<table>
<thead>
<tr>
<th>Title</th>
<th>Advancements and challenges in multidomain multicargo delivery vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Pugliese, Eugenia; Coentro, João Q.; Zeugolis, Dimitrios I.</td>
</tr>
<tr>
<td>Publication Date</td>
<td>2018-02-15</td>
</tr>
<tr>
<td>Publisher</td>
<td>Wiley</td>
</tr>
<tr>
<td>Link to publisher's version</td>
<td>https://doi.org/10.1002/adma.201704324</td>
</tr>
<tr>
<td>Item record</td>
<td>http://hdl.handle.net/10379/15037</td>
</tr>
<tr>
<td>DOI</td>
<td>http://dx.doi.org/10.1002/adma.201704324</td>
</tr>
</tbody>
</table>
Progress Report

Advancement and challenges in multi-domain multi-cargo delivery vehicles

Eugenia Pugliese†, João Q. Coentro†, and Dimitrios I. Zeugolis*

E. Pugliese (BSc, MSc), J. Q. Coentro (BSc, MSc), D. I. Zeugolis (BSc, MSc, PhD)
Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland

† Share first authorship

* Corresponding author. E-mail: dimitrios.zeugolis@nuigalway.ie
Keywords: multi-compartment biomaterials, dendrimers / polymersomes / micelles / liposomes, coaxial electrospinning / electrospraying, multi-drug/gene/cell delivery

Reparative and regenerative processes are well-orchestrated temporal and spatial events that are governed by multiple cells, molecules, signaling pathways and interactions thereof. Yet again, currently available implantable devices fail largely to recapitulate nature’s complexity and sophistication in this regard. Herein, we discuss success stories and challenges in the field of layer-by-layer, composite, self-assembly and core-shell technologies for the development of multi-domain / multi-cargo delivery vehicles.
1. Introduction

Complex pathophysologies and regenerative processes involve diverse signaling mechanisms,\(^1\) imposing the need for the development of combinatory therapies comprised of growth factors (GFs),\(^2\) drugs,\(^3\) genetic material\(^4\) and cells.\(^5\) Multi-compartment and multi-cargo sustained and localized delivery vehicles have already shown promise in microbial infection,\(^6\) cancer treatment,\(^7\) wound healing\(^8\) and regenerative medicine.\(^9\) Such advanced therapies surpass limitations\(^{10}\) associated with conventional administration approaches, such as insufficient target selectivity;\(^{11}\) incompatible \textit{in vivo} pharmacokinetics and distribution profiles between different bioactive molecules;\(^{12}\) unpredictable accumulation ratios and interactions;\(^{13}\) short circulation times and half-lives;\(^{14}\) and even harmful systemic side effects.\(^{15}\)

Early delivery designs aimed primarily at controlling the bioavailability through either cleavable linkers\(^{16}\) or by promoting diffusion and degradation of the carrier.\(^{17}\) Current delivery systems aspire to provide controlled, temporal and spatial delivery.\(^{18}\) Further, they seek to protect the cargos,\(^{13}\) offer higher solubilization ratios of the encapsulated molecules\(^{19}\) and allow sequential or combined release.\(^{20}\) For successful development of such elegant systems, considerable challenges should be addressed, including cargos’ solubility, size and molecular weight,\(^{21}\) as well as the cargo’s type, as the successful co-delivery of hydrophobic and hydrophilic molecules is a far more daunting task than just delivering similarly soluble molecules.\(^{21}\) Further, it is of paramount importance to control the architecture of the delivery vehicles over the various scales, as this will determine the quantity and bioactivity of the cargos that can be delivered.\(^{22}\) The functionality of the carrier, through incorporation of stimuli-responsive motifs, targeting moieties and cleavable linkers should also be incorporated into the device design.\(^{23}\)

In this manuscript, we discuss advancements, limitations and future perspectives in layer-by-layer (LbL), self-assembly, composite and core-shell scaffold fabrication technologies for the co-delivery of multiple cargos.
2. Layer-by-layer technologies

LbL scaffold fabrication technology allows the development of multi-layered thin films (Figure 1). It was first introduced in 1991 and enabled the formation of a thin film by depositing alternating layers of oppositely charged materials. Since then, numerous alternative formation forces (e.g. hydrophobic interactions, biological interactions, hydrogen bonding and covalent bonding) and fabrication methods, have been developed for tissue engineering and control drug delivery / release, using a diverse range of materials for different clinical indications (Table 1).

It is worth noting that synthetic and natural polymers are traditionally used in the assembly of multilayer films. The choice of the materials is dependent on the molecular interactions governing the films assembly: electrostatic interaction is restricted to the fabrication of charged and water-soluble multilayer materials, whilst covalent bonding, which is a highly desirable option as it leads to more stable films, is merely available for molecules with complementary functional groups. In any case, synthetic polymers are most commonly used for the preparation of multilayered films because of their versatility and tunable properties. Polyelectrolytes have also been utilised for dual delivery of biologics, however, cytotoxicity of synthetic polyelectrolytes remains of concern. Although incorporating them as primer layer could decrease their toxicity, it can still be triggered afterwards from their degradation products. In particular, synthetic polycations have been reported to induce cell death as a result of interactions with the negatively charged surface of the cell membrane. For these reasons, natural polymers are under intense investigation and they have shown promising results for several indications, including multi-drug delivery.

The technologies used to assemble such multi-layered films are based on the principles of immersive, spin-coating, spray, fluidic and electromagnetic assembly. Immersive assembly involves the immersion of a substrate into solutions of the desired materials and
subsequent washing away the excess. Although this fabrication method allows coating of substrates with complex architectural features, possible residuals from each deposition step and laborious washing steps limit its applicability.42 Spin-coating and spray assembly LbL procedures have emerged as promising alternatives to the conventional immersive assembly due to manufacturing low costs and reduced processing time, thereby being more suitable for industrial applications. Spin-coating utilizes rotating substrates to deposit uniform layers and remove excess coating material. The majority of spin-coating assembly is performed by either casting the solution onto a spinning substrate or casting the solution onto a stationary substrate that is then spun.38 This technology is generally limited to coat flat surfaces, but it is faster than immersion assembly and results in more homogenous and multi-layered films.43 Spray assembly allows the development of films with more distinct layers than those derived from immersion assembly techniques.44 They are assembled by aerosolizing polymeric solutions and sequentially spraying them onto planar or non-planar substrates, which can be rotating to ensure a more homogeneous coating.39 More recently, fluidic and electromagnetic assemblies have been explored, but their applicability is still limited due to complex and still primitive infrastructure requirements.29a Fluidic assembly allows region-specific patterning, by inserting a geometric chamber over the substrate and then flowing the solution through it. This technique has also enabled LbL assembly of sensitive substrates (e.g. phospholipid membranes) with defined compositional asymmetry and lamellarity.45 Electromagnetic assembly utilizes electric or magnetic fields to deposit polymeric layers that are generally thicker than the ones prepared with the aforementioned techniques.46

By selecting polymer components and controlling film deposition parameters, LbL films can be rationally designed to act as a platform for controlled delivery of multiple bioactive agents for multiple clinical indications. LbL assembly offers several advantages, including simultaneous delivery of multiple and heterogeneous cargos, such as hydrophobic and hydrophilic drugs,47 opposite charged molecules,48 nucleic acids and/or cells;49 opportunity to
functionalize the outer layers with active targeting moieties32c or stimuli-responsive motifs;50 possibility to decrease the cytotoxicity of substrates, such as semiconductor nanoparticles (NPs) by depositing layers of biocompatible polymers;51 temporal control release of different cargos by modulating the thickness and the number of the layers.52, 32c The cargo can be conveniently loaded into LbL-assembled films by direct assembly32a or post-diffusion.53 The latter, is a convenient option that relieves concerns over drug storage in the films; it is limited though to low molecular weight drugs, which can diffuse easily through the pores of the film.54 The cargos can be released by triggering an external stimulus55 or after the film components degradation.56 Further, the amount of cargo loaded can be controlled by adjusting the numbers of layers applied.57 LbL films can be deposited and subsequently released from substrates to produce free-standing films by dissolving a pre-deposited sacrificial layer between the substrate and the film58 or by an ion-triggered exfoliation method.59 However, the amount of molecules that can be loaded is limited by the ultrathin nature of the films and their nm scale thickness makes them susceptible to mechanical damage (e.g. rupture).60 Nonetheless, multi-cargo multi-compartment \(\mu \text{m} \)-thick implantable devices have been developed: spin-coating was utilized to develop a bilayer film loaded with a GF on top of a LbL film loaded with an antibiotic via a post-diffusion process.54 The versatility of LbL self-assembly technique allows also the formation of 3D systems by using templates, instead of flat surfaces, that have higher surface area and improved cell accessibility when compared to planar substrates.61 The assembled films can be adsorbed onto a number of different 3D templates, for example degradable polymeric NPs,62 liposomes,61 carbon nanotubes,63 mesoporous silica.64 Charged polypeptides or synthetic polyions can be introduced in alternating assembly to create an ionic film outer layer, which can be used to control drug release from the internal core, producing a core-shell design. LbL systems can be considered the simplest vectors for gene delivery.65 Multilayer films can be easily fabricated by exploiting the electrostatic forces between DNA or RNA (anionic building blocks) and any
cationic polymer. The ability to perform LbL coatings at physiological conditions also enabled cell surface coating, encapsulation and delivery, as well as the creation of a suitable niche for stem cell differentiation by the co-delivery of GFs for specific lineage differentiation.

