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Extensions of the meshless Finite Volume Particle
Method (FVPM) for static and dynamic free-surface

flows

Nathan J. Quinlan∗

Mechanical Engineering, National University of Ireland Galway.

Abstract

The Finite Volume Particle Method (FVPM) is a meshless method that in-

corporates features of both Smoothed Particle Hydrodynamics and the Finite

Volume Method. Here, two new formulations are presented which enhance its

performance in simulation of free surface flows. One is a method for determin-

ing the velocity of the free surface, making use of a partial Riemann problem to

analyse the flow between the particle barycentre and the geometric free surface.

The second is a well-balanced formulation for gravity forces that enables hydro-

static equilibrium to be preserved exactly. Results are presented for hydrostatic,

1D impact, dambreak and deep-water standing wave test cases. Computations

display convergence and good agreement with experimental data. The new

methods recover exact hydrostatic equilibrium, improve robustness and reduce

acoustic pressure fluctuations in dambreak flows, and reduce dissipation.

1. Introduction

In this article, two modifications are proposed to the Finite Volume Par-

ticle Method (FVPM) to enhance advection of a dynamic free surface and to

improve accuracy in hydrostatic simulations. FVPM, like Smoothed Particle

Hydrodynamics (SPH), is a meshless method derived from a particle-based ker-
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nel smoothing operation. In FVPM, the smoothing may be understood as a

distribution of the volume assigned to each particle, with well-defined sharing

of volume among overlapping neighbours. The method has strong similarities

with mesh-based finite volume methods, and allows arbitrary choice of the par-

ticle transport velocity. It can be implemented in fully Lagrangian form, like

SPH, making it a candidate for applications to flows with dynamic interfaces

and free surfaces.

Jahanbakhsh et al. [1] analysed FVPM for free-surface flows and applied it

to jet impingement, and later to flow in Pelton turbines [2]. However, to date,

FVPM has not been validated or characterised in detail for benchmarks such

as hydrostatic cases and dam-break flows. In the present article, two enhance-

ments are proposed for simulation of free surfaces. The first is a novel method

to determine the arbitrary Lagrangian Eulerian (ALE) transport velocity for

particles on the free surface. Purely Lagrangian particle transport is a natural

choice for a particle method in free-surface flow. However, the free surface is

not located at the centre of free-surface particles, and thus an error may be

introduced by assuming the free-surface velocity equal to the particle velocity.

In FVPM this distinction is rigorous. In the proposed new method, a refined

calculation of the velocity at each particle’s free surface is used as the ALE

particle transport velocity. The method is explained in detail in section 3.1.

The second innovation concerns the discretisation of weight (or other body

forces). The exact zero-order consistency of FVPM enables a well-balanced

scheme in which weight and pressure gradient can be in exact equilibrium in a

hydrostatic scenario. This method is presented in section 3.2.

Results of numerical tests are presented in section 4. Tests are selected to

evaluate the effects of the new development and the performance of the method

as a whole in free-surface flow, with comparisons against experimental and an-

alytical benchmarks. The test cases are a hydrostatic tank, one-dimensional

impact, the dambreak experiment of Lobovský et al. [3], and a standing wave.
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2. The Finite Volume Particle Method

2.1. Principles

FVPM was introduced independently by Hietel et al. [4] and Ismagilov [5],

and further analysed by Keck and Hietel [6] and Junk [7]. Here, the derivation

is briefly outlined. FVPM is applied to a conservation equation of the form

∂U

∂t
+∇ · F(U) = 0 , (1)

where U is the vector of conserved variables and F is the flux. The continuum

is discretised by a set of particles, each one associated with a test function

ψi(x, t) =
Wi(x(t))∑
jWj(x(t))

. (2)

The compactly supported kernel-like particle weight function Wi(x, t) is zero

outside Ωi, the support of particle i. Where a point is covered by multiple

overlapping particles, ψi(x, t) can be interpreted as the fraction of a local volume

element assigned to particle i, since
∑
i ψi(x, t) = 1. Therefore the total volume

of particle i is defined as

Vi =

∫
ψi(x, t)dx . (3)

Multiplying (1) by ψi(x, t) and integrating, after some manipulation, the

following semi-discrete equation results:

d

dt

∫
Ω

ψi(x, t)Udx +
∑
j

βij · Gij + βbi · G
b
i = 0 . (4)

Here, ẋi is the transport velocity of particle i, which may be chosen arbitrarily.

The numerical flux function Gij = G(Ũij , Ũji, ẋi, ẋj) approximates F(U(xij)),

as in the classical finite volume method (FVM), and also accounts for transport

between particles i and j due to relative motion. The interface states Ũij and

Ũji are reconstructed from the barycentres bi and bj respectively, with the

linear reconstruction Ũij = Ui + ∇̃Ui · (xij −bi), (where ∇̃ denotes a meshless

approximation to the gradient) or zero-order reconstruction Ũij = Ui.

The quantity βij denotes γij − γji, where

γij =

∫
Ω

Wi(x)∇Wj(x)

(
∑
kWk(x))

2 dx . (5)
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Boundary terms are denoted by the superscript b and

βbi =

∫
∂Ω

ψi(x, t)dS , (6)

where S is outward-normal boundary area. The derivation of Eq. (4) is pre-

sented in detail by Hietel et al. [4].

Equation (4) is similar in structure to the mesh-based FVM, with βij and

βbi taking the place of cell-cell and cell-boundary interface areas. Accordingly,

βij is known as the interparticle area. Definition (5) implies
∑
j βij = 0, which

ensures zero-order consistency, and βij = −βji, which ensures conservation.

Cell face areas in FVM satisfy the same conditions.

