) 
                                              (Gaze pitch angle error)i =  (θpitch)i - (AOI_Pitch)i                        (10) 
 
The gaze angular error and gaze yaw, pitch errors are three categories derived from the same 

gaze data sample. This aspect will be used later in generating the training sample set from the 

collected gaze datasets. 
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2.5.1 Studying gaze data statistics for desktop and tablets 

The first step to studying error characteristics of gaze data obtained from the different 

experiments is to look into the error statistical parameters such as mean, median absolute 

deviation, inter-quartile range and 95% confidence interval. These parameters will also form 

parts of the feature vector for the classification studies later in this paper. Fig 7a and Table I 

show the statistical properties of gaze errors for different desktop experiments. It is seen that 

gaze error is higher at low user distances and error reduces as user-tracker distance increases. 

This is primarily due to reduction in visual angle and eccentricity with increasing distance as 

discussed in [1]. Error due to head yaw is seen to have the highest magnitude although errors due 

to head pitch have the highest inter-quartile range-or highest variability in error values. Also  

error levels due to various head poses are quite higher compared to when head pose is neutral 

(UD60 values in Table I). All values in the tables have units in degrees of angular resolution. 

Table 1. Gaze error statistics from desktop experiments  

 UD50 UD60 UD70 UD80 Roll 
20 

Yaw 
20 

Pitch 
20 

Mean 3.37 2.04 1.21 1.02 3.7 8.51 3.15 
MAD 3.49 1.77 0.82 0.66 3.63 10.0 1.90 
IQR 1.13 0.77 0.76 0.79 1.21 1.49 1.59 

95% 
interval 

3.15-
3.59 

1.90-
2.18 

1.15- 
1.26 

1.16-
1.24 

3.30-
4.09 

7.60-
9.43 

2.83-
3.47 

                                                                                                                                                      (a) 

Table 2. Gaze error statistics from tablet experiments  

 UD50 UD60 UD70 UD80 Roll 
30 

Yaw 
30 

Pitch 
20 

Mean 2.68 2.46 0.59 1.55 7.74 4.25 2.45 
MAD 0.38 0.42 0.29 0.24 0.77 0.60 0.46 
IQR 0.39 0.54 0.33 0.22 0.75 0.53 0.23 

95% 
interval 

2.65-
2.71 

2.43-
2.48 

0.57 
-0.61 

1.53-
1.57 

7.69-
7.80 

4.22-
4.29 

2.41-
2.49 

                                                                                                                                                                         (b)                                                                      

                                                                                                            Fig 7 Boxplot of gaze errors from (a) desktop  
                                                                                        b) tablet experiments                                                   
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Fig 7b and Table II show the statistical properties of gaze errors for different tablet experiments. 

The magnitudes of errors due to tablet pose changes are high and the highest error is caused due 

to platform roll variations. It is also seen that the error characteristics from tablet data are quite 

different than those from the desktop platform. Compared to desktop data, the error magnitudes 

are lower for tablet for all user distances.  Also magnitude of errors produced due to different 

platform poses (Fig 7b) are higher compared to errors induced due to head pose (Fig 7a). 

2.5.2 Studying gaze error distributions for desktop and tablet data 

The 1-dimensional distributions of the angular error values for different gaze datasets are studied 

using Kernel Density Estimate (KDE) [14]. Since the exact distributions of the gaze errors are 

unknown, Kernel density estimation is useful since it is a non-parametric way to approximate the 

probability density function of the data, compared to parametric estimation where a fixed 

functional form and its parameters are required to fit the data. For data with samples x(i), using a 

kernel function (K) and  bandwidth h, the probability density at a point x is : 

                                                        KDE= ∑ K y x /h                                                             (11) 
 

The Gaussian kernel K is given by                  K u =   1
√2π

e-0.5u2
                                                    (12) 

Data from user distance experiments (50-80 cm) are used to create the KDE of gaze errors in Fig 

8a. KDE plots of gaze errors for neutral and head roll, pitch, yaw directions are shown in Fig 8b. 

                     
                                             (a)                                                                                            (b) 

Fig 8 Gaze error distribution due to: a) user distance (b)due to head pose variations on desktop platform 

175



15 

It may be seen from Fig 8a and b that each operating condition (e.g. user distance or head pose) 

leaves a definite signature on the gaze error distributions. As an example, for user distance 

experiments, Fig 8a shows that clear distinction exists between patterns of gaze errors for 

different user distances (top-bottom plots correspond to user distances of 50, 60, 70, 80 cm) as 

the error distribution shifts towards lower error values when user distance increases. The reason 

behind this has been discussed above in Section 2.4.1. Also, Fig 8b shows that head pose 

deviations from the neutral position induce different pattern of errors in for different pose 

directions. However, the error patterns induced by these factors are difficult to decipher when 

looking at raw gaze data or simple error magnitudes.  

 

Using the data collected from tablet experiments, the KDE plots of gaze errors for four different 

user distances and different platform poses are plotted below. It is again seen that different 

operating conditions have their individual impacts on the gaze error distribution. Further, the 

gaze error KDE plots (Fig 8, 9) are found to be non-Gaussian or resembling any known 

statistical distribution function, which makes it difficult to predict the nature of gaze errors 

produced by different error sources. These aspects forms the background for studying gaze error 

characteristics due to different error sources and implementing the learning tasks described next.   

 

                              
                                                                   (a)                                                                                                       (b) 

Fig 9 Gaze error distributions due to (a) different user distance from tablet (b) tablet poses. 
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2.5.3 Studying spatial error distribution properties 

2D spatial distribution of gaze error values over the display screen area, as a function of 

corresponding visual angles for different datasets are computed and displayed. These plots show 

that factors like user distances and head pose angles have varied impact on gaze error spatial 

patterns, with minimum errors obtained at the center of the display, for neutral head positions. 

Similar features are seen from tablet data plots, for different user distances and platform poses.   

 
                        (a)                                                 (b)                                               (e)                                        (f) 

    
                         (c)                                                 (d)                                              (g)                                        (h) 
  

 
                         (i)                                                    (j)                                         (m)                                            (n) 

 
                         (k)                                                  (l)                                              (o)                                          (p) 
 
 

Fig 10 Gaze error spatial distribution as a function of visual angles (x axis= yaw angle, y axis= pitch angle) over 

display due to user distance for desktop (Fig 10 a,b,c,d) and tablet  (Fig 10i,j,k,l).  Fig 10 (e,f,g,h) show spatial error 

distributions due to head pose variations on desktop, Fig 10 (m,n,o,p) show error distributions due to tablet poses. 
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2.5.4 Studying data correlations 

Desktop data from user distance experiments at 50, 60, 70 and 80 cm (UD 50, UD60, UD70,  

UD80) and head pose experiments at head roll, pitch, yaw angles of 20 degrees,(R20, Y20, P20) 

are used to compute desktop data correlation matrix of Fig 11a. Data from tablet experiments for 

different user distances and platform poses are used to compute the tablet data correlation matrix 

of Fig 11b. As can be observed, gaze data collected under different operating conditions from the 

same platform and eye tracker do not have any correlations between their characteristics.  

 (a)          (b) 
Fig.11 Correlation between data collected from a) desktop (R20, Y20, P20 refers to head pose) (b) tablet  

2.5.5. Discussions 

In this section, various parts of the gaze data processing pipeline were described and detailed 

visual and numerical exploration of eye tracking data was done. The gaze data collected from 

different experiments showed varied levels of in-homogeneities and only after outlier removal, 

distinct gaze error patterns could be observed which will be used in the next sections for the 

learning models. One significant aspect noted is that gaze errors from tablet are much lower than 

errors from the desktop for the same user distances. This could indicate that the distinguishing 

aspect between the two platforms, which is display size and resolution could be a factor 

determining the error levels for an eye tracker. However, further comparison of data from the 

two platforms is not done in this work. Other takeaways from this section include identification 
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of robust outlier removal methods for gaze data and observations on gaze error distributions 

which are heavily affected by operating conditions but are not observable in raw gaze data plots. 

Also studies on the correlation of different eye tracking datasets (Fig 11) reveal an important 

aspect, that under different operating conditions an eye tracker’s data may behave in totally 

independent ways which are not related to the data characteristics under stable conditions. 

3     Identification of error patterns in eye gaze data 

3.1 Objectives and task definition for classification of desktop and tablet data 

In this section, the main goal is to identify a certain error source or operating condition solely 

from the output data from an eye tracker which has been influenced by the condition. For this 

purpose, multiple classifier models are trained using data collected from the different eye 

tracking experiments, which are seen to produce different error patterns. The objective is to see if 

machine learning models [15][16] can learn to distinguish between these gaze error patterns as 

they appear among a mix of data captured under different operating conditions.  

The following classifications tasks are performed using the desktop datasets: 1) classification of 

errors for different user distances (i.e. between 4 classes of data  from user distance- 50, 60, 70, 

80 cm datasets) (2) classification of errors for different head poses (i.e. between 4 classes : 

neutral pose, roll (20 degrees), pitch (20 degrees), yaw (20 degrees) datasets), (3)classification 

between head pose and user distance errors patterns (i.e. between 4 user distance classes, and 3 

head pose classes, total 7 classes). With data from tablet experiments, the following classification 

tasks are implemented: 1) classification of errors for different user distances (i.e. between 4 

classes of user distances data) (2) error classification for different tablet orientation poses (i.e. 

between 4 classes of data from neutral tablet pose, roll (20 degrees), pitch (20 degrees), yaw (20 
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degrees) datasets), (3)classification between tablet orientation and user distance errors patterns 

(i.e. between 4 user distance classes, and 3 tablet pose classes, total 7 classes).  

Before implementing the classification algorithms on both desktop or tablet data, the user 

distance, head-pose and tablet orientation datasets are augmented to increase number of training 

samples[17][18]. After this, training features are constructed and formatted before input to the 

models. Same data augmentation strategies are used for both desktop and tablet data. For training 

and testing, gaze angle, yaw, pitch feature datasets are created and used. Classification results 

from desktop data are in Section 3.3 while that from the tablet datasets are in Section 3.4.  

3.2 Data augmentation strategies 

With our dataset size (20 persons x 4 operating conditions each for user distance and head pose), 

in order to use sufficient number of features for classification without facing overfitting problem, 

augmentation of the dataset was essential. In this work, 10-fold augmentation strategies were 

used on the gaze angle, yaw and pitch error datasets estimated from raw data using Eqns 8-10. 

The methods used for data augmentation are as follows: 1) Adding Gaussian noise: Gaze error 

magnitudes at all data points are perturbed with Gaussian noise with 0 mean and 0.2 sigma [19] 

2) Adding jitter: Human eye jitter is modelled as pink noise [20][21] ,in which the power spectral 

density is inversely proportional to the frequency of the signal, given by PSD= 1/fα. The jitter 

signal is simulated by first generating white noise with mean, sigma (0, 0.2) and successively 

applying a pink noise filter with the parameters  α= 0.8 at a frequency of 2Hz and added to the 

error datasets. 3) Interpolation: Linear interpolation on the input data points  is used to produce 

variants of the original gaze error samples [22]. 4) Convolution: The error signals are convolved 

with a raised cosine kernel of window size N=30 with the form of Eqn 13 below to produce 

smoothed variant of the original data [23].  
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                                                              w n =
1

2
 1-cos

2πn

N-1
                                                     (13) 

 

The convolution operation is given by:          f*g t ≜ f t-τ
∞

-∞
g τ                                     (14) 

5)Time shifting: The gaze data are shifted by 10 samples to estimate new variants in error values 

from the shifted datasets [24] 6) Combinations: Combinations of adding the different noise 

patterns to interpolated signal are used to augment the dataset. 7) Flipping: Horizontal and 

vertical flipping of error magnitudes at the different AOIs are used to augment the dataset as well 

as to remove any viewer bias towards the top, bottom and side locations of the screen. In 

horizontal flipping, the error magnitudes of top AOI-1 to AOI 5 (Fig 3) are replaced by the 

values of bottom AOIs (AOI-11 to AOI 15). In vertical flipping, error magnitudes of left AOIs 

(AOI No. 1,6,11) are swapped with right AOIs, (No. 5,10,15). Fig 12 shows how the samples 

from a dataset are modified by these augmentation methods. Table 3 shows how training samples 

are expanded from the collected dataset. 

  
Fig 12. Shows a sample from a dataset after applying each augmentation strategy. The blue lines represent samples 

from original data, while the red lines are from the augmented dataset after applying each strategy. 

3.3 Feature engineering, exploration and selection 

The original data sample set in this work has 20 participants and for each subject, there are three 

categories- i.e., gaze angular error, yaw error and pitch error (Eqns 8-10) from which training 
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features are computed[25]–[28]. The training feature set is constructed by estimating error 

magnitudes at 15 AOI locations distributed all over the display screen as shown in Fig 3 above 

(to account for the spatial distribution of errors), and statistical values for each sample, i.e. mean 

error (µ), error standard deviation (σ), interquartile range (IQR) and upper and lower bounds of 

the 95% confidence interval of the sample. Thus each training sample has 20 features as follows: 

						[Error_AOI-1, Error_AOI-2...Error_AOI-15, µ, σ, IQR, 95% conf upper, 95% conf lower]sample     (15) 
 

The above feature set is calculated from gaze angle as well as yaw and pitch angle data for each 

sample. For training the machine learning models, the features from all datasets are standardized 

so that they have zero mean and unit variance and shuffled randomly before splitting the datasets 

into train and test sections. The proportion of train vs test samples are varied between 0.4 to 0.25. 

Table 3 below describes the contents of all the training and test datasets used in this work. 

 

For visualizing the high dimensional feature set, the t-Distributed Stochastic Neighbor 

Embedding (t-SNE) method [29]is used , which maps data points xi in the high dimensional 

feature space RD (D is the dimension of the feature set, D=20 here) to points yi in a lower d-

dimensional space (Rd , here d= 2) by finding similarities (pji)  between the data and learning the 

corresponding low dimensional mapping  points y1, …, yN  (with yi ∈ Rd  that reflects these 

similarities  as best as possible[30]–[32]. The pairwise similarity (pji) between points xi and xj is:  

                                                             	 	 	
	 	 /

∑ ‖ 	 	‖ /
                                                  (16) 

For observing the training data in feature space, the t-SNE algorithm (with n_components=2, 

perplexity=80) is applied on the feature sets computed from user-distance, head-pose and 

platform pose datasets and plotted in   Fig 13 a and b for desktop and tablet data respectively. On 

datasets from both desktop and tablet, the t-SNE points look scattered with no structure.  For 

head pose data and platform pose data, and mixed datasets, the t-SNE plots show several 
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clusters, but within them the class labels are found to be highly mixed. This reflects the high 

degree of complexity of the datasets used in this work since the different classes within them do 

not form any observable clusters, neither are symmetrically distributed nor have any clear 

separation between them. This is close to real world gaze datasets in which normal gaze data is 

most often mixed with anomalous data occurring due to unpredictable operating conditions. 

   
 
 
 
 
 
 
 
 
 
 

Fig 13a. t-SNE plots for (i) user distance (ii) head pose (c) merged user-distance & head pose for desktop datasets. 

Legends 1, 2, 3, 4 are  user distance classes UD50-UD80, 5,6,7,8 are head pose classes neutral, roll, pitch, yaw 

 

   
 

Fig 13b. t-SNE plots for (a) user distance (b) tablet pose (c) merged user-distance & tablet pose for tablet datasets. 

Legends   1, 2, 3, 4 are user distance classes UD50-UD80, 5,6,7,8 are tablet pose classes neutral, roll, pitch, yaw. 

 

For feature selection, the relative importance of features (Eqn.15) are estimated using a random 

forest classifier method [33]–[35]. This model comprises of a number of decision trees in which 

it can be computed how much each feature reduces the weighted impurity [36]in the tree. The 

total impurity decrease contributed by each feature is averaged to rank the feature’s importance. 

Features computed on desktop and tablet datasets are fed to a random tree classifier model with 

hyper-parameters (n_estimators=200, max_depth=8). The rankings of features for desktop and 
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tablet datasets are shown in Fig.14 a and b. In all the datasets, mean, standard deviation, IQR and 

confidence intervals (feature numbers 16-20) emerge as the most significant features. Based on 

this, the following reduced feature set was computed: [µ, σ, 95%Conf_up, 95%Conf_down, 

IQR]. This reduced feature set was used with SVM and KNN for classification.  However neural 

network models required the full feature set to reduce training error and prevent under-fitting. 

    
Fig 14a: Relative importance of features for different desktop datasets  

 

  
Fig 14b: Relative importance of features for different tablet datasets  

Table 3. Training and test dataset details 

Samples for 
train, test 

Original feature set 
(20 features) 

Augmentation 
strategies 

Samples per 
person  

Samples and 
classes 

Total 
subjects: 20 
12- 16 
subjects for 
training,  
8-5 for test  
Data labelled 
and 
randomly 
shuffled  
 

1) Gaze error values at 15 
AOIs, Mean, SD, IQR, 0.95 
interval bounds of gaze error 
2) Yaw error values at 15 
AOIs, Mean, SD, IQR, 0.95 
interval bounds of yaw error 
3) Pitch error values at 15 
AOIs, Mean, SD, IQR, 0.95 
interval limits of pitch error  

 
Reduced feature set (5 

features) 
Mean, SD, IQR, 0.95 
interval bounds for each 
sample. 

1) Gaussian noise 
2) Jitter or pink noise 
3)Horizontal data 
flipping 
4) Vertical data 
flipping 
5) Magnitude warping 
6)Time warp 
7) Interpolation & 
combinations 

10 x gaze error 
10 x yaw error 
10 x pitch error 
 
 
 
 
 
 
 

Merged 
dataset 

30 samples  

1) Desktop user 
dist, 2400 samples, 
4 classes 
2) Head pose, 2400 
samples, 4 classes 
3) Desktop mixed: 
4200 samples, 7 
classes 
5) Tablet user dist, 
2400 samples, 4 
classes 
6) Tablet pose, 2400 
samples, 4 classes 
7) Tablet mixed: 
4200 samples, 7 
classes 
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3.4 Classification models: k-NN, SVM and ANN 

After data augmentation and exploration of the feature set and labelling, the datasets were used 

with three different machine learning models from the Python Scikit-Learn libraries, run on a 

Windows 7 computer with core i7 2.6 GHz processor. A brief description of the models is below. 