The main limitation that has been reported in LbL multi-layered structures is the interlayer biomolecule diffusion that depends on the film’s internal structure and nm scale porosity, which might lead to the mixing of the entrapped cargos. This elicits the importance of investigating physical erosion mechanisms and changes in film morphology that could occur during the film degradation or after the films are exposed to physiological media, leading to interlayer diffusion and changes in the internal structures. Between innovative approaches that have been explored to limit this issue, graphene oxide and laponite clay were effectively used as barrier interlayer to block inter-layer diffusion. Another interesting approach was based on the use of antagonists in the individual layers (e.g. vascular endothelial GF (VEGF) and anti-VEGF) to create spatially confined compartments of the cargos through diffusion blocking.

Although LbL technologies have exponentially grown in recent years, no clinical trials have been conducted yet (Source: clinicaltrials.gov; Terms searched: ‘layer-by-layer’, ‘multi-layer’). Current research is moving away from the random diffusion-driven kinetics for layer deposition and heading towards the development of faster kinetics and more robust and more reproducible fabrication procedures through automation. High quality free-standing LbL films have also been fabricated with a modified spin-coating assembly method at substantial reduced manufacturing time, avoiding laborious substrate handling and washing steps. In the years to come, scalability issues would be addressed in a more comprehensive manner, allowing the manufacturing and clinical translation of more elegant multi-compartment delivery systems for controllable multiple-cargo delivery.
3. Self-assembly technologies

Self-assembly technologies rely on the presence of amphiphilic domains (possessing a polar and a non-polar region) and a natural thermodynamic predisposition to form independent hydrophilic and hydrophobic multilayer compartments. When exposed to a hydrophilic solvent, the polar part orients itself towards the solvent, whilst the non-polar part orientates itself away from the solvent; the opposite occurs in an hydrophobic solvent. This separation not only enables the encapsulation of multiple cargos, but also allows for independent release thereof, thus surpassing some of the limitations (mixed cargo release, which can compromise the therapeutic effect of encapsulated cargos; required high drug concentrations and unselective cargo release, which can cause side effects and cytotoxicity in normal tissues) of conventional delivery vehicles. Liposomes, polymersomes, dendrimers and polymeric micelles, all formed through self-assembly processes, have been used to create controlled release multiple cargo (e.g. hydrophilic and hydrophobic molecules, GFs, genetic material, imaging contrast agents) compartmentalized delivery vehicles (Figure 2) for multiple biomedical applications (Table 2).

Liposomes are nano/micro self-assembled spherical colloidal vesicles which consist of a hydrophobic phospholipid bilayer surrounding an aqueous hydrophilic core. Although liposomes were first described in 1965 and their potential application as drug delivery vehicles was shown in 1971, their application in a clinical trial came to fruition in 1989. To-date, several iterations of liposomes (e.g. solid phase bilayer liposomes, ‘stealth’ liposomes, targeted liposomes or even triggered release liposomes) are available. These systems aim to increase drug loading capability and bioavailability and to offer better controlled release rate of the encapsulated molecules. They also aspire to prevent recognition by the immune system, including activation of the complement system and macrophage clearance and to decrease systemic cytotoxicity through their high content in natural phospholipids that tends to minimize possible toxic side effects.
One of the most used techniques to prepare liposomes is the creation of a thin film through sonication, rotary evaporation and mix extrusion, followed by rehydration and drug loading.95, 68 Another commonly used technique for liposome preparation is dual asymmetric centrifugation, which involves two axes of centrifugation, one of them being the sample’s own vertical axis, constantly forcing the sample material toward the center of the centrifuge, leading to a more efficient homogenization.96 Other methods of preparation include surface functionalization with reactive groups78, 97 or with cross-linking of different multi-lamellar compartments.98 Drug encapsulation can be accomplished through passive or active loading. Passive loading can be achieved by solubilizing the drug in the lipid solution during liposome formation,99 whilst active loading uses chemical gradients to encapsulate drugs.100 Although active loading is more effective in achieving higher drug-to-lipid encapsulation ratio and allows a more controlled drug release, it could lead to low drug availability at the site of action.100-101 Methods of active loading include the use of ammonium sulfate95a or calcium acetate102 gradients for weak bases and acids, respectively. Cyclodextrin,103 EDTA104 and transition metals105 can be used for the formation of poorly soluble or even insoluble precipitates inside the liposome. Water-insoluble molecules can be loaded through a pro-drug formation / derivatization process.106 Despite the significant advancements in the field of liposomes, only recently multiple cargo / co-delivery approaches using single liposome formulations have been deployed,95b, 107 albeit with moderate levels of success. For example, although the produced systems achieved high drug-loading ratios, localized delivery / release of the encapsulated cargos and significant decrease in tumor viability \textit{in vitro}, they did not demonstrate the predicted efficacy \textit{in vivo}.107d Such drawbacks can be attributed to technical and stability issues, batch-to-batch variability, particle size control, sterilization method used and traceability of the lipid composition of each individual formulation.108 Some types of formulations might also prove to be more problematic to implement, as is the case of cationic formulations, which can be cytotoxic93 and the use of unsaturated fatty acids, which can be easily oxidized.108b
Polymersomes borrow the same rational from liposomes, as they are also constituted of both hydrophobic and hydrophilic domains, forming amphiphilic vesicles from synthetic block polymers.80d This class of vesicles is comprised of a bi-layer membrane of hydrated hydrophilic coronas that are in contact with an aqueous core and medium, both on the inside and the outside of a hydrophobic core.80b Although many synthetic109 and natural80d polypeptides can be used on their own to create amphiphilic block copolymers, the most interesting approaches tend to combine them to get the most advantageous features from both (e.g. solubility, processability, elasticity versus secondary structure, functionality and cytocompatibility).110, 80d Obviously, during the selection of the polymers to be used, general considerations regarding biodegradability, water solubility, immunogenicity and interactions must be considered.110c, 111 Polymersomes are synthesized through ring-opening polymerization,97d either using a solvent exchange method,112 or, similarly to liposomes, through a thin film formation and rehydration,113 with cargo conjugation usually being done through dialysis,97d pH gradient,114 or salt gradient.115 Polymersomes are considerably more stable than liposomes,116 capable of longer circulation times,117 more mechanically robust116 and carrying larger quantities of both hydrophobic and hydrophilic molecules,80a thus proving to be a viable alternative to liposomes for multiple cargo delivery.118 Polymersomes also possess lower immunogenicity and cytotoxicity than liposomes,111, 119 in part due to the use of biodegradable non-toxic synthetic polymers120 or non-immunogenic natural polymers.121 Surface functionalization can reduce further potential immune response.122 Admittedly, polymersomes are characterized by a slower rate of release of their encapsulated cargos, when compared to liposomes, which can compromise the therapeutic efficacy of the encapsulated bioactive agents.115, 123 To surpass this limitation, several groups have tried to create tunable systems that release their cargo in a stimuli-responsive (e.g. pH,124 glucose levels,125 presence of cysteine,126 light,127 heat,128 glutathione,118 magnetic fields129) fashion. Another issue that needs to be addressed is the lack of specific cellular interactions and
targetability by some of the peptide-based polymersomes,80d which can be surpassed through surface functionalization with targeting reactive groups or by using natural polymers with native biological interaction capabilities.80d Several polymersome formulations have been used for the co-delivery of bioactive agents \textit{in vitro}130a-c, 118, 130d, 114, 130e and \textit{in vivo},131 achieving satisfactory results regarding bioactive agent encapsulation, localized delivery, sustained release, tumor prevention activity and low levels of systemic toxicity. However, polymersomes have yet to reach the clinic, indicating that further studies regarding their safety and efficacy are needed.