The rate of change of particle volume is given by differentiation of Eq. (3)

as
d

dt
Vi =

∑
j

[
γij · ẋj − γji · ẋi

]
. (7)

The method also defines the centroid of particle volume, or barycentre,

bi =

∫
ψi(x, t)xdx . (8)

The barycentre is not generally equal to the particle centre xi, which is used

to construct the weight function Wi. Typically, particle supports are circular,

spherical, square or cubic, and xi is simply the geometric centre of the support.

The quantity
∫

Ω
ψi(x, t)Udx in Eq. (4) is the volume-weighted average of U

over the particle, and is labelled Ui. Hietel et al. [4] showed that Ui is a

second-order approximation to the value of U at the barycentre bi.

Most FVPM implementations use a Godunov-type method to determine

the interparticle flux G(Ui,Uj). In the basic version, the flux is derived from

the solution of a Riemann problem with initial states Ui and Uj , i.e. zero-

order reconstruction from barycentres to particle interfaces. Nestor et al. [8]

introduced a higher-order scheme based on the MUSCL finite volume approach

[9]. Gradients of field variables at particle barycentres are estimated using a

meshless numerical operator, and a non-linear limiter is applied. The limited

gradients are used to estimate field values at particle interfaces to second-order
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accuracy. These reconstructed values are the initial states used to determine

interparticle fluxes using a Riemann solver. In principle, the reconstruction

operation can be performed using any meshless approximation of the required

accuracy (specific details of the present implementation are given in section 2.5

below).

The FVPM defined and named by Hietel et al. [4] is unrelated to several

similarly named methods [10, 11, 12]. FVPM in the present work is characterised

uniquely by its definitions of interparticle area (5) and particle volume (3), which

are rigorously derived from the weak form of the conservation PDE.

2.2. Evaluation of interparticle area

In the first versions of FVPM, βij was calculated by Gaussian quadrature,

which is extremely expensive and an additional source of error. Quinlan et al.

[13, 14] defined Wi(x) as the top-hat function, equal to 1 inside the support of

particle i and 0 elsewhere. The integral of Eq. (5) can be computed analytically,

quickly and exactly. This approach was extended to 3D by Jahanbakhsh et al.

for cubic [1] and spherical [2] particles. Another approach for exact calculation

of βij , using splines for Wi(x) in 1D, was proposed by Kaland [15].

2.3. Consistency and convergence

A minimum of zero-order consistency is ensured, since
∑
j βij = 0. With a

uniform value for flux Gij in Eq. (4), the time derivative evaluates to zero, and

thus a uniform field is preserved. The method is modelled on the second-order

finite volume first-order Godunov and second-order MUSCL schemes, with con-

stant or linear reconstruction respectively. However, as yet there is no complete

theoretical analysis of the order of consistency or convergence of FVPM. The

approximation steps that influence spatial accuracy are the FVPM gradient

operator ∇ · F ≈
∑
j βijFij [6], the Godunov-type calculation of fluxes, the

selection of the interface points xij [6], and weighted volume-averaging (proven

second-order accurate [6]). Further work is required to analyse these effects in

detail.
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In the present work, the main variant used is the linear reconstruction

from barycentre to interface, similar to the second-order MUSCL finite volume

scheme. Numerical tests of FVPM with linear reconstruction have previously

displayed second-order convergence in Poiseuille flow [8] and Taylor-Green flow

[8, 16, 14]. The zero-order reconstruction is used in some cases for comparison.

2.4. Free surfaces in FVPM

In FVPM, the free surface is defined as all regions of all particle support

boundaries ∂Ωi that are not covered by any other particle, as shown in Fig.

1. This gives an unambiguous definition of the mechanical free surface as a

geometric surface in 3D (curve in 2D).

To facilitate the following discussion, a virtual void particle v is defined for

each fluid particle i, as shown in Fig. 1. (This particle does not appear in the

method in practice.) It overlaps only with one fluid particle i, with infinitesimal

volume of overlap. The free-surface region of ∂Ωi (the region ∂Ωi not covered

by any other fluid particle) is fully covered by v. To maintain these conditions,

v must be advected at the same velocity as i, i.e. ẋv = ẋi.

2.4.1. Mass and momentum

At the interface between i and v, the free-surface dynamic boundary con-

dition must be enforced. There should be zero flux of momentum between the

void and the fluid. Similarly there should be no mass flux. Since FVPM is

formulated in terms of fluxes, it is straightforward to implement this. The void

simply makes no contribution to the sum of fluxes in Eq. (4). There is no need

to enforce p = 0 at the surface particles. To do so would result in a first-order

error, since p = 0 should apply at the particle’s free surface, but field values are

defined only at the barycentre.

2.4.2. Volume

Although there is no exchange of mass and momentum bewteen the fluid and

the void, Jahanbakhsh et al.[1] have noted that there is a conservative exchange

of volume. If particle i advances into the void, for example, it gains the volume
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Figure 1: Schematic diagram of a particle i on the free surface with an implicit void particle

v.

swept out by the exposed segment of ∂Ωi (while also exchanging volume with

its neighbour particles, depending on their relative motion). The transfer of

volume from v to i is given by Eq. (7), making use of ẋv = ẋi as follows.

dVi,v
dt

= [γiv · ẋv − γvi · ẋi] = βiv · ẋi (9)

Since
∑
j βij = 0, it follows that βiv = −

∑
j 6=v βij . Therefore, Eq. 9 can

simply be written as

dVi
dt

=
∑
j

[
γij · ẋj − γji · ẋi

]
−
∑
j

βij · ẋi , (10)

where the particle v is discarded and summations are understood to be over all

fluid neighbour particles. The void particles were introduced only for the sake of

this argument, and need never be implemented in practice.
∑
j βij is interpreted

as the free surface of particle i (normal from the void into the particle), just as

βij is interparticle area.
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2.4.3. Interparticle area

The above approach depends on enforcement of the consistency condition∑
j βij = 0. In early FVPM work, βij was approximated by quadrature of Eq.