 

a) K-nearest neighbours (k-NN): In this, the underlying assumption is that samples of the same 

class will be the nearest neighbors of each other i.e. the distance between them will be small 

since they are related[37][38]. While using this method, the training samples form vectors in a 

multidimensional feature space, each with its class label. In the training phase of the algorithm 

the feature vectors are stored along with class labels of the training samples. In the classification 

phase, the distance between an un-labelled input vector and the training dataset is calculated to 

get the k (a user defined hyper-parameter number) nearest points of the input sample. Then the 

input sample is categorized into the class of the majority in the k nearest points. Thus if the 

training data is x1,y1 , x2,y2 …(xN,yN) , and x is the feature vector of an input sample, the 

KNN finds the class of the input sample x using a distance metric [39][40] which in this work is 

the Euclidean distance given by: 

                                                              Dist (xi,xj) = ∑                                      (17) 

 
b)Support Vector Machines(SVM): It is a supervised learning method [41][42]that works on the 

principle of transforming the input feature space by a nonlinear transformation to a high 

dimensional feature space, and searching for an optimal separating hyperplane for the input 

classes in this new high-dimensional space[43][44]. With this separating hyperplane the training 

data xi with labels yi can be classified so that the minimal distance of each point from the 

hyperplane is maximized. With the training data depicted as instance-label pair (xi, yi), i=1,...,m 
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where  xi ∈ Rn represents the input vector and  yi ∈ (-1,1) are the corresponding output label of 

xi. The objective function for SVMs can be defined as:  

																																																																							
min
w, b, ξ ‖ ‖  + C	∑                                                              (18) 

                           with the condition:  yi(w
Tx  +b )  1- ξ	  (i=1,…N).                                                (19) 

 
Here C >0 is the regularization parameter and ξi is the slack variable, w is the weight vector and 

b is the offset.  To classify un-labelled examples xk according to labels yk using Kernel function 

K(xi, xk) , the optimal separating hyperplane equation becomes:  

                                                             yk = sign(∑ 	 	 ,
	

)                                       (20) 
 
where S is the set of support vectors xi, ai are Lagrange multipliers (used for solving the 

optimization problem). In this work, a Gaussian Radial Basis Function or RBF kernel is used 

which is given by: 

																																																																										K x , x exp γ‖x x ‖                                          (21) 
 
The hyper-parameters C and γ are chosen for optimal fitting and discussed in next section. 

c) Multilayer neural networks (MLP): There are supervised learning algorithms [45]–[48] which 

takes in labelled training examples and solves complex, non-linear hypothesis by a network of 

computing units called “neurons”.  Learning in an MLP takes place by updating connection 

weights of each neuron after passing a batch of data samples from input to output, depending on 

the amount of error in the output compared to the target. The general update rule for weights 

(Δwji) in an MLP based on backpropagation and gradient descent is: 

                                                               Δwji = - η
	
 yi(n)                                                              (22) 

Where, yi(n)is the output of the previous neuron and η is the learning rate, E is the error in the 

nth node. In this work, neural networks with ReLU activation, Adam optimizer and constant 

learning rate of 0.001 is used.  
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3.5 Classification results on desltop data 

3.5.1 Results, Task I: Classification of desktop data for different user distances 

The KNN, SVM and MLP models were used for classification of gaze datasets corresponding to 

four different classes of user distances (50, 60, 70, 80 cm) and the results are in Table 4. In the 

table, Tr, Ts, Cv are training, test and cross validation accuracies. A training-test sample 

proportion of 30%  and 10-fold cross validation was used in all cases[49].  For all models, grid 

search [50]with cross validation is used to determine the optimal hyper-parameters.  For K-NN, 

the optimal number of neighbors was found to be 3.  For SVM, the RBF kernel is used [51]with 

the soft margin cost function parameter C set to 10 and gamma set to 1.0.  C defines the trade-off 

between misclassification and simplicity of the decision surface. Gamma is the RBF kernel 

parameter (Eqn. 21). For MLP, grid-search yielded a best hidden layer size of 3 with neuron 

configurations of [50, 100, 50] units in the layers with full training set of 20 features being used.  

3.5.2 Results, Task II: Classification of desktop data for different head poses 

In this task, the gaze datasets collected from desktop setup for different user head poses are used. 

The head pose datasets include gaze error values for head roll (20 degrees), pitch(20 degrees), 

yaw(20 degrees) and neutral (roll, pitch, yaw= 0 degrees). KNN, SVM and MLP models were 

used and classification accuracies for the different classifiers are tabulated in Table 5. 

Using grid search, for KNN, the best number of neighbors was found to be 3 and reduced feature 

set was used. For SVM, a C value of 10 and gamma of 1.25 was used with the reduced feature 

set. For the MLP model, a 3 layer network was used and its architecture is tuned by varying the 

number of units in each layer between (50-100) and varying the regularization parameter values 

between 0.001 to 0.5 to control overfitting. Also the full feature set was used for training. 
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3.5.3 Results, Task III: Classification on merged user distance and head pose datasets from desktop 

In this task, the head-pose and user distance datasets are merged and classifiers are applied to do 

a 7 class classification on this mixed dataset. Since the head pose data was collected at a user 

distance of 60 cm, the neutral head pose data and the UD60 data are the same, and therefore only 

one of these two datasets is used to avoid class imbalance in the mixed dataset. As above, the 

three classifiers are trained and tested on this dataset. For the KNN, the best number of neighbors 

was chosen to be 3 as shown in Fig 16c below, which shows the dependence of train, test and 

cross validation error as a function of number of neighbors used in the model. For the SVM 

model, the parameters were same for the above two tasks. For the MLP, 2 hidden layers with 100 

units each and regularization value of 0.001 was used with the full set of features. Classification 

results are presented in Table 6 and confusion matrix for MLP model is in Fig 15. Table 7 shows 

the performance of the three classifiers on different datasets, with true and false detection rates 

and precision values. It is observed that for desktop data, KNN and MLP classification 

performances are close, with the KNN performing well for all the datasets. 

Table 4: Classifier performance for user distance                         Table 5: Classifier performance for head pose 

 

Dataset used k-NN SVM Neural 
network 

Only gaze angle 
features 

Tr= 0.95 
Ts= 0.88 
Cv= 0.91 

Tr= 0.86 
Ts= 0.80 
Cv=0.83 

Tr=0.98 
Ts=0.83 
Cv=0.90 

Only gaze yaw 
features 

Tr=0.92 
Ts=0.84 
Cv= 0.88 

Tr= 0.87 
Ts= 0.77 
Cv= 0.78 

Tr=0.98 
Ts=0.87 
Cv= 0.86 
 

Only gaze pitch 
features 

Tr=0.98 
Ts= 0.97 
Cv=0.95 

Tr=0.98 
Ts= 0.96 
Cv=0.96 

Tr=0.96 
Ts=0.85 
Cv=0.83 
 

Merged (gaze, 
yaw, pitch) 
feature dataset 

Tr= 0.93 
Ts=0.85 
Cv= 0.89 

Tr= 0.86 
Ts=0.79 
Cv= 0.80 

Tr=0.92 
Ts=0.82 
Cv=0.84 
 

Dataset used k-NN SVM Neural 
network 

Only gaze angle 
features 

Tr= 0.91 
Ts= 0.9 
Cv= 0.89 

Tr= 0.73 
Ts= 0.70 
Cv=0.69 

Tr=0.95 
Ts=0.81 
Cv=0. 86 
 

Only gaze yaw 
features 

Tr=0.90 
Ts=0.83 
Cv= 0.83 

Tr= 0.73 
Ts= 0.64 
Cv= 0.64 

Tr=0.98 
Ts=0.87 
Cv= 0.84 

Only gaze pitch 
features 

Tr=0.98 
Ts= 0.95 
Cv=0.96 

Tr=0.89 
Ts= 0.90 
Cv=0.89 

Tr=0.96 
Ts=0.82 
Cv=0.73 
 

Merged (gaze, 
yaw, pitch) 
feature dataset 

Tr= 0.90 
Ts=0.75 
Cv= 0.84 

Tr= 0.70 
Ts=0.64 
Cv= 0.67 

Tr=0.92 
Ts=0.78 
Cv=0.81 
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    Table 6: Classification on mixed datasets (desktop) 
Dataset used k-NN SVM Neural 

network 

Only gaze angle 
features 

Tr= 0.91 
Ts= 0.80 
Cv= 0.87 

Tr= 0.80 
Ts= 0.74 
Cv=0.74 

Tr=0.94 
Ts=0.76 
Cv=0.83 
 

Only gaze yaw 
features 

Tr=0.88 
Ts=0.73 
Cv= 0.81 

Tr= 0.72 
Ts= 0.65 
Cv= 0.66 

Tr=0.97 
Ts=0.82 
Cv= 0.80 

Only gaze pitch 
features 

Tr=0.97 
Ts= 0.91 
Cv=0.92 

Tr=0.93 
Ts= 0.91 
Cv=0.91 

Tr=0.98 
Ts=0.83 
Cv=0.79 
 

Merged (gaze 
fontal, yaw, pitch) 
feature dataset 

Tr= 0.91 
Ts=0.78 
Cv= 0.85 

Tr= 0.77 
Ts=0.70 
Cv= 0.70 

Tr=0.92 
Ts=0.75 
Cv=0.77 

 

  
                              (a)                                                        (b)                                                          (c) 

Fig.16 Effect of varying model hyper-parameters for KNN (a)  and MLP(b, c) 

Table 7: True and false detection rates from classifiers- Desktop (for user distance, head pose and mixed datasets) 

3.6 Classification results on tablet data 

In this subsection, results from using tablet data with various classification models are presented. 

These include datasets for different user-tablet distances (50, 60, 70, 80 cm) and tablet poses of 

neutral, platform roll, pitch and yaw of 20 degrees. A mixed dataset is created by merging the 

datasets for user distance and platform pose and classifier models are trained to do seven class 

classifications i.e. distinguish between 4 user distance and 3 tablet pose classes. 

User distance dataset Head pose dataset Mixed head pose, user distance 
dataset 

 KNN SVM MLP  KNN SVM MLP  KNN SVM MLP 
TPR 0.96 0.95 0.85 TPR 0.97 0.91 0.95 TPR 0.83 0.93 0.83 
FPR 0.01 0.01 0.04 FPR 0.01 0.02 0.01 FPR 0.02 0.01 0.02 
TNR 0.98 0.98 0.95 TNR 0.99 0.97 0.98 TNR 0.97 0.98 0.97 
FNR 0.04 0.04 0.14 FNR 0.03 0.08 0.04 FNR 0.16 0.06 0.16 
Precision 0.98 0.93 0.85 Precision 0.97 0.97 0.95 Precision 0.85 0.93 0.85 

Fig 15. Confusion matrix using MLP on mixed 
head pose and user distance dataset 
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3.6.1 Results, Task IV: Classification of tablet data for different user distances 

For the user distance dataset from tablet platform, the KNN classifier with 3 neighbors is used. 

The SVM is used with RBF kernel, C= 10 and gamma of 1 and the MLP classifier is used with 3 

layers, 200 units each and with a regularization value of 0.0001. The best performance is by 

MLP and classification results are in Table 8. 

3.6.2  Results, Task V: Classification of tablet data for different tablet poses 

For the tablet pose dataset, the KNN classifier with 3 neighbors are used. The SVM is used with 

RBF kernel, C= 5 and gamma of 0.5. The MLP model is used with 2 layers, 100 units each and a 

regularization value of 0.0001. Best classification results are again by MLP and are in Table 9. 

3.6.3 Results, Task VI: Classification of tablet data for mixed user distance and tablet pose datasets 

For the mixed user distance and platform pose datasets, the KNN classifier with 3 neighbors is 

used. The SVM is used with RBF kernel, C= 5 and gamma of 0.5 and the MLP classifier is used 

with 2 layers, 100 units each and with a regularization value of 0.0001. Both SVM and MLP 

perform well and classification results are in Table 10.          

Table 8:  Classifier accuracy on tablet distance datasets                Table 9: Classification on tablet pose datasets 

 

 
 

Dataset used k-NN SVM Neural 
network 

Only gaze 
angle features 

Tr= 0.91 
Ts= 0.79 
Cv= 0.86 

Tr= 0.99 
Ts= 0.82 
Cv= 0.88 

Tr= 0.99 
Ts= 0.75 
Cv= 0.85 

Only gaze yaw 
features 

Tr= 0.96 
Ts= 0.87 
Cv= 0.93 

Tr= 0.99 
Ts= 0.92 
Cv= 0.92 

Tr= 0.98 
Ts= 0.85 
Cv= 0.90 

Only gaze 
pitch features 

Tr= 0.96 
Ts= 0.91 
Cv= 0.94 

Tr= 0.99 
Ts=  0.9 
Cv= 0.91 

Tr=0.82 
Ts= 0.75 
Cv= 0.78 

Merged (gaze 
fontal, yaw, 
pitch) feature 
dataset 

Tr= 0.92 
Ts= 0.86 
Cv= 0.88 

Tr=  0.98 
Ts= 0.85 
Cv= 0.85 

Tr= 0.89 
Ts= 0.74 
Cv= 0.84 

Dataset used k-NN SVM Neural 
network 

Only gaze 
angle features 

Tr= 0.89 
Ts= 0.78 
Cv= 0.81 

Tr= 0.94 
Ts= 0.78 
Cv= 0.82 

Tr= 0.95 
Ts= 0.77 
Cv=0.81 

Only gaze yaw 
features 

Tr=0.91 
Ts=0.83 
Cv=0.84 

Tr= 0.98 
Ts= 0.82 
Cv= 0.86 

Tr= 0.96 
Ts= 0.78 
Cv= 0.78

Only gaze 
pitch features 

Tr= 0.94 
Ts= 0.90 
Cv=0.90 

Tr= 0.94 
Ts= 0.78 
Cv=0.81 

Tr= 0.78 
Ts= 0.70 
Cv= 0.71 

Merged (gaze 
fontal, yaw, 
pitch) feature 
dataset 

Tr= 0.90 
Ts=0.8 

Cv=0.85 

Tr= 0.97 
Ts= 0.78 
Cv= 0.84 

Tr= 0.91 
Ts= 0.74 
Cv= 0.76 
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Table 10: Classification on tablet(distance+ pose) dataset 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Table 11: True and false detection results from classifiers-Tablet (for user distance, tablet pose and mixed datasets) 

 

3.7 Discussions 

The results from this section demonstrate that ML models can distinguish between gaze data 

collected under normal and varying operating conditions. Thus using these models, anomalies 

present in gaze datasets may be detected. This is similar to anomaly detection approaches [52]–

[54] used in fields such as cyber intrusion and video surveillance, where training sets of normal 

and nominal examples are used to design a decision rule such that occurrences of erroneous data 

samples are detected accurately. 

For the classification tasks, gaze datasets were constructed such that they contained signatures of 

a single or multiple error sources. It was found through the decision tree based feature selection 

Dataset used k-NN SVM Neural 
network 

Only gaze 
angle features 

Tr= 0.88 
Ts= 0.73 
Cv=0.75 

Tr= 0.95 
Ts=  0.79 
Cv= 0.80 

Tr= 0.96 
Ts= 0.73 
Cv= 0.78 

 

Only gaze 
yaw features 

Tr= 0.95 
Ts=0.82 
Cv= 0.85 

Tr= 0.96 
Ts= 0.78 
Cv= 0.84 

Tr= 0.88 
Ts= 0.73 
Cv=  0.70 

 

Only gaze 
pitch features 

Tr= 0.92 
Ts=  0.82 
Cv= 0.89 

Tr= 0.95 
Ts= 0.82 
Cv= 0.84 

Tr=  0.86 
Ts= 0.72 
Cv= 0.79 

 

Merged (gaze 
fontal, yaw, 
pitch) feature 
dataset 

Tr= 0.90 
Ts= 0.76 
Cv= 0.82 

Tr=  0.98 
Ts=  0.79 
Cv= 0.83 

Tr= 0.84 
Ts= 0.67 
Cv= 0.75 

User distance dataset Platform pose dataset Mixed  user distance,  tablet 
pose dataset 

User-
Dist 

KNN SVM MLP Pose KNN SVM MLP Mixed KNN SVM MLP 

TPR 0.87 0.85 0.71 TPR 0.90 0.83 0.79 TPR 0.80 0.83 0.70 
FPR 0.04 0.04 0.09 FPR 0.03 0.27 0.06 FPR 0.03 0.02 0.04 
TNR 0.95 0.95 0.90 TNR 0.96 0.97 0.93 TNR 0.96 0.97 0.95 
FNR 0.12 0.14 0.28 FNR 0.09 0.16 0.20 FNR 0.19 0.16 0.29 
Precision 0.87 0.88 0.72 Precision 0.91 0.86 0.79 Precision 0.82 0.88 0.72 

Fig. 17  Confusion matrix using MLP on mixed 
tablet (user distance +tablet pose) dataset 
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technique that statistical attributes such as gaze error confidence levels and interquartile ranges 

are significant parameters that can be used to distinguish gaze error sources. In the classification 

tasks, the KNNs and MLP classifiers performed best for all datasets, although MLP models take 

more time to converge. Also, it is seen from Tables 4-6 and 8-10 that using gaze yaw and pitch 

features result in better detection accuracies than gaze angular datasets. From Tables 7 and 11, it 

is seen that the rate of false detections is also low for all the models. All the datasets, especially 

the ones created with 7 classes, were found to be quite complex as no class separation could be 

detected from t-SNE results. Despite this, the classification models achieved a cross validation 

score of 85-90% on most datasets. This shows the feasibility of ML models in detecting gaze 

error sources even from complex gaze datasets where more than one source is present.  

The ML models used here were optimized through experimentation to select the set of hyper-

parameters that best improve their cross validation scores. In some cases, results show under-

fitting, especially in 7 class classification problems, which are inherently complex. For this kind 

of problems with little separation between classes, larger training datasets can improve results.  

4    Modelling and prediction of gaze errors 

Using the collected desktop and tablet datasets, regression models [55][56]are trained to predict 

gaze estimation errors using gaze angle, yaw and pitch angle values as input features. Two 

different models are built which may be used to predict gaze errors of an eye tracker under two 

different operating conditions. These include the head-pose error model, which can be used to 

predict gaze errors occurring due to various user head poses.  The other is the platform pose error 

model, for predicting gaze error corresponding to different poses of the eye tracker. The gaze 

errors are predicted as a function of a user’s gaze angle and gaze yaw/pitch angles (Eqn 28). The 

results from the various gaze error models are presented in sub-section 4.1 and 4.2 below. 

192



32 

A regression model describes a dependent variable Y as a function of an independent variable x 

with the generic relation: Y = a + b1X1 + b2X2 + b3X3 + ... + btXt + u, where X1, X2.. Xt are 

the independent variables, a is the intercept, b is the slope and u is the regression residual[57]. 

