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ABSTRACT

Numerical modelling of coastal zones typically requires a high spatial resolution to

accurately simulate land-sea interactions, particularly in areas of complex coastlines.

As a result, the computational cost of coastal models can become quite prohibitive.

Nested models are a possible solution to the spatial resolution problem, allowing the

specification of high spatial resolution in areas of interest only. A one-way, multiple

nested, adaptive mesh model was developed which simulates both tidal hydraulics and

solute transport in the coastal zone.

The child grid boundary operator and the conservation of mass and momentum at the

child grid boundary were identified as the most important elements of a nested model;

much of the research therefore focussed on these aspects of model design. The

boundary operator consists of an innovative adaptive linear interpolation scheme and

a Dirichlet boundary condition. A novel approach to child grid boundary formulation

was devised. The approach uses ghost cells to enable the formulation of child grid

open boundaries as internal dynamic boundaries; this approach ensures high levels of

conservation at the child grid boundaries. The approach also offers a novel solution to

the moving boundary problem, thus facilitating the flooding and drying of child grid

boundaries. To help assess model accuracy a unique mathematical approach to error

quantification, the tidally-averaged relative error field, was formulated. This error

field enabled simultaneous analysis of the spatial and temporal errors in a model

solution and led to the development of an effective procedure for the identification of

optimum child grid boundary locations.

The nested model was extensively tested for both idealised and real coastal systems.

The results showed that, when applied in the correct manner, the nested model can

provide accurate high resolution solutions in particular areas of interest for a much

lower computational effort than standard single grid models.
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1. Introduction

‘Models are undeniably beautiful, and a man may justly be proud

to be seen in their company. But they may have their hidden vices.

The question is, after all, not only whether they are good to look at,

but whether we can happily live with them.’

A. Kaplan. The Conduct of Inquiry.

1.1 The Coastal Zone

The coastal zone (Figure 1.1) extends from the section of mainland adjacent to the

coast which influences coastal waters, seaward to the outer-edge of the continental

shelf. It includes mainland, islands and seas and forms the outer boundary of the

coastal domain. Throughout history the world’s coastal zone has been among the most

populated regions around the world; today it is home to approximately 60% of the

world’s population (Lindeboom, 2002).

Figure 1.1: The coastal zone (adapted from NQ Dry Tropics (2009)).

The coastal zone is, in effect, a large mixing bowl: virtually all land-derived materials

(water, sediments, nutrients, etc.) enter the region as surface run-off or groundwater

Figure removed
due to copyright issues
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flow and large amounts of matter and energy are exchanged with the open ocean. As a

result, it is one of the most geochemically and biologically active areas of the

biosphere. For example, it accounts for at least 15% of marine primary production,

80% of organic matter burial, 90% of sedimentary mineralization, 75-90% of the

oceanic sink of suspended river load, approximately 50% of the deposition of calcium

carbonate (Encyclopaedia of Earth, 2009) and it supplies about 90% of global fish

catch (Lindeboom, 2002). In addition, it is home to an abundance of diverse

ecosystems such as estuaries, salt marshes, mangroves and coral reefs. The coastal

zone is therefore a most valuable natural resource and is of great socio-economic

importance.

With its biodiversity, productive habitats and major biogeochemical processes the

coastal zone supports the life, welfare and health of a growing part of the global

population. The continuation of this relationship strongly relies on the maintenance of

the coastal environment and its functions. Despite its recognised importance, the

region has been relatively neglected until recently, so much so that many ecosystems

within its confines are amongst the most endangered areas in the world.

Anthropogenic activities of coastal populations, more often than not, adversely affect

the coastal zone. Pollution, eutrophication, changing sediment load, urbanisation, land

reclamation, overfishing, energy extraction/generation, mining and tourism

continuously threaten the future of coastal ecosystems. A major challenge for us today

is managing human use of the coastal zone to minimise adverse environmental

impacts and ensure that future generations may avail of its benefits.

A second major challenge is the highly dynamic nature of coastal systems. Changing

wave and current regimes, climate, morphological processes and fluxes from land,

atmosphere and oceans create highly variable and complex systems. For this reason,

coastal systems are not yet fully understood and anthropogenic activities add yet

further variability and complexity to the systems. Understanding coastal systems and

their processes is crucial to the implementation of effective coastal zone management

plans. To such effect, the coastal zone has become the focus of several national and

international ongoing research programs.
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The Land-Ocean Interactions in the Coastal Zone (LOICZ) program which “aims to

provide science that contributes towards understanding the Earth system in order to

inform, educate and contribute to the sustainability of the world’s coastal zone”

(LOICZ, 2009) was established as part of the International Geosphere-Biosphere

Programme (IGBP) in 1993. It is now also a core project of the International Human

Dimensions Programme on Global Environmental Change (IHDP). ELOISE

(European Land-Ocean Interaction Studies) is the coordinated EU input to LOICZ. In

addition, the concept of Integrated Coastal Zone Management (ICZM) which first

entered the international political scene during the Rio Earth Summit in 1992 (Billé,

2008) has now become government policy in most countries.

It is impossible to effectively manage a system without first having some

understanding of its processes and how those processes respond to changes within

their environment. There are two methods of gaining this understanding in relation to

natural systems such as the coastal zone: 1) data measurement and 2) modelling

(numerical and physical). These methods should not be seen as separate, independent

processes; rather the best understanding is gained through a combination of both. Data

measurement is expensive and only provides information at isolated locations making

it difficult to build a system-wide picture without incurring exorbitant costs.

Numerical modelling provides a system-wide picture at a much lower cost but one

that is unreliable without sufficient input data. When used in combination, model

accuracy will improve with a better quality and quantity of input data, and model

output can be used to inform data measurement programmes thereby reducing costs.

A holistic approach is therefore required to gain a good understanding of the system at

an acceptable cost.

1.2 Numerical Modelling

Numerical models of aquatic ecosystems, henceforth termed hydrobiological models,

have been in use for many years and have continually evolved in function and

complexity. For example, one of the most notable early models, developed by Riley in

1946 to investigate phytoplankton biomass on the George’s Bank, comprised a single

differential equation describing phytoplankton net growth as a function of light,

nutrients and grazing. This compares to the recently developed Australian model

IGBEM (Integrated Generic Bay Ecosystem Model) which requires in excess of 750
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parameters (Williams, 2006). Modern hydrobiological models vary in the number of

processes and parameters they simulate but a common functionality is that they

provide us with a means to visualise “the big picture”. In essence they offer a means

of integrating diverse physical, chemical and biological information that constitute

complex aquatic systems and understanding how that system works as a unit.

Consequently, hydrobiological models have the potential to be of great value to both

coastal zone research and management.

In a management context, the hydrobiological model ideally makes predictions with

determined confidence limits at sufficient speed so that they can be incorporated into

a management decision-making process which accounts for the model’s predictive

uncertainty. In a research context the aim of the hydrobiological model is to provide

systematic integrated descriptions of ecosystem component processes with a view to

gaining insights into the role of component processes in the whole ecosystem

function. In order that they can be properly calibrated and used repeatedly,

management models must be kept as simple as possible. In scientific studies, on the

other hand, such simplification may hide the very processes about which

understanding is sought and so scientific models tend to be more complex. Regardless

of context, however, it has been recognised that hydrobiological models have a

significant role to play in understanding, protecting and maintaining the world’s

coastal zones.

A most important controlling parameter in a research or management project is the

cost. Cost optimisation is a must if value for money is to be achieved. A main priority

for the hydrobiological modeller therefore, is the optimisation of computational cost.

In the context of this research the computational cost of a model is defined as the

model simulation time. By minimising the computational effort involved in a model

simulation, the simulation time and hence the cost is also minimised. Cost

optimisation is particularly important as numerical models become increasingly

complex, simulating an increasing number of physical, chemical and biological

parameters and adding to the computational effort. In addition, if the model is to be

used for management purposes a short simulation time (and therefore a low cost) is

necessary to enable incorporation of model predictions in the decision-making

process.
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1.3 Aims and objectives

The primary objective of the research was to develop efficiencies in a widely-used

hydrobiological model which would optimise the computational cost. One of the main

determinants of the computational cost of a modelling project is the horizontal

resolution; higher resolution gives greater accuracy at a higher computational cost,

lower resolution gives less accuracy but at a substantially lower computational cost.

Open boundary requirements usually mean that the area(s) of interest often comprise

only a small percentage of the model domain. In order to resolve detailed features

within the area(s) of interest it is necessary to increase the resolution across the whole

domain, thereby significantly increasing computational effort. One solution to this

problem is nesting. Nested grids provide high resolutions only in the area(s) of

interest, thus significantly reducing the computational cost.

The primary aim of the research was to develop an efficient dynamically-nested

model for tidal hydraulics and solute transport. The model used for the research was

DIVAST (depth-integrated velocity and solute transport), a two-dimensional, depth-

integrated, finite difference model which is particularly applicable to shallow, well-

mixed coastal waters. The development of the dynamically-nested model was carried

out in two stages. The first stage involved the development of a one-way nested

hydrodynamic model - the basic nested model (BNM). Once tested and validated, the

BNM was further developed to allow solute transport, multiple nesting and finally

dynamic nesting, also known as adaptive meshing. The final adaptive mesh model

(AMM) was in turn tested and validated.

The development of the AMM involved a number of further elements of research. The

conservation of properties, such as mass and momentum, at the boundary of a nested

domain was found to be critical to model performance. Conservation of mass and, in

particular, momentum at the nested boundary was investigated in detail. A number of

different elements of the nested model design were examined in relation to their effect

on boundary conservation and model performance. These included:

 the prescription of variables at the nested boundary

 the technique used to interpolate the nested boundary data

 the formulation of the governing equations at the nested boundary

 the solution of the model formulations at the nested boundary
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 the type of boundary condition used at the nested boundary

A secondary aim of the research was that the AMM be applicable to the real world. It

was therefore important that model performance was assessed under both controlled

experimental conditions and real coastal zone conditions. With this aim in mind, it

was very important that the nested model was capable of simulating flooding and

drying, a process prevalent in many coastal systems. However, this is a feature that

has been omitted in most nested models to date as its inclusion can introduce

instabilities in the model solution, particularly when it occurs along the open

boundaries of the nested domain. Flooding and drying of open boundaries requires

that the open boundary be dynamic so that it can correctly reflect tidal inundation of

grids cells along its length. In other words, the boundary must be able to shorten or

lengthen during the course of a simulation as grid cells dry out and then re-flood with

the fall and rise of the tide. Attempts to incorporate dynamic boundaries can lead to a

loss in model accuracy or premature termination of a simulation if the associated

instabilities become excessive.

A novel approach to nested boundary formulation was developed for the AMM where

the open boundary of the nested domain was, in effect, formulated as an internal

boundary with the use of ghost cells. This approach not only ensured high levels of

conservation of mass and momentum at the nested boundary but also facilitated the

flooding and drying of nested boundary grid cells without introducing significant

instabilities in the model solution. The open boundary of a nested domain in the

AMM is therefore best described as an internal, dynamic boundary.

1.4 Thesis Layout and Content

The layout and content of this thesis are as follows:

A literature review of nesting methods and adaptive mesh techniques is presented in

Chapter 2. Model resolution and its relationship with computational cost are first

outlined to set the context. In particular, the spatial resolution problem in relation to

the requirement of high model resolution is explained. The most common grid

structures are reviewed in the context of the spatial resolution problem. In relation to

nested models, an overview of nesting methods and their relative advantages and
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disadvantages is provided. The one-way nesting method, as the method of choice for

the research, is examined in greater detail. The mathematical formulation of the

nesting problem is established and the common approaches to one-way nesting are

reviewed. The most important aspect of a nesting technique is the boundary operator.

The most commonly used operators are presented and discussed. Finally, an overview

of established methods of adaptive meshing is presented. Based on the literature

review, a strategy for the research was devised; this is also presented, with particular

emphasis placed on the unique aspects of the research.

Chapter 3 presents the relevant theory for the DIVAST model and the one-way

nesting approach used. In relation to model theory, the governing differential

equations and their finite difference and model formulations are all presented and

discussed. The model solution scheme is also detailed. In relation to the nesting

approach, the general nesting procedure is outlined as are the important details of the

grid structure, boundary specification and interpolation schemes.

The development of the BNM was carried out in three phases. The first phase of

development is presented in Chapter 4. This phase involved the design, construction

and testing of the first version of the BNM. This model was then used to determine

the variable prescription at the nested boundary which gave the best model

performance. The second phase of development, detailed in Chapter 5, was mainly

concerned with the improvement of model performance by maximising the

conservation of mass and momentum between the coarse and fine models. Aspects of

the model examined here included the boundary interpolation scheme and the model

formulations at the boundary. The third and final phase of development involved the

testing of various open boundary conditions and the assessment of their effects on

model performance; details of this phase are presented in Chapter 6. The testing of the

dynamic boundary under conditions of flooding and drying is also presented in

Chapter 6.

Chapter 7 presents the results from the testing of the final BNM. The model was

tested in three different environments: the first was an idealised environment – a

rectangular harbour; the second was an experimental environment – a physical model

constructed in a tidal basin; the third was a real-world environment – Cork Harbour
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on the southwest coast of Ireland. Model results and analysis are presented and

discussed for all three test cases.

The further development of the BNM also involved threes phases, resulting in three

advanced nested models. Firstly, a multiple nesting capability was incorporated giving

the multiple nested model (MNM). This model was then adapted to enable solute

transport resulting in the solute transport model (STM). Finally, the STM was further

adapted to allow dynamic nests giving the AMM. Chapter 8 outlines the development

and features of the three advanced nested models.

Each of the advanced nested models was tested for performance and accuracy. The

MNM was tested using an idealised rectangular harbour, the STM was tested for

contaminant transport in Cork Harbour and the AMM was tested by simulating the

discharge from a wastewater treatment plant in Galway Bay. The testing procedures

and results are presented in Chapter 9.

Finally, Chapter 10 presents a summary of the research and the final conclusions and

outlines possible future progressions of the research.
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2. Literature Review

2.1 Introduction

The problem of computational cost is a perennial problem in coastal and marine

modelling. A main determinant of computational cost is spatial resolution and,

whether modelling deep ocean waters or shallower coastal seas, high spatial

resolution is desirable for improved model accuracy. Spatial resolution in ocean

models is typically in the order of kilometres; though reasonably large, the

characteristic scales of ocean circulation (basins of thousands of kilometres and

timescales of months to years) means computational cost is still a limiting factor. The

problem is even more pronounced in coastal models where the greater influence of the

seabed and coastline require a much higher resolution, typically ranging from 50-

500m, depending on the process of interest. In most numerical models the temporal

resolution, or timestep, is directly related to the spatial resolution. A higher spatial

resolution thus requires a higher temporal resolution which further adds to the

computational cost. With spatial domain extents of tens of kilometres and timescales

of weeks to years the computational cost of numerical modelling can become very

high. While coastal shelf seas only occupy seven percent of the ocean by area, it is

estimated that they require 70 times the computer power of the deep ocean because of

the complex small-scale processes that occur there, such as currents, tides and mixing

(National Environment Research Council, 2009).

An additional problem for coastal models, also related to the spatial resolution

problem, is the location of open-water boundaries. Such boundaries must be located

such that their conditions will not adversely affect model predictions in the area of

interest (AOI). This often leads to a situation which requires a large computational

domain, of which the AOI comprises only a small percentage. If high resolution is

then required in the AOI, it will typically mean (depending on the grid structure) that

the high resolution must be applied across the full domain. As a result, the number of

computational grid points can become very large leading to a prohibitively high

computational cost. It is clear then that there is a need for numerical methods that can

reduce the computational cost of coastal models while still allowing locally high

resolution.



10

The most common numerical methods used to solve the spatial resolution problem are

nested grid techniques. Nested grids allow one to increase spatial resolution in a sub-

region of the model domain (the nest) without incurring the computational expense of

high resolution over the entire domain. They can significantly reduce the number of

computational grid points and hence the computational cost.

Often times the features of a system which are of interest to the modeller, such as

eddies, fronts or sewage discharges, are not stationary. A feature of traditional nested

grid techniques is that the locations of the nested grids are fixed for the duration of the

model simulation, i.e. the nested grids are static. Further optimisation of the

computational cost can be achieved if the nested grids are able to move with the

feature of interest thus minimising the area over which high resolution is required.

This technique is known as adaptive meshing. Although not as common as the

traditional nesting techniques, it has been successfully implemented in a small number

of cases.

2.2 Model Resolution

Hydrobiological models generally involve the use of a numerical method to convert

the governing equations from differential forms into algebraic difference forms. The

algebraic difference equations can then be solved for unknown values at incremental,

finite points in space and time. One of the most commonly used numerical methods is

the finite difference method, in which time and space are divided into discrete (finite)

intervals. The governing partial differential equations are approximated by finite-

difference equations which are then solved by a computer program. The segmentation

of space and time into discrete intervals is known as the model resolution.

Model resolution is the main determinant of a model’s computational cost since each

governing equation must be solved at each discrete point in space and time. If the

model domain is divided into m segments according to the spatial resolution, and the

simulation time is divided into n intervals according to the temporal resolution, then

the computer program must solve each governing equation at a total of m x n discrete

points. In a coastal model the governing equations might consist of the continuity and

momentum equations for resolving flow and the advection-diffusion equation for

resolving solute transport. Simulating hydrodynamics alone would therefore yield 2 x
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m x n equations while simulating l water quality constituents would yield l x m x n

additional equations. Increasingly, coastal models are used to simulate primary

production which may involve in the region of ten water quality constituents; it is

therefore easy to see how computational cost can quickly become prohibitive.

The spatial and temporal resolution for coastal circulation and water quality varies

widely depending on the nature of the particular problem and the processes to be

involved. Careful consideration must therefore be given to the choice of both. In the

majority of coastal models, for reasons of stability and accuracy of the numerical

solution, the choice of one is dictated by the choice of the other. The relationship

between the two is governed by the Courant condition. In the application of such

models, it is usual practice to first select the appropriate spatial resolution; this will

then dictate the range of the temporal resolution.

2.2.1 Spatial Resolution

Spatial segmentation of water bodies requires that the physical dimensions be

approximated by a computational grid. The most common methods used for this are

finite difference (FDM), finite element (FEM) and finite volume and the associated

grids may be either structured or unstructured. Structured grids are always rectilinear

in the computational plane. Unstructured grids comprise a series of irregularly spaced

grid points which allow greater flexibility for mapping of system boundaries. Coastal

models are either two-dimensional (usually vertically-averaged) or three-dimensional

in space. In a 3D model the horizontal grid is much larger and more computationally

expensive than the vertical grid. Therefore, regardless of dimensionality nesting is

usually only applied in the horizontal plane. For this reason only horizontal grids are

discussed in this section.

Horizontal Finite Difference Grids

FDM most often uses structured rectilinear grids. The simplest grid scheme is the

uniform rectilinear grid where the spacing between the grid points in the x- and y-

directions (∆x, ∆y) is fixed and equal (∆x=∆y). A variation on this is the rectilinear

grid where different grid spacings are used in the x- and y-directions (∆x∆y).

According to Rodenhuis (1994), uniform grid models are best applied in areas where
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the features to be modelled are fairly uniformly distributed, e.g. in open seas and

regular bays. When the features become more complex, such as the irregularity of the

natural boundaries of estuaries, bays and islands, the accuracy of the uniform grid

model deteriorates. For complex domains which are inadequately resolved,

Rodenhuis (1994) states that water levels may still be computed fairly accurately and

that model inaccuracies will reveal themselves first in current velocities. In such

cases, the only way to improve accuracy is to reduce the grid spacing to correctly

resolve the effects of the irregular boundaries. However, this often leads to a large

number of grid points which may make computations uneconomical.