Dendrimers are a class of synthetic macromolecules with a tree-like structure, synthesized in a stepwise manner from branched monomer units.81a, 132, 81d These hyper-branched and monodisperse multivalent nano-systems possess several characteristics that make them ideal for drug delivery,81c including well-defined molecular weight and macromolecular structure,133 uniform size,134 available internal cavities with high loading capacity,135 favorable pharmacokinetics135 and a high density of surface active (amine) groups, ideal for functionalization and targeting.136 Among the available polymeric dendrimers, polyamidoamine (PAMAM) dendrimers have been used extensively for drug delivery.132f PAMAM dendrimers are synthesized from an initiator core, followed by sequential branching, with the process being repeated throughout each generation, leading to increasingly branched structures, which can then be used as molecule storing compartments, usually through a two phase dialysis process.137 Despite their promising characteristics (e.g. high loading capacity, favorable pharmacokinetics and high concentration of active surface groups, ideal for functionalization), their potential for clinical translation has been hampered due to cytotoxicity issues associated with their positively charged amino groups138 or as a function of generation.139 To this end, surface functionalization strategies are under intense investigation to increase their biocompatibility and circulation time,81c, 132e to increase targeting capabilities132b, 132c or to add stimuli (e.g. pH140) responsiveness.
Polymeric micelles are amphiphilic copolymeric nanostructures formed by a thermodynamically driven self-aggregation process above the critical micellar concentration, which is the concentration beyond which a surfactant can form micelles.141 Similarly to other described amphiphilic NPs, they can form two separate hydrophilic and hydrophobic compartments depending on the solvent in which they are mixed.82d In contrast to other polymeric NPs, they are thermodynamically reversible,142 which can present some disadvantages for drug delivery, such as cargo precipitation after abrupt micellar dilution.143 On the other hand, it enables them to be tailored to respond to different micro-environmental conditions and better control the pharmacokinetics and release profiles of the encapsulated cargos by mixing different amphiphilic monomers and cross-linking them.144 The degree of cytotoxicity, biodegradability, water solubility and immunogenicity is dependent on the choice of the polymeric building blocks, and should be considered during the design phase.111 Initial approaches, involving polymeric micelles for the delivery of multiple bioactive cargos, consisted of basic copolymeric micelles encapsulating multiple chemotherapeutic agents.145 More refined approaches have been recently described, with the development of redox140b and pH146 sensitive micelles, targeted systems147 or micelles functionalized with biodegradable linkers.148 Despite the promising results of micelle system for co-delivery of bioactive agents \textit{in vitro}149 and \textit{in vivo}150, these systems have only been used in clinical setting for the delivery of single bioactive agents.82a Self-assembled systems, primarily liposomes and micelles, have been used extensively in clinical trials for single molecule (e.g. bupivacaine,151 sodium hyaluronate152 and cytarabin153 with liposomes; radioactive ligands154 with dendrimers; doxorubicin,155 paclitaxel156 and cisplatin157 with micelles) delivery (Source: clinicaltrials.gov; Terms Searched: ‘liposome’, ‘polymersome’, ‘dendrimer’, ‘micelle’; Number of Studies: 2,039, 0, 1, 32, respectively) due to their highly tunable properties that allow sustained and localized delivery of their cargos. To-date, none of these systems has been used for multi-cargo delivery in clinical setting, clearly
illustrating the need for further research on their bioactivity and safety.82c Considering that these systems have become relatively easy to scale-up, with emerging production techniques, such as ethanol injection,158 use of vertical stirred tank reactors159 and micellar electrospray93 showing narrow size distribution, good reproducibility and appropriate stability, in the years to come, advancements in chemistry and functionalization are expected to address cytotoxicity and adequate cargo loading / protection issues,158-160 bridging that way the gap between proof of concept and clinical translation.

4. Composites technologies

Composites are materials obtained through the combination of constituents with different macrostructures, which result in the creation of individual compartments, ideal for the delivery of multiple bioactive agents.161 Composites were developed to overcome shortcomings of single constituent materials and to obtain synergistic benefits (e.g. improve loading and release kinetics of bioactive agents) by combining multiple materials.162 To-date, composite systems161, 163, 162 are used extensively in the biomedical field as bioactive agent delivery vehicles (Table 3). The most prominent combinations (Figure 3) include hydrogel systems loaded with several types of particles164 or fibers,165 porous scaffolds with integrated particles,166 and fibers doped with particles.167 Considering the vast range of materials that can be combined, the optimal choice will always be application dependent.

Hydrogel systems168 are frequently loaded with particles,164, 169 micelles170 and fibrous materials.165, 162 Carbon,171 polymeric,172 inorganic/ceramic173 or metal/metal-oxide174 in nature NPs result in superior physicochemical, electrical and biological properties175 due to the enhanced surface interaction between the NPs and the polymer chains of the hydrogel system. The type of cross-linking (chemical or physical) should also be considered, as it would affect mechanical properties, cargos’ release profile and cytotoxicity.176 Hydrogel systems that encapsulate mixed particle populations can modulate the release kinetic of the different
The incorporation of inorganic magnetic NPs has allowed the modulation of external temperature, either for hyperthermia treatments or for a stimuli-dependent (e.g. temperature or magnetic field) cargo release. Additionally, the observed volumetric change, after the incorporation of the NPs, leads to repeatable swelling-deswelling cycles and consequently on-off controlled cargo release by an external magnetic field. Through combination of micellar particles and a hydrogel system, it is possible to create a multi-delivery system that conjugates the appropriate hydrophobic loading properties of micellar particles and the hydrophilic loading and tunable release capacities of the hydrogel system. Furthermore, it is possible to functionalize these systems to be responsive to environmental factors (e.g. pH or temperature), thus increasing their specificity and potential as controlled delivery devices.

One of the methods used to obtain composites of hydrogels / electrospun fibers is by physically combining them in a multilayered structure by LbL technologies. The large surface area of the fibers which ensures a high loading, whilst the hydrogel, through its swelling, cross-linking and degradation rate properties, allows controlled release of the cargo. The fibers, in addition to their mechanical reinforcement and directional cell growth role, slow down the cargo diffusion into the hydrogel, which in turn tunes the release kinetics. Likewise, cross-linked hydrogels can act as barrier to the potential initial burst release from the electrospun fibers. The option of doping particles to electrospun fibers has been largely explored in the last decade for multiple applications. The loading of multiple cargos into this class of composites allows for an earlier and faster release from the fibers and a slower cargo release from the NPs. This class of composites has been prepared by directly mixing a polymer solution with NPs suspension, by sol-gel/electrospinning or by electrospinning / electrospraying. Porous systems (e.g. sponges) have been used in conjugation with different particulate systems (e.g. microspheres or microparticle) allowing the localized co-delivery of multiple cargos. Their extensive porous network guides blood vessel formation promoting
angiogenesis and allows osteoconduction, osteoinduction and osteogenesis, all key factors in bone repair and regeneration.

Whilst numerous single cargo-composite technologies have been clinically translated or even commercialized, multi-cargo composite-based systems have yet to reach the clinic (Source: clinicaltrials.gov; Terms Searched: ‘composites’, ‘composites AND delivery’, ‘composites AND release’, ‘hydrogel AND particle’, etc.). Although multi-component / multi-cargo composite systems provide superior properties to their single counterpart component systems, the complexity involved in optimizing the desired composition, the spatial distribution and the temporal controlled delivery and release of the multiple cargos still need to be addressed. Factors, such as the nature of the materials, interaction of the materials, individual and combined toxicity, in vivo biodegradability and manufacturing / scalability should be considered in the device design stage. Considering that the individual elements, in most cases, have already been clinically translated for single cargo delivery (e.g. hydrogel or porous scaffold based delivery), it is expected that in the near future more multi-cargo composite technologies would reach clinical translation and commercialization.

5. Core-shell technologies

Core-shell (Figure 4) methods have been used extensively in regenerative medicine for multiple cargo controlled delivery (Table 4). Two well-defined structures, a core inner layer surrounded by a shell outer layer, secure and partition multiple bioactive agents into different compartments at relevant quantities, preserving their stability. The newly formed combined structure enables different release rates, since the cargo in the core is released more slowly / later than the one encapsulated in the shell molecule, whose release can be tailored by modifying the shell composition and thickness. The core and the shell can be conceived as dense or porous, according to the final application. Dense shells are usually made of metal oxides (e.g. silica and alumina) that exhibit hydrophilic behavior or non-metals (e.g. carbon)
that have hydrophobic character. Dense shells are primarily used in sensors,199 photo-thermal / chemotherapy strategies200 and batteries.201 Porous shells, obtained by the addition of surfactant molecules during the shell formation, can accommodate molecules and enable their diffusion. This allows their use in drug delivery,202 photo-thermal / chemotherapy strategies203 and imaging.204 To-date, various shapes (e.g. fibers,205 spheres206) and wide range of sizes (from nm207 to \(\mu\text{m}208\)) and materials (metals,209 quantum dots,210 polymers211) have been proposed for multiple cargo delivery.