The cost function used for evaluation of model fit is given by root mean squared error or RMSE:  

                                                           RMSE =    ∑ y 	 y                                                    (23) 

where n is the number of observations, yi is the true value of target to predict, and y 	is model’s 

predicted result. The optimization function of a standard linear regression can be expressed as:  

                                                              min || Xw - y ||²                                                                        (24) 
where X is the set of feature variables, w represents the weights, and y comprises of the ground 

truth data points. In this work, several regression models are used, including Ridge, Lasso, 

ElasticNet [58][59] and Neural network based models[60]. In Ridge regression the issue of high 

variance is mitigated through addition of a squared bias factor as regularization in the form: 

                                                       min || Xw — y ||² + z|| w ||²                                                        (25) 
Whereas in Lasso regression, an absolute value bias of the form below is used: 

                                                       min || Xw — y ||² + z|| w ||                                                         (26) 
The ElasticNet regression uses the regularization factors of both the above techniques: 

                                           min || Xw — y ||² + z_1|| w || + z_2|| w ||²                                              (27) 
In this work, the regression models are used to map gaze frontal and yaw, pitch angle values to 

gaze errors produced under different operating conditions. The task of the regression algorithms 

is not only to find the mapping between input and output variables but also take into 

consideration the interactions between the input variables. The input features (X1, X2, X3) are: 

                                               [Gaze_Angle, Gaze_Yaw, Gaze_Pitch] → Gaze error                     (28) 
 
For the regression tasks, the input features are standardized such that their distributions have 

mean value of 0 and standard deviation of 1. Six different regression models for predicting gaze 

errors are trained on the features created using Eqn. 28 on head pose(desktop) and platform pose 
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(tablet) datasets. For each model, fit estimates in RMSE values are summarized in Tables 12 

(Desktop) and 13 (tablet). The coefficients of the best performing models are listed in Table 14. 

4.1 Head pose error model 

    Table 12: Prediction errors (RMSE) for models-Desktop 
 
 
 
 
 
   
 
 
 
 

                                                                                                                                       (a) 
 

 
 

 

  

 
                                 (b)                                                           (c)                                                       (d) 

Fig. 18 Actual gaze errors (red) and predicted gaze errors for head pose neutral, roll, pitch, yaw (a-d) datasets 

Table 12 shows that ElasticNet (with penalty parameter =0.5) has the lowest prediction errors for 

all head pose datasets. Regularization used for Ridge and Lasso models is 0.001. MLP model is 

used with 1 hidden layer with 100 units, ReLU activation and regularization value of 0.001.  

4.2 Platform pose error model 

    Table 13: Prediction errors (RMSE) for models-Tablet 
 
 
 
 
 
  
 
 
                                      (a) 

 Dataset: Head pose-Desktop 

Model  Neutral R20 P20 Y20 
Linear  2.24 1.36 1.45 2.71 
Polynomial 7.48 1.82 7.88 2.88 
Ridge 2.24 1.36 1.44 2.70 
Lasso 2.24 1.15 1.31 2.70 
ElasticNet 2.25 1.07 1.29 2.69 
Neural network 4.01 1.21 2.09 2.75 

 Dataset: Platform pose-Tablet 

Model  Neutral R20 P20 Y20 
Linear 0.73 1.79 0.58 0.72 
Polynomial 2.61 1.99 5.24 0.81 
Ridge 0.73 1.79 0.58 0.72 
Lasso 0.73 1.73 0.58 0.71 
ElasticNet 0.73 1.71 0.50 0.70 
Neural network 1.75 1.78 2.39 1.18 

194



34 

 
 

 
 

 
 

 
                                 (b)                                                    (c)                                                          (d) 
 

Fig. 19 Actual gaze errors (red) and predicted gaze errors for tablet pose neutral, roll, pitch, yaw (a-d) datasets  

For the tablet pose dataset, the ElasticNet performs well, with a penalty parameter value of 0.5. 

The MLP and polynomial regression models are seen to overestimate the error values. It was 

seen that outliers and noise strongly affect all the models and therefore outlier removal and data 

standardization methods to convert the input features to have normal distribution is essential.  

4.3 Establishment of the error models 

As described above, a regression model with three predictor variables can be expressed as: 

                                         Y = B0 + B1*X1 + B2*X2 + B3*X3                                                                                       (28) 
Where B0 is the intercept, B1, B2 and B3 are coefficients and X1, X2, X3 are input features (gaze, 

yaw, pitch angles). Since the ElasticNet model had lowest RMSE for predicting head and tablet 

pose errors, the  B0, B1, B2 and B3 parameters of this model are computed for the head pose and 

tablet pose datasets and presented in Table 14. With these parameters, the head and platform 

pose error models may be constructed for error prediction using gaze angular variables as input. 

Table 14: Coefficients and intercept of the best model for different datasets 

Platform/Condition ElasticNet model coefficients: 
B1, B2 and B3 

Intercept 
B0 

Desktop: Head pose neutral [0.09336917,  0.19406989, -0.00279198] -1.99912371e-16 
Desktop: Head Roll 20 [0. , 0.65189252,  0.07303053] 3.23942926e-16 
Desktop: Head Pitch 20 [0.22606558, 0.11028886, 0.05731872] -9.55229176e-17 
Desktop: Head Yaw 20 [0.  ,  0.51352565,  0.08149052] 8.94037155e-17 

Tablet: Platform pose neutral [0.07333954,  0. , -0.17956056] 1.76076146e-16 
Tablet: Platform Roll 20 [0. , -0.31460996, -0.23620848] -2.87637414e-16 
Tablet: Platform Pitch 20 [0. , -0.05682588, -0.20804325] 2.34007877e-16 
Tablet: Platform Yaw20 [0. , -0.01596391, -0.06346607] -2.41027682e-17 
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5     Conclusion and future work 

In contemporary eye gaze research, there is scarcity of analytical methods for studying the 

variability of gaze accuracy in eye tracking data acquired under unconstrained conditions. There 

is also lack of datasets that provide gaze and ground truth information for different operating 

conditions, and gaze datasets labelled with different experimental scenarios are absent. 

Therefore, in this work, a new and diverse gaze dataset is collected specifically for this purpose, 

and labelled with different operating conditions. The dataset comprises of fixation data from 20 

participants captured from different user platforms and operating conditions such as 6 different 

head poses, 4 different user distances and 6 platform poses. This dataset is then analyzed to 

identify the presence and modelling the impacts of the above conditions on gaze error levels 

estimated from the collected data. The details of the dataset are in the link below and the gaze 

data files are available from the authors on request. It will also be publicly available shortly.  

Link: https://data.mendeley.com/datasets/2txnw3y6gs/draft?a=6ca3629f-393c-4f80-93f6-8d56e6557792 . 

Several new approaches with respect to gaze error pattern analysis have been implemented in 

this work. This includes the use of several strategies for outlier removal, and the median filtering 

approach among others was highly successful in de-noising gaze data from all the collected 

datasets. Next, multiple gaze data augmentation methods were applied which helped to increase 

the size of the collected gaze datasets by an order of magnitude and introduce lots of variabilities 

within the datasets. The choice of gaze error features and use of random forest based feature 

selection method helped to reveal insights about gaze error characteristics, e.g. that interquartile 

range and confidence intervals are significant indicators for distinguishing gaze error patterns.  

 

The t-SNE algorithm is a relatively new concept in machine learning which was used in this 

work to visualize the distribution of classes within the gaze datasets, when gaze data influenced 
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by different error sources are mixed together. This technique demonstrated the complexities of 

the gaze datasets used in this work, which are close to what might be expected in gaze data from 

un-constrained practical applications. Finally, the use of machine learning for classification and 

prediction of gaze error patterns in artificially created heterogeneous gaze datasets as done in this 

work is a new concept, that has not been explored before. 

 

This work also reveals that ML models could be highly robust in identifying gaze error patterns 

even in complex gaze datasets. It was seen that classifier models can successfully distinguish 

between eye tracking data collected under normal conditions (corresponding to neutral head and 

platform poses), and data collected under varying operating conditions such as high degree of 

head pose variations, various user distances and platform poses. With these classifiers, known 

types of error sources in eye gaze datasets may be detected, and gaze error patterns that do not 

match the normal gaze behavior may be identified and recognized as new error types. 

 

The various concepts developed in this work, including application of classifier and regression 

models to gaze error data may be used for building improved eye tracking systems and 

algorithms and also getting better results from them. The main benefit of training the classifier 

models is that they can distinguish anomalous gaze data present in realistic and complex gaze 

datasets as used in this work and possibly recognize what caused them (e.g. impact of user 

distance or head pose). This can help eye gaze application developers, researchers or engineers to 

deploy appropriate prevention methods, compensation strategies or setup improvements to 

reduce the impacts of the error sources affecting their data.  

The regression models may be used predict how an eye tracker might behave under practical 

operating conditions like high degree of head pose or platform pose variations and forecast the 
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possible levels of error caused by different error sources. This can help the eye gaze researchers 

or engineers to quantitatively specify the limits of their systems while operating under these 

challenging conditions and also develop suitable error correction methods.  

Also the outlier detection techniques described in this work could be useful for applying to any 

gaze dataset prior to analyzing them, to observe underlying patterns. Overall, the gaze data 

analysis pipeline as implemented in this work could be of use in parts or whole to any eye gaze 

researcher or engineer who wishes to gain deeper insights into their collected gaze data and have 

an estimate about the impacts of various non-ideal operating conditions. 

 

There also remains several ways to extend the work presented here since extracting and 

analyzing error patterns from gaze data is a new and unexplored field in gaze research. For 

example, deep neural networks may be used for detecting anomalous gaze data collected from 

unconstrained setups. As mentioned in Section 1.2, in this work, influence of one operating is 

considered at a time while collecting gaze data. However, complex scenarios may arise where 

gaze data may be affected by more than one error source, as for example in automotive use 

cases. The problem of multi-factor influence on gaze data is an interesting and complex research 

question but can only be answered when relevant and labelled data is available. Therefore 

collecting relevant gaze datasets from complex operational scenarios using desktop, handheld, 

head mounted or automotive setups towards understanding diverse range of gaze error patterns 

could be another potential future work in this domain. 
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7 Abstract. 
8 In contemporary eye gaze research, there is marked deficiency of open source software and datasets for 
9 quantitative and in depth evaluation of eye gaze data quality. To address this issue, an open source code 

10 repository named GazeVisual-Lib is developed and presented here, which contains a number of gaze data 
11 evaluation algorithms, visualizations and software tools that may be used to quantitatively analyse and evaluate 
12 the quality of gaze data from any consumer grade eye tracker. In addition, a new labelled eye gaze dataset 
13 collected from multiple user platforms and operating conditions is created, which can be used by eye gaze 
14 researchers and engineers to do benchmark comparison and evaluation of their gaze estimation systems.

15 Keywords: 
16 Eye gaze; data quality; performance evaluation; gaze dataset
17
18 1. Motivation and Significance
19 Eye gaze data quality refers to the validity of gaze data measured and reported by an eye tracker[1]. The 
20 common method for representing gaze data quality is by specifying gaze estimation accuracy which refers to the 
21 difference between the true and measured gaze positions [2]. There currently exists significant diversity in gaze 
22 accuracy measures as described in [3] and there are also no common or standard gaze accuracy metric, since 
23 different researchers define gaze accuracy independently. This leads to ambiguity in the interpretation of the 
24 quality of gaze data from different eye tracking systems and difficulty in comparison of two or more eye trackers. 
25 Moreover, with growing applications of eye gaze in unconstrained scenarios, e.g. in consumer electronics like 
26 augmented and virtual reality [4][5], handheld devices[6] and smart TVs[7], the eye trackers used in such use cases 
27 need to be thoroughly evaluated to ensure high quality and consistency of their gaze data outputs. This calls for 
28 the development and adoption of  homogeneous metrics for reporting gaze accuracy and a consistent set of 
29 methods for complete characterization of eye trackers under different operating conditions[8].
30 There are several software tools [9]–[13]which have been developed by gaze researchers as well as eye 
31 tracker manufacturers for gaze data analysis, but all of them are concerned with determining eye movement 
32 characteristics (i.e. fixations, scanpath, saccades) and studying eye movement relationships with human cognitive 
33 process, such as creation of attention maps, understanding regions of user interests and visual search patterns. 
34 There are currently no software or open source tools which can be used by gaze researchers or engineers for 
35 quantitative evaluation of gaze data quality obtained from generic eye trackers.
36 Another aspect in gaze research is there currently exists no publicly available eye gaze dataset which contains 
37 gaze and ground truth data collected from users under different operating conditions of an eye tracker, from 
38 multiple user platforms. Without such datasets, it is difficult to interpret and compare the performance of any 
39 existing or new gaze estimation algorithm while they operate under unconstrained conditions, e.g. variable head 
40 poses, tracker orientations and user distances. 
41 Keeping these aspects in mind, in this paper an open source code repository named GazeVisual-Lib (hosted on 
42 GitHub) is presented which contains a range of numerical and visualization methods for in-depth and quantitative 
43 analysis of eye gaze data quality. The methods included in the repository may be used on gaze data obtained from 
44 a generic/commercial remote eye tracker or eye tracking application. The methods are implemented as fully 
45 documented codes in Python language and can be used for a) de-noising and outlier removal of gaze data                
46 b) augmenting any gaze (fixation/scanpath) dataset by 7 different methods c) estimating gaze accuracy from input 
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47 gaze data in standard units of angular resolutions d) implementing several evaluation metrics and visualizations for 
48 exploration of gaze data quality[8]. Apart from these, the repository contains the source code of a desktop GUI 
49 software application (named GazeVisual, developed in Python language) which can implement the above and 
50 additional metrics and visualizations as well as interface with an eye tracker for live gaze data collection. The 
51 concept and components of this GUI software may be found in [14] where its utilities are discussed.
52 In addition to the methods described above, a new eye gaze dataset (named NUIG_EyeGaze01 (A labelled 
53 benchmark eye gaze dataset) hosted on Mendeley Data) is created using data from a commercial remote eye 
54 tracker while it operated on three different user platforms- a desktop, a laptop and a tablet under different 
55 operating conditions such as variable head poses, user distances, screen resolutions and platform poses. This data 
56 is made available and could be useful to gaze researchers and engineers for benchmark comparison of 
57 performance of other eye trackers, for building advanced gaze data evaluation metrics and also for understanding 
58 gaze error patterns caused by the different operating conditions. This dataset is also described in this work.
59 The motivation for developing the GazeVisual-Lib code repository is to present a set of standardized methods 
60 for gaze data evaluation to the interdisciplinary eye gaze research community, so that data characteristics from a 
61 variety of gaze tracking systems, applications and user platforms may be evaluated and compared under a unified 
62 framework of tools. Users can fully understand the sequence of development of these data evaluation methods as 
63 they are implemented in Python codes starting from raw gaze data, making these methods adaptable to gaze data 
64 from any source. Using these methods, the practical limits and capabilities of any gaze estimation system may be 
65 studied and compared quantitatively. Further, the desktop GUI application GazeVisual provided in the repository is 
66 intended for out-of-the-box use without requiring programming effort for evaluating gaze data. The purpose of 
67 releasing these methods in an open repository is to allow any gaze researcher or engineer to use and improve 
68 them as per their own requirements. With the rapidly progressing field of gaze research, such open source analysis 
69 tools are necessary that would allow adaptation of uniform gaze data evaluation methods as well as upgradation 
70 of the methods as per emerging requirements of new gaze based systems. 
71 An experimental setting for using this code repository and its software components is schematically shown in 
72 Figure 1. For using the gaze data evaluation methods, first of all a sample of gaze data from one or more 
73 participants is required[8]. To collect gaze data: a) A user has to sit in front of the eye tracker under test, that is 
74 typically mounted on a computer screen and the user eyes are calibrated [15]. 2) The user is presented with visual 
75 stimuli on a graphical user interface (or UI as in Figure 1). The UI and eye tracker are started simultaneously and 
76 the eye tracker records the gaze coordinates of the user as the user gazes at the UI stimuli points on the screen.    
77 3) The gaze data from the eye tracker is saved. The ground truth data which comprises of the screen coordinates of 
78 the UI stimuli points appearing during gaze data collection are also saved. 
79 The raw gaze and ground truth data collected in the above manner can then be used as inputs to the codes in 
80 the repository and the GazeVisual software application. In the next section, the components of the GazeVisual-Lib 
81 repository are described. Details on how the gaze and ground truth data files may be used with the repository 
82 codes to estimate gaze accuracy, and successively implement other gaze data evaluation methods is provided.
83
84

85

86

87   

88

89

90

91
92
93    Figure 1: Workflow to implement the gaze data evaluation methods of the GazeVisual-Lib repository
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94 2. Description of GazeVisual-Lib and the new gaze data repository
95  2.1 Organization of the repository
96 The GazeVisual-Lib repository has a set of folders containing numerical and visual methods, which require gaze 
97 data samples from an eye tracker and ground truth data (visual stimuli locations) as the main inputs along with  
98 values of setup variables like user-tracker distance, size and resolution of the display screen where gaze was 
99 tracked during data collection. The organization of the GazeVisual-Lib repository and its components is shown in 

100 Figure 2, followed by descriptions of their functionalities.
101                                                                     Sub-folder names                   Sub-folder contents

102

103

104      Main repository folder

105

106

107

108

109

110

111 Figure 2: Organization of the GazeVisual-Lib code repository on GitHub

112
113 2.2 Functionalities of the GazeVisual-Lib repository components
114 The components of the GazeVisual-Lib repository are Python codes organized into four folders as shown in 
115 Figure 2. The contents and functionalities of the codes in each folder are described below.
116
117 A. “Gaze data pre-processing” folder
118 In this folder, there are three Python or .py files which are meant to perform the following functions: 1) Raw 
119 data conversion and calculation of accuracy: The main_proc.py file in this folder estimates gaze angular variables 
120 and accuracies from input raw gaze data and ground truth data (data samples are provided within the folder). The 
121 output of this Python code is a CSV file (named user_data_proc.csv, also present in the folder) which contains the 
122 estimated gaze angular variables (gaze yaw, pitch, frontal angle) and gaze accuracy values (angular differences 
123 between estimated gaze locations and stimuli locations).  Full details of the calculations starting from raw gaze 
124 data till the values of gaze angular variables and accuracy are in our previous work [8]. 2) Outlier removal: Gaze 
125 data is almost always corrupted with outliers and it is impossible to observe any error patterns until outliers are 
126 removed. The outlier_removal.py file in this folder implements three different outlier detection and removal 
127 strategies which are 1D Median filtering, median absolute deviation and interquartile range method [8]. 3) Data 
128 augmentation: The code named data_augmentation.py in this folder implements six different methods for 
129 augmenting gaze data. These include addition of white and coloured noise, data interpolation, time-shifting, data 
130 convolution with cosine kernels and a combination of these. Augmented gaze datasets may be used for purposes 
131 such use of machine learning algorithms[16] to model gaze data patterns.
132
133 B. “Gaze accuracy metrics” folder
134 In this folder there is a sample gaze data file (user_data_proc.csv, which is the output file from the 
135 main_proc.py code described above) and three python files (data_statistics.py, data_similarity.py,  
136 scatter_density.py). These codes may be used to compute gaze data statistics, similarity between gaze datasets 
137 and gaze error spatial density using data from the user_data_proc.csv file.  The data_statistics.py file calculates 
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138 mean, standard median absolute deviation, confidence intervals and Z-score[8] from an input gaze data column 
139 from the file. The data_similarity.py file computes similarity between gaze data, e.g. from different eye trackers. 
140 The similarity calculation is based on correlation, intersection and Bhattacharya distance [8] computed on 
141 histograms of two gaze datasets. The scatter_density.py file helps to create a gaze data density plot in which raw 
142 gaze data is plotted as data point clusters and color-mapped according to point densities, which helps to study 
143 gaze data patterns and detect any anomaly.
144
145 C. “Gaze data visualizations” folder
146 In this folder there is a sample gaze data file (user_data_proc.csv, output of the main_proc.py program) and 
147 three python codes that implement various visualizations as described in [8]. The file 3D_plot.py creates a 2D grid 
148 of on-screen stimuli locations and produces a 3D plot of the magnitude of gaze errors (plotted along Z axis) as a 
149 function of X and Y dimensions of the display screen. These plots help to diagnose gaze error levels over the 
150 display area. The eccentricity.py file plots creates a plot of gaze error levels mapped with respect to visual 
151 eccentricity or gaze angle (yaw, pitch) values on the display screen. This program may be used to study how gaze 
152 errors vary with visual angles, especially if user distance from the tracker is increased or decreased. [8]. The file 
153 3D_histogram.py plots stacked 3D gaze error distributions using data from two or more trackers or experiments in 
154 a single plot. It helps to understand and compare data patterns, and gain insight into data characteristics such as 
155 where error values are concentrated or presence of data extremes. 
156
157 D. “GazeVisual GUI tool” folder
158 This folder contains the source code (gazevisual_v101.py) for the GazeVisual GUI application software. This 
159 software is designed for quick, easy and in-depth evaluation of eye tracker data, through a suite of statistical and 
160 visualization functions incorporated in it. GazeVisual comes in the form of a graphical user interface (GUI) and 
161 contains a range of functions to input and process gaze data files and produce various gaze accuracy metric results 
162 and visualizations. It can generate visual stimuli and can also be directly interfaced with an eye tracker to collect 
163 gaze data samples. It is entirely built in Python language using several data analysis and graphics libraries.  The 
164 architecture of GazeVisual software is shown in Figure 3a and views of the software are in Figures 3b and 3c.
165 The GazeVisual software comprises of four independent windows containing a range of functions 
166 incorporated in it that are aimed towards gaze data evaluation. Input data format for the GazeVisual software is 
167 shown in Figure 3d below. It comprises of columns for raw gaze and ground truth data coordinates and input 
168 variables like display screen resolution and pixel pitch of the display (μ) [8] and user distance from the tracker. Two 
169 sample gaze data files that can be input to the GazeVisual software are provided in the GitHub folder. The 
170 GazeVisual software can be compiled as a generic Python program to produce the GUI application. Following this, 
171 the input gaze data files can be uploaded to the software using the “Upload csv file” button and then rest of the 
172 software functionalities may be implemented by using the other GUI buttons.  Outputs of the software include 
173 gaze accuracy values, error statistics, plots of error numerical and spatial distributions and comparison of two gaze 
174 datasets. More details about the concept and functionalities of this software may be found in [14]. 
175

