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Input	and	Output	Data	Analysis	for	System	Dynamics	Modeling	
using	the	tidyverse	Libraries	of	R	

	
	

Jim	Duggan,	
School	of	Computer	Science,	

National	University	of	Ireland	Galway.	

Introduction 
	
From	 a	 number	 of	 perspectives,	 system	 dynamics	 is	 a	 data	 intensive	 activity.	
First,	each	modelling	challenge	addresses	behaviour	over	time,	where	historical	
time	 series	 data	 informs	 the	 model	 building	 process,	 and	 techniques	 such	 as	
calibration	and	optimisation	(Rahmandad,	Oliva,	&	Osgood,	2015)	are	deployed	
to	estimate	parameters,	and	enhance	user	confidence	in	model	outputs.	Second,	
the	 simulation	 of	 higher	 order	 models	 (Forrester,	 1987)	 typically	 yield	 many	
time-based	observations	across	a	significant	number	of	variables.	These	results	
must	 be	 interpreted	 and	 analysed	 as	 part	 of	 the	 model	 building	 and	 policy	
analysis	 process.	 Third,	 simulation	 methods	 such	 as	 sensitivity	 analysis	
(Hekimoğlu	&	Barlas,	2016;	Jadun,	Immerstedt,	Bush,	Inman,	&	Peterson,	2017;	
Walrave,	 2016)	 generate	 large	 data	 sets	 that	 need	 to	 be	 processed	 for	 further	
analysis,	 for	 example,	 techniques	 such	 as	 statistical	 screening	 (Ford	 &	 Flynn,	
2005;	Taylor,	David	N.	Ford,	&	Ford,	2010;	Yasaman	&	Ford,	2016).	Therefore,	in	
the	context	of	these	data	intensive	modelling	processes,	there	are	opportunities	
for	 system	 dynamics	 modellers	 to	 leverage	 complementary	 data	 exploration	
technologies	such	as	R	(Duggan,	2016b).	
	
The	 R	 programming	 language	 provides	 a	 flexible	 framework	 for	 supporting	
system	 dynamics	 modeling.	 In	 particular,	 R	 now	 contains	 a	 suite	 of	 libraries,	
collectively	known	as	the	tidyverse1,	that	are	specifically	designed	to	process	
rectangular	 data,	 which	 is	 highly	 structured	 data	 with	 rows	 as	 individual	
observations,	and	columns	containing	variables.	In	a	system	dynamics	context,	a	
row	 represents	 the	 simulation	 output	 at	 a	 unique	 point	 in	 time,	 and	 columns	
contain	 model	 variables	 (i.e.	 stocks,	 flows	 and	 auxiliaries).	 	 Given	 this	
perspective,	the	output	from	a	system	dynamics	model	with	n	time	steps	and	m	
variables	can	be	viewed	as	a	single	rectangular	data	set	with	dimensions	(n	x	m).	
Many	of	 the	tidyverse	 libraries	 provide	 quick	 and	 efficient	ways	 to	 process	
rectangular	data,	 including:	 importing	data	 from	external	 sources	 (e.g.	 comma-
separated	 files),	 summarising	 and	 aggregating	 observations	 (frequency	 counts,	
summary	 functions),	 and	 visualising	 large	 data	 sets.	 	 Before	 describing	 these	
libraries,	an	overview	of	R	is	provided.	
	
	

																																																								
1	https://www.tidyverse.org		
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Overview of R 
	
R	 is	 a	 dialect	 of	 the	 S	 computer	 language,	 which	 was	 developed	 at	 Bell	
Laboratories.	In	1998	its	innovative	design	was	acknowledged	by	the	Association	
of	Computing	Machinery	Software	(ACM)	with	a	citation	that	R	“will	forever	alter	
the	way	people	 analyse,	 visualize,	 and	manipulate	 data”.	 R’s	 inventor,	Dr.	 John	
Chambers,	proposed	that	“our	mission,	as	users	and	creators	of	software	for	data	
analysis,	 is	 to	enable	 the	best	and	most	 thorough	exploration	of	data	possible.”	
This	means	that	users	of	the	software	must	be	able	to	ask	meaningful	questions	
about	their	applications,	quickly	and	flexibly	(Chambers,	2008).	The	ubiquity	of	
R	 as	 an	 open-source	 data	 analysis	 tool	 is	 confirmed	 through	 the	 growth	 of	
available	 R	 packages	 that	 reside	 on	 the	 Comprehensive	 R	 Archive	 Network	 -	
CRAN2.	R	can	be	used	with	a	minimum	amount	of	programming	knowledge,	and	
the	following	ideas	(Chambers,	2008)	are	helpful	to	understand	computations	in	
R	(Wickham,	2014):	
	

• Everything	that	exists	is	an	object.	Objects	are	central	to	storing	data	in	R,	
and	can	represent	different	data	structures.	Examples	of	objects	 include	
vectors	(data	of	the	same	type),	lists	(data	of	mixed-types),	matrices,	data	
frames,	 and,	 more	 recently,	 tibbles.	 The	 tibble	 is	 used	 throughout	 this	
paper,	 and	 is	 important	 for	 analysing	 output	 from	 system	 dynamics	
models.	
	

• Everything	 that	 happens	 is	 a	 function	 call.	 Transforming	 data	 and	
generating	 results	 are	 achieved	 using	 R	 functions,	 from	 base	
mathematical	functions	such	as	exp(),	sin()	and	abs(),	to	the	range	
of	functions	provided	by	the	tidyverse libraries.		

	
An	implementation	of	a	simple	dynamic	model	in	R	is	now	shown3.	This	models	
of	 growth	 for	 a	 population	 P,	 where	 the	 growth	 model	 is	 defined	 by	 the	
derivative	shown	in	equation	(1),	and	g	is	the	fractional	growth	rate.	
	

𝑑𝑃
𝑑𝑡 = 𝑔	𝑃	 (1)	

	
The	analytical	solution	to	(1)	can	be	derived	using	the	rules	of	 integration,	and	
the	solution	is	shown	in	equation	(2),	where	P0	is	the	initial	population.	
	