Stretched rectangular grids, shown in Figure 2.1, offer a way of reducing the grid-

spacing limitations of rectangular grids. The structure of these grids is such that they

can be transformed to produce a rectangular grid on which the computations can be

done using regular finite difference methods. In real space the grid appears stretched

but in computational (or transformed) space the grid is rectangular. The grid spacing

varies in both the x- and y-directions to give higher resolution in those areas of the

grid where it is needed, so reducing the number of grid points. However, as the

rectangles on which the computations are being done (the computational grid) are

distorted from reality, additional transformation terms must be introduced in the

governing equations to allow for the effects; this increases the computational effort. In

addition, computation problems may occur if the stretching does not vary smoothly

between regions (Martin and McCutcheon, 1999).

Figure 2.1: Rectangular stretched grid in (a) the real plane and (b) the computational

plane (adapted from Martin and McCutcheon (1999)).

(a) (b)

Figure removed
due to copyright issues

Figure removed
due to copyright issues
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Curvilinear grids, also known as boundary-fitted grids, allow even greater flexibility

in the placement of grid points. They are constructed so that the boundaries of the

waterbody and the computational grid fit together quite accurately (see Figure 2.2).

The grid-lines form smooth defined curves which run roughly parallel to the shoreline

and thus provide higher resolution in the areas where it is required; with lower

resolution in remaining areas the number of grid points is kept to a minimum.

Curvilinear grids may be either orthogonal, where all intersecting grid lines are

perpendicular, or non-orthogonal. Non-orthogonal grids are even better suited to

mapping irregular boundaries but do lead to numerical errors (Martin and

McCutcheon, 1999); these errors are controlled by not deviating too far from

orthogonality.

Figure 2.2: Boundary-fitted grid of Severn Estuary (Barber and Scott, 2009).

As in the case of the stretched rectangular grids, since the grids are distorted (curved)

in the real plane they require transformation to a rectangular grid in the computational

plane. Any computational saving resulting from a reduction in grid points is therefore

offset by the additional transformation terms which must be introduced in the

governing equations. It has been found that computation time can be doubled for

transformation to a non-orthogonal coordinate system while transformation to an

orthogonal system though less complex can still require about 25% more computation

time (Martin and McCutcheon, 1999). Smith (1997) identifies four other

disadvantages of curvilinear grids: 1) they are more difficult and expensive to

generate, 2) they are not well adapted to wetting and drying, 3) numerical dispersion

Figure removed
due to copyright issues
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is increased, especially in non-orthogonal grids, and 4) conservation in the advective

terms in not guaranteed.

Finite Element and Finite Volume Grids

Finite element and finite volume methods both allow the use of unstructured grids in

two dimensions. Such grids can have elements of various shapes and sizes and allow

the user great flexibility in choosing elements to best describe the detail of the system.

They are frequently used in two-dimensional, vertically-averaged models (e.g. the

TELEMAC-2D modelling system) with a triangular mesh being the most popular.

Figure 2.3 shows an example of such a grid. Unlike a structured grid, the grid points

are not ordered in a regular sequence that allows a computer program to reach all grid

cells with a simple indexed looping system. As a result, although efficiencies are

achieved through the more flexible grid point placement, computational penalties may

be incurred unless careful ordering of the elements is undertaken (Williams, 2006).

Figure 2.3: Finite element grid of the Canadian Arctic Archipelago (Myers, 2007).

Figure removed
due to copyright issues
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The main advantage of the FEM over the FDM is the ease and accuracy with which

their unstructured meshes can describe irregular boundaries. On the other hand, the

structured grids of the FDM offer computational advantages over the unstructured

grids of the FEM. For example, Lung (2003) states that in many recent estuarine and

coastal water modelling applications finite-difference models held almost a 10 to 1

advantage in run time over finite-element models. The majority of the best-known and

most widely-used coastal models are therefore finite difference models. Some

examples include:

 ECOMSED (Estuary and Coastal Model with Sediment Transport)

 EFDC (Environmental Fluid Dynamics Code)

 MIKE 21, MIKE 3

 DIVAST, TRIVAST (3D version of DIVAST)

 POM (Princeton Oceanographic Model)

 POLCOMS (Proudman Oceanographic Laboratory Coastal Ocean Modelling

System)

 DELFT3D

The natural boundaries of coastal waters are almost never well-suited to regular

geometry and so care must be taken when using structured grids to ensure that

physical boundaries are properly approximated. This requires the use of a high spatial

resolution, resulting in a high computational cost. To maintain a structured grid

because of its computational advantages, there are two solutions to the spatial

resolution problem. The first is to use a transformation into a more suitable boundary-

fitted curvilinear grid; however, this will incur computational penalties due to

additional transformation terms. The second is to use nested grids, in which the

regions of importance are overlaid with a finer resolution grid.

Nested grid methods are not without their deficiencies, the two most important being

the added computation time due to the solution of the model on the additional nested

grid(s) and the generation of errors in the nested grid solution (this is discussed in

later sections). However, the additional computation time is offset by the fact that the

computationally-expensive nested grid is only applied over the AOI while the

remainder of the domain is resolved by a low-cost coarse grid, and error generation
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can be controlled by good nesting techniques. In addition, they are easier methods to

implement. They are therefore commonly used to solve the spatial resolution problem.

2.2.2 Temporal Resolution and the Courant Condition

Hydrodynamic timescales vary from milliseconds for local turbulence, to minutes or

hours for tidal currents, to many days for residual circulation in large waterbodies.

Time scales for water quality processes range from minutes for chemical reactions to

hours or days for bacterial discharges to seasons or years for nutrient dynamics. The

scales are rarely consistent and can cause significant conceptual problems when

linking different model types such as: hydrodynamic, sediment transport, water

quality and/or biological. Water quality models can usually operate at longer

timescales to hydrodynamic models. However, in many models the processes are

coupled and in such cases the hydrodynamic timestep must be used for both

processes.

Coastal models generally require dynamic simulation of hydrodynamics and water

quality parameters. Therefore, the temporal resolution must be sufficiently less than

the tidal cycle to resolve temporal variations. Within the tidal cycle the timestep also

depends on stability and accuracy considerations for the particular numerical solution

technique used in the model. These considerations are usually the limiting constraint

and typically restrict the timestep to the order of minutes or even seconds.

The Courant Condition

The Courant–Friedrichs–Lewy condition, or Courant condition for short, is a

condition for convergence while numerically solving partial differential equations. It

places a constraint on the maximum timestep that can be used for a chosen grid

spacing in order to ensure the stability of the numerical solution. The condition is

often expressed in terms of the Courant number, Cn, defined as:

x
t

cC wn 


 (2.1)

where ∆t is model timestep, ∆x is grid spacing and cw is the celerity of the gravity

wave. Specifying wave celerity, equation (2.1) becomes:
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gHCn 


 (2.2)

where g is gravitational acceleration and H is the water depth. Conceptually, the

Courant number reflects the portion of a grid cell that a water particle will traverse in

one timestep.

All hydrodynamic models which use explicit solution techniques (where equations are

written only in terms of known quantities) are subject to the Courant stability

criterion, Cn<1. In other words, a water particle cannot travel more than the width of

one grid cell in any one timestep. This criterion can be extremely prohibitive, forcing

the use of unreasonably small timesteps which significantly increase computational

costs. This is a necessary criterion for stability in all explicit techniques but in some

cases it is still insufficient. For example, schemes such as the forward time, centred

space method remain unstable despite satisfying the Courant stability criterion

(Williams, 2006).

Implicit solution techniques (where equations are written in terms of both known and

unknown quantities) are inherently stable and so are not subject to the Courant

stability criterion. The magnitude of the timestep is determined only by accuracy

requirements, in the sense of wishing to minimise the numerical dispersion (Falconer,

1988). This constraint is generally expressed in the form of a Courant accuracy

criterion defined as Cn<C, where C is a constant greater than 1. Though not as

restrictive as the stability criterion, the enforced timesteps can still be small enough to

make simulation times uneconomical.

The use of nested grids means that if a high spatial resolution, and consequentially a

high temporal resolution due to Courant number criteria, are required in an area of

importance, the computational cost can be minimised by only applying the high

resolution in the area of importance and not throughout the full model domain.

2.3 Nested Models

High spatial resolution in coastal models gives enhanced representation of

topographical features in an area of interest. This can lead to more accurate simulation
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of hydrodynamic activity in these regions and consequently improved simulation of

sediment transport, primary production and other system processes. However, higher

spatial resolution, if applied across the full model domain, can lead to a very large

number of computational grid points resulting in a substantial increase in computer

processing time and memory space. Higher grid resolution will also usually

necessitate a higher temporal resolution resulting in a further increase in processing

time. Overly long simulation times can be problematic in terms of project budget

constraints and incorporation of model output in the management decision-making

process. In extreme cases the simulation time or memory space requirements may

even become prohibitive forcing the use of a lower spatial resolution than that

preferred or required.

A common problem when modelling waterbodies is the location of open boundaries;

they must be located such that their conditions will not adversely affect model

predictions in the AOI. This problem often leads to a situation which requires a large

computational domain, of which the AOI comprises only a small percentage.

Traditionally, the vast majority of waterbody models have been based on a single

structured computational grid. This approach means that if a high spatial resolution is

required in the AOI it must be applied across the full model domain. Many of the grid

points are therefore unnecessary in areas of only limited importance or areas of low

gradients where a lower resolution would suffice. The most common solution to this

problem is the use of a nesting method. These methods enable the nesting of a grid of

smaller mesh size within a grid of larger mesh size, thus allowing an increase in

spatial resolution in a sub-region of a model domain without incurring the

computational expense of fine resolution over the entire domain.

Numerical modelling of geophysical fluid dynamics has utilized various nesting

methods for almost half a century. One of the earliest documented applications is that

of Birchfield (1960) where a nested grid was used to improve numerical predictions of

hurricane movements. During the sixties and seventies meteorological models were

more numerous and more widely used than hydrodynamic models. For this reason the

majority of the developmental work on the implementation of nesting techniques was

carried out within the field of meteorological modelling (see Ookochi (1972), Philips

and Shukla (1973), Miyakoda and Rosati (1977) and Kurihara et al. (1979) and their
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use in that area is now well-established. It was not until the very late eighties and

early nineties that nesting methods were first adopted in the field of hydrodynamic

modelling (see Spall and Robinson (1989)). Their use in both coastal and

oceanographic modelling has since expanded, particularly in view of the increased use

of numerical ocean models to simulate and forecast limited coastal areas. However,

the development of nested models is still a very active research topic.

2.3.1 Terminology

Nested models allow finer spatial resolution to be focused over an AOI by introducing

an additional grid (or grids) into the model simulation. A nested model therefore

involves one coarse outer grid which covers the full model domain and one or more

inner fine grids. Figure 2.4 shows an example of this grid structure. Any coarser grid

that contains finer grids within its boundaries is referred to as a parent grid while the

inner fine grids are referred to as child grids or children. In Figure 2.4 the parent grid,

G.1.1, is seen to contain three children, G.2.1, G.2.2 and G.2.3. This terminology is

used in subsequent sections and chapters; thus, parent grids always refer to the coarser

or lower resolution grids of a nested model while child grids always refer to finer or

higher resolution grids.

Figure 2.4: Nested model grid structure.

Nested models may have a multiple nesting capability. These models allow multiple

levels of nesting, in which case children can also be parents; Figure 2.4 shows a grid

structure for a multiple nested model. Fine grids may be telescoped to any depth (i.e.,

a parent grid may contain one or more child grids, each of which in turn may
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successively contain one or more child grids) and several fine grids may share the

same parent at the same level of nesting. The spatial (Δxparent/Δxchild) and temporal

refinements (Δtparent/Δtchild) of a child in relation to its parent are known as the spatial

and temporal nesting ratios respectively. They are almost always integers and usually,

but not always, have the same value.

Traditionally, nesting methods have been characterised as either: (i) one-way (also

termed passive) or (ii) two-way (also termed interactive) (e.g., Philips and Shukla

(1973), Fox and Maskell (1995)). They are so-named to describe the type of

interaction that takes place between parent and child grids during the nested model

simulation. In both cases boundary conditions for the child are obtained from the

parent, i.e. interaction occurs in one direction, from parent to child. If no feedback is

provided from the child to the parent the method is described as one-way. If child grid

values are in turn used in some way to modify parent grid values, then interaction

occurs in two directions (from parent to child and vice versa) and the method is

described as two-way.

2.3.2 One-way Nested Methods

In a one-way nested model the boundary conditions for the child grid are obtained

from interpolation of the parent grid values. Figure 2.5 shows a sample grid

configuration for a one-way nested model with a 3:1 spatial nesting ratio. One-way

nested models always employ an overlapping grid structure so that solutions are

computed by both the parent and child grids for the AOI. Typically, the parent model

is integrated in time and information on the boundaries of the child grid (the shaded

cells in Figure 2.5) is temporally and spatially interpolated from adjacent parent grid

points. The child model is subsequently integrated in time using the interpolated

parent grid values as boundary conditions. In this way the parent grid influences the

computations within the nested grid. However, since there is no feedback from child

to parent, the child grid values cannot influence computations within the parent grid.

In hydrodynamic modelling, the one-way nesting technique was first applied by Spall

and Robinson (1989) (Barth et al., 2005). It is now an established method for studying

ocean systems or coastal waters in a high resolution sub-domain. For example, Korres

and Lascaratos (2003) developed a one-way nested model of the Aegean and Levatine
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Basins. Here, a high resolution (1/20 x 1/20 grid spacing) POM was nested within a

coarser (1/8 x 1/8 grid spacing) OGCM (Ocean General Circulation Model) of the

Mediterranean Sea. The nested model was able to reproduce eddy fields never before

captured by previous numerical models of the same region. More recently, Staneva et

al. (2009) developed a one-way nested model of the Wadden Sea in the German Bight

and achieved “good agreement” between observations and model simulations. The

nested model grids comprised: a coarse North Sea-Baltic Sea outer grid (about 5km

spacing), a fine (about 0.8km) inner grid covering the German Bight and a very fine

(about 200m) grid for the Wadden Sea region. Spatial nesting ratios ranging from 2:1

- 5:1 were typically used in the literature.

Figure 2.5: Schematic of one-way nested model grids: (a) the parent and child grids;

(b) a detail of the child grid interface. (Adapted from Spall and Holland (1991)).

One-way nested models may or may not be dynamically linked, in other words they

may be coupled or uncoupled. In a coupled model (e.g. Pullen and Allen, 2001) the

progression of the parent and child models are interdependent. The parent model

cannot be integrated in time until the child model has been integrated to the current

parent timestep and the child model cannot be integrated in time until the parent has

been integrated to the next time level. In an uncoupled model (e.g. Zavatarelli and

Pinardi, 2003) the models are run independently. The parent model is run for the full

simulation time and the boundary data stored. The child model is then run for the full
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simulation time using the stored boundary conditions. The main advantage of the

coupled model over the uncoupled is that the latter requires large amounts of

computer storage space to store weeks, months or even years worth of boundary data

while the former does not. Often, boundary data in an uncoupled model is sub-

sampled or averaged (Blayo and Debreu, 2006) in order to reduce the storage volume.

It is therefore of lesser quality than those of a coupled model which are available at

every coarse model timestep. In such cases the coupled model solution will be more

accurate than the uncoupled.

Of great importance in nesting techniques is the conservation of properties (e.g. mass

and momentum) between the coarse and fine grid models and the treatment of fine

grid interior noise generated as a result of incompatibilities between the two models

(e.g. different spatial and temporal resolutions) (Korres and Lascaratos, 2003). The

implementation of boundary conditions is therefore crucial and can add complexity

and computational cost. The inherent assumption in one-way nested models is that the

larger-scale motion determines the small-scale motion without feedback from the

processes occurring within the nested region; thus properties need only be conserved

in one direction. For this reason and the fact that the models may be run

independently, one-way nesting is both easier to implement and usually less

computationally expensive than two-way nesting (Koch and McQueen, 1987)

2.3.3 Two-way Nested Methods

In a two-way nested model the parent and child grids are, by necessity, dynamically

linked; each influences the other and neither can be run independently. The interaction

in the direction of parent to child is similar in manner to one-way nested systems. The

parent model is integrated in time and the boundary conditions of the child model are

interpolated (in time and space) from adjacent parent grid points; the child model is

then integrated in time using the interpolated boundary data. However, unlike one-

way nested systems, once the child model has been integrated the parent grid is then

updated using the child grid values via some numerical procedure.

Spall and Holland developed the first two-way nested oceanographic model in 1991 -

a nested primitive equation model. It was applied to two test problems relevant to

oceanic phenomena in an artificial domain (see Spall and Holland (1991)) and was
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found to “perform quite well” with nesting grid ratios of 3:1 and 5:1. In the

proceeding years the two-way nesting technique was further tested in idealised

experiments (e.g. Fox & Maskell, 1995; Ginis et al., 1998) for similar nesting ratios.

Upon comparison of nested model results with those from a fine model of the full

domain Fox and Maskell (1995) found that the nesting technique worked well over

short periods of time integration (circa 16 days). They recommended though that due

to the non-conservative nature of the schemes used, applications should be restricted

to relatively short-term integrations. Ginis et al. (1998) also found that their two-way

nested model gave “significant improvements” over a coarse single-mesh model and

the results were similar to those of a high-resolution model of the whole domain.

Realistic ocean systems have also been studied, e.g., the Norwegian Coastal Current

by Oey and Chen (1992), the Iceland-Faeroes front by Fox and Maskell (1996) and

the tropical Pacific Ocean by Ginis et al. (1998). More recent examples of two-way

nesting applications are a triple-nested model of the Ligurian Sea by Barth, et al.

(2005) and a nested tide surge model of the Taiwan Strait by Zhang, et. al. (2007).

The dynamical interaction between parent and child domains can be achieved in

various ways. The most common technique is to transfer information from the fine to

the coarse mesh and vice versa in the zone where the two meshes overlap (e.g. Spall

and Holland, 1991; Fox and Maskell, 1995; Barth et al., 2005). Figure 2.6 shows an

example of a two-way nested model with overlapping grids similar to the model used

by Spall and Holland (1991). Temperature grid points were specified at the centre of a

grid cell (indicated by +) and velocities were specified at the bottom right-hand corner

of a grid cell (indicated by ●).    

Within the overlapping region it can be seen that each parent grid point is coincident

with a child grid point (this is preferable but not a necessary requirement). The parent

model is first integrated across the full domain. At the end of each parent integration,

the boundaries of the child model at the dynamic interface are specified by

interpolation (temporal and spatial) from adjacent parent grid values. Following

integration of the child model and prior to the next integration of the parent model, the

coincident parent grid points within the feedback region (see Figure 2.6) are then

updated using some averaging procedure of the enclosed child grid values. For
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example, the parent grid point of a shaded parent cell in the diagram might be

replaced by an average of the nine enclosed child grid points. The parent model

therefore provides time-dependent boundary conditions for the child model and in

turn the child model is used to continually update the parent model.

Figure 2.6: Overlapping grid configuration showing dynamic interface (dotted cells)

and feedback region (shaded cells) (adapted from Spall and Holland (1991)).