176                                            
177                                                   (a)                                                                                                       (b)
178 Figure 3: (a) Architecture of the GazeVisual GUI software (b) View of the “Data Analysis” window of GazeVisual 
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179
180                                                   (c)                                                                                             (d)
181 Figure 3: (c) View of the “Visualizations” window of the GazeVisual software (d)Input data format for GazeVisual.
182
183       The “Data Analysis” window provides functions for estimation of gaze angular variables, accuracy (in degrees),  
184 gaze error statistics and distributions using a single gaze data file, and allows comparison of these parameters for 
185 two gaze data files. The “Visualizations” window can be used to plot gaze error histograms and 3D spatial 
186 distributions from a gaze data file. It can also take in 2 gaze data files and compare their characteristics by creating 
187 correlation/regression and box plots.  The Test UI& LiveTracking window can create static and dynamic stimuli for 
188 data collection from an eye tracker and also interface GazeVisual with an eye tracker for direct data collection.  
189 The GazeVisual software has been tested with data from two remote eye trackers and a head-mounted eye 
190 tracker and has been seen to produce consistent results, provided input data formatting is done as in Figure 3d. 
191 Also, input gaze and ground truth data coordinates should have (0,0) values at the display screen center and must 
192 not contain NaN or non-numeric values. Sample input data files for testing this software may be found in the 
193 GitHub folder (e.g. “usr1_45_gazedata.csv”).  GazeVisual can be compiled and run as a desktop application on any 
194 operating system having Python 2.7 with libraries such as Tkinter, Pygame, Statsmodels and Seaborn installed. 
195       
196 2.3 Description of the NUIG_EyeGaze01 gaze data repository 
197 A rich and diverse gaze dataset, named NUIG_EyeGaze01 (A labelled benchmark eye gaze dataset) is built using 
198 gaze data collected under a wide range of operating conditions. This is a new kind of dataset, collected from three 
199 user platforms (desktop, laptop, tablet), from 20 participants under the influence of one condition at a time, with a 
200 commercial remote eye tracker.  Informed consent from participants was obtained for all data collection sessions.
201 The operating conditions include, 17 head poses, 4 user distances, 6 platform poses and 3 display screen size 
202 and resolutions. Each gaze data file is labelled with the type of operating conditions under which it was collected. 
203 Each file belongs to one person, containing their gaze and ground truth data, gaze yaw, pitch angles and angular 
204 accuracy for one operating condition. The data collection procedure is presented in [8]. Organization of the dataset 
205 is shown in Figure 4. The full dataset may be obtained at present by contacting the authors and will also be 
206 released in the Mendeley open data repository in coming months. Detailed data descriptions are in the link to the 
207 repository at:  https://data.mendeley.com/datasets/2txnw3y6gs/draft?a=6ca3629f-393c-4f80-93f6-8d56e6557792 

208                                                                       Platform                                  Operating conditions              

209

210
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213 Figure 4:  Dataset organization in the NUIG_EyeGaze01 repository on Mendeley data
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214 3. Impact of the code and data repositories
215 The open source gaze data evaluation methods of GazeVisual-Lib (released under GNU GPL 3.0 licence) could 
216 be useful for researchers, engineers and developers working with gaze estimation systems for thorough 
217 assessment of their gaze data quality. The methods could be especially beneficial for eye trackers which operate 
218 under unconstrained operating conditions where gaze data quality frequently becomes variable. Also, the GUI 
219 application GazeVisual may be used to perform prompt and in-depth gaze data evaluation without the need for 
220 any detailed programming knowledge. This could be particularly useful for the inter-disciplinary gaze research 
221 community where eye trackers are used widely in non-technological fields. The potential user group of GazeVisual-
222 Lib is therefore quite diverse, ranging from gaze tracking system developers, researchers using eye trackers in 
223 virtual/augmented reality, human-computer interactions and cognitive sciences as well as generic users having any 
224 consumer grade eye tracker or gaze based application.
225 The new eye gaze database NUIG_EyeGaze01 presented in this paper could be beneficial to designers of gaze 
226 based systems for benchmark comparison of their system performances under challenging operating conditions 
227 such as variations of head pose, user distance and  tracker orientations. These datasets could be also used for 
228 modelling and comparison of gaze error patterns, development and testing of gaze data anomaly detection 
229 algorithms or compensation algorithms for mitigating gaze errors.  

230 4. Illustrative example
231 In order to implement an evaluation code from any of the folders of GazeVisual-Lib (Figure 5a), users need to 
232 copy the codes to their computers and have Python 2.7 and the imported libraries in the code installed. Then they 
233 can run the codes as normal python files. Sample data for running the codes is provided in the repository and 
234 information about each code is provided in their respective folders in the README files. A code snippet from the 
235 scatter_density.py file from the “Gaze accuracy metrics” folder is in Figure 5b. It loads the user_data_proc.csv file 
236 (which is provided within the folder) and creates a gaze data point cluster density plot.  For running the GazeVisual 
237 GUI software, no installation is required and the source code can be run as described above. Sample data that can 
238 be used with the software are provided in the “GazeVisual GUI tool” folder. Links to several demo videos showing 
239 the functioning of the different windows of the software are provided in the “Sample videos” file of this folder.  
240 https://github.com/anuradhakar49/GazeVisual-Lib/blob/master/Demo%20videos/Links%20to%20demo%20videos 
241

242         
243 (a)                                                                                                             (b)
244 Figure 5: (a) View of the GazeVisual-Lib code repository (b) Snapshot of a python code from the repository                 

245 5. Conclusions
246 The code and data repositories presented in this work are intended to encourage adoption of standardized 
247 methods for analysing gaze data quality and practical performance evaluation of eye trackers under diverse 
248 operating conditions. The ultimate aim of these open resources is to enhance the usability and reliability of any 
249 gaze estimation system and their wide range of practical applications.  
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289  Table 1 – Code metadata

Nr Code metadata description Please fill in this column 
C1 Current code version v1.0
C2 Permanent link to code/repository used of 

this code version
https://github.com/anuradhakar49/GazeVisual-Lib 

C3 Legal Code License GNU General Public License v3.0
C4 Code versioning system used None
C5 Software code languages, tools, and 

services used
Python

C6 Compilation requirements, operating 
environments & dependencies

Operating environment : Python 2.7 
Dependencies: Python libraries Tkinter, Pygame, Statsmodels, 
Seaborn , CSV, Pandas, Sklearn. Scipy, Numpy, Matplotlib, PIL

C7 If available Link to developer 
documentation/manual

Concept of the gaze data evaluation methods may be found in 
the paper:  A. Kar, P. Corcoran: Performance Evaluation 
Strategies for Eye Gaze Estimation Systems with Quantitative 
Metrics and Visualizations. Sensors 18(9): 3151 (2018)

C8 Support email for questions a.kar2@nuigalway.ie, peter.corcoran@nuigalway.ie
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O
ver the last several years, there has been 
much research and investigation on finding new ways 
to interact with the smart systems that currently form 
an integral part of our lives. One of the most widely 
researched fields in human–computer interaction 

(HCI) has been the use of human eye gaze as an input modality 
to control and command intelligent systems. For example, gaze-
based schemes for hands-free input to computers for text entry/
scrolling/pointing was proposed as early as in 1989 for disabled 
persons [1]. In the field of commercial applications, gaze-based 
interactions have brought immersive experiences in the world of 

virtual gaming and multimedia entertainment [2]. Eye gaze is 
also a significant feature for detecting the attention and intent of 
an individual. For example, gaze tracking could be implemented 
in a car to detect driver consciousness or in a smartphone to 
switch operations by sensing user attentiveness.

The concept of eye-gaze estimation in unconstrained condi-
tions has become a hot research topic in the last few years, with 
a variety of algorithms and setup configurations being devel-
oped through interdisciplinary research. Much of the initial 
research involved intrusive systems for gaze tracking, such as 
electrooculography, scleral coils, or special contact lenses, 
requiring the user to wear some kind of head-mounted device/
eye attachment to estimate his or her gaze. Such systems are 
awkward for the user and generally unsuited for use in consumer 
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devices and systems. No one wants to start looking like a Borg 
to control the TV set! 

More recent research has employed passive video-based gaze 
trackers placed at a specific distance from the user, and gaze esti-
mation is effected by capturing and processing images of the full 
face or eye region in natural light or using active illumination at 
near infrared (NIR) wavelengths. The NIR illumination is not 
perceived by the subject, and such systems are nonintrusive. 
Apart from improved user convenience, another advantage of 
these passive systems is their low setup cost, as they just use one 
or two cameras and a few LEDs [3].

Despite significant efforts by researchers in this field, the 
usability of gaze cues in the consumer domain remains margin-
al in terms of accuracy and reliability, and there are additional 
issues surrounding the suitability of eye gaze for calibration-
free use cases. 

In this article, we discuss some existing applications that 
use human eye gaze as a vital cue for various consumer plat-
forms. For each of the use cases, the utility and advantages as 
well as inherent limitations are discussed.

METHODS FOR DETERMINING  
THE EYE GAZE POINTS 
In the following sections, we cover some of the most inter-
esting approaches developed for video-based gaze trackers 
and their implementation. Eye-gaze estimation methods can 

be broadly categorized into two general approaches: 
1) appearance-model-based and 2) feature-based methods. 
We give a brief description for each of these approaches in 
the next sections. 

AppeArAnce-model-bAsed methods
The appearance-model-based methods use the general shape of 
the eyes and position of the pupils relative to the eye corners to 
find the point of gaze [4]–[6]. A pretrained model of the shape 
and appearance (texture and lighting) of the eye region is fitted 
to a sequence of image frames [2], wherein it provides a fit to 
eye regions depending on whether the model has been trained 
with sufficient data that match the acquisition conditions and 
physical characteristics of the input eye region(s).

AdvAntAges And disAdvAntAges of the 
AppeArAnce-model-bAsed methods
The main advantage of these approaches is their low hard-
ware requirements. Usually, methods in this category are 
suitable for implementation on platforms without a high-res-
olution camera or additional light sources.

The main disadvantage of this class of methods is low accura-
cy, typically being 2 or 3˚ for fixed head position [4], [5], [7]. As a 
result, it can be stated that small changes in eye gaze (1–2˚ differ-
ence), which can be important for smartphone applications, may 
not be detected by the appearance-based methods (depending on 
size of the smartphone, the angle spanned by the pupil can be very 
small—7–10˚). Other problems arise with changes in head pose, 
variation in global illumination due to different directional light 
sources, facial expressions, and skin color. Compensating for all 
of these issues requires large training data sets and makes appear-
ance-based methods computationally expensive.

FeAture-bAsed methods
These methods take into account various characteristics of 
the human eye to identify a set of distinctive features like 
contours (limbus and pupil contour), eye corners, and cornea 
reflections of NIR illuminators (LEDs). These approaches 
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FIGURE 1. (a) A schematic for a feature-based eye-gaze-tracking method [27]. (b) tracking nir reflections on the cornea and pupil cen-
ter in the pccr method [17].
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can further be subdivided into two main branches: regression-
based and model-based methods [8].

regression-bAsed methods
In these methods (also called pupil center corneal reflection 
[PCCR] techniques), the vector between the corneal reflections and 
pupil center is tracked and mapped geometrically with a polynomi-
al regression function to gaze coordinates on screen [Figure 1(a)].

model-bAsed methods
The eye-model-based techniques use the geometrical model 
of the human eye [Figure 1(b)] along with NIR light sources, 
multiple cameras, and one or more mirrors to develop accu-
rate ray tracing to estimate gaze direction [9]–[11].

pros And cons of feAture-bAsed methods
The advantages of feature-based methods include their higher 
accuracy in comparison to the appearance-based methods, as 

shown in Table 1. The main disadvantage is the hardware require-
ments for implementing these techniques as they need several 
light sources or multiple cameras. The other problem is that if the 
NIR glints in the cornea disappear due to head movements or 
additional glints appear in the eye from other NIR sources (e.g., 
halogen lights, sunlight, and reflections from eyeglasses), the 
method will fail.

cAlibrAtion in eye-gAze estimAtion
Since the eye-gaze systems should detect the human’s optical 
axis but the actual point of gaze is defined by human visual axis 
and the difference between these two axes is specific for each 
person (it can be as high as 5˚ horizontally and 1.5˚ vertically 
[12]), the gaze-tracking system should be calibrated for each 
individual as an integral part of the tracking procedure. Calibra-
tion is done by looking at certain predetermined points and is 
often a cumbersome process. The error in the calibration proce-
dure is added to other sources of error, which usually leads to 
significant overall tracking error.

APPLICATIONS OF EYE GAZE IN  
CONSUMER ELECTRONIC DEVICES

eye-gAze trAcking in intelligent  
driving AssistAnce systems
Reports from agencies like the U.S. National Highway Traffic 
Safety Administration stating that the majority of fatal auto 
accidents are due to driver inattention have sparked interest in 

Table 1. A summary of hardware setup require-
ments and  accuracies achieved by various  
gaze-tracking methods in the literature.

Method Required Setup Accuracy

Appearance 
model [13]

Webcam (720 × 576) 
 chinrest, distance: 75 cm

2−5°

Appearance 
model [2]

vgA (640 × 480) distance: 
40–70 cm

4°

Appearance 
model [4]

Webcam (1,280 × 1024) 
50–60 cm

1° fixed head  
2° slight 
 motion

feature (eye-mod-
el) based [14]

one camera (8 mp), 25–30 
leds

1°

feature (model) 
based [15]

two cameras, two rings of 
leds for each camera

1°

feature (regres-
sion) based [16]

camera (1,024 × 768)  
one nir source, 71 cm

0.4° head 
fixed,  
1° slight  
head pose

A Narrow Bandpass Filter
Attached in Front of the Camera

NIR Illuminators

Camera
Capturing

Driver Face

Face Detection
Within Video

Locating Eye
Region

Pupil Detection
and Eye Tracking

Alarm
Determination of
Alertness Level

D

(a) (b)

FIGURE 2. (a) A gaze-tracking setup in a car [26]. (b) A schematic of an appearance-based method for gaze tracking in a driver alert system.

the prime hindrances to such  
gaze-based password-entry systems 
are the possibilities of identity theft 
and that unintentional eye and 
body movements may lead to 
 erroneous gaze points and 
 incorrect password entry.
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industry and academia in developing advanced driver moni-
toring and assistance systems [26]. Leading car manufactures 
like Toyota and Nissan have long been involved in developing 
interactive driver-support systems based on actively tracking 
driver gaze or blinking patterns to evaluate driver vigilance 
and drowsiness levels [2]. The setups for cars use machine-
vision algorithms (e.g., percentage of eyelid closure time) 
active appearance models, or conventional PCCR techniques 
[17], comprising cameras and infrared light sources mounted 
on the car’s dashboard [Figure 2(a)].

mAjor limitAtions 
The key issues in the usability of such gaze-based driver-assis-
tance systems include inherent problems in eye detection due 
to variable illumination, occlusion of the eye region due to 
shadows or eyeglasses, false alarms, and real-time operability.

smArtphone/hAndheld plAtForms  
using gAze As An input mechAnism
Despite smartphone releases from Samsung and Apple rumored 
to have functions for eye gaze, these inventions remain within 
the confines of patents; they have not yet been commercially 
realized. The proposed utilities of using eye gaze as an input 

mechanism as mentioned in the patents (e.g., Samsung’s Meth-
od and Apparatus for User Interface Using Gaze Interaction, 
US2014/0232638A1 and Apple’s Electronic Devices With 
Gaze Detection Capabilities, US2013/0135198A1) include 
user gaze commands for unlocking the cell phone, dimming the 
display screen, pausing/resuming video playback, suspending 
various sensors, or reducing the number of processing cores uti-
lized by circuitry to optimize device power consumption.

mAjor limitAtions
Handheld devices like smartphones and tablets are usually 
dynamic platforms where the conditions for stable eye 
tracking are highly challenged due to variable relative posi-
tions of the user with respect to the device, unpredictable 
hand jitter and movements, unstable illumination, and the 
“Midas-touch” effect [2], [17].

domotic controls And iptv
Eye-gaze-based domotic controls are a new class of human–
environment interaction methodologies [18]. These have been 
inspired by the increasing requirements of self-sufficiency and 
autonomy for designing smart homes that ensure improved 
quality of living—especially for the elderly and people with 
disabilities [20]. Another recently commercialized gaze- 
oriented paradigm includes gaze-controlled IPTV—brought 
recently to market by Haier in conjunction with Tobii—which 
uses the PCCR techn ique for gaze loca l izat ion 
[Figure 3(a)]. Furthermore, a patent by Park et al. (Gaze Track-
ing System and Method for Controlling Internet Protocol TV 
at a Distance, US20120133754A1) enumerates the possible 
utilities of such an IPTV, e.g., moderating hue, brightness, and 
TV display depending on user gaze and understanding user 
interest [19].

mAjor limitAtions
The typical limitations of such gaze-based assisted-living sys-
tems comprise the inability of tracking systems to distinguish 

NIR Illuminators

Gaze-Tracking Device

2.2 m

(b)(a)

FIGURE 3. (a) the haier iptv setup with tobii user tracker in front. (photo used with permission from [31].) (b) An attentive tv that 
senses engagement [20].
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eyeglasses, false alarms, and 
 real-time operability.
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gaze from passing glances and the requirement for specialized 
hardware and simple user interfaces due to difficulty in handling 
complex tasks by gaze gestures.

gAze trAcking in mArketing And e-commerce
Innovative ways of studying consumer attention and response 
toward online products and advertisements are emerging 
through tracking user eye-gaze patterns and mapping them 
into gaze plots and heat maps that reveal salient information 
about a brand or its representation [24]. Interesting results from 

such user-gaze surveys include statistical methods for reorgani-
zation of web page content to maximize user attention as well 
as information about the relative significance of images and 
videos in a web page, restricting the quantity of advertisements 
per page, and enabling suitable social media content (e.g., 
Tweets and “likes”) to increase consumer focus (Figure 4). 

mAjor limitAtions
Fundamental issues include the fact that gaze maps may not 
reveal anything about the higher-level processes of user 

(a) (b)

Affiliative Gaze Referential Gaze

Gaze Toward Map Gaze Toward Map

Gaze Toward Participant Gaze Toward Participant

(b)(a)

FIGURE 4. (a) An eye-gaze plot showing how user attention is attracted by banners on a website [29]. (b) A gaze heat map showing that 
videos on a webpage attract maximum attention. (photos courtesy of simpleusability.com.)

