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Abstract

Today, the early detection of breast cancer for asymptomatic women primar-
ily relies on generalised screening programmes with x-ray mammography.
However, the long-term value of screening mammography has been ques-
tioned due to e.g. the high false positive rate, resulting in unnecessary
biopsies and overdiagnosed cancers. In this context, a need exists for new
breast screening modalities with greater specificity. In this thesis, a machine
learning platform using microwave technology is investigated for the purpose
of diagnosing breast cancer. The proposed platform is evaluated by means
of numerical and experimental phantom sets designed and developed in this
research.

The proposed numerical tumour phantom set is designed to ensure
tumour models are clinically-realistic; a validation procedure was undertaken
with clinicians to verify the applicability of the models. Experimental tumour
and breast models were also developed using tissue mimicking materials.
Both the level of spiculation in the tumour models and varying levels of
glandular content were included as novel elements of the phantom set.

Breast cancer diagnosis was investigated through the development of a
3-stage automated platform to analyse backscattered signals, which includes:
data acquisition; data pre-processing through tumour windowing and feature
extraction; and diagnosis through a random forests classifier in a two-
level architecture. The results demonstrate the usefulness of creating high-
similarity groups of signals before the classification and how the extraction
of features can capture the characteristics of a tumour, without the need
for a priori information. Results also show that benign tumours are more
often correctly classified than malignant tumours, suggesting that microwave
breast systems may be capable of achieving high specificity rates. In the
context of current approaches to breast cancer care management, the results
of this work support the potential value of microwave breast diagnosis
systems to impact patient outcomes.
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CHAPTER 1

Introduction

1.1 Societal Context

Breast cancer is a high-incidence disease worldwide that primarily, but not
exclusively, affects women, with an estimated 1% of breast cancer cases
being detected in men [1]. Although the incidence and mortality rates due
to breast cancer vary globally, breast cancer remains the most commonly
diagnosed cancer and the most common cause of cancer death in women.
According to the World Health Organization (WHO), in the year 2012, an
estimated 1.7 million women were diagnosed with breast cancer worldwide
and 520,000 died from the disease [2].

Early detection is widely established as the cornerstone of breast cancer
care; breast cancers identified at an early stage allow for more effective
treatment to be used, thus reducing the probability of death from the
disease [3]. In fact, the five-year survival rate for early localised breast cancer
exceeds 80% in countries with the appropriate resources for early detection
of cancer and timely access to treatment [4]; in contrast, the survival rate
may decrease to 10–40% in countries with limited health resources, where
cancer is often only detected at a later stage [5]. Survival rates may also
be subject to regional fluctuations depending on the different geographical
profiles within a country. For example, the urban versus rural areas of a
country may find that the level of access to health care differs, which, in
turn, may impact early detection of breast cancer. Regional patterns may
also reflect a number of other risk factors such as the age profile, ethnicity,
lifestyle, among others [6]. Considering the numerous risk factors for breast
cancer, risk assessment plans personalised to different populations would be
beneficial in breast cancer care; they are, however, not yet a reality, further
highlighting the importance of early detection of breast cancer [7].
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As defined by WHO, early diagnosis and screening programmes are two
strategies that work together towards the early detection of breast cancer [7].
Early diagnosis relies on improving public and professional awareness of
the signs and symptoms of breast cancer and focuses on providing timely
access to clinical assessment and necessary treatment. In contrast, screening
programmes may rely on a number of medical examinations, for example
breast imaging, to identify cancer in asymptomatic populations, ideally at a
stage where it poses less of a threat to life.

Whether for the clinical assessment of symptomatic cancer or for screen-
ing programmes, the imaging of the breast has become immensely important
as it provides the means to observe the interior of the breast in a non-invas-
ive manner, potentially allowing identification of the presence and stage of
development of cancer. The following sub-section provides an overview of
the methods commonly used in clinical practice to image the breast.

1.2 Current Screening Practice

X-ray mammography, usually just referred to as mammography, is one of
the leading breast imaging methods to be used in a hospital setting.

Mammography uses low-energy x-rays to identify abnormalities in the
breast (i.e., tumours); the x-ray attenuation coefficient varies depending on
the tissue, resulting in an image that shows the contrast in x-ray attenu-
ation between healthy and cancerous breast tissues. The dark areas of a
mammogram correspond to the fatty, healthy tissues of the breast, and the
white areas correspond to higher density tissues of the breast, i.e. potentially
cancerous masses or the dense breast tissue. Figure 1.1 shows an example
mammographic image, of a heterogeneously dense breast [8].

The fact that cancerous masses and dense breast tissue attenuate x-
rays similarly may result in missed cancer detections, which is especially
concerning in younger women who are known to have denser breast tissue.
This limitation of mammography affects the detection performance, namely
in terms of the sensitivity1; other limitations of mammography have been
identified that may impact the detection performance, such as the technology
used (film-based or digital) or the inter-reader variability. For example, a
study for the population of the United States between 2004 and 2009, identi-
fied that the performance of mammography in a screening context may vary
with age; particularly the sensitivity varied between 73.4% and 88.5%, and

1Sensitivity measures the proportion of positive results (i.e., having cancer) that
are correctly identified as such; sensitivity can also be referred to as true positive rate.
Imaging methods with high sensitivity yield low levels of false negatives.
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Figure 1.1: Example of a mammogram [8]: the medio-lateral-oblique view is shown
on the left, and the cranio-caudal view on the right. In the image, the widespread white
areas correspond to the dense breast tissue, which may obscure small masses, while the
dark areas correspond to the fatty tissues.

the specificity2 between 83.8% and 93.8% [9]. Additionally, mammography
relies on ionising radiation, calling for additional guidelines on the safe level
of human exposure to radiation, and requires an uncomfortable level of
compression in the breast during the imaging procedure to obtain good
quality images. Despite its limitations and known variations in performance,
mammography is the most popular breast imaging method due to its cost
and performance in the overall population.

Ultrasound and Magnetic Resonance Imaging (MRI) are two other leading
breast imaging modalities, with recommended uses different to mammo-
graphy. Ultrasound breast imaging relies on sound waves to obtain images
of the breast and the breast structures. Historically, ultrasound was mainly
used to distinguish cysts from solid masses; more recently, advances in

2Specificity measures the proportion of negative results (i.e., not having cancer) that
are correctly identified as such; specificity can also be referred to as true negative rate.
Imaging methods with high specificity yield low levels of false positives.
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technology, such as 3D ultrasound, allow for a fine level of characterisation
of benign and malignant solid masses, as well as the evaluation of suspi-
cious findings in women with dense breasts and negative mammograms [10].
Additionally, ultrasound is recommended for guiding biopsies and other inter-
ventional breast procedures. Ultrasound does not require ionising radiation
and is relatively low-cost and readily available; however, the performance of
ultrasound imaging is highly operator-dependent, limiting its widespread
use for the detection of small, non-palpable tumours [11].

MRI uses the natural magnetic properties of the human body to produce
images, by using strong magnetic fields and radio waves. Although MRI
produces high resolution images that are highly sensitive, its use in breast
cancer care is only recommended for a particular group of women with whom
MRI has shown promising results. For example, MRI is recommended for
the screening of patients with over 20% lifetime risk of breast cancer, for the
evaluation of size and extent of cancer in recently diagnosed patients, and
for the monitoring of treatment response in patients undergoing neoadjuvant
chemotherapy [12]–[14]. The main limitation of breast MRI is the low
specificity of the images, reported to range from 37% to 97% [14], which
leads to an increased number of unnecessary biopsies. In addition, MRI
may be uncomfortable, with patients reporting severe claustrophobia during
examinations, is time consuming and costly, and has limited availability due
to the specific hospital settings required for its operation.

Between mammography, ultrasound and MRI, only mammography has
been shown to perform well enough in asymptomatic populations to be
used on its own for the screening of breast cancer, albeit not in every
country worldwide. There is, however, significant uncertainty on whether
the benefits of screening mammography in terms of mortality reduction
outweigh the risks, even in countries with the health system to support it.
The risks of screening mammography include an increase in the number of
overdiagnosed cancers3 and false positives, unnecessary examinations and
treatments (such as invasive biopsies and mastectomies), and anxiety and
psychological distress subsequent to a false positive result.

A number of different studies published since the 1960s indicate that
there may have been a reduction in breast cancer mortality up to 20% due
to the implementation of screening mammography, although, questions exist
as to whether the observed decrease in mortality is in fact due to screening
mammography or the better treatment options that have been developed
since. Additionally, any reduction in breast cancer mortality comes at a cost,

3Overdiagnosis is the term used when a condition is diagnosed that would otherwise
not go on to cause symptoms or death [15].
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with studies reporting increased rates of overdiagnosed cancers, unnecessary
biopsies and false positive results for each breast cancer death avoided [7],
[11], [16]–[21]. Overall, a need exists for new imaging modalities that are less
prone to false positives and overdiagnosing breast cancer. Microwave breast
imaging is one such modality that has shown clinical promise in recent years,
and this is the primary technology investigated in this research.

1.3 Research Motivation

The detection of breast cancer using microwave technology relies on contrast
in dielectric properties between healthy and cancerous tissues at microwave
frequencies. Microwave breast systems use low-power microwaves that are
non-ionising, do not require uncomfortable levels of breast compression — a
notable advantage over mammography — and may be comparably low-cost.
In addition, microwave systems for breast cancer detection may be integrated
into portable platforms, and may thus potentially be used in geographical
regions without well-developed healthcare systems.

At the time of writing, at least seven microwave prototypes for breast
cancer detection have been developed, and their performance has been
evaluated in pilot clinical trials with healthy or cancerous patients [22]–[37].
The results of the trials performed to date are encouraging, and demonstrate
the potential of microwave breast imaging in identifying abnormal breast
findings; for example, one such trial has shown sensitivity up to 86% in
detecting breast cancer when imaging patients with dense breasts [31].
With the initial proof-of-concept established for microwave breast imaging,
the question now arises, are microwave breast systems able to accurately
differentiate breast cancer from abnormal breast findings that are benign?

In the context of today’s breast screening programmes, answering this
question is relevant from a clinical perspective as it means exploring mech-
anisms that allow accurate differentiation between positive and negative
results. In fact, many automated breast diagnosis systems have already
been proposed to work in conjunction with mammography, ultrasound or
MRI, and are used by clinicians to identify features in a signal or image that
may otherwise be missed through visual inspection alone [38], [39]. In the
context of microwave systems, dedicated detection and diagnosis software
could play a key role in establishing the potential of the technology in terms
of breast monitoring and screening.

While microwave breast analysis systems have been primarily focused on
imaging, a small number of studies has suggested that both detection and
diagnosis of breast abnormalities with microwave technology is potentially
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feasible by using the backscattered signals collected during a scan [40]–
[53]. Differences exist in the backscattered signals captured from breasts
with healthy tissue only, breasts with a benign abnormality, or breasts
with a malignant finding, and machine learning algorithms may be able
to capture such differences in an automated way. However, the majority
of these studies have been tested with numerical data, only representative
of relatively simple scenarios (for example, low density breasts), and it is
unclear whether the performance of machine learning-based platforms is
adequate in clinically-complex scenarios.

This thesis examines the topic of diagnosing breast abnormalities using
microwave technology, and investigates the potential of such systems in
clinically-realistic settings. Primarily, this thesis explores mechanisms to
capture the difference between benign and malignant breast abnormalities
in breasts with complex backgrounds, such as the case of dense breasts, as
well as the use of machine learning algorithms towards the development
of an automated diagnosis platform capable of low false positive rates. To
achieve this, multiple research avenues were pursued:

1) Development of new feature sets to capture the differences in microwave
signals from breasts with different types of abnormal findings.

2) Evaluation of suitable ways to develop an integrated platform using
machine learning to diagnose breast cancer based on microwave signals.

3) To overcome the limitations with data available to validate such a
diagnosis platform, clinically-realistic breast and tumour models were
also explored.

The primary contributions of the work developed in this thesis are
outlined in the following section, as well as the journal and conference
publications arising from each work package.

1.4 Thesis Contributions

The contributions of the work arise from two primary work packages that are
interconnected: 1) the development of breast models that include realistic
representations of breast abnormalities; 2) the development of an automated
diagnosis platform for breast cancer using microwave technology and machine
learning, which was tested using the clinically-realistic models produced.
Each work package involved both numerical and experimental elements. The
specific novel contributions are summarised as follows:
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1) Development of numerical breast tumour phantoms, clinically valid-
ated to be representative of tumours of different shapes and levels of
malignancy;

2) Design and fabrication of experimental breast phantoms, including
increasing levels of breast density, and experimental breast tumour
phantoms, representative of tumours of different shapes and levels of
malignancy;

3) Fundamental analysis of the impact of microwave signal acquisition in
the quality of diagnostic information contained in backscattered signals;

4) Study of machine learning practices in the field of microwave breast
diagnosis;

5) Proposal of a new set of features that capture the difference in microwave
signals between benign and malignant breast tumours;

6) Development of an automated breast diagnosis platform based on mi-
crowave signals, and validation of the diagnosis platform with both the
numerical and experimental sets of phantoms developed with this thesis.

Further contributions arising from collaborative work developed for this
thesis include:

1) Design, building and testing of an experimental microwave imaging
prototype system that builds on the experience gained with existing
prototype systems;

2) Development of open-source and extensible imaging software in line with
best practice, which can be used for image reconstruction with many
types of system design.

These contributions are described in detail in the following chapters. The
journal and conference papers already published, as well as other outputs
arising from this research, are listed in the following sub-sections.

1.4.1 Journal Publications

[1] Oliveira, B. L., O’Halloran, M., Conceição, R. C., Glavin, M., Jones,
E., “Development of Clinically Informed 3-D Tumor Models for Mi-
crowave Imaging Applications”, IEEE Antennas Wireless Propag. Lett.,
vol. 15, pp. 520–523, 2016.
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[2] O’Loughlin, D., Oliveira, B. L., Elahi, M. A., Glavin, M., Jones,
E., Popović, M., O’Halloran, M., “Parameter Search Algorithms for
Microwave Radar-Based Breast Imaging: Focal Quality Metrics as
Fitness Functions”, Sensors, vol. 17, no. 12, p. 2823, 6th Dec. 2017.

[3] Oliveira, B. L., O’Loughlin, D., O’Halloran, M., Porter, E., Glavin, M.,
Jones, E., “Microwave Breast Imaging: Experimental tumour phantoms
for the evaluation of new breast cancer diagnosis systems”, Biomed.
Phys. Eng. Express, vol. 4, no. 2, p. 025 036, 2018.

[4] Oliveira, B. L., Godinho, D., O’Halloran, M., Glavin, M., Jones, E.,
Conceição, R. C., “Diagnosing Breast Cancer with Microwave Tech-
nology: Remaining challenges and potential solutions with machine
learning”, Diagnostics, vol. 8, no. 2, pp. 1–22, 2018.

[5] Oliveira, B. L., O’Loughlin, D., O’Halloran, M., Conceição, R. C.,
Glavin, M., Jones, E., “Experimental Validation of a Machine Learning
Platform for Diagnosing Breast Cancer with Microwave Technology (In
Preparation)”,

1.4.2 Conference Publications

[1] Oliveira, B. L., Glavin, M., Jones, E., O’Halloran, M., Conceição,
R. C., “Avoiding unnecessary breast biopsies: Clinically-informed 3D
breast tumour models for microwave imaging applications”, in IEEE An-
tennas and Propagation Society International Symposium (APSURSI),
Memphis, TN, USA, 6th–11th Jul. 2014, pp. 1143–1144.

[2] Oliveira, B. L., Shahzad, A., O’Halloran, M., Conceição, R. C., Glavin,
M., Jones, E., “Combined Breast Microwave Imaging and Diagnosis
System”, in Proceedings of Progress In Electromagnetics Research Sym-
posium, vol. 1, Prague, Czech Republic, 6th–9th Jul. 2015, pp. 274–
278.

[3] Oliveira, B. L., O’Halloran, M., Glavin, M., Jones, E., “Breast Cancer
Diagnosis: Development of a Dedicated Computer-Aided Detection and
Diagnosis System for Microwave Breast Imaging”, in 22nd Bioengineer-
ing in Ireland (BINI), Galway, Ireland: Royal Academy of Medicine in
Ireland, 22nd–23rd Jan. 2016, p. 119.

[4] Oliveira, B. L., Conceição, R. C., Shahzad, A., O’Halloran, M., Glavin,
M., Jones, E., “Breast Cancer Diagnosis Revisited: A non-invasive
classification system for Microwave Breast Imaging”, in 6th Postgraduate
Research Day NUIG-UL Alliance, Limerick, Ireland, 29th Apr. 2016.
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[5] O’Loughlin, D., Oliveira, B. L., Glavin, M., Jones, E., O’Halloran,
M., “Adaptive Microwave Breast Imaging: Experimental Performance
Evaluation”, in 24th Bioengineering in Ireland (BINI), Meath, Ireland:
Royal Academy of Medicine in Ireland, 27th Jan. 2018.

[6] O’Loughlin, D., Elahi, M. A., Porter, E., Shahzad, A., Oliveira, B. L.,
Glavin, M., Jones, E., O’Halloran, M., “Open-Source Software for
Microwave Radar-Based Image Reconstruction”, in 12th European Con-
ference on Antennas and Propagation (EuCAP), London, the UK: IEEE,
9th–13th Apr. 2018.

[7] O’Loughlin, D., Oliveira, B. L., Glavin, M., Jones, E., O’Halloran,
M., “Effects of Interpatient Variance on Microwave Breast Images:
Experimental Evaluation”, in 40th Annual International Conference of
the 40th IEEE Engineering in Medicine and Biology Society (EMBC),
Honolulu, HI, USA: IEEE, 17th–21st Jul. 2018.

1.5 Thesis Outline

The remainder of this thesis is organised as follows.
Chapter 2 provides a detailed review of the background to this thesis. The

anatomy of the breast is first described, including a characterisation of benign
and malignant breast findings. The guidelines for the clinical assessment of
breast cancer are also discussed, both for symptomatic and asymptomatic
populations. Next, the core principles of microwave breast systems are
discussed: the dielectric properties of the breast, signal acquisition, and
image reconstruction; the state-of-the-art microwave breast prototypes are
also described. Finally, a review of the literature on the topic of machine
learning applied to microwave breast systems is also presented, including
both the detection and diagnosis of breast cancer based on backscattered
signals.

Chapter 3 presents the two phantom sets developed in this work. The
numerical tumour phantom set is produced from a clinically-representative
modelling algorithm, which allows for several shapes and levels of spicula-
tion. The procedure to validate the generated tumour models with input
from clinicians is also described. Next, the design and fabrication of the
experimental breast and tumour phantom set is presented. The experi-
mental phantom set includes physical implementations of the numerical
tumour set, varying both in shape and level of spiculation, as well as breast
phantoms that model the variation in breast tissue composition observed in
the population.
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Chapter 4 proposes a machine learning-based platform, designed to
diagnose the level of malignancy of a tumour based on the information
contained in backscattered signals. The methodology employed to develop
this platform is first described and emphasises the need for good machine
learning practice. The proposed diagnosis platform is verified by testing
with the numerical phantom set described in the previous chapter. Here, the
use of the numerical dataset is intended to provide a thorough investigation
of the complexities in diagnosing breast cancer with backscattered signals,
when no other confounding factors are present.

Chapter 5 re-assesses the diagnosis platform proposed in Chapter 4 by
means of the experimental breast and phantom set presented in Chapter 3.
The experimental prototype used to acquire backscattered signals from the
experimental phantom set is first described. An in-depth analysis of the
results of experimental testing is also presented, which includes a sensitivity
and specificity evaluation of the diagnosis process.

Finally, Chapter 6 summarises this thesis, and discusses the main results
and conclusions. Future work is identified to further improve the microwave
breast diagnosis platform proposed in this thesis. Future work avenues
for the long-term clinical acceptance of microwave breast detection and
diagnosis systems are also discussed.
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CHAPTER 2

Background and Literature Review

2.1 Introduction

An understanding of the anatomy and other physical properties of the
female breast is important in the development of microwave breast detection
and diagnosis systems. Elements such as the size and shape of the breast
influence the design of microwave systems, while the internal composition
of the breast and the dielectric properties of breast tissues influence their
operation. In this chapter, an overview of the anatomy of the breast and
formation of breast cancer is first presented in Section 2.2, which includes a
review of the risk factors for breast cancer and a discussion of guidelines for
the clinical assessment of symptomatic and asymptomatic breast cancer.

Next, the fundamental principles behind microwave imaging systems are
presented in Section 2.3, from three perspectives: the dielectric properties
of breast tissues; the typical setup of microwave breast systems; and the
algorithms commonly used for processing, particularly image reconstruction.
In this section, an overview is also presented of some microwave breast
imaging prototype systems that have already been tested in a clinical
environment.

In Section 2.4, a review of the use of machine learning in combination
with microwave technology to detect and diagnose breast cancer is presented.
Feature extraction and classification methods previously used in machine
learning platforms are considered. Concluding remarks are presented in
Section 2.5, highlighting the main research questions addressed in this thesis.
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2. Background and Literature Review

2.2 Breast Anatomy, Cancer Development

and Clinical Practice

2.2.1 Anatomy of the Breast

The female breast is a superficial structure protruding from the thoracic
wall presenting with a wide range of shapes and sizes. The breast can
assume different shapes, such as round, hemispherical or conical, and can
appear more firm or pendulous. Breast size can also vary greatly. Studies
identify that breasts can vary between 100 mL to over 2,000 mL in volume,
and 9.7 cm and 18.2 cm in diameter [54]–[56]; the wide variation in breast
volume and dimensions is a key factor to consider in the development of
new microwave breast systems. Among others, the different breast shapes
and sizes are determined by genetic, ethnic and dietary factors [57].

The breast is composed of different types of tissues, namely, glandular
and supporting fibrous tissue embedded within a matrix of adipose (fatty)
tissue, and surrounding skin. A simplified diagram of the breast’s anatomy
is shown in Fig. 2.1. The glandular tissue forms 15 to 20 lobes radiating from
the nipple, which resembles a cone-type structure. Each lobe is subdivided
into lobules, the milk-producing glands. Lobules are, in turn, a cluster of
small sacs called acini, which are connected to the nipple through branching
ducts. The functional units of the breast are the terminal duct lobular
units, which encompass the lobules and the intralobular and extralobular
terminal ducts, as identified in the inset in Fig. 2.1. The circular pigmented
area of skin surrounding the nipple is termed the areola. The glandular
tissue within the breast is surrounded by the stroma, which is composed
of fat and fibrousconnective tissue. The latter is responsible for providing
structural support to the breast in the form of fibrous bands or suspensory
ligaments (named Cooper’s ligaments), connected both to the skin and the
underlying fascia. Together, the fibrousconnective tissue and the glandular
tissue correspond to the dense areas of the breast.

When describing its anatomy, it is also important to note that the upper-
lateral region of the breast extends into the axilla, forming an axillary tail.
In fact, the axillary lymph nodes are the main site where the lymph from
the breast drains to, and therefore a location where cancer cells are often
found [57]–[59]. In addition to the axillary tail, six other sub-sites are used
by clinicians to describe the locations of masses found in the breast: upper-
outer quadrant, upper-inner quadrant, lower-outer quadrant, lower-inner
quadrant, central portion and nipple. An overview of the location system
is shown in Fig. 2.2. Alternatively, the time on the face of a clock and
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Nipple
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Figure 2.1: Simplified diagram of the anatomy of the breast, including the nipple,
lobes, lobules and ducts, which are embedded within a matrix of fatty tissue. The terminal
duct lobular unit is the functional unit of the breast and is shown in the inset. Adapted
from [60].

the distance in centimetres from the nipple can be used for describing the
location of masses found in the breast.

2.2.2 Changes in Breast Tissue

Cell behaviour includes a series of aspects that determine how the organism
operates as a whole, namely cell metabolism, growth, multiplication, differ-
entiation, survival and death. Normal cell behaviour is ensured by a series of
regulatory mechanisms, which rely on signalling molecules that exist in all
multicellular organisms. At times, this regulation of normal cell behaviour is
lost, and cell growth and multiplication happen in an uncontrolled manner,
originating masses of cells, which are termed as tumours or neoplasms [62].
Depending on whether they invade nearby organs or metastasise through
the body, tumours may be classified as benign or malignant.
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Figure 2.2: Schematic representation of the human breast (left breast displayed, viewed
from the front). Seven sub-sites are used to identify specific portions of the breast. The
time on the face of a clock and the distance in centimetres from the nipple can also be
used for describing the location of masses found in the breast [61].

2.2.2.1 Benign Changes

Benign masses remain confined to their original location, and generally
do not invade nearby tissues or metastasise to distant body sites; they
are usually surrounded by a fibrous capsule and tend to grow along the
normal structures of the breast [62], [63]. Benign changes in the breast
usually present as palpable lumps that may move upon touch, and may
result from normal ageing of the breast, increased hormone sensitivity or
other factors. The most common types of benign masses in the female
breast are fibroadenomas (epithelial tumours containing fibrous tissue) and
cysts (closed cavities in the body containing a liquid or semi-solid material).
Importantly, they usually have distinct architectural features, showing round
or lobular shapes with smooth and well delineated margins. Other forms of
benign breast abnormalities include [59], [64]:

� Fibrocystic disease, which refers to a breast with lumps that may feel
painful;

� Duct ectasia, which refers to blockage of the lactiferous ducts;

� Duct papillomas, which are tumours that form in a duct;

� Epithelial hyperplasia, which is an increase in the number of cells lining
the terminal duct lobular unit. Atypical duct and lobular hyperplasia are
common examples of benign breast diseases, which involve an increase
of cells that look abnormal under a microscope.
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2.2.2.2 Malignant Tumours: Invasive and In Situ

In contrast to benign changes in breast tissue, malignant tumours are
capable of invading surrounding normal tissue and metastasising through
the body via the circulatory or lymphatic system; they tend to grow in
irregular directions, disrupting existing anatomical patterns [62], [63]. The
vast majority of breast cancer cases found in women correspond to breast
carcinomas, which are malignant tumours found in the epithelial cells of the
terminal duct lobular units of the breast [65], [66].

Depending on whether the cancer cells invade nearby tissues, tumours
may be classified as invasive or in situ. Invasive carcinomas are the most
prevalent form of breast cancer, accounting for up to 80% of the diagnosed
cancer cases in the United States in 2017 [6]. With invasive breast cancers,
cells spread outside of the basement membrane of the ducts and lobules
into the surrounding tissue. Invasive tumours tend to grow in irregular
directions with irregular shapes and angular margins, resulting in protrusions
referred to as spicules; malignant invasive tumours usually present with
many microlobules or spicules at their margins. According to the WHO, the
types of invasive breast cancers are [67], [68]:

� Infiltrating ductal carcinomas;

� Lobular carcinomas;

� Special subtypes of invasive carcinoma including, tubular, cribriform,
papillary, medullary or mucinous;

� No special type (referred to as not otherwise specified).

When cancer cells are confined within the basement membrane of the
terminal duct lobular units of the breast, the tumour is classified as in situ;
with in situ cancer forms, there is no evidence of further tissue invasion.
Although less aggressive, in situ breast cancer has the potential to evolve into
invasive cancer and is considered a true cancer precursor, as will be discussed
in Section 2.2.3. According to the WHO [67], [68], the two sub-types of in
situ breast cancer are:

� Intraductal carcinoma, also referred to as Ductal Carcinoma In Situ
(DCIS). This is the most common form of a non-invasive breast carcinoma,
corresponding to approximately 83% of all diagnosed in situ cases [6],
[64]. DCIS refers to a condition where cancer cells replace the normal
epithelial cells in the breast ducts, potentially expanding the ducts and
lobules;
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� Locular Carcinoma In Situ (LCIS), which is the development of an
epithelial tumour in the lobules of the breast, and may consequently
expand the lobules.