Core-shelled systems, mainly NPs, can be fabricated via chemical reactions (e.g. chemical vapor deposition) or post-shelling methodology.212 An alternative strategy is based on the electrospinning method213 that gives rise to fibrous scaffolds by using electric forces in a random or uniaxial oriented manner, with nano- to micro- scale topography and with controlled porosity.214 However, fibers deriving from a conventional electrospinning process do not ensure homogeneous distribution of the cargo and surface-based delivery is often burst in nature.198 An improvement in this direction has been made with the introduction of the co-axial207,167c,215 and emulsion69,216 electrospinning. Co-axial electrospinning allows single-step formation of core-shell fibers217 or hollow fibers after a second step of heat treatment or chemical withdrawal.218 Co-axial electrospinning is a modification of the traditional single spinneret electrospinning set up, that is replaced by two coaxial capillaries. It employs electric forces acting on polymer solutions and results in significant stretching of polymer jets due to direct pulling. The set-up includes an inner and outer nozzle arranged in a concentric geometry able to pump two polymer solutions or a polymer solution (shell) and a non-polymeric liquid or powder (core) simultaneously to initiate the core-shell jet.219 This technology allows also the introduction of the cargo directly into a core made from fluids, like water or aqueous polymeric solutions, in order to better preserve their bioactivity.220 Co-axial and tri-axial electrospinning offer control over release kinetics by altering the fiber thickness or the molecular weight of the core polymer.221 The addition of polyethylene glycol in the shell layer can also offer control
over the cargo’s release. Biofunctionalization of the shell, via surface immobilization with biological motifs, can also be performed to provide specific interaction of the scaffold with cells and increase the bioactivity of the system. However, this process usually requires multi-steps of chemical modifications of the surface at wet state, which might disturb the core-shell fiber configuration because of a softer core. Another limitation is that by using hygroscopic materials (e.g. gelatin, collagen, peptides) that are typically preferred due to their excellent cytocompatibility water molecules form channels between the fiber core and the shell. As a consequence, the release from the core occurs rather rapidly. To solve this issue, three-layer (core/intermediate/shell) fibers have been produced by tri-axial electrospinning, allowing the loading of water-soluble molecules in the outer layer, without causing a premature release from the molecules in the core layer. To date, there are only few proof-of-concept in vitro studies using tri-axial electrospinning for multiple release, possibly because of the challenges of this new technology and the number of coupled parameters governing the process and the properties of the resultant fibers. Co-axial or tri-axial fibers can be fabricated with multiple polymers, both natural and synthetic in origin. Whilst synthetic materials are often preferred due to their good processability and favorable mechanical properties, the use of natural polymers appears to be appealing, as they mimic the natural composition of the extracellular matrix (ECM). However, it has been reported that when trying to process natural polymers, such as collagen, hyaluronic acid and fibrinogen, into an electrospun scaffold, many of their structural and biological properties are lost. Specifically, the use of solvents and the intense electrostatic field represent the major threats for biopolymers. To take advantage of the favorable processing and tenability of the synthetic materials with the biological advantages of the natural polymers, post-processing surface functionalization is frequently employed. Emulsion electrospinning has also attracted great interest to produce core-shell fibers for controlled release of multiple cargos. The emulsion contains an oil phase, obtained by dissolving polymers into organic solvents that can incorporate hydrophobic agents, and a water
phase containing hydrophilic drugs or proteins. The major advantage of emulsion electrospinning over the co-axial method is the infrastructure simplicity. However, the use of an emulsified agent constitutes a major drawback, as it is difficult to remove it completely and might lead to protein denaturation. Interestingly, combination of co-axial and emulsion electrospinning have been reported, where the core was made by co-axial electrospun fibers and the shell was made by co-axially emulsion electrospun fibers; the system allowed controlled and temporal release of multiple cargos by adjusting the composition and density of the core. Among alternative techniques that have been used to fabricate core-shell fibers, it is worth to mention the template deposition method, the phase separation method, the co-concentric extrusion and microfluidics. Natural polymers, such as collagen and alginate, have been successfully tested with these methods. An elegant system for the delivery of multiple types of cells has been developed by using a combination of microfluidics and co-centric extrusion. The system was able to encapsulate cells into different proteins, which served as a core layer, using alginate as a shell. However, fiber formation was only successful when the cells were cultured in relatively stiff substrates, which clearly illustrates the importance of the material for sustained / controlled delivery of cells. Considering that template deposition is a two-step method, microfluidics systems are associated with higher in fabrication and operation costs and complexities and emulsion electrospinning utilizes an emulsified agent that can ultimately lead to encapsulated protein denaturation, co-axial electrospinning remains the most extensively used method, as it generates core-shell fibers in a single-step and allows the encapsulation and the protection of even unstable cargos in an aqueous environment.

Core-shell spheres, particles and capsules have also been developed for multiple cargo delivery. Their fabrication has been achieved with numerous chemical and physicochemical methods, including: coaxial electrodropping, LbL assembly, emulsion polymerization, microfluidics, surface-modification of the core, emulsion polymerization, and co-axial electrospaying. Core-shell NPs offer the possibility of coating the core with a shell made of
a more biocompatible material. The coating can also increase hydrophilic behavior, offer external control (e.g. via magnetic or thermal mechanism) to the process of drug targeting and provide better dispersibility and binding affinity to receptors and ligands for targeted delivery. Microparticles and microcapsules with core-shell structure have been mainly used to encapsulate and deliver cells; the core holds the cells and provides them with a 3D culture environment. Whilst the composition of the core is crucial as it determines the fate of the encapsulated cells, the shell protects the inner biological ingredients and governs their release kinetics as a function of the layer thickness, the loading location and the density of the encapsulated cells.

Technologies to develop core-shell fibers and particles from various polymers are developing at a fast pace. Although there are many promising basic research and preclinical studies, the use of core-shell fibers has yet to reach the clinic. However, at clinicaltrials.gov (Term Searched: ‘electrospinning’) 3 trials were identified, 2 of which have been completed and involved the development of a nitric oxide delivery multilayer transdermal patch for the treatment of cutaneous leishmaniasis and diabetic foot ulcers. Although none of these trials assessed a multi-delivery device, they constitute a significant progress in the field of drug delivery via electrospun scaffolds. In the years to come, many of the fundamental interactions between the cargos and the carriers would be better understood, better structures with tailored release capacity would be developed and more elegant functionalization systems would be established to enable clinical translation and commercialization of these elegant technologies. For example, a recent study has already demonstrated an one-step route towards surface bio-functionalization using an electric field-driven surface enrichment of the electrospun fibers. With respect to scalability, the slow production rate should also be addressed anon. Towards this goal, multi-needle and needless technologies are coming up to industrialize the fabrication rate. Within the multi-needle technologies, it is worth noting a method that accomplished high production rate of uniform fibers using an hexagon shaped multi-needle spinneret; the
conventional non-uniformity of the electric field generated by multi-needle systems was solved by designing each set of three needles as an equilateral triangle.253a Within the needless methods, it is worth mentioning an innovated setup that substituted the conventional spinneret with a large metal rotating cone that generated polymeric multi-jets and increased by thousands of times the traditional production rate.254b
6. Conclusion

Given the complexity of biological systems, it is unlikely that mono-domain approaches would result in functional / reparative therapies. Yet again, combinatorial therapy is still at its infancy and significant limitations need addressing (Table 5). Proof of concept studies in the field of multi-domain / multi-cargo delivery have shown promise, however further studies are needed to demonstrate efficacy and safety and to bring these technologies to higher technology readiness level. Indeed, to-date, only a handful of complex, yet elegant, systems has been assessed in preclinical models and none of them has been brought to clinic. This limited clinical translation could be due to multi-fold restraints. The complex regulatory system concerning new molecular / regenerative medicine therapies256 often discourages researchers from taking innovative and possibly therapeutic concepts forward, despite the superior proof-of-concept data. Established companies are reluctant in changing their manufacturing setup, whilst, at the same time, there are not enough investment opportunities for high risk / high return concepts. Clinicians / surgeons, considering that their reputation and their patients’ health or even life is at risk, are sceptical when it comes to bringing complex therapies to bedside. Patients are concerned about new therapies, especially when adequate information and data are not available. Funding opportunities for potential visionary / game-changing / disruptive technologies are limited. We can also not exclude the ever-increasing biomaterial complexity in laboratory setting that impedes industrial scalability / manufacturing; in fact, it is estimated that up to 90 % of the laboratory-based studies cannot be reproduced.257 It is imperative, in the years to come, researchers, clinicians / surgeons, patients, industrialists / investors, funding agencies and regulatory bodies to work together for the development of more biologically relevant, scalable, safe and regulatory-compatible multi-cargo / multi-compartment implantable devices. This would be the only way forward, the only way to make a real impact and truly advance human health.
Acknowledgements