FIGURE 5. (a) A virtual lecture delivered with various gaze patterns [28]. (b) eye-gaze tracking in a virtual avatar [30].
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attention or intent, invalidating the results. Long fixations could 
indicate either attraction to an element or difficulty in under-
standing it. It also requires specialized and expensive setup.

gAze trAcking in virtuAl  
And Augmented reAlity
Virtual characters and environments have crossed the realm of 
gaming [2] to find use in interactive applications such as virtu-
al tourism, urban planning, and online education (Figure 5). To 
enhance user experience in such advanced virtual reality (VR) 
applications, user gaze is actively tracked in real time to bring 
scenes into sharp focus by determining the user point of view 
in three-dimensional space, facilitate user navigation by deci-
phering visual attention, and controlling a virtual gamer’s 
responses according to speed of eye movements. Important 
contributors to this field are Sony, Nintendo, and Sensor 
Motoric Instruments (SMI) GmBH, whose gaze-coupled VR 
applications extend from gaming to gaze interactions and ergo-
nomics [21], [22].

mAjor limitAtions
Key issues in eye tracking for VR and augmented reality 
involve Midas touch, gaze-point tracker inaccuracies leading 
to incorrect actions/selection, and uncertainties in tracking 
resulting from miscalibration or latency.

eye gAze For security And AuthenticAtion
Enhanced resistance against shoulder-surfing attacks has 
encouraged the development of gaze-based password schemes 
[25]. While the simplest of such authentication methods include 
entering alphanumeric characters as a security PIN with eye 
gaze, advanced security options involve gaze-image passwords, 
i.e., password entry by gazing with a specific sequence on an 
image on a screen or at multiple features in an image [23].

mAjor limitAtions
The prime hindrances to such systems are the possibility of iden-
tity theft and that unintentional eye and body movements may 
lead to erroneous gaze points and incorrect password entry.

CONCLUDING THOUGHTS
The potential of gaze-based interactions in modern consumer 
devices and platforms is still being explored. Major challenges 
exist due, in particular, to the highly dynamic modalities and 
unconstrained use cases for handheld devices and in the auto-
motive sector due to the rigorous safety considerations and the 
wide range of lighting conditions experienced in the vehicle 
cockpit. The requirements for a consumer-grade gaze-tracking 
system include real-time, high-accuracy gaze estimation, easy 
calibration (calibration-free is preferable), and robust respons-
es to widely varied lighting conditions. Robustness to head 
pose is also important, although this is a more tractable prob-
lem if a high-accuracy head model is available. As in all con-
sumer electronics system designs, it is essential to maximize 
system performance while reducing unit costs. 

From this point of view, two of the most powerful meth-
ods for gaze estimation developed to date are presented in 
this review, appearance-based and feature-based techniques. 
While each method has its respective advantages and draw-
backs, the appearance-based models, because of their lower 
hardware requirements, would appear to offer a more feasi-
ble solution for mobile platforms. However, they do suffer 
from lower accuracy and are sensitive to changes in head 
pose, illumination, and facial expression. Alternatively, fea-
ture-based or corneal-glint methods can provide significant-
ly higher accuracies, but due to a requirement for complex 
hardware, stable positioning, and detailed calibration, they 
are really only suited for indoor and desktop environments.

Overall, it can be stated that despite decades of research in 
this field, the realization of a winning implementation that pro-
vides both reliable and accurate gaze-controlled interfaces in the 
consumer domain is still some distance in the future. In fact, 
much of the research in this field only serves to emphasize that 
the accurate and nonintrusive measurement of eye gaze in real 
time and in unconstrained use cases using consumer-grade tech-
nology remains a major challenge.

More importantly, the ultimate prospect to employ eye gaze 
as a means of HCI depends entirely on a very nontechnical fac-
tor, and one that is extremely difficult to quantify—the sim-
plicity and ease-of-use of this sophisticated technology. Unless 
it can be realized in a robust, reliable, and calibration-free 
form, then consumers are unlikely to engage with and adopt 
the technology. And without the magic of simplicity, it is 
unlikely to become a sustainable success and a new and practi-
cal mode of HCI.
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Convolutional Neural Network Implementation for
Eye-Gaze Estimation on Low-Quality Consumer

Imaging Systems
Joseph Lemley, Student Member, IEEE, Anuradha Kar, Student Member, IEEE, Alexandru

Drimbarean, Member, IEEE, and Peter Corcoran, Fellow, IEEE

Abstract—Accurate and efficient eye gaze estimation is impor-
tant for emerging consumer electronic systems such as driver
monitoring systems and novel user interfaces. Such systems
are required to operate reliably in difficult, unconstrained en-
vironments with low power consumption and at minimal cost.
In this paper a new hardware friendly, convolutional neural
network (CNN) model with minimal computational requirements
is introduced and assessed for efficient appearance-based gaze
estimation. The model is tested and compared against existing
appearance-based CNN approaches, achieving better eye gaze
accuracy with significantly fewer computational requirements.

Index Terms—Eye gaze, Neural Networks, Deep Learning

I. INTRODUCTION

The potential of eye gaze tracking and gaze-based human
computer interactions in modern consumer devices is cur-
rently an active topic for exploration. Eye gaze has been
used to derive human behavioral cues, as an input modality
and for achieving immersive user experiences in virtual and
augmented reality systems. However, applications of gaze in
consumer devices operating in real world conditions face tough
challenges in terms of accuracy and reliability.

A. Gaze Tracking in Consumer Devices

After decades of research on desktop-based gaze estimation
techniques, the focus has recently shifted to building eye gaze
applications for dynamic platforms such as driver monitoring
systems [1] and handheld devices [2]. For an automobile
driver, eye-based cues such as levels of gaze variation, speed
of eyelid movements and eye closure can be indicative of a
driver’s cognitive state. These can be useful inputs for intel-
ligent vehicles to understand driver attentiveness levels, lane
change intent, and vehicle control in the presence of obstacles
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to avoid accidents [3]. Handheld devices like smartphones and
tablets form unique platforms for gaze tracking applications
wherein gaze may be used as an input modality for device
control, activating safety features and novel user interface (UI)
designs [4].

The most challenging aspect of these modern gaze ap-
plications includes operation under dynamic user conditions
and unconstrained environments. Further requirements for
implementing a consumer-grade gaze tracking system include
real-time high-accuracy operation, minimal or no calibration,
and robustness to user head movements and varied lighting
conditions. Therefore accurate and reliable gaze tracking typi-
cally demands high quality cameras and special equipment like
narrow angle lenses, external illumination, and stereo setups
for capturing eye region features with sufficient details. As
a result, gaze estimation systems frequently become costly
with complicated setups, which are unsuitable for generic and
consumer applications.

Therefore a major challenge of gaze based consumer elec-
tronics design involves maximizing system performance while
reducing costs and system complexities.

B. Deep Learning for Eye Gaze
In this paper, we introduce a calibration-free method for

appearance-based gaze estimation that is suitable for con-
sumer applications and low cost hardware with real time
requirements, using a Convolutional Neural Network (CNN).
CNNs were popularized by Lecun et al. [5], who used them
successfully for handwritten digit classification. These net-
works are inspired by the organization of the visual cortex
and allow spatial information to be more efficiently learned.
Convolutional Neural Networks can be used on input with any
number of dimensions, but due to their success in pictures, are
most popularly implemented for 2D input plus color channels.
Other popular types of CNNs include 1D CNNs, which are
commonly used for time series, and 3D CNNs, which can
be used for volumetric data or time series data where the
third dimension represents either spatial frames or temporal
frames [6]. Although CNNs have become ubiquitous for most
computer vision tasks, they have yet to become popular for
eye gaze estimation.

Neural network implementations are particularly important
for embedded and low-power consumer imaging systems be-
cause hardware based CNNs can provide significant improve-
ment in power efficiencies over CPU/GPU based solutions.
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A useful comparison of the performance gains of Tensor
Processing Units (TPU), a custom Application Specific In-
tegrated Circuit (ASIC) running deep neural networks, with
conventional GPU arrays is given in [7]. The TPU is on
average about 15X - 30X faster than its contemporary GPU or
CPU, with TOPS/Watt about 30X - 80X higher depending on
the percent usage of the TPU. While the use case described in
[7] is for applications running in a cloud datacenter, equivalent
embedded and mobile ASICs are expected to emerge in the
next 1-2 years with the capability to operate multiple, parallel
CNN-networks with equivalent levels of power efficiency to
the TPU.

C. Contributions of this Work

From the perspective of developing a deep learning model
for gaze estimation, the task can either be considered as a
regression task or a classification task. Although both are
useful, regression provides the greatest predictive flexibility
and thus this paper treats the eye gaze estimation task as a
regression problem with the goal of finding a gaze angle (φ,θ)
that corresponds with a low resolution eye image such as one
taken from a distance with a simple RGB webcam mounted
on a dashboard.

In this paper, a hardware optimized network is implemented
with demonstrated suitability for deployment on such con-
sumer devices in terms of memory requirements and speed.
This network achieves superior accuracy using a dual channel
input technique when compared to other state-of-the-art CNN-
based gaze tracking methods for unconstrained, low resolution
eye tracking.

II. RELATED WORK

In this section a review of conventional gaze tracking
techniques, studies on using low resolution data, and the
application of deep learning in gaze estimation are discussed.

A. Contemporary Methods for Eye Gaze Estimation

Gaze tracking algorithms can be broadly classified into
model-based methods and appearance-based methods [8].
Appearance-based methods operate directly on the eye images.
Model-based methods include 2D and 3D models that use
near infrared (NIR) illumination to create corneal reflections
to estimate the gaze vector.

Contemporary research on gaze tracking measures accuracy
in a wide variety of ways [9], [10], [11], [12]. It is the view
of the authors that angular resolution is most reliable and in
this work it is used as the metric of accuracy for the proposed
algorithm and results are only compared directly with other
works that employ the same metric.

These require polynomial or geometric approximations of
the human eye to obtain the gaze direction or the point of gaze.
Appearance-based methods use eye region images to extract
content information such as local features, shape, and texture
of eye regions, to estimate gaze direction.

1) 2D Models: 2D models utilize polynomial transforma-
tion functions for mapping the gaze vector (vector between
pupil center and corneal glint) to corresponding gaze coordi-
nates on a device screen. A number of related works discuss
the use of artificial neural networks to perform this mapping
[13], [14], [15]. Early papers on this topic proposed support
vector machines (SVM) [16] and non geometric methods [17].
Although the approach proposed in this paper differs, we share
a similar goal: head pose invariant gaze tracking without a
geometric model while treating the eye gaze estimation task
as a 2D regression problem.

2) 3D Models: 3D model-based methods typically use a
geometrical model of the human eye to estimate the center of
the cornea, and the optical and visual axes of the eye [18],
[19], [20], [21]. Gaze coordinates are estimated as points of
intersection of the visual axes with the scene. These methods
achieve high accuracy (1 degree) but require elaborate sys-
tem setups and knowledge about geometric relations between
system components like LEDs, monitors and cameras.

Although such methods achieve high degrees of accuracy,
they are not suitable for the use case investigated in this
paper because they require high resolution images of the eye
and precise geometric measurements. Such models represent
current state-of-the-art in AR/VR systems [22].

3) Appearance-Based Methods: Appearance-based meth-
ods utilize cropped eye images of a subject gazing at known
locations to generate gaze point coordinates. A variety of
machine learning methods, using the eye images as input, have
been suggested for this task. For the interested reader there
is a detailed discussion of appearence based models by Kar
et al [9]. Recently, appearance-based methods implemented
using deep learning (DL) and convolutional neural network
(CNN) approaches have gained momentum. In contrast the
other methods discussed in this subsection, CNN methods,
learn the features directly from the data rather than employing
a preliminary feature detection step and are described in detail
in section C.

B. Gaze Estimation from Low Resolution Images

To facilitate gaze tracking in everyday settings, the use of
cheap, compact and easy-to-integrate webcams is common
but results in poor gaze estimation accuracy. Low resolution
images have strong noise effects [23], and distortions in the eye
region contours and features become indistinguishable under
varying illumination levels, user distance, and movements.

C. Eye Gaze Estimation Using CNN’s

Deep learning (DL) techniques have been successfully used
in challenging conditions such as those with variable illu-
mination, unconstrained backgrounds and free head motion.
For example George and Routray [24] describe a calibration-
free real-time CNN-based framework for gaze classification.
Two CNNs, for the left and right eyes, are then trained
independently to classify the gaze in seven directions.

Zhang et al. [25] describes a novel appearance-based gaze
estimation method in which a CNN utilizes the full face
image as input with spatial weights on the feature maps to
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suppress or enhance information in different facial regions. It
achieves high accuracy and robust performance under varied
illumination and extreme head poses. Deng and Zhu [26]
achieves head pose invariant, 3D gaze tracking using two
separate head pose and eye movement models with two CNNs,
connected via a gaze transform layer. Finally, Zhang et al
[27] builds a CNN to learn the mapping between 2D head
angle, eye image and gaze angle (output) using a small LeNet-
inspired CNN. For testing, an extensive database is built with
more than 200,000 images under variable illumination levels
and eye appearances. This database (called MPII Gaze) is also
used in this work and its further details are provided in the
next section.

Several of the CNN-based works are specifically targeted
towards gaze tracking in consumer/handheld devices [28],
[29]. Krafka et al [28] presents a CNN-based real time,
calibration-free gaze estimation algorithm. It is trained using
a large and diverse dataset of eye images taken under variable
lighting, head pose, and backgrounds captured from users
through a smartphone app. Inputs to their CNN model include
eye and face images. The location of the faces in the images
are obtained through a face grid, which is used to infer relative
eye and head poses. Park and Kim [29] present a calibration-
free method using Deep Belief Networks which classify gaze
into a grid of nine gaze locations under various head-poses
and viewing directions. Zhang, Yao and Cai [30] developed a
nine directional CNN-based gaze classifier for a screen typing
application, robust to false detections, blinks, and saccades
(rapid, abrupt changes in fixation).

D. Related Work Utilizing the MPII Gaze Dataset
Models for eye gaze estimation often have radically different

errors on different datasets and this can make comparisons
between claimed accuracies meaningless without knowing the
accuracy on a common dataset. In this subsection, works that
use the same dataset used in this paper are outlined to facilitate
such comparison.

The MPII Gaze dataset [27] is large and challenging,
containing images collected under a wide range of realistic
scenarios, such as varied illumination levels, eye appearances
and head poses. Use of MPII gaze dataset for training and
testing gaze estimation algorithms can be found in their own
papers [27], [25] and also in works by Wu et al [31], Iyer and
Ramasangu [32] and Nie et al [33].

Zhang et al [27], which introduces the MPII Gaze dataset,
uses a multimodal CNN for gaze estimation and reports a
cross dataset test error of 6.1 degrees. Zhang et al [25] uses
full face (instead of eye only and multi-region) images with a
CNN and achieves a person independent error of 4.8 degrees
on MPII Gaze while being robust to illumination variations
and extreme head poses. Wu et al, tracks gaze location using
a CNN, and tests cross-subject performance on MPII Gaze in
addition to that authors’ own dataset [34], [35], [36].

Works by Wood et al [34], [35] and Baltrusaitis [37]
describe the utilization of the MPII Gaze dataset for comparing
face models and other synthetic datasets.

Wood et al [34] presents a method for synthesizing a large
set of eye region images with a generative 3D eye region

model. Then a gaze estimation method using the k-Nearest-
Neighbour algorithm) is tested on the synthetic data and the
MPII Gaze dataset to achieve an error of 9.95 and 9.58 degrees
respectively. The same authors describe another method for
synthetic, labelled photo-realistic eye region image creation
using head scan geometry [35]. The generated dataset, along
with MPII gaze, is used to test and compare the accuracy of a
CNN based gaze estimation method. The CNNs are then tested
on the MPII gaze dataset to achieve an error of 7.8 degrees.

E. Discussion

The previous sections summarized relevant work in the field
of eye gaze estimation using regression, 3D models, CNNs,
and low quality images. The purpose of the detailed review on
these methods is to provide the reader with an understanding
of the motivation and significance of the work described
in this paper. While many papers have been written on
conventional polynomial regression-based techniques for gaze
estimation, these typically suffer from inaccuracy resulting
from head movements and are not as accurate as 3D model-
based methods. 3D model-based methods, on the other hand
require complicated calibration, arrangement of the physical
space, and intensive model calculations, which are often not
suitable for implementation in consumer electronic devices.
While CNNs have recently been used for gaze estimation,
their accuracy is often insufficient and most implementations
require powerful and expensive hardware such as graphic
processing units (GPUs) due to large network sizes.

The work described in this paper builds on these techniques
to achieve superior accuracy while using consumer grade
hardware and inexpensive simple setups, which, as can be seen
from the literature review, is an essential but relatively new
direction of development in eye gaze research.

III. METHODS

The CNN-based gaze estimation methods in this work
were evaluated on state-of-the art graphic processing units
using python 2.7 and caffe 1.0 with accuracy and euclidean
loss layers modified to calculate angle difference in radians.
Person-exclusive, leave-one-out cross-validation was used in
all experiments.