𝑃' = 	𝑃(	𝑒*' 	 	(2)	
	
	
Equation	 (2)	 is	 now	 implemented	 in	 R,	 given	 an	 initial	 population	 value,	 the	
growth	rate,	and	the	time	horizon	for	the	model	(see	appendix	two	for	details	on	
how	to	install	R	and	RStudio).	First,	a	vector	object	to	represent	time	is	created	
(t)	which	contains	a	sequence	of	numbers	starting	at	0	and	ending	at	10.	 	Note	
that	the	symbol	<- is	the	assignment	operator	in	R.	
																																																								
2	https://cran.r-project.org		
3	All	code	examples	in	this	paper	are	accessible	at	https://github.com/JimDuggan/SDMR		
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> t <- seq(from = 0,to = 10) 
>  
> t 
 [1]  0  1  2  3  4  5  6  7  8  9 10 
 
Elements	of	a	vector	can	be	 individual	accessed	and	manipulated.	For	example,	
consider	the	following	commands	to	access	the	vector	values.	
	
> # access the first element of t 
> t[1] 
[1] 0 
> # access the first three elements of t 
> t[1:3] 
[1] 0 1 2 
	
Vectorization	is	a	process	whereby	the	same	operation	(or	function)	is	applied	to	
each	vector	element,	and	the	output	is	a	new	vector	of	the	same	size,	containing	
the	results.	This	is	a	powerful	feature	of	R,	which	allows	one	single	function	call	
to	 be	 applied	 to	 all	 individual	 elements	 of	 a	 vector.	 For	 example,	 we	 could	
multiply	the	vector	t	by	a	constant	and	obtain	the	following	result.		
	
> t * 10 
 [1]   0  10  20  30  40  50  60  70  80  90 100 
 
Continuing	 with	 the	 population	 growth	 model,	 two	 additional	 variables	 are	
created,	g	which	represents	an	arbitrary	fractional	growth	rate,	and	init_pop	
that	contains	the	initial	population	value.	 
 
> g <- 0.02 
> g 
[1] 0.02 
 
> init_pop <- 1000 
 
> init_pop 
[1] 1000 
 
All	 the	 variables	 are	 in	 place	 to	 model	 population	 growth	 through	 the	
implementation	 of	 equation	 (2).	 This	 multiplies	 the	 initial	 population	 by	 the	
calculation	of	the	exponential	 function	exp(g*t),	and	stores	the	result	 in	the	
new	 variable	 pop1.	 	 The	 operation	 once	 again	 demonstrates	 vectorization,	
where	the	resulting	output	length	(11	elements)	is	the	same	as	the	input	length	
of	 the	 input	 time	 vector,	 and	 therefore	 the	 function	 calculation	 is	made	 using	
every	element	of	the	input	vector	t.	 
 
 
> pop1 <- init_pop * exp(g*t) 
>  
> pop1 
 [1] 1000.000 1020.201 1040.811 1061.837 1083.287 1105.171 1127.497 
 [8] 1150.274 1173.511 1197.217  
 
 
Given	 that	 in	 R	 everything	 that	 happens	 is	 a	 function	 call,	 system	 dynamics	
modellers	 can	 also	define	 their	 own	purpose-built	 functions	using	 the	 function	
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keyword.	A	function	usually	has	a	name,	a	set	of	parameters	(inputs)	and	returns	
a	result.	The	last	evaluated	expression	is	automatically	returned	from	a	function.	
The	code	from	the	previous	example	is	encapsulated	in	a	function,	named	f1.	It	
takes	three	parameters:	the	initial	population,	a	time	vector	and	the	growth	rate.	
Simple	functions	can	be	defined	like	this	in	one	line	of	R	code.	
 
> f1 <- function(init, t, g) {init * exp(g*t)} 
 
	
The	function	is	then	called,	and	the	result	copied	to	the	vector	pop2.		
 
 
> pop2 <- f1(1000, seq(from = 0,to = 10),0.02) 
 
 
Notice	that	the	values	in	pop2	are	the	same	as	those	in	pop1,	the	only	difference	
in	calculation	is	that	a	function	was	used	to	generate	results	for	pop2.	
  
> pop2 
 [1] 1000.000 1020.201 1040.811 1061.837 1083.287 1105.171 1127.497 
 [8] 1150.274 1173.511 1197.217  
	
As	this	paper	will	now	show,	using	R	with	system	dynamics	does	not	require	a	
user	 to	write	 their	own	purpose-built	 functions,	although	 that	option	 is	always	
available,	and	recommended	as	a	way	of	maximising	the	benefit	of	using	R.	
	
Furthermore,	 recent	developments	 in	R	 to	 support	data	 science	have	provided	
an	important	set	of	pre-built	functions,	data	and	documentation	that	can	be	used	
to	 process	 data.	 The	 specific	 tidyverse	 libraries	 used	 in	 this	 paper,	 and	
relevant	to	system	dynamics	modellers,	are	shown	in	table	1.	
	

Table	1:	Summary	of	useful	tidyverse	libraries	for	system	dynamics		
R	Library4	 Purpose	
readr Provides	 functions	that	support	 importing	rectangular	data	

into	R.	
tibble A	data	structure		that	supports	storing	rectangular	data	in	R.	
tidyr	 Provides	 functions	 to	 create	 tidy	 data	 structures	 that	

facilitate	ease	of	processing	and	visualization	
dplyr	 Provides	functions	to	process	data,	and	create	summaries	
ggplot2	 Provides	 functions	 for	 data	 visualisation,	 including	 time	

series	and	scatter-plots.	
	
	
The	 first	 of	 two	 examples	 showing	 how	 R	 can	 support	 the	 system	 dynamics	
modelling	process	is	now	presented,	and	focuses	on	importing	and	manipulating	
rectangular	time-series	data.	
	
	
	

																																																								
4	Libraries	in	R	can	be	installed	using	the	function	install.packages(<package	name>)	
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Importing,	processing	and	visualising	data 
	
This	 example	 focuses	 on	 a	 common	 modelling	 task,	 whereby	 exploratory	
analysis	is	performed	on	a	data	set,	as	part	of	the	model	building	process.	Here,	
the	 data	 explored	 is	 based	 on	 United	 Kingdom	 incidence	 data	 from	 the	 1957	
influenza	outbreak	(Vynnycky	&	Edmunds,	2008),	which	shows	(see	table	2)	the	
number	 of	 reported	 cases	 per	 week,	 and	 by	 different	 age	 cohorts.	 We	 will	
demonstrate	how	to	create	a	script	to	import	this	data,	and	perform	a	number	of	
useful	data	manipulation	operations.	
	