2.2.2.3 Calcifications

Calcifications are calcium deposits in the breast, usually resulting from
natural ageing. Calcifications are usually not felt by palpation, but they are
detectable by current breast imaging modalities, particularly, mammography,
due to the high contrast in X-ray attenuation. Although calcifications do
not represent abnormal changes in the breast per se, they usually appear
co-located with other suspicious findings within the breast tissue, and
can be helpful in detecting regions of the breast where suspicious breast
abnormalities might appear.

While macrocalcifications, typically coarse and larger in size, are usually
no reason for concern, microcalcifications have been shown to appear in
areas of rapidly dividing cells. Microcalcifications are highly correlated
with the appearance of DCIS [64], which may otherwise not be detected in
mammograms. The size and density of microcalcifications may vary and they
may appear clustered. Determining the location, morphology and number
of calcifications in a cluster may be helpful in determining the malignancy
of a suspicious region detected in a mammogram.

2.2.2.4 Location of Breast Abnormalities

Based on the localisation system identified in Fig. 2.2, a number of clinical
studies have investigated the incidence of breast cancer based on primary
tumour site and breast laterality, reaching similar conclusions, e.g. [69]–[72].
From the identified studies, the most comprehensive analysis was performed
by the Surveillance, Epidemiology, and End Results (SEER) Program of
the United States National Cancer Institute [72], containing data for over 1
million breast cancer cases.

Table 2.1 details the results from the SEER database regarding primary
breast tumour site and laterality, for the United States population in the
period between 1973 and 2011 [72]. The highest breast cancer incidence is
observed in the upper-outer quadrant of the breast, for a total of 32.7% of
the cases. The left breast is also slightly more common for cancer occurrence,
totalling 50.2% of all cases versus 48.5% corresponding to the right breast.
Furthermore, it should also be considered that tumours arise predominantly
within radiologically dense breast tissue, i.e., breasts with a higher ratio of
glandular and fibrousconnective tissue [73]–[75].
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Table 2.1: Results from the Surveillance, Epidemiology, and End Results (SEER)
database detailing the relationship between breast cancer occurrence and breast tumour
site and laterality, for the United States population between 1973 and 2011 [72].

% of cases

Primary tumour site
within the breast

Upper-outer quadrant 32.7

Borderline between quadrants 30.0

Upper-inner quadrant 9.5

Lower-outer quadrant 6.4

Central portion 5.7

Lower-inner quadrant 5.0

Nipple 0.8

Axillary tail 0.8

Not otherwise specified 19.1

Breast laterality

Left breast 50.2

Right breast 48.5

Bilateral 0.1

Not otherwise specified 1.2

2.2.3 Risk Factors for Breast Cancer

Age has been identified as one of the most important risk factors for breast
cancer across all populations and ethnicities. For example, for the United
States population between 2010 and 2014, the rate of breast cancer incidence
was shown to approximately double every 10 years until the age of 65; smaller
increases were then observed until the age of 80 [6], [64], [76], [77].

In decreasing order of relative risk, other non-modifiable risk factors for
breast cancer include: genetic predisposition, high breast density, personal
history of breast cancer, family history, high levels of endogenous hormones
in post-menopausal women, early start of menstruation, height (where
tall women have been found to have a higher risk of breast cancer than
shorter women), late age at first full-term pregnancy and late menopause.
The risk factors are discussed in detail in [6]. Some breast cancer risk
factors result from modifiable behaviours, such as exposure to radiation,
alcohol consumption, never having breastfed, post-menopausal weight gain
and obesity, recent use of menopausal hormones and recent use of oral
contraceptives [6].

Importantly, the occurrence of in situ carcinomas and other benign
diseases of the breast have also been linked to a higher incidence of invasive
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breast cancer later in life [6], [64], [78]–[81]. DCIS is often considered both
as a potential precursor to invasive breast cancer, and as an indicator of
developing a new invasive breast cancer. In contrast, LCIS rarely becomes
invasive cancer, but it is an indicator of increased risk. In relative terms, the
risk associated with a diagnosis of DCIS or LCIS ranks in the same category
as high breast density.

From the group of benign breast diseases, developing atypical hyperplasia
of the ducts or the lobules indicates risk of further developing invasive
breast cancer, ranking higher than DCIS or LCIS in terms of relative risk.
Complex fibroadenomas and ductal papillomas also serve as indicators of
increased breast cancer risk, although the relative risk is much lower than
that associated with atypical hyperplasia. Other benign diseases, such as
duct ectasia or simple cysts, are associated with little to no increased breast
cancer risk.

2.2.4 Clinical Assessment of Breast Cancer

The clinical assessment of breast cancer can be perceived as happening
simultaneously for two types of populations — asymptomatic, through
screening programmes, and symptomatic, usually involving a diagnostic
decision through medical testing. Whether presenting or not with symptoms
of a developing cancer, a key determinant of breast cancer outcomes in
any type of population is detecting the disease in an early stage. Early
detection of breast cancer allows the effective deployment of early treatment
therapies, ultimately contributing to improving breast cancer control in
terms of patient mortality [3]. Here, breast cancer care for symptomatic
and asymptomatic populations are discussed.

2.2.4.1 Symptomatic Breast Cancer

With symptomatic populations, the need is to confirm the diagnosis of a
suspicious finding, rather than to detect it exists in the first place. Historic-
ally, a breast tumour would have to be completely excised and histologically
examined to determine its diagnosis. Currently, other procedures are also
used by medical experts to assist in the diagnosis of a tumour, for example:

� Physical examination, which refers to the act of physically examining
the size and location of breast lumps that may exist;

� Breast imaging, where the most common clinical imaging tools are
mammography, ultrasound and MRI;
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� Fine-needle aspiration, a diagnostic tool to examine suspicious tissue;
a biopsy of the tissue is performed by sampling a mass of cells with a
hollow needle, which is then histologically analysed.

Initially developed in the 1970s [82], and later updated in 1998 [83],
a procedure termed the triple test has exhibited great effectiveness in
diagnosing breast tumours. The triple test consists of a combined evaluation
of a suspicious finding using physical examination, mammography, and
fine-needle aspiration; each independent examination scores the finding with
1 point if benign, 2 if suspicious and 3 if malignant. A combined score less
than or equal to 4 determines the finding as benign, and greater than or
equal to 6 as malignant. The triple test has shown comparable accuracy to
excision and histological analysis of the tumour [84]. Importantly, the triple
test has also shown higher sensitivity and specificity when compared to
deploying either of the single procedures independently, sometimes as high as
100% [85], [86]. Due to its high diagnostic ability, the triple test has become
standard practice for diagnosing breast cancer in many countries [87].

Particularly regarding the clinical assessment of breast cancer through
imaging, a set of guidelines have been created by the American College of
Radiology that aims at standardising the reporting practices of breast ima-
ging within the medical community. This set of common imaging descriptors
and assessment guidelines is called the Breast Imaging Reporting and Data
System (BI-RADS) [8], [88]–[91], and includes detailed versions for mammo-
graphy [8], ultrasound [90] and MRI [91]. Particularly, BI-RADS defines a
set of terms to describe tumour shape, the internal composition of the breast
in terms of dense tissue, the morphology and distribution of calcifications,
and also a categorisation scheme to assess the likelihood of malignancy of a
tumour. Ranging from benign to malignant, six assessment categories are
linked to higher likelihoods of malignancy, coupled with a clinical manage-
ment recommendation that determines whether follow-up imaging or tissue
diagnosis is required.

Once the diagnosis of a malignant tumour has been confirmed, whether
it is in situ or invasive breast cancer, the extent of the disease should be
assessed and the tumour staged. Clinicians usually refer to the TNM Staging
System, created by the American Joint Committee on Cancer supported
by the American Cancer Society [92]. This system is based on the size and
extent of the Tumour (T), spread of the tumour to the lymph Nodes (N),
and presence of Metastases (M). Notably, an extra class is created for in
situ tumours when assessing the T size of the diagnosed malignancy.

Based on the combined TNM information, anatomic stage/prognostic
groups are assigned, where Stage I cancers are the least advanced and often
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have a better prognosis. Interestingly, the determination of tumour size
appears to be relevant when staging the tumour, but not necessarily a key
factor in determining its diagnosis.

2.2.4.2 Asymptomatic Screening of the Breast

Asymptomatic populations do not present with symptoms of a developing
cancer, for example, palpable lumps in the breast, and usually do not
present with risk factors either, such as the ones detailed in Section 2.2.3.
As asymptomatic breast cancer may still be present, a number of countries
have implemented nation-wide mammography screening programmes, with
the aim of detecting breast cancer early. Lately, however, the value of breast
cancer screening mammography has come into question, with recent studies
suggesting that screening mammography may have little effect in mortality
reduction [7], [11], [16]–[21].

The benefit of screening mammography is the reduction in mortality
due to breast cancer, while the risks include an increase in the number of
overdiagnosed cancers and false positives, and anxiety and psychological
distress subsequent to a false positive result. An increase in the number
of overdiagnosed cancers is particularly concerning as it refers to detected
cancers that may not cause any symptoms during a woman’s lifetime and
are, therefore, treated unnecessarily. An increase in the number of false
positives may also result in unnecessary invasive procedures to confirm a
diagnosis, such as biopsies.

The available evidence for screening mammography is based on the
results from randomised controlled trials, and in particular a number of
trials performed in North American and European countries since the 1960s.
The data from many of these trials have been reviewed extensively over the
years (particularly, the influential systematic Cochrane review by Gøtzsche
and Jørgensen [18]), and noticeably, no definite conclusion has been reached
amongst the different studies [7], [11], [16]–[21]. This is due both to the
variability of the trial methodology and collected data, and also due to the
analysis methodology implemented by the many review studies available
in the literature. Particularly, lead-time and length-time biases are two
recognised biases that may impact the evaluation of the efficacy of screening
programmes, and ultimately, conclusions drawn from the existing trials [17]:

� Lead-time bias refers to the length of time between the detection of
cancer with screening, and its natural presentation had it not been
screened (when it becomes symptomatic); i.e., the cancer is diagnosed
early, but survival has not been prolonged;
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� Length-time bias refers to the perception that screening leads to better
outcomes, primarily based on the difference between slow and fast-grow-
ing tumours in terms of their likelihood of mortality; by definition,
slow-growing tumours are less likely to recur and less likely to be fatal.
Screening mammography tends to detect more slow-growing tumours,
simply because they have longer asymptomatic phases when compared
to fast-growing tumours, resulting in the wrong perception that can-
cers detected by screening are more likely to be treated and cured.
Overdiagnosis can be seen as an extreme form of length bias.

Amongst the different trials, a reduction of up to 20% in breast cancer
mortality due to screening mammography has been identified; however,
questions do exist on whether the observed decrease in mortality is, in
fact, due to screening mammography, or to better treatment options that
have been developed since the start of formalised trials. Additionally, any
reduction in breast cancer mortality comes at a cost; studies have reported
that the ratio of breast cancer deaths avoided to number of overdiagnosed
cancers varies between 1:2 and 1:5, with at least 152 false positives and 31
unnecessary biopsies per breast cancer death avoided [11], [18], [21].

Based on these results, several international breast cancer organisations
have published position papers on screening mammography. For example,
the Swiss Medical Board has found that the risks outweigh the benefits
and has recommended that all screening programmes be abandoned [20].
However, the WHO provides a conditional recommendation for screening
mammography depending on age and resource setting [7]:

� Screening is always recommended, at an interval of two years, for women
aged 50–69 in countries with strong health systems;

� Screening is not recommended in countries with limited resources and
weak health systems, with prompt access to effective diagnosis and
treatment options favoured.

The uncertainty surrounding the results of the mammography trials
discussed in this section casts doubt on the long-term value of screening
programmes for breast cancer. New trials are needed to effectively assess the
true value of screening mammography, but many years of trial data will be
needed before their results can be discussed. In this context, a need exists for
new imaging modalities that may succeed in the areas where mammography
has been shown to struggle.

In the following section, microwave breast imaging is introduced as
one such modality that has shown clinical promise in recent years. The
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fundamental principles behind microwave systems for breast cancer detection
are reviewed, and the typical setup of microwave breast systems and the
algorithms commonly used for image reconstruction are also considered. A
review is also presented of the main microwave breast prototypes tested in
a clinical environment.

2.3 Microwave Technology for Breast

Cancer

Microwave systems for human applications originated from the field of
ground-penetrating radar, historically used for the purpose of subsurface
applications such as detecting land mines and examining archaeology sites;
all radio and microwave applications usually involve transmitting signals
and collecting their radar returns in order to detect an object.

In the context of breast cancer, active microwave systems rely on the dif-
ference that breast tissues exhibit in their dielectric properties at microwave
frequencies; typical microwave systems range from 0.5 GHz to 9 GHz. An
advantage from the point of view of safety is that microwave breast imaging
systems are non-ionising, unlike mammography. Besides active microwave
systems, there are other applications for microwaves currently under devel-
opment that could prove useful in the detection of cancer. For example,
passive microwave systems use radiometers to identify tumours based on
temperature differences between normal and cancerous tissues [93]–[95]. Hy-
brid systems have also been researched, for example [96], [97], where active
microwave systems are typically combined with thermoacoustic modalities
to create images of the breast.

Nowadays, one of the main applications for active microwave systems is
to image the breast, for the purpose of detecting breast cancer; in fact, an
extensive body of literature exists on the topic, exploring ways to improve
microwave images of the breast. In the remainder of this section, a review
of the existing research on dielectric properties is presented in Section 2.3.1,
also addressing the uncertainty about the dielectric contrast between healthy
and cancerous breast tissues; microwave system setup and signal acquisition
is described in Section 2.3.2, and an overview of microwave image recon-
struction methodologies is provided in Section 2.3.3. Additionally, a review
of the some microwave imaging prototypes that have been proposed is also
presented in Section 2.3.4.
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2.3.1 Dielectric Properties of Breast Tissues

The study of the physiology of the breast in terms of the dielectric proper-
ties of breast tissues, i.e. relative permittivity and conductivity, is hugely
important in the development of microwave breast systems. Specifically
focussing on the human breast, a series of historical studies performed
ex vivo measurements and report a significant contrast in the dielectric
properties between healthy (fat and glandular) and cancerous tissues in
the microwave frequency band [98]–[101]. However, the dielectric contrast
reported across the historical studies varies greatly. This variation could be
explained due to the different experimental methodologies employed across
studies, where properties were measured under different temperature and
frequency settings, and also due to the intrinsic heterogeneity of breast
tissues and across patients [102].

Aiming to address the method limitations discussed above, Lazebnik et al.
published one of the most comprehensive examinations to date of the
dielectric properties of breast tissues in 2007 [103], [104]. Two studies
were performed using a large sample size, a variety of tissue types and a
consistent experimental methodology. The first study [103] used only tissue
samples from breast reduction surgeries, to ensure healthy breast tissues were
measured, and a later one [104] used tissue samples from cancer surgeries.
In both studies, dielectric properties were measured over a wide frequency
range, from 0.5 GHz to 20 GHz. All tissue samples from both studies were
quantified through a histological analysis in terms of the percentage of fat,
glandular, and fibrousconnective tissues, and also the percentages of tissue
corresponding to benign or cancerous findings. In addition, a statistical
analysis of the resulting data was performed.

Tissues were categorised into three groups depending on the percentage
of fat content, with Group 1 containing less than 30% fat tissue (high
water content), Group 2 containing 31% to 84% fat tissue, and Group 3
containing samples with more than 85% fat tissue (low water content). In
addition, a group of cancerous samples was also analysed, containing 30% or
more of malignant tissue (DCIS, LCIS, and infiltrating ductal and lobular
carcinomas). The main findings of the two studies were:

� There is significant dielectric heterogeneity in healthy breast tissue;

� There is an inherent variability in the dielectric measurement, which is
higher in the more heterogeneous samples (Group 2);

� Samples with increasing glandular content (high water content) show
higher dielectric properties;
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� Samples with increasing fat content (low water content) show lower
dielectric properties;

� When comparing healthy tissues (samples with glandular tissue, with no
more than 10% fat content) to cancerous tissues, a contrast of 8% was
found in the relative permittivity and 10% in the conductivity;

� When the same comparison was performed but adjusting for the fibrouscon-
nective tissue content, there were no statistically significant differences
between the healthy and cancerous tissues.

The ex vivo studies by Lazebnik et al. [103], [104] provide a standard set
of dielectric properties of healthy and malignant breast tissues. However,
while the dielectric properties of cancerous tissues are in good agreement
with the historical studies [98]–[101], the healthy-to-cancerous dielectric
contrast found in the 2007 studies is much smaller than previously reported.
In fact, the contrast may be nearly non-existent, considering the statistical
analysis that adjusts both for glandular and fibrousconnective tissue content.

More recently, clinical trials have produced results that imply the situ-
ation may not be as challenging as implied in the studies by Lazebnik et al.,
specifically in terms of the dielectric contrast between healthy and cancerous
tissues. Clinical studies performed with a number of microwave prototype
systems have been able to produce useful images of breast abnormalities,
suggesting that a larger healthy-to-cancerous contrast ratio may actually
exist [22], [25], [27], [28], [32], [105], [106]. Furthermore, new dielectric
properties measurement studies have started to highlight possible reasons
for the conflicting findings, where some of the identified factors include:

� Differences in the measurement of in vivo and ex vivo tissues, discussed
in [107]–[110];

� The heterogeneity of breast tissue samples, and the impact of quantifica-
tion of the cancerous cells in a tissue sample in the dielectric properties,
as discussed in [111];

� Differences in the sensing depth and volume techniques used in the
measurements, addressed in [112], [113].

Despite the open debate, the properties reported by Lazebnik et al. [103],
[104] remain one of the most widely used set of dielectric properties in
microwave breast studies. Furthermore, these properties represent a worst-
case scenario, ultimately leading to the creation of more challenging test
cases.
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Figure 2.3: Simplified diagram depicting the operation of a microwave breast prototype.
The breast is surrounded by an array of antennas (transmitting antennas, Tx, and receiving
antennas, Rx), while immersed in a container. Backscattered signals are collected by
data acquisition circuitry, which includes signal conditioning and sampling, and a data
processing unit is then used to form an image of the breast.

2.3.2 System Architecture and Signal Acquisition

In a typical microwave breast setup, the breast is illuminated with pulses
from antennas placed at a number of different locations surrounding the
breast, where each antenna may act both as a transmitter (Tx) and a
receiver (Rx). A simplified diagram of the operation of a microwave system
for breast imaging or diagnosis is shown in Fig. 2.3. The interaction between
the microwave signals and the breast tissues results in scattering of the
signals, changing their speed, propagation path, phase, polarisation and
strength; the surface at which the scattered field is sampled is referred
to as the acquisition surface [114]. In a monostatic configuration, the
transmitting and receiving antennas are co-located and backscattered (i.e.,
reflected) signals are collected at the point where they were generated. In a
multistatic configuration, for any given measurement, one antenna transmits
and multiple antennas receive; in this type of setup, both backscattered and
transmitted signals are collected.

Several other factors are involved in the design of a prototype. Design
choices may have an impact in the type of scan, scan duration and results
obtained. Some of the design considerations include:
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� Portability, microwave systems can be fixed (integrated on an examina-
tion table), or portable (for example, wearable or handheld);

� Positioning of the patient, prone or supine on an examination table, or
seated;

� Coupling medium, systems may or may not require a coupling medium
to interface between the antenna array and the breast; typically, the
breast is in contact either with the air, a liquid immersion medium, or a
solid coupling shell;

� Antennas, type of antenna, design of antenna array, and whether it
operates in a monostatic or multistatic configuration;

� Acquisition, in the time- or frequency-domain, which determines hard-
ware design;

� Choice of signal processing algorithms.

In microwave systems integrated into an examination table, the patient
may lie prone and the breast hangs through an opening in the surface of
the table. Typically, an array of antennas surrounds the breast, resulting
in many transmission paths through the breast. With these systems, the
chest area may suffer reduced visibility due to the thickness of the mat the
patient lies on, and the axillary region may also not be seen in the images.
In contrast, with systems requiring the patient to be seated or lie supine,
the surface of the breast quadrants may not be entirely covered.

The choice of medium to interface between the antennas and the breast is
also important. Systems where the breast hangs freely in the air are subject
to breast movement, due to patient breathing or patient movement. Systems
using an immersion liquid are also prone to breast movement; additionally,
the surface of the breast may become naturally deformed by the liquid. The
antenna array can be fitted to a biocompatible coupling shell, which is in
direct contact with the breast and does not require any other immersion
liquids. Although more straightforward, systems using coupling shells may
be prone to poor contact between the shell and the breast.

Designing an antenna array includes the choice of antenna, the number
of antennas, and their relative location to each other. Microwave systems
may be stationary, where the antenna array is fixed to one unique position
throughout the scan, or moving. The choice of antenna array design may
impact the calibration of the system, as well as the interaction between
different hardware components.

Signal acquisition may happen in the time- or frequency-domain. In a
frequency-domain system, a network analyser is used to perform a frequency
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sweep within a fixed frequency band. A switching circuit is also often used to
allow multiple automated measurements, for monostatic or fully multistatic
acquisition. In contrast, with time-domain systems, a pulse generator is
used to produce an ultra-wideband time-domain pulse. Short pulses are
transmitted sequentially by selecting antennas with a switching circuit, and
backscattered signals are recorded at the receiving antennas.

The information contained in the backscattered signals can be used and
processed in multiple ways. The creation of an image of the breast is usually
the first approach employed to gain insight about the composition of the
breast. With microwave imaging algorithms, the goal is to create an image
of the breast that reflects the dielectric profile of the breast as a function of
location. A variety of reconstruction algorithms has been proposed in the
literature, operating in the time- or frequency-domain. A review of some of
these algorithms is presented next.

2.3.3 Image Reconstruction

Microwave imaging algorithms aim at creating an image of the breast that
reflects the dielectric profile of the breast as a function of location. Two
main approaches are used to create microwave images of the breast, either
1) by computing a spatial distribution of the actual dielectric properties of
breast tissues, or 2) by identifying areas of the breast with strong scatterers,
i.e., areas of the breast where the dielectric properties differ from the normal
surrounding tissue, suggesting the presence of tumours.

Microwave tomography algorithms aim to quantify the relative permittiv-
ity and the conductivity of the breast based on the scattered field measured
by multiple antennas; tomographic algorithms are formulated as inverse
problems, and may operate in the time- or frequency-domain. Examples
of tomography algorithms proposed in the context of microwave breast
imaging include Born linear approximations [115], non-linear gradient-based
methods [116], [117], non-linear global methods based on evolutionary al-
gorithms [118], or algorithms incorporating a priori information for example,
from MRI scans [119].

Radar-based imaging algorithms operate by synthetically focusing the
radar return signals to create an image of dielectric scatterers present within
the breast. Most radar-based imaging algorithms are based on the Delay-
And-Sum (DAS) beamformer [120], where all backscattered signals are
time-shifted and summed to a synthetic focal point, resulting in a profile of
backscattered energy in the breast. At points where a tumour exists, the
backscattered signals add coherently, resulting in high energy regions of the
image. On the contrary, reflections from normal heterogeneous breast tissue
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result in low energy regions of an image. More sophisticated beamformers
exist, for example, to compensate for attenuation and phase effects [121],
reward the coherence of reflections from particular synthetic points [122],
or compensate for time-shifting effects [123]–[128]. Recently, a comparative
study of the performance of different radar-based image reconstruction
algorithms with clinical data was published [129]. The results of this study
show that the conventional DAS algorithm can accurately recover the clinical
information contained in the images.

Prior to reconstruction, artefact removal algorithms are used to pre-
process the signals. Backscattered signals are typically dominated by a
number of artefacts resulting from the difference in relative permittivity
between the immersion medium, the skin, and the interior of the breast. Of
these, the most significant reflections arise in the early time of the signal, from
the immersion medium-skin interface, and the skin-breast interior interface.
This early time-time artefact can be orders of magnitude higher than the
reflection from interior breast tissues, which may consequently mask internal
scatterers (e.g., the tumour) and generate significant clutter in the resultant
energy profiles. Current artefact removal algorithms include rotational
subtraction [130], averaging subtraction [131], or adaptive filtering [132].

2.3.4 Clinical Prototypes

In recent years, several microwave imaging prototypes have been developed
and trialled in clinical settings, albeit with small-to-medium sample sizes.
A number of factors are involved in the design of a prototype, and, as
investigations with microwave systems are only preliminary, no particular
design choice has been deemed ideal thus far [133]. Among the largest trials
published to date were those performed with a tomography-based system
developed by the Dartmouth College, USA [22]–[26], and with the Multistatic
Array Processing for Radiowave Image (MARIA®) system created by the
University of Bristol, UK (now in commercial development) [27]–[31]. The
main findings from these trials are summarised below.

Dartmouth College, United States, developed a system that has been
used in a number of clinical trials since 2000, operating at a total scan
time of 5 min per patient. With their table-based system, the patient lies
prone, and a liquid immersion medium is required to interface between
the antenna array and the breast. Their antenna array is composed of
16 monopole antennas in a multistatic configuration. The Dartmouth
system is tomography-based, and uses a multi-frequency Gauss-Newton
iterative algorithm for image reconstruction. The results from trials using
the Dartmouth prototype with a healthy female population between the ages
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of 40 and 79 (the largest of the healthy trials counted 43 volunteers) [22]–[24]
suggested that the dielectric properties of breast tissues may be higher than
reported in previous ex vivo studies, for example [103], [104]. The studies
with healthy women also showed that water content in breast tissues dictates
their dielectric properties, and observed a frequency-dependent decrease
in conductivity and relative permittivity as the fat content increases. An
additional study looked at the differences between benign and malignant
tissues, by examining the same prototype with 53 healthy women and 97
women with abnormal findings, all aged between 35 and 81 [25]; this study
noted that a difference exists in the dielectric properties of malignant tissues
(masses greater than 1 cm3) compared to benign tissues, particularly, the
conductivity. The most recent study using the Dartmouth prototype imaged
8 patients undergoing neoadjuvant chemotherapy for locally advanced breast
cancer, where each patient was imaged 5 to 8 times over the course of the
treatment [26]. In this study, conductivity was shown to be well correlated
to the pathological response after 30 days of treatment, i.e., the decrease in
tumour size due to the chemotherapy treatment was well correlated with a
decrease in the conductivity of the tumour region. Once again, this result
suggests that conductivity might be a key indicator for differentiating benign
and malignant tissues.

The MARIA® system is integrated in an examination table where the
patient lies prone and the system uses a coupling shell. The antenna array
rotates to gather different views of the breast and uses 60 slot antennas in a
multistatic configuration, for a total scan time of 10 s. The system operates
in the frequency domain, and uses a radar-based image reconstruction
algorithm, in combination with a rotational subtraction artefact removal
algorithm. Several studies have been published detailing the results of
the clinical evaluation of the MARIA® system with healthy patients and
patients presenting with abnormal findings [27]–[31]. The latest study
reports the results for a population of 223 women aged 32 to 89, where
80 had confirmed diagnoses of cancer [31]. Overall, this study reports a
75% sensitivity in detecting cancer, but interestingly, the sensitivity is as
high as 86% when considering only the population of women who presented
with dense breasts. This result is a positive indication towards the use of
microwave breast imaging, as the current de facto breast imaging modality,
mammography, is known to underperform with denser breasts. Additionally,
results from trialling the MARIA® system also show that it is potentially
possible to automatically discriminate between benign and malignant breast
tissues based on their frequency-dependent dielectric response [29].