In eye gaze tracking literature it is common to use the
word “accuracy” and “error” interchangeably and this can
sometimes cause confusion. For this reason we use the word
“error” in any case where the meaning could be unclear. All
angles are reported in degrees. Although most deep learning
papers will use just one training, testing, and validation set,
such methods are not recommended in cases where there
are few individuals in the dataset. For this reason we use a
“leave one out” training and testing strategy. Besides being
the most appropriate testing method for a dataset with only 15
individuals, it is also necessary for comparison with the other
published works that use this dataset as any other training
and testing methodology would produce incomparable results.
This type of leave-one out cross validation is a special case of
k-fold cross validation where the number of folds is the same
as the number of distinct entities.
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In this paper, error was determined as the average euclidean
distance between the ground truth and predicted angles on the
left-out, person-exclusive test set as follows:

1) For persons 0 to n (where n is the number of distinct
individuals in the dataset):

a) Train a model on images and labels from all
identities except for the one chosen above such that
the model outputs predicted gaze directions (φ, θ)

b) Test model using eye images from selected (“left-
out”) identity.

c) For each prediction (φ, θ) and ground truth (φ̂,
θ̂) above calculate the euclidean distance between
them.

d) The mean value of the above distances is the error
for this fold.

2) The sum of all the errors is divided by the number of
folds to find the mean error – The error reported for a
given neural network architecture is the mean error for
all the folds.

Multiple deep neural networks were compared for eye gaze
estimation. The publicly available MPII Gaze dataset was
used for all experiments except for the first, where the UT
Multiview dataset is also used.

A. Conventions for CNN Diagrams and Figures

A number of conventions for describing the layers of neural
networks have arisen in deep learning literature. The authors
of this paper choose to follow a common variant of these
conventions. In general, the convention is that the type of layer
is followed by the number of output parameters in parentheses.
For example Conv(40) would indicate a convolutional layer
with 40 output layers. When it is necessary to know the kernel
size, this is also indicated by an @ symbol followed by the
kernel size. For example, Conv(40@3x3) would indicate a
convolutional layer with 40 outputs and a 3x3 kernel size.

When a layer type is followed immediately by a number,
this number indicates the relative position of the layer com-
pared to previous and subsequent layers of the same type. For
example, conv1 indicates that this is the first convolutional
layer, whereas conv2 would be the second convolutional layer.

The input layer is a special type of layer that describes
how raw data is organized. In the case of this paper, the input
layers take either eye crops or head poses. For input layers that
take eye crops, the following format is used: Input([number
of channels]x[image width]x[image height]).

Head pose inputs are not images but are instead simply
angle values represented as floating point numbers. Input(φ,θ)
means that the phi and theta values are being passed to the
network at that point in the figure.

In the case of pooling operations the output size is de-
termined by the input size divided by the size of the pool
parameter. Max Pool(2x2) would indicate a 2x2 max pooling
operation on the previous layer.

RELU is defined as max(0,x) where x is the input. In all
cases the size of the output of a relu layer is equal to the size
of the output of the preceding layer.

Dropout layers are a regularization technique that helps
prevent over-fitting and also increases the resiliency of a
network. It is only used during training. Dropout randomly sets
a percent of the weights in the network to zero. For example,
dropout(0.5) indicates that 50% of the weights in the preceding
layer should be set to zero in a random fashion. The output
of dropout is always the same size and shape as the layer on
which it operates.

FC or fc indicates a fully connected layer and fc(100) would
indicate a fully connected layer with 100 outputs. In such
layers, every “neuron” or unit is connected to every neuron of
the previous layer. It is common to use such a layer after all
the convolutional layers. For more detailed information about
these layers, the reader is encouraged to consult the reference
section, particularly [38], which contains a detailed description
of the common types of layers used in modern deep learning
approaches.

B. MPII Gaze Dataset Details

The MPII gaze dataset is a large collection of 213,659 im-
ages captured under unconstrained conditions from 15 subjects
over several days. The images are collected under multiple
illumination conditions. Some of the subjects wear spectacles
and some do not. The images were captured at various gaze
angles, recorded by software running on the participant’s
laptops. In each session, the subjects were asked to look at
random sequences of 20 onscreen positions and to confirm
their attentiveness, the subjects were asked to press the space
bar once the onscreen target was disappearing.

The dataset contains eye and head features and target (gaze
angle) values for every participant. To use MPII Gaze, the
authors suggest mapping their reported vector to angles using
a Rodrigues transformation, and this has been done for all
reported experiments. The Rodrigues transformation is given
by the Rodrigues rotation formula which provides a rotation
matrix from which roll, pitch, and yaw can be generated [39].

IV. EXPERIMENTS AND RESULTS

In this section, multiple experiments are described to pro-
vide insight on 4 primary research questions. These are tested
on multiple CNN architectures and are discussed in this
section. One of the first research goals was to achieve state of
the art test error on a network that could perform inference
within 3-15 ms on a typical single proprietary low power
consumer embedded device.

The specific research questions are:
1) How does an architecture that uses both eyes compare

to one that uses one eye in terms of accuracy?
2) How does simulated camera distance impact eye gaze

accuracy for the proposed model?
3) Can augmentation be used to reduce any negative im-

pacts?
4) Can the proposed hardware-friendly architecture per-

form with sufficient accuracy and speed?
First, the intra-dataset, person-exclusive experiments from
Zhang et al [27] were duplicated. The same procedure to
estimate accuracy was used except the altered accuracy layers
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were modified to eliminate not a number (NaN) errors by
replacing undefined values of the arc cosine function with the
largest or smallest valid values, as appropriate.

A. Approach 1: Analysis of Eye Flipping
In Zhang et al [27], one network is used for both eyes

(with one inference per eye) and one of the eyes is flipped
so that the gaze angle is roughly correct. An experiment
was designed to see if this flipping had an impact on model
accuracy. Six experiments were performed using the UT and
MPII-Gaze datasets to see if training on both eyes or just one
eye impacted accuracy. By doing experiments with combined
and non combined datasets, it was also possible to determine
weather they had similar distributions, and thus, if combining
the two would be helpful for future experiments.

TABLE I:
RESULTS OF APPROACH 1

Training Error
MPII Left eye only 5.9 degrees
MPII+UT Left eye only 5.6 degrees
MPII Both eyes 7.4 degrees
MPII+UT Both eyes 6.5 degrees
MPII Right eye only 5.3 degrees
MPII+UT Right eye only 6.1 degrees

Analysis of the errors due to choice of input during training (left, right, or
flipped (both)). Training a network on both eyes using the flipping approach
suggested in [27] appears to be a source of error. This observation informs the
remaining experiments in the paper, which use a 2 channel approach instead.

As shown in Table I, the method of individually classifying
eye images and simply adjusting the right eye and angles as
used in Zhang et al [27] is a limiting factor in accuracy for
that method. In both datasets, the performance was increased
exclusively using left eyes or right eyes. This suggests that
simply flipping the eye as suggested by Zhang et al [27] may
be a source of error in their model.

These results also indicated that the distribution of MPII
Gaze and UT-Multiview are sufficiently different that combin-
ing the two for training gives no, or very little, improvement.
Because of this, it was decided to use only MPII Gaze for the
remaining experiments in this section as UT-Multiview had no
significant influence on error.

B. A New Approach: Dual Eye Channels
Given the problems identified in the previous subsection

with flipping one of the eyes, and not wanting to use two
different networks for reasons of efficiency, a new approach
involving using both the left and right eyes in separate input
channels was investigated. Specifically, the left eye and right
eye images are passed to the network in channels 0 and 1
respectively, and the gaze and pose information are averaged
between the left and right eye images to create a single gaze
and pose vector. Due to the results in the previous section,
which indicated that data from UT did not significantly impact
the results, only the MPII Gaze dataset was used.

This modified, two channel architecture resulted in a sig-
nificant increase in accuracy, averaging 4.63 degrees of error
between the target and predicted values on unseen individuals.
A diagram of this network can be seen in Fig 1.

Fig. 1: Diagram of dual eye channel CNN used for eye gaze
estimation. In contrast to previously published approaches, the
right and left eye crops are input to the network simultaneously
along with a single head pose vector. The output of the network
is a single predicted pitch and yaw angle for both eyes, as if
it were a single eye located exactly between the right and left
eyes looking at the same object. This network was used for the
experiment in sub-section V B and it was found to increase
accuracy over previously published models. Please see section
III.A for a description of what the text in each of these layers
means.

C. Efficiency: Can We Reduce the Number of Parameters?

Deep neural networks can often be made more efficient by
reducing the number of parameters but this can sometimes
come at the cost of accuracy. To see if reducing the number
of parameters was possible without harming accuracy, an
experiment was performed to halve the size of all output
parameters. This experiment was not allowed to run for the
full duration because the exact angle accuracy did not matter,
only evidence that the network complexity could be reduced
to a point where it would be small enough if necessary. This
resulted in an average error of 4.980% on an unseen individual
from the MPII Gaze dataset and indicates that reducing the
number of parameters had little impact on accuracy.

D. Multi Resolution Experiments

Eye gaze systems in consumer devices must be able to
maintain accuracy at a large range of distances. Although MPII
Gaze has some variability in distance from the camera, the
distances are not realistic for the conditions expected in, for
example, a driver monitoring system or a distant cell phone
camera. An experiment was conducted to determine if the
network was able to perform under an expectedly wide range
of subject distances.

Specifically, the goal was to accommodate realistic distances
between the camera and the subject in situations that would
be typical in commercial eye trackers that utilize low cost,
low resolution cameras. To simulate the loss of information
caused by distance, down-sampling using nearest neighbor
interpolation was performed on the eye images in MPII Gaze
as follows:

• Input image 60 x 36 ->Downscale to 52 x 31 ->Upscale
to 60 x 36 ->CNN Eye gaze angle.
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• Input image 60 x 36 ->Downscale to 26 x 16 ->Upscale
to 60 x 36 ->CNN Eye gaze angle.

As can be seen in Table II, the network learned a narrow
range of distances, and performance deteriorates when the
subject is further from the camera than those in the training
set. As a sanity check, an experiment was done to see if
the downscaling algorithm was at fault for the poor results,
so in addition to nearest, we also tried bicubic, linear, and
LANCZOS using open source computer vision software. The
experiment showed that the downscaling algorithm used had
no influence on the results.

TABLE II:
RESULT OF DISTANCE SIMULATION AND

AUGMENTATION EXPERIMENTS

Resolution Unaugmented error Augmented error
60 x 36 4.63 degrees 4.918
52 x 31 9.90 degrees 4.94
26 x 16 10.10 degrees 4.98

This table shows the impact of camera distance and augmentation for a
trained eye gaze model on angle accuracy using the network from experiment
2.

This demonstrates that the model is sensitive to changes in
distance. In the next section, an experiment is performed to
see if data augmentation can be used to improve upon this.

E. Impact of Random Resizing as Augmentation

Data augmentation has been shown in many studies [40]
to have a large impact on model performance but augmenting
to increase accuracy of on a wide range of distances appears
to be neglected in literature on eye gaze. To further improve
accuracy, the dataset was augmented with multiple randomly
chosen resolutions to match the full range of desired distances.
To help reduce the chance that the network would learn the
specific interpolation method used, Nearest is used in the
training set, but Lanczos filtering is used in the testing set.

These results indicate that augmenting the images with
distances that are likely to be encountered in real world usage
situations is an effective way to increase accuracy and succeeds
in achieving some invariance to subject distance.

F. A Quest for Hardware Efficiency and Even Better Accuracy

It was shown by Simonyan and Zisserman [41] that two
stacked layers of 3x3 convolutions have the same receptive
field as a single 5x5 layer, with fewer multiplications. Because
the efficiency of a convolutional neural network is primarily
dependent on the number of multiplications, and thus the num-
ber of convolutions, stacked 3x3 convolutions were chosen for
this experiment and the network was redesigned accordingly.
Several experiments involving architectures with stacked 3x3
kernels were performed using different parameters. The best
two architectures were further evaluated, and the best models
from each of them were chosen and evaluated on multiple
resolutions as shown in Table III. A diagram of the final
architecture used can be seen in fig 2, and a comparison with
other published works can be seen in Table IV.

In order to maximize efficiency on a particular proprietary
DSP, it was necessary to alter the output sizes of this network
to be powers of 2. This is the explanation for why the output
sizes are increased for this network compared to the others
evaluated previously.

TABLE III:
ERROR OF PROPOSED MODEL FOR VARIOUS

RESOLUTIONS (DEGREES)

Model 36 x 60 31 x 52 26 x 16
Best 3.650 4.1690 4.240
Second best 4.100 4.324 4.366
Benchmark 4.917 4.940 4.970

The benchmark method is the best performing network from experiment 2,
trained and tested with the same techniques. The second best model is called
Network 4 in subsection H of this section and the best model is network 5.

Fig. 2: This figure contains a diagram of the proposed net-
work. It was found to further improve error over the method
developed in subsection B from 4.63 degrees to 3.65 degrees.
Like the network in fig 1, this network takes both right and
left eye image crops as input, using 2 channels and uses the
same method to merge the left and right eye gaze vectors for
the ground truth data. Another difference is the stacked 3x3
convolutions replacing the 5x5 convolutions and the addition
of RELU nonlinearities The error of this network is compared
with the error from other experiments in this paper in Table
III. Please see section III.A for a description of what the text
in each of these layers means.

G. Runtime analysis of the used networks

In this section, the execution time of the 5 networks used in
this paper are evaluated on commodity processors. The result
of these experiments are shown in Table IV.

Network 1 is the “one channel” approach used in [27] which
we compare with. In contrast to the new approaches, this
method performs a separate inference for each eye and flips
the right eye.

Network 2 is the two channel improvement discussed in
experiment 2 and shown in figure 1.
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Network 3 is the variation of network 2 with half as many
outputs per layer which was used in experiment 3.

Network 4 is a version of network 2 with 3x3 kernels but
with the same number of units per layer as network 2. It
is included to allow the reader to differentiate runtime that
resulted from increasing the number of outputs from runtime
that resulted from the change in network architecture.

Network 5 is the proposed model that has the best accuracy
and utilizes the 3x3 kernels instead of 5x5 kernels. A diagram
of this network is shown in figure 2.

The embedded processor is a typical 64 bit processor used
in embedded and mobile systems, and available on a well-
known embedded prototyping platform. Tests used only one
core of this processor. The second processor is a popular
high end workstation central processing unit (CPU). For a
fair comparison, only one thread was used for tests. Lastly
the GPU used is a popular high end consumer GPU targeted
at video gamers. As can be seen in Table IV, network 3 is
significantly faster than the other networks while network 5
provides a good balance between speed and accuracy. In some
cases network 3 may be preferred due to increased speed and
competitive accuracy.

TABLE IV:
FRAMES PER SECOND OF CNN ON COMMODITY

HARDWARE

Model Embedded CPU GPU
Network 1 [27] 20.64 473.11 3984.09
Network 2 39.81 960.06 8078.47
Network 3 92.59 3080.80 12607.90
Network 4 29.68 592.02 6134.02
Network 5 19.11 400.50 5500.37
VGG16 [41] 0.0043 0.64 120.4

All units are in frames per second. Details of these networks are discussed
in subsection H. As can be seen from this table, networks 2-4 perform
faster on all tested hardware than the comparison networks (Network 1 and
VGG16) while providing greater accuracy. Network 4 has similar performance
to network 1 while increasing accuracy. The well known VGG16 network is
included to allow the reader to see the speed gain over this type of architecture.
VGG16 is an improvement over Alexnet, which was used to achieve 4.8
percent accuracy on the same dataset [25].

H. Contributions

When deploying eye gaze solutions for consumer devices
there are two important aspects to consider: Accuracy and
efficiency. This paper contributes to addressing both issues
by demonstrating improved accuracy and also by reducing
the number of multiplications needed for predictions, thus
increasing efficiency. It should be noted that the total number
of matrix multiplications needed to obtain predictions from
a convolutional neural network is determined by the size
of the convolutional kernels, the step size, the number of
nodes in each layer, and the number of layers [38]. These
multiplications are often measured in multiply-accumulate
operations (MACs).

For a digital signal processor (DSP) that primarily performs
deep learning inference, the power consumption requirements
are directly related to the number of MACs required per
inference [43] [44] [45].

TABLE V:
COMPARISON OF PROPOSED MODEL WITH OTHER
PUBLISHED WORKS ON THE MPII-GAZE DATABASE

Citation Error (degrees)
Baltrusaitis et al [36] 9.96
Wood et al [34] 9.58
Shrivastava et al [42] 7.8
Nie et al [33] 7.1
Zhang et al [27] 6.1
Zhang et al [25] 4.8
Proposed 3.65

This table shows the best performing network from this paper (Proposed)
compared with other reported results on the MPII-Gaze dataset.

A variant of the proposed algorithm is now operating effec-
tively on a hardware CNN SoC (system-on-chip) engine with
32 megabytes of random access memory, demonstrating that
this approach is viable for low-resource consumer electronic
devices.

At the beginning of this section we followed Zhang et al’s
approach [27] in subsection A. In subsection B, we found that
by changing the network architecture to accept two eye crops,
one for the left and one for the right eye in two input channels,
and merging the gaze vectors and the position vectors, we
were able to improve accuracy over that reported in Zhang et
al [27]. It was then shown in subsection C that the architecture
introduced in subsection B could be made more efficient by
halving the number of nodes in each layer with a negotiable
decrease in accuracy.

Subsection D demonstrated that the error more than doubles
when the network is exposed to images that have been artifi-
cially resized to simulate a wide range of distances between the
subject and the camera. This problem had not been addressed
in previous work. It was then shown in subsection E that
this increase in error could be nearly eliminated by use
of data augmentation. Finally, the results of the experiment
conducted in subsection F suggest a new network architecture
that outperforms previously published works while reducing
the number of multiplications and thus increasing efficiency.

V. CONCLUSION

Our results show that using information from both eyes in
the neural network can increase accuracy. This is demonstrated
in section V, where adding additional eye information from
the opposite eye enabled improved results over individual
eyes, helping the network make sense of low quality images
with ambiguous gaze. As expected, in all cases, the deeper
network had the best performance. This research demonstrated
the sensitivity of such models to variations in distance and
how data augmentation can be used to overcome this. Most
importantly, a new compact hardware-friendly architecture
designed for use in small consumer electronics has been
introduced and evaluated on the eye gaze task.

When evaluated on MPII Gaze, the proposed model per-
forms favorably (see Tables IV and V) even when compared
with much larger networks in the literature.

Running an optimized CNN based algorithm, as described
in this paper can provide a high-performance, low-energy so-
lution for continuous eye-tracking in next generation consumer
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electronic products such as ultra-lightweight smartphones and
augmented reality glasses.