This work has been supported by the: Health Research Board, Health Research Awards Programme (Grant agreement number: HRA_POR/2011/84); Science Foundation Ireland, Career Development Award (Grant agreement number: 15/CDA/3629); Science Foundation Ireland / European Regional Development Fund (Grant agreement number: 13/RC/2073); H2020, Marie Skłodowska-Curie Actions, Innovative Training Networks 2015 Tendon Therapy Train project (Grant agreement number: 676338). This work is also part of the Teagasc Walsh Fellowship (Grant agreement number: 2014045) and the ReValueProtein Research Project (Grant agreement number: 11/F/043) and is supported by the Department of Agriculture, Food and the Marine (DAFM) under the National Development Plan 2007-2013 funded by the Irish Government. The authors would also like to acknowledge Ella Maru Studio for designing all the figures of this manuscript.
References

ACS Nano 2012, 6, 81
A 2010, 107, 17933
Nanotechnology 2011, 22, 305303
76. T. M. Allen, P. R. Cullis, Adv Drug Deliv Rev 2013, 65, 36
77. R. Trivedi, U. B. Kompella, Nanomedicine (Lond) 2010, 5, 485
78. X. Sun, Z. Pang, H. Ye, B. Qiu, L. Guo, J. Li, J. Ren, Y. Qian, Q. Zhang, J. Chen, X.
Jiang, Biomaterials 2012, 33, 916
79. (a) A. Madni, M. Sarfraz, M. Rehman, M. Ahmad, N. Akhtar, S. Ahmad, N. Tahir, S.
Ijaz, R. Al-Kassas, R. Lobenberg, J Pharm Pharm Sci 2014, 17, 401; (b) U. Bulbake, S.
Doppalapudi, N. Kommineni, W. Khan, Pharmaceutics 2017, 9,
80. (a) F. Meng, Z. Zhong, J. Feijen, Biomacromolecules 2009, 10, 197; (b) J. S. Lee, J.
Feijen, J Control Release 2012, 161, 473; (c) W. Chen, F. Meng, R. Cheng, C. Deng, J. Feijen,
Z. Zhong, J Control Release 2014, 190, 398; (d) L. Zhao, N. Li, K. Wang, C. Shi, L. Zhang, Y.
Luan, Biomaterials 2014, 35, 1284
81. (a) Y. Cheng, Z. Xu, M. Ma, T. Xu, J Pharm Sci 2008, 97, 123; (b) S. Mignani, S. El
Kazzouli, M. Bousmina, J. P. Majoral, Adv Drug Deliv Rev 2013, 65, 1316; (c) P. Kesharwani,
K. Jain, N. K. Jain, Prog Polym Sci 2014, 39, 268; (d) H. Wang, Q. Huang, H. Chang, J. Xiao,
Y. Cheng, Biomater Sci 2016, 4, 375; (e) M. Sheikhpour, L. Barani, A. Kasaeian, J Control
Release 2017, 253, 97
82. (a) H. Cabral, K. Kataoka, J Control Release 2014, 190, 465; (b) H. Cho, T. C. Lai, K.
Tomoda, G. S. Kwon, AAPS PharmSciTech 2015, 16, 10; (c) R. Thipparaboina, R. B. Chavan,
D. Kumar, S. Modugula, N. R. Shastri, Colloids Surf B Biointerfaces 2015, 135, 291; (d) M.

94. S. Hua, S. Y. Wu, *Front Pharmacol* **2013**, *4*, 143

31

134. B. Klajnert, M. Bryszewska, Acta Biochim Pol 2001, 48, 199

143. N. Rapoport, *Colloids Surf B Biointerfaces* 1999, 16, 93
149. (a) L. Y. Qiu, Y. H. Bae, *Biomaterials* 2007, 28, 4132; (b) Y. Han, Z. He, A. Schulz, T. K. Bronich, R. Jordan, R. Luxenhofer, A. V. Kabanov, *Mol Pharm* 2012, 9, 2302; (c) H. H. Duong, L. Y. Yung, *Int J Pharm* 2013, 454, 486

Colloids Surf B Biointerfaces 2014, 122, 90; (c) P. Huang, Y. Zhang, W. Wang, J. Zhou, Y. Sun, J. Liu, D. Kong, J. Liu, A. Dong, J Control Release 2015, 220, 456

182. Z. Cui, L. D. Wright, R. Guzzo, J. W. Freeman, H. Drissi, L. S. Nair, J Bioact Compat Polym 2013, 28, 115

186. B. Song, C. Wu, J. Chang, Acta Biomater 2012, 8, 1901

188. L. Li, G. Zhou, Y. Wang, G. Yang, S. Ding, S. Zhou, Biomaterials 2015, 37, 218

193. (a) A. El-Ghannam, Expert Rev Med Devices 2005, 2, 87; (b) J. A. Henderson, X. He, E. Jabbari, Macromol Biosci 2008, 8, 499

194. (a) L. Yildirimer, N. T. K. Thanh, M. Loizidou, A. M. Seifalian, Nano Today 2011, 6, 585; (b) R. Paliwal, R. J. Babu, S. Palakurthi, AAPS PharmSciTech 2014, 15, 1527; (c) D. Liu, F. Yang, F. Xiong, N. Gu, Theranostics 2016, 6, 1306

218. M. Pakravan, M. C. Heuzey, A. Ajji, *Biomacromolecules* 2012, 13, 412

233. H. Zhang, X. Jia, F. Han, J. Zhao, Y. Zhao, Y. Fan, X. Yuan, *Biomaterials* **2013**, 34, 2202
245. Y. Cao, B. Wang, Y. Wang, D. Lou, RSC Adv 2014, 4, 30430
246. M. Mullner, A. Schallon, A. Walther, R. Freitag, A. H. Muller, Biomacromolecules 2010, 11, 390

43

Graphical abstract: Layer-by-Layer, self-assembly, composite and core-shell technologies for simultaneous delivery of growth factors, drugs, genes and/or cells.
Figure 1: LbL technologies for multi-cargo delivery. Immersive, spray, spin-coating, electromagnetic and microfluidics technologies to obtain multilayered films or 3D templates (left). Indicative example of LbL technology to fabricate a 2-layer film, each loaded with different agent, onto a plane substrate (middle top). Indicative example of LbL technology to fabricate a 3D template loaded with different agents (middle bottom).
Figure 2: Self-assembly technologies for multi-cargo delivery. Spontaneous self-assembly of amphiphilic molecules coupled with encapsulation/conjugation of hydrophilic and hydrophobic bioactive agents (middle). Self-assembly of lipid, polymeric or peptidic molecules can give rise to liposomes, micelles, polymersomes or dendrimers (outer and clockwise).
Figure 3: Composites technologies for multi-cargo delivery. Hydrogels (cargo-loaded or not) are extensively used as delivery vehicles for cargo-loaded electrospun fibers, particles and micelles (top). Porous scaffolds (e.g. sponges) and electrospun fibers are frequently used as delivery vehicles of cargo-loaded particles (bottom).
Figure 4: Core-shell technologies for multi-cargo delivery. Emulsion electrospinning (left), co-axial and tri-axial electrospinning (middle) and co-axial electrospraying are extensively used in regenerative medicine for the development of core-shell electrospun fibers and particles for the simultaneous delivery of multiple cargos.
Table 1: Indicative examples of latest LbL technologies for multiple cargo delivery that have been assessed in preclinical models