A second two-way nesting technique is that first applied (in oceanography) by Ginis,

et al. (1998) to a nested primitive equation ocean model. The technique is based on a

scheme developed in meteorology by Kurihara, et al. (1979). It operates on a different

grid configuration to the typical overlapping grid configuration (see Figure 2.6);

instead the grids must be adjacent and non-overlapping, as shown in Figure 2.7. In

other words, the nested grid is seamlessly embedded in the parent grid. This grid

configuration belongs to a class of two-way nesting in which the time integration

proceeds simultaneously for both the child and parent domains.

The most important feature of the mesh coupling procedure is that the boundary at

which the two neighbouring grids dynamically interact (the dynamic interface in

Figure 2.7) is separated from the mesh interface by a zone of two parent grid points

(the window frame). In the overlapping grid method the dynamical interface is the

mesh interface. The dynamical interaction is accomplished in the following way. At a
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given timestep, the integration begins in domain 1 (the parent domain), taking into

account the values in the window frame. During this step parent model variables at the

dynamical interface are preserved as boundary conditions for domain 2 (the child grid

plus the window frame). The boundary conditions are interpolated in time to match

the timestep of domain 2 and the integration of domain 2 then begins and continues to

the time level of domain 1 (Ginis et al., 1998). The technique establishes a two-way

system because the parent grid outside the dynamical interface is influenced by the

inner area (the child grid and the window frame) and the inner area (in particular the

child grid) is forced by boundary conditions from the parent grid.

Figure 2.7: An adjacent nested grid scheme (adapted from Ginis et al. (1998)).

As already stated, one of the most important aspects of nesting techniques is the

conservation of properties between grids. A two-way nesting technique must not only

ensure conservation of properties when passing variables from the parent grid to the

child through the boundary conditions but also when the parent grid variables are

updated from the child. Ginis, et al. (1998) state that the overlapping grid method used

by Spall and Holland (1991) and Oey and Chen (1992) “does not necessarily conserve

fluxes of mass, heat and momentum at the interfaces between coarse and fine

meshes”. In the scheme developed by Ginis, et al. (1998) the interaction at the

dynamical interface is specified as a flux condition; this enables improved

conservation of mass, momentum and heat. Research into dynamical interaction

techniques that improve conservation of model properties is still ongoing; this is

integral to the accuracy of nested models.

Dynamic Interface

Mesh Interface

Integration Domain 1

Integration Domain 2

Window Frame

Parent Grid

Child Grid
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The treatment of noise generated in the child grid was also mentioned as a problem in

relation to one-way nesting. The same problem applies to two-way nesting techniques

but the solution is more complex. Not only must the technique minimise the

disturbances in fine grid values which can occur near the mesh interface as a result of

grid incompatibility but it must also prevent those disturbances from passing out of

the child grid and into the parent grid. A disturbance propagating from a child grid to

a parent grid may undergo false reflection back to the child grid or aliasing as it enters

the parent grid (Ginis et al., 1998). These interface-generated problems may lead to

numerical instabilities that can seriously affect the results over the entire domain.

Two-way nesting, by its nature, should give more accurate simulations than one-way

nesting. Barth, et al. (2005) compare results from a two-way nested, one-way nested

and coarse model of the Ligurian Sea. The two-way nested model was found to better

represent currents within the Sea than both the coarse and one-way-nested models.

However, with the exception of Barth et. al. the Author found no other literature with

details of comparative studies between one-way and two-way nesting in

oceanographic modelling applications. As described above, many studies have

demonstrated the improvements in accuracy achieved by two-way nested models;

however, one-way nested models have also been proven capable of achieving similar

improvements in accuracy. Until the results of more comparative studies are

published, the question of the superiority of two-way nested models over one-way

nested models will remain unanswered.

The question then arises: when should a one-way or a two-way nested technique be

used? Nested models have a wide variety of applications but according to Spall and

Holland (1991) they may be generalised into two categories. The first type uses the

coarse grid to represent a flow field on large space and time scales which influences

the evolution within the fine grid region through the boundary conditions. Higher

resolution may be desired in a sub-region of the flow field to study small-scale

phenomena such as interactions with local topography. For this type of application

either a one-way or a two-way nested technique can be used. The second application

uses the fine grid region to model some local process and the coarse grid region

primarily provides boundary conditions to allow for flow features generated in the

fine grid to propagate outward into the coarse grid. These models must necessarily be
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two-way since features in the fine grid region must be present in the coarse grid

solution for the proper determination of fine grid boundary conditions.

In the context of the present research nesting was primarily required to investigate the

effects of topographical interactions in local regions at a lower computational cost;

this falls under the first type of application described above. Two-way nesting was

considered for the research but it is more complicated to implement and more

computationally expensive than one-way nesting. As it was not completely necessary

in the context of the research, the one-way nesting technique was chosen. The

remainder of this review therefore deals specifically with one-way nesting.

2.4 One-way Nesting Techniques

Most one-way nested techniques are similar in their approach. Fine child grids are

overlaid on coarser parent grids at chosen locations and boundary data from the parent

grids are used to force the hydrodynamics of the nested grids. The main differences

between techniques occur in the specification of the open boundary conditions

(OBCs) for the nested grids.

2.4.1 Formulating the One-way Nested Problem

[Note: equations (2.3)-(2.6) are adapted from Blayo and Debreu (2006).] The aim of a

nested model is to simulate as accurately as possible the processes in a nested fine

resolution domain, the child domain c, over a time period [0,T] with initial

conditions at t=0. This can be written in mathematical form as:

ccc fL  in  T,0xc (2.3)

where Lc is a partial differential operator, c is a child model state variable and fc is the

child model forcing. In coastal applications, c is never completely enclosed by a

solid boundary; a portion of its boundary will always exist which has no physical

manifestation. This artificial interface is known as an open boundary and is denoted

by . The nested solution c thus interacts with the external ocean through . The

difficulty exists in adequately representing this interaction in order to get a good
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approximation of c in c x [0,T]. The one-way nested problem can therefore be

written as:









eB
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(2.4)

where B denotes an open boundary operator and e describes the behaviour of the

external ocean on . The boundary operator B typically takes the form of a linear

differential operator defined on  more commonly known as an OBC.

2.4.2 The Open Boundary Problem

The premise of a nested model, as shown in Figure 2.8, is that c is a sub-domain of a

much larger coarse resolution domain, the parent domain p. Over the same time

period [0,T] the parent model simulates the hydrodynamics within p  c such that:

ppp fL  in  T,0xp (2.5)

where Lp is again a partial differential operator, p is a parent model state variable and

fp is the parent model forcing. Since p  c, this larger scale solution can be used to

force the child model along its open boundary . Equation (2.4) then becomes:
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(2.6)

It should be noted that the Bs appearing on the left and right sides of equation (2.6)

are not identical due to the different resolutions of the parent and child grids; a more

careful notation would be Bc and Bp. While both operators incorporate an OBC, Bp

must also incorporate interpolation of p from the parent grid resolution to the child

grid resolution.
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Figure 2.8: A schematic view of a nested model of an estuary.

From equation (2.6) it can be seen that the accuracy of the solution in the child

domain is dependant on the choice of the boundary operator B and on the accuracy of

the parent solution p along the boundary . Thus there are two possible sources of

error at the interface of the nested domain: those that are generated by the boundary

operator (boundary formulation errors), and those that are caused by the inaccuracy of

the boundary data (boundary specification errors). Baumhefher and Perkey (1982)

concluded that both error sources contribute equally to the total error in one-way

nested models. The choice of B is commonly known as the open boundary problem

and is a problem common to all one-way (and two-way) nesting techniques.

Boundary formulation errors arise from problems in blending the solutions from the

parent and child grids but they can be limited by using an appropriate boundary

operator B. Blending of the solutions is usually necessary as the incompatibilities

(spatial and temporal resolutions, bathymetries, model physics) between the parent

and child grids can lead to noise generation within the child grid. A common problem

with boundary operators is that they over-specify the boundary. In other words, they

use more values from the parent grid than are actually required to blend those values

with the child grid values (Koch and McQueen, 1987). Over-specification of

boundaries can lead to erroneous wave reflection (noise) at the boundary particularly

when a child model variable is propagating out of the nested domain. A good

boundary operator can limit the amount of wave reflection or noise generation.

Boundary specification errors are caused by using incorrect values in the specification

of the boundary data (c in equation (2.6)). The incorrect values are a result of

Parent domain, p

Child domain, c

ppp fL 
ccc fL Open

boundary 
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simulation errors in the parent model near the child model boundary. They are

propagated from the parent model to the child through the boundary specification and

are therefore an inherent error in one-way nested models. Boundary specification

errors can be minimised through careful selection of the location of open boundaries

for a nested domain.

The open boundary problem, in the context of both ocean and atmosphere models or

in a more general context, has been the subject of much research and a substantial

volume of literature is available. Some examples are Miyakoda and Rosati (1977),

Koch and McQueen (1987), Blayo and Debreu (2005) and Oddo and Pinardi (2008).

The literature suggests that an optimal procedure for minimisation of boundary

formulation errors should have the following properties (Zhang et. al., 1986; Ginis et.

al., 1998):

1. all resolvable waves should pass through the boundary with minimal noise

generation

2. mass, momentum and energy should be conserved across the boundary

The three most common types of OBCs used in one-way nested ocean models are

relaxation boundaries, radiation boundaries and advection boundaries.

2.4.3 Relaxation Methods

Relaxation (or nudging) methods may be considered the simplest type of OBC. The

aim of such methods is to relax the child grid solution c towards the parent grid

solution p on, or in, the vicinity of the open boundary . The most severe way of

doing this is to impose:

pc   (2.7)

on the boundary. This is known as a Dirichlet (or clamped) boundary condition. Such

a condition is often used in one-way nesting (Blayo and Debreu, 2005) and has also

been used in two-way nesting (see Barth et al., 2005). The condition dictates that child

grid variables inside the boundary are totally determined by the external parent grid

solution. This is perfectly acceptable for inflowing variables but it means that

outflowing variables are independent of the internal solution. As a result, part of the
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outflowing information can sometimes be reflected back into the child grid domain

when inconsistencies occur between the internal and external solutions (Oddo and

Pinnardi, 2008).

A less severe method of relaxation is the flow relaxation scheme. Here, a spatially

varying relaxation factor is applied to the child grid solution in the vicinity of the

boundary. The computational domain c is extended by defining an additional

domain s (known as the sponge layer) whose interface with c is . In the original

method proposed by Davies (1976) the model equations are solved on c  s and

the solution in s is replaced at each timestep by:

pcs )1(   (2.8)

where s is the value of the state variable in the sponge layer and  is a relaxation

function which increases from 0 on  to 1 at a sufficient distance from . In this way

the previous problem with outflowing variables is solved as they are now not directly

determined by the external solution but are relaxed towards it in the sponge layer.

In some cases relaxation is carried out jointly with the sponge layer approach (or

sponging) (Blayo and Debreu, 2005). Sponging is the artificial increase of model

viscosity in the sponge layer with the aim of damping local turbulent activity, or in

other words, the noise generated as a result of the OBC problem. When used in

combination with a flow relaxation scheme it can have the effect of damping the noise

generated by the inconsistencies between the child and parent solutions (Oddo and

Pinardi, 2008). Comparative studies (e.g. Roed and Cooper, 1987; Palma and Matano,

1998; Nycander and Doos, 2003) suggest that the relaxation method is generally one

of the best approaches to boundary formulation (Blayo and Debreu, 2005).

A drawback of the relaxation method is the possible increase in computational cost

due to the introduction of the sponge layer. In order to incorporate the sponge layer

the child domain c is usually extended by the width of the proposed sponge layer.

The resulting increase in computational cost due to the increased number of grid

points can range from insignificant to tens of percents, depending on the original
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dimensions of c. On the other hand, relaxation boundaries are quite easy to

implement and encode and these advantages tend to outweigh any possible additional

cost. Two other important drawbacks of the method are the empirical aspect of the

relaxation equation (2.8) and the fact that the meaning of the solution in the sponge

layer is far from obvious since it is not the solution of any system of governing

equations.

2.4.4 Radiation Methods

A very popular class of OBC are radiation methods. They attempt to solve the

problem of outflowing variables being reflected back into the model domain by

allowing them to radiate freely out through the boundary. Radiation methods are

based on the Sommerfeld condition:

0
n

c
t

c
w

c 





 

(2.9)

and the assumption that the model variable c propagates through the domain in a

wave-like form. According to equation (2.9) c will freely propagate out through the

boundary ; cw being the wave speed (or phase velocity) and n the outward vector

normal to . The temporal rate of change in c on  is therefore dependent on the

speed of propagation and the rate of change of c with distance in the direction normal

to the boundary. Radiation conditions are only used to evacuate variables that are

leaving a domain; some other condition, for example a Dirichlet condition, must be

used for incoming variables. To implement a radiation boundary condition the phase

velocity cw is usually first determined for the waveform c at time t. Following this a

finite difference approximation of equation (2.9) is usually solved on the boundary 

for the variable value c at time t+1.

The main difference between radiation boundary schemes is the method of

determination of cw. Rearranging equation (2.9) cw may be rewritten as:
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Orlanski (1976) proposed an adaptive evaluation of cw using a finite difference

representation of (2.10) under the limits:

if cw ≥ ∆x/∆t  cw = ∆x/∆t

if cw < 0  cw = 0

In Orlanski’s model, for an open boundary located to the east then cw<0 indicates the

variable is inflowing and the lower limit is set to zero; in such cases the radiation

condition is not applied to the inflowing variable and its value is instead totally

determined by the external solution. Outflowing variables are determined by both the

internal and external solutions but are increasingly influenced by the interior solution

at higher values of cw. This is a similar method of operation to the relaxation method.

The upper limit is required to satisfy the Courant condition for stability. Following

Orlanski, a number of different radiation methods were devised using alternative

evaluations of cw (e.g. Miller and Thorpe, 1981), and/or taking into account the

tangential vector at the boundary (Raymond and Kuo, 1984) and/or including an

additional relaxation term (Marchesiello et al., 2001). These methods and others have

been frequently used in ocean and atmosphere modelling.

Determination of cw in an Orlanski-type manner, i.e. using a finite difference

representation of equation (2.10), can prove problematic. Tréguier et al. (2001)

conclude that it can lead to a function cw(x,t) close to white noise while Durran (2001)

states that such methods of determination seldom yield a meaningful value of cw (see

Figure 5 in Durran (2001)). Camerlengo and O’Brien (1980) therefore simplified the

Orlanski condition by using cw=1 if cw≥0. This condition uses only the sign of cw to

determine direction of propagation and deliberately overestimates the outward

propagation speed.

A drawback of radiation methods is that the Sommerfeld condition is justified only in

the context of wave equations with a constant phase velocity. As this is almost never

the case in ocean and atmosphere modelling, the condition cannot be mathematically

justified in such contexts. In addition, inconsistencies can be generated at grid points

where the flow field switches in time between incoming and outgoing regimes (Oddo

and Pinardi, 2008), i.e. where cw<0 and cw>0 at adjacent points. The performance of

radiation methods in nested models is difficult to judge. Blayo and Debreu (2005)

state such methods have proved to give rather poor results in several comparative



34

studies (e.g. Roed and Cooper, 1987; Palma and Matano, 1998; Nycander and Doos,

2003) while they have also proved to have some efficiency in others (e.g.

Marchesiello et al., 2001; Tréguier et al., 2001).

2.4.5 Advective Methods

These methods are similar in form to the Sommerfeld condition (equation (2.9)) on

which radiation methods are based, but with the radiation velocity cw being replaced

by the child grid velocity normal to the boundary Vn. The velocity Vn is used to advect

the model variable c out of the child grid domain according to:
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Advective boundaries operate in the following manner. Parent data are advected

inwards at inflow boundary points (i.e. where Vn is inward) and the child grid solution

is advected outward at outflow boundary points by the child model velocities (Oddo

and Pinardi, 2008). It is a simple formulation to implement and it has been

successfully used in many nested ocean models (e.g. Palma and Matano, 2000;

Zavatarelli and Pinardi, 2003).

2.4.6 Other Nesting Considerations

Interpolation Techniques

An effective boundary operator requires the use of an interpolation scheme as data

must be passed between grids of different spatial and temporal resolutions. A wide

variety of techniques are available. As for the optimal OBC, the optimal interpolation

technique should allow all resolvable waves (variables) to propagate across the

boundary with minimal distortion so that compatibility between the grid solutions can

be maintained and it should also ensure conservation of mass, momentum and energy.

Polynomial interpolation techniques might be considered the most appropriate

technique to simulate wave-forms such as those being modelled. However, a common

problem associated with such methods is that they often lead to spurious oscillations

of the interpolated variable in regions of sharp gradients (Alapaty et al., 1998). Given

the fact that most open boundaries within a coastal model will most likely intersect
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the coastline and will therefore coincide with regions of high gradients, polynomial

techniques are not well-suited to the task. Instead, most nested models use linear

and/or bilinear interpolation techniques for spatial interpolation of model variables

(e.g. Fox and Maskell, 1995; Korres and Lascaratos, 2003). If temporal interpolation

is required, a linear interpolation technique is usually employed (e.g. Miyakoda and

Rosati, 1977; Pullen and Allen, 2001; Korres and Lascaratos, 2003).

The use of an odd nesting ratio can help to simplify the spatial interpolation

procedure, depending on the technique used, as each coarse grid variable will coincide

with a fine grid variable. As a result, for some model variables, bi-directional

interpolation will not be necessary and interpolation in a single direction only will

suffice.

Multiple Nesting

Numerous idealised nesting experiments (e.g., Spall and Holland, 1991) have shown

that acceptable results are obtained for spatial nesting ratios of 3:1 and 5:1. The vast

majority of both one-way and two-way nested models employ a 3:1 nesting ratio.

Both Spall and Holland (1991) and Barth et. al. (2005) report that the use of higher

nesting ratios results in substantial degradation of model performance. For example,

Spall and Holland found that model accuracy began to deteriorate at a 7:1 nesting

ratio. Koch and McQueen (1987) give two reasons for this; firstly, that higher grid

ratios require too many fine grid points to adequately resolve the coarse grid waves,

and secondly, that the incompatibilities between the grids are so large that wave

reflection and noise generation become excessive. In order to achieve a high

resolution at nesting ratios in excess of 5:1, multiple nested models (see Figure 2.4)

have been developed. These models allow telescoping of nested domains to multiple

levels of nesting (e.g. Pullen and Allen, 2001; Staneva et. al. 2009).

Flooding and Drying

In coastal models, the problem of insufficient resolution and poor accuracy is

typically associated with areas of complex bathymetry and irregular coastlines; these

areas are generally in the inter-tidal zone. A nested domain in such an area will

require simulation of flooding and drying both within the domain and along its open

boundaries. Most nested models developed to date do not incorporate flooding and
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drying as they have been specifically developed for ocean basin or large-scale

regional applications where flooding and drying is not important. Those nested

models that do incorporate flooding and drying, e.g. Mike21 (DHI Software, (2007)),

prohibit the flooding and drying of open boundaries as it can sometimes cause

instabilities in the model solution. This is primarily because flooding and drying of an

open boundary necessitates a moving boundary where the boundary extents shift

during the course of a simulation so as to exclude grid cells upon drying and reinstate

those same grid cells upon flooding.

2.5 The Adaptive Mesh

High resolution is often required in local regions of coastal and ocean models.

However, in most cases it is not the region itself that is of interest to the modeller but

rather a process within that region such as a discharge from a waste water treatment

plant or a propagating wavefront. As described, nesting is an effective and established

method of achieving high resolution in particular regions of a model domain without

incurring the cost of high resolution across the whole domain. Most nested models to

date employ a grid configuration where nested grids are fixed in time and space (e.g.