Other microwave breast systems have been developed by research groups
worldwide. Although only trialled with a small number of patients (maximum
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of 13 patients), the results are in line with the Dartmouth and MARIA®
findings. Some examples include:

� The Tissue Sensing Adaptive Radar (TSAR) system developed by the
University of Calgary, Canada [32]: this is a table-based system requiring
an immersion medium, which operates in the frequency-domain and uses
Vivaldi antennas in a monostatic configuration. This system operates at
a scan time of 30 min per patient, and uses a DAS algorithm to compute
images of the breast. The group from the University of Calgary has also
developed a complementary system to estimate the bulk permittivity
of breast tissues at microwave frequencies [134]; accurate and patient-
specific permittivity estimation is of great interest as it may lead to more
accurate images of the breast;

� The system developed by the Southern University of Science and Techno-
logy, China [33]: a table-based system requiring an immersion medium,
which operates in the frequency-domain and uses horn antennas in a
multistatic configuration. This system operates at a total scan time of
4 min, and uses adaptive filtering for artefact removal in combination
with the DAS algorithm to create an image of the breast;

� The system from Shizuoka University, Japan [34], [35]: this is also a
table-based system, but uses a coupling shell. This system operates in
the frequency-domain and uses an array of antennas in a multistatic
configuration. The total scan time with this system is 3 min, and it uses
a rotational subtraction artefact removal in combination with DAS to
create an image of the breast;

� The hand-held system of Hiroshima University, Japan [36]: this system
was designed to be used with a patient lying supine on an examination
table, and it uses a coupling shell to interface between the antennas
and the breast. The Hiroshima system is radar-based, using the DAS
algorithm in combination with averaging subtraction artefact removal,
and operates in the time-domain;

� The wearable system of McGill University, Canada [37]: the wearable
system is integrated in a bra, and uses an antenna array in a multistatic
configuration. The total scan time of this system is 5 min, and it uses a
differential artefact removal algorithm in combination with DAS, operat-
ing in the time-domain. In contrast to the previous systems, the McGill
wearable prototype was designed as a breast monitoring tool, where
patients are repeatedly scanned to identify changes in the breast tissues
over time. In their trial, scans were found to be repeatable, although
sources of variability were found, such as patient positioning.
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The results from the prototypes discussed in this section are indicative
of the potential behind microwave technology to image the breast. In most
of the studies published to date using microwave technology, the main aim
has been imaging the breast to detect cancer, i.e., to identify the presence
of malignant tumours within the breast. However, as the field progresses, it
becomes important to understand whether the technology has the potential
to differentiate between true positives and true negatives, namely, can
microwave systems discern between benign findings, such as cysts, and
invasive tumours? Can imaging alone achieve such a goal, or are other signal
processing applications necessary, such as machine learning?

In Section 2.4, the differences between benign and malignant tumours
from the perspective of microwave systems are summarised, followed by a
review of the state-of-the-art in one the core topic of this thesis: the use
of machine learning algorithms to identify the presence and type of breast
tumours with different levels of malignancy.

2.4 Machine Learning Applied to

Microwave Breast Technology

As discussed in Section 2.3.4, microwave images generated from clinical data
in small scale pilot trials have suggested it may be possible to detect breast
cancer, even in dense breasts [31]. However, determining the malignancy of
detected tumours has not been a primary concern in these clinical studies,
leaving an open question as to the potential of microwave technology to
diagnose abnormal breast findings. In principle, a number of avenues could be
explored to distinguish breast tumours according to their level of malignancy,
including:

� The dielectric properties of tumours may provide indications that a
contrast between benign and malignant tumours exists;

� The detection of microcalcifications, as these have been shown to appear
in areas of rapidly dividing cells;

� The shape of tumours, as there is extensive clinical evidence indicating
that the shape of benign and malignant tumours differs substantially,
particularly, the spiculation (i.e. prominent spike-like protrusions) at
the margin of a tumour.

Additionally, from a microwave perspective, the diagnosis of breast
tumours could rely on:
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� Images (e.g., radar or tomography-based);

� Backscattered signals.

Concerning the use of dielectric properties for the diagnosis of breast
tissues, there are positive preliminary indications from small patient stud-
ies. One study by Dartmouth College, USA, used their microwave tomo-
graphy system to image women with diagnosed cancer, fibrocystic disease,
fibroadenomas and other benign abnormalities [25]; the resultant tomo-
graphic images suggest that a difference does exist in the dielectric proper-
ties of benign and malignant breast tumours, particularly the conductivity.
More recently, the radar-based MARIA® system has also been used with
women with diagnosed cancer and women with fibroadenomas and cysts,
and results also show that the dielectric properties of benign and malignant
breast abnormalities might differ [29].

However, further investigations characterising the range of properties
of benign and malignant tumours are needed before microwave diagnosis
systems solely based on dielectric properties are viable. As discussed in
Section 2.3.1, the standard set of dielectric properties for breast tissues is
based on the studies by Lazebnik et al. [103], [104]. These studies refer
to measurements performed in healthy (i.e., non-cancerous) or cancerous
tissue samples (DCIS, LCIS, and infiltrating ductal and lobular carcinoma);
tissue samples of benign abnormalities were not analysed in Lazebnik’s
studies. To date, no standard set of measurements exists that explores the
differences between the relative permittivity and conductivity of benign
breast abnormalities and in situ and invasive abnormalities.

Another possibility to identify malignancies within the breast is the pres-
ence of microcalcifications. As shown in Section 2.2.2.3, microcalcifications
are correlated with the appearance of malignant findings, particularly DCIS.
However, while microcalcifications are visible in mammographic images,
they are not well characterised in the microwave frequency range. To date,
most clinical studies have not reported the detection of microcalcifications
in radar or tomography images; additionally, the dielectric properties of
microcalcifications are not known.

Finally, the shape and spiculation of tumours are widely recognised mark-
ers for malignancy [88], [135]–[137]. Benign tumours are roughly elliptical
and usually have well circumscribed margins, and malignant tumours have
irregular shapes and are surrounded by a radiating pattern of spicules [63],
[135]–[137]. In Fig. 2.4, examples of tumours detected in mammograms are
shown [138]. In Fig. 2.4a, a well-circumscribed, palpable, benign tumour is
shown in the lower quadrants of the right breast of an 83 year-old woman.
In Fig. 2.4b, a malignant tumour detected in the upper-outer quadrant of
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(a) (b)

Figure 2.4: Example of breast tumours detected in mammograms, cranio-caudal view.
In (a), a well-circumscribed, palpable, benign tumour is shown in the lower quadrants of
the right breast of an 83 year-old woman. In (b), a malignant tumour detected in the
upper-outer quadrant of the left breast of a 63 year-old women is shown; this tumour is
irregularly shaped and spiculated. From [138].

the left breast of a 63 year-old women is shown; this tumour is irregularly
shaped and spiculated.

In principle, shape information could be captured by reconstructed
microwave images. However, image reconstruction may involve filtering
of the backscattered signals, resulting in a loss of the phase information
contained in the acquired backscattered signals. Additionally, images may
not be able to recover the shape information of the targets, with the level of
resolution required for an accurate differentiation of benign and malignant
tumours according to their shape and level of spiculation. Overall, with
the current knowledge and state-of-the-art in microwave breast systems,
backscattered signals are expected to preserve more information to inform
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on the level of malignancy of a tumour.
Previous studies have shown how microwave backscattered signals change

when tumours are present within the breast, and also when tumours of dif-
ferent sizes or shapes are encountered [40]–[53]. The same set of studies,
though tested with relatively simple datasets, have also demonstrated that
classification and machine learning algorithms are able to capture and learn
from these shape differences in backscattered signals, without the need to
reconstruct images. Machine learning techniques may be directly used with
microwave backscattered signals and may provide more detailed informa-
tion about the tumour, although it is yet to be determined whether the
performance of such algorithms is adequate in clinically-complex scenarios.

In the remainder of this section, the use of machine learning with mi-
crowave signals is reviewed from two perspectives, first, Section 2.4.1 looks
at tumour detection (i.e. identifying if a tumour is present), and second,
Section 2.4.2 examines diagnosis (i.e. determining if a tumour is benign or
malignant).

2.4.1 Detection of Breast Cancer

Support Vector Machines (SVMs) were used in [139] to create probabilistic
breast images indicative of tumour presence. With this method, the breast is
divided into cells and each one is classified for the presence of a tumour; the
output is then transformed to a posteriori probability of tumour presence.
The method was tested with numerical, adipose breast models and cubical
tumours of constant size. The results from this study showed promise in
localising tumours within breast tissue by means of classification. A similar
concept was also implemented later in [140] to create probabilistic maps of
the breast. In this study, Linear Discriminant Analysis (LDA) and SVMs
were used to classify the breast cells as containing or not containing tumour,
and the method was tested on experimental breast phantoms containing
adipose and glandular tissue, including tumour phantoms of different sizes
and shapes.

In [141], a system combining Principal Component Analysis (PCA) for
dimensionality reduction with LDA or SVMs was proposed to classify backs-
cattered signals for the presence of a tumour. The method was tested with
numerical breast models, containing adipose tissue and limited inclusions
of glandular tissue, and tumour models of several sizes and shapes placed
in three different locations within the breast. This study showed promise
in detecting tumours by classifying backscattered signals, but detection
accuracy was shown to decrease when analysing breasts containing more
glandular tissue or smaller tumours. In [142], the same concept and setup
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was used to detect differences between successive microwave breast scans
arising from tumour growth. By using differential signals, tumour detection
performance was increased.

In [143], a similar setup to previous studies was designed to classify
backscattered signals for the presence of a tumour. Numerical breast models
both with and without glandular tissue content were used, and combined
with spherical tumour models of varying size. This study compared the per-
formance of k-Nearest Neighbours (KNN) and SVM, with results confirming
that the use of SVM as the classification algorithm leads to higher detection
performance.

PCA in combination with LDA or SVMs were again used in [144] to
classify backscattered signals collected with an experimental time-domain
microwave breast system. The experimental dataset included adipose breast
phantoms, and tumours of spherical shape and constant size, placed in two
different locations within the breast. This study also showed the potential
of classifying backscattered signals to detect tumours, but reported a lower
detection rate, which is most likely due to the use of real experimental data, as
opposed to numerical models. Interestingly, this study notes that using only
a subset of the available channels (i.e., signals arising from selected transmit-
receive antenna pairs) might improve detection performance, particularly,
the subset of channels in the quadrant closest to the tumour.

In [145]–[147], PCA was combined with ensemble classifiers subject
to a cost function that retrieve only the most informative channels to
decide if a tumour is present in a scan; here, SVMs are optimised to
minimise the false negative rates while simultaneously constraining the rate
of false positives. The method was tested on data collected with the same
experimental time-domain microwave breast system as [144], including breast
phantoms containing adipose and glandular tissue, and spherical tumours
of constant size. The method was also tested on a quasi-clinical dataset,
where simulated ideal tumour signatures were combined with backscattered
signals collected from healthy volunteers. The study found that improved
detection performance can be achieved when using only the channels with
the most meaningful information.

The detection system proposed in [148] expanded previous work to in-
clude multiple feature extraction methods, some based on time-frequency
transformations to decompose the original data; the feature extraction meth-
ods used include empirical mode decomposition, discrete wavelet transform,
dual time complex wavelet transform, discrete cosine transform, and PCA for
comparison purposes. Here, the same cost-sensitive SVMs that retrieve only
the information of the most informative channels were used, and tested on
the same quasi-clinical dataset. In this analysis, the detection performance
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using time-frequency features outperformed classification using PCA, which
has been one of the most widely used dimensionality reduction methods in
microwave tumour classification studies.

In summary, tumour detection studies based on machine learning using
microwave systems performed to date indicate that there is likely to be
much useful information in the backscattered signals to inform decisions
about the presence or absence of a tumour. Some of these studies show
that detection performance can be improved by: using differential signals
which highlight the tumour signature; extracting time-frequency features
of the signals ahead of the classification; and selecting the channels with
the most meaningful classification information. However, most previous
detection studies have been based on numerical data, or experimental breast
phantoms with limited inclusions of glandular tissue and limited variety of
tumour sizes and shapes.

2.4.2 Diagnosis of Breast Cancer

In [42]–[47], several feature extraction methods (PCA, discrete wavelet
transforms, and independent component analysis) were used in combination
with different classifiers (LDA, Quadratic Component Analysis (QDA) and
SVM) to diagnose breast tumours with microwave backscattered signals.
The analysis was based on numerical breast models containing adipose tissue
and limited inclusions of glandular tissue. Tumours were modelled with
several sizes and shapes to represent benign and malignant tumours, and
were located in the centre of the breast or in slightly off-centred positions.
These studies showed promise in using backscattered signals to diagnose
tumours, and suggested that classifying tumour size ahead of tumour shape
may improve diagnostic performance.

The suitability of neural networks to classify backscattered signals was
also assessed. A combination of genetic algorithms and neural networks with
discrete wavelet transforms was proposed in [48], [49], and tested on a similar
numerical dataset to the studies above. As before, diagnostic performance
was improved by separating tumours based on their size before classifying
them as benign or malignant, and by investigating which channels provide
the most useful information.

The same numerical dataset was also used in [50] to investigate the
potential of self-organising maps to track the development of a tumour from
a benign state to different levels of malignancy. This study showed potential
in distinguishing between different shapes of tumours.

The effect of signal pre-processing on the diagnostic performance when
dealing with more complex breast models has also been investigated [53].
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In this study, MRI-derived clinically-realistic breast models [149] were used,
and tumour models of several sizes and shapes were included and located in
various positions within the breast. The hypothesis behind this study was
that diagnostic performance might improve if the backscattered signal is
windowed to contain only the tumour signature. The classification framework
relied on PCA in combination with SVMs. Results from this study showed
that the windowing methodology helped improve diagnostic performance
when examining more complex breast models.

Experimental datasets have also been used to assess the performance
of diagnosis systems, by using PCA in combination with SVMs, LDA and
QDA. In [51], [52], tumour phantoms with various sizes and shapes were
immersed in a breast phantom with dielectric properties matching those
of adipose tissue. Importantly, the experimental results presented in these
studies are in general agreement with previous numerical data.

The breast tumour diagnosis studies summarised in this section indicate
that the shape of a breast tumour influences its signature within a backs-
cattered signal, potentially providing an approach to allow machine learning
models to learn how to distinguish between benign and malignant tumours.
These studies have also looked at the effect of intelligently using the most
informative channels. In addition, these studies have concluded that it is
beneficial to separate tumours according to size before final diagnosis, and
also, that further signal pre-processing methodologies should be explored
when dealing with more complex breast models, for example, breast models
with increased content of glandular tissue.

2.5 Conclusions

The topic of screening mammography for breast cancer in asymptomatic
populations is timely and of much current debate. Many different studies
have been published on the issue, with the purpose of determining whether
screening mammography offers an acceptable compromise between overall
reduction in breast cancer mortality, and increase in the rates of false
positives and overdiagnosed cancers, with studies now suggesting that the
long-term benefit of screening with mammography might be minimal. In
this context, and considering that early detection is widely accepted as the
cornerstone of breast cancer care, a need exists for new modalities that are
capable of overcoming the limitations of mammography.

Microwave imaging for breast cancer detection has shown great promise,
and in fact, preliminary clinical studies have shown increased sensitivity
of microwave imaging systems in detecting breast cancer in dense breasts.
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However, furthering the field of microwave technology for breast cancer now
means understanding if the technology also has the potential to accurately
differentiate between true positive breast tumours (i.e., breast cancer) and
true negative findings (for example, cysts). Recently, small scale studies have
demonstrated the potential of automated software using machine learning
algorithms to classify backscattered signals and diagnose breast cancer.

In this chapter, the breast anatomy was reviewed, including a description
of breast and malignant abnormal breast findings. This was followed by
a summary of the guidelines for the clinical assessment of breast cancer,
whether in symptomatic or asymptomatic populations. The core principles
of microwave systems were described next from a number of different per-
spectives. Finally, the literature on the topic of microwave breast diagnosis
using machine learning was reviewed.

The work described in this thesis attempts to address some of the
limitations in current practice. The first objective of this research is the
development of clinically-realistic breast and tumour phantoms for use
in system development and evaluation. The next chapter describes the
development of numerical and experimental tumour models in detail.
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CHAPTER 3

Development of Numerical and

Experimental Phantoms

3.1 Introduction

Prior to clinical translation and acceptance, any new technology designed
to investigate the human body must be thoroughly assessed. Evaluation of
medical systems often relies on the use of phantoms, which are fabricated
to mimic the properties of interest of relevant body structures and should
respond in a similar manner to how human tissues will interact with the
system.

For breast cancer detection and diagnosis systems using microwave
technology, phantoms should include an accurate representation of the
breast and abnormal breast findings. Suitable phantoms should include:

1) Breast models of several shapes and sizes;

2) Varying distributions of the different tissues within the breast model;

3) Tumour models representing different breast abnormalities (benign and
malignant);

4) Tumour models of different sizes and shapes;

5) Accurate representation of the locations of tumours within the breast;

6) Accurate dielectric properties of all breast and tumour tissues.

Calcifications are not usually included in phantoms designed to test
microwave breast systems, as their response is not well characterised in the
microwave frequency range. Calcifications will not be considered in the
remainder of this work.
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In the research described in this thesis, two sets of phantoms were
designed that meet the above criteria for designing clinically meaningful
breast and tumour models: firstly, a numerical tumour model set was
developed, and secondly, an experimental breast phantom set that includes
physical implementations of the numerical tumour models from the numerical
set.

The numerical phantom set consists of tumour models derived from
clinical information, where a clinical procedure was employed to validate
the applicability of the models. The numerical tumour phantom set is
described in detail in Section 3.2, and resulted in the original research
article titled “Development of Clinically Informed 3-D Tumor Models for
Microwave Imaging Applications”, published in IEEE Antennas and Wireless
Propagation Letters (2015).

An experimental evaluation phantom set was also developed — the
Breast Imaging and Diagnosis (BRIGID) phantom set, which is described in
detail in Section 3.3. The BRIGID phantom set consists of breast phantoms
with varying compositions of internal breast tissue, and tumour phantoms
that differ in their shape, size, and level of spiculation. The phantom
set was fabricated with a modular design, allowing for 156 combinations
between breast and tumour models, to represent a variety of breast cancer
scenarios. The BRIGID tumour phantoms were developed based on the
numerical tumour models described in Section 3.2, which were verified by
clinicians, thus confirming the applicability of the experimental phantoms
to the microwave breast systems testing. The BRIGID phantom set was
originally presented in the journal publication titled “Microwave Breast
Imaging: Experimental Tumour Phantoms for the Evaluation of New Breast
Cancer Diagnosis Systems” published in Biomedical Physics and Engineering
Express (2018).

3.2 Breast Tumour Model Development:

Numerical Approach

In this section, the numerical tumour models designed to test microwave
breast cancer detection and diagnosis systems are described. A brief overview
of other works in the field is first presented in Section 3.2.1, followed by
a description of the mathematical model used to produce the clinically-
informed tumour phantoms in Section 3.2.2. Finally, the procedure followed
to validate the proposed models is described in Section 3.2.3.
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3.2.1 Overview of the Field

For the numerical testing of microwave systems for breast cancer detection
and diagnosis, three main elements are required: an electromagnetic simu-
lation platform, breast models, and tumour models. The electromagnetic
simulation software should accurately model the propagation of electromag-
netic signals in the biological tissues. Additionally, the breast and tumour
models should be anatomically-accurate and representative of clinical cases.

The Finite-Difference Time-Domain (FDTD) numerical method is an
electromagnetic simulation approach that has been widely used in microwave
breast imaging studies [150]. The frequency dependent nature of biological
tissue properties can be incorporated into the FDTD numerical model of
the breast through a Debye formulation, allowing for accurate modelling of
the scattering of electromagnetic signals.

In the context of breast modelling, earlier studies relied on describing
the breast with hemispherical or conical shapes, usually including simplified
representations of the distributions of breast tissues. However, more recent
studies now often make use of the numerical breast phantom repository
developed by the University of Wisconsin Computational Electromagnetics
Laboratory (UWCEM) [149], [151].

The UWCEM repository contains volumetric anatomically-realistic breast
models derived from MRI images of patients, with a variety of shapes and
sizes and distributions of fat and glandular tissues within the breast. The
breast models are also mapped to the dielectric properties of normal and
malignant breast tissues as measured by Lazebnik et al. [103], [104], and
can be directly used with the FDTD numerical simulation method.

In the context of tumour modelling, three main methods are used in
numerical studies to represent abnormal findings of the breast:

� Simplified approaches, by representing tumours as spheres, e.g. as with
the numerical analyses presented in [152], [153];

� Gaussian Random Spheres (GRS) [41], [43];

� Polygonal approximations [40], [61], [136], [154].

GRS are stochastic shape models that can be used to create irregularly
shaped objects. The two governing properties of the method are the mean
and the covariance function of the radius of the GRS; by altering these
parameters, tumour models with several sizes, shapes and margin types can
be created. The application of the GRS method to produce breast tumour
models was initially described in [41], which resulted in the creation of
models with smooth margins to mimic benign tumours, and microlobulated
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and spiculated models to represent malignant tumours. The GRS method
was also used in [43], where a database of breast tumours of four types was
developed: smooth and macrolobulated models to represent the properties of
benign tumours, and spiculated and microlobulated to represent malignant
tumours. Despite representing accurate anatomical information, to date,
tumour models created by the GRS method have not been validated in a
clinical environment.

Another approach proposed in the literature consists of describing breast
tumours as polygonal approximations. In a study analysing tumours found in
mammograms [136], it was observed that the tumour boundaries hand-drawn
by radiologists on the mammograms are well approximated by irregular
polygons. This initial concept was later further explored in [40], resulting in
the proposal of an algorithm to model breast tumours; with this algorithm,
tumours are modelled as ellipses, and an irregularity is created at the
margin to mimic different tumour shapes. The algorithm proposed in [40] by
Chen et al. allows the creation of models with irregular shapes and margin
types, to represent malignant tumours, and models with regular shapes
and smooth margins, to represent benign tumours. Despite being derived
from mammographic information, the tumour models proposed with this
method were two-dimensional; additionally, the applicability of the models
in a clinical setting was not validated.

Finally, the location of the tumours within the breast tissue is also a
concern in designing clinically-accurate breast and tumour models to use
with microwave systems. Once more, the tendency in many numerical
studies has been to simplify the models by placing tumours in the centre
of the breast, or in slightly off-centred positions. Accurate breast models
should include tumours appropriately localised within the breast tissue as
per the findings described in Table 2.1.

In summary, while tumour models have been proposed that mimic the
smooth or spiculated nature of benign and malignant tumours respectively,
little information has been provided as to their clinical suitability. The
tumour models existing in the literature have generally not undergone a
validation procedure based on clinical practice, potentially limiting their
applicability for clinically-realistic microwave breast studies. Given the
limitations with current approaches to tumour modelling, in the following
section a new tumour modelling method is presented.

3.2.2 Mathematical Modelling

The tumour modelling method proposed in this research extends previous
work by Chen et al. from 2008, which generated accurate tumour models by
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means of polygonal approximation [40]. In turn, Chen’s method relies on a
previous study, which had shown that tumours delineated in mammograms
are well matched to polygonal approximations [136].

The proposed algorithm is based on the principle that the shape of a
tumour resembles an ellipsoid:

d2cos2(θ)sin2(ϕ)

a2
+
d2sin2(θ)sin2(ϕ)

b2
+
d2cos2(ϕ)

c2
= 1 (3.1)

where (d, θ,ϕ) correspond to the spherical coordinates that describe the
ellipsoid; here, the distance of each vertex to the centre of the ellipsoid, d, is
a function of the two angles (θ,ϕ). The ellipsoidal behaviour is controlled
by pre-specifying the lengths of each semi-axis, (a,b,c).

The ellipsoid is modelled as a polygon that consists of a series of triangular
faces interlinked together (each face thus containing three vertices). There
is a 1:1 relationship between the number of faces of the polygon and the
number of desired spicules of the resultant tumour model. It should be noted
that the number of pre-specified triangular faces also influences the width of
each spicule. Then, an extended version of Chen’s criterion of distortion is
applied as described below. For each vertex of the polygon, d(θ,ϕ) is altered
according to the value of s, which is a parameter controlling the degree of
spiculation at the surface of the tumour:

d′(θ, ϕ) = n.[d(θ, ϕ).(1 + µ(θ, ϕ))] (3.2)

where µ ∈ U [−s,+s], d′ is the new distance to the centre after the above
modification is applied, and U denotes the uniform distribution from which s
is randomly chosen. The degree of spiculation satisfies 0 ≤ s ≤ 1, such that
s = 0 produces a perfectly smooth border and s = 1 produces the maximum
degree of spiculation. A novel element of this method is the parameter n,
which is defined as the proportion of the tumour’s surface area to be covered
with spicules; here, 0 ≤ n ≤ 1. The algorithm can be selectively applied to
different portions of the tumour, which further allows for greater flexibility
in generating different models with specific characteristics.

Figure 3.1 shows examples of tumour models generated with the proposed
method, where each model is shown in the Head-to-Toe (H-T), Left-to-Right
(L-R) and Back-to-Front (B-F) axes; the examples shown in this figure
highlight the versatility of the proposed method in generating several types
of tumour models. The main features of the tumour models are listed below:

1) Even distribution of spicules on the surface of the tumour model, as
shown in Fig. 3.1a, Fig. 3.1c, Fig. 3.1e;
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2) Spicules limited to one portion of the surface of the tumour, as shown in
Fig. 3.1b,

3) Spicules located at non-adjacent portions of the surface of the tumour,
as shown in Fig. 3.1d;

4) A variety of degrees of spiculation at different locations on the tumour
surface, as represented in Fig. 3.1f.

This procedure is applied to the tumour volume as a whole (as opposed
to stacks of slices of the polygon), in an attempt to mimic the natural
growth of a tumour within the breast. The algorithm outputs a logical array
wherein each voxel lies inside or outside the tumour, thus facilitating ease
of integration into a full numerical breast model.

The following subsection discusses the methodology implemented to
validate clinical applicability of the proposed tumour models.

3.2.3 Clinical Validation

One significant novelty of this work is the clinical validation of the tumour
models generated with the proposed method. This validation study involved
two independent approaches. Firstly, tumours found in MRIs of the breast
were reproduced with the proposed algorithm, and the Structural Similarity
(SSIM) metric was used to evaluate the result [155], by estimating the degree
to which structural elements in the tumour are preserved. Secondly, breast
cancer radiologists assessed the accuracy of the tumour models generated
with the proposed method, while also labelling the models according to their
level of malignancy.

Breast MRIs were obtained through The Cancer Imaging Archive [156]
and are a part of the Reference Image Database to Evaluate Therapy
Response (RIDER). This database has the benefit of containing 5 breast
MRIs where tumours have been previously identified and segmented, thus
facilitating their use for the purpose of this study.