<table>
<thead>
<tr>
<th>Clinical target</th>
<th>Delivery technology</th>
<th>Outcome</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nucleus pulposus</td>
<td>Nanostructured 3D PLGA constructs loaded with DEXbFGF embedded heparin/poly(L-lysine) NPs as cell carriers (microspheres were developed in the end)</td>
<td>The simultaneous release of drug and GF promoted in vivo proliferation of rat MSCs and expression of disc-matrix proteins, whilst it decreased the expression of osteogenic differentiation marker and reduced inflammatory response</td>
<td>32b</td>
</tr>
<tr>
<td>Wound healing</td>
<td>Assembly of HA and CHI on the internal surfaces of porous PLGA microspheres layered with α-MSH, followed by bFGF loading assembled by exploiting electrostatic interactions</td>
<td>The system preserved the bioactivity of α-MSH and reduced inflammatory response in vivo, compared to the non-layered microspheres; no benefit was observed by the co-delivery of bFGF</td>
<td>258</td>
</tr>
<tr>
<td></td>
<td>Multilayer films of CHI and ALG containing EGF and TGF-β siRNA assembled by exploiting electrostatic interactions</td>
<td>The co-delivery of TGF-β siRNA and EGF resulted in greater re-epithelialization, accelerated wound healing and decreased scar formation in vivo, as compared to the single delivery</td>
<td>36c</td>
</tr>
<tr>
<td>Cartilage</td>
<td>Embedment of DHEA-PLGA negatively charged microspheres into DEX-PLGA positively charged microspheres followed by MSCs entrapment</td>
<td>The system sustained the simultaneous delivery of drugs and cells in vivo</td>
<td>49</td>
</tr>
<tr>
<td>Bone</td>
<td>Tetra-layered films assembled by exploiting electrostatic interactions between layers of POLY-2, PAA, rhBMP-2 or rhVEGF165 and again PAA</td>
<td>The controlled release of rhVEGF165 (placed on the top layer) and rhBMP-2 (placed on the bottom) enabled blood vessel formation and new bone formation</td>
<td>32a</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Anti-cancer</td>
<td>Multilayer micro-dispersing system constructed by co-immobilization of DOX-loaded CHI / CM-CHI nano-gels into QU-immobilized multilayer ALG beads</td>
<td>The co-delivery in vivo of an anticancer drug and QU (P-gp inhibitor) improved DOX bioavailability, oral absorption and targeted release in the small intestine</td>
<td>36b</td>
</tr>
<tr>
<td></td>
<td>DTX-encapsulated BSA-PEI-NPs assembled by exploiting electrostatic interactions between PEI, p44/42 MAPK siRNA and the antigen PSMA</td>
<td>The co-delivery of an anticancer drug and siRNA overcame MDR and selectively inhibited in vivo prostate cancer cells proliferation by conjugation with PSMA</td>
<td>32c</td>
</tr>
</tbody>
</table>

Abbreviations: ALG: alginate; α-MSH: α-melanocyte-stimulating hormone; bFGF: basic fibroblast growth factor; BSA: bovine serum albumin; CHI: chitosan; CM-CHI: carboxymethyl chitosan; DEX: dexamethasone; DHEA: dehydroepiandrosterone; DTX: docetaxel; EGF: epithelial growth factor; HA: hyaluronic acid; HEP: heparin; MSC: mesenchymal stem cells; P44/42 MAPK: P44/42 mitogen-activated protein kinase; PAA: polyacrylic acid; PEI: polyethyleneimine; PLGA: poly(L-lactic-co-glycolic) acid; POLY-2: Poly (β-aminoester) 2; PSMA: prostate specific membrane antigen; QU: quercin; rhBMP-2: recombinant human bone morphogenetic protein-2; rhVEGF165: recombinant human vascular endothelial growth factor 165; TGF-β: transforming growth factor β
Table2: Indicative examples of latest self-assembly technologies for multiple cargo delivery that have been assessed in preclinical models