Fox and Maskell, 1995; Pullen and Allen, 2001; Staneva et al. 2009); below these are

referred to as classical nested models. For their particular applications, these models

are perfectly satisfactory. However, there are situations where the computational

savings achieved by classical nested models with a static grid structure can be

improved upon.

Take for example, the case of an ocean wavefront. A wavefront may travel tens or

hundreds of kilometres. If a static nested grid was used to obtain a high resolution

simulation of the wavefront its dimensions would have to be of the same order of

magnitude. Its size could therefore end up measuring a significant percentage of the

full model domain and computational savings would be low. In contrast, if the nested

grid was able to move during the course of the simulation, it could track the

movement of the wavefront. Its dimensions would only have to enclose the wavefront,

not its full path, and so they could be kept to a minimum. The moveable nest would

therefore achieve much greater computational savings than the classical static nest.

Such moveable nest schemes, known as adaptive mesh schemes, have been developed
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and implemented in a limited number of oceanographic models (see Blayo and

Debreu, 1999; Rowley and Ginis, 1999).

Adaptive mesh schemes have been in use in meteorological modelling for the last few

decades (e.g. Harrison, 1973; Ley and Elsberry, 1976; Jones, 1977, Kurihara et al.,

1979). They are typically used in hurricane/cyclone/typhoon models where nesting is

required to accurately resolve the storm core. Since these weather systems regularly

travel thousands of kilometres it is not computationally efficient to specify a high

resolution grid over the complete storm-path. Adaptive mesh multiple nested schemes

are used instead; the adaptive mesh consists of multiple nests embedded in a

telescopic fashion. The Geophysical Fluid Dynamics Laboratory (GFDL) hurricane

model used by the National Oceanic and Atmospheric Administration (NOAA) in the

United States uses such a scheme (Rowley and Ginis, 1999; Bender et al., 2007) as

does their Weather Research and Forecasting (WRF) model (Skamarock et al., 2008).

According to the literature the adaptive mesh scheme only appeared in the context of

ocean modelling in the last decade. Rowley and Ginis (1999) implemented a mesh

movement scheme within a multiply-nested ocean model in order to follow evolving

oceanic features. Movement of the nested grids can be specified prior to the

simulation start or determined during the course of the simulation. It was successfully

applied to several idealised and realistic test cases. Blayo and Debreu (1999)

addressed the interest for ocean modelling of a type of adaptive meshing known as

adaptive mesh refinement (AMR); a method originally introduced by Berger and

Oliger (1984). With this method the number, size and resolution of the nested grids

can evolve during the simulation according to specified criteria. The effectiveness of

the method was demonstrated in the classical case of the barotropic modon. Debreu et

al., (2005) have since successfully applied this method to an OGCM of the north

Atlantic. Hernnstein et al. (2005) present a strategy for staggered grid AMR using a

leap-frog time integration. They tested the strategy for the case of the barotropic

modon using numerics from the Modular Ocean Model (MOM) and achieved similar

accuracy to the AMR model of Blayo and Debreu (1999). To date, adaptive meshing

has only been applied to two-way nested models.
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The scheme applied by Rowley and Ginis (1999) is the more basic of the two adaptive

mesh schemes reviewed. Nested domains are dynamic but their structure and

configuration remain constant for the duration of the simulation (see Figure 2.9). At

the beginning of a simulation the fine grids are positioned relative to the centre of the

feature of interest. If the movement of the feature is pre-known, the timings of the

mesh movements can be specified by the modeller at the start of the simulation.

Alternatively, the movements can be determined by the model during the course of

the simulation according to some predetermined rule. A nested mesh can only be

moved if its time integration is synchronised with its parent grid. Care must be taken

that the telescopic nesting of the meshes and their relative positions to each other are

maintained.

Figure 2.9: Example of a multiply nested adaptive mesh simulation. Dotted line

indicates the movement of the fine meshes and the feature of interest (shaded).

In the Rowley and Ginis model, the child grids are embedded in the parent grid so that

when a child moves two important processes occur. Firstly, the leading section takes

on an area of the parent domain (see Figure 2.10) and each parent cell within that area

is now represented by N fine cells (N is the number of fine cells enclosed by a coarse

cell and thus depends on the nesting ratio). Coarse cell values must therefore be

distributed in some way between the corresponding N fine cells. Secondly, the trailing

edge becomes part of the coarser domain so that each group of N fine cells is now

represented by a coarse cell. Accordingly, their values must be transferred in some

manner to the coarse cell. During the course of both of these processes it is important

to conserve properties (mass, momentum, etc.); Rowley and Ginis (1999) use a

Time: t

Time: t+Δt

Time: t+ ½Δt
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scheme by Kurihara et al. (1979) that conserves the area integrals of these properties

over the grid cells involved.

Figure 2.10: Schematic showing child grid locations before and after a move.

In contrast to the more basic adaptive meshing of Rowley and Ginis (1999), the AMR

method not only allows movement of nested domains but also allows alteration of

their structure and indeed generation of new domains during the course of a

simulation. The basic principle of the AMR method is to provide the highest accuracy

at the lowest computational cost.

The AMR strategy features a hierarchy of nested grids with different levels of

resolutions (see Figure 2.11). The integration begins with a single coarse grid (the root

grid – level 0 in the figure) covering the full model domain. As the calculation

progresses through the domain, grid cells are tagged for refinement using a

predetermined criterion. For example, in the implementation by Blayo and Debreu

(1999) if the truncation error at a particular cell exceeds a certain threshold the cell is

tagged. This criterion check is carried out at regular intervals, usually every T coarse

timesteps. At the end of the coarse model integration the tagged cells requiring the

same level of resolution are enclosed in rectangular sub-grids, as can be seen in Figure

2.11. Boundary conditions for the grids at the next level of refinement (level 1 in the

figure) are then obtained from the coarse grid and the grids integrated in time. This

process is recursive and continues for all levels of refinement until the grids at all

levels are synchronised with the root grid.

Parent Grid

Adaptive child grid

a) Before Move b) After Move

Leading
Section

Trailing
Section
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Figure 2.11: Grid hierarchy for the AMR method (Hernnstein et al. (1999)).

The attraction of the AMR scheme is that higher resolution grids are created or

existing ones removed where and when necessary. Computational cost is therefore

kept to a minimum. Conservation of properties must be ensured when updating parent

grids from child grids and when passing boundary data from parents to children.

However, the problem of flux conservation is intrinsically less crucial with the AMR

than with classical nested grid methods. This is due to the fact that the AMR

automatically places fine grid boundaries at those locations where the fine resolution

is no longer needed, i.e. at those locations where the coarse and fine solutions are not

significantly different (Blayo and Debreu, 1999). This is obviously not the case with

fixed grids.

Despite its obvious advantages over classical nesting methods the application of AMR

in ocean modelling has not progressed greatly since its first application a decade ago.

One of the reasons for this is that most ocean models use numerics which do not fit

into the traditional AMR methodology. Typical AMR fluid dynamics models use

higher-order upwind-weighted numerical methods, while typical primitive equation

ocean models use centred differences with leapfrog time integration (Hernnstein et al.,

2005).

Figure removed
due to copyright issues
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2.6 Summary and Conclusions

Nesting methods provide a means of achieving high resolution in an area of interest of

a model domain without incurring the computational cost of high resolution over the

full domain. Their use is well-established in the field of limited-area coastal modelling

and they have been shown to produce levels of accuracy similar to full domain high

resolution models. There are two main types of nesting methods: one-way nesting and

two-way nesting.

In the context of the present research, nesting was primarily required to investigate the

effects of topographical interactions in local coastal regions at a lower computational

cost. Both nesting methods were applicable to this situation. Although not yet fully

proven, it is generally accepted that two-way methods are, by their nature, more

accurate than one-way methods. They are most beneficial in applications which aim to

allow some feature modelled on a local scale, i.e. on a child grid, to propagate out to

the parent grid thus improving the parent grid solution. However, because of the two-

way interaction between parent and child grids they are necessarily more complex

than one-way methods. As a result, they are more difficult to implement and more

computationally expensive. On this basis, a one-way nesting method was selected for

the research.

A one-way, multiple nested, adaptive mesh model was developed which is a modified

form of DIVAST. The model is capable of simulating both hydrodynamics and solute

transport at high resolutions. An overlapping grid structure was employed as the use

of an embedded grid structure would have required extensive modification of the

model solution scheme. Literature stresses that the most important element of a one-

way nested model is the boundary operator; an effective boundary operator reduces

boundary formulation errors. A significant proportion of the research therefore

focussed on the development of an effective boundary operator. A variety of boundary

operators have been implemented in nested models with varying degrees of success.

Based on the literature review three different forms of OBC were selected for testing:

a Dirichlet condition, a flow relaxation scheme and an advection boundary. Four

different interpolation schemes (zeroth order, linear, quadratic and inverse distance-

weighted) were also tested for performance. The final version of the model

incorporated a Dirichlet boundary condition with a linear interpolation scheme.
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Literature reports that nested model accuracy is heavily dependent on conserving

mass and momentum between model grids. A novel approach to nested open

boundary formulation, requiring modification of the standard boundary formulation,

was developed and applied. Ghost cells are incorporated adjacent to child grid open

boundary cells so that the open boundaries operate, in effect, as internal boundaries.

The method gave significant improvements in the conservation of momentum and, as

a direct result, model accuracy.

The majority of nested models reviewed in the literature exclude flooding and drying,

a process that is prevalent in the coastal areas that typically require nesting. Flooding

and drying of open boundary cells requires a dynamic boundary and is usually

avoided. Since the aim of the research was to develop a nested model applicable to

real coastal systems, flooding and drying was a fundamental design feature. The

internalisation of the child grid open boundaries facilitates a dynamic boundary and

allows flooding and drying of child grid open boundaries.

During model development it was important to be able to determine the level of error

in a model solution in order to measure and compare the performance and accuracy of

the nested model. A unique mathematical approach to error quantification was

formulated, the tidally-averaged relative error field, which enables simultaneous

analysis of the spatial and temporal errors in a model solution. The approach can be

used to compare solutions of both similar and different grid resolutions and proved

extremely useful during model development.

The location of the open boundaries of a nested domain is critical to model accuracy;

boundary specification errors are a direct result of inaccuracies in the parent model in

the region of the nested boundary. A nested boundary should therefore be located in

an area of low parent model inaccuracy to reduce BS errors. An effective strategy for

the optimisation of boundary locations was developed during the course of the

research. The strategy involves the analysis of the tidally-averaged relative error field

to identify areas of low parent model inaccuracies allowing the selection of suitable

boundary locations. Subsequent error analysis of mass and momentum fluxes across

the suitable boundary interfaces in the parent grid model and a high resolution model

allows the selection of optimum boundary locations.
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Solute transport was not incorporated in any of the nested models reviewed in the

literature. The adaptive mesh model was specifically developed to incorporate solute

transport. The solute transport process is fully nested with solute boundary flux data

passed from the parent grid to the child grid in a similar manner to mass and

momentum fluxes.

Finally, in relation to the adaptive meshing, elements of both the basic adaptive mesh

technique of Rowley and Ginis (1999) and the AMR technique were incorporated in

an adaptive mesh methodology. An overlapping grid structure was used; this differs to

the embedded grid structure of the reviewed techniques. The overlapping grid

structure was consistent with the grid structure chosen for the one-way nesting. Child

grids are free to move and change shape during the course of the simulation. The use

of adaptive mesh schemes in oceanographic and coastal modelling is still relatively

new and there are very few examples in the literature. To the Author’s knowledge this

is the first application of the adaptive mesh technique in a one-way nested model or a

solute transport model.
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3. Numerical Model Theory

3.1 Model Background

The model used for the research is a modified form of DIVAST, a model originally

developed by Professor R.A. Falconer at the University of Bradford, UK. DIVAST is

a two-dimensional, depth integrated, finite difference model which consists of two

coupled modules: 1) a hydrodynamic module, and 2) a solute transport and water

quality module. The hydrodynamic module computes velocity and elevation fields

and the water quality module can simulate up to twelve water quality constituents.

The hydrodynamic module is based on the solution of the depth integrated Navier-

Stokes equations and includes the effects of local and advective accelerations, the

rotation of the earth, barotropic and free surface pressure gradients, wind action, bed

resistance and a simple mixing length turbulence model. Solute transport and water

quality are computed using the general depth integrated advection-diffusion equations

and incorporates local and advective effects, turbulent dispersion and diffusion, wind

effects, source and sink inputs, and decay and kinetic transformation processes. The

water quality formulations are based on those of the QUAL2E model (Brown and

Barnwell, 1987). The governing differential equations are solved using a finite

difference (FD) scheme based upon the Alternating Direction Implicit (ADI)

technique.

3.1.1 Model History

DIVAST is based on a finite difference model for predicting time-varying depth

integrated water elevations, velocity components and solute concentrations (Falconer,

2001). The model has been continually developed and refined, with particular

emphasis being focused on the treatment of the advective accelerations, wind effects,

bottom friction, turbulence, high concentration gradients, dispersion, water quality

indicators, sediment transport processes, and flooding and drying. The model has been

calibrated and verified extensively against laboratory and field measured data, with

details of the model refinements and verification tests being reported in over 100

publications by the original model author. The model has been used to date on over
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200 projects in Ireland and the UK and is considered an industry standard for many

aspects of water quality management.

3.1.2 Model Description

DIVAST is a comprehensive and versatile model for predicting the water elevation

and depth averaged velocity components in the horizontal plane and up to twelve user

specified water quality constituents and sediment transport fluxes. The water quality

constituents which can be simulated include: salinity, total and faecal coliforms,

biochemical oxygen demand (BOD), nitrogen (organic, ammoniacal, nitrate),

phosphorus (organic, inorganic) dissolved oxygen, algal biomass, and sediments.

The governing differential equations for the flow and water quality constituent fields

are solved using the FD technique and a scheme based on the ADI formulation which

involves the sub-division of each timestep into two half-timesteps. This allows a two-

dimensional implicit scheme to be applied but considering only one dimension

implicitly for each half-timestep, eliminating the need for the solution of a full two-

dimensional matrix (Falconer et. al., 2001). Computations are carried out on a

uniform rectilinear grid with fixed and equal grid spacings in the x- and y-directions.

The model grid is discretised on an I-J plane (see Figure 3.1) where the I- and J-axes

correspond to the x- and y-directions respectively. The solution scheme proceeds in

the x-direction during the first half-timestep and computes the water surface elevation

ζ and the x-direction velocity component U using the method of Gauss elimination

and back-substitution. Solute concentrations S are then evaluated before proceeding to

the second half-timestep and repeating the process in the y-direction, computing ζ, the

y-direction velocity component V, and S. In the water quality module the advective

terms are treated using a higher order accurate ULTIMATE QUICKEST formulation

(Quadratic Upstream Interpolation for Convective Kinematics with Estimated

Streaming Terms).

A space-staggered orthogonal grid system is used (see Figure 3.1) with water

elevation and solute concentration discretised at the centre of the grid cell and velocity

components, volumetric flux components and water depths discretised at the centre of

the cell sides. There are two main advantages of the staggered grid representation.

Firstly, it means that for each variable operated upon in time, centrally located spatial
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derivatives for each of the other variables are available. Secondly, in most estuarine

modelling problems, the boundary conditions are in the form of water elevations at

the seaward boundary and velocities (zero in the case of land) at the landward

boundary. It can be seen that the computational plane is rotated so that the positive x-

and y-directions in the real Cartesian plane correspond to the positive I- and J-

directions respectively in the computational plane.

Figure 3.1: The space-staggered grid scheme and (I,J) coordinate system.

3.1.3 Justification of Model Choice

Being a depth integrated model, DIVAST is applicable to well-mixed coastal,

estuarine and inland waterbodies and is therefore particularly applicable to most Irish

coastal waters. Indeed the Author has been involved in the successful application of

DIVAST to many of Ireland’s bays and estuaries, e.g. Dublin Bay, Galway Bay, and

Dingle Bay. The Author has found it to be relatively easy to implement and once

calibrated and validated the level of accuracy is high. In addition, the FORTRAN

code is accessible and the model can therefore be adapted to particular applications.

In one such application - a combined modelling study of Wexford and Cork Harbours

(see Hartnett and Nash (2004) and Nash and Hartnett (2010) respectively), the

complex bathymetries and irregular coastlines required the use of highly resolved

(30m) model grids. Combined with the open boundary requirements, this resulted in

very large model domains of approximately 400,000 grid points and thus very high

computational costs. These excessive costs were the motivation for the current

J J+1J-1

I-1

I

I+1

water elevation ζ and
solute concentration S

x-direction velocity U,
water depth Hx, and
volumetric flux UHx
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research to develop efficiencies in DIVAST in order to reduce computational costs.

The FD grid used in the model is a uniform rectilinear grid with fixed horizontal

spacings and as such is ideally suited to classical nesting techniques.

Models are nested in order to increase horizontal resolution in a region of interest.

However, a common problem in coastal models is that the regions of interest where

higher resolution is required will often contain intertidal areas which experience

alternate flooding and drying. For a nested domain in such an area, flooding and

drying, as well as occurring inside the domain, will also occur along portions of the

domain’s open boundaries. Flooding and drying of grid cells along open boundaries

tends to give rise to instabilities in model solutions and is usually avoided. As a result

most nested models to date do not incorporate flooding and drying. This omission

may be acceptable when modelling hydrodynamics (depending on the spatial

resolution and the aim of the modelling) as areas of flooding and drying typically

exhibit low hydrodynamic activity; however when modelling water quality, areas of

flooding and drying are important as both sources and sinks for water quality

constituents. The DIVAST model contains a robust flooding and drying routine

allowing intertidal areas to be adequately simulated; it was therefore a good choice of

model for the research.

3.2 Governing Equations

In a shallow, well-mixed waterbody (see Figure 3.2), the vertical velocity component

w is usually small in comparison to the horizontal velocity components, u and v.

Figure 3.2: A shallow, well-mixed waterbody (MWL = mean water level, ζ = water

surface elevation above or below MWL, h = depth of bed below MWL).
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In such cases, the horizontal velocity components can be integrated over the depth to

give the depth integrated velocities U and V such that:

udz
H
1

U
h


; vdz

H
1

V
h


(3.1)

where H is total water depth, i.e. H=h+ζ. By doing so, the model environment is

reduced from a complex three-dimensional problem (in x, y, z) to a simpler two-

dimensional problem (in x,y). This is shown graphically in Figure 3.3.

Figure 3.3: Principle of the two dimensional model.

The governing differential equations used in the model to determine the water

elevation and depth integrated velocity fields in the horizontal plane are based on

integrating the three-dimensional continuity and Navier-Stokes equations over the

water column depth. Assuming that the vertical accelerations are negligible compared

with gravity, i.e. the existence of a quasi-hydrostatic pressure distribution, and that the

Reynolds stresses in the vertical plane can be represented by a Boussinesq

approximation, then the depth integrated continuity and x- and y-direction momentum

equations can be shown to be of the following form (Falconer, 2001):

Continuity equation:
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x-direction momentum equation:
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y-direction momentum equation:
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where, t = time

qx,qy = depth integrated volumetric flux components in the x,y directions

(qx=UH, qy=VH)

 = momentum correction factor for non-uniform vertical velocity profile

f = Coriolis parameter (= 2Sin , where  = angular velocity of the

earth’s rotation and  = geographical latitude)

g = gravitational acceleration

a,  = air and fluid densities respectively

C* = air-water interfacial resistance coefficient

Wx,Wy = wind velocity components in x,y directions

C = Chezy bed roughness coefficient

 = depth mean eddy viscosity

The individual terms in the momentum equations, as numbered in equation (3.3), refer

to the depth integrated:

 local acceleration …(1)

 advective accelerations …(2)

 Coriolis force …(3)

 pressure gradient …(4)

 wind shear force …(5)

 bed shear resistance …(6)
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 turbulence induced shear force …(7)

Solute transport processes are incorporated into the model using the two-dimensional,

depth integrated advection-diffusion equation (Falconer, 2001):
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where Dxx, Dxy, and Dyx, Dyy are the depth mean dispersion coefficients in the x- and y-

directions respectively. The numbered terms of the solute transport equation refer to

depth integrated solute variations within the model domain as a result of: local effects

(1), advective effects (2) and turbulent diffusion and dispersion (3).