For each of the 5 tumour models extracted from RIDER (these models
are referred to as “original”), the degree of spiculation at each point on the
surface of the tumour was computed, by solving Eq. (3.2) for the degree of
spiculation s:

s(θ, ϕ) =
d′(θ, ϕ)

d(θ, ϕ)
− 1 (3.3)

Then, the proposed modelling algorithm was used to replicate the tu-
mours extracted from RIDER. A slice-by-slice Structural Similarity (SSIM)
analysis was performed between all original and replicated models; here, the
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Figure 3.1: Tumour models generated with the proposed algorithm for varying sizes,
shapes and degrees of spiculation (s). Mean radii for the models vary between 3 mm
and 10 mm. Degrees of spiculation: (a) s = 0.08, (b) s = 0.2, (c) s = 0.3, (d) s = 0.6
(e) s = 0.8, (f) s = 0.2 and s = 1. Each tumour model is shown in the Head-to-Toe
(H-T), Left-to-Right (L-R) and Back-to-Front (B-F) axes.
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average original/replicated SSIM index obtained for all slices was 0.77. The
slice-by-slice SSIM indices were also computed between all original models
and the baseline ellipsoids used to initialise the algorithm in each case. This
time, the average original/ellipsoid SSIM index obtained for all slices was
0.47. The improvement in the original/ellipsoid (0.47) to original/replicated
(0.77) SSIM indices suggests that, firstly, simplistic ellipsoids are poor rep-
resentations of breast tumours found in clinical practice, and secondly, that
the proposed modelling algorithm can accurately generate tumours found in
clinical practice.

As an example, Fig. 3.2a and Fig. 3.2b show a 2D coronal representation
of one of the original tumours and the replicated 3D model, respectively,
where the brightness of each pixel represents the quantity of tissue in that
particular vertical region of the model. The baseline ellipsoid is displayed in
Fig. 3.2c, and the results of the slice-by-slice SSIM analysis are displayed in
Fig. 3.2d.

In addition, 3 independent radiologists examined 35 different models
produced by the proposed method. The radiologists were shown images
such as the ones in Fig. 3.2; this representation was chosen since it attempts
to recreate the general properties of mammograms, which are the most
frequent breast images seen in clinical practice and therefore of a form quite
familiar to radiologists. The radiologists were asked to evaluate the shape
and margin of the models and label them as benign (BI-RADS 1 and 2),
suspicious (BI-RADS 3 and 4) or malignant (BI-RADS 5); an extra class
labelled “other” was included to ensure the radiologists had the option to
indicate that the tumour models in this study were not representative of
clinical findings. The results of this clinical validation study are described
below:

1) For 29% (10) of the tumour models, the decision between the three
radiologists was unanimous. For 63% (22) models, two out of three
radiologists agreed on the label. Finally, there was no consensus between
the radiologists’ assessment for the remaining 8% (3) models;

2) Based on a majority vote, a total of 6 models were labelled as benign,
16 models were labelled as suspicious, and 10 models were deemed
malignant.

It should be noted that none of the radiologists labelled any of the models
as “other”, confirming the models are clinically representative. However,
labelling the level of malignancy of the models proved to be more difficult.
This result is due to the fact that patient outcome, i.e. level of malignancy
of a tumour, is not typically assessed by clinicians from one single feature
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Figure 3.2: Coronal representations of numerical tumour models, where the brightness
of each pixel represents the quantity of tissue in that particular vertical region of the
model. (a) Tumour extracted from the Reference Image Database to Evaluate Therapy
Response (RIDER) database. (b) Tumour model replicated with the proposed method.
(c) Baseline ellipsoid used to initialise the modelling algorithm. The white dashed arrows
indicate areas of similarity between images. The images are presented as generated,
with no post-processing to improve quality. In (d) the slice-by-slice Structural Similarity
(SSIM) comparison for this tumour is shown.

identified on a breast image, but rather from a large combination of features,
including personal history of the patient and morphological assessment of
the images.

Further discussion also revealed that any spiculation at the margin of a
tumour is usually considered as a reason for suspicion by clinicians; patients
who present with breast images revealing any suspicious features are usually
forwarded for biopsy. These results are significant since they suggest a
clear distinction between establishing the need for tissue biopsy and patient
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outcome, thus providing great scope for further investigation on classification
schemes for breast cancer.

3.3 BRIGID Set: Experimental Breast and

Tumour Phantoms

In this section, the BRIGID experimental phantom set is introduced, which
includes breast and tumour phantoms suitable for testing microwave breast
cancer detection and diagnosis systems. The BRIGID tumour phantoms
were based on the numerical tumour models described in Section 3.2, which
were subjected to a clinical validation process. The experimental phantoms
are thus expected to be clinically-realistic and applicable for the testing of
microwave breast systems.

An overview of the experimental phantoms currently used in the literature
is first presented in Section 3.3.1. The fabrication protocol is then presented
in Section 3.3.2, followed by a description of the dielectric properties meas-
urement method in Section 3.3.3. Section 3.3.4 describes how the different
phantom tissues were fabricated and characterised, and finally, the BRIGID
platform of breast and tumour phantoms is described in Section 3.3.5.

3.3.1 Overview of the Field

In addition to being anatomically and clinically-representative, experimental
phantoms should be repeatably and cheaply fabricated, dielectrically and
mechanically stable over time, and flexibly but reliably reconfigured for a
variety of test scenarios. With this in mind, several phantoms have been
recently proposed to represent the shapes and dielectric properties of breast
tissues. The available phantoms mostly differ in the type of Tissue-Mimicking
Material (TMM) used to model the breast and tumour tissues, as well as
the shape chosen to represent the breast.

Oil-in-gelatin mixtures have been used in [157]–[159] to produce breast
phantoms with varied shapes and interiors. Target dielectric properties can
be controlled by mixing different percentages of oil in the gelatine matrix.
However, these phantoms are very sensitive to environmental exposure and
have a limited shelf-life, with [158] reporting a significant change in their
dielectric properties over a six month period.

Triton X-100-based liquid mixtures have also been proposed as TMMs
[160], [161], where the target dielectric properties of breast tissues can be
reproduced by varying the proportions of the Triton X-100 in water or saline.
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Triton X-100-based phantoms are dielectrically stable over temperature and
longer periods of time when compared to the oil-in-gelatin mixtures.

Liquid-based phantoms require the use of external and internal shells to
separate the target breast tissues. For example, in [162], [163] 3D-printed,
MRI-derived skin and glandular plastic shapes are used in combination with
liquid Triton X-100 mixtures to produce anatomically-realistic phantoms.
However, one recent study has determined that the plastic shell may have a
substantial effect on the measurements, ultimately impacting the fidelity of
the backscattered signals and the images produced [164].

Polyurethane has also been proposed as a TMM, where the dielectric
properties are controlled by adding carbon black and graphite powders to
the rubber mixture [165]. This material was used in the development of
modular phantoms in [166]. Here, the interior of the phantom is solid but a
hole is left for inclusion of a target. With this modular design, targets can
be reliably and repeatably inserted in the same position. Furthermore, the
long-term stability of this phantom material has been previously assessed
in [166] and other imaging modalities have been used to characterise the
consistency of the material [167].

More recently, early-stage studies have proposed new TMMs to be used
in the construction of multi-modality phantoms. In [168], new TMMs are
described that are able to match the dielectric and acoustic properties
of fat and glandular tissues, skin, muscle and tumour tissue, with the
aim of tailoring suitable synthetic materials for microwave and ultrasound
applications simultaneously.

Besides the choice of TMM, the experimental phantoms described above
also differ in the dielectric properties obtained for each of the breast tis-
sues. In Table 3.1 and Table 3.2, a summary is presented of the relative
permittivity and conductivity, respectively, of fat, skin, glandular and tu-
mour tissues obtained in each of the experimental phantoms available in
the literature. In both tables, the median dielectric properties measured by
Lazebnik et al. [103], [104] are also included for comparison. Both tables
indicate that the absolute dielectric properties of breast tissues vary across
experimental phantoms; however, in relative terms, all breast phantoms
show increasing relative permittivity from fat through skin, glandular and
tumour tissues.

Despite the advances in producing TMMs with reasonable dielectric
properties and anatomically-derived skin and glandular shapes most studies
still only model tumours using basic shapes such as spheres or ellipsoids,
similarly to the numerical case addressed in Section 3.2. As discussed in
Section 2.4, the spiculation at the border of a tumour is widely accepted as
an indicator of its level of malignancy, and this has often not been included in
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Table 3.1: Summary of the range of relative permittivity (εr) for common experi-
mental phantoms for microwave testing. The median relative permittivity measured by
Lazebnik et al. [103], [104] is also included for comparison. Four breast tissues are shown:
fat, skin, glandular and tumour, at a frequency of 3 GHz.

Fat Skin Glandular Tumour

εr εr εr εr

Lazebnik et al. [103], [104] 5 38 47 67

Triton-X-100 [163] 5 — 35–46 52

Oil-in-Gelatin [158] 13 36 32 54

Oil-in-Gelatin [159] 7 38 38–48 —

Rubber-solid [165] 5 24 36 >36

Rubber-solid [166] 6–10 35 36–39 55–65

Table 3.2: Summary of the range of conductivity (σ) for common experi-
mental phantoms for microwave testing. The median conductivity measured by
Lazebnik et al. [103], [104] is also included for comparison. Four breast tissues are
shown: fat, skin, glandular and tumour, at a frequency of 3 GHz.

Fat Skin Glandular Tumour

σ (S/m) σ (S/m) σ (S/m) σ (S/m)

Lazebnik et al. [103], [104] 0.1 1.8 2.1 3.1

Triton-X-100 [163] 0.1 — 1.4–2.0 2.1

Oil-in-Gelatin [158] 0.6 2 1.4 2.5

Oil-in-Gelatin [159] 0.2 1.6 1.6–2.0 —

Rubber-solid [165] 0.2 1.6 3.0 >3.0

Rubber-solid [166] 0.1–0.5 3.0 3.0–4.0 4.0–6.4

the development of experimental phantoms for microwave systems. Accurate
tumour modelling should address the issue of shape and degree of spiculation
and is essential for the thorough evaluation of the potential of microwave
systems not only as a detection method, but also as a way to diagnose the
early occurrences of breast cancer.

To address some of the gaps identified in the literature in the fabrication
of experimental phantoms, new breast and tumour models were designed
based on a mixture of polyurethane, carbon-black and graphite; the suitab-
ility of this TMM to the microwave problem has already been established
in previous studies, for example, [165]–[167]. The polyurethane mixture
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provides flexibility in creating a multitude of breast tissues and tumour
shapes, producing phantoms that are robust and easy to use. In this work,
the dielectric properties measured by Lazebnik et al. [103], [104] are used as
a target for the phantoms’ properties. As discussed in Section 2.3.1, these
properties represent a worst-case scenario, ultimately leading to the creation
of more challenging test cases.

In the following subsections, the fabrication process of the new breast and
tumour models is described, including the methodology applied to validate
the dielectric properties of the produced tissues.

3.3.2 Fabrication Protocol

The polyurethane, carbon-black and graphite mixture described in [165],
[166] was chosen as a TMM in this study as it provides great flexibility
both in recreating the target dielectric properties of breast tissues, and in
producing tumour phantoms with different shapes and levels of spiculation.

A polyurethane base (VytaFlex 20, Smooth-On, Easton, PA, USA) was
first prepared by mixing equal masses of the two liquid precursors to poly-
urethane as per the manufacturer’s instructions. Immediately after, graphite
powder (general purpose powder from Fischer Scientific, Loughborough,
Leicestershire, United Kingdom) and carbon-black powder (acetylene 50%
compressed, 99.9%+ from Alfa-Aesar, Ward Hill, MA, USA) were slowly
incorporated and blended with the polyurethane base. Although the curing
process takes 12–16 hours, it is important to incorporate the powders when
the mixture is most malleable.

The greater the mass percentage of powder, the higher the values of
the dielectric properties of the sample. However, the blended mixture
becomes increasingly difficult to mix as the mass percentage of powder
increases. Small amounts of acetone were also added to the mixture as a
thinning agent, firstly to ensure each sample was evenly mixed, and secondly
to allow for samples with higher relative permittivity to be created. As
previously discussed in [166], it should be noted that acetone has an effect on
the dielectric properties, especially the conductivity, which means mixture
quantities had to be adjusted accordingly to achieve the desired dielectric
property values.

Cuboidal reference samples were prepared and used to determine the
optimal dielectric properties of each tissue type before preparing the final
phantom set. The resulting target mass percentages obtained for each
tissue type are shown in Table 3.3. The following subsection details the
methodology employed to measure the dielectric properties of tissues, and
the validation procedure.
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Table 3.3: Summary of the percentages of the constituent parts by mass used in the
fabrication of each of the tissues layers.

Fat Skin Glandular Tumour

Polyurethane part-A (%) 40.0 32.0 27.5 25.75

Polyurethane part-B (%) 40.0 32.0 27.5 25.75

Graphite (%) 20.0 30.0 41.0 42.0

Carbon-black (%) 0 6.0 4.0 6.5

Acetone (mL/100 g) 0 3.0 4.0 6.0

3.3.3 Dielectric Properties Measurement Method

All dielectric measurements were performed with the Keysight E5063A ENA
Series Network Analyser (Wokingham, Berkshire, United Kingdom) using
the performance probe, where calibration was completed using the standard
three-load procedure. The relative permittivity and conductivity were
extracted from the reflection coefficients automatically using the Keysight
Materials Measurement Suite software, as used in, for example, [169], [170].
Measurements were recorded at a total of 100 linearly spaced frequency
points between 1 and 8.5 GHz. The chosen frequency resolution is widely
used in dielectric properties measurement studies [109], [112], [113], [170]–
[172].

The dielectric measurement system was validated post-calibration through
repeated measurements on a standard liquid, 0.1 M saline solution. Meas-
urements were conducted at 21.2 ◦C, and compared to the known model of
saline from the literature [173]. In this study, accuracy is defined by the
average percentage variation between the known model and the mean of the
measured data, over all frequency points. For the relative permittivity, the
accuracy of the measurements relative to the literature model was found to
be within 1.0%, while for the conductivity, the accuracy was within 3.7%.

To ensure a good contact between sample and probe, all cuboidal ref-
erence samples were first sliced. Visual inspection of the interior of each
sample was performed to assess its consistency. The internal cross-section
of the sample was then sanded smooth.

To assess the repeatability of the probe-sample contact, 10 measurements
were performed, at a fixed location, on a sample of each of the breast layers
modelled in this study: fat, skin, glandular and tumour tissues. Here,
repeatability was assessed as the maximum percentage variation within
measured data, averaged over all frequency points. In terms of relative
permittivity, the percentage variation of the measurements was found to
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be 1.0% for fat, 3.0% for skin, 3.5% for glandular tissue, and 1.9% for
tumour tissues. Regarding the conductivity, the percentage variation of the
measurements was determined to be 7.9% for fat, 4.7% for skin, 5.6% for
glandular tissue, and 5.8% for tumour tissues.

Based on the validation of the measurement setup and the probe-sample
contact repeatability test, the reference samples were characterised. The
dielectric properties were measured at a minimum of 20 scattered points
within the sample. This serves as an indication of the consistency of each
tissue sample. Fig. 3.3 displays the dielectric properties for each of the
breast layers modelled in this study. The curves are plotted such that each
coloured region in the graph represents the raw measured data from all 20
locations in each reference sample. The median dielectric properties of each
tissue type as measured by Lazebnik et al. [103], [104] are also displayed by
dashed lines.

Considering any remaining systematic dielectric measurement error, re-
maining variability in the quality of the probe-sample contact, and the
inherent heterogeneity of breast tissues, it is found that the phantom mater-
ials used in this study display a reasonable match to the target dielectric
properties in many respects. Particularly in terms of relative permittivity,
Fig. 3.3a shows that the contrast achieved between the different tissue types
is similar to the target ones. For example, the glandular-to-tumour contrast
ratio in this study is 1:1.5, while for the target properties the ratio is 1:1.4.

Concerning the skin, Fig. 3.3a shows that the experimental relative
permittivity is lower than the target one. However, previous studies have
already demonstrated that, even despite the lower properties, skin tissue
produced with this method results in backscattered reflections similar to
human tissue [165].

As shown in Fig. 3.3b, the conductivity measured for the tumour tissue
produced in this study is higher than the target. This is a result of the use of
acetone during the fabrication of the tissues. However, conductivity mainly
influences losses in the medium, and due to the typical size of tumours, the
higher loss is not expected to adversely impact the backscattered energy.

The following subsection describes the development of each one of the
breast tissues (skin, glandular, tumour and fat) using the fabrication protocol
from Section 3.3.2, as well as modular phantom assembly.

3.3.4 Breast Phantom Development

Many of the current microwave breast analysis systems in commercial
development are conformal in their design, which means that the breast is
in direct contact with the surface of the prototype. As a result, the breast
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Figure 3.3: Dielectric Properties of Fat (green), Skin (black), Glandular (orange) and
Tumour (blue). (a) Measured relative permittivity (εr); (b) Conductivity (σ). Each of
the coloured regions represents the raw data measured in this study of each reference
sample, for all locations. Also shown are the median dielectric properties measured by
Lazebnik et al. [103], [104], by the dashed lines.

conforms to the shape of the prototype during a scan. With this type of
design, the system can be used without an immersion medium, which is
advantageous in a clinical setting as there is no immersion medium to be
changed between patients. At the same time, the experimental evaluation
of conformal systems requires phantoms that mimic the same type of breast
deformation. Although anatomically-realistic, MRI-derived skin shapes do
not mimic the same type of breast deformation, rendering them unsuitable
for the evaluation of conformal microwave breast systems. For example, the
systems presented in [27], [105] make use of a hemispherical shell to which
the breast is fitted during the scan.

In this study, a 7 cm hemispherical shell was designed and this was used
to inform mould design for the phantom production. In addition, the breast
was modelled using four tissue types, firstly an outer skin layer, internal
glandular structures, tumours and finally the fatty background tissue, with
dielectric properties as described in Fig. 3.3.

To assist in the phantom making process, a variety of moulds representing
different breast shapes were 3D-printed using the Ultimaker 2+ Extended
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(Ultimaker B.V., Geldermalsen, The Netherlands) in PolyLactic Acid (PLA)
filament. Prior to pouring the mixtures described in Section 3.3.2 in the
moulds, each mould was coated in non-silicon mould release (Formula 7,
Ambersil, Bridgwater, England), to allow for each mould and phantom to
be easily separated post-curing. The use of 3D-printed moulds allowed for
greater flexibility while creating new phantoms, ultimately contributing
to the diversity of the breast phantom set. Importantly, all recipes and
processes developed in this study can be accurately reproduced with any
other 3D-printed moulds. The following subsections provide a detailed
protocol of phantom fabrication.

3.3.4.1 Skin Layer

The thickness of human skin around the breast is known to vary between
0.5 mm and 3 mm, depending on many factors such as, the quadrant of the
breast, breast size and hormonal changes [174]–[176]. With this in mind,
the skin was modelled as a layer of material with average thickness 2 mm.

A 3D-printed mould and counter-mould were used to make the skin layer.
The mould was first evenly coated in a layer of the polyurethane mixture
and pressure applied to the counter-mould. The mould and counter-mould
for the skin layer can be seen in Fig. 3.4; the top view of one of the resulting
skin layers is also shown in the same figure.

For each skin layer, the mass was measured, the interior volume recorded,
and the density calculated. The mean density for all skins produced in this
study is 0.98 g/mL, with an associated standard deviation of 0.09. The low
standard deviation is a positive indicator regarding the consistency and
reproducibility of the phantom making process.

The thickness of each skin layer was also measured at 24 points evenly
distributed along the skin surface. As detailed in Table 3.4, the mean skin
thickness ranges between 1.98 mm and 2.99 mm, which is consistent with
the reports of human skin thickness variation. In addition, knowledge of
the skin thickness as a function of location in laboratory phantoms allows
for imaging algorithms to be assessed with regards to any variation that
may exist in the skin surface, and for the efficacy of skin artefact removal
algorithms to be evaluated.

The dielectric properties of each skin layer were also measured at the
same locations as the thickness. As demonstrated in Table 3.4, the low
standard deviation in the dielectric properties is evidence of the consistency
and repeatability of the fabrication and measurement protocol.
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(a) (b)

(c)

Figure 3.4: (a) Mould, and (b) counter-mould used to make the skin layers for the
experimental phantoms. (c) Top-view of an example skin produced in this study.

3.3.4.2 Glandular Tissues

The glandular tissues of the breast were modelled as conical structures
that radiate from the nipple area. These were fabricated in half-cylindrical
moulds, and the resulting half-cylinders were then separated into cones. The
mould and sample glandular pieces from before and after division are shown
in Fig. 3.5.

In total, 3 batches of glandular mixture were made, resulting in 48
conical structures. For each glandular structure, the mass and volume were
measured and the density calculated. As detailed in Table 3.5, the mean
glandular density for each batch varies between 1.19 g/mL and 1.22 g/mL,
with a standard deviation of 0.02 and 0.03, respectively. Once again, this
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Table 3.4: Summary of thickness and dielectric properties for each skin sample, where
M stands for Mean, and SD for Standard Deviation. Dielectric properties (relative
permittivity, εr, and conductivity, σ) are shown at a frequency of 3 GHz.

Thickness (mm) εr σ (S/m)

M SD M SD M SD

Skin A 2.99 0.63 30.3 2.2 1.9 0.4

Skin B 2.53 0.31 31.4 1.2 1.9 0.3

Skin C 2.20 0.42 31.5 1.2 2.0 0.2

Skin D 2.31 0.71 30.1 1.6 2.0 0.4

Skin E 1.98 0.63 29.8 1.2 1.9 0.2

Skin F 2.06 0.36 30.4 1.8 2.1 0.4

Skin G 2.17 0.51 29.4 1.2 2.0 0.3

Figure 3.5: Glandular tissue construction. The half-cylindrical mould used to fabricate
the glandular tissue is displayed on the left. An example of an uncut glandular piece is
then shown in the middle, and the two resultant cones are shown on the right.
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Table 3.5: Summary of density and dielectric properties for each batch of glandular
tissue, where M stands for Mean, and SD for Standard Deviation. Dielectric properties
(relative permittivity, εr, and conductivity, σ) were measured at a frequency of 3 GHz.

Density (g/mL) εr σ (S/m)

M SD M SD M SD

Batch 1 1.19 0.02 41.8 1.7 1.9 0.4

Batch 2 1.22 0.03 43.1 1.9 2.3 0.3

Batch 3 1.19 0.02 45.9 3.5 2.7 0.7

serves as a positive indication of the reproducibility of the phantom making
process, and the consistency of the resulting glandular tissue.

The dielectric properties were also measured for each batch of glandular
mixture, using a similar procedure to that used for the skin layer. This
resulted in a mean relative permittivity ranging between 41.8 and 45.9,
which is well matched to the target dielectric properties (Table 3.1 and
Table 3.2).

3.3.4.3 Tumour Tissues

The shape of breast tumours is an important factor in clinical diagnosis.
Models of tumours were developed based on the ideas presented in Section 3.2,
and a series of approximately spherical, non-spiculated targets was fabricated
to model benign tumours, and a series of spiculated models was fabricated
to model malignant tumours.

After fabrication, each tumour model was photographed, the dimensions
recorded and the mass measured as shown in Table 3.6. Approximately
spherical targets (labelled as low spiculation) were moulded by hand to
the desired dimensions and shape before the polyurethane mixture had
cured. Spiculated targets were fabricated in two ways: some were carved
from spheres post-curing (labelled as intermediate spiculation), while others
were assembled from pieces of the polyurethane mixture once it had cured
(labelled as high spiculation). The top view of all tumour models produced
in this study is shown in Fig. 3.6.

Appropriate contact between dielectric probe and tissue, and the presence
or absence of air gaps in the interface are known to have a significant impact
on the accuracy of dielectric properties measurements [103], [104], [177],
[178]. The sizes and complex shapes of the tumour models used in the
present study meant that a suitable contact between probe and tumour
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Table 3.6: Summary of size and mass of all tumour models. The dimensions of
each tumour model were recorded in the Head-to-Toe (H-T), Left-to-Right (L-R) and
Back-to-Front (B-F) axes.

Spiculation H-T L-R B-F Avg Size Mass

Label (mm) (mm) (mm) (mm) (g)

L1 Low 5.22 6.96 3.69 5.29 0.2

L2 Low 8.36 8.83 6.18 7.79 0.5

L3 Low 10.86 10.95 10.84 10.88 1.5

L4 Low 13.66 13.78 11.95 13.13 2.1

L5 Low 20.36 20.70 19.44 20.17 6.4

L6 Low 11.28 20.48 8.20 13.32 1.9

L7 Low 21.70 13.10 9.11 14.64 2.1

L8 Low 11.87 12.35 20.85 15.02 3.2

I9 Intermediate 11.73 15.04 11.73 12.83 0.9

I10 Intermediate 15.16 16.63 9.66 13.82 1.3

I11 Intermediate 13.17 22.05 17.54 17.59 1.5

I12 Intermediate 18.83 14.07 13.63 15.51 1.7

I13 Intermediate 14.38 26.96 8.80 16.71 1.7

I14 Intermediate 16.58 10.54 22.38 16.50 1.5

H15 High 14.11 17.18 15.51 15.60 0.8

H16 High 20.53 19.53 14.09 18.05 0.9

H17 High 15.79 18.97 3.73 12.83 0.3

H18 High 23.17 17.16 13.36 17.90 0.9

H19 High 23.26 8.73 23.47 18.49 0.9

H20 High 21.32 24.51 21.00 22.28 1.5

H21 High 25.79 12.52 33.00 23.77 1.1

H22 High 21.02 22.80 34.44 26.09 0.8

could not be guaranteed. For this reason, the dielectric properties of each
individual tumour phantom could not be measured accurately.

3.3.4.4 Fat Tissue and Modular Phantom Assembly

The final step in creating a rubber solid phantom is assembling the different
tissues. A skin layer was placed inside a breast mould, and a pre-determined
number of glandular structures were placed inside the skin (Fig. 3.7a), to
produce phantoms with varying contents of glandular tissue. The interior of
the phantom was then filled with fat tissue, which binds all of the different
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Figure 3.6: Top view of the tumour models produced in this study. In the top row,
the low spiculation models are shown, followed by the intermediate spiculation models in
the middle row, and the high spiculation models in the bottom row.

(a) (b)

Figure 3.7: Phantom assembly (top-view): (a) glandular structures inside the skin;
(b) fat layer is used to fill the phantom, leaving a hole for inclusion of a target.

breast tissues together (Fig. 3.7b). While assembling the breast phantom, a
hole was left for inclusion of a target. The hole was created by placing a
3D-printed cylindrical mould (with an external diameter of 2.5 cm) inside
the interior of the phantom, at a depth between 3.5 cm and 4.5 cm. Once
the fat layer set, the phantom was complete. Table 3.7 summarises the
location of the centre of the bottom of the hole in each BRIGID phantom.
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Table 3.7: Coordinates for the centre of the bottom of the hole left for inclusion of a
target in all Breast Imaging and Diagnosis (BRIGID) breast phantoms. The coordinates
are shown in the Head-to-Toe (H-T), Left-to-Right (L-R) and Back-to-Front (B-F)
dimensions.