(5). Later its accuracy was improved by corrections that enforce that condition

[17, 18]. These corrections were found necessary to achieve an acceptable balance

between overall accuracy and computation time in flows without free surfaces.

At the free surface, however,
∑
j βij = 0 does not hold, and should not be

enforced artificially. Thus, approximate βij , based on quadrature, cannot be

corrected at the free surface using available methods.

Consequently, exact evaluation of βij [14] is an essential enabling technique

for free-surface modelling. It ensures
∑
j βij = 0 is satisfied exactly in the

interior of the fluid, wherever there are no gaps between particle supports. At

the free surface, the non-zero
∑
j βij represents the surface area of a particle

which is exposed to the void.

2.5. Numerical details

In the present work, the top-hat particle weight function is used to allow

exact calculation of βij [14]. Gradients are calculated using SPH operators

with the B-spline kernel, with the correction of Bonet and Lok [19] for first-order

consistency. The Barth-Jespersen slope limiter [20] for unstructured meshes is

applied and Liou’s AUSM+-up approximate Riemann solver [21] is used. Time-

stepping is by the second-order Runge-Kutta scheme. Fluid is modelled as

weakly compressible, using the modified Tait equation of state with γ = 7.

Particle motion is purely Lagrangian throughout the numerical tests presented

in this work, i.e. ẋ = u, unless otherwise stated. Although ALE particle

velocity correction (shifting) has been employed successfully in FVPM [8, 1],

in the present work it is not used, to allow other effects to be observed more

clearly.
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3. New extensions of FVPM for free-surface flow

3.1. Enhanced free-surface particle transport velocity

As discussed in section 2.4, if the free surface in FVPM is modelled without

any special treatment, the mass and momentum fluxes between the particle and

the void are zero. This enforces the correct dynamic boundary condition at the

free surface. The material velocity u of free-surface particles is updated through

the conservation equations. FVPM is an ALE method, and particle transport

velocity ẋi can be chosen arbitrarily. A natural choice for free-surface flows is

Lagrangian particle motion, i.e. ẋi = ui.

However, ui of a free-surface particle is not strictly equal to the velocity of the

free surface. The particle’s nominal material velocity ui is a weighted average

of material velocity over the whole of particle i, and a second-order approxima-

tion to the value at the barycentre [4]. The free surface has a clear geometric

definition, consisting of the exposed parts of particles’ support boundaries, as

shown in Fig. 2. The velocity of the free surface is the transport velocity ẋ,

which is arbitrarily chosen. The barycentre is separated from the free surface

by a distance approximately equal to the particle radius, 2h. Thus, in pure

Lagrangian mode, when ẋ = u, there is a first-order error in the velocity of the

free surface.

The purpose of the present work is to calculate a better approximation to the

free-surface velocity, which can be applied as transport velocity ẋ for free-surface

particles. This is entirely distinct from enforcement of the dynamic boundary

condition, which imposes no conditions directly on velocity. A secondary aim

is to improve robustness, since in fully Lagrangian mode, the present FVPM

method sometimes fails in simulations of violent flows in regions of rapid free-

surface deformation, such as breaking waves.

The approach is to solve a partial Riemann problem for the flow normal to

the free surface at sub-particle scale, relating the known velocity and pressure at

the barycentre to the known pressure (p = 0) and unknown velocity at the free

surface. This is based on the method of Dubois [22], as adapted by Marongiu
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Figure 2: Schematic diagram of circular particles bounded by walls and a free surface. The

free surface is marked with a heavy curve, xi is the geometric centre of particle i (shaded),

bi is its barycentre, g is acceleration due to gravity,
∑
j βij is the projected area of the free-

surface region of the surface of particle i, and xfs is the projection of the barycentre onto the

free surface.
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Figure 3: Space-time diagram of a characteristic wave in one dimension, propagating from the

barycentre of particle i at x = bi to the free surface at x = xfs.

et al. [23] for walls in SPH, and already employed for wall boundary conditions

in the present FVPM method. The principle is illustrated in 1D in Fig. 3. The

Riemann invariant u + p/(ρc) is constant along the wave running at velocity

u+ c from the barycentre of particle i to the free surface, leading to(
u+

p

ρc

)
i

=

(
u+

p

ρc

)
fs

. (11)

(For clarity, gravity is omitted from this discussion.) Since p = 0 holds at the

free surface, Eq. (11) can be solved for the free-surface velocity

ufs = ui +
pi
ρici

. (12)

Finally, ẋi is set to ufs, so that the particle is transported at the correct velocity

for the free surface.

In the multidimensional case, a 1D problem is solved for flow normal to the

free surface. The geometry is shown in Fig. 2. The sum of the interparticle

areas,
∑
j βij , is the projected area of the particle’s free surface, directed inwards

normal to the surface. This is used to define the outward unit normal, n. A

representative point on the free surface, xfs, is located by projecting bi onto

the surface of the particle in the direction of n. This is required to correct the

Riemann invariant for hydrostatic pressure. The 1D Riemann problem is then
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solved for the normal velocity, giving

ufs · n = ui · n +
pi + ρig · (x− xfs)

ρici
. (13)

This provides the surface-normal component of free-surface particle transport

velocity, while the tangential component is set to the tangential component of

the particle material velocity. The final form of the particle transport velocity

is then

ẋi = (ufs · n) n + ui − (ui · n) n . (14)

This procedure requires identification of free-surface particles. In FVPM,

this is unambiguous and comes at no extra cost. Since
∑
j βij = 0 for interior

particles, free-surface particles are simply those with non-zero sum of interpar-

ticle areas (allowing a tolerance for rounding errors).

It should be noted that this formulation is distinct from the enforcement

of the free-surface boundary condition. As discussed in section 2.4.1, the flux

across the free surface is zero, independently of the velocity of the free-surface

particles.

3.2. Hydrostatic balance

For accurate computation of hydrostatic equilibrium, or flows where hydro-

static forces overwhelm dynamics, the gravity force must be treated with care.