	

Table	2:	Time	Series	Influenza	Data	from	the	1957	Pandemic	(UK	Data)	
Week Young Child Adult Elderly 

1 0 0 1 1 
2 0 2 6 1 
3 0 2 4 2 
4 23 73 63 11 
5 63 208 173 41 
6 73 207 171 27 
7 66 150 143 7 
8 26 40 87 29 
9 17 18 33 12 
10 3 4 13 6 
11 2 6 16 5 
12 1 6 11 3 
13 0 1 6 5 
14 0 2 2 2 
15 0 1 3 0 
16 0 1 4 6 
17 0 1 3 0 
18 2 1 7 1 
19 1 1 6 2 

	
The	 first	 step	 is	 to	 load	 the	 relevant	 libraries	 that	 are	 needed	 for	 the	 data	
analysis	task,	and	these	are	the	five	libraries	referenced	earlier	in	table	1.	
 
library(readr) 
library(tibble) 
library(tidyr) 
library(dplyr) 
library(ggplot2) 
 
Next,	 the	 function	read_csv()	 (from	the	 library	readr)	 is	used	 to	read	 in	 the	
rectangular	 data	 from	 the	 comma-separated	 file,	 and	 copy	 this	 data	 into	 the	
tibble	data	structure.		
 
> inc <- read_csv("papers/SD tidyverse/data/Incidence.csv") 
 
Parsed with column specification: 
cols( 
  Week = col_integer(), 
  Young = col_integer(), 
  Child = col_integer(), 
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  Adult = col_integer(), 
  Elderly = col_integer() 
) 
 
The	new	tibble	maps	onto	the	source	file	structure,	with	five	columns,	where	R	
also	selects	the	appropriate	data	type	for	each	column.	Given	that	there	may	be	
many	rows	 in	a	dataset,	 the	 function	slice()	 –	 contained	 in	dplyr	 –	 can	be	
used	to	view	a	subset	of	the	data.	Slice	takes	two	parameters:	(1)	the	name	of	the	
tibble	variable,	and	(2)	the	rows	to	be	viewed.	Below,	we	can	view	the	 first	six	
rows	of	the	tibble,	and	these	match	the	data	previously	shown	in	table	2.		
	
 
> slice(inc,1:6) 
# A tibble: 6 x 5 
   Week Young Child Adult Elderly 
  <int> <int> <int> <int>   <int> 
1     1     0     0     1       1 
2     2     0     2     6       1 
3     3     0     2     4       2 
4     4    23    73    63      11 
5     5    63   208   173      41 
6     6    73   207   171      27 
 
While	 this	 data	 represents	 what	 is	 contained	 in	 the	 file,	 it	 is	 not	 in	 a	 good		
structure	 to	 use	 with	 the	 tidyverse.	 This	 is	 because	 for	 tidyverse 
operations	in	R,	it	is	important	to	have	data	in	tidy	format.	There	are	three	rules	
that	must	be	followed	in	order	to	make	a	tidy	dataset	(Wickham	&	Grolemund,	
2016):	 (1)	each	variable	must	have	 its	own	column;	(2)	each	observation	must	
have	its	own	row;	and,	(3)	each	value	must	have	its	own	cell.	In	this	case,	four	of	
the	columns	shown	in	table	2	(Young,	Child,	Adult	and	Elderly)	are	not	variables	
in	 their	 own	 right,	 rather	 they	 represent	 data	 belonging	 to	 a	 more	 general	
variable	(e.g.	cohort).	To	facilitate	ease	of	processing,	the	data	shown	in	table	2	
needs	to	be	transformed	into	what	is	represented	in	table	3.	
	

Table	3:	Time	series	influenza	data	in	tidy	data	format	
Week	 Cohort	 Incidence	
1	 Young	 0	
1	 Child	 0	
1	 Adult	 1	
1	 Elderly	 1	
2	 Young	 0	
2	 Child	 2	
2	 Adult	 6	
2	 Elderly	 1	

	
In	table	3	every	row	is	an	observation,	and	every	column	a	variable.	Therefore,	for	
each	 week	 we	 have	 4	 observations,	 one	 for	 each	 cohort.	 The	 library tidyr	
contains	a	function	called	gather()	which	transforms	untidy	data,	such	as	that	
shown	in	table	2,	into	its	tidy	data	equivalent.	The	gather()	function	takes	the	
following	parameters:	
	

• The	tibble	containing	the	data	to	be	processed.	
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• The	 name	 for	 the	 new	 variable	 that	 will	 be	 created.	 In	 this	 case,	 the	
variable	is	called	Cohort.	

• The	name	for	the	column	containing	the	values.	Here,	this	column	will	be	
named	Incidence.	

• Finally,	the	range	of	columns	that	needed	to	be	“tidied”	is	provided,	and	in	
this	case,	it	is	columns	2-4,	which	can	be	conveniently	referenced	by	their	
names,	separated	by	a	colon.	

 
The	command	to	create	the	new	tibble	is	given	by:	
 
> t_inc <- gather(inc, Cohort, Incidence, Young:Elderly) 
 
When	 this	new	 tibble	variable	 is	 examined	 in	R,	 it	has	76	 rows	 (19	x	4)	and	3	
columns,	 and	 the	data	has	been	narrowed	by	 reducing	 the	number	of	 columns	
and	increasing	the	number	of	rows.	
 
> t_inc 
# A tibble: 76 x 3 
    Week Cohort Incidence 
   <int>  <chr>     <int> 
 1     1  Young         0 
 2     2  Young         0 
 3     3  Young         0 
 4     4  Young        23 
 5     5  Young        63 
 6     6  Young        73 
 7     7  Young        66 
 8     8  Young        26 
 9     9  Young        17 
10    10  Young         3 
# ... with 66 more rows 
 
The	 library	 dplyr	 (Wickham	 &	 Grolemund,	 2016)	 provides	 five	 verbs	
(functions)	to	process	tidy	data,	summarised	in	table	4.	
	

Table	4:	dplyr	functions	for	processing	data	in	tibbles	
R	Library	 Purpose	
filter Pick	observations	by	their	values	
arrange	 Reorder	the	rows	
select	 Pick	variables	by	their	names	
mutate	 Create	new	variables	with	functions	of	existing	variables	
summarise	 Collapse	many	values	down	to	a	single	summary	
 
 
All	five	functions	work	similarly,	where:	
	

• The	first	argument	is	a	tibble.	
• The	subsequent	arguments	decide	what	to	do	with	the	tibble.	
• The	result	is	a	tibble.	