Breast Phantom H-T (mm) L-R (mm) B-F (mm)

BRIGID 0 15.00 0 38.15

BRIGID 10U 35.00 0 43.15

BRIGID 10E 30.00 0 33.15

BRIGID 15U 35.00 0 33.15

BRIGID 15E 30.00 0 33.15

BRIGID 20E 28.30 0 40.65

BRIGID 30E 25.50 0 33.85

Additionally, the tumours described in Section 3.3.4.3 were assembled
into cylindrical plugs that can easily be inserted in any breast phantom that
follows a modular design. This allows the tumour models produced in this
study to be used in the experimental evaluation of any microwave breast
system, regardless of the prototype shape or design.

The creation of the tumour plugs was achieved by using a 2-part 3D-
printed mould consisting of a base and a cylinder which has an internal
diameter of 2.5 cm. The tumour model was placed at the centre of the bottom
of the plug, and fat mixture was poured into the plug. All tumour models
were placed at a pre-defined angle inside the plug (denoted as “rotation 0”).
Examples of some tumour plugs can be seen in Fig. 3.8. The combination
of a base breast phantom platform with different tumour plugs allows the
generation of many phantom configurations for test purposes.

3.3.5 Test Platform

From the procedures described in the previous sections, the BRIGID
phantom set was created, for the testing of microwave systems for breast
cancer detection and diagnosis.

The BRIGID phantom set consists of 22 tumour models with 3 levels
of spiculation, different shapes, and sizes ranging from 5 mm to 26 mm. All
tumour models were fabricated and assembled into a cylindrical plug format,
according to the procedure described in Section 3.3.4.4. The unique tumour
phantoms enable, for the first time, a comprehensive study into the potential
of microwave systems both for the detection and diagnosis of breast cancer.
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Figure 3.8: Example of some of the tumour plugs to be used in combination with the
breast phantoms. All plugs have an indication of “rotation 0” on the top.

The BRIGID phantom set also contains 7 breast phantoms, with vary-
ing glandular tissue content, between 0% and 30% in volume. All breast
phantoms contain a skin layer which mimics the thickness variation of human
skin, fatty background tissue, and a hole for the inclusion of a tumour. The
distribution of glandular content within each breast is such that either:

1) The glandular tissue is distributed evenly within the breast, and the
tumour is embedded within the glandular content (referred to as “even”
distribution). An example is shown in Fig. 3.9a;

2) The glandular tissue is distributed asymmetrically within the breast; in
this case, the tumour is near the skin and there is no glandular tissue in
its vicinity (referred to as “uneven” distribution). An example is shown
in Fig. 3.9b.

Due to the modular design of the BRIGID phantom set, a total of 154
unique combinations of breast and tumour phantoms are possible, allowing
for a wide variety of breast cancer scenarios to be tested in any microwave
breast system. In Table 3.8, a summary of the properties of the breast
phantoms is shown for completeness. As noted previously, the BRIGID
Phantom Set is stable-in-time as well as robust and easy to manipulate.
By way of example, in Fig. 3.9c, the perspective view of the BRIGID 10U
phantom is shown; Fig. 3.9d shows the top view of the same phantom when
combined with a tumour plug.
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(a) (b)

(c) (d)

Figure 3.9: Example of a Breast Imaging and Diagnosis (BRIGID) phantom. (a) shows
the top view of the BRIGID 10E phantom during the assembly phase; the glandular tissue
is evenly distributed in the breast, and a hole is left for the inclusion of a target, which is
surrounded by the glandular tissue. (b) shows the top view of the BRIGID 10U phantom
during the assembly phase, where the glandular tissue is distributed asymmetrically within
the phantom; here, a hole is left for the inclusion of a target and there is no glandular
tissue surrounding it. (c) shows the perspective view of the complete BRIGID 10U
phantom, and (d) shows the top view of the same phantom when combined with a tumour
plug.
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Table 3.8: Summary of all relevant properties for each one of the 7 Breast Imaging and Diagnosis (BRIGID) breast phantoms. All
values shown are means from all measurements taken. The dielectric properties (relative permittivity, εr, and conductivity, σ) were
measured at a frequency of 3 GHz.

Fat Skin Glandular

εr
σ

Name
Thickness Density

εr
σ Volume Distri- Density

εr
σ

(S/m) (mm) (g/mL) (S/m) (%) bution (g/mL) (S/m)

BRIGID 0 9.00 0.18 A 2.99 1.05 30.30 1.90 0 — — — —

BRIGID 10E 9.00 0.18 F 2.06 0.89 30.40 2.10 10 even 1.15 42.21 2.06

BRIGID 10U 8.79 0.14 G 2.17 1.00 29.40 2.00 10 uneven 1.23 43.44 2.16

BRIGID 15E 7.77 0.11 E 1.98 1.01 29.80 1.90 15 even 1.02 46.23 2.88

BRIGID 15U 7.80 0.11 D 2.31 1.07 30.10 2.00 15 uneven 1.16 45.46 2.57

BRIGID 20E 7.63 0.10 C 2.20 0.98 31.50 2.00 20 even 1.28 43.08 2.26

BRIGID 30E 8.25 0.12 B 2.53 1.07 31.40 1.90 30 even 1.17 41.26 1.81
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3.4 Conclusions

Numerical and experimental evaluation of microwave prototypes using
phantoms is an important testing stage before moving to in vivo and clin-
ical testing. Phantoms enable evaluation of the data acquisition system,
pre-processing methods and final algorithms in a stable and repeatable
environment.

In this chapter, a numerical tumour modelling algorithm was first intro-
duced, which resulted in a journal paper “Development of Clinically Informed
3-D Tumor Models for Microwave Imaging Applications”, published in IEEE
Antennas and Wireless Propagation Letters.

The numerical tumour models generated with the proposed modelling
algorithm result in anatomically-realistic tumours models. The proposed
algorithm was used to replicate tumours found in MRIs of the breast,
achieving high levels of similarity in the produced images. In addition, a
clinical validation study was conducted, resulting in the broad agreement
that the proposed method allows for clinically-representative tumour models
to be produced. The flexibility of the method in generating models of
varying sizes, shapes and degrees of spiculation allowed for the creation of a
database of tumour models, labelled by the consulted radiologists according
to BI-RADS.

The proposed tumour models can be directly combined with the breast
models from the UWCEM database, for FDTD simulation purposes. With
the combined models, a high degree of clinical representation is achieved
when further evaluating any microwave breast cancer diagnosis algorithms.

Based on the ideas described with the numerical tumour models, an
experimental tumour phantom set was also designed, as well as a set of exper-
imental breast phantoms — the BRIGID phantom set. This work resulted
in an original journal contribution titled “Microwave Breast Imaging: exper-
imental tumour phantoms for the evaluation of new breast cancer diagnosis
systems”, published in Biomedical Physics and Engineering Express.

The BRIGID phantom set consists of a set of experimental breast and
tumour phantoms, and exhibits a number of characteristics that render
it suitable for characterisation of prototype microwave systems regarding
their potential to detect and diagnose breast cancer. In particular, the 22
tumour phantoms included in the BRIGID phantom set have varying shapes
and levels of spiculation, to emulate benign and malignant breast tumours.
The modelling of the level of spiculation in experimental tumour phantoms
is a significant novelty over tumour phantoms typically used in previous
experimental studies.
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The tumour phantoms can be dynamically combined with a variety of
breast phantoms that were fabricated to mimic the natural variation in
the density of the female breast. All breast phantoms include a skin layer,
different internal distributions of glandular and fat tissues, and are suitable
for testing any hemispherical conformal microwave prototype, whether an
immersion medium is required or not. The tumour plugs produced in this
study can be combined with any breast phantom that follows a modular
design.

Concerning the remainder of the work developed in this thesis, the
BRIGID phantom set is used for the evaluation of the feasibility of machine
learning-based platforms for the detection and diagnosis of breast cancer with
microwave backscattered signals. Chapter 4 addresses this topic through the
development of such a platform using numerical models, while Chapter 5
furthers this work using data acquired using the BRIGID phantom set.
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CHAPTER 4

Machine Learning for Microwave Breast

Diagnosis: Numerical Study

4.1 Introduction

To date, the majority of microwave breast systems have been developed
with the primary goal of detecting the presence of tumours inside the
breast, usually through the creation and analysis of images. As discussed in
Section 2.4, a small number of studies have demonstrated the potential of
using machine learning and classification algorithms to analyse microwave
backscattered signals in more detail with the purpose of both detecting
tumours and diagnosing their malignancy. These studies have been tested
with relatively simple datasets, usually involving breast models with limited
inclusions of glandular tissue, and tumour models that may or may not
include a range of levels of spiculation to account for tumour malignancy.
In addition, the datasets used to date usually locate the tumour only in the
centre of the breast, which, as noted in Section 2.2.2.4, only accounts for
5.7% of the breast cancer cases found in clinical practice [72].

Notwithstanding the simplicity of the datasets used for testing, the
detection and diagnosis studies described in Section 2.4.1 and Section 2.4.2
have suggested that there may be sufficient information contained in the
microwave backscattered signals to inform both on the presence of tumours
within the breast [140]–[142], [144]–[148], and on the differences in the
shape between benign and malignant tumours [42]–[45], [48]–[53], [179].
Particularly, the same collection of studies has indicated that:

1) Signal pre-processing algorithms may be useful in highlighting the re-
sponse of a tumour, while decreasing the response of the background
noise due to the presence of glandular tissue;
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2) Time-frequency representations of the original data may also be used to
extract meaningful features contained within the backscattered signal;

3) There is a subset of channels in a microwave scan that contain the most
relevant information towards the classification of backscattered signals,
and the use of other channels may actually be detrimental towards the
performance of the classification algorithms.

Despite the positive indications from previous studies, the optimal con-
ditions for the realisation of machine learning-based platforms for the classi-
fication of microwave backscattered signals have yet to be fully understood.

In this chapter, a machine learning platform for microwave breast dia-
gnosis is presented, and is analysed in detail using a numerical dataset of
breast and tumour models that incorporates anatomical and clinical inform-
ation. The use of a numerically-generated dataset is intended to provide a
thorough investigation of the inherent complexities of automated microwave
diagnosis platforms in controlled situations, when no other confounding
factors are present such as, added sources of noise from experimental systems.
This chapter also investigates whether a relationship exists between the
predictive power of backscattered signals and the distribution of antennas in
a microwave scan. In addition, this chapter explores the topic of appropriate
machine learning methodology and how this may impact the fidelity of the
results. The findings of this chapter are further explored in Chapter 5, using
an experimental dataset obtained using laboratory phantoms.

Section 4.2 of this chapter identifies the main challenges still to be
addressed in diagnosing breast tumours with microwaves. Section 4.3 then
details the methodology used in this study, by introducing a three-stage
diagnosis system for addressing some of the primary challenges. The results
are presented in Section 4.4, while Section 4.5 discusses and analyses these
results. Finally, Section 4.6 concludes the chapter.

The work described in this chapter has resulted in an original journal
article titled “Diagnosing Breast Cancer with Microwave Technology: re-
maining challenges and potential solutions with machine learning”, published
in Diagnostics (2018).

4.2 Challenges in Microwave Breast

Diagnosis System Design

In this section, some remaining challenges, as well as potential solutions, in
the development of microwave breast diagnosis systems are discussed from
two perspectives: addressing and exploiting the complexity of backscattered
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signals gathered in clinically-realistic conditions (Section 4.2.1); and devel-
oping a validation methodology for the classification models (Section 4.2.2).

4.2.1 Characteristics of Clinically-Realistic Data

Benign and malignant tumours may present a wide range of sizes, shapes
and spiculations at their margin, which can change the backscattered energy
received at a given antenna. In addition, the shape of the human breast
changes from person to person, as does the distribution of adipose and
glandular tissues inside the breast, which effectively alters the attenuation
along each propagation path. This anatomical diversity leads to equally
diverse backscattered signals, making the design of a single platform for
diagnosis a complex task. Some of the challenges related to breast and
tumour composition can be summarised as follows:

1) Difficulty in capturing the tumour signature from the backscattered
signal due to:

i) Presence of skin, the response from which can be orders of mag-
nitude larger than the tumour signature;

ii) Presence of glandular tissue clusters, which can be confused with
tumour tissue, due to similarities in composition (water content
and generally higher dielectric properties);

iii) Tumours can occur in different locations within the breast, embed-
ded in various breast structures; much existing work has ignored
the location of tumours.

2) Differences in the tumour signature for a given transmit-receive antenna
pair due to:

i) Tumours of different shapes, meaning antennas in different locations
have a different view of the tumour;

ii) Various angles between transmit and receive antennas, which can
affect the phase of the tumour signature;

iii) Varying distances between the antennas and the edge of the tumour.

Particularly regarding 1), a number of strategies have already been pro-
posed in previous studies. Artefact removal algorithms have been proposed,
which deal with large skin reflections and decrease the glandular tissue
influence on the backscattered signals [180], [181]. Previous studies have
also proposed: pre-processing signals by means of windowing to highlight
and time-align the tumour signature [53]; extracting features based on
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time-frequency representations of the data to further capture the character-
istics of the tumour signature while disregarding the background noise [148];
and classifying a dataset according to tumour size before attempting at
classification based on the level of malignancy [42]–[44], [48].

Concerning 2), while some studies have observed an improvement in
diagnostic performance by restricting classification to the signals captured
with the most informative transmit-receive antenna pairs [48], [141], [144]–
[147], no thorough investigation of optimal antenna topology and optimal
use of the information from each channel was found in the literature.

A further set of challenges exists in translating microwave breast diagnosis
systems to experimental and clinical evaluation including: patient positioning
and movement; intra-patient variation due to menstrual cycle and hormonal
changes; and inter-patient variation in breast size, shape and composition.
However, these are beyond the scope of this thesis.

4.2.2 Challenges in Building Robust Classification
Models

For the work presented in this thesis, the creation of a robust machine
learning based system can be considered to encompass three phases [182]:

� Training of the classification model, i.e., determining a set of parameter
values to a model;

� Model selection/refinement, i.e., finding the subset of hyperparameters
that leads to optimal model performance;

� Model validation, which should provide a reliable indication of the
model’s expected performance.

Ideally, a machine learning algorithm trained with a particular dataset
should present with low bias and low variance, meaning it is generalisable
to new, unseen datasets. Common practice is that a model should first be
trained on a subset of the data, and then tested on another unseen subset
of the data. The training set should be as large as possible, to minimise the
variance in training the model, but the unseen subset of the data should
also be representative of the original dataset so the performance evaluation
is meaningful [182], [183].

However, performance evaluation commonly observed in the literature is
prone to variations in approach, and often some degree of error, leading to
overly-optimistic performance reports that may only be representative of a
specific problem. Poor model validation is often due to:
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1) Overfitting of the classification model during the training phase;

2) Overfitting during model selection/refinement;

3) Contamination of the information across the dataset.

Regarding 1) and 2), cross-validation has long been regarded as a good
method to prevent overfitting of the model during training, and it is widely
used as the basis for model selection/refinement. However, it has also been
shown that using the performance obtained from cross-validation during
model selection as the overall performance of the model might be overly-
optimistic, and not generalisable. This effect is often referred to as selection
bias [183], [184].

Poor model validation due to contamination of information (as mentioned
in 3)) is often not addressed in previous studies and requires some explanation.
With a dataset suffering from contamination of information, a machine
classification model might learn from observations (and from relationships
between observations) that it should not have been exposed to, ultimately
leading to results that may be overly-optimistic or even unreproducible.
For example, common feature transformation methods (such as, e.g. PCA)
require the calculation of scores or weights between multiple observations;
good machine learning practice would require that any such methods are first
applied to the training set only, and the same transformations then projected
onto the test and validation sets. Any pre-processing (e.g., normalisation)
or feature-based methods that involve calculating weights across a dataset
should be subject to the same practice.

Many of the issues listed above have not been explicitly addressed in
previous studies. Implementing careful and consistent methodologies for
model validation and performance evaluation should, however, become best
practice. Ultimately, creating classification models without proper validation
methodologies could compromise the usability of microwave breast diagnosis
systems.

In the following section, the methodology designed for this study is
explained, which addresses the challenges discussed above.

4.3 Methods

In this study, a 3-stage platform has been implemented with the purpose
of diagnosing breast tumours using backscattered signals. The proposed
methodology comprises data acquisition, data processing and diagnosis. The
overall diagnostic architecture is depicted in Fig. 4.1.
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Stage 1 consists of the microwave breast scan. To address some of
the issues in dealing with clinically-realistic datasets (as highlighted in
Section 4.2.1), a data processing stage was implemented next (Stage 2),
comprising a Tumour Windowing (TW) approach to isolate signal segments
of interest, and Feature Extraction (FE). The relative benefits of both
algorithms are analysed by comparing the diagnostic performance of applying
one of the following: only TW; only FE; TW in combination with FE, i.e.
feature extraction performed after the tumour signature is windowed from
the original backscattered signal.

Stage 3 consists of diagnosis and encompasses classification of the dataset
through a range of techniques, including the random forest classification
algorithm, antenna grouping, and final decision as benign or malignant. The
concept that some channels (transmit-receive antenna pairs) might be more
useful to improve diagnostic performance is also explored, by implementing
three learning designs, where each classification model makes different use
of the information from each channel. The three classification model types
will be described in greater detail in Section 4.3.3.2.

With the algorithms implemented in Stage 3, this study aims to under-
stand:

1) If the angle between the transmit and receive antennas in a channel
(defined as channel angle for the remainder of this work) relates to its
predictive power;

2) If the distance between the tumour and the channel has an impact on
diagnostic performance;

3) how to best use the information from each channel while adhering to
best machine learning practices.

In addition, a careful model validation methodology was implemented
in Stage 3, to prevent issues like those detailed in Section 4.2.2. The three
stages of the proposed microwave breast diagnosis platform will be described
in greater detail in the following sub-sections.

4.3.1 Numerical Simulation

The numerical dataset of breast and tumour models used in this study was
created with the FDTD formulation, as explain in Section 3.2.1.

MRI-derived breast models were taken from the repository created by
the UWCEM laboratory [149]. All breast models in the repository are
mapped to the dielectric properties of normal and malignant breast tissues
as established by Lazebnik et al. [103], [104]. In total, 3 heterogeneous
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1. MICROWAVE SCAN

2. DATA PROCESSING

3. DIAGNOSIS

Breast and Tumour Models

Multistatic System (12 antennas)

FDTD Simulation

TW FE TW

FE

Classification

Antenna Grouping

Final Decision: Benign/Malignant

Figure 4.1: 3-stage diagnosis platform implemented in this study. Stage 1 consists
of data collection from numerical models. Stage 2 consists of data processing by means
of Tumour Windowing (TW) and Feature Extraction (FE); the relative importance of
each algorithm is compared by applying TW, FE, and their combination. Stage 3 is the
diagnosis stage, which uses random forests as the classifier, includes an antenna grouping
algorithm, and ends with a final diagnosis of benign or malignant.

breast models were used in this study. The breast models range between 1%
to 27% in terms of glandular tissue by volume of breast, with the remainder
percentage of tissue corresponding to adipose tissue.

For the creation of tumour models, the clinically-informed tumour mod-
elling algorithm described in the previous chapter was used to generate
72 unique tumour models, with average diameters ranging from 6 mm to
20 mm. Several degrees of spiculation were used to create tumours grouped
into two distinct classes: smooth borders to represent benign tumours
(with 0 ≤ s ≤ 0.25), and spiculated borders for malignant tumours (with
0.50 ≤ s ≤ 0.90), where s is the spiculation parameter with 0 ≤ s ≤ 1. The
tumours were placed in 5 different positions within the breast as described
in Fig. 2.2, corresponding to locations in the four breast quadrants and the
central portion.
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The electromagnetic measurement system was modelled with a concentric
ring of 12 equally-distanced Hertzian dipole antennas around the breast in a
fully multistatic configuration (where the channel angle between two adjacent
antennas is equal to 30°). Each antenna element is modelled as an electric
current source. The antennas were immersed in a medium with dielectric
properties equivalent to those of adipose tissue. The FDTD simulations
were performed using a differentiated Gaussian pulse with centre frequency
of 6 GHz and a bandwidth of 6 GHz. The spatial resolution of the system
is 1 mm, and the sampling frequency is 600 GHz. Additionally, a reference
simulation was also performed. This reference signal is later used to remove
antenna effects in the backscattered signals from simulations of the full
breast with tumours.

Figure 4.2 displays a schematic representation of the acquisition setup
designed for FDTD simulations in this study, where the antennas are repres-
ented by the black diamonds surrounding the breast. A coronal slice of one
of the breast models used in the study is shown, including glandular tissue
in the interior, and a malignant tumour in one of the lower quadrants (the
spiculated shape in black). To aid the visualisation of the setup, examples
of paths from a transmitting antenna (Tx) to the tumour and from the
tumour to a receiving antenna (Rx) are shown in dash and dot-dash lines.
The channel shown in blue is an example of a “reflection channel” (i.e., a
channels where the transmit and receive antennas are located on the same
side of the target, thus generating signals with reflected information), and
the channel shown in orange is an example of a “transmission channels”
to mean channels where the transmit and receive antennas are located on
opposite sides of the tumour, thus producing “through-channel” signals with
transmitted information).

With the proposed setup, one microwave breast scan is composed of
backscattered signals collected from 78 independent channels. In total, 1,080
microwave scans were performed (3 breast models each combined with 72
tumour models in 5 different positions within the breast). Therefore, a
dataset containing a total of 84,240 signals is used in this study.

4.3.2 Data processing

This section describes the processing methods used to prepare the data ahead
of classification. Two methods are used to process the backscattered signals
acquired in Stage 1 of the 3-stage diagnosis platform (Fig. 4.1): tumour
windowing (Section 4.3.2.1), and feature extraction (Section 4.3.2.2).
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Txr

Rxr

Txt

Rxt

Reflection
Channel

Transmission
Channel 30°

Figure 4.2: Representation of the acquisition setup designed for this study, where
the antennas are represented by the black diamonds surrounding the breast. A coronal
slice of one of the breast models is shown; the breast has glandular tissue in the interior,
and a malignant tumour in one of the lower breast quadrants (represented by the black
spiculated shape). With this acquisition configuration, the channel angle between two
adjacent antennas is 30°. Examples of paths from a transmitting antenna (Tx) to the
tumour and from the tumour to a receiving antenna (Rx) are shown in the dash and
dot-dash lines: antenna pair (Txr, Rxr) shown in blue is an example of a reflection
channel, and antenna pair (Txt, Rxt) shown in orange is an example of a transmission
channel.

4.3.2.1 Tumour windowing

The Tumour Windowing (TW) algorithm presented in this thesis relies on
first identifying the location of the tumour. A variety of methods could be
used for this purpose, for example, image reconstruction through microwave
tomography as briefly presented in [53]. An investigation of methods of
tumour location estimation is beyond the scope of this work, and the ideal
tumour location will henceforth be used.

Once the tumour location is identified, the round-trip propagation delay
between the tumour and each channel is calculated, based on the aver-
age propagation speed through three media: immersion medium, skin and
interior of the breast; the estimated tumour response is then windowed
from the backscattered signal. The approximate window length was de-
cided empirically. Visual assessment of a subgroup of backscattered signals
gathered with different tumour models embedded in breast models with
varying background contents found that a window length of 2.5 times the
pulse width is appropriate to extract the full tumour response from the
signals.

The propagation delay is highly dependent on the average dielectric
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properties of each medium; consequently, reflections from different tumours
propagating through different paths will be difficult to align. To compensate
for this effect, the windowing algorithm looks for the peak energy in each
backscattered signal, and time-aligns the tumour responses on this basis.
Each windowed tumour response is finally downsampled to a sampling
frequency of 30 GHz. After downsampling, the window length of the tumour
signatures consisted of 60 time samples corresponding to 2 ns.

The proposed tumour windowing algorithm, operating in the time-
domain, has the following benefits: a high level of clutter resulting from
the glandular clusters is potentially removed, and signals collected from
different channels are time-aligned. As a result, the tumour response is
isolated, potentially simplifying the task given to the classification algorithm.
Prior to windowing, an artefact removal step was introduced in this study to
compensate for antenna effects in the signals and to eliminate the reflection
from the skin.

Figure 4.3 shows the effect of tumour windowing within the 3-stage
diagnosis platform. The effect of tumour windowing is shown for a set of
signals collected in one microwave scan with a benign tumour embedded in
an adipose-only breast model. As indicated on the image on the top left of
Fig. 4.3, signals are first collected from a microwave scan in the time-domain;
artefact removal is then applied to remove the skin response (image on the
top right). Then, the tumour windowing algorithm is applied in two steps.
First (image on the bottom left of Fig. 4.3), a window is selected in the
backscattered signals that contains the tumour responses. Second (image
on the bottom right of Fig. 4.3), the peak responses of each tumour signal
are time-aligned.

When only tumour windowing is applied during Stage 2 of the 3-stage
diagnosis platform (Fig. 4.1, “TW”), the windowed time-domain signatures
are treated as independent observations, which are then passed as input to
the classification algorithm.

4.3.2.2 Feature extraction

Feature Extraction (FE) is frequently applied to capture meaningful inform-
ation embedded in a signal, and is helpful in reducing the dimensionality of
a classification problem when compared to using the original data.

Visual analysis of backscattered signals reveals that benign tumours result
in signals that tend to preserve the original morphology of the Gaussian peak,
while malignant tumours result in more irregular signals, due to increased
reflections from tumour spicules. Therefore, the use of a set of features
that capture signal morphology and frequency content for diagnosis is also
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Figure 4.3: Effect of tumour windowing on the subset of signals collected from one
microwave scan with a benign tumour embedded in an adipose-only breast model. The
process of tumour windowing within the 3-stage diagnosis platform is shown. Signals
from a microwave scan are collected in the time-domain, in Stage 1 of the diagnosis
platform (image on the top left). Artefact removal is then applied to remove the skin
response and to compensate for antenna effects (image on the top right). Then, the
tumour windowing algorithm is applied in two steps: first, a window is selected in
the backscattered signals that contains the tumour responses (image on the bottom
left); second, the peak responses of each signal are time-aligned (image on the bottom
right). Each windowed and time-aligned tumour response is treated as an independent
observation and passed as input to the classification algorithm.
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Figure 4.4: Example of tumour signatures from (a) benign tumour models and
(b) malignant tumour models, captured in ideal conditions, in a fully adipose breast
model. In (a), the benign tumour signatures are smooth, and the shape of the Gaussian
curve is largely preserved. In (b), the malignant tumour signatures are subject to a
greater degree of distortion, exhibiting an increased number of peaks.

examined here. The proposed feature extraction method relies on peak
analysis of different time and frequency representations of the original data,
where each group of features is calculated for the signal collected by each
channel of each scan. As the extraction of features is done independently on
each observation, no calculations are made across the dataset and between
tumour signatures, which prevents accidental data contamination issues,
such as those described in Section 4.2.2.

By way of example, Fig. 4.4 displays some of the differences identified
by visual analysis of benign (Fig. 4.4a) and malignant signatures (Fig. 4.4b).
The signals were collected under ideal conditions to highlight the expected
differences between types of tumours, with an adipose-only breast model;
for both tumour types, two tumour models were simulated with different
sizes and shapes. The resultant signals have been time-aligned and win-
dowed. As observed in Fig. 4.4a, the backscattered signals from the benign
tumour models exhibit little distortion and the original Gaussian shape is
preserved well; conversely, in Fig. 4.4b, the malignant tumour models result
in backscattered signals with a higher level of waveform distortion.

In total, 30 features were extracted from each signal, divided into four
sub-groups, as shown in Table 4.1.
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Table 4.1: Description of all 30 features used in this work, divided into four sub-groups:
Time-domain features, Autocorrelaton features, Power Spectral Density (PSD) features
based on Welch’s method, and PSD features using the periodogram method.