3.2.1 Finite Difference Formulations

To solve the governing differential equations (3.2) - (3.5), they are specified in an

ADI form using the central difference method. The central difference method

provides a means of approximating the first derivative of a function using finite

differences. Take for example the function U(x) which could represent the velocity at

a point (x) in a one-dimensional model of an estuary. Using the central difference

formulation, the first derivative of the function U(x) can then be approximated by:

x2
)xx(U)xx(U

x
)x(U


 





(3.6)

The first derivative of the function at point (x) can therefore be approximated using

the velocity values at points (x+∆x) and (x-∆x).

The ADI technique requires that each timestep ∆t is split into two successive time

level operations, or half-timesteps, of equal length ∆t/2. For the first half-timestep,
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from time (n)∆t to time (n+½)∆t, the derivatives and terms referring to conditions in

the x-direction are expressed in an implicit form, whereas those in the y-direction are

expressed explicitly. Likewise for the second half-timestep, from time (n+½)∆t to

time (n+1)∆t, the derivatives and terms referring to conditions in the y-direction are

then expressed in an implicit form while those in the x-direction are expressed

explicitly (Falconer, 1986). All terms are fully centred in both space and time for each

half-timestep by carrying out two iterations of the solution per half-timestep. Based on

the space-staggered grid scheme of Figure 3.1, the FD forms of the continuity and x-

direction momentum equations can be written as (Falconer, 1986):

continuity equation:
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x-direction momentum equation:
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where n is the timestep level, i,j are grid point locations in the x,y directions,
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 . The numbered terms in the x-

direction momentum equation (3.8) are the FD representations of the corresponding

terms of its differential form (equation (3.3)).

Likewise, the FD form of the advection-diffusion equation can be written as:
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For the first half-timestep, from n to n+½, equations (3.7) - (3.9) are implicitly solved

to compute values of qx, ζ and S. The terms written with a prime in equation (3.7) are

expressed explicitly at timestep n-½ during the first iteration. For the second iteration,

these terms are expressed at timestep n using the average of the variable values

calculated at the end of the first iteration. For example, during the first iteration for

equation (3.7):
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and for the second iteration:
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For the second half-timestep, from time level n+½ to n+1, similar formulations of the

continuity, y-direction momentum and advection-diffusion equations are solved to

compute values of qy, ζ and S.

Solution of the continuity and momentum equations is critical to the accuracy of both

the hydrodynamic and solute transport modules in the model. Understanding this

solution procedure was therefore important for model development. The procedure is

explained in the following sections.

3.2.2 Model Formulations

The model is written in the FORTRAN programming language. All FD formulations

of the governing equations in the model are therefore specified in FORTRAN. When

developing the nested model a thorough understanding of the FORTRAN

specifications of the governing equations was required, in particular to understand the

relationships between adjacent cells. Table 3.1 lists the model representations of the

main variables used in the FD equations (3.7) and (3.8) above.

Type FD Variable Model Representation
water
elevation

2
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EU(I,J)

EM(I,J)

EL(I,J)

velocity x-direction y-direction
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x-direction y-direction

UM(I,J) VM(I,J)
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2

1

2
1

n

j,ix
q





2
1

2
1

n

j,iyq




n

j,ix 2
1

q


n

j,iy 2
1q 

2
1

2
1

n

j,ix
q





2
1

2
1

n

j,iyq




x-direction y-direction

QXU(I,J) QYU(I,J)

QXM(I,J) QYM(I,J)

QXL(I,J) QYL(I,J)

depth x-direction y-direction
n

j,i 2
1

H


n

j,i 2
1

H


x-direction y-direction

DEPX(I,J) DEPY(I,J)
timestep Δt DT
grid spacing Δx DELX

Table 3.1: Model representations of finite difference variables.
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As an example of the specification of the governing equations in the model code, the

FD and corresponding model formulations of the advective acceleration term of the x-

direction momentum equation (term (2) in equation (3.8)) are presented below. (Note:

the complete model representations of each term of the x-direction momentum

equation and the corresponding FD formulations are presented in Appendix A.1.) For

demonstration purposes p and q of term (2) were taken as +½ and –½ respectively.

The finite difference formulation of term (2) in equation (3.8) is written as:
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1 2 3

Terms (1), (2) and (3) above are represented in the model by the variables:

]DUVHDYDUUHDX.[BETA2D  (3.13)

1 2 3

where:
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and the variable BETA is the momentum correction factor β.
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From equations (3.13) – (3.16), it can be seen that the determination of the advective

acceleration at grid cell (I,J) involves the values of variables from a number of

adjacent grid cells. This is shown in graphical form in Figure 3.4. This is the

fundamental basis of any finite difference method and the computations of other terms

of the governing equations similarly involve the values of neighbouring variables. As

the model is also time-varying, the determination of a variable at a particular timestep

also involves variable values from the previous, as well as the current, timestep. It is

particularly important to understand these spatial and temporal relationships in order

to ensure that mass and momentum are conserved across the open boundaries of a

nested domain.

Figure 3.4: Schematic showing cell variables (red) required for computation of

advective acceleration at cell (I,J). Shaded cells are those involved in the computation.

3.2.3 Hydrodynamic Solution Scheme

For an implicit finite difference scheme, the adjacent grid point values required to

compute a variable at a particular grid point will comprise both known and unknown

values. The known values are typically those variable values calculated at the

previous timestep and the unknowns are those variable values required at the current

timestep. Consider the case of a one-dimensional time-varying model with I grid

points and T timesteps which solves for ζ and U. At each timestep, there are I number

of grid points with two variables to be computed at each. Thus, at each timestep, the

finite difference equations will give 2I number of simultaneous equations expressed in

terms of the calculated values at the previous timestep. A method such as this which

J J+1J-1

I-1

I

I+1

I

J

UM and QXM required

QYM required
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requires the solution of a number of simultaneous equations is most readily solved by

setting up the simultaneous equations in a tri-diagonal matrix form and applying the

method of Gauss elimination and back substitution (Falconer, 1988). The ADI

formulations of the governing equations in the model are solved using this method.

The solution of the continuity and x-direction momentum equations during the first

half-timestep are now explained.

From equations (3.7) and (3.8) it can be seen that the determination of 2
1n

j,i


 and

2
1

2
1

n

j,ixq


 requires a combination of known variables at time level n and other unknown

variables at time level n+½. Rearranging equations (3.7) and (3.8) to bring all

unknown variables to the left-hand side and combining the known variables, the x-

direction momentum and continuity equations at a grid cell (i,j) can be rewritten as:

x-direction momentum:
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 (3.17)

continuity equation:
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  (3.18)

where ai, bi, ci, di, ei, fi are recursion coefficients and Ai, Bi are combined known

variables at time n. The full derivations of equations (3.17) and (3.18) are presented in

Appendix B as are the values of the recursion coefficients and the terms Ai and Bi.

Now, take the example of the section of contiguous wet grid cells shown in Figure

3.5b which is located in the sample model grid shown in Figure 3.5a. Grid cells (2,2)

to (12,2) are bounded by a lower open water elevation boundary at (1,2) and an upper

closed boundary at (13,2). These boundary conditions mean that 2
1n

2,1


 is provided and

0q 2
1

2
1

n

2,12x 


. The unknown values of 2
1n

j,ixq


and 2
1n

j,i


 in (3.17) and (3.18) can now

be evaluated for the grid cells in the section by a process of elimination of the

unknowns.
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Figure 3.5: (a) Sample model grid showing x-direction integration sections and (b)

individual section (land cells are grey, wet cells white and open boundary cells blue).

Starting at i=1 in the section of Figure 3.5b, and given that 2
1n

2,1


 is known, the

unknown 2
1

2
1

n

2,1xq


in (3.17) can be written in the form:

1

n
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n

2,1x SRq 2
1

2
1

2
1 


 (3.19)

where R1 and S1 are recursion formulae containing only known terms. At i=2, (3.19)

can then be substituted into (3.18) to eliminate the flux 2
1

2
1

n

2,1xq


thus obtaining an

equation for 2
1n

2,2


 of the form:
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2
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2,2 QqP 2
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2
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 (3.20)

where P2 and Q2 are further recursion formulae again containing only known terms.

At i=2, (3.20) can now be substituted into (3.17) to eliminate 2
1n

2,2


 and so on and so

forth for i=1,…,12. The elimination of unknowns in this manner is known as Gaussian

elimination. Finally, at i=12, the continuity equation (3.18) will have the form:
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n

2,12x12

n

2,12 QqP 2
1

2
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2
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 (3.21)

The flux 2
1

2
1

n

2,12xq


is known from the upper boundary condition, i.e. 0q 2
1

2
1

n

2,12x 


.

Therefore, (3.21) can be solved for 2
1n

2,12


 . This water elevation can then be substituted

into the momentum equation at the previous grid cell i=11 to enable the calculation of

2
1

2
1

n

2,11xq


. This process of backward substitution can then be continued to determine all

unknown values of 2
1

2
1

n

2,ixq


 and 2
1n

2,i


 at each value of i.

In their general recursive forms the continuity and momentum equations may be

written respectively as:
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The recursion formulae Pi, Qi, Ri and Si are based on the previously defined recursion

coefficients ai, bi, ci, di, ei, fi and terms Ai and Bi. They are presented in full in

Appendix B. Similar recursion formulae are also developed in the y-direction for the

second half-timestep.
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At the beginning of a model simulation all potentially wet grid cells (excluding open

boundary cells) are divided into integration sections (IS) consisting of columns (in the

I- or x-direction) and rows (in the J- or y-direction) of contiguous wet cells. Figure

3.5a shows how the I-direction integration sections are delineated on a sample finite

difference grid. The lower limit cell of each section is termed IB and the upper limit

cell is termed IT. Each section is bounded by a lower boundary cell IBM1 and an

upper boundary cell ITP1; these cells can be either open or closed boundaries. The

process of Gauss elimination and back substitution described above is implemented

on each x-direction integration section according to the algorithm in Figure 3.6.

Figure 3.6: Algorithm showing the implementation of the solution procedure for the

continuity and momentum equations in the x-direction during the first half-timestep.
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As previously mentioned, the second iteration of the solution scheme is required to

fully centre all terms in both space and time and thus ensure the stability of the

solution. The solution algorithm computes all unknown values of 2
1n

j,i


 and 2

1

2
1

n

j,ixq




during the first half-timestep. A similar algorithm is then applied to the y-direction

integration sections during the second half-timestep to compute all unknown values of

1n

j,i

 and 1n

j,ix 2
1q 

 .

3.2.4 Open Boundary Formulations

The treatment of open boundaries in a nested model is critical to its level of

performance. During development of the nested model, its performance and accuracy

were improved by modifying the open boundary formulations of the nested domains

to incorporate ghost cells. The incorporation of the ghost cells enabled nested

boundary cells to be formulated in a similar manner to internal grid cells, creating, in

effect, an internal boundary. This process is explained in more detail in Chapter 5. As

a precursor to this development, the formulation of open boundaries in the original

model is now explained. Once again, the explanation focuses on the hydrodynamics.

The formulations of the governing continuity and momentum equations at an open

boundary grid cell are necessarily different to those at an interior grid cell. This is due

to the application of the central finite difference method on the space-staggered grid to

develop the finite difference formulations. Take, for example, the x-direction

volumetric flux qx at a grid point (i+½,j) on the staggered grid of Figure 3.7 and at

time level n.

Based on the central difference method, the finite difference approximation of the

partial derivative of n

j,ix 2
1q  with respect to distance in the x-direction is calculated as:

x

qq

x
q

n
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n

j,1ix
n
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x

2
1 





 



(3.24)
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Figure 3.7: Schematic of central difference approximation of the partial derivative of

n

j,ix 2
1q  in the x-direction on a space-staggered grid (values in red are required).

Values for n

j,ixq and n

j,1ixq  are not specified on the grid, they must therefore be

calculated by linear interpolation using the adjacent values as follows:
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(3.25)

The finite difference approximation of the partial derivative of n

j,ix 2
1q  relative to the

x-direction therefore requires the values of n

xq at the two adjacent grid points in the

positive and negative x-direction (highlighted in Figure 3.7). This requirement is the

same for approximations of the derivatives of any variable component when the

derivatives are required relative to the component direction. The requirement does not

present a problem for interior grid points; however, it does present a problem for open

boundary grid points where only one adjacent grid point exists in the direction normal

to the boundary. The formulations of the FD equations at a boundary grid cell must,

therefore, be altered so that they do not require the use of values from external grid

cells that do not exist.
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Take the example of the advective acceleration term of the x-direction momentum

equation (term (2) in equation (3.3)):











y

Uq

x
Uq yx








 (3.26)

In the computation of ∂qx/∂x this term accounts for the effect of the rate of change of

momentum in the x- and y-directions at the grid cell. In the model formulations, the

rate of change of momentum in the x-direction at a grid cell (i,j) (i.e. x/Uqx  ) is

represented by the finite difference expression (from equation (3.8), Note: the primes

are ignored):

x
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(3.27)

As before, values of U and qx are not specified at the grid points (i,j) or (i+1,j) and

must be interpolated from adjacent values using:
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This formulation is perfectly applicable at an interior grid cell. However, suppose that

the grid cells along row i of Figure 3.7 constituted a lower open boundary and the grid

cells at row i-1 did not exist. In such a case, the variable values at (i-½,j) would not

exist. Likewise, if the grid cell (i,j) was located on an upper boundary the variables at

(i+½,j) would not exist. Therefore, at a boundary grid cell equation (3.28) cannot be

calculated and is instead set to zero. Equation (3.26) is therefore implemented at an I-

boundary in a simplified form by the expression:
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 (3.29)

A similar modification is made to the y-direction momentum equation at those cells

that lie on a J-boundary. These simplifications mean that, at a boundary cell, the rate

of change of momentum in the direction normal to the boundary (the most important

direction!) cannot be incorporated in the model solution. A similar problem is

experienced in the formulation of the turbulent induced shear force (term (7), equation

(3.3)) and this formulation is likewise simplified at open boundary grid cells.

3.3 Stability, Accuracy and Model Resolution

Finite difference methods are used to obtain approximations of derivatives by

representing the derivative, a statement of condition at a point, as a statement of

conditions over an interval containing this point. Differential equations such as those

governing flow can therefore be replaced by an approximate equation that can be

solved. The performance of a FD scheme is assessed using the following

characteristics:

 consistency / convergence

 stability

 accuracy

A good FD scheme should be consistent, stable and accurate. These characteristics are

important as they can have some implications for the choice of model resolution.

Since the FD equation is an approximation of the differential equation its solution will

contain some error, known as the truncation error. For any FD scheme centred about a

point (i,j) and time n+½ say, it is desirable that in the limit as ∆x, ∆y, ∆t  0 the FD

equation should reduce to the original differential equation, i.e. the truncation error

should disappear. If this requirement is met, the FD scheme is said to be consistent

with (or convergent to) the differential equation.

It is not possible for a numerical model to carry out all of the calculations in a FD

equation to an infinite number of decimal places. Generally they are only carried out

to a finite number of decimal places. As a result, a round-off error is introduced for
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every individual calculation and the computed solution will be slightly different to the

exact solution of the FD equations. Generally, a set of FD equations is said to be

stable if the cumulative effect of all of the round-off errors is negligible. On the other

hand, if the round-off errors are amplified as the computation progresses, the solution

is said to be unstable and the true solution will be swamped by the continuous growth

of the errors. An unstable solution scheme will usually result in the solution

terminating prematurely due to excessive errors. In a numerical model the stability of

the FD solution is usually governed by the Courant condition.

Although a FD scheme may be both consistent and stable, the sum of the truncation

errors may still be large enough to produce a relatively inaccurate numerical solution.

DIVAST is an implicit model and therefore inherently stable (Falconer, 1988). As

such, the choice of model resolution is not constrained by the Courant stability

criterion. However, to ensure sufficient accuracy the model is subject to an accuracy

constraint on the timestep. This is also expressed in terms of the Courant number Cn

as follows:

x
t

gHC
n 


 (3.30)

It has been found that model accuracy starts to deteriorate substantially for Cn>8 and

sometimes less (Falconer et al., 2001). Incorporating this constraint on the Courant

number and rewriting equation (3.30) in terms of the timestep Δt gives:

gH
x

8t


  (3.31)

which dictates the maximum permissible timestep ∆tmax for a chosen spatial resolution

∆x. [Note: H in equation (3.31) is the average water depth in the model domain

measured below MWL].

Accuracy will increase somewhat as the timestep is reduced from ∆tmax. However, as

shown in Section 7.5.2, the amount of improvement that can be achieved is finite and

for each continued reduction in timestep the amount of improvement decreases. Any
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gain in accuracy achieved in this manner must be offset against the resulting increase

in computational time and a decision made as to whether the trade-off is worthwhile.

The most effective method of improving model accuracy is to reduce the grid spacing

but the associated increase in computational cost can be excessively high. For

example, if Δx was reduced to (Δx / f), where f is an integer greater than 1, then the

computation time T would increase to (T x f2); a reduction in Δt might also be required

to ensure that the Courant accuracy criterion is met. The use of a nested model allows

one to achieve significant improvements in accuracy due to improved spatial

resolution whilst minimising the increase in computational time.

3.4 Nesting Approach

The primary objective of the research was to develop a nested adaptive mesh model

based on DIVAST. The model uses a single rectilinear grid with fixed spacing and is

therefore subject to the spatial resolution problem outlined in Chapter 2. Nested

models allow specification of high resolution in an area of interest only, with lower

resolution elsewhere. The adaptive mesh model is a further development of the

classical nested model. It can further reduce the computational cost as the nested

domain (or mesh) is able to move with the feature of interest and so minimise the area

of high resolution.

Based on a review of the literature (see Section 2.3) a one-way nesting technique was

chosen for the development of the adaptive mesh model. One-way techniques are

easier to implement and encode and less computationally expensive than the

alternative two-way nesting techniques. In addition, coastal models tend to focus

mainly on local features in an area of interest, such as interaction with local

topography, and not so much on how those features propagate into, and affect, the

surrounding coastal domain. In such cases two-way models are unnecessary;

boundary conditions from the external domain are required to drive the evolution in

the nested domain but the two-way feedback from the nested domain to the external

domain is not.

The premise of a one-way nested model, as shown in Figure 3.8, is that the child

domain c is a high resolution sub-domain of a much larger, low resolution parent
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domain p. Therefore the parent solution can be used to force the child model along

the boundary . The mathematical formulation of the problem, originally presented

in Chapter 2, is reproduced here:
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(3.32)

In the final AMM the nested boundary  is formulated in a different manner to the

standard open boundary formulation. Ghost cells, adjacent to the nested boundary, are

incorporated so that the boundary cells are formulated in a similar manner to internal

cells. The nested boundary is therefore better described as an internal boundary.