The sum of pressure and weight force on a particle can be computed in an

obvious way as ∫
Ωi

∇pdx− ρgVi . (15)

In the context of mesh-based methods, Botta et al. [24] stated the principle

that for a hydrostatically well-balanced scheme, weight and pressure gradient

should be discretised in the same manner so that their numerical errors cancel

exactly. The expression above does not satisfy this rule, and in practice, large

errors have been observed in numerical tests.

Instead, in the extended method, the force per unit volume is now written

as ∇(p− ρg · x). This leads to the FVPM discretisation of force on particle i
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as

Fi =
∑
j

(p∗ij − ρig · xij) · βij (16)

where p∗ij is the interface pressure between particles i and j determined by a

Riemann solver, and xij is the i-j particle interface location. Local variation in

density is neglected.

In an exact hydrostatic pressure field, Eq. (16) evaluates as follows. The

pressure p(x) is given by ρg ·x. The present FVPM implementation uses a first-

order consistent SPH scheme to estimate gradients at the particle barycentre

for use in a MUSCL-type scheme. The pressure and velocity gradients in this

linear field are therefore recovered exactly as ρg and zero, respectively, and the

pressure and (zero) velocity are reconstructed exactly at the interface point xij ,

from both the i and j sides. The Riemann problem at each interface, with

identical left and right states, also returns the exact pressure, p∗ij = pi + ρig ·

(xij − bi). Substituting this into (16), the force reduces to

Fi =
∑
j

[pi + ρig · (xij − bi)− ρig · xij ] · βij

= [pi − ρig · bi] ·
∑
j

βij

= 0 ,

since
∑
j βij = 0. Thus, equilibrium is exact in a hydrostatic pressure distribu-

tion with uniform density.

For a particle at the free surface, Eq. (16) is applied, using xfs (as defined in

section 3.1 and Fig. 2) as the interface point xij , and −
∑
j βij as the effective

area. The pressure p∗ij is zero.

For clarity, the above development omits limiters. Following standard prac-

tice in mesh-based finite volume methods, slope limiters are employed in FVPM

to prevent the creation of new extrema in the reconstruction process. In the

present work, the Barth-Jespersen slope limiter [20] is used. The limiter function
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for particle i and a neighbour j is

ϕij =


min

(
1,

φmaxi − φi
∇φi · (xij − bi)

)
, if ∇φi · (xij − bi) > 0

min

(
1,

φmini − φi
∇φi · (xij − bi)

)
, if ∇φi · (xij − bi) < 0

1, if ∇φi · (xij − bi) = 0

, (17)

where φ denotes pressure or a velocity component and xij = 1
2 (xi + xj) is the

interface point. Minima and maxima are taken over all neighbours of i. The

limiter for particle i, ϕi, is then taken as the minimum of all pairwise limiters

ϕij and is applied to the gradient of φ in the reconstruction from barycentre to

interface points:

φij = φi + ϕi∇φi · (xij − bi) , (18)

where ∇φi is determined by a first-order consistent SPH gradient operator in

this case.

Limiter functions are non-linear, and when activated, they compromise the

first-order consistency required for equilibrium. To avoid this, reconstruction

and limiting operations are applied to the deviation from local hydrostatic pres-

sure distribution, p̂i(x) = (p(x) − pi) − ρig · (x − xi), rather than to pressure

p(x) directly. The limiter is calculated for this variable according to Eq.(17). It

is then reconstructed to xij by

p̂iij = p̂ii + ϕi∇̃p̂ii · (xij − bi) (19)

and the result is converted back to absolute pressure

pij = pi + ρig · (x− xi) + p̂iij . (20)

This is used as input to the Riemann problem at the ij interface.

4. Numerical tests

4.1. Hydrostatics

4.1.1. Test case

Two geometries were used to test the hydrostatic balance model. One is a

simple rectangular tank of width 2H, filled to depth H. The second, referred
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to as the irregular tank, has oblique surfaces. In both cases, particles are dis-

tributed with ∆x/H = 1/10 and h/∆x = 0.501, and initialised with zero veloc-

ity and a hydrostatic pressure distribution. In a third test, the fluid in irregular

tank is discretised with non-unifrom particles, ranging from ∆x/H = 1/10 in

most of the tank to a small region of ∆x/H = 1/40 at the free surface, with

h/∆x = 0.501 throughout. All results presented here were computed with the

new hydrostatic balance formulation. Based on the reference velocity (gH)1/2,

the Reynolds number is 1.1× 106 and Mach number is 0.04.

4.1.2. Results

Results are shown in Fig. 4 for the evolution of the total kinetic energy

of the system. In the simple rectangular tank, kinetic energy, normalised with

respect to the total gravitational potential energy, decays rapidly from 10−13 to

10−18, on the order of machine zero. Energy is slightly higher in the irregular

tank. Addition of the enhanced free-surface boundary condition has a minimal

effect on the global energy. With particles of non-uniform size near the free

surface, there is higher initial kinetic energy and slower decay. This is because

the barycentre is not symmetrically located in particles with neighbours of dif-

ferent size, and some reconfiguration is necessary to reach exact equilibrium.

Nonetheless, spurious velocity is at a negligible level, with dimensionless kinetic

energy falling below 10−13 by t∗ ≈ 50.

Velocity fields are shown in Fig. 5 at the instant of maximum velocity for two

cases. These indicate the maximum velocity that can be expected as the system

approaches numerical equilibrium, on the order of (10−4)
√
gH with non-uniform

particles.