Time-domain features, calculated from the windowed signals

#1 – #2 Amplitude and location of the maximum positive peak
#3 – #4 Amplitude and location of the maximum negative peak

#5 Variance
#6 Root-mean-squared error

#7 – #8 Number of positive and negative peaks
#9 – #10 Mean amplitude of the positive and negative peaks
#11 – #12 Mean Full-Width Half-Maximum (FWHM) of the

positive and negative peaks
#13 – #14 Mean separation between positive and negative peaks

#15 Number of zero crossings
#16 Integral of the signal

#17 Integral of the absolute value of the signal
#18 Positive percentage area of the signal
#19 Negative percentage area of the signal

Autocorrelation features, which involves calculating the autocorrelation
sequence of each signal [185], [186]. The following features

are then extracted from the autocorrelation sequence

#20 Mean value of the autocorrelation sequence
#21 Number of peaks in the autocorrelation sequence

#22 Mean amplitude of the peaks
#23 Mean FWHM of the peaks

#24 Mean separation between the peaks

PSD features, estimate of the psd of the signal,
using Welch’s method [187]

#25 Mean value of the Welch estimate

PSD features, estimate of the psd of the signal,
using the periodogram method [188], [189]

#26 Mean value of the periodogram estimate
#27 Number of peaks in the periodogram

#28 Mean amplitude of the peaks
#29 Mean FWHM of the peaks

#30 Mean separation between the peaks
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In Fig. 4.5, Fig. 4.6, Fig. 4.7 and Fig. 4.8, the feature extraction pro-
cess within the 3-stage diagnosis platform is shown. By way of example,
the responses of a benign (blue) and a malignant (orange) tumour model
embedded in an adipose-only breast model are shown. As shown in Fig. 4.5,
after the microwave scan is collected, features #1 to #19 (from Table 4.1)
are calculated from the time-domain signals, after artefact removal was
performed to remove the skin response and to compensate for antenna
effects. These features largely capture the morphological characteristics
of tumour signals. Next, the autocorrelation sequence is calculated from
the time-domain signals (after artefact removal), and features #20 to #24
are calculated from this (Fig. 4.6). These features are intended to capture
inherent periodicity in the signals. Finally, the power spectral density based
on Welch’s method and the periodogram method are calculated from the
time-domain signals (after artefact removal), and features #25 and #26
to #30 are extracted (Fig. 4.7 and Fig. 4.8, respectively). Power spectral
density features indicate how the distribution of power changes depending
on the level of malignancy.

When only feature extraction is performed on the original backscattered
signals during Stage 2 of the 3-stage diagnosis platform (Fig. 4.1), the
method is referred to as “FE”. If feature extraction is performed after
the backscattered signals have been processed with the tumour windowing
algorithm, the method is referred to as “TW + FE”; in this case, the
windowed signals are used to calculate the 30 features, as opposed to the
original backscattered signals as shown in Fig. 4.5, Fig. 4.6, Fig. 4.7 and
Fig. 4.8.

4.3.3 Computer aided diagnosis

This section describes, Stage 3 (Diagnosis) of the 3-stage microwave dia-
gnosis platform described in Fig. 4.1. An overview of the random forests
classification algorithm is first provided in Section 4.3.3.1. Section 4.3.3.2
describes the three learning designs implemented in this study. The antenna
grouping algorithm is detailed in Section 4.3.3.3. The validation method-
ology is described in Section 4.3.3.4, and the metrics to assess diagnostic
performance are discussed in Section 4.3.3.5.

4.3.3.1 Classification algorithm: Random forests

In this study, random forests [190] were implemented to classify backscattered
signals.
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Figure 4.5: Process of feature extraction within the diagnosis platform. The responses
of a benign (blue) and a malignant (orange) tumour model embedded in an adipose-only
breast model are shown. After the acquisition of signals in Stage 1 (Microwave Scan),
features #1 to #19 are calculated from the time-domain signals after artefact removal.
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Figure 4.6: Process of feature extraction within the diagnosis platform. The responses
of a benign (blue) and a malignant (orange) tumour model embedded in an adipose-only
breast model are shown. The autocorrelation sequence is calculated from the time-domain
signals after artefact removal and features #20 to #24 are then calculated.
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Figure 4.7: Process of feature extraction within the diagnosis platform. The responses
of a benign (blue) and a malignant (orange) tumour model embedded in an adipose-
only breast model are shown. The power spectral density based on Welch’s method is
calculated from the signals after artefact removal and feature #25 is then calculated.
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Figure 4.8: Process of feature extraction within the diagnosis platform. The responses
of a benign (blue) and a malignant (orange) tumour model embedded in an adipose-only
breast model are shown. The power spectral density based on the periodogram method
is calculated from the signals after artefact removal and features #26 to #30 are then
calculated.
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The method of random forests is an ensemble method that essentially
works by generating many single classification trees [191] and outputting
the class that is the mode of the classes of all individual trees. Each tree is
grown (i.e., trained) using a randomly sampled subset of observations and
features from the entire dataset. Due to the inherent randomness in the
process, the generated trees are uncorrelated, which ultimately contributes
to the low bias and low variance of the algorithm. Random forests provide
generalisable models that tend not to overfit, are quick to run and are easy
to interpret [190].

For the operation of a random forest, one-third of the observations in
the original dataset are left out when training each tree. These observations
are referred to as out-of-bag and are used as a separate set to assess the
performance error of each tree. The out-of-bag error provides a measurement
of the generalisation ability of the process, which is useful when optimising
the internal parameters of the random forest. Random forests also allow
measuring the importance of each feature in the training of each tree. In
the context of diagnosing backscattered signals as benign or malignant, a
measure of feature importance could provide the means to further refine
classification models.

In this study, the following hyperparameters of the random forest were
optimised to ensure good trained models: number of trees, number of
features, leaf size. A Bayesian optimisation algorithm was implemented to
perform the search for the best hyperparameters. The best hyperparameters
were deemed to be those yielding the smallest out-of-bag misclassification
error (that is, the hyperparameters yielding the highest accuracy).

4.3.3.2 Design of classification models

Although all channels in a given scan may contain information about a
tumour, the tumour signature varies between channels depending on the
location of the tumour relative to the antennas in a channel, and also on
the channel angle (i.e., the angle between transmit and receive antennas in
a channel).

The variance in the tumour signatures between channels may impact the
performance of the classification model, as the variance between channels may
be as large as the variance between the signatures of benign and malignant
tumours. To explore the significance of inter-channel variance, three types
of classification models were designed, which differ in the way signals from
different channel angles are utilised by the classification algorithm. The
three types of classification models are shown in Fig. 4.9. Differences in the
performance of the three types of classification models may help to identify
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Figure 4.9: Description of the three types of classification models implemented:
EA (Equal Angle), MA (Multiple Angle) and EAC (Equal Angle Combined). The
classification models vary in the way signals from different channel angles are utilised by
the classification algorithm, where Z represents the channel angle (Z varies between 0°

and 180°, and increases in steps of 30°). EA models only classify signals from a single
channel angle. MA models simultaneously classify signals collected at multiple channel
angles. Through majority voting, EAC models combine the predictions from multiple EA
models at different channel angles to produce a final diagnosis.

if an optimal antenna pair topology exists in terms of the channel angle,
which can ultimately contribute to improving diagnostic performance.

The assumed system architecture is as described in Section 4.3.1, with
one ring of 12 antennas equally distributed around the breast. Let Z be the
channel angle; here, Z ∈ [0, 180]°, and Z increases in steps of 30°.

Equal Angle (EA) classification models only receive information from
channels with equal channel angles. Seven EA models were built to assess if
channels with equal angles contribute to improved diagnostic performance.

Multiple Angle (MA) models use information from multiple channel
angles simultaneously. If such a model underperforms, it will serve as
an indication that the information captured by channels with different
channel angles varies significantly, and that the classification model cannot
adequately learn the similarities within benign and malignant tumours across
signals collected at different angles. In total, six MA models were built using
antenna pairs in the interval [0, i.Z]°, where Z = 30° and i = 1, 2, ..., 6,
until all antenna pairs were used.

Equal Angle Combined (EAC) models use all possible EA models (one
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Table 4.2: Summary of the classification models built for this study, and the channel
angles used in each model. In Equal Angle (EA) models, only signals from channels at
the specified angle are used in the process. In Multiple Angle (MA) models, all signals
from channels in the specified range are used. In Equal Angle Combined (EAC) models,
individual EA models in the specified range are combined through majority voting to
produce a final diagnosis.

EA MA EAC

#1 0° – –

#2 30° 0° – 30° 0° – 30°

#3 60° 0° – 60° 0° – 60°

#4 90° 0° – 90° 0° – 90°

#5 120° 0° – 120° 0° – 120°

#6 150° 0° – 150° 0° – 150°

#7 180° 0° – 180° 0° – 180°

for each channel angle), and the predictions from each one are combined
(through majority voting) at the end to produce a final diagnosis. By
combining the predictions from each individual model, models which yield
an incorrect result are likely to be disregarded, ultimately contributing to
an increase in diagnostic performance. As before, six EAC models were
built using antenna pairs in the interval [0, i.Z]°, with Z = 30°, until all
antenna pairs were used. Table 4.2 summarises the models of each type, in
particular the range of angles considered in this study.

4.3.3.3 Antenna grouping

Each patient scan is comprised of signatures collected from 78 different
channels (as per the system architecture described in Section 4.3.1), which
are classified independently. However, in a realistic, clinical diagnostic
system, a diagnosis is given based on a full scan, and not on the basis of
a single signature. This means that the independent channel predictions
need to be combined to form a final diagnosis. In the existing literature,
either the procedure in determining the final diagnosis is not thoroughly
discussed, or the diagnostic performance is reported based on the results
from the independent channels.

To address this, an antenna grouping algorithm is implemented in this
study, by which the predictions of the independent channels are grouped, and
a majority vote is completed to determine if a scan is benign or malignant.
The advantages of implementing such an algorithm are two-fold. Firstly,
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with microwave diagnosis systems, the possibility should be considered that
a signal contains lower quality information about the tumour shape, which
could result in incorrect predictions about its malignancy (e.g., signals
from channels that may have poor signal-to-noise ratios). By implementing
the antenna grouping algorithm, a mechanism is created that allows incor-
rect predictions from lower quality channels to be reduced in importance.
Secondly, channels closer to a tumour should intuitively produce more useful
information for its diagnosis; here, the proximity between tumour and chan-
nel is defined as the proximity of the tumour to a straight line path between
the Tx and Rx antennas. By implementing a ranked version of the antenna
grouping algorithm, it is possible to investigate if the proximity between
tumour and channel translates into higher diagnostic performances. The
ranked version of the antenna grouping algorithm operates as follows. Let
W be the number of channels used to perform antenna grouping, ordered by
proximity to the tumour. Antenna grouping is performed by increasing W
in steps of 1, until all available channels are used. For example, if W = 3,
the majority vote is taken from the signals collected by the 3 channels closest
to the tumour, before deciding on the final diagnosis.

4.3.3.4 Validation methodology

In this study, a validation methodology based on the idea of nested cross-
validation [183] has been implemented to assess diagnostic performance,
and mitigate sources of contamination when optimising the classification
model. It has been shown that nested cross-validation helps prevent overly
optimistic reports of model performance [183], [184]. An overview of the
process is shown in Fig. 4.10, and can be summarised as follows:

� The entire dataset is divided into k stratified folds, containing equal
representations of each class. In this study, k = 5 outer folds was chosen
as it offers a good compromise between a statistically robust performance
analysis and speed of implementation. All signals from one breast scan
are kept together when splitting each fold into training and test.

� For each outer fold, the model is trained and the classifier hyperparamet-
ers optimised. As previously detailed, random forests directly provide
the out-of-bag error, which serves as an unbiased estimate of the model
performance when optimising its hyperparameters. When using other
classifiers another inner cross-validation loop can be implemented at this
stage.

� The predictive power of the model is then reported as the average
performance obtained in the test sets across all outer folds.
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Figure 4.10: Nested cross-validation methodology implemented in this study to
perform model optimisation and estimate model performance. In each fold, the random
forest model is optimised on the train set, and new predictions are made on the test set.
The predictive power of the model corresponds to the average performance obtained in
the test sets across all outer folds.

4.3.3.5 Performance metrics

In this study, the performance of a classification model is assessed by
plotting the Receiver Operating Characteristic (ROC) curves. ROC curves
are created by plotting the false positive rate achieved by the classification
model in the horizontal axis, against the true positive rate in the vertical
axis [192]. ROC curves provide with a simple graphical representation of
the diagnostic ability of the classification model, by varying the decision
threshold that is used in producing the final binary decision, i.e., whether
breast tumours are benign or malignant.

The Area Under the ROC Curve (AUC) is also used as a measure of
classification performance. Generally, the higher the AUC, the better the
classifier performs.
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4.4 Results

This section is divided into three sub-sections. Section 4.4.1 discusses
the issue of antenna topology and antenna grouping. Here, a relationship
between the channel angle (angle between transmit and receive antennas) and
predictive power is investigated, resulting in the proposal of a method to use
the information from several multistatic scan channels. In Section 4.4.2, the
effect of increasing tissue heterogeneity on overall diagnostic performance
is discussed. Section 4.4.3 identifies possible avenues to expand on the
knowledge gained with the extraction of features.

4.4.1 Design of classification models

This section details the analysis of the optimal design of classification models,
tested in a breast model containing 5% of glandular tissue by volume.

Three types of classification models were defined in Section 4.3.3.2: EA,
MA, EAC. Figure 4.11a, Fig. 4.11b and Fig. 4.11c detail the diagnostic
performance achieved by all models produced, for each of the processing
methods under analysis, TW, FE and TW+FE, respectively. The effect
of antenna grouping (as defined in Section 4.3.3.3) is also investigated in
Fig. 4.11, by comparing diagnostic performance before antenna grouping
(solid lines) and after antenna grouping is applied (dashed lines), using all
available channels in the majority vote.

Firstly, the positive impact of antenna grouping is clearly noticeable.
The diagnostic performance when antenna grouping is applied is always
superior (as shown by the dashed lines in Fig. 4.11). By taking the majority
vote of all individual decisions from one single breast scan, a minority of
incorrect predictions are cancelled by a majority of correct classifications.
A more in-depth analysis of the effect of the ranked version of the antenna
grouping algorithm reveals that at least 3 channels are necessary to achieve
reliable diagnostic performance; however, above 3 channels, the performance
stabilises and only minor improvements are observed (these results are not
shown in Fig. 4.11). This result is seen across all classification model types
(EA, MA and EAC), and by applying either of the pre-processing methods
(TW, FE and TW+FE).

In Fig. 4.11, it is also noticeable that EA and EAC models generally
seem to outperform MA models. This result confirms the hypothesis that
classification models perform better when dealing with signals collected
under the same conditions:
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Figure 4.11: Diagnostic performance for the EA (Equal Angle, in blue), MA (Multiple
Angle, in orange) and EAC (Equal Angle Combined, in green) models produced when
using: (a) TW (Tumour Windowing), (b) FE (Feature Extraction), (c) TW+FE (feature
extraction performed after tumour windowing). “A.Grouping” refers to the use of the
antenna grouping algorithm (using all available channels towards the majority vote). The
solid lines correspond to the diagnostic performance when antenna grouping was not
applied, and the dashed lines when antenna grouping was applied. The vertical axis shows
the diagnostic performance, reported in terms of AUC (Area Under the ROC Curve).
The horizontal axis shows the channel angles used to build each model; for the MA and
EAC models, the models contain all channel angles between 0° and the angle shown in
the horizontal axis.
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� With the TW pre-processing method (Fig. 4.11a), tumour windowing
and time alignment of the signals have been performed; however, it is
likely that the TW processing is not sufficient to completely neutralise
the inherent differences from channels at different angles, especially
considering that the inter-channel variability is likely to increase when
noisy experimental or clinical data is used. One additional factor to
consider with the TW processing is that knowledge of tumour location
is fundamental, and localisation errors might also impact accurate
time-alignment of tumour signals from different channel angles;

� In the FE and TW+FE pre-processed datasets (Fig. 4.11b and Fig. 4.11c,
respectively), comparable behaviour is observed. Models classifying
signals from the same channel angles perform better. In addition, the
dataset pre-processed only with FE, which does not require previous
knowledge of the tumour location, slightly outperforms the TW+FE
pre-processed dataset.

It is also interesting to note that channel angles below 90° in the EA
models lead to higher diagnostic performance when compared to channels
at higher angles, which might indicate that signals from reflection channels
keep more information about tumour shape than signals from transmission
signals. EAC models seem to benefit from this; when combining information
from individual EA models, the predictions made by the EA models at
lower channel angles dominate, ultimately contributing to the disregarding
of incorrect predictions made at higher channel angles. Regardless of the
pre-processing method, the best results seem to be achieved with EAC
0° – 30°.

In summary, optimal diagnostic performance is achieved when EAC
models were used, particularly when combining channels with reflected
backscattered signals. Antenna grouping is needed to achieve one final
diagnosis per scan, and it helps increase diagnostic performance of the system
as it provides the means to disregard random incorrect predictions. Using all
channels in the antenna grouping algorithm provides the best performance,
although, perhaps not surprisingly, the most relevant information appears
to be contained in the channels closest to the tumours.

4.4.2 Effect of tissue heterogeneity

Increasing tissue heterogeneity is a concern when designing platforms for
the diagnosis of breast cancer based on microwave backscattered signals. As
glandular and tumour tissues are both characterised by higher dielectric
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properties, the response due to glandular clusters in the breast might some-
times be confused with the response of a tumour, causing an increased rate
of false positives. In this study, the proposed windowing and time-alignment
methodology is analysed to determine if it is sufficient to handle breast
heterogeneity, and if the extraction of the above-mentioned features provides
meaningful information.

Separate classification models were used to classify signals arising from
breasts with different glandular contents. It should be noted that this
construction is an ideal one, that might not be practically realisable in
experimental or clinical conditions. In fact, there is a growing interest in the
development of automated methods for quantifying the background tissue of
the breast, as shown, for example, by the following publications [134], [193]–
[197]. However, these ideal classifiers are helpful in breaking down the prob-
lem of classifying backscattered signals into multiple simpler tasks, allowing
an understanding of optimal conditions for the operation of automated
diagnosis platforms to be developed.

From Section 4.4.1, one of the best performing antenna topologies was
that of the EAC model at 0° – 30°, using all available channels when
performing antenna grouping, where the TW and FE processing methods
performed the best among all considered tests. The effect of increasing tissue
heterogeneity is shown in Fig. 4.12, by plotting ROC curves obtained for
the TW dataset (Fig. 4.12a), and FE dataset (Fig. 4.12b) using the optimal
antenna topology. Separate classification models were built to diagnose
scans from breast models with 1% (blue line), 5% (orange line) and 27%
(green line) of glandular tissue by volume.

The random forest classifier appears to be robust to tissue heterogeneity.
The average performance across breast models with increasing glandular
tissue content is comparable, when using either the TW or the FE methods
during the pre-processing stage of the system. However, in an experimental
or clinical setup, the performance of the TW pre-processed dataset is likely to
decrease as tissue heterogeneity increases; noisier experimental backgrounds
lead to an increased number of reflections, and the localisation of the tumour
signature in the backscattered signal will be affected. Conversely, the
extracted features are able to capture the differences between benign and
malignant tumours, even with signals recorded in more heterogeneous breast
models.

Finally, the ROC curves indicate that diagnostic performance may also be
optimised by varying the decision threshold. The range of optimal decision
thresholds investigated in this study range between 0.36 and 0.52 (not shown
in Fig. 4.12 for conciseness).
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Figure 4.12: ROC curves showing diagnostic performance with the EAC (Equal
Angle Combined) 0° – 30° classification model using all channels in antenna grouping,
for (a) TW (Tumour Windowing) dataset, (b) FE (Feature Extraction) dataset. The
blue line corresponds to the performance of a breast model with 1% glandular tissue by
volume, orange line 5%, and green line 27%. The black dotted line represents the null
hypothesis in the ROC curve.

4.4.3 Relative feature contribution

Previous sections examined the effect of antenna grouping, and the impact
of tissue heterogeneity on the best performing system from initial baseline
tests. In this section, an analysis of feature selection is presented, by means
of the relative feature contribution map provided as one of the outputs of
the random forest classifier. Investigating which features mostly contribute
to the training of each tree inside a random forest could help refine the
classification models, increasing their performance in complex scenarios,
such as in experimental systems prone to high noise levels.

In Fig. 4.13a and Fig. 4.13b, the relative feature contribution map is
shown, for the breast model with 27% glandular tissue, for the TW and
FE pre-processed datasets respectively. Classification was performed with
the EAC 0° – 30° model, which uses all channels in the antenna grouping
algorithm. This model is shown as an example, although similar feature
contributions were observed across all breast and classification models.

Firstly, Fig. 4.13a (TW) shows that the classification model using tumour
windowing is heavily reliant on one single feature. This feature is time sample
34 in the example shown. All classification models used in this study display
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Figure 4.13: Map of relative feature contribution calculated during the training of the
random forest model for the breast model with 27% glandular content by volume. The
EAC (Equal Angle Combined) 0° – 30° model, with all channels in antenna grouping, is
used. (a) refers to the dataset pre-processed with TW (Tumour Windowing) method; the
horizontal axis shows the time samples (TS) which make up the time-domain tumour
responses, (b) refers to the dataset pre-processed with the FE (Feature Extraction)
method, where F1 to F30 shown in the horizontal axis correspond to features 1 through
30.

the same reliance on one feature, which varies between time sample 33
and 36. This result suggests that any errors in the tumour windowing and
alignment algorithm could indeed have a large impact in the performance of
the classification.

Regarding classification with the FE method (Fig. 4.13b), a larger number
of features appear to contribute to the performance of the random forest
model. Feature #4 (location of the maximum negative peak in the tumour
signature) ranks highest, which is visible across all classification and breast
models used in this study. Nine other extracted features are also identified
as being particularly important in the training of the classification models.
In decreasing order of contribution: number of zero crossings of the tumour
signature (feature 15 shown in Fig. 4.13b), mean amplitude of the peaks
in the autocorrelation curve (#22), amplitude of the maximum negative
peak in the tumour signature (#3), mean amplitude of the peaks of the
periodogram (#28), integral of the tumour signature (#16), amplitude of
maximum positive peak in the tumour signature (#1), location of maximum
positive peak in the tumour signature (#2), integral of the absolute value of
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the tumour signature (#17), mean FWHM of the peaks of the periodogram
(#29).

The features listed above are some of the features that mostly contrib-
uted to the classification of shape and spiculation of benign and malignant
tumours. Particularly, the contribution of the features derived from the auto-
correlation and power spectral density analysis should be noted, which reflect
information otherwise not available in the time-domain tumour signatures.

4.5 Discussion

With the results presented in this chapter, antenna grouping was identified as
a key step for an increased diagnostic performance. Individual signals which
compose one breast scan are independent observations, and are classified
accordingly, receiving a label of benign or malignant. By performing antenna
grouping, those individual predictions are grouped into one final diagnosis
(majority vote) for each scan. The results of this study showed the benefit
behind this approach, as, by doing so, a mechanism is created to disregard
minor incorrect predictions. In addition, results showed that a relatively
small number of antennas closest to the tumour are needed to ensure the
correct prediction (in the case of this study, 3 channels closest to the tumour
were found to yield correct diagnosis). However, using the information from
all channels results in similar performances compared to using only the
channels closest to the tumour.

The results also showed how signals from different channel angles have
to be appropriately used by the classification model. By building individual
classification models which only classify signals from channels with the same
angle, diagnostic performance is increased. The predictions of individual
classification models can later be combined into a fused-type model, which
once again contributes to increasing the diagnostic performance. In addition,
the results also showed that signals from reflection channels lead to better
performance than signals from transmission channels. In this study, the
optimal channel angle was 0° – 30°.

Data pre-processing was also shown to have an impact on diagnostic
performance. When dealing with time-domain signals, knowledge of tumour
location is required. With this information, a tumour windowing and time-
alignment algorithm can be implemented to isolate the tumour response,
while decreasing the influence of the background. A new set of 30 features
was also investigated, which are extracted per backscattered signal; these
features mostly rely on peak analysis of the time-domain signal, and of
the frequency content of the signal. Both methods performed comparably,
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however, in practice, additional factors come into play which will impact
performance:

� With currently available algorithms, localisation of the tumour signature
in the response could be prone to error, which would impact the perform-
ance of the tumour windowing and could ultimately decrease diagnostic
performance. This factor should not be neglected when building systems
to classify time-domain signals.

� The extraction of features performed well, even when the time-domain
signal was not pre-processed by windowing. This method appears as
an alternative when exact tumour location is not available to the user.
In addition, a reduced set of features of maximised contribution was
identified, which could lead the way into finding an optimal set of features
towards more robust classification models for microwave systems.

Finally, good machine learning practice is extremely important when
designing microwave breast diagnosis systems. Without adequate feature
processing methods and model validation strategies, reports of performance
could be overly optimistic and not reproducible, ultimately impeding clinical
acceptance of microwave diagnosis tools.

4.6 Conclusion

In this chapter, a comprehensive analysis of a machine learning platform
applied to the field of microwave breast systems was presented, specifically
with the goal of diagnosing the malignancy of breast tumours. A set of goals
was identified as potential enablers to the operation of machine learning
systems, which had not been thoroughly assessed in the literature up until
now. To achieve the aim of the study, certain simplified assumptions
were undertaken, so the true potential of the automated platforms can be
assessed when no other confounding factors are present, such as the inherent
complexity of experimental systems.

The primary conclusions from this chapter primarily indicate that:

� Feature extraction may be more flexible in real systems as it does not
depend on accurate localisation of backscattered signals;

� Feature extraction may be able to retrieve meaningful information about
the difference in the backscattered signals of benign and malignant
tumours; accurate knowledge of the tumour location may thus not be
an essential step to classification process;
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� Careful design of the classification models in terms of antenna topology
is essential to diagnostic performance, even in the simplified scenarios;
particularly, classification models work best when dealing only with
signals from the same channel angle.

Further investigations are needed to assess the robustness of microwave
breast diagnosis systems given the complexities of experimental systems. In
the following chapter, the same machine learning diagnosis platform is used
to classify experimental data obtained using laboratory phantoms from the
BRIGID phantom set presented in Section 3.3, in order to further validate
the outcome of the investigations using the numerical models.
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CHAPTER 5

Machine Learning Applied to Microwave

Breast Diagnosis: Validation with an

Experimental Dataset

5.1 Introduction

The previous chapter presented a numerical study on the potential of using
machine learning to classify breast tumours as benign or malignant, based
on the differences in the shape and level of spiculation captured in the
backscattered signals. The numerical analysis in Chapter 4 was intended
to provide a thorough investigation of the potential of microwave breast
diagnosis systems based on machine learning in a controlled situation, when
no real-life confounding factors are present. The analysis was based on a
numerical dataset of breast and tumour models, which was built to represent
clinical scenarios. The results from Chapter 4 indicate that classifying
backscattered signals to diagnose tumours shows promise, but the study
also revealed the importance of carefully designing appropriate classification
systems.