Since augmentation resulted in a significant improvement in
accuracy, it may be fruitful to try other types of augmentation
such as Generative Adversarial Networks (GANS) with land-
marks, [46] and Smart Augmentation (SA) [40] in future work.
This will either require modifying such methods to work on
regression problems, or translating the eye gaze problem into
a classification task for the purpose of generating augmented
data and then back to a regression task. Additionally, there are
plans to investigate whether temporal information [47] can
be used to further increase the accuracy without sacrificing
the need for performance, as it has been shown to increase
performance in DMS systems.
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Abstract—The use of deep learning for estimating eye gaze in 
augmented spaces is investigated in this work. There are two 
primary ways of interacting with augmented spaces. The first 
involves the use of AR/VR systems; the second involves devices 
that respond to the user’s gaze directly. This domain can overlap 
with AR/VR environments but is not exclusive to them and 
contains its own unique set of issues. Deep learning methods for 
eye tracking that are capable of performing with minimal power 
consumption are investigated for both problems.  

 

Keywords: Augmented reality, Virtual reality, gaze estimation, 
deep learning, convolutional neural networks, smart spaces 

I. INTRODUCTION 
Eye gaze estimation is one of the most challenging frontiers of 
deep learning (DL) research in vision tasks and one of the few 
areas where conventional approaches are still dominant [1].  
Recently, deep learning has been able to surpass conventional 
approaches in difficult gaze estimation tasks such as in DMS 
systems or handheld devices [2][3]. The strength of DL lies in 
inferring gaze, or performing subtasks in more complex gaze 
detection systems, even with poor image quality. Further, with 
novel data augmentation techniques as [4], DL has prospects 
to achieve good classification abilities using smaller network 
sizes and hardware-friendly architectures, which make it 
attractive for use in consumer electronic devices. 
An augmented spaces is defined as any physical space with 
additional sensory or display elements that augment the 
physical function, utility, and purpose of that space. This is 
achieved through the use of sensors, actuators, computing and 
networking devices incorporated within the space that enable 
recognition of humans, their activities and gestures in real 
time [5][6]. Examples may include a television that reduces 
power to screen when no one is looking at it, automatic room 
brightness adaptation based on human presence or motion 
sensor based security systems [7] .  
With respect to eye tracking in augmented spaces, there are 
the two types of configurations to consider when designing 
gaze based interactions. The first type involves smart glasses 
or head mounted AR/VR systems. In these, the gaze tracking 
task is equivalent to that in conventional AR/VR applications 
where high quality close-up images of the eye are used and the 
subject interacts with nearby objects at least partly through the 
AR/VR system. The second scenario involves individual smart 
devices and appliances each with their own camera systems 
that can respond to gaze. If no one is watching the TV or 
digital readout, why should it operate at full power? Useful 

 
 

information and controls can be displayed only when someone 
is actively paying attention to them. These systems typically 
need to track the eye movements of everyone in their vicinity, 
in real time and with varying lighting conditions and user 
distances. Gaming is another domain which benefit from gaze 
information[8]. For example, if a player is momentarily 
distracted and not looking at the screen, it would be a bad time 
to introduce a crucial plot element or battle. Gaze information 
can also be used to provide an element of surprise in dynamic 
scenes by spawning enemy NPC (Non player characters) away 
from the players current gaze. However, the distance between 
the eye tracker camera and the player, and player head 
movements are significant factors determining accurate gaze 
tracking in gaming applications. AR/VR gaming systems 
typically have close eye facing cameras and are able to capture 
detailed eye images, whereas gaze tracking for games on 
remote game consoles, cell phones and other devices typically 
have cameras at a distance and varying user head movements, 
making eye tracking challenging for them. 
In this paper we examine the use of deep learning for gaze 
tracking in AR/VR as well as remote setups for augmented 
environments. In the first case, DL is still behind conventional 
methods which can achieve accuracies as high as 0.5 degrees 
[9]. In the second case however, DL is emerging as the most 
feasible solution due to its ability to make sense of eye images 
that are too low quality for conventional approaches[10]. 
The paper is organized as follows: in section II.A, eye gaze 
estimation in augmented and virtual reality (AR & VR 
respectively) applications is explained. Gaze information has a 
significant impact in AR/VR environments [11][12], where 
gaze directions and gaze based functions are used to make 
user experiences more immersive, natural and effortless. In 
section II B gaze estimation in pure augmented spaces, 
without the use of AR/VR systems is explained. These include 
the tracking and application of gaze information for domotic 
controls, multimedia communications or assisted living 
systems  [13].  
The use of deep learning for gaze estimation in augmented 
spaces is primarily an unexplored area of research and 
dedicated network models or datasets for gaze estimation in 
such environments are not publicly available. Therefore in 
Section III, we describe our methodologies of using 
convolutional neural networks (CNN) and two different gaze 
datasets- one captured using a head-mounted eye tracker and 
another with normal remote setup to test our algorithm 
performance. The description of the CNN model, two datasets 
and proposed approaches pertaining to the two types of eye 
gaze estimation methods for augmented spaces are presented, 
followed by discussions and conclusion in Section IV. 
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II. EYE TRACKING IN AUGMENTED SPACES: PROSPECTS & 

CHALLENGES 

A. Eye tracking in AR/VR applications 
The significance of tracking user eyes in an AR/VR 
environment has been recently acknowledged in literature. In 
Augmented Reality applications, gaze information is fused 
with data from a scene camera to estimate the point of gaze of 
a user, for applications such as reading and document retrieval 
as described in [9]. In this work, eye tracking is used to 
identify the part of a document the user is reading and display 
relevant information on the see-through head mounted display  
(HMD). Gaze information, coupled with other eye movement  
features like dwell time and blinks can be used for object 
selection [12] and zooming and capturing snapshots in AR 
devices [14]. Gaze has also been used for wearable context 
aware messaging service in [15] and for attention guidance 
using peripheral vision in AR headsets in [16]. 
In Virtual reality (VR) research, eye movements can be used   
for interaction such as in [17]. [18] presents an immersive 3D 
VR interface with gaze based interactions such as menu 
selection and gaze directed typing of mails using a virtual 
keyboard. Realistic rendering of characters and social 
interaction between a user and virtual characters may be 
established by combining dynamic facial appearances and 
gaze directions as described in [19]. Other purposes of using 
gaze in VR include achieving wide view panoramas, foveated 
rendering and natural exploration of virtual environment [20]. 
 

B. Eye gaze tracking in non-AR/VR augmented spaces 
Intelligent environmental controls using eye gestures fall into this 
category. In the consumer device domain, there has been 
developments of gaze controlled TV [21] which senses gaze to 
enable screen brightness variations, menu selection and 
understanding user program preferences. For assisted living 
applications, gaze based control of wheelchairs[22] and home 
appliances have been proposed[23], and also eye tracking as 
diagnostic technology for patients with disabilities[24].  
 

TABLE I. SUMMARY OF SOME RECENT WORKS USING EYE GAZE 
IN AUGMENTED SPACES 

C. Challenges of eye tracking in augmented spaces 
Eye tracking in AR/VR headsets may face significant and 
unique challenges as described in [25]. These include motion 

and depth of field blur, latency, rapid calibration drifts while 
following smooth pursuit eye movements and loss in tracking 
due to varying orientation of the eye camera with respect to 
the eye. Complicated system design, bulky processing units 
and high power consumption may also limit the usability of 
these devices in the consumer electronics domain.  
Major problems in using remote gaze trackers for estimating 
gaze as an input modality arise from the issue of Midas touch 
[26], difficulty in handling complex tasks by gaze gestures and 
expensive hardware. 

III. DEEP LEARNING FOR GAZE ESTIMATION IN AUGMENTED 

SPACES. 

A. Concept and approach 
Deep learning has been successful in achieving good accuracy 
in remote gaze estimation problems [27]. However, 
implementing DL based eye tracking in AR/VR is difficult 
due to lack of publicly available datasets built for gaze 
tracking in AR/VR environments. In this work, gaze 
estimation for both the eye tracking scenarios in an augmented 
space is approached. For the AR/VR problem, we start by 
training a DL model with eye images captured using a head-
mounted eye tracker. We then progressively introduce 
complex variations in the images typical to those faced by eye 
trackers in AR/VR environments. For the non-AR/VR eye 
tracking condition, we use a low resolution gaze dataset, 
which typically has the characteristics of images captured by 
remote eye trackers. 
 

B. Eye datasets used  
Since augmented spaces can be experienced through either 
AR/VR or through smart devices that are farther from the 
users eyes, it is necessary to use separate datasets to train and 
test the two DL methods. In this section we describe two gaze 
datasets:  a high resolution dataset (for AR/VR) and low 
resolution datasets for gaze tracking on smart devices having 
their own cameras.   

1) High resolution datasets for AR/VR 
There is a dearth of public datasets from which deep learning 
systems can be trained (or evaluated) for eye gaze estimation 
utilizing head mounted eye-facing cameras.  The only suitable 
publically available dataset found is the one developed by 
McMurrough et al called the “Point of Gaze (PoG) Eye 
Tracking Dataset”[28]. Unfortunately, this dataset only has 
images of the right eye and therefore may not be used for AR 
applications where knowing what a person is looking at in 3D 
space involves calculating the intersection of two gaze vectors. 
This information is still useful because there are typically only 
a few objects that collide with a given gaze vector that are 
within a person’s field of view and these can all be assumed to 
be the gaze target in an augmented or virtual space. Despite 
this limitation, the PoG Eye Tracking Dataset is the most 
suitable publically available dataset captured with a head-
mounted eye tracker and therefore used in this paper.  

To create the dataset, twenty participants (18 men, two 
women) were asked to track target points on a video display 
while wearing an Applied Science Laboratories Mobile Eye™ 
infrared monocular recording device. The participants’ right 

Citation Type Setup Applications Gaze 
accuracy

[9] AR/VR HMD and eye 
tracker 

Assisting 
reading activity 

0.5 
degrees 

[14] AR/VR HMD with eye 
tracker and lenses 

Eye directed 
zooming 

0.5 
degrees 

[17] AR/VR HMD with eye 
tracker 

Gaze based object 
selection 

0.6 
degrees 

[18] AR/VR HMD with head and 
eye trackers 

Gaze based 
multimedia use  

1 degree

[19] AR/VR 3D Stereo Rig with 
remote eye tracker 

Gaze-aware facial    
re-enactment in VR

1.5 
degrees 

[21] Non-AR/VR Remote tracker with 
camera, LED, lens 

 TV display input 
and control 

1.32 
degrees 

[22] Non-AR/VR Remote tracker Wheelchair motion 
control with gaze 

0.5 
degrees 

[23] Non-AR/VR Camera Appliances detect 
and respond to gaze 

-- 
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eye is centered in the video frame and is annotated for specific 
target points.  The dataset is composed of 20 subjects with 
ages ranging from 21 to 54. The dataset is annotated with head 
gaze and eye pose information. Eye images are recorded with 
a resolution of 768 X 480 pixels at 29.97 Hz frame rate.  
 

2) Low resolution datasets for smart devices. 
   Datasets for low resolution images are more common, for 
example the MPII-Gaze dataset[29], the UT Multiview 
dataset[30], and the Gaze Capture[3] dataset are all suitable 
for training appearance based Deep neural networks. That 
said, all of these methods come from different distributions 
and sometimes have incompatible annotations.  

For experiments with non-AR/VR augmented spaces where 
the camera may be far from the user we use the MPII-Gaze 
dataset[29]. MPII-Gaze was captured over several days and 
includes annotations for 15 subjects in unconstrained 
situations in multiple illumination conditions and gaze angles. 
A Rodrigues transformation is used to map gaze vectors to 
angles.   
 

 
Fig 1.  Example image from the McMurrough dataset [28], showing 
subject’s right eye. This is typical of AR/VR systems that utilize eye 
facing cameras to estimate gaze.  

 
Fig 2.  Example image from the MPII-Gaze dataset [29], showing 
subject’s right eye typical of gaze tracking systems that use low 
quality cameras that are further from the subject.  

C. Deep Learning model 
Deep learning models such as those proposed by [31] have 
suggested architectures that work well for low resolution eye 
gaze estimation systems but these approaches may not be as 
suitable for high quality eye images as traditional approaches. 
In this paper, the Deep learning approach is developed for 
high resolution, close up images of the human eye and 
compared with one or more traditional approaches.  
The inputs to the convolutional neural networks are eye 
frames from the PoG Eye Tracking Dataset scaled down to 
157 X 96 pixels.  

Two architectures are developed and tested. The first consist 
of 5 (3x3) convolutional layers with RELU activation 
functions, followed by one or more fully connected layers and 
are trained to perform a regression task, predicting gaze 
targets given a head pose and eye image as inputs. Next a 
Resnet 18-like [32] architecture are trained and compared with 
the previous model.  
Lastly, the two above models are compared with a traditional 
approach, thus providing information about how an 
appearance-based end-to-end deep learning approach 
compares with the best alternative. 
 

TABLE II. SUMMARY OF EYE TRACKING METHODS USING LOW 
RESOLUTION IMAGES 

Citation Input 
resolution/ 

eye crop size  

Details of method 
used  

Accuracy Tolerance 

[33] 15x40 ANN based, 
trained with 2000 

images 

1.7 deg --- 

[10] 640x480 (30 
fps video) 

Iris center 
detection, ellipse 
fitting, eye corner 

detection 

1.33 deg Moderate 
head 

movement
s 

[34] 40x30 Image 
reconstruction 
using bilinear 
interpolation, 

Hough transform 

1.89 deg --- 

[35] 640x480 (16 
fps video) 

Fourier 
descriptors of  eye 

shape, 
classification  

with SVM 

90% 
accuracy 

Head 
motion 
lighting 

variations 

[36] 5x5 Images from 
multiple miniature 
low resolution eye 

cameras with 
ANN 

2.25 deg Head 
motion 

 
D. Deep learning for Eye tracking non-AR/VR applications 
Non AR/VR approaches to eye gaze estimation require 
solutions that can make use of low quality eye images taken at 
a distance (figure 2) from the user. Traditional gaze estimation 
methods are unable to perform reliably in this task for 
unconstrained situations (i.e., outside of lab settings or 
carefully measured environments). Because traditional 
methods fail in such situations, approaches based on Deep 
Learning have recently become popular. These methods use 
convolutional neural networks, which are can generally be 
expected to at the level of a human expert on vision tasks 
when given enough samples.  
In augmented spaces, such networks have the additional 
requirement of real time execution which involves a tradeoff 
between network complexity and power consumption.  
 
Table II contains examples of networks that have been used 
for the eye gaze estimation task. It also gives an idea about 
existing methods that work on low resolution images. Column 
2 provides the typical resolution of eye images used for these 
works. Column 4 mentions the obtained accuracies and 
Column 5 presents the operating conditions the algorithms can 
withstand while maintaining sufficient accuracy.  
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Fig. 3 Architecture of one proposed network from [31]. 

IV. EXPERIMENTS & METHODOLOGY 

A. Data pre-processing 
In this paper, the major focus is the presentation of 
experiments and results from deep learning based gaze 
estimation using the “near eye” gaze and eye image data 
provided by the McMurrough et al dataset[28], that is typical 
of AR/VR devices as described above. The other case of 
remote gaze estimation using deep learning that uses the MPII 
Gaze dataset has been discussed in detail in other work [31] 
and will be presented during the conference.  
The McMurrough (or PoG) dataset provides eye images 
(video frames), gaze target coordinates as well as head pose 
information for twenty users which are used as inputs in the 
experiments for this work. In first half of the dataset, the users 
are asked to keep their head still while in the other, free head 
movement is allowed. For the first experiments, data of users 
with limited head movement is used and in the next phase of 
experiments, data having free user head movements will be 
used and results will be compared.  Unfortunately, this dataset 
does not provide enough information to utilize pose in the 
deep learning task, which limits the possible accuracy of the 
technique.   
 

B. Experiment details 
A series of experiments were conducted to determine 
appearance based convolutional neural network architectures 
that show the most promise for future exploration. In this 
section a summary of these experiments is provided. All 
experiments were trained to perform a regression task, 
mapping the pixels from the camera facing eye crops to the x 
and y coordinates that were being gazed upon. Eye crops were 
reduced to 1/4th their original size. All Xception[37] 
experiments used the Adam optimizer whereas all the other 
experiments used Stochastic Gradient Descent(SGD). This 
was because the Xception models failed to converge with 
SGD while the other networks suffered poor convergence with 
Adam.  

Images from the first 17 people in the dataset were used for 
training while the remaining were reserved as a test set.  To 
the best of our knowledge this is the first work that utilized the 
Xception model for AR/VR eye gaze situations.  
 It may be noted that in this work, all input gaze location 
values are uniformly scaled between 0 and 1 based on the 
maximum value of x or y in the labels. Therefore, to get the 
average distance in pixel space for the outputs x or y, the 
respective network output values must be multiplied by 1366.0 
which is the maximum label value in the dataset. The accuracy 
in pixels from the method can therefore be stated as:     
   

x (or y pixel deviation) =	output	x	 or	y *1366     (1) 
 

As mentioned in the paper describing the PoG dataset[28], the 
monitor where gaze of participants was tracked has a 32 inch 
screen and the estimated dot pitch is 0.5mm. Hence the gaze 
tracking accuracy results from our algorithm using this dataset 
may be estimated as the deviation from the target location in 
millimeters (mm) as: 
 

x (or y) deviation in mm = output x(or y) * 1366 *0.5 (2) 
 

C. Experiment 1 
In this experiment a network utilizing 5x5 kernels and RELU 
activation functions with 3 convolutional layers, separated by 
max pooling layers, followed by a fully connected RELU 
layer and dropout was used. The first convolutional layer had 
15 features, the second convolutional layer had 30 features, 
and the final convolutional layer had 10. This network was 
trained for 10 epochs. 
 

D. Experiment 2 
In this experiment a model utilizing a decreasing number of 
units in each layer was used. The first 3 layers use 128 3x3 
convolution followed by RELU activation functions. These 3 
layers are followed by a dropout layer and a max pooling 
layer. The next block of layers consists of 2 convolutional 
layers with 64 units, using 3x3 kernels and RELU activation 
functions. This is again followed by the dropout and max 
pooling technique before the final block of convolutional 
layers. This final block of 2 convolutional layers has 32 3x3 
kernels with RELU. Finally, a max pooling layer which leads 
to a fully connected RELU layer with 1024 units before being 
passed to a final linear layer with 2 outputs (x and y). This 
network was trained for 10 epochs.  

E. Experiment 3 
A very small network was developed with a similar 
architecture to the first experiment. Eight 7x7 convolutional 
kernels were in the first layer, followed by RELU and max 
pooling layers. The next convolutional layer had 16 units with 
5x5 convolutional kernels, RELU activations and another max 
pooling layer. The final convolutional layer had eight 5x5 
convolutional units with RELU and max pooling.  Finally, a 
fully connected RELU layer and a dropout layer is used before 
the final linear layer with 2 outputs (x and y). This network 
was trained for 10 epochs. 
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F. Xception experiments 
This subsection details the experiments performed with the 
Xception network. For these experiments the last two layers 
were removed and replaced by a fully connected RELU layer 
with 1024 units followed by a linear layer of 2 units (x,y). Due 
to the complexity and size of this architecture it is not 
reproduced in this paper. Instead we refer readers to the 
relevant literature[37]. In these experiments the modified 
Xception network was trained for 10,20,40,60  and 100 epochs 
with a learning rate of 0.0001 with the Adam Optimizer in 
Keras[38].  