To examine convergence, simulations were carried out for a simple tank with

regularly distributed particles 5 to 100 deep. Computed steady-state pressure

distributions are shown in Figure 6. Results display second-order convergence

to the analytical solution (21).

p(y) =
ρ0c

2
0

γ

{[
1 +

(γ − 1)g

c20
(H − y)

] γ
γ−1

− 1

}
(21)
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Figure 4: Dimensionless kinetic energy in the regular and irregular hydrostatic tanks, with the

hydrostatic balance formulation, with and without enhanced free-surface particle transport

velocity (FS-PTV). The same data is shown on different scales in the two plots.
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Figure 5: Non-dimensionalised velocity fields U∗ = |u|/
√
gH in the irregular tank at the

instant of maximum velocity in each case. (a) Lagrangian particle transport velocity and

uniform particles, t∗ = 0.096. (b) Enhanced free-surface particle transport velocity and non-

uniform particles, t∗ = 0.596. Note that particle positions are marked at their geometric

centres, and support radius is proportional to spacing (h/∆x = 0.501). The tops of the

free-surface particles are approximately aligned on a horizontal line, although the centres are

not.
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Figure 6: Non-dimensionalised pressure p/(ρ0gH) in a regular tank at t∗ = 10, computed

with the hydrostatic balance formulation.
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4.2. Simple one-dimensional impact

4.2.1. Test case

In weakly compressible methods the sound speed is a numerical parameter,

usually set below the physical value. Le Touzé et al. [25] and Marrone et al. [26]

investigated the role of compressibility in SPH modelling of nearly incompress-

ible fluids. Numerically and physically, transient impact pressure is dependent

on the speed of sound. Waves resulting from impact may be dissipated by phys-

ical viscosity or numerical dissipation to yield a nearly incompressible flow at

longer time scales.

A simple 1D impact flow has been simulated to evaluate compressibility

and dissipation effects in FVPM, preliminary to simulations of an experimental

dambreak flow in section 4.3. The problem is similar to the impact of two

symmetric jets considered by Marrone et al. [26]. A fluid column of length L, at

initial pressure 0, impacts on a wall at speed U and corresponding Mach number

M = U/c0. Theoretically, a shock wave is expected to propagate from the wall

to the free surface, where it is reflected as a rarefaction. Alternating rarefaction

and shock waves impact on the wall. For weak waves, which propagate at the

reference speed of sound, the pressure ranges between 0 and ρUc0. Simulations

were carried out with L/∆x = 100 and h/∆x = 0.48, for the FVPM variants

with zero-order and linear reconstruction at M = 0.001, 0.01, 0.1, without the

new free-surface or hydrostatic balance treatments (there is no gravity in this

problem).

4.2.2. Results

With zero-order reconstruction (Fig. 7), waves rapidly become smeared to

an approximately sinusoidal signal, and peak pressure decays by 50% by t∗ =

tc0/L ' 50. With the linear reconstruction (MUSCL) scheme (Fig. 8), for M =

0.01 and M = 0.001, pressure remains essentially constant from cycle to cycle up

to t∗ = 100 and beyond, aside from a small under/overshoot which grows with

time. At the highest Mach number, M = 0.1, non-linear compressibilty effects

are significant, leading to more complex interactions and a decaying wave. At
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Figure 7: Wall pressure in the 1D impact test, computed using FVPM with zero-order recon-

struction, shown on two time scales. Pressure is non-dimensionalised by theoretical acoustic

impact pressure ρc0U and time by the acoustic transit time L/c0. The same data is shown

on different scales in both plots. (Computed without the new formulations.)

the lowest Mach numbers, normalised pressure p/(ρUc0) is independent of Mach

number when plotted as a function of normalised time tc0/L. This confirms that

the absolute magnitude and frequency of impact pressure scale with the speed

of sound or inversely with Mach number.

Although there is negative pressure in these tests, there is no tensile instabil-

ity. FVPM can suffer a discrete analogue of SPH tensile instability, if negative

pressure occurs where there is a gap between particle supports. In this case,

however, the expansion is not large enough to open a void. Neighbour overlap

is defined by h/∆x0 = 0.48 in this case, giving 2 neighbours per particle in 1D.

When the fluid is brought to rest by the shock wave, kinetic energy is stored

by compression work
∫ ρ
ρ0
pρ−2dρ. Energy alternates between kinetic and com-

pression forms, as illustrated in Fig. 9 for FVPM with linear reconstruction at

M = 0.01. Total energy should remain constant in the absence of dissipation,

which may occur in strong shock waves (in cases of high Mach number) or as

a result of numerical dissipation. In Fig. 10 it is evident that the total en-

ergy is dissipated rapidly in the scheme with zero-order reconstruction, whereas

the higher-order variant approximately conserves the sum of kinetic and com-
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Figure 8: Wall pressure in the 1D impact test, computed using FVPM with linear recon-

struction, shown on two time scales. Pressure is non-dimensionalised by theoretical acoustic

impact pressure ρc0U and time by the acoustic transit time L/c0. The same data is shown

on different scales in both plots (computed without the new formulations).

pression energy for M = 0.01, 0.001, with losses less than 10% at t∗ ≈ 96 (24

cycles). For M = 0.1 there is much more rapid dissipation because of non-linear

compressibility effects, as expected.

These benchmarks illustrate the effects of the choice of artificial sound speed,

as discussed by previous researchers [25, 26]. They also highlight the contrast

between the dissipative behaviour of FVPM with zero-order reconstruction and

the very low dissipation in the higher order scheme.

4.3. Dambreak

4.3.1. Test case and experimental data

This simulation models the dambreak experiments of Lobovský et al. [3].

As shown in Fig. 11, a volume of still water of height H is initially retained

behind a vertical gate, which is removed to initiate flow. The experiment was

conducted 100 times. In the present work, the experimental case H = 300 mm

was simulated with inviscid fluid and free-slip walls, and h/∆x = 0.48, giving

8 neighbours per particle in the initial configuration. In most simulations, the

speed of sound is set for a reference Mach number M =
√
gH/c0 = 0.05.
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Figure 9: Total energy in the 1D impact test at M=0.01 in FVPM with linear reconstruc-

tion, non-dimensionalised with respect to initial kinetic energy (computed without the new

formulations).
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Figure 10: Sum of kinetic and compression energy in the 1D impact test, non-dimensionalised

with respect to initial kinetic energy (computed without the new formulations).
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Figure 11: Schematic diagram of the model of the dambreak experiment of Lobovský et al.[3],

showing the location of pressure sensor p4 and water height measurements h2, h3 and h4.