	
Based	 on	 the	 two	 tibbles	 (t_inc	 and	 inc) examples	 of	 how	 to	 use	 these	
functions	is	now	presented.	The	filter()	function	allows	the	user	to	specify	a	
filtering	condition	on	a	 tibble	and	 therefore	 the	result	 is	a	new	tibble	whereby	
the	rows	are	subsetted.	 	For	example,	 to	create	a	new	tibble	 that	only	contains	
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results	 from	 the	 younger	 cohort,	 the	 following	 call	 can	 be	 made,	 using	 the	
equality	operator	==.	
 
> filter(t_inc,Cohort=="Young") 
# A tibble: 19 x 3 
    Week Cohort Incidence 
   <int>  <chr>     <int> 
 1     1  Young         0 
 2     2  Young         0 
 3     3  Young         0 
 4     4  Young        23 
 5     5  Young        63 
 6     6  Young        73 
 
More	complex	conditions	can	be	modelled,	for	example,	to	extract	the	first	five	
weeks	data	for	the	young	cohort,	the	“and”	operator	(&)	can	be	used	as	part	of	
the	condition.	
	
> filter(t_inc,Cohort=="Young" & Week <=5) 
# A tibble: 5 x 3 
   Week Cohort Incidence 
  <int>  <chr>     <int> 
1     1  Young         0 
2     2  Young         0 
3     3  Young         0 
4     4  Young        23 
5     5  Young        63 
 
The	second	dplyr	 function	 is	arrange(),	which	sorts	 the	data	 in	ascending	
order.	The	function	desc()	can	also	be	used	to	re-arrange	in	descending	order.		
 
> f <- filter(t_inc,Cohort=="Young" & Week <=5) 
>  
> arrange(f,Incidence) 
# A tibble: 5 x 3 
   Week Cohort Incidence 
  <int>  <chr>     <int> 
1     1  Young         0 
2     2  Young         0 
3     3  Young         0 
4     4  Young        23 
5     5  Young        63 
 
 
> arrange(f,desc(Incidence)) 
# A tibble: 5 x 3 
   Week Cohort Incidence 
  <int>  <chr>     <int> 
1     5  Young        63 
2     4  Young        23 
3     1  Young         0 
4     2  Young         0 
5     3  Young         0 
 
The	 function	 select()	 is	 useful	 in	 situations	 where	 the	 data	 set	 has	 many	
variables	and	the	modeller	needs	to	focus	on	a	reduced	subset.	In	contrast	to	the	
filter()	function	which	reduces	the	number	of	rows,	the	select()	function	
reduces	the	number	of	columns.	Returning	to	the	tibble	inc,	the	columns	for	the	
young	cohort	could	be	extracted	as	follows:	
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> s_data <- select(inc,Week:Young) 
>  
> slice(s_data,1:6) 
# A tibble: 6 x 2 
   Week Young 
  <int> <int> 
1     1     0 
2     2     0 
3     3     0 
4     4    23 
5     5    63 
6     6    73 
 
 
The	function	mutate()	facilitates	the	creation	of	new	tibble	variables	based	on	
the	 values	 of	 tibble	 variables.	 For	 example,	 if	 the	 total	 number	 of	 infected	 per	
week	needed	 to	be	 calculated	 from	 the	original	data	 set	 (by	 summing	 the	 four	
incidence	columns),	the	mutate()	function	can	be	used	to	add	this	new	column	
to	the	tibble	(the	first	10	rows	are	shown	below).	
 
> tot_inc <- mutate(inc,Total=Young+Child+Adult+Elderly) 
 
> slice(tot_inc,1:10) 
# A tibble: 10 x 6 
    Week Young Child Adult Elderly Total 
   <int> <int> <int> <int>   <int> <int> 
 1     1     0     0     1       1     2 
 2     2     0     2     6       1     9 
 3     3     0     2     4       2     8 
 4     4    23    73    63      11   170 
 5     5    63   208   173      41   485 
 6     6    73   207   171      27   478 
 7     7    66   150   143       7   366 
 8     8    26    40    87      29   182 
 9     9    17    18    33      12    80 
10    10     3     4    13       6    26 
 
 
Finally,	the	function	summarise()	provides	a	convenient	way	to	collapse	many	
row	values	down	to	a	single	summary.	 	There	are	two	additional	functions	that	
can	be	used	with	summarise	to	enhance	its	operation:	
	

• The	function	group_by()		which	takes	an	existing	tibble	and	converts	it	
into	 a	 grouped	 tibble	 so	 that	 subsequent	 summary	 operations	 can	 be	
performed	by	group.	
	

• The	pipe	operator	(%>%),	which	is	a	powerful	tool	for	clearly	expressing	
a	 sequence	 of	 operations	 (Wickham	 &	 Grolemund,	 2016).	 The	 output	
from	one	operation	 can	be	 sent	directly	 into	 the	 input	 for	a	 subsequent	
operation,	and	therefore	it	eliminates	the	need	for	temporary	variables.	

	
As	 an	 example,	 consider	 the	 tidy	 data	 in	 the	 tibble	 t_inc.	 The	 following	
command	 will	 create	 a	 new	 tibble	 that	 contains	 the	 sum	 of	 cohort	 incidence	
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values	 from	 each	 week.	 In	 effect,	 this	 collapses	 4	 weekly	 row	 observations	
(Young,	Child,	Adult	and	Eldery)	into	one	single	aggregated	value.	
 
> wk_tot <- t_inc %>% group_by(Week) %>% 
        summarise(Incidence=sum(Incidence)) 
 
The	sequence	of	steps	in	this	command	are:	
	

• The	 tibble	 t_inc	 is	 the	 input	 data	 set.	 This	 is	 then	 “piped”	 into	 the	
function	group_by().	

• The	function	group_by()	groups	the	data	by	the	column	Week,	and	this	
resulting	tibble	is	“piped”	into	the	function	summarise().	

• The	 function	summarise()	 creates	 an	 output	 tibble	 that	 contains	 two	
columns,	and	aggregates	observations	 into	summarised	values.	The	 first	
is	Week,	the	second	is	Incidence,	which	contains	the	sum	of	the	incidence	
values	for	each	week,	where	the	values	from	four	rows	are	summed	into	
one	row.		

 
The	resulting	aggregate	tibble	(first	six	rows	only)	is	shown	below.	
  