<table>
<thead>
<tr>
<th>Technology</th>
<th>Clinical target</th>
<th>Delivery technology</th>
<th>Outcome</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liposomes</td>
<td>Anti-cancer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Encapsulation of QCT and RES into NPs using the thin film formation technique and followed by rehydration and ultra-sonication</td>
<td>The system co-delivered both cargos, increased cellular uptake and reduced edema and leukocyte infiltration in vivo</td>
<td>259</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Encapsulation of pEGFP-hTRAIL and PTX, into thin film ANG functionalized cationic NPs</td>
<td>The system co-delivered hTRAIL and PTX, resulting in increased uptake and gene expression in glioma mice models in vivo, increasing selective cytotoxicity to tumor cells and animal median survival time</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Encapsulation of DOX and P-gp inhibitor into reduction-sensitive PEG/R8 conjugated thin film NPs</td>
<td>The system inhibited tumor growth in vivo and reduced the systemic toxicity of DOX and the P-gp inhibitor</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Encapsulation of DOX and PTX into thin film DTT cross-linked multilamellar liposomal vesicle</td>
<td>The system maintained specific drug ratios in vivo in BALB/c mice inoculated with 4TI tumors cells, after 48 h and 24h of administration, respectively.</td>
<td>98</td>
</tr>
<tr>
<td>Polymersomes</td>
<td>Anti-cancer</td>
<td>Encapsulation of DOX and TET into LF conjugated methoxy PEG-PCL and α-carboxyl PEG-PCL block NPs</td>
<td>The system crossed the BBB and accumulated preferentially in vivo at the glioma site and promoted a higher tumor reduction than single formulations</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>PAMAM dendrimers</td>
<td>Anti-cancer</td>
<td>Encapsulation of DOX and MMP-9 shRNA into a functionalized pH responsive GO-PAMAM NPs</td>
<td>The system enabled pH dependent DOX release at weak acidic conditions and was less cytotoxic to normal tissues in vivo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-cancer</td>
<td>Encapsulation of DDP and siRNA into Selenium functionalized PAMAM NPs</td>
<td>The system showed reduced systemic cytotoxicity and selective toxicity in A549/DDPlung cancer cells in vitro and enhanced the anti-tumor effect in tumor-bearing nude mice in vivo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-cancer</td>
<td>Encapsulation of DOX and pORF-hTRAIL into T7 modified PEG-PAMAM NPs</td>
<td>The system promoted accumulation, apoptosis and tumor reduction in tumor cells in vivo more efficiently than unmodified or single cargo formulations</td>
<td></td>
</tr>
<tr>
<td>Micelles</td>
<td>Anti-cancer</td>
<td>Encapsulation of DOX and TPGS1000 into pH-responsive PEOz-PLA-DSPE-PEG-FA NPs obtained through ring-opening polymerization</td>
<td>The system promoted specific pH triggered release and accumulation in tumor tissues in vivo, when compared to other normal tissues</td>
<td></td>
</tr>
<tr>
<td>Micelles</td>
<td>Anti-cancer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encapsulation of cRGDyK and DOX into amphiphilic PEG-PLA copolymer NPs</td>
<td>The system provided an optimal antitumor effect in vivo, promoted lifespan increase, anti-neovascularure and anti-proliferation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encapsulation of DOX and PTX into Pluron P105 and F127 copolymer NPs</td>
<td>The system provided a stronger synergistic antitumor effect in vivo, when compared to single formulations of DOX and PTX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encapsulation of MMC and MTX into DSPE-PEG copolymer NPs</td>
<td>The system improved tumor accumulation, penetration and anticancer effect in vivo, when compared to single formulations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encapsulation of PTX, RAP and 17-AAG into PEG-PLA copolymer NPs</td>
<td>The system induced tumor regression in vivo after four weeks, as opposed to single formulations, and did not induce any changes in body weight</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encapsulation of PTX and siRNA into pH and reduction sensitive LDL-NSC-LA NPs</td>
<td>The system allowed cancer cell targeting, induced tumor inhibition in vivo and showed decreased systemic toxicity, when compared to single formulations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encapsulation of siRNA and PTX into triblock PEG-PCL-PAEP NPs</td>
<td>The system promoted a synergistic effect leading to increased tumor suppression in vivo in murine model, when compared to single formulations, without associated cytotoxicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micelles</td>
<td>Encapsulation</td>
<td>Description</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Anti-cancer</td>
<td>of siRNA and DOX into pH sensitive triblock PEG-PAsp(AED)-PDPA NPs</td>
<td>The system promoted increased apoptosis of human ovarian cancer cells and inhibited tumor growth in vivo</td>
<td>266</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of mcDNA and DOX into triblock bioreducible PEOz-PLA-PEI NPs</td>
<td>The system induced tumor volume reduction and decreased cancer cell viability in vivo</td>
<td>267</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of AXI and DOX into shell cross-linked NPs of HPMA</td>
<td>The system improved tumor accumulation, reduced the number of immature vessels and inhibited tumor growth, when compared to single formulations</td>
<td>268</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of CPT and TNF plasmids into star-shaped copolymer NPs of pH and redox-responsive bPEG-PAsp(DET)</td>
<td>The system enhanced gene transfection and cytotoxicity in 4T1 cells and in tumor models, when compared to single formulations</td>
<td>269</td>
<td></td>
</tr>
<tr>
<td>Vaccine</td>
<td>of OVA and CpG ODN adjuvants into NPs doped with thiol reactive groups</td>
<td>The system increased antigen cross-presentation, T-cell response and immunization after vaccination of mice, when compared to single formulations</td>
<td>270</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: 17-AAG: 17-allylamino-17-demethoxygeldana-mycin; ANG: angiopep-2; AXI: axitinib; BBB: blood brain barrier; CpG ODN: immunostimulatory CpG oligodeoxynucleotide; CPT: Camptothecin; cRGDyK: cyclic arginine-glycine-aspartic acid-tyrosine-lysine pentapeptide; DDP: cisplatin (cis-diaminedichloroplatinum-(II)); DSPE-PEG: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000];
DTT: dithiothreitol; DTX: docetaxel; FA: folate; GO: graphene oxide; hTRAIL: human tumor necrosis factor-related apoptosis-inducing ligand; HPMA: N-(2-hydroxypropyl) methacrylamide; LA: lipoic acid; LDL: low density lipoprotein; LF: lactoferrin; mcDNA: minicircle DNA; MMC: methotrexate; MTX: methotrexate; NP: nanoparticle; NSC: N-succinyl chitosan; OVA: ovalbumin; PAEP: poly(2-aminoethyl ethylene phosphate); PAsp(AED): poly(N-(2,2’-dithiobis(ethylamine)) aspartamide); PAsp(DET): poly(N-(2,2′-dithiobis(ethylamine)) aspartamide)-Diethylenetriamine; PAMAM: poly(amidoamine); PCL: poly-(caprolactone); PDPA: 2-(diisopropylamino)ethyl methacrylate; PEG: poly- (ethylene glycol); PEI: polyethyleneimine; PEOz: poly(2-ethyl-2-oxazoline); P-gp inhibitor: P-glycoprotein inhibitor; PLA: poly- (lactic acid); pORF-hTRAIL – therapeutic gene for human tumor necrosis factor-related apoptosis-inducing ligand; PTX: paclitaxel; QCT: quercetin; R8: octaarginine; RA: retinoic acid; RAP: rapamycin; RES: Resveratrol; shRNA: short hairpin RNA; siRNA: small interfering RNA; T7: transferrin receptor-specific peptide; TET: tetrandine; TNF: Tumor necrosis factor; TPGS: D-alpha-tocopheryl poly (ethylene glycol 1000) succinate
<table>
<thead>
<tr>
<th>Clinical target</th>
<th>Delivery technology</th>
<th>Outcome</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angiogenesis</td>
<td>DEX and VEGF-loaded PLGA microsphere / PVA hydrogel composites prepared by dispersing microspheres into the PVA solution</td>
<td>The co-delivery of the drug and the GF minimized inflammation, inhibited fibrosis and promoted neo-angiogenesis at the implant site</td>
<td>271</td>
</tr>
<tr>
<td></td>
<td>IPC fibers incorporated into PVA hydrogel loaded with VEGF and PEG-QK peptide</td>
<td>The in vivo implantation of PVA–IPC composite grafts had mechanical properties matching rabbit femoral artery and showed potential as vascular graft up to 28 days</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>Delivery platform for VEGF and TGF-β3 comprised of coacervate (PEAD polycation, HEP, and GFs) - coated nano-fibrous PLGA membrane</td>
<td>The co-delivery of VEGF and TGF-β3 reduced necrosis and enhanced blood perfusion at the implanted area in vivo</td>
<td>272</td>
</tr>
<tr>
<td>Bone</td>
<td>VEGF and BMP-2-loaded GEL microparticles confined within a PPF porous scaffold</td>
<td>The dual release of VEGF and BMP-2 showed the complete union of the bone defect in vivo and no visible effect on blood vessels formation</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>PLGA microspheres loaded with BMP-2 embedded in a PP scaffold surrounded by a GEL hydrogel loaded with VEGF</td>
<td>The combined angiogenic and osteogenic GFs release in vivo enhanced bone regeneration in the ectopic implantation site</td>
<td>273</td>
</tr>
<tr>
<td>Anti-cancer</td>
<td>A brushite- CHI system with VEGF-loaded ALG microsphere-encapsulated into PDGF-loaded CHI sponges</td>
<td>The controlled in vivo release of both GFs within a bone defect resulted in greater bone formation than the single GF delivery</td>
<td>166</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>IGF-1 and TGF -loaded GEL microcapsules encapsulated into a bi-layered OPF hydrogel fabricated by cross-linking procedure</td>
<td>The single delivery of IGF-1 resulted in greater cartilage repair when compared to a dual delivery of IGF-1 and TGF-β3, suggesting lack of synergy between the GFs</td>
<td>274</td>
<td></td>
</tr>
<tr>
<td>VEGF and BMP2 – loaded nHA particles combined with highly porous cross-linked COLL-based scaffold</td>
<td>The composite increased MSC-mediated osteogenesis in vitro and vascularization and bone repair by host cells in vivo</td>
<td>275</td>
<td></td>
</tr>
<tr>
<td>PTX – loaded PEG-PCL micelles mixed with DDP-loaded PEG-PCL-PEG hydrogel</td>
<td>The thermosensitive and injectable composite significantly inhibited lung tumor growth in vivo and angiogenesis in tumor tissue</td>
<td>181b</td>
<td></td>
</tr>
<tr>
<td>PTX-loaded PECT NPs embedded into DOX PECT hydrogel</td>
<td>An initial burst release of DOX improved the in vivo antitumor effect, which was further increased by the subsequent sustained release of PTX-incorporated nNPs</td>
<td>276</td>
<td></td>
</tr>
<tr>
<td>DOX and I(^{131})HA – loaded thermosensitive injectable PECT hydrogel / micelles composite</td>
<td>The composite showed in vitro antitumor effect and radiosensitization and improved the tumor growth inhibition efficiency in vivo with minimized drug-associated side effects</td>
<td>181a</td>
<td></td>
</tr>
<tr>
<td>Platform</td>
<td>PTX-loaded PCEC micelles mixed with FU - loaded thermosensitive PCEC hydrogel</td>
<td>The in vivo implantation of PTX-micelles–Fu-hydrogel inhibited growth and metastasis of peritoneal carcinomatosis</td>
<td>181c</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>PTX-loaded NPs and LAPA-loaded microparticles into thermosensitive PLU F127 hydrogel</td>
<td>The composite enabled short-term in vivo release of PTX and long-term release of LAPA for a synergistic effect against breast cancer</td>
<td>132e</td>
</tr>
<tr>
<td></td>
<td>DOX-loaded Au / BSA NPs assembled through electrostatic interactions on GEM-loaded mesoporous Si-NPs</td>
<td>The system efficiently delivered both drugs in vivo to cancer cells with a nearly total cell killing</td>
<td>277</td>
</tr>
<tr>
<td></td>
<td>TET/PTX-loaded PEG-b-PCL NPs encapsulated within a thermo-responsive GEL hydrogel</td>
<td>The composite inhibited the growth, migration and invasion of cancerous gastric cells more effectively than drugs-loaded NPs</td>
<td>278</td>
</tr>
<tr>
<td>Platform</td>
<td>PLGA/PCL electrospun fibers loaded with DPV, MVC and TFV encapsulated into pHEMA hydrogel</td>
<td>The hydrogel-tissue mimic established in vitro–ex vivo correlations with topical and transdermal drug delivery into vaginal mucosal tissue explants</td>
<td>279</td>
</tr>
<tr>
<td>Wound healing</td>
<td>PDGF and VEGF loaded-GEL NPs embedded into bFGF and EGF loaded-HA/COLL electrospun-fibers</td>
<td>The early stage in vivo delivery of EGF and bFGF accelerated epithelialization, whilst the later release of PDGF and VEGF allowed induction of blood vessels maturation</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: ALG: alginate; Au: gold; BMP-2: bone morphogenetic protein-2; BSA: bovine serum albumin; CHI: chitosan; COLL: collagen; DDP: cisplatin (cis-diamminedichloroplatinum-(II)); DEX: dexamethasone; DOX: doxorubicin; DPV: dapivirine; FU: fluorouracil; GEL: gelatin; GEM: gemcitabine; HEP: heparin; HGF: hepatocyte growth factor; I\(^{131}\): iodium\(^{131}\); IGF-1: insulin-like growth factor – 1; IPC: interfacial polyelectrolyte complexation; LAPA: lapatinib; MVC: maraviroc; nHA: nano hydroxyapatite; OPF: oligo (poly (ethylene glycol) fumarate); PCEC: poly-(3-caprolactone)–poly (ethylene glycol)–poly(3-caprolactone); PCL: poly-(caprolactone); PDGF: platelet derived growth factor; Pead: poly (ethylene arginanyl aspartate diglyceride); PECT: poly (ε-caprolactone-co-1,4,8-trioxa [4.6] spiro-9-undecanone)-poly(ethylene glycol)-poly (ε-caprolactone-co-1,4,8-trioxa [4.6] spiro-9-undecanone); PEG: poly- (ethylene glycol); PEG-QK: PEGylated-QK peptide; pHEMA: poly(2-hydroxyethyl methacrylate); PLGA: poly(L-lactic-co-glycolic) acid; PLU F127: pluronic; PP: polypropylene; PPF: poly (propylene fumarate); PTX: paclitaxel; PVA: polyvinyl alcohol; Si: Silica; TET: tetrandine; TFV: tenofovir; TGF: transforming growth factor; VEGF: vascular endothelial growth factor
Table 4: Indicative examples of latest core-shell technologies for multiple cargo delivery that have been assessed in preclinical models