V. RESULTS  
The results from the experiments described above are 
presented in the subsections below. The results are mentioned 
both as direct outputs from the network as well as in units of 
centimeter, obtained using the calculations in Section IV. B. 
 
A. Results from experiment 1  
Surprisingly, experiment 1, despite being the second smallest 
network performed competitively with Xception at 10 epochs 
of training. This experiment resulted in a x axis error 
of 0.1960 (or 13.3 cm) and an y axis error of 0.1247 (8.5cm). 
 
B. Results from experiment 2 
Despite being significantly larger, this network 
underperformed the one from Experiment 1, with an average x 
error of 0.2319 (15.8 cm) and average y error of 0.1280 (8.7 
cm). Interestingly, while the x error was less than that from 
Experiment 1, the y error is very similar  
 
C. Results from experiment 3  
This experiment resulted in an average error of 0.3181 (21 cm) 
on x and  0.1808 on the y axis (12.3 cm). This small network 
helps to establish a lower bound on the number of layers and 
units for reasonable results indicating that attempting to train 
networks smaller than this on this dataset is not likely to 
succeed. Still the similarity of this network to the one in 
Experiment 1 mean that only a few more neurons are 
sufficient to greatly increase the accuracy.  
 
D. Results of Xception experiments 
The first Xception experiment followed the pattern from the 
previous experiments with just 10 epochs and a learning rate 
of 0.0001, resulting in an x error of 0.2800 (19 cm) and a y 
error of 0.1088 (7.4 cm) . Increasing this to 20 epochs resulted 
in 0.1962 (13.4 cm) error on x and 0.0977 (6.6 cm) error on y. 
Running an additional 40 epochs with a reduced learning rate 
(0.00001) did not show improvement but instead resulted in an 
x axis error of 0.2238 (15 cm) and an y axis error of 0.1143 
(7.8 cm). 
The third best results were obtained after 60 epochs at a 
0.0001 learning rate. These results were: 0.1356 (9.2 cm) on x 
and 0.0618 (4.2 cm) on y. The second best results were from 
using 100 epochs with an average x error of 0.0935 (6.3 cm) 
and average y error of 0.0466 (3.1 cm). 
Finally, the best results were obtained after 1600 epochs. In 
this experiment the average vertical error was 13.29 mm 

(1.329cm) and the average horizontal error was 42.2468 mm ( 
4.22468 cm) 

VI. SUMMARY & DISCUSSIONS 
It is noticed that in all experiments done with CNN models 
and the PoG gaze dataset, the error on the y direction is lower 
than on the x, although we do not currently have an 
explanation for this. It may result from the difference in the 
monitor’s (where the user gaze was captured during collection 
of the PoG dataset) horizontal and vertical resolution but this 
is not sufficient to explain the accuracy differences between 
horizontal and vertical predations. However, Pose drift is the 
most likely explanation.   
In this dataset, roughly half of participants wear glasses so it 
remains a matter of investigation as to if this factor has any 
impact on the result. 
One consideration when comparing or evaluating these results 
is that the average accuracy includes frames where eyes are 
not open. This is a deliberate choice, as CNNs may be capable 
of estimating gaze of even closed eyes therefore comparing 
these results with those that disregard closed or partly open 
eyes would be misleading. An expanded CNN may utilize 
temporal information to increase the accuracy of these results 
as in [39].  

The results for CNN based remote eye tracking using data 
from MPIIGaze dataset are promising and will be presented 
during the conference. 

VII.  CONCLUSION 
This paper evaluates the use of deep neural networks for 

end to end mapping of eye images to gaze coordinates with 
applications in augmented spaces. The eye images are sourced 
from two small low cost eye facing cameras: one for the left 
and one for right eye in the case of AR/VR type systems.  
For the case of gaze tracking in augmented spaces that do not 
involve AR/VR, images from one or more cameras at a greater 
distance are used as input.  

As deep learning begins to surpass traditional techniques in 
many eye gaze tasks, it is of interest to investigate its’ 
potential for gaze estimation on AR/VR setups. Although the 
error (1.329cm x 4.2246cm) of the best trained model would 
make it suitable for many gaze estimation tasks, the pure CNN 
model still underperforms traditional methods.  

Unfortunately, accuracy estimates are limited by the fact 
that this dataset does not provide enough information to utilize 
pose in the deep learning task and there are currently no 
suitable alternatives which provide this information.  

In future work, problems arising from the lack of suitable 
datasets for AR/VR systems are addressed by introducing 
artificial variations into an existing gaze dataset. However, 
since such augmentations may fail to capture the true 
distribution of the data, additional real data from an AR/VR 
setup may be necessary to learn further details about 
challenges of eye tracking in AR/VR environments. As 
mentioned in section III.A, there are currently no suitable 
public datasets that utilize two head-mounted eye-facing 
cameras of left and right eyes, and therefore a future work 
may involve creating such a dataset specifically built to 
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implement deep learning models for augmented spaces. This 
problem does not exist however, for low quality images taken 
at a distance which makes training deep learning systems in 
their use easier.  
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Appendix K 

Comparison of eye gaze data from different remote eye trackers 
and experiments 

 
 
 

 
 
 
 
 
 
 
In this Appendix, sample gaze data from the two different remote eye trackers that were initially 

tested for gaze data collection as part of this thesis work are presented and compared.   The two eye 

trackers are Tobii EyeX 4C and Eyetribe and their gaze data characteristics for different user distances 

are observed and discussed in Section K.1. Ultimately, only the Tobii tracker was used based on this 

comparison, for conducting the full set of experiments done in this thesis. 

Using the Tobii eye tracker, gaze data was collected from two user platforms, a desktop and a tablet, 

for analysis and development of various methods in this thesis work. Sample data collected from the 

different experiments done on these two platforms are presented in Section K.2 and results from 

statistical analysis on these data are in Section K.3. 
 

K.1 Comparison of gaze data from two eye trackers 
 

Both the Tobii EyeX 4c and Eye tribe trackers have a specified gaze accuracy of 0.5 degrees and are 

remote bar-type screen mountable trackers (Figure K.1). For a pilot study with the two trackers, gaze 

data was collected from the trackers for three different user distances of 45, 60, and 75 cm from a 

group of 10 participants. The setup included a desktop computer with a monitor (size: 22 inch, screen 

resolution: 1680 x1050). The trackers were calibrated with their own calibration software (both have 9 

point calibration as shown in Figure K.2). Then a common UI (described in Chapter 4) was presented 

to the participants and their gaze data was collected. The trackers were operated in separate sessions. 

             

Figure K.1 The Tobii EyeX4C tracker (left) and the Eyetribe tracker (right) 
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Figure K.2 Calibration screens of the Tobii EyeX4C eye tracker (left) and the Eyetribe eye tracker (right) 

 

Participants were seated at sequentially increasing distances of 45 cm, 60 cm and 75 cm from the 

tracker-screen setup. Their chin was fixed with a chin-rest and they were asked to gaze at specific 

stimuli targets that appeared on the display screen as their gaze was recorded by the trackers. The data 

collection process and stimuli details have been discussed in Chapter 4 of this thesis. The following 

parameters were calculated for each user for each user-tracker distance. 

a. Gaze positions (in mm) data vs ground truth data (locations of stimuli dots) 

b. Gaze yaw, pitch angles vs time and corresponding ground truth yaw, pitch angles vs time (ms). 

Values of these gaze variables are derived using the equations presented in the paper of Appendix D. 
 

The plots below show the above parameters calculated from raw gaze data collected from the Tobii 

and Eyetribe eye-trackers. Data from Tobii is on the left and data from Eye tribe is on the right. It was 

found that for Eyetribe there was no tracking after a user-tracker distance of 60 cm and so gaze data 

was collected for only two distances 45 and 60 cm for this tracker. The plots below show gaze data 

variables in black, and ground truth data (stimuli locations and angles) is in blue. 

 
 

 

 
 

       
                        Figure K.3a: Tobii 45cm user1                                      Figure K.3b: Eyetribe 45cm user1 

User1: Tobii EyeX 4C gaze data for 45 cm User1: Eyetribe gaze data for 45 cm 

Figure K.3a-j: Plots for gaze data vs ground truth for Tobii and Eyetribe trackers 
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           Figure K.3c: Tobii 60cm user1                                        Figure K.3d:  Eyetribe 60 cm user1                                     
 
 
 
 

 
                  Figure K.3e: Tobii 75 user1 
 
 
 

 

 

         
                 Figure K.3f: Tobii 45cm user2      Figure K.3g: Eyetribe 45cm user2              
 
 

User1: Tobii EyeX 4C gaze data for 60 cm User1: Eyetribe gaze data for 60 cm 

User1: Tobii EyeX 4C gaze data for 75 cm 

User2: Tobii EyeX 4C gaze data for 45 cm User2: Eyetribe gaze data for 45 cm 

No eye tracking for Eyetribe tracker 
after 60 cm 
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             Figure K.3h: Tobii 60 cm user2                           Figure K.3i: Eyetribe 60 cm user2 
 
 
 

     
                    Figure K.3j: Tobii 75cm user 2    
            

 
 

                                        
                                                          Figure K.4a: 45cm                                     Figure K.4b, 60cm 

                                        
                                                           Figure K.4c: 45cm                                  Figure K.4d: 60cm 

User2: Tobii EyeX 4C gaze data for 60 cm User2: Eyetribe gaze data for 60 cm 

User2: Tobii EyeX 4C gaze data for 75 cm 

Figure K.4a-d: Gaze vs ground truth yaw angles for Tobii and Eyetribe trackers 

Tobii: Gaze 
(blue) and 
ground truth 
(black) yaw 
angles  

Eyetribe: Gaze 
(blue) and 
ground truth 
(black) yaw 
angles  

No eye tracking for Eyetribe tracker 
after 60 cm 



 

Appendix K 

245 
 

 
                                                    
 

                                          

                                                            Figure K.5a: 45cm                                 Figure K.5b: 60cm 
 
 
 
 

                                         
                                                            Figure K.5c: 45cm)                                 Figure K.5d: 60cm 
Discussions 

It was observed that gaze data from the Eyetribe tracker was generally noisy for all the 10 participants 

(data from 2 of whom are included above). Also above a user distance of 60 cm there was no tracking 

for Eyetribe whereas the Tobii tracker was seen to produce consistent results till 85 cm. Also, the 

Eyetribe tracker lost device connection several times during data collection sessions and had to be 

restarted. For these reasons, the Tobii eye tracker was selected for the full set of eye tracking 

experiments done as part of this thesis, which are described in Chapter 4.  

 

K.2 Sample data from different eye tracking experiments 

As discussed in Chapter 4, Section 4.1 of this thesis, a series of gaze data collection experiments were 

done as part of this thesis work on a desktop and tablet platform using the Tobii eye tracker. These 

experiments included a) user distance experiments where users were seated at 50, 60, 70, 80 cm from 

the tracker. This was done for both the desktop and the tablet platforms b) head pose experiments 

where a user had to position their head at certain fixed head pose angles while their gaze data was 

collected. This was done only for the desktop platform c) platform pose experiments where the eye 

tracking platform or tablet was oriented at certain fixed tablet pose angles while user gaze data was 

collected. This was done only for the tablet platform. Below, sample data from these experiments are 

Tobii: Gaze 
(blue) and 
ground truth 
(black) pitch 
angles  

Eyetribe: Gaze 
(blue) and 
ground truth 
(black) pitch 
angles  

Figure K.5a-d: Plots for gaze vs ground truth pitch angles for Tobii and Eyetribe trackers 



 

Appendix K 

246 
 

provided and then results from statistical analysis of data from different experiments are presented. In 

the figures, gaze data is shown as the black points while the ground truth data are the blue lines. 

 

 

  

 

 

 
Figure K.7a : Head pose neutral 

 
Head roll plus 

   

 

Head roll minus 

   

Figure K.6a-d: Data from user distance experiments: Desktop  

 Figure K.6a: 50 cm          Figure K.6b: 60 cm            Figure K.6c: 70 cm            Figure K.6d:  80 cm 

Figure K.7a-q: Data from head pose experiments: Desktop 

Figure K.7b: Plus 10 degree               Figure K.7c: Plus 20 degree            Figure K.7d: Plus 30 degree             

Figure K.7e: Minus 10 degree            Figure K.7f: Minus 20 degree         Figure K.7g: Minus 30 degree                   
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Head yaw plus 

 

 

Head yaw minus 

 

 

Head pitch plus 

 

 

Head pitch minus 

 

 

Figure K.7h: Plus 10 degree          Figure K.7i: Plus 20 degree                Figure K.7j: Plus 30 degree             

Figure K.7k: Minus 10 degree               Figure K.7l: Minus 20 degree     Figure: K.7m: Minus 30 degree              

                Figure K.7n: Head pitch plus 10 degree       Figure K.7o: Head pitch plus 20 degree 

        Figure K.7p: Head pitch minus 10 degree           Figure K.7q: Head pitch minus 20 degree                 
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Figure K.9a: Tablet pose Neutral 

 
Tablet roll plus/minus 

                               

                                 

Tablet yaw plus/minus 

                                                

 

Figure K.8a-d: Data from user distance experiments: Tablet 

Figure K.8a:  50 cm             Figure K.8b:  60 cm             Figure K.8c:  70 cm        Figure K.8d:  80 cm 

Figure K.9a-g: Data from tablet pose experiments 

Figure K.9b: Tablet roll plus 20 degrees   Figure K.9c: Tablet roll minus 20 degrees 

Figure K.9d: Tablet yaw plus 20 degrees                Figure K.9e: Tablet yaw minus 20 degrees 
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Tablet pitch plus/minus 

                

    

Discussions      

In the above figures, where raw gaze data from the different experiments are overlaid on ground truth, 

it can be seen that data from different operating conditions often look similar. Also no distinct patterns 

are observable in the data corresponding to different operating conditions. This is partly because of 

the existence of outliers in the data. In Section K.3, it will be shown that gaze data obtained under 

different operating conditions do have different error distributions and statistical properties.        
                                         

K.3 Comparison of gaze data characteristics from different experiments 
 

The tables K.1 and K.2 below presents the gaze error statistical values (after outlier removal) from 

desktop and tablet experiments respectively. The methods for calculating gaze errors and statistical 

metrics on gaze error values is provided in the paper of Appendix D and the process of outlier 

removal and statistical analysis of gaze errors is presented in the paper of Appendix F (Section II.C).  

Table K.1. Gaze error statistics from desktop experiments  

 UD50 UD60 UD70 UD80 Roll 
20 

Yaw 
20 

Pitch
20 

Mean 3.37 2.04 1.21 1.02 3.7 8.51 3.15 
MAD 3.49 1.77 0.82 0.66 3.63 10.0 1.90 
IQR 1.13 0.77 0.76 0.79 1.21 1.49 1.59 

95% 
interval 

3.15-
3.59 

1.90-
2.18 

1.15- 
1.26 

1.16-
1.24 

3.30-
4.09 

7.60-
9.43 

2.83-
3.47 

                                                                                                                          Figure K.10a: Error statistics: Desktop 

Table K.2. Gaze error statistics from tablet experiments  

 UD50 UD60 UD70 UD80 Roll 
30 

Yaw 
30 

Pitch
20 

Mean 2.68 2.46 0.59 1.55 7.74 4.25 2.45 
MAD 0.38 0.42 0.29 0.24 0.77 0.60 0.46 
IQR 0.39 0.54 0.33 0.22 0.75 0.53 0.23 

95% 
interval 

2.65-
2.71 

2.43-
2.48 

0.57 
-0.61 

1.53-
1.57 

7.69-
7.80 

4.22-
4.29 

2.41-
2.49 

                                                                                                                             Figure K.10b: Error statistics: Tablet 

Figure K.9f: Tablet pitch plus 20 degrees                Figure K.9g: Tablet pitch minus 20 degrees 
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In Table K.1 and Figure K.10a, UD 50, UD60, UD70, UD80 correspond to gaze data from different 

user-distance experiments done on the desktop platform and R20, Y20 and P20 correspond to gaze 

data from head pose roll pitch yaw angle (20 degrees for each) experiments. It is seen that gaze error 

levels are higher at low user distances and error reduces as user-tracker distance increases. Errors due 

to head yaw are seen to have the highest magnitude and errors due to head pitch have the highest 

inter-quartile range (or variability) in error values. Also error levels due to various head poses are 

quite higher compared to when head pose is neutral (UD60 values in Table K.1). All values in the 

table have units in degrees of angular resolution. 
 

In Table K.2 and Figure K.10b, UD 50, UD60, UD70, UD80 correspond to gaze data from different 

user-distance experiments done on the tablet platform and R20, Y20 and P20 represent data from the 

tablet pose roll pitch yaw angles (20 degrees for each) experiments.  It is seen that magnitudes of 

errors due to tablet pose changes are high and the highest error is caused due to platform roll 

variations. It is also seen that the error characteristics from tablet data are quite different than those 

from the desktop platform. Compared to desktop data, the error magnitudes are lower for tablet for all 

user distances.  Also magnitudes of errors due to different platform poses (Fig K.10 b) are higher than 

errors due to head poses (Fig K.10a).  
 

Figure K.11a and K.11b below show gaze error distributions for the data (after outlier removal) from 

desktop user distance and head pose experiments. The method for estimating gaze error distributions 

are discussed in the paper of Appendix F.  It is seen that each operating condition (e.g. user distance 

or head pose) leaves a definite signature on the gaze error distributions. Clear distinction exists 

between patterns of gaze errors for different user distances and head poses as the error distribution 

shifts towards higher, average or lower error values for different conditions. Similar observations are 

made for tablet data for different conditions (Figures K.11 c and K.11d). These error patterns are not 

observable from raw gaze data from the experiments as presented above. Also the error distributions 

caused due to the impact of different operating conditions are non-Gaussian and do not resemble any 

known statistical distribution function. These aspects are discussed in the paper of Appendix F. 

                      
                                             (a)                                                                                                (b)     
  Figure K.11 Gaze error distribution due to: a) user distance –desktop (b)due to head pose- desktop                                                          
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            (c)                                                                                           (d) 
Figure K.11 Gaze error distribution due to (c) user distance –tablet (d)due to platform pose- tablet 
 

Correlation studies were also done to observe similarity between gaze errors obtained from different 

experiments mentioned above. This is presented in Section 2.5.4 of the paper of Appendix F. It is seen 

from the correlation plots of Figures K.12 a (for data from desktop) and K.12b(for data from tablet) 

that gaze data collected under different operating conditions from the same platform and eye tracker 

do not have any correlations between their characteristics.  

           
                                                       (a)                                                                                      (b) 

Figure.K.12: Correlation between data collected from a) desktop (R20, Y20, P20 refers to head pose) (b) tablet 
experiments (R20, Y20, P20 refers to tablet pose) 
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