> slice(wk_tot,1:6) 
# A tibble: 6 x 2 
   Week Incidence 
  <int>     <int> 
1     1         2 
2     2         9 
3     3         8 
4     4       170 
5     5       485 
6     6       478 
 
Additional	 analysis	 can	 also	 be	 performed	 using	 the	 summarise	 function.	 As	 a	
reminder,	 the	 variable	 t_inc contains	 (in	 tidy	 data	 format	 –	 with	 just	 one	
observation	per	row)	all	of	the	weekly	incidence	values	for	each	cohort.		
	
> t_inc 
# A tibble: 76 x 3 
    Week Cohort Incidence 
   <int>  <chr>     <int> 
 1     1  Young         0 
 2     2  Young         0 
 3     3  Young         0 
 4     4  Young        23 
 5     5  Young        63 
 6     6  Young        73 
 7     7  Young        66 
 8     8  Young        26 
 9     9  Young        17 
10    10  Young         3 
# ... with 66 more rows 
	
Because	 the	data	 is	 in	 this	 format,	 further	analysis	can	be	performed	using	 the	
summarise()	 function,	 where	 the	 data	 is	 grouped	 by	 each	 cohort	 type.	 For	
example,	 for	 each	 group	 we	 can	 calculate	 the:	 total	 number	 of	 infected,	 peak	
value,	peak	week,	average,	standard	deviation,	minimum	and	maximum	values.	
Note	 that	 the	which()	 function	 in	 R	 provides	 the	 row	 index	 of	 a	 value,	 and	
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therefore	can	be	used	to	extract	other	variables	that	are	contained	 in	the	same	
row	 of	 data.	 In	 this	 case,	 once	 we	 know	 the	 row	 number	 for	 the	 maximum	
incidence	value,	the	week	number	can	then	be	identified.	The	functions	mean()	
and	sd()	are	R	functions	to	calculate	the	mean	and	standard	deviation.	
	
t_coh <- t_inc %>%  
           group_by(Cohort) %>%  
           summarise(TotalInfected=sum(Incidence), 
                     PeakValue=max(Incidence), 
                     PeakWeek=Week[which(Incidence==max(Incidence))], 
                     AvrValue=mean(Incidence), 
                     SD=sd(Incidence)) 
The	 output	 is	 shown	 below.	 This	 demonstrates	 the	 power	 of	 dplyr,	 in	 that	
useful	 information	 can	be	 easily	 aggregated,	 and	 so	provide	 insight	 to	 support	
the	modeling	process.	
	
> t_coh 
# A tibble: 4 x 6 
  Cohort  TotalInfected PeakValue PeakWeek AvrValue    SD 
  <chr>           <int>     <dbl>    <int>    <dbl> <dbl> 
1 Adult             752      173.        5    39.6   59.3 
2 Child             724      208.        5    38.1   70.1 
3 Elderly           161       41.        5     8.47  11.4 
4 Young             277       73.        6    14.6   24.9 
	
In	 addition	 to	 data	 processing,	 visualization	 is	 an	 important	 activity	 for	 data	
exploration.	Once	data	is	in	a	tidy	format,	the	R	library	ggplot2 can	be	used	to	
visualize	data	 (Wickham,	2016).	This	 is	 essentially	 a	mini-language	 specifically	
tailored	 for	 producing	 graphics,	 and	 it	 does	 so	 in	 an	 intuitive	 and	 layered	
manner,	where	additional	transformations	can	be	added	to	a	chart	by	using	the	
addition	 (+)	 operator.	 For	 example,	 consider	 the	 data	 stored	 in	 the	 variable	
tot_inc	which	stores	an	additional	column	(Total)	that	contains	a	summary	of	
weekly	values.	To	display	this	on	a	chart	(with	time	on	the	x-axis),	the	following	
command	is	used.	
	
ggplot(data=tot_inc,mapping = aes(x=Week,y=Total)) +  
      geom_line() + geom_point() 
	
The	 first	 call	 is	 to	 ggplot(), and	 the	 data	 source	 is	 identified	 (the	 tibble	
tot_inc),	 and	 the	 mapping	 between	 the	 data	 values	 for	 the	 x	 and	 y	 axis	 are	
specified	 in	 a	 called	 to	 the	 function	aes()	 –	which	 is	 an	 abbreviation	 for	 the	
word	 aesthetic.	 Once	 the	 data	 and	 the	 mappings	 are	 defined,	 subsequent	
function	calls	can	be	made	to	(1)	draw	a	line	and	(2)	show	each	data	point	on	the	
line.	The	overall	graph	generated	by	this	code	is	shown	in	figure	1.	
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Figure	1:	View	of	the	total	incidence	values		

	
	
	
The	 ggplot2	 library	 offers	 additional	 features	 for	 generating	 user-friendly	
visualisations.	 For	 example,	 the	 function	aes()	 accepts	 additional	 parameters	
which	can	be	used	to	distinguish	categorical	data	(e.g.	cohorts)	in	the	plot.	In	the	
example	below	(shown	in	 figure	2),,	 the	parameter	colour	 is	set	 to	 the	variable	
Cohort,	 and	 the	 ggplot2 system	 will	 automatically	 generate	 four	 separate	
subplots,	colour	these	differently,	and	provide	a	supporting	legend.		
 
ggplot(t_inc,aes(x=Week,y=Incidence,color=Cohort)) +  
       geom_line() + geom_point() 
 
 
There	are	 a	wide	 range	of	 visualization	options	 for	 further	producing	graphics	
using	ggplot2,	and	the	interested	reader	is	referred	to	(Wickham,	2016). 
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Figure	2:	View	of	the	total	incidence	values		
	
In	summary,	this	section	has	shown	how	to	use	the	tidyverse	libraries	to:	
	

• Read	 rectangular	 data	 into	 an	 R	 program,	 and	 explore	 data	 using	 five	
functions		in	dplyr.	

• Convert	wide	data	to	narrow	format,	so	that	every	row	is	an	observation,	
and	each	column	is	a	variable.	

• Use	 the	 pipe	 operator	 along	 with	 group_by()	 and	 summarise()	 to	
generate	aggregate	summaries	of	data.	

• Visualise	tibble	data	using	ggplot2.	
	
For	system	dynamics,	a	key	objective	is	also	to	process	and	visualize	simulation	
output	data,	and	the	following	section	shows	how	the	tidyverse	functions	can	
be	 used	 to	 process	 simulation	 output,	 where	 the	 output	 is	 generated	 from	 a	
system	dynamics	modeling	tool.		
 