With velocity up to 2
√
gH occurring in the flow, the maximum Mach number

occurring is approximately 0.1. The new hydrostatic balance formulation is

used in all dambreak simulations presented. Without it, significant errors have

been observed as the tank approaches equilibrium in the long term, but effects

on the initial transient are negligible. Computational results are compared with

experimental measurements of water height at three locations, and pressure at

one location on the downstream wall.

A video recording of one experiment [27] was analysed to record gate position

as a function of time with uncertainty estimated as ±5 mm. The median over

all 100 experiments of the gate removal mean velocity was reported as 3.46 m/s

(≈ 2
√
gH). An analytical function was fitted to the video data, and scaled to

3.46 m/s, as shown in Fig. 12. This function was used to prescribe simulated

gate motion.

4.3.2. Results

Sample pressure fields are shown in Fig. 13. Pressure distribution is smooth

in space. Run-up on the downstream wall and the plunging secondary wave are

captured.

The effect of the enhanced free-surface particle transport velocity formula-

tion is illustrated by Fig. 14, showing wall pressure p4. In comparison with a

model based on a simple Lagrangian free surface, the new boundary condition
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Figure 12: Data from one experiment of Lobovský et al.[3] for gate removal, with the fitted

function, and the same function scaled to give the reported median gate velocity.

results in lower pressure oscillations. It also provides a more robust simulation.

Without any additional treatment such as particle velocity correction (shift-

ing), the simulation with a simple Lagrangian free surface fails at t∗ ≈ 4.5 due

to locally poor particle distributions. The motivation for the new method is to

provide correct motion for the free surface, rather than the geometric centre, of

each particle.

Wall pressure p4, computed with various resolutions, is compared quanti-

tatively with experimental data [3] in Fig. 15. High-frequency oscillation is

evident in the computational results at low resolution. The amplitude of this

oscillation decreases rapidly as ∆x is decreased and the pressure converges.

Numerical experiments have been conducted to investigate the relationship

between high-frequency oscillations in the dambreak and the acoustic waves

discussed in section 4.2 above. Results for various Mach number in Fig. 16

show that amplitude of oscillations increases as Mach number is decreased.

Results of a computation with zero-order reconstruction are shown in Fig. 17.

In comparison with Fig. 15, oscillations are greatly reduced by the increased

dissipation in the lower-order scheme. Together, these results confirm that the

oscillations observed in Fig. 15 are due to acoustic waves, which are preserved

as a result of the inherent low dissipation of FVPM with linear reconstruction.

To suppress unwanted acoustic noise in weakly compressible SPH, Kiara et
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(a) t∗ = 0.43, gate lifting.

(b) t∗ = 6.15, gate removed.

(c) t∗ = 7.15, gate removed.

Figure 13: Dimensionless pressure p∗ = p/(ρgH) in the dambreak flow with H/∆x = 120,

M = 0.05, linear reconstruction, and new formulations for hydrostatic balance and enhanced

free surface particle transport velocity. Note change of scale in (c).
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Figure 14: Computed pressure p4 on the downstream wall for H/∆x = 60 and M = 0.05 and

linear reconstruction, with and without the enhanced free surface particle transport velocity,

with the new formulation for hydrostatic balance.
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Figure 15: Computed pressure p4 on the downstream wall for various H/∆x, with Mach num-

ber M =
√
gH/c0 = 0.05, linear reconstruction, and enhanced free surface particle transport

velocity. Also shown are the 2.5, 50 and 97.5 percentiles of the experimental data [3].
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Figure 16: Computed pressure p4 on the downstream wall for various Mach number M =
√
gH/c0, with H/∆x = 60, linear reconstruction, and the new formulations for free surface

particle transport velocity and hydrostatic balance.
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Figure 17: Computed pressure p4 on the downstream wall for various H/∆x, with Mach

number M =
√
gH/c0 = 0.05, zero-order reconstruction, and the new formulations for free

surface particle transport velocity and hydrostatic balance. Also shown are the 2.5, 50 and

97.5 percentiles of the experimental data [3].
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al. [28] and Meringolo et al. [29] have proposed filtering approaches, based on

the observation that the acoustic signal can often be distinguished from the

underlying incompressible flow [25]. Here, a relatively crude post-processing

approach is taken to smooth the FVPM pressure data of Fig. 15. The charac-

teristic frequency for acoustic signals in the initial water column of height H is

c0/(4H). A second-order low-pass Butterworth filter is applied with cut-off at

half this frequency, i.e. c0/(8H). Filtered data in Fig. 18, along with the raw

data in Fig. 15, allow easier examination of convergence and comparison with

experiment.

Before plunging of the secondary wave at t∗ ≈ 6.6, the underlying low-

frequency pressure signal is converged for all but the coarsest particles, H/∆x ≥

30. For the pressure peak at t∗ ≈ 6.6, there is good convergence at H/∆x = 60,

and reasonable agreement on the magnitude of the peak with the higher end

of the range of experimental pressure. In comparison with experiment, the

pressure levels are generally lower. Similar reduced pressure was observed by

other authors simulating the same experiment with single-phase SPH [30] and

two-phase particle finite element method [31]. The peak pressure is delayed

with respect to the experimental results; this has also been observed in other

numerical simulations and has been shown to be due to the absence of the air

phase [32, 30].