The results from Chapter 4 mainly show that the performance of classi-
fication models may be impacted by the variance within the signals collected
by different channels; a machine learning design including multiple “Equal
Angle” models (where each model only classifies signals collected by channels
with the same channel angle), was shown to be helpful in dealing with the
inter-channel variance. Additionally, the results from the previous chapter
indicate that extracting features may lead to similar diagnosis performances
when compared to other signal pre-processing algorithms, such as tumour
windowing, without the added complexity required to determine the tumour
location. Finally, results from the previous chapter also showed that careful
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validation of machine classification models is key in obtaining reliable and
reproducible results.

In this chapter, the findings of the numerical study are further explored
by means of an experimental dataset — the BRIGID phantom set, which
was described in Section 3.3. Testing with experimental datasets allows
further analysis of the impact of additional sources of variability and noise
that arise in real-world conditions. The analysis based on experimental
phantoms presented in this chapter is not intended to quantitatively validate
the results obtained with the numerical models. Rather, the analysis in
Chapter 4 provided a baseline set of operating conditions for microwave
breast diagnosis systems based on machine learning; in this chapter, the
BRIGID phantom set is now used to further verify the potential of microwave
breast diagnosis systems based on machine learning, but with the additional
factor of testing in more realistic conditions.

To date, experimental microwave diagnosis studies found in the literature
used a variety of shapes to represent benign and tumour models, but did
not account for the content of glandular tissue in the female breast [51], [52].
This gap in the literature is addressed in this chapter by analysing a database
of backscattered signals collected when the BRIGID tumour phantoms were
combined with all 7 BRIGID breast phantoms, which vary in the content
and distribution of glandular tissue. An in-house experimental microwave
prototype was used for signal acquisition, as described in Section 5.2.

Section 5.3 addresses some of the major assumptions with current ap-
proaches to automated microwave diagnosis platforms:

1) A set of sample signals and radar images produced from the BRIGID
phantoms is presented in Section 5.3.1. The analysis of the signals and
radar images justifies both the applicability of the BRIGID phantom
set to the classification problem, as well as the diagnostic value of
backscattered signals;

2) A suitable design for the operation of classification models is discussed
from a theoretical perspective in Section 5.3.2, and justifies the continued
use of channel angle to produce high-similarity groups of signals.

The methodology used in this experimental analysis is then discussed
in Section 5.4; the methodology is based on the core principles described
in Chapter 4, and includes data pre-processing by tumour windowing and
feature extraction, random forests for classification, and antenna grouping
for decision making. The results are listed in Section 5.5, while Section 5.6
discusses the results and concludes the chapter.
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The work presented in this chapter will be captured in a journal paper
titled “Experimental Validation of a Machine Learning Platform for Diagnos-
ing Breast Cancer with Microwave Technology” (currently in preparation).
This work was completed in collaboration with Declan O’Loughlin, who led
the hardware development of the experimental prototype system described
in Section 5.2.

5.2 Data Acquisition

The BRIGID breast and tumour phantoms were used in this study to assess
the potential of automated microwave breast diagnosis systems. Backs-
cattered signals were acquired with an in-house experimental microwave
prototype [198].

The review of the operational systems presented in Section 2.3.4 informed
the design of the experimental system used in this study. The choice of
design matches that of the MARIA® system [27]–[31], where the patient
lies prone on an examination table with the breast pendant through an
opening. With this choice of design, a coupling medium is necessary for
patients with breasts of smaller volumes, and the coverage of the axillary
tail of the breast and the chest wall is limited.

The system designed for this study features a hemispherical radome,
which houses the antennas; as the size of the BRIGID phantoms matches
the size of the system radome, no immersion medium is required for data
acquisition in this study. A photograph of the radome and antenna array is
show in Fig. 5.1a.

The hemispherical radome has a diameter of 14 cm and was manufactured
using fused deposition modelling. The radome was printed with the same
setup as described in Section 3.3.4, using PLA filament with the Ultimaker
2+ Extended (Ultimaker, Geldermasen, the Netherlands). The radome has
24 openings which securely house the connectors attached to each antenna.
The antennas used in this system are flexible microstrip antennas [199] from
the wearable system designed by McGill University, Canada [105] (described
in Section 2.3.4). The antennas were optimised to operate from 2 GHz to
4 GHz. The antennas are 2 cm by 2 cm square and 24 antennas are located
inside the radome for a total of 276 independent transmit-receive channels.

For analysis purposes, the antennas can be seen as belonging to one of
three rings of antennas that are equally spaced in the front-to-back plane.
Given the hemispherical shape of the radome, the propagation paths for
channels within each ring are larger in the ring close to the chest (“top
ring”), and smaller in the ring close to the nipple (“bottom ring”).
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(a) (b)

Figure 5.1: In-house prototype of a microwave breast system used for signal acquisition.
In (a), the radome and antenna array are shown. In (b) the ZNB40 2-port VNA and
ZN-Z84 24-port switching matrix (Rohde and Schwartz GmbH, Munich, Germany) are
shown.

Data were acquired in the frequency domain using a stepped frequency
sine-wave at 50 frequency points linearly spaced between 2 GHz and 4 GHz.
A ZNB40 2-port VNA and ZN-Z84 24-port switching matrix (Rohde and
Schwartz GmbH, Munich, Germany) acquired all 276 independent multistatic
channels in 30 s (shown in Fig. 5.1b). Twenty-four coaxial cables 457 mm
in length connected each port of the switching matrix to surface-mounted
connectors on each antenna, which were housed in the radome (cables and
connectors both manufactured by Cinch Connectivity Solutions, Waseca,
MN, USA).

Prior to use, a reference scan with BRIGID 0 (homogeneous breast
phantom with a skin layer) was taken. This reference scan was used to
compensate for differences between the antennas, and compensation was
applied to all scans before artefact removal and imaging.

5.3 Design of Microwave Breast Diagnosis

Systems

In this section, the design choices assumed in the numerical study — value
of backscattered signals, and use of channel angle to produce high-similarity
groups of signals — are revisited in the context of data acquired from
experimental phantoms instead of numerical models. The use of the data
from the BRIGID phantom set for evaluation purposes is addressed in
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Section 5.3.1, followed by a discussion of the suitability of classification
models based on channel angle in Section 5.3.2.

5.3.1 Diagnostic Value of Backscattered Signals

Section 2.4 discussed various approaches that could be explored to dis-
tinguish breast tumours according to their level of malignancy: dielectric
properties, presence of microcalcifications, or shape of tumours. The small
number of studies characterising the dielectric properties of benign and
malignant tumours and microcalcifications in the microwave range limits the
viability of such approaches and fosters interest in alternatives. Additionally,
the shape and spiculation of tumours are widely recognised markers for
their malignancy, and this information was shown to be preserved within
the backscattered signals (as demonstrated with numerical simulations in
Chapter 4). In this section, a brief analysis is presented of both backs-
cattered signals and radar images reconstructed from the BRIGID phantom
set, to demonstrate that the signals produced using the BRIGID phantom
set preserve similar diagnostic information to the numerical models, and
may therefore be suitable to experimentally test diagnosis platforms.

Tumours with different levels of spiculation embedded in breasts with
different proportions of glandular tissue are likely to result in backscattered
signals with different morphologies. To verify this effect, tumour plugs from
the BRIGID phantom set were added to the BRIGID breast phantoms in
different combinations, and signals were acquired using the system described
in Section 5.2. All recorded signals were pre-processed by means of rotational
artefact removal as described in [125], [130], [200]. By way of example,
Fig. 5.2 shows the backscattered signals from breast phantoms BRIGID 0,
BRIGID 10E, BRIGID 20E, when combined with tumour models with
increasing level of spiculation: L4 tumour phantom, of low spiculation and
approximately spherical shape; I12 phantom with intermediate spiculation;
and H15 phantom with high spiculation:

� The top image in Fig. 5.2 shows the result of combining the 3 tumour
phantoms in turn with the BRIGID 0 model. This breast model is
fully homogeneous, and therefore represents the simplest case with a
near-ideal tumour response, i.e., when sources of clutter due to glandular
tissue are not present and the reflections are largely determined by the
tumours. Here, it can be observed that tumours with different levels of
spiculation result in backscattered signals with different amplitudes and
phases;
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� The remaining images in Fig. 5.2 show the reflections when the same
tumour plugs are combined with the other breast models with increasing
percentages of background glandular tissue. Here, the differences in the
shape and amplitude of the reflections are indicative of how the delay
of propagation through several heterogeneous background media also
impacts the amplitude and phase of backscattered signals.

These observations suggest that the morphology of signals collected
during a microwave scan depends on the shape and level of spiculation
of a tumour. In addition, the interaction between the tumour model and
the surrounding fat and glandular tissues also influences the shape of the
reflection. These results are in line with the points discussed in Section 4.3.2.2
regarding the extraction of features based on the morphology and frequency
content of the backscattered signals.

Additionally, images were reconstructed using the multistatic the Delay-
And-Sum algorithm [125], [126], [180], [201], [202]. By way of example,
reconstructed radar images for the same tumour plugs combined with the
BRIGID 10E and BRIGID 20E breast phantoms are shown in Fig. 5.3:

� In all images, the maximum response of the image is within the tumour
area;

� Increased clutter can be seen in images from the breast phantom with
more glandular tissue (BRIGID 20E);

� Quantitatively, the signal-to-clutter ratio of the images from BRIGID 20E
is, on average, 3 dB lower than images reconstructed with the same
tumour models in a phantom with less glandular tissue (BRIGID 10E);

� The maximum intensity varies significantly, both between tumour models
and between phantoms;

� Images from BRIGID 20E are between 5–8 dB lower in intensity than
those from BRIGID 10E;

� Additionally, images using the L4 tumour model are up to 3 dB lower
in intensity than those using the H15 tumour model.

Despite the differences in intensity and signal-to-clutter ratio, the images
of all three tumour models in each breast model are visually similar. With
the current state-of-the-art in image reconstruction, radar-based imaging is
not expected to recover the shape information of the targets, with the level
of resolution required for classification.
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Figure 5.2: Sample signals collected with the Breast Imaging and Diagnosis (BRIGID)
phantom set with tumour plugs L4 (low spiculation, dotted black line), I12 (intermediate
spiculation, orange line), H15 (high spiculation, dashed green line). From top to bottom,
the tumour plugs were combined with the homogeneous breast model BRIGID 0, and
heterogeneous models BRIGID 10E, BRIGID 20E.
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Figure 5.3: Representative backscattered energy plots for example Breast Imaging and
Diagnosis (BRIGID) phantoms: BRIGID 10E phantom (top row), BRIGID 20E phantom
(bottom row). Both phantoms were combined with the L4 (low spiculation, image on the
left), I12 (intermediate spiculation, image in the centre) and H15 (high spiculation, image
on the right) tumour plugs. The actual tumour location is at the centre of the red circle
in each image. For visualisation purposes, the colourbar is such that Amax represents the
maximum intensity of each individual image.

5.3.2 Design of classification models

Section 4.2 of the previous chapter discussed in detail many of the challenges
in classifying the level of malignancy of tumours based on the shape informa-
tion contained in backscattered signals. Although it was demonstrated that
there may be sufficient differences in the backscattered signals arising from
benign and from malignant tumours, the variance from signals captured from
the same tumour by the many available antennas in a system was shown to
be not negligible; indeed, in extreme cases, the inter-channel variance could
exceed the differences between benign and malignant tumours. Additionally,
one other source of variance in the backscattered signals that should not be
overlooked is due to the varying contents of background glandular tissue that
may, at times, shadow the tumour response. Fundamentally, unaddressed
sources of variance in the backscattered signals could hinder the usability of
microwave diagnosis systems based on classification models.
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Ultimately, a classification model will perform better when the differences
in the data to be classified arise primarily from the differences between classes
(in this study, benign and malignant), which would require that the following
are examined prior to classification: 1) reducing the influence of the glandular
content, and 2) addressing the inter-channel variance. Artefact removal
and tumour windowing are two of the primary algorithms used to decrease
the influence of the glandular content in the backscattered signal, while
preserving the tumour signature. However, the variance in backscattered
signals arising from different channels is not often discussed in microwave
studies using machine learning [42]–[45], [48]–[53], [140]–[142].

The issue of inter-channel variance can be addressed at a classification
level, i.e., when designing the classification models. In the previous chapter,
different classification models for each channel angle were empirically chosen
to group similar signals; this approach resulted in an increased diagnostic
performance when compared to models that learn and classify all signals
simultaneously. Here, the assumption that grouping by channel angle results
in high similarity signals is further explored from a theoretical standpoint.
Intuitively, using the length of propagation path to a target would be one of
the most logical approaches to group signals, and is worthy of discussion.

Separating backscattered signals by the length of propagation path to
a target is likely to produce high-similarity groups of signals, since the
attenuation along each path significantly affects the amplitude and shape
of the response: shorter propagation paths are expected to result in high-
amplitude signals that preserve the shape of the tumour response, while
longer propagation paths may result in signals with diminished energy.
However, the operation of such an approach is computationally expensive as
it would require a priori knowledge of the tumour location to a high degree
of accuracy, which must usually be obtained through image reconstruction.

In a dataset of signals collected in a microwave scan, different channels
are expected to generate signals with different propagation paths mostly
depending on:

1) Channel angle, where a distinction is made between:

i) “Reflection channels”, meaning channels where the transmit and
receive antennas are located on the same side of the target (thus
originating signals with reflected information);

ii) “Transmission channels”, meaning channels where the transmit
and receive antennas are located on opposite sides of the tumour
(thus producing “through-channel” signals);

2) Proximity between the channel and the tumour.
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Figure 5.4: Distribution of channel angles with increasing propagation paths, shown
for signals acquired with the Breast Imaging and Diagnosis (BRIGID) phantom set. The
theoretical propagation delays were calculated when tumour plug L4 (low spiculation)
is embedded in breast model BRIGID 0, assuming a relative permittivity of 9.0 at a
frequency of 3 GHz. Propagation paths for channels in the top ring of antennas are shown
by way of example. The reflection channels with shorter distances to the target have
shorter propagation delays; all the transmission channels are next; finally, the reflection
channels with the longest distances to the target have the longest propagation delays.

To verify the distribution of channels per propagation path in the in-
house microwave prototype system, the theoretical propagation delays were
calculated for BRIGID 0 assuming a relative permittivity of 9.0 at a frequency
of 3 GHz (as detailed in Table 3.8). By way of example, Fig. 5.4 shows
the propagation paths at each channel when BRIGID 0 is combined with
tumour plug L4 (low spiculation); in this figure, the propagation paths for
the top ring of antennas of the microwave prototype are the only on display.
The general trend displayed in the plot of Fig. 5.4 shows that the shortest
propagation delays correspond to the reflection channels where transmit
and receive antennas are close to the target (“near reflection channels”),
followed by the transmission channels, and finally by the reflection channels
with a longer distance to the target (“far reflection channels”). Additionally,
reflected and transmitted channels naturally exhibit different information
about the propagation of signals, as the view from the tumour in a reflection
or transmission channel is different.

To further aid in the understanding of the types of “channel”, Fig. 5.5
shows a simplified representation of the near reflection, transmission and far
reflection channels in the top ring of antennas of the microwave prototype
used in this study (represented in blue, orange and green, respectively). In
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Figure 5.5: Simplified representation of the channels in a microwave scan. The top view
of the microwave prototype used in this system is shown, highlighting the channels in the
top ring of antennas. The antennas are represented by the black diamonds surrounding
the breast; the breast interior is shown in grey with a malignant tumour in one of the
lower breast quadrants (represented by the black spiculated shape). Antenna pair (Txnr,
Rxnr) displayed in blue is an example of a “near reflection channel”; antenna pair (Txt,
Rxt) displayed in orange represents a “transmission channel”; and antenna pair (Txfr,
Rxfr) shown in green represents a “far reflection channel”.

this figure, the black diamond shapes represent the antennas.
Given the above explanation, grouping signals in different classification

models by length of propagation path effectively corresponds to grouping
signals in three zones of angles: 1) near reflected channels, 2) transmission
channels, and 3) far reflection channels. Additionally, when separating
signals by angle, each classification model is provided with a group of signals
incorporating a full view surrounding the tumour. Using the channel angle
information available in a microwave prototype is a simple and intuitive way
of grouping signals; as demonstrated in Chapter 4, classification based on
separate models for each channel angle increased the diagnostic performance.

In terms of expected performance, it is also plausible to assume that
the quality of information preserved in signals with increasing propagation
path may decrease, as the attenuation along the path has a higher effect;
particularly, the far reflection channels are expected to underperform.

5.4 Methodology

The experimental analysis presented in this chapter follows the same core
methodology designed for the numerical study presented in Chapter 4,
consisting of three stages: data acquisition, data processing and diagnosis.

107



5. Machine Learning Applied to Microwave Breast Diagnosis:
Validation with an Experimental Dataset

1. DATA ACQUISITION

2. DATA PROCESSING

3. DIAGNOSIS

BRIGID Phantom Set

In-house Microwave Prototype

Artefact Removal

TW FE

Classification: Random Forests

Antenna Grouping

Final Decision: Benign/Malignant

Figure 5.6: Updated 3-stage diagnosis platform. Stage 1 consists of data collection
in a microwave breast prototype, using the Breast Imaging and Diagnosis (BRIGID)
phantom set. Stage 2 consists of data processing by means of artefact removal, followed
by Tumour Windowing (TW) or Feature Extraction (FE). Stage 3 is the diagnosis stage,
which uses random forests as the classifier and includes an antenna grouping algorithm
to produce a final diagnosis as benign or malignant.

The main findings from the previous chapter are used to refine the diagnostic
platform, which is depicted in Fig. 5.6. The updated architecture is intended
to reduce the overall operational cost and complexity of the diagnosis system.

Stage 1 consists of the signal acquisition for the BRIGID phantom set
with the in-house experimental prototype, as described in Section 5.2. Par-
ticularly, the dataset analysed in this study is based on the low spiculation
tumour phantoms (plugs 1–8, described in Table 3.6) to represent benign
tumours, and the high spiculation tumour phantoms (plugs 15–22) to repres-
ent malignant tumours. This choice of input data enables the creation of a
classifier with equally distributed observations amongst the two class labels,
which simplifies the operation of the classification models. The tumour
phantoms were each combined with all 7 BRIGID phantoms, totalling 112
test cases. Contrary to Section 4.4, where breast models with different
glandular content where classified separately, there was no separation by
breast model prior to the classification in the current study. This choice
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of input data allows an analysis as to whether the classification models
are able to discern which differences in the signals arise from the level of
malignancy of a tumour and which differences are due to reflections from
increased glandular content.

Stage 2 consists of data processing, which starts by performing artefact
removal with the rotational subtraction algorithm [125], [130]; next, the
signals are pre-processed by tumour windowing or feature extraction. The
tumour windowing algorithm was described in Section 4.3.2.1; the operation
of the tumour windowing requires prior knowledge of the tumour location,
which is available as described in Table 3.7, thus the windowing can be
considered to be ideal. The feature extraction algorithm was described in
Section 4.3.2.2. The relative benefits of both algorithms are once again
analysed by comparing the diagnostic performance when only tumour win-
dowing is applied, and only feature extraction is applied. The discussion
presented in Section 4.5 showed how the extraction of features from backs-
cattered signals performed well, even when the signal was not pre-processed
by tumour windowing; performing feature extraction has the added bene-
fit of not requiring prior knowledge of the tumour location, reducing the
complexity of the system.

Stage 3 consists of diagnosis, and encompasses classification of the dataset
through random forests, followed by antenna grouping and final decision as
benign or malignant. The random forest algorithm was previously described
in Section 4.3.3.1. The same antenna grouping algorithm described in
Section 4.3.3.3 is once again utilised; Section 4.5 discussed how antenna
grouping is important for increased diagnostic performance, as it allows for
minor incorrect predictions from extraneous channels to be disregarded.

The choice of design for the random forest models is based on the dis-
cussion presented in Section 5.3.2. Individual classification models are built
for the signals collected at each channel angle, within each ring of antennas
(EA models, as defined in Section 4.3.3.2). Additionally, in Section 4.5, the
diagnostic performance was shown to increase when the predictions of indi-
vidual EA models were combined by majority voting into a fused-type model
(EAC models). The relative benefit of EA and EAC models is assessed by
comparing their diagnostic performance with the performance of a random
forest model that classifies signals from all channels without regard for their
angle — these models are defined as All Channels (AC) for the remainder
of this chapter. Figure 5.7 summarises the operation of the three types of
model design assessed in this chapter: EA, EAC, and AC.

Finally, the same validation practices discussed in Section 4.3.3.4 were
adhered to in order to increase the reliability of the results, and prevent
overly optimistic reports of model performance.
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Figure 5.7: Illustration of the different classification models implemented in this study:
EA (Equal Angle), EAC (Equal Angle Combined) and AC (All Channels), where Z
represents the channel angle in the microwave prototype. EA models classify signals from
independent channel angles; EAC models are fused models that combine the predictions
from individual EA models by majority voting to produce a diagnosis; and AC models
classify signals from all channels together regardless of their angle.

5.5 Results

The results section is divided into three separate sub-sections. Section 5.5.1
presents an investigation on the performance of the classification models
designed for the diagnosis of tumours based on their backscattered responses,
the usefulness of the antenna grouping algorithm, and the relative advantages
of data pre-processing by means of tumour windowing or feature extraction.
Section 5.5.2 then investigates the effect of tissue heterogeneity in diagnostic
performance, and Section 5.5.3 identifies a subset of features with maximised
relative contribution to the learning process.

5.5.1 Design of classification models

In this section, the aim is to study if grouping signals by channel angle ahead
of the classification is indeed helpful towards increasing the performance
of microwave breast diagnosis systems. The value of antenna grouping is
also re-visited. To this extent, classification models of type AC and EA
were used to classify the BRIGID dataset, using the tumour windowing and
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Figure 5.8: Diagnostic performance, plotted by means of the AUC (Area Under
the ROC curve), when EA (Equal Angle) models are used to classify the dataset after
FE (Feature Extraction, blue lines) and TW (Tumour Windowing, orange lines). The
performance of 12 different EA models is compared, each using one channel angle within
each ring of antennas: R1 stands for the top ring, R2 the middle ring, and R3 the bottom
ring of antennas. Performance is also compared when the antenna grouping algorithm is
used (A.Grouping, represented by the dashed lines), and when the antenna grouping is
not applied (solid lines); here, the antenna grouping algorithm used all available channels
towards the majority vote.

feature extraction methods.
Figure 5.8 plots the AUC for EA models using feature extraction (blue

lines) and tumour windowing (orange lines). The solid lines and dashed lines
in the plot indicate the AUC before and after applying antenna grouping,
respectively.

The first noticeable observation is that antenna grouping greatly increases
the performance of the classification, supporting the numerical results ob-
tained in Section 4.4.1. By taking the majority vote of all individual decisions
from one single breast scan, a minority of incorrect predictions are cancelled
by a majority of correct classifications, which helps increase diagnostic
performance.

Figure 5.8 also shows comparable diagnosis performances after tumour
windowing and after feature extraction are applied. This result suggests
that extracted features have the potential of capturing the essence of the
tumour signature without requiring the tumour location to be known in
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Table 5.1: Comparison of the diagnostic performance with the best performing EA
(Equal Angle) model, the EAC (Equal Angle Combined) models for top, middle and
bottom rings of antennas separately, the EAC model using all signals, and the AC (All
Channels) model using all signals. Feature Extraction (FE) and Tumour Windowing
(TW) were both used as pre-processing methods in the analysis.

Model Type AUC [FE] AUC [TW]

EA Best Model
0.77 0.84

(EA 108°) (EA 144°)

EAC Top Ring 0.81 0.80

EAC Middle Ring 0.61 0.65

EAC Bottom Ring 0.55 0.50

EAC All Signals 0.73 0.74

AC All Signals 0.65 0.74

advance as in the ideal TW results.
In addition, a clear trend cannot be identified as to which channel angle

yields the best diagnostic performance. In fact, Fig. 5.8 shows that EA
models using channels from different antenna rings produce substantially
different AUCs, which also appear to be highest for the channels within the
top ring of antennas; the meaning of this result will be discussed below.

The value of EAC models, which fuse the individual predictions of EA
models, is shown in Table 5.1. In this table, a comparison is drawn between
the best EA model from Fig. 5.8, the EAC performances for the channels
in each of the rings in the prototype, the EAC performance when using all
signals, and the performance of using the AC model to classify all signals.
In this analysis, antenna grouping was always used, as its value has already
been demonstrated.

Once more, the diagnostic performance when using channels in the top
ring seems to be the best amongst all models, with feature extraction or
tumour windowing. However, and considering the clinical application of a
microwave breast diagnosis platform, it is unrealistic to design a system that
penalises a particular set of channels based on findings that are specific to a
patient. When tumour location is not available a priori, the classification
system should be designed in such a way that its performance does not
depend on rewarding or penalising channels based on the channel-tumour
distance. To this extent, the EAC model which uses all signals after feature
extraction achieves a diagnostic performance that is 8% higher than the
undifferentiated AC model.

For completeness, the ROC curves comparing the performance of the
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Figure 5.9: ROC curves comparing the diagnostic performance with the EAC (Equal
Angle Combined, blue lines) and the AC (All Channels, orange lines) models, always
applying the antenna grouping algorithm; pre-processing with FE (Feature Extraction)
and TW (Tumour Windowing) are shown by the solid lines and dashed lines respectively.
The black dotted line represents the null hypothesis in the ROC curve.

EAC (blue lines) and the AC (orange lines) models are shown in Fig. 5.9.
Pre-processing with feature extraction and tumour windowing are shown by
the solid lines and dashed lines respectively. As previously demonstrated, the
added value of using the EAC models is noticeable, with the corresponding
ROC curves exhibiting greater area. Additionally, the ROC curves for
feature extraction and tumour windowing exhibit similar behaviour.

5.5.1.1 Performance Variations Across Channel Angles

In Fig. 5.8 and Table 5.1, an unexpected variation of AUC for EA models of
different channel angles can be noted: the signals collected from channels in
the top ring of antennas seemed to produce a higher diagnostic performance.

To understand this result, the relationship between diagnostic perform-
ance of EA models and propagation path length was inspected when each
tumour model was combined with each of the BRIGID breast phantoms.
By way of example, Fig. 5.10 details the analysis when tumour model H19
(high spiculation) was combined with BRIGID 0.

In this figure, diagnostic performance is expressed in terms of cumulative
percentage of correct predictions, which was calculated for channels with
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Figure 5.10: Diagnostic performance, expressed in terms of cumulative percentage
of correct predictions, for channels with increasing propagation path length, for signals
acquired with the Breast Imaging and Diagnosis (BRIGID) phantom set. The result
is shown for tumour model H19 (high spiculation) combined with BRIGID 0. The
predictions are presented for each ring of antennas individually: the top ring is shown
in black, the middle ring in orange, and the bottom ring in green; additionally, the
cumulative performance including all rings is shown in yellow for completeness. The
middle ring of antennas suffers from the problem of tumour depth, where the antennas
closest to tumours in the vicinity of skin see a deterioration in performance. Overall, the
top ring of antennas contributes with the most to performance.

increasing length of propagation path. To make the analysis easier, the
cumulative predictions are shown for each ring of antennas individually. The
top ring is shown in black, the middle ring in orange, and the bottom ring
in green; for completeness, the cumulative performance including all rings is
shown in yellow.