Analysis	of	Simulation	Model	Output	
	
In	 this	 example,	 R	 is	 used	 in	 a	 post-processing	 manner,	 where	 the	 output,	
generated	 in	 Vensim,	 is	 from	 a	 disaggregate	 Susceptible	–	 Infected	–	Recovered	
model	is	processed	using	the	tidyverse.	The	stock	and	flow	model	is	shown	in	
figure	3	(Duggan,	2016a),	and	it	provides	a	useful	structure	to	explore	infectious	
diseases	 transmission	 dynamics	 between	 three	 population	 cohorts	 (see	
appendix	one	for	the	complete	equation	listing).	These	three	cohorts	are	young	
(Y),	adult	(A)	and	elderly	(E).	A	simulation	run	is	executed	in	Vensim,	and	all	the	
simulation	results	are	exported	to	a	file.	
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Figure	3:	The	SIR	Model	for	three	cohorts	
 
The	idea	here	is	that	every	model	variable	from	the	simulation	run	is	contained	
in	 the	output	 file,	 and	 this	 file	 is	 then	 imported	 into	R	using	 the	read_csv()	
function. 
 
res <- read_csv("tidyverse/data/SimulationOutput.csv") 
 
The	variable	res	is	a	tibble	data	structure	with	47	variables	(columns)	and	161	
observations	(rows)	for	each	time	step	of	the	simulation.	While	47	variables	may	
seem	unwieldy,	the	key	point	is	that	the	five	functions	from dplyr	can	be	used	
to	process	the	data.	The	R	function	colnames()	can	be	used	to	display	all	the	
model	variables.	
	
 
> colnames(res) 
 [1] "Time"             "Beta AA"          "Beta AE"          
 [4] "Beta AY"          "Beta EA"          "Beta EE"          
 [7] "Beta EY"          "Beta YA"          "Beta YE"          
[10] "Beta YY"          "CE AA"            "CE AE"            
[13] "CE AY"            "CE EA"            "CE EE"            
[16] "CE EY"            "CE YA"            "CE YE"            
[19] "CE YY"            "DA"               "DE"               
[22] "DY"               "Infected A"       "Infected E"       
[25] "Infected Y"       "IR A"             "IR E"             
[28] "IR Y"             "Lambda A"         "Lambda E"         
[31] "Lambda Y"         "Pop A"            "Pop E"            
[34] "Pop Y"            "Prop A Infected"  "Prop E Infected"  
[37] "Prop Y Infected"  "Recovered A"      "Recovered E"      
[40] "Recovered Y"      "RR A"             "RR E"             

Susceptible Y Infected Y Recovered Y

IR Y RR Y

Lambda Y

Susceptible A Infected A Recovered A

IR A RR A

Lambda A

Susceptible E Infected E Recovered E

IR E RR E

Lambda E
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DE

+

Beta YY

Beta YA

Beta YC

+

+
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Beta EE
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R1

R2
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[43] "RR Y"             "Susceptible A"    "Susceptible E"    
[46] "Susceptible Y"    "Total Population" 
 
Given	that	the	model	has	a	disaggregate	structure,	an	 initial	 task	 is	 to	select	all	
the	 stock	 variables	 for	 each	 cohort.	 This	 can	 be	 done	 using	 the	 select()	
function,	 along	 with	 a	 function	 called	 starts_with(),	 whereby	 	 variables	
starting	with	a	common	root	can	be	selected.	In	this	example,	all	model	variable	
names	 that	 start	 with	 “Susceptible”,	 “Infected”	 and	 “Recovered”	 are	 selected	
from	the	res	tibble,	and	“piped”	to	the	out	tibble. 
 
out <- res %>%  
         select(Time,starts_with("Susceptible"), 
                     starts_with("Infected"), 
                     starts_with("Recovered")) 
 
The	out	variable	shows	a	significant	reduction	in	variables	(from	47	to	10),	and	
has	the	same	number	of	rows. 
 
> out 
# A tibble: 161 x 10 
    Time `Susceptible A` `Susceptible E` `Susceptible Y` `Infected A` 
   <dbl>           <dbl>           <dbl>           <dbl>        <dbl> 
 1 0.000           50000           25000           25000      0.00000 
 2 0.125           50000           25000           25000      0.00000 
 3 0.250           50000           25000           25000      0.01562 
 4 0.375           50000           25000           25000      0.05469 
 5 0.500           50000           25000           25000      0.12850 
 6 0.625           50000           25000           25000      0.25320 
 7 0.750           50000           25000           24990      0.45220 
 8 0.875           50000           25000           24990      0.75850 
 9 1.000           50000           25000           24990      1.22000 
10 1.125           50000           24990           24980      1.90200 
# ... with 151 more rows, and 5 more variables: `Infected E` <dbl>, 
`Infected Y` <dbl>, `Recovered A` <dbl>, `Recovered E` <dbl>, 
`Recovered Y` <dbl> 
 
In	order	to	support	further	analysis,	the	tibble	out	can	be	tidied	so	that	each	row	
contains	 one	 observation.	 Similar	 to	 the	 earlier	 transformation	 of	 the	 data	 in	
Table	2,	 the	gather()	 function	 is	used	 to	simplify	 the	data	structure	 from	10	
columns	 to	 3,	 and	 the	 number	 of	 rows	 are	 increased	 to	 1,449	 (which	 is	 161	
observations		x	9	different	stock	variables).	The	gather()	function	tidies	the	data	
in	all	the	columns,	from	`Susceptible	A`	to	`Recovered	Y`.	
 
out_td <- out %>% gather(key=Variable,value = Amount, 
                         `Susceptible A`:`Recovered Y`) 
> out_td 
# A tibble: 1,449 x 3 
    Time      Variable Amount 
   <dbl>         <chr>  <dbl> 
 1 0.000 Susceptible A  50000 
 2 0.125 Susceptible A  50000 
 3 0.250 Susceptible A  50000 
 4 0.375 Susceptible A  50000 
 5 0.500 Susceptible A  50000 
 6 0.625 Susceptible A  50000 
 7 0.750 Susceptible A  50000 
 8 0.875 Susceptible A  50000 
 9 1.000 Susceptible A  50000 
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10 1.125 Susceptible A  50000 
# ... with 1,439 more rows 
 
With	this	tidy	format,	 informative	categorical	 information	can	now	be	added	to	
each	 observation.	 In	 particular,	 the	 cohort	 (young,	 adult	 or	 elderly)	 and	 class	
(susceptible,	infected	or	recovered)	for	each	observation	can	be	identified	using	
the	following	R	features:	
	

• Two	 new	 columns	 are	 added	 (Cohort	 and	 Class)	 using	 the	 mutate()	
function.	