All dambreak results presented in Figs. 13 to 18 were obtained with the

dynamic gate velocity function shown in Fig. 12 (scaled to 3.46 m/s mean

velocity) prescribed for the removal of the gate. To investigate the sensitivity

of results to the gate removal model, two other models for gate removal were

investigated. The no-gate case represents instantaneous gate removal with an

incompressible fluid. The instantaneous pressure field at t = 0 was determined

by a finite-difference solution of the Laplace equation, with boundary conditions

of zero pressure at the free surface and zero normal pressure gradient at the

walls, following the approach of Stansby et al. [33]. The unsteady simulation

then proceeded as usual with the weakly compressible model. In the third case,

the gate was started impulsively and lifted at constant velocity of 3.46 m/s.

28



2 3 4 5 6 7

t(g/H)1/2

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

p/
(ρ

gH
)

H/∆x=15
H/∆x=30
H/∆x=60
H/∆x=120
experiment (Lobovsky et al.)

Figure 18: Computed pressure p4 on the downstream wall for Mach number M =
√
gH/c0 =

0.05, with H/∆x = 60, linear reconstruction, new formulations for free surface particle trans-

port velocity and hydrostatic balance, and low-pass filter applied at c0/(8H) (14.2 Hz). See

Fig. 15 for raw data. Also shown are the 2.5, 50 and 97.5 percentiles of the experimental data

[3].

Results are shown in Fig. 19. In all three cases, as in the experiments, the

pressure rise on the downstream wall occurs in two stages, both approximately

linear in time, with a much higher rate in the first stage. With either a fully

dynamic or constant-velocity gate, the first impact is later than without a gate,

and pressure reaches a higher level in the initial rapid stage. This behaviour

is closer to the experimental results. These moving-gate results suggest that

modelling the finite gate removal time is necessary for accurate prediction of the

early transient stages of flow far downstream, but the results are not sensitive

to the detailed kinematics of the gate.

Results for water height are shown in Fig. 20, with experimental measure-

ments from an arbitrarily selected run. Transient peaks in water height for the

finer resolutions are due to particles splashing high above the bulk of liquid.

Apparent noise at low resolution is because the free surface in FVPM consists

of circular arc segments of the particles’ support boundaries (see Fig. 2), and

the numerical water height sensor detects the highest point of the particles cov-
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Figure 19: Computed pressure p4 on the downstream wall for Mach number M =
√
gH/c0 =

0.05, with H/∆x = 60, linear reconstruction, and the new formulations for free surface particle

transport velocity and hydrostatic balance, for no gate (instantaneous gate removal), gate

removal at constant speed of 3.46 m/s, and a dynamic gate as shown in Fig. 12. Also shown

are the 2.5, 50 and 97.5 percentiles of the experimental data [3].

ering its x location. Before impact on the downstream wall, FVPM results agree

closely with the experiment for all resolutions, even H/∆x = 15. After break-

ing of the secondary wave (t∗ ≈ 6.6) there is satisfactory convergence at h4 (the

transducer closest to the downstream wall). As the reflected waves propagate

leftwards to h3 and h2, with more complex and violent dynamics observed in

the experiments, results become increasingly sensitive to resolution.

4.4. Standing wave

4.4.1. Test case

Results are presented here for a standing wave in an inviscid fluid, following

Antuono et al.[34]. A potential solution gives the velocity field as

u(x, y, t) = −∇
(
ε
Hg

2ω

cosh[k(y +H)]

cosh(kH)
cos(kx) cos(ωt)

)
. (22)

For an inviscid fluid, the wave should oscillate without loss of energy. The

circular frequency ω is [gk tanh(kH)]1/2, H is depth, and ε = 2A/H where A is
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Figure 20: Computed water depth in the dambreak problem for various H/∆x, compuoted

with the new formulations for free surface particle transport velocity and hydrostatic balance,

along with data from a single experiment [3],
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amplitude. The domain has periodic boundaries at x = 0, H and a wall at y =

−H. The fluid is initialised with a level free surface at y = 0 and the analytical

velocity field (22) evaluated at t = 0, and hydrostatic pressure. The amplitude

parameter ε is 0.05 and H/∆x ranges from 20 to 160, with h/∆x = 0.48 in

all cases. The new hydrostatic balance formulation is applied, and results are

presented with and without the new free-surface particle transport formulation.

The test case is used here to assess the dissipative behaviour of the method.

In the viscous case, the kinetic energy decays as

Ek(t) =
ε2gH3

32
e−4νk2t[1 + cos(2ωt)] , (23)

where ν is kinematic viscosity [35]. By fitting numerical results to this function,

an effective viscosity can be calculated. This in turn is used to determine an

effective Reynolds number based onH and the characteristic velocity εHgk/(2ω)

of Eq. (22), which quantifies the numerical dissipation of the nominally inviscid

solution.

4.4.2. Results

Sample particle pressure distributions at the fourth peak of the wave are

shown in Fig. 21. In this view there is no discernible difference between results

for the pure Lagrangian mode and enhanced free-surface particle transport ve-

locity.

Time histories of kinetic energy are shown in Fig. 22. Dissipation is strongly

dependent on resolution, with effective Reynolds number ranging from 31 for

H/∆x = 20 to 959 for H/∆x = 160 with fully Lagrangian particle transport.

With enhanced free-surface particle transport velocity, dissipation is slightly

less, with Re∗ = 1253 at the finest resolution.