<table>
<thead>
<tr>
<th>Clinical target</th>
<th>Delivery technology</th>
<th>Outcome</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wound healing</td>
<td>Nano-fibrous membrane with HA as core and Ag NPs-embedded PCL as shell fabricated by co-axial electrospinning</td>
<td>The controlled in vivo release of HA from the core mimicked the biological function of HA in synovial fluid of tendons, whilst the shell acted as a physical barrier with antimicrobial activity</td>
<td>167c</td>
</tr>
<tr>
<td></td>
<td>Nano-fibrous scaffold of HA/PCL as shell and EGF/BSA as core formed by emulsion electrospinning</td>
<td>The co-delivery of EGF and HA up-regulated collagen and TGF-b1 gene expression in vivo and stimulates epidermis regeneration in the early phases of wound healing</td>
<td>216</td>
</tr>
<tr>
<td>Angiogenesis</td>
<td>CHI hydrogel / PELCL electrospun membrane loaded with VEGF as inner layer and emulsion / PELCL electrospun membrane-loaded PDGF as the outer</td>
<td>The in vivo rapid release of VEGF ensured at first epithelization by vascular endothelial cells, followed by a sustained release of PDGF, which led to proliferation of vascular smooth muscle cells in the later time</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td>Electrospun-fibers with encapsulated pDNA/Ca Phos NPs encoding VEGF and bFGF</td>
<td>The localized and sustained release of pDNA facilitated the proliferation, gene transfection and ECM secretion of</td>
<td>167a</td>
</tr>
<tr>
<td>Bone</td>
<td>endothelial cells and smooth muscle cells and enhanced the in vivo angiogenesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co-axial electrospun fibers composed by a core of VEGFA/PDGF or VEGFC and a shell layer made of PU</td>
<td>The system provided sustained co-delivery of the GFs, stimulated the vascular system and reduced blood coagulation in a hemophilic mouse model, whilst a single GF delivery induced leaky and non-functional blood vessels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogel scaffold comprised of BMP-2-loaded COLL-based core and Co ions-loaded ALG-based shell</td>
<td>The rapid release of Co ions led to up-regulation of angiogenic genes, whilst the slower release of BMP2 led to higher expression of osteogenic genes, allowing in vivo enhanced bone formation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simvastatin-loaded-core and PDGF-loaded-shell PDLLA-PLGA microspheres</td>
<td>The fast-release of PDGF followed by a slower release of simvastatin accelerated in vivo osteogenesis, bone maturation, fibers re-alignment, and cemento-genesis of the periodontal apparatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-cancer</td>
<td>BMP-2-loaded BSA NPs encapsulated within DEX-loaded PCL/PEG co-electrospun fibers</td>
<td>An earlier controlled release of DEX promoted in vivo bone formation, whereas BMP-2 release was beneficial for long-term new bone formation</td>
<td></td>
</tr>
<tr>
<td>Nano-carrier platform for co-delivery of PTX (in the shell) and DOX (in the core) based on a water-in-oil-in-water core-shell PVA nano-capsules</td>
<td>The system allowed on-demand drug release in vitro and in vivo using a magnetic field trigger and addressed tumor cells thanks to the conjugation of a tumor-targeting peptide to the nano-capsules, achieving the complete suppression of the tumor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPs of DTX physically entrapped into PBS/PBDL copolyester (as core) and DOX covalently attached to the HPMA-based copolymer (as shell)</td>
<td>The system allowed high drug encapsulation, DOX pH-triggered drug release and in vivo reduction of tumor growth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrospun-PLGA microfibers encapsulating PTX and PEI/DNA NPs</td>
<td>Gene/drug dual delivery microfibers imposed tumor regression in vivo, as compared with single drug delivery microfibers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lf-tethered magnetic double emulsion nano-capsules assembled from PVA, PAA and IO NPs can accommodate simultaneously DOX and CUR, in the core and shell, respectively</td>
<td>The release patterns of the two drugs was regulated by manipulating the surface charges and drug-loading ratios and the nano-capsule was effectively delivered in vivo into RG2 glioma cells thanks to LF tag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platforms</td>
<td>A cell-containing ECM-protein/Ca-ALG core–shell hydrogel microfiber generated in a double-coaxial microfluidic device and encapsulating multiple types of cells</td>
<td>The meter-long fiber-like structures showed very similar tissue functionality. Fibers encapsulating primary pancreatic islet cells and transplanted in diabetic mice normalized blood glucose concentrations in vivo</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: Ag: silver; ALG: alginate; bFGF: basic fibroblast growth factor; BMP-2: bone morphogenetic protein 2; BSA: bovine serum albumin; Ca: calcium; CHI: chitosan; Co: cobalt; COLL: collagen; CUR: curcumin; DOX: doxorubicin; DTX: docetaxel; EGF: epithelial growth factor; GEL: gelatin; HA: hyaluronic acid; HPMA: N-(2-hydroxypropyl) methacrylamide; IO: iron oxide; Lf: lactoferrin; PAA: polyacrylic acid; PBS/PBDL: (poly(butylene succinate-co-butylene dilinoleate); PCL: poly-(caprolactone); PDLLA: poly(d,L)lactic acid; PDGF: platelet derived growth factor; PEI: polyethyleneimine; PELCL: poly (ethylene glycol)-b-poly (L-lactide-co-capro- lactone); PGA: *poly(glycolic acid)*; Phos: phosphate; PTX: paclitaxel; PU: poly(urethane); PVA: polyvinyl alcohol; VEGF: vascular endothelial growth factor
Table 5: Advantages and challenges of multi-cargo delivery technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Advantages</th>
<th>Challenges</th>
</tr>
</thead>
</table>
| **LbL technology** | - surface functionalization for active targeting
 - coatings performed at physiological conditions
 - automated production techniques available | - interlayer diffusion
 - stability and fate poorly understood
 - polyelectrolytes cytotoxicity
 - loading of the cargo limited by the molecular interactions |
| **Self-assembly technology** | - incorporation of multiple cargos with different solubility into distinct layers
 - controllable polydispersity and size distribution
 - surface functionalization for active targeting and reduced immunoreactivity
 - low cytotoxicity
 - scalability | - poor loading capabilities
 - dendrimers cytotoxicity |
| **Composite technology** | - superior physicochemical and biological properties than single material | - technically complex optimization of the mixtures
 - difficulty of characterization, toxicity assessment and scalability |
| Core-shell technology | - surface functionalization for active targeting on particles
- possibility to incorporate bioactive agents into a core made of fluids
- reproducibility | - multi-step surface functionalization for fibers
- use of emulsified agent in emulsion electrospinning
- slow production rate |
Authors bibliography

Eugenia Pugliese is currently a PhD candidate at National University of Ireland Galway in the Regenerative, Modular & Developmental Engineering Laboratory (REMODEL). She received her BSc and MSc in Industrial Biotechnology from University of Bari Aldo Moro (Italy) in 2013 and 2015, respectively. Her current research interests include the development of controlled release collagen-based scaffolds for regenerative medicine applications.

![Eugenia Pugliese](image)

João Q. Coentro is currently a PhD candidate at National University of Ireland Galway in the Regenerative, Modular & Developmental Engineering Laboratory (REMODEL). He received his BSc and MSc in Bioengineering from University of Porto (Portugal) in 2012 and 2014, respectively. His current research interests include the development of mono-domain multi-compartment delivery vehicles for controlled delivery of bioactive agents.

![João Q. Coentro](image)

Dimitrios I. Zeugolis is the director of the Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and investigator at the Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM) at the National University of Ireland Galway (NUI Galway),
Ireland. Dr Zeugolis has over 15 years of experience in the field of biomaterials and tissue engineering, in both academic and industry setting.