• The	 function	 case_when()	 can	 be	 used	 to	 perform	 an	 if-else	 style	
operation	on	the	data.	If	the	condition	is	true	(left	hand	side),	the	variable	
is	set	to	the	corresponding	value	on	the	right	hand	side.	

• Within	 the	 case_when()	 function,	 the	 string	 matching	 function	
grepl() is	 used.	 A	 string	 pattern	 is	 specified	 as	 the	 first	 parameter,	
using	regular	expression	rules.		
	

For	example,	 the	regular	expression	pattern	“A$”	will	match	any	term	that	
ends	 in	 “A”,	 as	 the	 character	“$”	 is	 an	anchor	 that	 represents	 the	end	of	 a	
string.	 The	 regular	 expression	 pattern	 “^S”	will	match	 any	 term	 that	 starts	
with	“S”,	given	that	the	character	“^”	is	an	anchor	that	represents	the	start	of	
a	string.		

 
new_td <- out_td %>%  
           mutate(Cohort=case_when( 
                   grepl("A$",Variable) ~ "Adult",  
                   grepl("E$",Variable) ~ "Elderly",  
                   grepl("Y$",Variable) ~ "Young"), 
                  Class=case_when( 
                   grepl("^S",Variable) ~ "Susceptible",  
                   grepl("^I",Variable) ~ "Infected",  
                   grepl("^R",Variable) ~ "Recovered"))	
	
The	 flexibility	 offered	 by	 regular	 expressions	 can	 support	 the	 creation	 of	 new	
variable	types	based	on	string	matching,	and	this	is	confirmed	by	examining	the	
the	tibble	new_td.		
	
	
	
	
	
> slice(new_td,1:6) 
# A tibble: 6 x 5 
   Time Variable      Amount Cohort Class       
  <dbl> <chr>          <dbl> <chr>  <chr>       
1 0.    Susceptible A 50000. Adult  Susceptible 
2 0.125 Susceptible A 50000. Adult  Susceptible 
3 0.250 Susceptible A 50000. Adult  Susceptible 
4 0.375 Susceptible A 50000. Adult  Susceptible 
5 0.500 Susceptible A 50000. Adult  Susceptible 
6 0.625 Susceptible A 50000. Adult  Susceptible 
	
There	 are	 a	 number	 of	 advantages	 to	 adding	 categorical	 variables	 to	 the	 data	
structure.	 The	 first	 is	 that	 it	 allows	 the	 data	 to	 be	 aggregated	 by	 disease	
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compartment,	in	that	the	total	sum	of	susceptible,	infected	and	recovered	can	be	
calculated	 for	 each	 time	 step.	 This	 is	 shown	with	 the	 new	variable	agg	which	
groups	the	observations	by	time	and	class	(susceptible,	infected	and	recovered),	
and	then	sums	the	amount.	
 
> agg <- new_td %>% group_by(Time,Class) %>% 
+          summarise(Total=sum(Amount)) 
 
> agg 
# A tibble: 483 x 3 
# Groups:   Time [?] 
    Time Class             Total 
   <dbl> <chr>             <dbl> 
 1 0.000  Infected          1.00   
 2 0.000  Recovered         0.00     
 3 0.000  Susceptible  100000.00     
 4 0.125  Infected           1.44   
 5 0.125  Recovered          0.0625 
 6 0.125  Susceptible   100000.00    
 7 0.250  Infected           2.04   
 8 0.250  Recovered          0.152  
 9 0.250  Susceptible   100000.00     
10 0.375  Infected           2.88   
# ... with 473 more rows 
 
The	 second	 benefit	 of	 adding	 categorical	 variables	 to	 data	 sets	 is	 that	 the	
simulation	 results	 can	 be	 visualised	 over	 each	 cohort.	 For	 example,	 this	 new	
aggregate	data	can	be	plotted	using	the	variable	Class	as	a	colour,	and	generate	
the	graph	shown	in	figure	4. 
 
ggplot(agg,aes(x=Time,y=Total,colour=Class)) + geom_point() 
+geom_line() 
	

	
	

Figure	4:	Aggregate	stock	data	calculated	by	R	
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Conclusion	
	
While	 R	 is	 primarily	 viewed	 as	 a	 toolset	 to	 support	 data	 scientists,	 innovative	
new	 libraries	 such	as	 the	tidyverse	 can	be	 leveraged	 to	 support	 the	 system	
dynamics	model	building	process.	 	This	paper	has	shown	how	time	series	data	
can	 be	 accessed	 and	 manipulated,	 and	 how	 the	 entire	 model	 output	 from	 a	
simulation	 run	 can	 be	 processed	 for	 informative	 summaries,	 and	 for	 data	
visualisation.	A	further	application	of	the	tidyverse is	to	support	the	process	
of	 analysing	 large	 data	 sets	 produced	 through	 sensitivity	 analysis	 of	 system	
dynamics	models.	
	
References	
Chambers,	J.	M.	(2008).	Software	for	Data	Analysis:	Programming	with	R:	Springer	Publishing	

Company,	Incorporated.	
Duggan,	J.	(2016a).	Diffusion	Models	System	Dynamics	Modeling	with	R	(pp.	97-121).	Cham:	

Springer	International	Publishing.	
Duggan,	J.	(2016b).	An	Introduction	to	R	System	Dynamics	Modeling	with	R	(pp.	25-47).	Cham:	

Springer	International	Publishing.	
Ford,	A.,	&	Flynn,	H.	(2005).	Statistical	screening	of	system	dynamics	models.	System	Dynamics	

Review,	21(4),	273-303.		
Forrester,	J.	W.	(1987).	Lessons	from	system	dynamics	modeling.	System	Dynamics	Review,	3(2),	

136-149.	doi:10.1002/sdr.4260030205	
Hekimoğlu,	M.,	&	Barlas,	Y.	(2016).	Sensitivity	analysis	for	models	with	multiple	behavior	modes:	

a	method	based	on	behavior	pattern	measures.	System	Dynamics	Review,	32(3-4),	332-
362.	doi:doi:10.1002/sdr.1568	

Jadun,	P.,	Immerstedt,	L.	J.,	Bush,	B.,	Inman,	D.,	&	Peterson,	S.	(2017).	Application	of	a	variance-
based	sensitivity	analysis	method	to	the	Biomass	Scenario	Learning	Model.	System	
Dynamics	Review,	33(3-4),	311-335.	doi:doi:10.1002/sdr.1594	

Rahmandad,	H.,	Oliva,	R.,	&	Osgood,	N.	(2015).	Analytical	methods	for	dynamic	modelers:	MIT	
Press.	