5. Conclusions

Two new developments have been presented that enhance FVPM simulation

of free-surface flows. The first is a new method to determine the ALE particle

transport velocity for particles at the free surface, based on solution of a partial
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(a)

(b)

Figure 21: Dimensionless pressure p∗ =
p−ρ0g(H−y)

1
2
ρ0U2 in the standing wave test at t∗ = t/T =

4.25 with H/∆x = 160 (a) with fully Lagrangian particle motion and (b) with enhanced

free-surface particle transport velocity.
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Figure 22: Kinetic energy with fitted decay curves effective Reynolds number Re∗ in the

standing wave test for various H/∆x (a) with fully Lagrangian particle motion and (b) with

enhanced free-surface particle transport velocity.
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Riemann problem to determine the free-surface velocity consistent with zero

pressure at the surface. These may be considered a form of ALE particle ve-

locity correction (shifting), specifically adapted for the free surface, and based

on an analysis of the local flow rather than a measure of uniformity or sym-

metry of the particle distribution. Aside from this treatment, all simulations

presented here have used fully Lagrangian particle motion. The new free-surface

method has been shown to improve robustness and reduce high-frequency pres-

sure oscillations in dambreak simulations. Dambreak results show convergence

and agreement against experimental data from the literature. In particular, the

simulations show that the finite time taken for gate removal has a significant

effect on the impact flow downstream. In simulations of a standing wave, the

enhanced free-surface transport velocity formulation slightly reduces dissipation.

The second enhancement is a well-balanced formulation which enables exact

equilibrium between gravity and pressure gradient. In hydrostatic tests with

this formulation, normalised kinetic energy tends to machine zero. This per-

formance is maintained with irregular geometry, and the enhanced free-surface

particle transport velocity formulation, and non-uniform particles. The hydro-

static pressure distribution approaches the analytical solution with second-order

convergence.

Furthermore, the dissipation and compressibility properties of FVPM have

been assessed in numerical experiments on one-dimensional impact tests. FVPM

with linear reconstruction shows very low dissipation, allowing acoustic waves

to be preserved through many reflection cycles. Consequently, high-frequency

pressure oscillations are evident in dambreak simulation, particularly with low

spatial resolution. Oscillations can be suppressed by reverting to the scheme

with zero-order reconstruction (introducing strong artificial dissipation), or as

a preliminary test has shown, by filtering. The enhanced free-surface par-

ticle transport velocity formulation reduces high-frequency oscillations in the

dambreak test. Results of standing wave simulations suggest that the new ap-

proach reduces dissipation, and its effect of reducing pressure fluctuations in

the dambreak is therefore associated with better tracking of the free surface,
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as intended. Collectively, this work improves the accuracy and robustness of

FVPM for free surface flows.
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[3] L. Lobovský, E. Botia-Vera, F. Castellana, J. Mas-Soler, A. Souto-Iglesias,

Experimental investigation of dynamic pressure loads during dam break,

Journal of Fluids and Structures 48 (2014) 407–434.

[4] D. Hietel, K. Steiner, J. Struckmeier, A finite volume particle method for

compressible flows, Mathematical Models and Methods in Applied Science

10 (2000) 1363–1382.

[5] T. Ismagilov, Smooth volume integral conservation law and method for

problems in Lagrangian coordinates, Computational Mathematics and

Mathematical Physics 46 (2006) 453–464.

[6] R. Keck, D. Hietel, A projection technique for incompressible flow in the

meshless finite volume particle method, Advances in Computational Math-

ematics 23 (2005) 143–169.

[7] M. Junk, Do finite volume methods need a mesh?, in: M. Griebel (Ed.),

Meshfree Methods for Partial Differential Equations, Springer, 2003, pp.

223–238.

[8] R. Nestor, M. Basa, M. Lastiwka, N. Quinlan, Extension of the finite vol-

ume particle method to viscous flow, Journal of Computational Physics 228

(2009) 1733–1749.

36



[9] B. van Leer, Towards the ultimate conservative difference scheme. V -

a second-order sequel to Godunov’s method, Journal of Computational

Physics 32 (1979) 101–136.

[10] M. Muradoglu, P. Jenny, S. B. Pope, D. A. Caughey, A consistent

hybrid finite-volume/particle method for the pdf equations of turbulent

reactive flows, Journal of Computational Physics 154 (2) (1999) 342 – 371.

doi:https://doi.org/10.1006/jcph.1999.6316.

URL http://www.sciencedirect.com/science/article/pii/

S0021999199963167

[11] A. Chertock, A. Kurganov, G. Petrova, Finite-volume-particle methods

for models of transport of pollutant in shallow water, Journal of Scientific

Computing 27 (1-3) (2006) 189–199. doi:10.1007/s10915-005-9060-x.

URL http://dx.doi.org/10.1007/s10915-005-9060-x

[12] S. Zhang, K. Morita, K. Fukuda, N. Shirakawa, A new algorithm for sur-

face tension model in moving particle methods, International Journal for

Numerical Methods in Fluids 55 (3) (2007) 225–240. doi:10.1002/fld.1448.

URL http://dx.doi.org/10.1002/fld.1448

[13] N. J. Quinlan, R. M. Nestor, Fast exact evaluation of particle interac-

tion vectors in the finite volume particle method, in: M. Griebel, M. A.

Schweitzer (Eds.), Meshfree Methods for Partial Differential Equations

V, Vol. 79 of Lecture Notes in Computational Science and Engineering,

Springer Berlin Heidelberg, 2011, pp. 219–234.
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[31] J. M. Gimenez, L. M. González, An extended validation of the last gen-

eration of particle finite element method for free surface flows, Journal of

Computational Physics 284 (2015) 186–205.

[32] A. Colagrossi, M. Landrini, Numerical simulation of interfacial flows

by smoothed particle hydrodynamics, Journal of Computational Physics

191 (2) (2003) 448–475.

[33] P. K. Stansby, A. Chegini, T. C. D. Barnes, The initial stages

of dam-break flow, Journal of Fluid Mechanics 374 (1998) 407–424.

doi:10.1017/s0022112098001918.

URL http://dx.doi.org/10.1017/s0022112098001918

[34] M. Antuono, A. Colagrossi, S. Marrone, C. Lugni, Propagation of gravity

waves through an sph scheme with numerical diffusive terms, Computer

Physics Communications 182 (4) (2011) 866–877.

[35] J. Lighthill, M. Lighthill, Waves in fluids, Cambridge University Press,

2001.

40