From equation (3.32) it can be seen that the accuracy of the solution in the child

domain is dependant on: 1) the choice of boundary operator B, and 2) the accuracy of

the parent solution p on the boundary  . These are the critical factors when

developing a one-way nested model. The boundary operator must allow variables to

propagate into and out of the nested domain with minimum disturbance whilst also

conserving mass and momentum. In addition, the open boundaries of the nested

domain should be located in those areas of the parent domain where accuracy is high.

Figure 3.8: A schematic view of a nested model of an estuary.

Parent Domain, p

Chid Domain, c

ppp fL 
ccc fL Internal

Boundary, 
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3.4.1 Details of Nesting Procedure

A one-way nested model effectively consists of two separate models, the parent model

and the child model. These models may be coupled, in which case the models are

dynamically linked, or uncoupled, in which case the models run separately with the

child model driven by archived boundary data from the parent model. A coupled set-

up was chosen for this research as the uncoupled set-up requires large amounts of

computer storage space for the boundary data. The coupling of the models does

increase the computational cost of the nested model. However, since the resolution of

the parent model is relatively coarse its computational cost is quite low in relation to

that of the child model. The added computational cost to the nested model is therefore

only a small percentage of the overall cost. This slight disadvantage is far outweighed

by the large storage space requirements of the uncoupled set-up.

The interaction between the parent and child models is of utmost importance to the

accuracy of the nested solution. In general, the interaction involves the following

processes. The parent model is run and the boundary data along the child grid’s open

boundary is extracted. Since the grid resolutions differ, the parent data must be

interpolated in space (and possibly in time) to obtain a full set of boundary data for

the child. The boundary data is then specified to the child model using a boundary

condition and the child model is integrated forward in time. The choice of boundary

operator is one of the main determinants of model accuracy and is discussed in later

sections.

The nesting procedure used in the adaptive mesh model is presented in graphical form

in Figure 3.9 and can be summarised as follows:

1. integrate parent grid one timestep (t+∆tp)

2. interpolate (time-wise) parent grid data along child grid boundary to next timestep

of child grid (t+∆tc)

3. interpolate (spatially) parent grid boundary data at (t+∆tc) to child grid points

4. assign boundary data to child grid according to some boundary condition

5. integrate child grid one timestep (t t+∆tc)

6. repeat Steps 2  4 so that child grid is synchronised to current timestep of parent

grid (t+∆tp)

7. return to Step 1 and continue
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Figure 3.9: The nesting procedure. For clarity, the only variable shown is water

surface elevation, ζ.

The order of time integration within the model is also shown in Figure 3.9. The

integration of the parent grid is only allowed to proceed when the child grid has been

integrated up to the time-level of its parent. The model uses the ADI solution

technique to solve the governing finite difference equations which requires each

timestep be split into two. This does not affect the order of time integration as each

parent grid is integrated by one full timestep before the model proceeds to the child.

However, it does affect the temporal interpolation process as the chid grid requires

boundary data at each half-timestep as shown in the diagram.

3.4.2 Grid Structure

The nested model allows finer spatial resolution to be focused over a region of interest

by introducing an additional grid (or grids) into the simulation. A simulation therefore

involves one outer grid which contains one or more inner nested grids. The literature

review indicated that degradation in model performance can be a problem at higher

spatial nesting ratios (>5:1). The model therefore allows numerous levels of nesting,

in which case children can become parents thus developing a generational hierarchy

of nested models. Child grids may be telescoped to any depth (i.e., a parent grid may

contain one or more child grids, each of which in turn may successively contain one

or more child grids) and several child grids may share the same parent at the same

level of nesting. The boundary conditions for each child grid are obtained from its
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parent. Figure 3.10 shows an example of the grid structure for a multiple nested

model; each nested region must be entirely contained within a single parent grid.

Nested grids may be refined in both space and time. The AMM was developed to

allow both. The spatial refinement, also known as the spatial nesting ratio rs, is

defined as (Δxp/Δxc). The temporal refinement or temporal nesting ratio rt is defined as

(Δtp/Δtc) and is usually, but not always, allocated the same value as the spatial nesting

ratio. In the AMM the temporal refinement can be set to any integer value or switched

off altogether in which case Δtp = Δtc.

Figure 3.10: Grid structure for multiple nesting.

3.5 Boundary Conditions and Implementation

The boundary operator B of equation (3.32) is used to blend the parent grid solution to

the child grid solution at the open boundary and is critical to the accuracy of the

nested model. The operator consists of both a suitable boundary condition and an

accurate interpolation technique. An unsuitable boundary condition can lead to noise

generation in the vicinity of the boundary due to wave reflection and/or inaccuracies

due to loss of mass and momentum. The literature review revealed that a wide variety

of boundary conditions have been used in nested models with varying degrees of

success. The three most commonly used conditions were the Dirichlet condition, the

flow relaxation scheme and the radiation condition.

The Dirichlet BC was initially implemented in the model as it is often used in

particular in one-way nesting (Blayo and Debreu, 2005) and it was the easiest to

encode. The flow relaxation and radiation conditions were also later implemented.
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Model performance was assessed for all three conditions. Figure 3.11 shows the grid

configuration at the boundary interface of a child grid in the AMM. The heavy lines

and large symbols relate to the parent grid while the fine lines and small symbols

relate to the child grid. For clarity, child grid variables are only shown for the

boundary interface (shaded grey). The boundary interface incorporates the internal

boundary cells Γ and the adjacent ghost cells Γ*. Boundary data was assigned to both

sets of cells in the same manner; however, only velocities and fluxes normal to the

boundary were required at ghost cells. The implementation of the BCs in the model is

described in relation to Figure 3.11.

Figure 3.11: Nested grid configuration in the AMM showing boundary interface of

child grid incorporating internal boundary Γ and adjacent exterior ghost cells Γ*.

3.5.1 Dirichlet BC

For the Dirichlet condition, the parent grid conditions were imposed directly on the

child grid at the boundary interface. The condition was implemented according to:

2
1

2
1 n

j,ip

n

j,ic


  on Γ (3.33)

KEY
 ζ


U
Hx

qx


V
Hy

qy

I (x)

J (y)

N
es

te
d

D
om

ai
n

Γ
Γ*

→
↓
·
↓

→
↓
·
↓

→
↓
·
↓

→
↓
·
↓

→
↓
·
↓

→
↓
·
↓

· →

↓

· →

↓

· →

↓
· →

↓

· →

↓

· →

↓

→
↓
·→

→
↓
·→

→
↓
·→

→
↓
·→

→
↓
·→

→
↓
·→

→
↓
·
↓

→
↓
·→

· →

↓

· →

↓

· →

↓
· →

↓

· →

↓
· →

↓

· →

↓

· →

↓

· →

↓
· →

↓

→·
↓
→

↓
·→



71

where i and j are child grid coordinates. To obtain 2
1n

j,ip


 the parent grid solution on

Γ was interpolated in time and space to the resolution of the child grid.

3.5.2 Flow Relaxation Scheme

Implementation of the flow relaxation scheme (FRS) required the extension of the

child grid domain c to incorporate a sponge layer s immediately outside the

original child grid boundary orig as shown in Figure 3.12. A spatially varying

relaxation factor was then applied to the child grid solution within the sponge layer as

follows:

2
1

2
1

2
1 n

j,ip

n

j,iest,s

n

j,is )1(


  (3.34)

where  is a relaxation function which increases from 0 on orig, to 1 on the outer

boundary of the sponge layer new. The outer boundary of the sponge layer is

configured in the manner shown in Figure 3.11. To implement the scheme the model

equations are first solved on c s with the boundary relaxation term excluded to

compute the estimated solution in the sponge layer, 2
1n

j,iest,s


 . The solution in the

sponge layer is then replaced at the end of each timestep according to equation (3.34).

Figure 3.12: Schematic view of nested child showing incorporation of sponge layer.
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3.5.3 Radiation BC

The radiation condition was implemented based on the Sommerfeld condition

introduced in Section 2.4.4 and reproduced here as:

0
n

c
t

c
w

c 





 

(3.35)

Taking the western boundary of Figure 3.11 as an example, the phase velocity cw in

the y-direction (i.e. normal to the boundary) can be expressed as:

 
 y/

t/
c

c

c
w 







(3.36)

Initially, it was proposed to use the simplified Orlanski-type method of Miller and

Thorpe (1981) to implement the radiation boundary. This method first requires the

calculation of the non-dimensional phase velocity. For the western boundary of Figure

3.11 this was calculated as follows:
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(3.37)

The sign of cw indicates the direction of propagation of the wave in relation to the

child grid boundary; cw<0 indicates propagation into the child grid domain while

cw>0 indicates propagation out of the domain. To ensure stability, the final value of cw

is constrained to lie in the interval 0< cw <1. Following the determination of cw the

value of 2
1n

j,ic


 on the boundary is calculated using the following finite difference

form of equation (3.35):
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  (3.38)
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Since negative values of cw are set to zero, the radiation condition is not applied when

the waveform is travelling into the domain. In addition, values of cw>1 are set to 1 so

that the Courant stability condition is satisfied.

As reported in the literature review (Section 2.4.4) determination of cw using an

Orlanski-type method has in some cases been found to result in rather meaningless

values. This was found to be the case for the nested model, as will be shown in

Chapter 6. cw was found be both unstable and a poor indicator of the direction of

propagation of model waveforms. A modified radiation boundary scheme was

therefore developed based on extrapolation – the extrapolated radiation condition

(ERC). Since the radiation condition is typically only applied to the velocity

components (and not the surface elevation) the sign of the velocity component normal

to the boundary was used to determine the direction of flow.

Taking the western boundary of Figure 3.11, V is the velocity component normal to

the boundary; thus V<0 indicates flow out of the child grid domain and V>0 indicates

flow into the child grid domain. Boundary data are then determined using the

Dirichlet condition for incoming flows and a method of extrapolation for outgoing

flows designed to allow outgoing waveforms to pass through the boundary with

minimum disturbance. The radiation boundary condition as applied to a child grid cell

(i,j) on a western boundary in the model can therefore be defined as:
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where the boundary values of n

j,icV and 2
1n

j,icV


for 0V n

1j,ic  are calculated by

extrapolation of the adjacent interior solution to the boundary using:
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The ERC was applied to both the x- and y-direction components of velocity. Water

surface elevations were assigned at the CG boundary using the Dirichlet condition.

The boundary conditions described above are applied to the prescribed boundary

variables. In the review of nested model studies, it was found that various

combinations of surface elevation, component velocities and fluxes, temperature and

density (e.g. Pullen and Allen, 2001; Marchesiello et al., 2001; Korres and Lascaratos,

2003) were typically prescribed at the child grid boundary. During nested model

development, various implementations of boundary prescription were therefore tested

to assess their effect on model performance.

3.6 Interpolation of Boundary Data

The different resolutions of the parent and child grids of a nested model mean that the

coarsely resolved parent data along the nested boundary must be interpolated to the

child grid resolution. This is the second function of the boundary operator. Spatial

interpolation is always necessary but temporal interpolation may, or may not, be

necessary depending on whether a temporal refinement has been specified. An

unsuitable interpolation procedure can lead to loss of mass and momentum and the

introduction of instabilities to the previously smooth parent variable waveforms. This

can result in inaccuracies within the child grid domain and noise generation inside the

boundary.

3.6.1 Spatial Interpolation

A wide variety of spatial interpolation techniques are available for interpolation of

scalar and vector fields on a discrete grid. Linear or quadratic techniques have been

found to be most accurate and are therefore the most commonly used methods in

nested models (e.g. Clark and Farley (1984); Fox and Maskell, 1995; Korres and

Lascaratos, 2003). During development of the AMM four different techniques were

evaluated:

1. zeroth-order interpolation

2. linear interpolation

3. quadratic interpolation

4. inverse distance weighted interpolation

A brief description of each scheme is now presented.
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Zeroth-order Interpolation

The assumption of uniform distribution of the variable within the grid cell is the basis

for the zeroth-order interpolation scheme. In this scheme, all child grid cells that lie

within a particular parent grid cell are assigned the same value as that of the parent

grid cell. If i represents the value of a parent grid variable at cell i, then k for all the

child grid cells within its confines can be written as:

ik   for k = 1, . . . , m (3.41)

where m is the number of child grid cells within the parent grid cell, i.e. m = rs
2.

Linear Interpolation

The linear interpolation scheme assumes a linear relationship between the scalar

values of adjacent parent grid cells in a given direction. A proportional coefficient is

used to determine the value of the scalar at a child grid cell within the parent grid cell.

For a given nesting ratio rs, the interpolation of the parent grid cell variable i to any

child grid cell k of any horizontal row of enclosed child grid cells may be specified as:

 1ii1ik    (3.42)

with ω, the proportional interpolation coefficient, further expressed as:

s

s

r2
1rk2 

 , for k = 1, . . . , rs (3.43)

Quadratic Interpolation

The quadratic interpolation scheme is based on the conservation formula for nested

grids suggested by Kurihara et al. (1979) and Clark and Farley (1984). For a given

nesting ratio rs, the interpolation of the parent grid cell variable i to any child grid

cell k of any horizontal row of enclosed child grid cells may be specified as (adapted

from Alapaty et al., (1998)):
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with the function E further expressed as:
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where  represents a normalised local coordinate pointing in the same direction as the

global coordinate and whose origin coincides with the centre of the parent grid cell i.

The value of  for the child grid cell k is defined as:

p

pc
k x2

xx)1k2(







 , for k = 1, . . . , rs (3.48)
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The parameter α is introduced to ensure mass conservation as discussed by Clark and

Farley (1984).

Inverse Distance Weighted Interpolation

Inverse distance weighted (IDW) schemes are based on the assumption that the

interpolated variable value at the grid point of interest should be influenced most by

the variable values at the nearest grid points and less by those at more distant points.

The interpolated child grid cell value is a weighted average of the surrounding parent

grid cell values where the weighting attributed to the parent grid cell values decreases

as their distance from the child grid cell increases. The simplest form of IDW

interpolation, and that tested in the nested model, is sometimes known as Shephard’s

Method. According to this method the variable  in a child grid cell k which lies

within the parent grid cell i may be calculated as:
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n

1i
i

n

1i
iik ww  k = 1, . . . , m (3.50)

where n is the number of parent grid cells used in the interpolation and w is the

weighting function. For the nested model n=9 was used; the nine cells comprised the

enclosing grid cell and the eight adjacent grid cells. The weighting function is written

as:

2
)i,k(

i d
1

w  (3.51)

where d(k,i) is the distance from the child grid point k to the parent grid point i. The

weighting function varies from a value of unity at the child grid point of interest to a

value approaching zero as the distance from the grid point increases.

The AMM allows the specification of any integer nesting ratio. However, an odd grid

ratio is preferable as it ensures that each grid value of the overlapping region of a

parent grid coincides with a value from its child grid. This can be seen in Figure 3.11

where a 3:1 nesting ratio is in use. The odd nesting ratio makes it easier to compare

results from the parent and child models but it can also simplify the spatial

interpolation procedure depending on the interpolation technique. Take the case where

a bi-directional interpolation is used. From Figure 3.11 it can be seen that along the

open boundary the parent grid variables ζp and Vp are coincident with child grid values

of ζc and Vc. Interpolation of these parent grid variables is therefore only required in a

single direction tangential to the boundary. The internal boundary was located

specifically to enable this computational saving to be made.

3.6.2 Temporal Interpolation

If a temporal nesting ratio is used the parent model variables along the nested

boundary must also be interpolated time-wise. In almost all of the nested models

reviewed (e.g. Miyakoda and Rosati, 1977; Pullen and Allen, 2001; Korres and

Lascaratos, 2003) linear interpolation was employed where temporal interpolation

was necessary. Therefore, if temporal interpolation is required, the AMM employs a

linear interpolation similar to that previously presented for spatial interpolation.
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4. Development of BNM: Phase I

Testing of Boundary Prescription

4.1 Overview of Model Development

The development of the AMM was carried out in two stages. The first stage was the

development of the BNM, a nested hydrodynamic model with a single level of nesting

and static nests. Once tested and validated, the second stage of development involved

the incorporation of multiple levels of nesting (the multiple nested model - MNM),

solute transport (the solute transport model - STM), and, finally, dynamic nests (the

adaptive mesh model - AMM). The performance of a nested model was assessed by

comparing its results with the results from a high resolution single grid model (SG) of

the full domain. The nested models and their features are summarised in Table 4.1.

Model Name Acronym Processes Multiple Nesting Moving Nests
Basic Nested BNM H No No
Multiple Nested MNM H Yes No
Solute Transport STM H + ST Yes No
Adaptive Mesh AMM H + ST Yes Yes

Table 4.1: Summary of nested models; H = hydrodynamics, ST = solute transport.

BNM development was carried out in three phases. Phase I, presented here, involved

the development of a first working version of the BNM for an idealised harbour. This

model was then tested to determine the variable prescription at the boundary that gave

the most accurate model solution. Phase II, described in Chapter 5, focussed on the

improvement of model accuracy through the increase of momentum conservation

between the parent and child grids of the BNM. Phase III, detailed in Chapter 6,

involved the testing of child grid boundary conditions and the dynamic boundary

required for flooding and drying. Following its development the BNM underwent

extensive testing; details and results of this process are presented in Chapter 7.

Finally, the development and testing of the three advanced models, the MNM, STM

and AMM, are described in Chapter 8 and Chapter 9 respectively.

A large number of models were used during the initial development of the BNM and

the later development of the AMM. For reference, a full list of all models used during
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the research is presented in Table 4.2. Their respective roles in the development

process are included.

Acronym Model Domain Development Role
BNM_RH Harbour Test boundary prescription
BNM_HW1_E Harbour + wall Test boundary prescription
BNM_HW1_E+V Harbour + wall Test boundary prescription
BNM_HW1_Q Harbour + wall Test boundary prescription
BNM_HW1_Q+E Harbour + wall Test boundary prescription
BNM_HW1_E+Q Harbour + wall Test boundary prescription
BNM_HW1_All(Q) Harbour + wall Test boundary prescription
BNM_HW1_All(V) Harbour + wall Test boundary prescription
BNM_HW1 Harbour + wall Test interpolation technique
BNM_HW2 Harbour + wall Test interpolation technique
BNM_HW3 Harbour + wall Test interpolation technique
BNM_HW4 Harbour + wall Test interpolation technique
BNM_1 Harbour + wall Investigate momentum conservation
BNM_2 Harbour + wall Investigate momentum conservation
BNM_3 Harbour + wall Investigate momentum conservation
BNM_4 Harbour + wall Investigate momentum conservation
BNM_Dir Harbour + wall Test boundary condition
BNM_Rlx Harbour + wall Test boundary condition
BNM_Rad Harbour + wall Test boundary condition
BNM_FD1 Harbour + drying Test flooding and drying
BNM_FD2 Harbour + drying Test dynamic boundary
BNM_HW Harbour + wall Assess BNM performance + accuracy
BNM_TB Tidal Basin Assess BNM performance + accuracy
BNM_CH Cork Harbour Assess BNM performance + accuracy
MNM_HW Harbour + wall Assess MNM performance + accuracy
STM_CH Cork Harbour Assess STM performance + accuracy
AMM_GB Galway Bay Assess AMM performance + accuracy
SG_40 Harbour Assess BNM performance + accuracy
SG_40 Harbour + wall Assess BNM performance + accuracy
SG_40_CG CG of BNM_HW Assess BNM performance + accuracy
SG_2.5 Tidal Basin Assess BNM performance + accuracy
SG_30 Cork Harbour Assess BNM+STM performance + accuracy
SG_180 Harbour + wall Assess MNM performance + accuracy
SG_60 Harbour + wall Assess MNM performance + accuracy
SG_20 Harbour + wall Assess MNM performance + accuracy
SG_100 Galway Bay Assess AMM performance + accuracy

Table 4.2: List of models used in the development and testing of the AMM.