Taylor,	T.	R.	B.,	David	N.	Ford,	&	Ford,	A.	(2010).	Improving	model	understanding	using	statistical	
screening	System	Dynamics	Review,	26(1),	73-87.		

Vynnycky,	E.,	&	Edmunds,	W.	J.	(2008).	Analyses	of	the	1957	(Asian)	influenza	pandemic	in	the	
United	Kingdom	and	the	impact	of	school	closures.	.	Epidemiology	and	infection,	136(02),	
166-179.		

Walrave,	B.	(2016).	Determining	intervention	thresholds	that	change	output	behavior	patterns.	
System	Dynamics	Review,	32(3-4),	261-278.	doi:doi:10.1002/sdr.1564	

Wickham,	H.	(2014).	Advanced	R:	CRC	Press.	
Wickham,	H.	(2016).	ggplot2:	Elegant	Graphics	for	Data	Analysis:	Springer.	
Wickham,	H.,	&	Grolemund,	G.	(2016).	R	for	Data	Science:	O’Reilly.	
Yasaman,	J.,	&	Ford,	D.	N.	(2016).	Quantifying	the	impacts	of	rework,	schedule	pressure,	and	

ripple	effect	loops	on	project	schedule	performance.	System	Dynamics	Review,	32(1),	82-
96.	doi:doi:10.1002/sdr.1551	

 
	
	
	
	
	
	
	
	
	
	



	 19	

Appendix	One:	SIR	Cohort	Model	Equations	
	
 
(01) Beta AA = CE AA / Pop A  
  
(02) Beta AE = CE AE / Pop A  
  
(03) Beta AY = CE AY / Pop A  
  
(04) Beta EA = CE EA / Pop E  
  
(05) Beta EE = CE EE / Pop E  
  
(06) Beta EY = CE EY / Pop E  
  
(07) Beta YA = CE YA / Pop Y  
  
(08) Beta YE = CE YE / Pop Y  
  
(09) Beta YY = CE YY / Pop Y  
  
(10) CE AA = 2 
  
(11) CE AE = 1 
  
(12) CE AY = 0 
  
(13) CE EA = 1 
  
(14) CE EE = 0.5 
  
(15) CE EY = 1 
  
(16) CE YA = 2 
  
(17) CE YE = 1 
  
(18) CE YY = 3 
  
(19) DA = 2 
  
(20) DE = 2 
  
(21) DY = 2 
  
(22) Infected A = INTEG( IR A - RR A , 0)  
  
(23) Infected E = INTEG( IR E - RR E , 0)  
  
(24) Infected Y = INTEG( IR Y - RR Y , 1)  
  
(25) IR A = Lambda A * Susceptible A  
  
(26) IR E = Susceptible E * Lambda E  
  
(27) IR Y = Lambda Y * Susceptible Y  
  
(28) Lambda A = Beta AY * Infected Y + Beta AA * Infected A + Beta 
AE * Infected E 
                 
  



	 20	

(29) Lambda E = Beta EE * Infected E + Beta EA * Infected A + Beta 
EY * Infected Y 
                 
(30) Lambda Y = Beta YY * Infected Y + Beta YA * Infected A + Beta 
YE * Infected E 
                 
(31) Pop A = Susceptible A + Infected A + Recovered A  
  
(32) Pop E = Susceptible E + Infected E + Recovered E  
  
(33) Pop Y = Susceptible Y + Infected Y + Recovered Y  
  
(34) Prop A Infected = 100 * Recovered A / Pop A  
  
(35) Prop E Infected = 100 * Recovered E / Pop E  
  
(36) Prop Y Infected = 100 * Recovered Y / Pop Y  
  
(37) Recovered A = INTEG( RR A , 0)  
  
(38) Recovered E = INTEG( RR E , 0)  
  
(39) Recovered Y = INTEG( RR Y , 0)  
  
(40) RR A = Infected A / DA  
  
(41) RR E = Infected E / DE  
  
(42) RR Y = Infected Y / DY  
  
(43) Susceptible A = INTEG( - IR A , 50000)  
  
(44) Susceptible E = INTEG( - IR E , 25000)  
  
(45) Susceptible Y = INTEG( - IR Y , 24999)  
  
(46) Total Population = Pop E + Pop A + Pop Y  
  
 
(47) FINAL TIME = 20 
 The final time for the simulation. 
 
(48) INITIAL TIME = 0 
 The initial time for the simulation. 
 
(49) SAVEPER = TIME STEP  [0,?] 
 The frequency with which output is stored. 
 
(50) TIME STEP = 0.125 [0,?] 
 The time step for the simulation. 
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Appendix	Two:	Installing	R	Studio	
	
R	 is	 a	 free	 software	environment	 for	 statistical	 computing	and	graphics,	 and	 it	
compiles	and	runs	on	a	wide	variety	of	UNIX	platforms,	Windows	and	MacOS.	To	
download	 R,	 access	 the	 web	 page	 https://www.r-project.org	 and	 follow	 the	
instructions.	
	
Once	R	is	installed,	it	is	recommended	to	install	R	Studio.		
	
RStudio	 is	available	on	https://www.rstudio.com	 is	an	 integrated	development	
environment	(IDE)	for	R,	and	is	free	and	open-source.	It	provides	an	interactive	
workbench	 for	 creating,	 testing	 and	 running	 R	 scripts.	 This	 includes	 separate	
windows	(see	figure	5)	for:	
	

• R	scripts,	containing	the	model	equations	and	data	processing	scripts.	
• An	interactive	console,	for	running,	testing	and	debugging	commands.	
• The	global	environment,	containing	information	on	all	variables	stored	in	

R’s	workspace.	
• Access	to	the	file	system	and	graphical	plots.	

	
	

	
	

Figure	5	The	R	Studio	IDE	
	
Finally,	all	the	examples	are	available	at	https://github.com/JimDuggan/SDMR	.	