As expected, the propagation paths for channels in the top ring are the
largest, and for the bottom ring the smallest; this is due to the hemispherical
shape of the radome (shown in Section 5.2). However, the cumulative
performance in each of the rings is of similar shape: there is a small increase
in performance for the channels with the shortest propagation paths, followed
by a steep increase for channels with mid-range propagation paths, followed
finally by another slow increase in performance for the channels with the
largest propagation path lengths. This observation is consistent with the
hypothesis of Section 5.3.2, and shows that the channels with mid-range
propagation delays are the ones that mostly contribute to the classification;
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according to Fig. 5.4, these channels are likely to correspond to the reflection
channels close to the tumour as well as the transmission channels.

Figure 5.10 also shows that the middle ring of antennas yields the lowest
diagnostic performance. The explanation of this result is likely due to the
positioning of the tumour models.

As detailed in Table 3.7, tumours in the BRIGID phantoms are always
located at an approximately equal distance between the chest wall and
the nipple (B-F plane), which coincides with the plane of the middle ring
of antennas; given the offset in the tumour positioning in the H-T plane,
tumours will appear very close to the skin for a subset of antennas in the
middle ring. The quality of the signal when the tumour is close to the skin
is expected to deteriorate due to poor performance of the artefact removal
process in such cases, consequently affecting the quality of the predictions.
Ultimately, antennas nearest tumour models in the vicinity of skin are
problematic for the classification.

5.5.2 Effect of Tissue Heterogeneity

To mimic the limitations of a clinical system, the classifiers used in this
study had no knowledge of the glandular tissue content of each breast
scan. The analysis presented in this section investigates the effect of tissue
heterogeneity in the diagnostic performance by investigating the number of
correct predictions per breast phantom.

Table 5.2 details the breakdown of correct benign and malignant pre-
dictions of the BRIGID phantom set, when feature extraction and tumour
windowing are used. For both processing methods, the benign tumours are
more often correctly classified for six of the seven breast phantoms; this result
confirms that, as implemented, the diagnosis system maintains specificity,
which, as discussed in Section 2.2.4.2 is a drawback of current screening
mammography. In the final breast phantom (BRIGID 30E, with the highest
content of background tissue), the opposite happens: the malignant tumours
are more often correctly classified. This result could be explained by the
high glandular content of the phantom; increased glandular content leads to
larger and more widespread reflections in the backscattered signals, and it is
possible that the classification model incorrectly labels these reflections as
originating from a malignant tumour. Overall, using tumour windowing as
the pre-processing method leads to a 5.3% increase in correct predictions.

Table 5.2 also shows that there is a substantial variation in the spe-
cificity and sensitivity of the system across breast models, in some instances
surpassing 50%. This result may in part be explained by the small size
of the dataset used; for each breast model, a relatively small dataset of 8
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Table 5.2: Breakdown of correct predictions in each breast model of the Breast Imaging
and Diagnosis (BRIGID) phantom set, when FE (Feature Extraction) and TW (Tumour
Windowing) are used. The correct predictions expressed in percentages are shown in
brackets.

Number of Correct Predictions

FE TW

Benign (%) Malignant (%) Benign (%) Malignant (%)

BRIGID 0 6/8 (75.0) 4/8 (50.0) 7/8 (87.5) 7/8 (87.5)

BRIGID 10U 6/8 (75.0) 2/8 (25.0) 7/8 (87.5) 1/8 (12.5)

BRIGID 10E 8/8 (100) 3/8 (37.5) 8/8 (100) 3/8 (37.5)

BRIGID 15U 7/8 (87.5) 5/8 (65.5) 7/8 (87.5) 6/8 (75.0)

BRIGID 15E 6/8 (75.0) 1/8 (12.5) 7/8 (87.5) 4/8 (50.0)

BRIGID 20E 8/8 (100) 5/8 (65.5) 8/8 (100) 2/8 (25.0)

BRIGID 30E 3/8 (37.5) 7/8 (87.5) 3/8 (37.5) 6/8 (75.0)

Total 44/56 (78.6) 27/56 (48.2) 47/56 (83.9) 29/56 (51.8)

benign and 8 malignant tumours was available, creating fluctuations in the
performance analysis between breast models. It should also be considered
that the signals collected from breast models with high glandular content
may, in some cases, be dominated by the glandular response; it is likely
that the diagnosis platform has an upper limit on the amount of glandular
content for meaningful results.

5.5.3 Relative Feature Contribution

The previous sections have examined the design of classifiers, and the impact
of tissue heterogeneity on the correct predictions across all BRIGID breast
phantoms. In this section, an analysis of feature selection is presented
by means of the relative feature contribution map provided as one of the
outputs of the random forest classifier.

In Fig. 5.11a and Fig. 5.11b, the relative feature contribution map is
shown when tumour windowing and feature extraction are used respect-
ively. The relative feature contribution is expressed as the average feature
importance map retrieved from the operation of each EA classifier.

Regarding classification with tumour windowing (Fig. 5.11a), the relevant
features identified by the feature contribution map appear to concentrate
on the entire tumour signature.
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Figure 5.11: Map of relative feature contribution calculated during the training of
the random forest model. (a) refers to the dataset pre-processed with TW (Tumour
Windowing), and the horizontal axis shows the time samples (TS) which make up the
time-domain tumour responses; (b) refers to the dataset pre-processed with FE (Feature
Extraction); the horizontal axis shows features 1 through 30 used in the classification,
indicated by F1 to F30.

Classification with the FE method seems to benefit from a large number
of features (Fig. 5.11b). Feature #2 (Location of the maximum positive
peak) ranks highest, but a number of other features were identified as
relevant. The top-10 features that contributed the most to the operation
of the random forests are: location of the maximum positive peak in the
tumour signature (#2), location of the maximum negative peak in the
tumour signature (#4), amplitude of the maximum negative peak in the
tumour signature (#3), mean amplitude of the negative peaks in the tumour
signature (#10), mean amplitude of the peaks in the autocorrelation curve
(#22), integral of the tumour signature (#16), amplitude of the maximum
positive peak in the tumour signature (#1), negative percentage area of the
tumour signature (#19), mean amplitude of the peaks in the periodogram
curve (#28), mean FWHM of the positive peaks in the tumour signature
(#11).

The top-10 features were used to re-compute the classification results.
The breakdown of the correct predictions per breast phantom when all 30
features are used are compared with results using the top-10 features in
Table 5.3. The specificity of the system increased by 8.9%, which highlights
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Table 5.3: Breakdown of correct predictions in each breast model of the Breast Imaging
and Diagnosis (BRIGID) phantom set, when FE (Feature Extraction) is used, either
with all 30 extracted features contributing to the classification, or only the top-10 best
performing features. The correct predictions expressed in percentage are shown in
brackets.

Number of Correct Predictions

FE [30 Features] FE [Top-10 Features]

Benign (%) Malignant (%) Benign (%) Malignant (%)

BRIGID 0 6/8 (75.0) 4/8 (50.0) 7/8 (87.5) 4/8 (50.0)

BRIGID 10U 6/8 (75.0) 2/8 (25.0) 7/8 (87.5) 3/8 (37.5)

BRIGID 10E 8/8 (100) 3/8 (37.5) 8/8 (100) 3/8 (37.5)

BRIGID 15U 7/8 (87.5) 5/8 (65.5) 8/8 (100) 5/8 (65.5)

BRIGID 15E 6/8 (75.0) 1/8 (12.5) 7/8 (87.5) 2/8 (25.0)

BRIGID 20E 8/8 (100) 5/8 (65.5) 8/8 (100) 4/8 (50.0)

BRIGID 30E 3/8 (37.5) 7/8 (87.5) 4/8 (50.0) 6/8 (75.0)

Total 44/56 (78.6) 27/56 (48.2) 49/56 (87.5) 27/56 (48.2)

the importance of identifying a subset of features with maximum contribution
to the diagnosis problem; additionally, the diagnosis becomes less time-
consuming if a reduced feature set is used.

5.6 Discussion

Classification models tend to perform better when the differences in the
dataset arise primarily from the differences in the class labels (benign and
malignant in the case of this study). Given the diversity of breast cancer
scenarios that occur clinically, it is difficult to guarantee that all sources of
variance beside the level of malignancy have been removed from consideration;
for example, the variance introduced by different levels of heterogeneity,
and the variance introduced by the differences in the backscattered signals
collected at different channels. Additionally, and considering the overall goal
of reducing the operational cost and complexity of the diagnosis process,
the classification platform should be designed in such a way that it does not
require a priori information to ensure its accuracy. For example, requiring
knowledge of the tumour location may impair the usability of automated
diagnosis systems, as currently available algorithms may be subject to
errors in detecting and localising targets in breasts with varying contents of
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glandular tissue.
The results from this chapter demonstrated the relevance of appropriately

designing classification models. Particularly, the EAC models proposed with
this study rely on grouping together signals of the same channel angle; with
this design, a full view of a tumour is offered to the learning process, and there
is an inherent separation by tumour propagation path as a consequence. As
the EAC models do not require tumour location to be known in advance, they
allow for all of the information collected in a breast scan to be appropriately
used, and ensures that channels providing incorrect predictions have less
of an impact in the overall diagnostic performance, without the need to
penalise certain channels based on patient-specific channel-tumour distance.

An in-depth analysis of the contribution of each channel to the over-
all diagnostic performance also showed that the channels with mid-range
propagation path lengths preserve the most relevant information towards
the classification process. Particularly, antennas nearest tumour models in
the vicinity of skin were found to have the smallest propagation paths and
are problematic for the classification; in addition, reflection channels that
are far from the tumour were also found to underperform, as the signals in
these scenarios are largely dominated by attenuation.

The results confirmed the usefulness of the antenna grouping algorithm,
and also investigated the pre-processing methods by comparing feature
extraction and tumour windowing algorithms. Overall, both pre-processing
methods achieve similar performances, although feature extraction in certain
cases suffers from more incorrect predictions. This result is, nevertheless,
encouraging, as feature extraction does not rely on a priori knowledge of
the tumour location, as is the case of tumour windowing.

The impact of tissue heterogeneity was also assessed. In its current
design, the 3-stage diagnosis platforms offers better accuracy in diagnosing
benign tumours when compared to the malignant tumours, resulting in
an increased specificity, i.e., lower rates of false positives. This serves as
a strong indicator of the potential of microwave breast diagnosis systems
in countering the high rates of false positives currently linked to screening
mammography (as discussed in Section 2.2.4.2). Nevertheless, the sensitivity
in classifying the malignant tumours in the BRIGID phantom set was low,
which can be improved by further optimisation of the random forests model,
via the introduction of a cost value to the process.

It was also observed that there is a large variation in the sensitivity and
specificity of the system across breast models. This result may, in part,
be explained by the small size of the experimental phantom set, creating
large fluctuations in the performance analysis between breast models. It is
also likely that the diagnosis platform has an upper limit on the amount of
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Table 5.4: Summary of the performance obtained in the numerical and experimental
investigations of microwave diagnosis platforms, when using feature extraction in the
data processing stage. The numerical results of performance are averaged across all three
breast models that were each classified by a new random forests model. The experimental
result corresponds to using the top-10 features for the diagnosis. Accuracy, Specificity,
Sensitivity and AUC (Area Under the ROC Curve) are shown.

Numerical Experimental Difference

Top-10 [Experimental - Numerical]

Accuracy (%) 75.4 67.8 -7.6

Specificity (%) 82.6 88.5 +5.9

Sensitivity (%) 68.2 51.3 -16.9

AUC (%) 83.9 80.9 -3.0

glandular content before returning random predictions. Larger datasets are
needed to assess the true impact of high volumes of glandular content in
the diagnosis process.

The relative contribution of the different features to the diagnostic per-
formance was assessed. A majority of features that rely on peak analysis
of the time-domain backscattered signals showed a particularly high con-
tribution to the overall diagnostic performance with the BRIGID phantom
set; in addition, some features from the autocorrelation and power spectral
density analyses also ranked high in terms of classification contribution. It
should be noted that the top-10 performing sets of features in the numerical
and the experimental studies were not exactly the same, although they rely
on similar numbers of features in the time- and frequency-domain. The
difference in the result suggests that an optimal subset of features may
need consider to the characteristics of each acquisition hardware system.
Using the top-10 features that showed maximised contribution to the ran-
dom forests algorithm with the BRIGID phantom set helped increased the
specificity of the system by a further 9%, which indicates that there is an
optimal number of refined features to be used with microwave diagnosis
platforms.

Quantitatively, a comparison is now drawn between the results obtained
for the numerical and experimental investigations. Table 5.4 compares
the accuracy, specificity, sensitivity and AUC for EAC models using the
features extracted from all signals available from the data collection; since
the numerical investigation produced different classifiers for each breast
background type, the results across all three numerical breast models are
averaged. Additionally, the experimental result corresponds to using the
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top-10 features for the diagnosis.
Overall, the experimental results show a decrease of 7.6% and 3.0% in

the accuracy and AUC of the diagnosis, respectively. This result may be
explained due to the non-ideal conditions that are inherent to an experimental
acquisition, such as noise; additionally, it is likely that the size of the BRIGID
phantom set is not sufficient to truly quantify the effect of acquiring data in
an experimental or clinical setting. Nevertheless, the high specificity result
achieved both in the numerical and experimental investigations indicates the
potential of microwave breast diagnosis systems in the screening of breast
cancer for asymptomatic populations.

5.7 Conclusion

In this chapter, the 3-stage microwave diagnosis platform was validated with
the BRIGID experimental phantom set. The diagnosis platform consists of
data acquisition with an experimental microwave prototype designed as part
of collaborative work developed during this research. Data pre-processing
allows highlighting the tumour response, whether by means of tumour
windowing or feature extraction. And finally, diagnosis is performed by
means of random forests in a carefully designed architecture, where multiple
classifiers each classify the responses from a group of signals originating
from channels with the same channel angle; furthermore, the predictions
from the individual models are grouped in a fused-type model.

Ultimately, classification models function by finding similarities and
differences across signals in diverse populations; the pre-grouping of signals
by channel angle ensures that the classification models have a better chance
at identifying the differences in the signals that arise from the differences in
the level of malignancy, and not from other effects such as tissue heterogen-
eity or the inherent inter-channel variance. Overall, the proposed system
architecture is shown to be a potentially valuable component of microwave
diagnosis platforms, as it ensures that all data collected in a microwave scan
can be used during the diagnosis process, without the need for a priori and
specific patient information.

In line with the observations from the numerical investigation of Chapter 4,
this chapter verified that:

1) The diagnosis process does not have to rely on accurate knowledge of
tumour location;

2) Feature extraction is an efficient mechanism of accentuating the differ-
ences between benign and malignant tumours;
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3) Using only a subset of features that contain the most relevant information
about the signature of a tumour is beneficial to the diagnosis;

4) That machine learning architecture design, and good practice should
always be adhered to.

Future work in the area of automated microwave breast diagnosis should
continue on the identification of a set of features that captures relevant
information about the shape of a tumour. The ideal subset of features may
operate in the time- or frequency- domain, but should not be affected by
increased content of glandular tissue and increased noise from experimental
or clinical prototypes; furthermore, the optimal subset of features may need
to be tuned to the characteristics of each acquisition hardware.

At the same time, it should also be considered that an automated dia-
gnosis platform should not have to rely on complex classification algorithms
to guarantee its accuracy; the identification of an optimal subset of fea-
tures would ease the task of the classifier, ultimately contributing to the
performance of the diagnosis.

Finally, larger experimental datasets are also needed to assess the true
potential of the diagnosis platform in breast models with high volumes of
glandular content.
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CHAPTER 6

Conclusions

This chapter summarises the research presented in this thesis and presents
opportunities for future work. A summary of the work is presented in
Section 6.1. Section 6.2 summarises the main contributions of the work,
while Section 6.3 presents a discussion of future work avenues.

6.1 Summary of the Research

Breast cancer still remains the most common cause of cancer death for women
today. Early detection of cancer in populations showing no symptoms of the
disease is key to survival, as breast cancers identified at an early stage allow
for more effective deployment of medical treatments. To this extent, x-ray
mammography is widely used as an imaging modality to regularly screen
asymptomatic women; however, recent studies have questioned the value of
screening mammography, with figures indicating that the ratio of avoided
breast cancer deaths to number of overdiagnosed cancers may vary between
1:2 and 1:5, with at least 152 false positives and 31 unnecessary biopsies
per breast cancer death avoided. In the context of current practices for
breast cancer screening, a need exists for emerging breast imaging modalities
that are less prone to false positives and unnecessary biopsies. Chapter 1
introduced this topic by describing the societal context and current screening
practices for breast cancer.

Chapter 2 provided a detailed literature review of the past works con-
cerning the research topic of this thesis. The anatomy of the breast was
described from the point of view of system development, including a charac-
terisation of benign and malignant breast findings; the shape and spiculation
of a tumour were identified as recognised markers for malignancy. The
guidelines for the clinical assessment of breast cancer, both in symptomatic
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and asymptomatic populations were also discussed, highlighting the uncer-
tainty of the medical opinion regarding the value of screening mammography.
Next, the core principles of microwave systems were described including
the dielectric properties of the breast, signal acquisition and image recon-
struction, and the state-of-the-art microwave breast prototypes. Lastly, a
review of the literature on the topic of microwave breast diagnosis systems
using machine learning was also presented. The reviewed studies presented
small-scale analyses suggesting that there may be information preserved in
a backscattered signal to inform on the shape and spiculation of a tumour,
and that machine learning-based platforms may be able to learn from this
information to classify tumours as benign or malignant.

Chapter 3 presented the two phantom sets developed in this work, which
were subsequently used in investigating the diagnosis platform developed in
this thesis.

The first phantom set discussed in Chapter 3 is based on a numerical
tumour modelling algorithm that extended previous work from the liter-
ature. The tumour models produced may vary in size, shape and level
of spiculation creating a wide range of breast cancer models. In addition,
independent analyses by radiologists indicated that the tumour models are
clinically-representative; the clinical validation of tumour models for testing
of microwave systems is novel in the literature.

An experimental phantom set was also proposed in Chapter 3 — the
BRIGID phantom set, which consists of a set of tumour and breast phantoms.
The tumour phantoms include 3 classes of malignancy, represented in terms of
increasing levels of spiculation at the border of the tumour. The set of tumour
models can be dynamically combined with several breast phantoms, which
have increasing percentages of glandular tissue to represent the diversity
of breast density in women. The inclusion of different levels of tumour
spiculation and different percentages of glandular tissue in experimental
models is novel in the literature.

The following chapters investigated the potential of a machine learning
platform to classify breast tumours as benign or malignant with microwave
backscattered signals. The examination in Chapter 4 was based on the
numerical tumour models presented in the previous chapter, while the
analysis in Chapter 5 used a dataset of signals from the BRIGID phantom
set, where signals were acquired with an experimental microwave prototype
developed during this research through collaborative work.

A 3-stage automated platform was developed that encompasses data
acquisition, data pre-processing (which includes a tumour windowing, TW,
and a feature extraction, FE, algorithm), and final diagnosis by means of
the random forests classification algorithm in a two-level architecture. The
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classification architecture is such that similar signals are grouped together in
different classification models; in this work, the channel angle available in a
microwave prototype system was investigated as a suitable candidate for the
division of backscattered signals. The diagnosis stage also includes an an-
tenna grouping algorithm, which is applied after the classification predictions
are made. With this algorithm, a majority vote of all available predictions
respective to one scan is made to produce a final benign/malignant label.
The validation methodology implemented in the diagnosis platform adheres
to good machine learning practice, to ensure results are representative and
reproducible.

The results from the numerical and experimental analyses suggest that
feature extraction may be an efficient mechanism of retrieving the differences
between benign and malignant tumours captured in backscattered signals; in
addition, the feature extraction algorithm does not rely on accurate a priori
knowledge of tumour location (as is the case with the tumour windowing
approach). The analyses also indicate that dividing signals in separate
classification models according to their channel angle may be an efficient
way of improving diagnostic performance. In addition, the inclusion of the
antenna grouping algorithm in the machine learning platform was shown to
be a key step for an increased diagnostic performance. In its current design,
the proposed diagnosis platform offers better accuracy in diagnosing benign
tumours when compared to malignant tumours, resulting in an increased
specificity, i.e., lower rates of false positives.

Overall, the numerical results shown in Chapter 4 were supported by
the experimental conclusions in Chapter 5. Quantitatively, the investigation
using experimental data revealed lower diagnostic performance when com-
pared to the numerical investigation, which may be explained due to the
non-ideal conditions inherent to experimental acquisitions; additionally, it
is likely that the size of the BRIGID phantom set is not sufficient to truly
quantify the effect of acquiring data in experimental or clinical settings.

6.2 Summary of the Contributions

The main contributions and outputs of the work presented in this thesis are
restated here:

1) Development of clinically-validated breast tumour phantoms. This con-
tribution resulted in the journal publication titled “Development of
Clinically Informed 3-D Tumor Models for Microwave Imaging Applica-
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tions”, published in IEEE Antennas and Wireless Propagation Letters
(2015);

2) Design and fabrication of experimental breast phantoms, including in-
creasing percentages of breast density, and experimental breast tumour
phantoms with increasing levels of spiculation. This contribution resulted
in the journal publication titled “Microwave Breast Imaging: Exper-
imental Tumour Phantoms for the Evaluation of New Breast Cancer
Diagnosis Systems” published in Biomedical Physics and Engineering
Express (2018);

3) Investigation of a feature set to capture the difference in backscattered
signals between benign and malignant breast tumours;

4) Investigation of machine learning architecture design and machine learn-
ing validation methodologies, and development of a machine learning-
based platform for the classification of breast tumours as benign or
malignant based on their backscattered response, with novel elements as
identified above;

5) Testing of the diagnosis platform by means of both a numerical dataset
of clinically-representative tumours, and experimental data from the
BRIGID phantom set. This work was published “Diagnosing Breast
Cancer with Microwave Technology: remaining challenges and potential
solutions with machine learning”, Diagnostics (2018); a second paper on
validation using the experimental data, titled “Experimental Validation
of a Machine Learning Platform for Diagnosing Breast Cancer with
Microwave Technology”, is currently in preparation.

Additionally, contributions from collaborative work developed throughout
this research include:

1) Design, building and testing of an experimental microwave prototype
system. This work was led by Declan O’Loughlin and is described in
two co-authored journal publications: O’Loughlin et al., “Parameter
Search Algorithms for Microwave Radar-Based Breast Imaging: Focal
Quality Metrics as Fitness Functions”, Sensors (2017); O’Loughlin et al.,
“Sensitivity and Specificity Estimation using Patient-Specific Microwave
Imaging in Diverse Experimental Breast Phantoms”, IEEE Transactions
on Medical Imaging (Accepted, 2018);

2) Development of open-source and extensible imaging software, which can
be used for image reconstruction with many types of system design. This
work was led by Declan O’Loughlin and resulted in the co-authored
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conference publication O’Loughlin et al. , “Open-Source Software for Mi-
crowave Radar-Based Image Reconstruction”, 12th European Conference
on Antennas and Propagation (EuCAP) (2018).

6.3 Discussion and Future Work

The results pertaining to the main goal of this thesis have demonstrated
that there is merit in further investigating an automated platform for
the diagnosis of breast cancer using microwave technology in conjunction
with machine learning. A set of characteristics for the development of an
automated diagnosis platform was identified, namely, microwave breast
diagnosis systems should:

1) Adhere to good machine learning practices, to guarantee the reproducib-
ility of the results;

2) Extract features that accurately characterise the shape information
contained in the signature of a tumour, while de-emphasising the influence
of the surrounding glandular tissue;

3) Use an appropriate classification architecture, such as, pre-grouping
signals by reflection angle;

4) Implement an antenna grouping algorithm, to group all of the individual
classification predictions from different channels into one final diagnosis
for each tumour;

5) Implement an optimisation strategy that rewards system specificity,
while conditioning the minimum sensitivity the diagnosis system should
deliver.

To improve on the proposed microwave diagnosis platform, future work
could consider an antenna grouping algorithm that emphasises the predic-
tions of some channels, while de-emphasising others (in its current imple-
mentation, the antenna grouping algorithm is based majority vote from all
predictions pertaining to one breast scan). For example, channels with lower
angles between transmit and receive antennas were found to consistently
yield more accurate predictions. One challenge with such an algorithm lies
with the fact that the diagnosis platform should not rely heavily on previous
knowledge of tumour location.

Future work could also consider integrating an additional layer of data
processing to deal with breast heterogeneity. If knowledge of the average
dielectric properties of a breast can be obtained, different classifiers can
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be created and optimised for different ranges of breast glandular content;
in this scenario, the classifier is likely to achieve higher performances, as
demonstrated with the numerical study. One straightforward way to estimate
the average dielectric properties of the breast could rely on the length of
transmissions paths when data are acquired. Another, more complex method,
could follow the example of the University of Calgary, Canada; the group
have built a complementary system to their microwave radar prototype,
which serves to obtain an average of the dielectric properties of each breast.

Considering the ultimate goal of translating such a system to the clinical
practice, the diagnosis process should classify observations by means of
algorithms that are computationally inexpensive and not time-consuming.
To this extent, the investigation of a new feature set is a key enabler of the
operation of diagnosis systems. Future work in the area of feature engineering
should investigate features both in the time and frequency domains, that are
1) tuned to the hardware specifications of a microwave prototype, and 2) able
to decompose the backscattered signal and differentiate which components
arise from the tumour signature and from the glandular tissue. Ensuring
the robustness of the extracted features in breasts with high contents of
glandular tissue bears clinical relevance, as breast density is a recognised
risk factor for the occurrence of breast cancer.

To be able to analyse the true potential of automated classification
platforms, larger experimental datasets are needed. Future work in this
area could include extending the BRIGID phantom set to include more
breast and tumour phantoms. Additionally, as the BRIGID phantom set is
suitable for testing with a variety of prototypes, it would be of interest to
use the BRIGID phantom set to acquire experimental data with some of
the state-of-the-art microwave breast prototypes. The operating conditions
of current microwave breast prototypes have been validated with small
scale clinical trials, creating an ideal scenario for the acquisition of a large
database of high-quality experimental backscattered signals.

In the long-term, further enhancement of microwave diagnosis platforms
may integrate more comprehensive knowledge of the dielectric properties
of breast tissues to increase the accuracy of the diagnosis. Recent studies
have indicated that the relative permittivity and conductivity of benign and
malignant tumours might differ. For example, studies with the tomography-
based prototype system developed by Dartmouth College have identified a
change in the dielectric properties, particularly, the conductivity, between
benign and malignant tumours. An additional study using the radar-based
MARIA® system has also suggested that it is potentially possible to auto-
matically discriminate benign and malignant breast tissues based on their
frequency-dependent dielectric response. Using the estimated relative permit-
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tivity and conductivity of detected tumours as features to the classification
process may be key in further refining the diagnosis platform. However,
a number of studies have recently highlighted the uncertainty regarding
the measurement of the dielectric properties of human tissues. Further
studies would be required to accurately determine the relative permittivity
and conductivity of benign and malignant breast tissues, before accurate
diagnosis based on these properties may be realisable.

In summary, clinical experience to date with modalities such as X-ray
mammography have pointed to the need to develop new, more effective tools.
To quantify the potential of microwave breast systems, future clinical trials
with this technology would have to focus not only on identifying the presence
of a tumour, but also, on the blind assessment of their level of malignancy.
In addition, future trials would also need to consider that accurate validation
of a machine learning-based diagnosis platform involves large samples of
signals, including a fair representation of several breast tumour types, which
means larger patient populations (for comparison, one of the largest trials
performed to date reports detection results for 223 patients only).

Overall, however, the results of this work suggest that future microwave
breast analysis systems, which include automated diagnosis platforms such
as the one proposed in this work, could help to tangibly impact patient
outcomes.
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