4.2 Design of the Basic Nested Model

It was proposed to develop the BNM as a nested hydrodynamic model with a single

level of nesting and static nests. With this in mind, the first step in its development

was the decoupling of the hydrodynamic and solute transport modules of DIVAST.
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All model code relating to the solute transport and water quality processes was

removed, leaving a stand-alone hydrodynamic model (SHM). The reason for

decoupling was simply to minimise and streamline the model code, making it easier to

implement the proposed one-way nesting. The SHM was fully tested to ensure that it

produced identical results to the original coupled model.

The main design elements of the BNM were identified as follows:

 it should consist of two similar constituent models – a parent grid (PG) model

and a child grid (CG) model

 both models should compute the same variables by solving the same

formulations of the governing equations

 the parent grid should provide boundary data for the child grid

 the models should be dynamically linked to allow automatic transfer of

boundary data at each child model timestep

 a boundary operator should enable the one-way interaction between the grids

 the boundary operator should consist of an interpolation procedure and a

boundary condition

 the child model should be able to operate on a number of nested domains but

only at a single level of nesting, i.e. all nested domains must use the same

nesting ratio (see Figure 4.1)

Figure 4.1: Grid structure for the BNM.

Based on the design features, the following strategy was devised for development of

the BMN:

 the SHM should become the parent model

Parent
Child

Key:G.1.1

G.2.1

G.2.3

G.2.4

G.2.2
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 the child model should be developed by constructing a modified version of the

SHM

 a nesting procedure should be implemented and the two models dynamically

linked to create the BNM

With a clear vision of the model design, a flowchart of the proposed model program

was constructed; this is shown in Figure 4.2. The non-shaded potions of the flowchart

form the parent model (previously the SHM) and the shaded portions form the child

model. It was intended that the BNM should be capable of running independently as a

single grid hydrodynamic model if nesting was not required.

4.2.1 Modification of Source Code

With the parent model already in place, the majority of the development work

involved the creation of the child model and the implementation of the nesting

procedure. The child model was created by stepping through the parent model (the

SHM) source code and either creating modified versions of those sections of code

required for the computation of the hydrodynamic variables (,, qx, qy, etc.) or adding

new sections of code where required. The level of modification of the duplicate

source code varied from minor changes to almost complete replacement. The required

modifications and additions to the BNM source code are now discussed.

Parameters pertaining to the child model, e.g. grid spacing, timestep, grid dimensions,

were renamed to prevent the parent model using parameters which were specific to

the child model and vice versa. This was done simply by adding the extension ‘_F’

(the ‘F’ indicating fine resolution) to the parameter name. For example, the parent

model grid spacing DELX was renamed DELX_F to signify the child model grid

spacing. All arrays pertaining to the child model were also renamed; this was

necessary to prevent the parent model overwriting child model arrays and vice versa.

The renamed arrays included, amongst others, those arrays used to store the model

variables, the x- and y-integration sections and the boundary data. A similar renaming

convention was used. For example, the array for the parent model water elevations,

EU was renamed EU_F for the child model.
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Read + write input data

Initialise variable arrays

Calculate constants

Compute hydrodynamics
for 1st half-timestep

Compute hydrodynamics
for 2nd half-timestep

Compute hydrodynamics
for 1st half-timestep

Compute hydrodynamics
for 2nd half-timestep

Extract coarse data
required for OBCs

Interpolate coarse data
and specify to boundary

Assign OBCs
for 1st half-timestep

Assign OBCs
for 2st half-timestep

START

Write results to output files
(coarse and fine)

Compute OBCs

Establish domain

Compute integration
sections

Read in domain depths

Assign initial conditions
FINISH

Do for nc = 1,…,N
[N = no. of CM timesteps]

Do for nf = 1,…,M
[M = temporal nesting ratio]

Interpolate coarse data
and specify to boundary

Read + write input data

Initialise variable arrays

Calculate constants

Establish domain

Compute integration
sections

Read in domain depths

Assign initial conditions [If: nc < N] [If: nc ≥ N]

[Nesting]

[No nesting]

Do for ng = 1,…,NG
[NG = no. of nested grids]

[If: nf ≥ M] [If: nf < M]

[If: ng = NG]

[I
f:

ng
<

N
G

]

Figure 4.2: Flowchart of proposed basic nested model program. Shaded portions are the new routines for the child model.
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One of the required features of the BNM was the ability of the child model to

compute variables in a number of different nested domains during each parent model

timestep. To facilitate this, at the beginning of a model simulation each child grid is

numbered sequentially; the grid number is then assigned as its identification (ID)

number. The ID number is used to link each child grid to its particular set of arrays

where its model variables are stored. During each child model timestep, the child

model works sequentially though the child grids updating the associated variable

arrays by means of the ID number.

To demonstrate: the arrays used to store parent model variables are rank 2. They are

of the form (IMAX x JMAX), where IMAX and JMAX are the number of rows and

columns of the model grid, respectively. For the child model, the rank of these arrays

was increased to 3 to give the new form (MAXNG x IMAX x JMAX), where MAXNG is

the total number of nested child grids. For example, the water elevation array for the

child grid with ID number NG was therefore coded as:

EU_F ( NG, IMAX_F(NG) , JMAX_F(NG) ) (4.1)

It can be seen that the parameters IMAX and JMAX which are specific to each child

grid were also upgraded from rank 0 to rank 1 to give IMAX_F(MAXNG) and

JMAX_F(MAXNG). All other parameters or arrays specific to a particular child grid,

such as the integration section arrays, were upgraded in rank in a similar manner.

The parent model consists of a number of subroutines which are called in series by a

main program. Figure 4.3 shows a flowchart of the parent model’s structure and

explains the function of each subroutine. Subroutines 1-7 read input data, establish

integration sections and initialise variables. Subroutines 8-17 are executed at each

timestep of the model simulation: 8-11 compute the hydrodynamics in the x-direction

during the first half-timestep, 12-15 compute the hydrodynamics in the y-direction

during the second half-timestep and 16-17 recalculate chezy values and eddy

viscosities at the end of a full timestep at regular intervals during the simulation.
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Figure 4.3: Flowchart of parent model structure.
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A flowchart showing the structure of the BNM is shown in Figure 4.4. The shaded

subroutines are those pertaining to the child model. These subroutines are bypassed if

the BNM is run as a single-grid model. For the most part, the main computational

subroutines of the child model, such as HYDMODX_F and HYDMODY_F, required

only superficial modification of the type described above. Once these modifications

were made the subroutines were functional. In terms of new source code, the vast

majority was required for the pre-computational stages and for the implementation of

the nesting procedure. The pre-computational stages that required new code included

reading of input data, initialization of variables, delineation of boundaries for each

child grid, establishment of integration sections for each child grid, and writing of

model output data.

To implement the nesting procedure, two new subroutines were encoded and added.

The first of these was the subroutine NEST which oversees the nesting procedure and

the child model computations. For each child grid timestep, NEST calls the

subroutines that assign boundary data and compute the hydrodynamic variables (see

Figure 4.4) for each child grid. It repeats this process until all child grids have been

integrated to the same timestep as the parent model. The second of the subroutines

was FINEBND. This subroutine is essentially the code for the boundary operator and

replaces HYDBND of Figure 4.3. For each open boundary of each child grid

FINEBND extracts the required parent model data, interpolates the data in time and

space and assigns the interpolated data to the boundary according to the prescribed

boundary condition. In addition to these subroutines, a new section of code was also

added to the main program of the parent model which couples the parent and child

models by calling subroutine NEST at the end of each parent model timestep.

A full list of the sections of code added to the parent model to develop the BNM is

given in Table 4.3. The table indicates whether the sections of code were new or were

modified versions of the parent model code. The particular functions of the new code

specified in the table relate to the child model unless otherwise specified.
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Figure 4.4: Flowchart of BNM structure.

(CG subroutines are shaded, PG subroutines are not.)
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Program Section Function Code Status
Main Program Reads input data New
Main program Writes input data New
Main program Opens output data files New
Main program Sets constants for recursion coefficients New
Main program Initialises variables for child grids New
FIELD_F Reads nested land-sea mask New
FIND_F Establishes open boundaries for each

child grid
New + modification

DEPTH Reads depths for parent + child domains New
INITL_F Sets initial conditions for child grids Modification
Main DO Loop Links parent model to child model New
NEST Main DO loop in child model New + modification
FINEBND Extracts, interpolates and assigns

boundary data from parent grid
New

HYDMODX_F Calculates  and q in x-direction Modification
HYDMODY_F Calculates  and q in y-direction Modification
SIDEH_F Calculates depths Modification
FLDRY_F Checks for flooding and drying Modification
Main program Resets variables for next half-timestep Modification
CHEZY_F Calculates Chezy value Modification
EDDYH_F Calculates eddy viscosity Modification
SIDE4_F Required by SIDEH_F Modification
REMOVE_F Required by FLDRY_F, adjusts variables

when grid cell dries out
Modification

RECALLX_F Required by FLDRY_F Modification
RECALLY_F Required by FLDRY_F Modification
PRINT Writes results to snapshot files New
Main Program Writes results to timeseries files New + modification

Table 4.3: Sections of source code added to develop the BNM.

4.2.2 Modification of Input Data and Common Files

The original SHM input data file was preserved as the parent model input data file. It

contains all input data specific to the parent model domain along with any data that is

common to both the parent and child models, e.g. simulation time, water density,

water temperature. The only modification of this file was the addition of a flag for

nesting; a flag value of 1 indicates that nesting is required, a value of zero that it is

not. If a value of zero is specified then those sections of the source code relating to the

child model are bypassed and the parent model runs as a normal single grid model.

If nesting is required then a second data file is read in for the child model. This file

contains the following information in relation to the child grids:
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 nesting ratio

 grid spacing

 timestep

 number of rows and columns in the full domain grid

 number of child grids

 four corners of each child specified in terms of parent grid coordinates

 timeseries locations

 land-sea mask for full domain

 depths below mean water level for full domain

The corners of each child grid are defined by specifying the lower and upper

bounding rows and the lower and upper bounding columns of the child grid on the

parent grid.

Finally, in addition to the common file for the parent model, a common file is also

required for the child model. This file contains the specifications of all the arrays

required by the child model.

4.3 Model Performance Assessment Protocol

Hydrodynamics in a tidally-forced waterbody vary in both space and time. When

assessing nested model performance it was therefore important that both the spatially-

and temporally-varying nature of the model solutions were incorporated in any

approach. A review of the literature did not reveal any particularly suitable method of

error assessment. The two most common were visual comparisons of flow fields or

analysis of timeseries data at specific points. Neither method was deemed satisfactory;

domain-wide accuracy at a particular stage of the tide is no guarantee of accuracy at

all stages of the tide while, similarly, accuracy at a particular location is no guarantee

of domain-wide accuracy. A unique mathematical approach to error quantification

was therefore formulated which enabled simultaneous analysis of the spatial and

temporal errors in a model solution.

Assessing the performance of the nested model required the development of a high

resolution single grid model of the full model domain. This SG solution was assumed

the ‘correct solution’ against which all other model solutions were compared. Parent

grid results were first compared with SG results to determine the loss in accuracy
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resulting from the lower resolution. Child grid results were then compared with SG

results to determine the accuracy of the nested model. Finally, both analyses (PG

versus SG and CG versus SG) were compared with each other to determine the

improvement in accuracy achieved by using the nested model over the coarser parent

model. The accuracy of model results was measured in terms of the magnitude of the

errors between corresponding datasets. These errors were evaluated in a number of

different ways based on the model output.

In the first form of model output, values of model variables were output for all grid

points of the domain at a particular instance of time. These datasets, known as

snapshots, allowed analysis of the spatial variation of model variables and were

therefore used to calculate the spatial variation of the error between variables

computed by two different models. Take, for example, the parent and single grid

models. The absolute error AE and the relative error RE between the PG and SG

snapshot data output at the same instance of time t were calculated as:

t

j,i

t

j,i

t

j,iAE   , for i=1,2,3… imax; j=1,2,3… jmax (4.2)

100xRE
t

j,i
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j,i

t

j,it

j,i


 
 , for i=1,2,3… imax; j=1,2,3… jmax (4.3)

where  is the PG variable and  is the SG variable. The error data computed from

equations (4.2) and (4.3) was presented graphically as spatial distributions for the

model domain.

To compute and plot the error data for each individual snapshot of each model

simulation would be a time-consuming business; it was therefore decided to combine

snapshot data by computing tidally-averaged errors, i.e. the average error per tidal

cycle at each grid point. The tidally-averaged absolute error AET and the tidally-

averaged relative error RET at a grid point were calculated as:
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, for i=1,2,…, imax; j=1,2,…, jmax (4.5)

where N is the total number of snapshots output at regular intervals during one

complete tidal cycle. To compute the actual error would require snapshots of variable

values at each timestep during the tidal cycle. Due to computer storage requirements

this was not practical; therefore an approximation of the error was calculated. It was

found that a minimum of N=25 was required to compute an accurate approximation of

the tidally-averaged error for a tidal period of 12.5hrs. This equated to the output of

snapshots every 30 minutes during the tidal cycle. Model results are presented in

Section 4.5.2 to prove the accuracy of this approximation. The tidally-averaged errors

of equations (4.4) and (4.5) were extremely useful tools for model development and

testing as they combined both spatial and temporal information on the model’s

performance in a single image. They provided an efficient and effective method for

determining model accuracy and identifying problem areas. Equation (4.5) was also

used to calculate ebb and flood tidally-averaged errors, RET,Ebb and RET,Fld, for the

periods of ebb and flood tides alone.

The tidally-averaged relative error RET of equation (4.5) follows the formulation

defined by Thomann (1982). This formulation represents the average difference

between PG and SG values, normalised by the magnitude of the SG values. It was

found that very large relative errors could be computed at the times when water

surface elevations were close to mean water level and current velocities were close to

zero. These large relative errors actually corresponded to very low magnitudes of

absolute errors and were thus relatively insignificant. A basic averaging formulation,

such as:
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, for i=1,2,…, imax; j=1,2,…, jmax (4.6)
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does not take account of the significance of a relative error. By using the normalised

formulation of equation (4.5), the magnitude of the error was related to the magnitude

of the observations and was therefore found to give a truer representation of the model

error.

It was possible to determine the level of improvement between different versions of

the nested model by visual comparison of the tidally-averaged error distribution plots;

however this was a subjective approach. To formulate a more mathematical approach,

the total relative error REtotal for a domain was calculated from the tidally-averaged

relative error field ( j,iTRE ) by summing RET for each wet grid cell across the model

domain. REtotal was then normalised by dividing by the total number of wet grid cells

in the domain to give the domain- and tidally-averaged relative error RED, i.e. the

average relative error per grid cell per tidal cycle. The advantage of these two error

parameters was that they quantified the total spatial and temporal error in a model

simulation in a single figure. The level of improvement between models could

therefore be quickly assessed by comparing REtotal or RED and the model accuracy

was improved by reducing these parameters. A similar approach was also applied to

the absolute error yielding the parameters AEtotal and AED. A summary of all error

parameters used in the analysis of model results is given in Table 4.4.

Error Name Description
AE; RE Absolute and relative errors at a particular at time t and grid point (i,j)
AET; RET Tidally-averaged errors at the grid point (i,j)
RET,Ebb; RET,Fld Ebb and flood tidally-averaged errors at the grid point (i,j)
AEtotal; REtotal Sum of tidally-averaged errors over all wet grid cells of the domain
AED; RED Domain- and tidally-averaged errors, i.e. average error per grid cell per

tidal cycle
RED,Ebb; RED,Fld Domain- and tidally-averaged errors, i.e. average error per grid cell per

ebb/flood tide

Table 4.4: Error parameters used in the analysis of model results.

In the second form of model output, known as timeseries, values of model variables

were output at selected grid points at regular intervals over the course of a simulation.

These datasets showed the temporal variation of model variables at a particular

location. To assess model performance, timeseries from different models were

compared visually in a subjective manner, or timeseries of absolute and/or relative
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error were computed using equations (4.2) and (4.3). This method of error analysis

was capable of providing more detailed information on the model’s temporal

performance, however that information was only provided at discrete locations.

Despite this, the error timeseries provided a very useful complement to the time-

averaged error fields. For example, during model development, problem areas could

be quickly identified using the time-averaged error fields and; once identified the

errors at those locations could then be examined in detail using the error timeseries.

4.4 Development Models

In total, three different classes of the BNM were constructed during the course of its

development, with class distinction based on model geometry. Within each class of

model a number of different versions were also developed. In addition to the different

model bathymetries, variations between models included different implementations of

the boundary operator subroutine FINEBND and modifications to the boundary

formulations and their solution scheme.

The first class of development model was an idealised rectangular harbour with a

gently sloping bottom (see Figure 4.5a); this was termed the BNM_RH. The

bathymetry was designed so that flooding and drying of grid cells did not occur. This

simplified the development process as it prevented flooding and drying of open

boundaries and the associated instabilities. As a first step in the development of the

nested model the most basic of boundary operators was implemented and tested for

accuracy. This boundary operator comprised a zeroth order interpolation scheme, a

Dirichlet boundary condition and the prescription of water elevation data alone as the

boundary forcing.

The second class of development model was of the same rectangular design but with a

harbour wall added (see Figure 4.5b) to induce momentum-driven flow and thus

provide a more rigorous test of the BNM. It was termed the BNM_HW. The

bathymetry from the first model class was again used so that flooding and drying did

not occur. The BNM_HW was initially used to test the child model boundary

prescription. A number of versions of the BNM_HW were constructed for different

boundary prescriptions, such as water elevations alone, volumetric fluxes alone, and

water elevations and fluxes in combination. All of these models and their results are
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described in this chapter. The BNM_HW was also used to improve model accuracy

by modifying the CG boundary operator and formulations. As such, a number of

versions of the model were constructed for different implementations of interpolation

schemes, boundary formulations and boundary conditions. Details of these versions of

the BNM and their results are presented in Chapters 5 and 6.
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Figure 4.5: Bathymetries used in the development models. All dimensions in metres.
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The third and final class of model was also a rectangular harbour. However, the model

bathymetry was modified to allow flooding and drying within the nested domain. The

class was termed the BNM_FD and was used to assess model performance under

alternate flooding and drying conditions. These developments are also detailed in

Chapter 6. Two different bathymetries were constructed for the BNM_FD. The first

allowed flooding and drying of the interior of the domain only (Figure 4.5c) while the

second allowed flooding and drying of both the interior domain and the CG boundary

(Figure 4.5d). Table 4.5 contains a summary of the features and functions of the three

development classes of the BNM.

Class Acronym Features and Functions
1 BNM_RH Features: rectangular harbour; no flooding and drying

Function: initial development of BNM
2 BNM_HW Features: rectangular harbour; harbour wall to induce

momentum-driven flow; no flooding and drying
Function: test boundary operator (variable prescription,

interpolation and BCs) and boundary formulations;
3 BNM_FD Features: rectangular harbour; modified bathymetries for

flooding and drying;
Function: test flooding and drying of interior grid cells and

boundary grid cells

Table 4.5: The three development classes of the BNM.

The domains of all of the model classes were of the same dimensions: 12km x 6km.

All versions of the BNM used the same parent and child resolutions at a 3:1 nesting

ratio. The parent grid spacing and timestep were 120m and 120s respectively and the

child grid spacing and timestep were 40m and 40s respectively. The same physical

hydrodynamic parameters, such as eddy viscosity and bed roughness, were used in

both the parent and child models. The degree of latitude in all models was set to zero

to nullify the Coriolis effect on the hydrodynamics; this meant all flow patterns were

symmetric about the longitudinal axis of the harbour making it easier to identify

problem areas. A single child was specified in all cases, comprising the inner half of

the harbour. The single child boundary spanned the full width of the harbour and was

located exactly halfway along the longitudinal axis. The exterior forcing function for

all models was a tide of constant period (12.5hrs) and range (3m). Each model
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simulation was run for four tidal cycles (50 hours) starting at the time of high water.

Model results were output and analysed for the fourth and final tidal cycle.

4.5 Rectangular Harbour

The rectangular harbour model BNM_RH (Figure 4.5a) was the first version of the

BNM to be developed. One of the main objectives when developing the BNM was

that the boundary operator be kept as simple as possible without adversely affecting

model accuracy. Thus, the boundary operator should comprise the least complicated

interpolation technique, the simplest boundary condition and the prescription of a

minimum number of variables. With this in mind the BNM_RH was initially

developed with a boundary operator comprising a zeroth order interpolation scheme, a

Dirichlet boundary condition and the prescription of water elevations alone at the

nested boundary. In relation to the nested boundary itself, during the initial

development phase it was treated as a typical open boundary. This is usual practice in

overlapping-grid nested models (e.g. Spall and Holland, 1991; Barth et al., 2005). It

meant that the original model formulations for open boundary grid cells could be

directly applied to the nested boundary grid cells. The open boundary formulations

allowed the specification of either water elevation or volumetric flux (flow)

boundaries. Therefore, in the case of the BNM_RH, the nested CG boundary was

specified as an elevation boundary.

4.5.1 PG Versus SG_40

The results of the coarse resolution PG were first compared to those of the high

resolution SG_40 to determine the level of error in the PG resulting from the

difference in resolutions. The tidally-averaged relative error, RET, in current velocity

magnitude for the PG versus the SG_40 is shown in Figure 4.6. The locations of

timeseries output points are also shown, as is the location of the open boundary of the

nested child grid. Figure 4.7 shows the RET in water elevation. [It should be noted that

all spatial scales on figures of model output are specified in terms of model grid

points.]

It can be seen from the error distributions that errors existed between the PG and

SG_40 model solutions. Errors occurred in the PG computations in the inner harbour

area and progressively increased towards the back of the harbour. In the case of water
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elevations, the magnitude of the relative error was less than 0.03% across the whole

domain and thus insignificant; however, the error in current velocity was more

significant and exceeded 10% at the back of the harbour. To facilitate later

comparisons with the CG, error parameters were only calculated for that portion of

the domain inside the nested boundary. Within this sub-domain it was found that the

error exceeded 5% in approximately 14% of the domain while the domain-average,

RED, was 4.9% per grid cell. Figure 4.8 compares the timeseries of current velocities

and water elevations from the PG and SG_40 at location J. These comparisons agree

with the error distribution data; the error in current velocities can be clearly observed

while the water elevations appear identical.
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Figure 4.6: RET in PG velocities. Also shown are timeseries points and CG boundary.
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Figure 4.8: Comparison of (a) current velocities and (b) water elevations at point J.

4.5.2 Accuracy of Error Approximations

The tidally-averaged errors at a particular grid point, AET and RET, were approximated

using snapshots of variable values output from the model at regular intervals. Through

extensive testing, it was determined that a minimum of 25 snapshots, output at half-

hourly intervals over the course of a 12.5 hr tidal cycle, was required to give an

accurate approximation of the tidally-averaged errors. The accuracy of this

approximation was verified by computing the errors at a particular grid point using the

timeseries data and comparing these values with the approximated errors.

During the course of a simulation, model data were output every six minutes at each

timeseries location. This resulted in each timeseries having 125 data points per tidal

cycle. Figure 4.9 shows the absolute and relative errors in the PG current velocity at

location H over a full tidal cycle. The errors were calculated by applying equations

(4.2) and (4.3) to the PG and SG_40 timeseries data. Figure 4.10 shows similar plots

at location J. Using these data, values of AET and RET were computed using equations

(4.4) and (4.5). These values were assumed the ‘true’ tidally-averaged errors and were

compared with the approximated values of AET and RET calculated using the snapshot

data. Both sets of values are listed in Table 4.6. It can be seen that for both locations

the AET and RET approximations showed excellent correlation with the true values.

Similar levels of accuracy were displayed at other locations and for other model

bathymetries proving that the approximated method gave an accurate measure of the

true model errors.

(a) (b)
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Figure 4.9: (a) AE and (b) RE in PG current velocity at point H.
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Figure 4.10: (a) AE and (b) RE in PG current velocity at point J.

Error Point H Point J
AET - true [m/s]

- approx. [m/s]
0.00118
0.00119

0.00131
0.00131

RET - true [%]
- approx. [%]

2.4
2.4

7.7
7.7

Table 4.6: True and approximated AET and RET for the PG at Points H and J.

4.5.3 CG Versus SG_40

Once it had been established that the coarse PG was indeed less accurate than the

finely resolved SG_40, the CG results were compared with the SG_40. Figure 4.11a

shows the RET in current velocity magnitudes for the CG in relation to the SG_40

while Figure 4.11b shows the RET in water elevations. The error distributions are only

shown for the extent of the child grid.

From Figure 4.11, it can be seen that the accuracy of the CG was much higher than

that of the PG. Indeed it appeared almost as accurate as the SG_40, with errors in

current velocities of less than 1% across the majority of the domain. Two small areas

of error were visible along the CG boundary adjacent to both sides of the harbour. The

(a) (b)

(a) (b)
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magnitude of this error was less than 3% and similar magnitude errors were present at

the same locations in the PG solution (see Figure 4.6). It was therefore assumed that

the source of this error was the PG data used at the boundary and not the CG

computations. An area of higher error can also be observed near the back of the

harbour; a similar error was observed in the PG. This relative error, although high,

was actually insignificant as the absolute value of the error which it reflected was only

of the order of 0.001m/s. With regard to the water elevations (Figure 4.11b), errors

across the domain can be seen to be in the range of 0.02-0.03%. These levels were

similar to the PG errors and were also deemed insignificant.
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Figure 4.11: RET in (a) current velocity and (b) water elevation for CG of BNM_RH.

In the nested domain as a whole, it was found that the error in current velocities

exceeded 5% in less than 1% of the domain; this compared with 14% for the same

domain in the PG. RED was found to be 1.2% per grid cell compared to 4.9% for the

PG, giving an improvement in accuracy of 76% for the CG over the PG.

Figure 4.12 compares timeseries of current velocities and water elevations from the

CG and SG_40 at location J (see Figure 4.6). It can be seen that the CG computed

both current velocities and water elevations to a similar level of accuracy to the

SG_40. Figure 4.13 compares the relative errors in the CG and SG_40 velocities of

Figure 4.12a with that in the PG and SG_40 velocities of Figure 4.8a. The figure

shows how the relative error varied over the course of the tidal cycle at location J. The

improvement in accuracy of the CG is clear with PG errors predominantly in the

range of 5-10% and CG errors predominantly in the range of 0-2%. The comparison

(a) (b)
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of timeseries data at other output locations demonstrated similar levels of CG

accuracy.
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Figure 4.12: Comparison of (a) current velocities and (b) elevations at location J.
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Figure 4.13: Relative errors in velocity of PG and CG at location J.

4.5.4 Boundary Fluxes

One of the requirements of an effective boundary operator is that it conserves

properties as variables are transferred from the parent to the child model. In the case

of a hydrodynamic model, the properties of interest are the mass and momentum of

the water. As a final test of BNM_RH performance, the fluxes of mass and

momentum across the CG boundary interface (i.e. in the x-direction) were computed

by the CG and compared with the corresponding fluxes computed by the PG and

SG_40. The x-direction mass and momentum fluxes across the boundary interface,

mf,x and Mf,x respectively, were calculated at time t using the following equations:
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where the boundary was located on row ib of the grid and extended from grid point

(ib, jb1) to grid point (ib, jbn). The fluxes were calculated across the same interface

location in all three models and were calculated immediately after the computation of

the x-direction hydrodynamic variables, i.e. immediately after subroutine HYDMODX

in the case of the PG and SG_40 or HYDMODX_F in the case of the CG (see Figure

4.4).

Figure 4.14 compares the timeseries of boundary mass and momentum fluxes for the

SG_40, PG and CG over the final tidal cycle. It can be seen that the boundary

operator of the BNM_HW conserved both mass and momentum between the parent

and child models. For this particular harbour design the PG fluxes (and hence the CG

fluxes) were the same as the SG_40 fluxes, however, this is not always the case.

Depending on model bathymetry and resolution, the coarsely-resolved and finely-

resolved fluxes can vary. Regardless, the CG boundary fluxes can only be as accurate

as the PG fluxes from which they are derived. The potential accuracy of the CG is

therefore limited by the accuracy of the PG data at the CG boundary. For this reason

nested boundaries should be located in areas where the accuracy of the parent model

is high.
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Figure 4.14: (a) Mass fluxes and (b) momentum fluxes across CG boundary interface.

The initial testing of the BNM_RH had demonstrated that it was capable of computing

the hydrodynamics of the child grid to a higher level of accuracy than the parent grid

and indeed to a similar level of accuracy as the high resolution single grid model. The

boundary operator appeared to work well; noise was not generated in the vicinity of

(a) (b)
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the boundary and mass and momentum were shown to be conserved across the

boundary.

4.6 Rectangular Harbour with Harbour Wall

With the success of the first version of the BNM, the model was next applied to a

more complex hydrodynamic regime. The model had performed well for the simple

rectangular harbour but the bathymetric design meant that the flow field was primarily

influenced by the open boundary tidal forcing. The resulting flow was thus

predominantly normal to the exterior boundary with the flow components parallel to

the boundary at, or close to, zero. The resulting mass and momentum fluxes were

therefore also predominantly influenced by the elevation boundary and so were

governed primarily by the continuity equation. As a result, computation of the flow

regime in the nested domain, with the required conservation of mass and momentum,

was ideally suited to the prescription of water elevations alone at the nested boundary.

In order to produce a more testing regime where the flow field was more strongly

influenced by momentum, an internal harbour wall was added to the simple

rectangular harbour design to form the BNM_HW (Figure 4.5b). The opening in the

wall had the effect of generating components of flow both parallel and perpendicular

to the boundary. Figure 4.15 shows a plan view of the BNM_HW domain with the

locations of the CG boundary and timeseries output points. A high resolution single

grid model of the full domain, again known as the SG_40, was also developed.

Figure 4.15: Plan view of the BNM_HW domain showing locations of CG boundary

(dashed line) and timeseries output points.
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4.6.1 SG_40 Hydrodynamic Regime

The reasons for introducing the harbour wall were:

 to induce a hydrodynamic regime which was more strongly influenced by

momentum than mass

 to induce a hydrodynamic regime which provided a more rigorous examination of

the CG boundary formulations and BNM accuracy

Figure 4.16 shows the current velocities computed by the SG_40 inside the boundary

of the nested domain at mid-ebb (40.5 hrs) and mid-flood (47 hrs). It can be seen that

the hydrodynamic conditions along the location of the CG boundary were much more

complex than those in the BNM_RH with the flow exhibiting both converging and

diverging regimes. For example, at mid-flood, water is still seen to be flowing in the

ebbing direction along some portions of the boundary. These complex flows presented

a major challenge to the nested model in terms of conservation of mass and

momentum between the parent and child grids.

Figure 4.16: SG_40 current velocity vectors at (a) mid-ebb and (b) mid-flood.

With the addition of the harbour wall, momentum was expected to play a much

greater role in the generation of flow patterns within the area of the nested domain.

This was confirmed by comparing current velocities and water elevations computed

by the SG_40 at the timeseries locations. The comparisons for locations B, C, E, F, H

and I are shown in Figure 4.17. Due to the symmetric nature of the harbour design and

the omission of the Coriolis effect, the flow patterns were symmetric about the
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longitudinal axes of the domain. The timeseries at locations A, D and G were

therefore the same as those at locations C, F and I respectively, and so are not shown.

If a flow is primarily driven by mass (i.e. the tidal elevation) then at, or near, the times

of low and high tide, current velocities will reduce to zero or close to it. It can be seen

from Figure 4.17 that while the low-tide slack water was recorded at all locations, the

high-tide slack water was not. Instead, substantial velocities were recorded indicating

that the water still contained significant quantities of energy and momentum.
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Figure 4.17: Comparison of current velocities and water elevations computed by

SG_40 at locations B, C, E, F, H and I.

Along the main axis of the domain (locations B and E) slack water did not occur until

2-3hrs after high water. Closer to the sides of the domain (locations C and F), only a

single slack water occurred (at the time of low tide); this is a highly complex flow

(a) Location B

(c) Location E

(e) Location H

(b) Location C

(d) Location F

(f) Location I
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pattern. The timeseries proved that the flows in the interior domain were more

strongly driven by momentum and, in particular, by the momentum of the jet entering

through the mouth of the wall on the flood tide. It can be seen that at locations H and

I, which were at the back of the harbour and thus farther away from the effects of the

jet, the flow was more mass-driven and water was almost slack at the times of both

low and high tide.

4.6.2 PG Versus SG_40

The tidally-averaged relative errors for the parent model were calculated from

snapshot data output during the final tidal cycle of the PG and SG_40 simulations.

The RET in PG current velocities and water elevations are shown in Figures 4.18 and

4.19 respectively.
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Figure 4.18: RET in PG current velocities.
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Figure 4.19: RET in PG water elevations.
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It can be seen that the addition of the harbour wall resulted in a significant reduction

in the accuracy of the PG. Its coarser resolution meant that it was unable to resolve the

flow through the constricted mouth of the wall to the same level of detail as the

SG_40. As a result, the solution of the flow regimes to either side of the wall was

quite different to the SG_40 solution.

Errors in current velocity for the most part ranged from 5-25%, although errors

greater than 50% were also found to occur in some limited areas. Errors in water

elevation were highest in the inner harbour area ranging from 0.7-0.9%. Although

much greater than the errors of the BNM_RH, they were still relatively insignificant

as they reflected an AED of less than 1cm. Taking the area of the nested domain on its

own, to allow later comparisons with the CG, the RET in current velocity was found to

exceed 10% in approximately 40% of the sub-domain while the RED was calculated at

approximately 9%.

The difference in accuracy of the PG and the SG_40 was also noted in the comparison

of current vector plots. Figure 4.20 and 4.21 compare PG and SG_40 vector plots at

mid-flood and high water respectively. Because of the density of grid points in the

SG_40, current vectors are only shown for the rectangular area highlighted in Figure

4.18. This area was selected, in particular, as it demonstrates the complexity of the

flow regime induced by the harbour wall. The flow structure in the area was

characterised by an anti-clockwise gyre which forms on the flooding tide. The gyre

formed adjacent to the harbour wall in the early stages of the flooding tide and

propagates inwards from the wall until it disperses shortly after high tide. From the

vector plots it can be seen that the centre of the fully-formed gyre was located in the

bottom left-corner of the highlighted domain at mid-flood while at high water it was

located in the centre of the domain. Although the PG produced a similar flow regime

to the SG_40, the improved resolution of the SG_40 is very apparent; in particular,

the resolution and location of the centre of the gyre and the resolution of the

surrounding anti-clockwise flows. This improved resolution of the gyre was the main

reason for the higher errors in the PG solution shown in the corresponding area of the

PG domain in Figure 4.18.
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Figure 4.20: Current vectors at mid-flood for (a) PG and (b) SG_40.

Figure 4.21: Current vectors at high water for (a) PG and (b) SG_40.

(a) (b)

(a) (b)
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4.6.3 CG Versus SG_40

The first version of the BNM was applied to the new harbour bathymetry without

making any changes to the model. The assigned boundary operator was therefore

retained – a zeroth order interpolation scheme with a Dirichlet boundary condition

and water elevation prescription. This version of the BNM_HW class was termed the

HW1_E to distinguish it from later versions (“1” indicating the type of interpolation

technique, i.e. zeroth order; “E” indicating the prescribed variable, i.e. elevation).

The boundary of the nested child grid, shown in Figure 4.15, was located just inside

the harbour wall. From Figure 4.18, it can be seen that the boundary was located in an

area where PG data were quite inaccurate. This contravenes the rule of nested

boundary location explained in the previous section. The rule states that boundaries

should always be located in an area of high PG accuracy to prevent inaccuracies being

passed from the parent solution to the child solution. In this instance, the rule was

ignored in order to provide a robust test of the boundary operator.

The tidally-averaged relative errors in the CG current velocities and water elevations

of the HW1_E are presented in Figure 4.22. Comparison of these errors with the PG

errors (Figure 4.18) shows that the CG velocities were actually less accurate than the

PG velocities. Velocity errors greater than 10% were found to occur in 69% of the CG

domain compared to only 40% for the PG. In addition, the RED for the CG was

approximately 20% compared to 9% for the PG. For water elevations, both models

displayed a similar low level of error with an RED of less than 1% in the CG domain.
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Figure 4.22: RET in (a) current velocities and (b) water elevations for CG of HW1_E.
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The trends observed in the RED plots were further demonstrated by the timeseries of

velocities and elevations. Figure 4.23 compares SG_40, PG and CG velocity

timeseries at locations A and E (see Figure 4.15 for locations) while Figure 4.24

compares water elevation timeseries from the three models at the same locations.
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Figure 4.23: Comparison of current velocities at (a) point A and (b) point E.
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Figure 4.24: Comparison of water elevations at (a) point A and (b) point E.

The lower accuracy of the CG compared to the PG is clearly seen in the velocity

timeseries. Water elevations, however, were accurately computed by the CG. This

was understandable as inaccuracies resulting from inadequate resolution usually affect

velocities rather than elevations (Rodenhuis, 1994). The specification of water

elevations at the CG boundary also helped ensure accurate water elevations. The

water elevation results suggested that mass was being conserved across the nested

boundary; however, the velocity results suggested that momentum was not. To

determine the level of property conservation across the boundary, the fluxes of mass

and momentum were again computed for the three models. The comparisons are

shown in Figures 4.25 and 4.26 respectively.

(a) (b)

(a) (b)



110

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

37.5 39.5 41.5 43.5 45.5 47.5 49.5

Time [hrs]

M
as

s
F

lu
x

[t/
s]

SG_40
PG
CG

0
1
2
3
4
5
6
7
8
9

10

37.5 39.5 41.5 43.5 45.5 47.5 49.5

Time [hrs]

R
el

at
iv

e
E

rr
or

[%
]

Figure 4.25: (a) Boundary mass fluxes and (b) error in CG flux relative to PG.
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Figure 4.26: (a) Boundary momentum fluxes and (b) error in CG flux relative to PG.

From Figure 4.25 it can be seen that mass was conserved to a relatively high degree

from the PG to the CG. The average error in CG flux relative to the PG over the tidal

cycle was found to be approximately 0.5%. However, Figure 4.26 clearly shows that

momentum was not conserved across the boundary. The CG flux was significantly

different to the PG flux and the average error for the tidal cycle was calculated at

approximately 45%. It is probable that this error was due to the greater influence of

momentum on the flow, combined with the fact that the boundary specification of

water elevations primarily influenced the mass flux. On this basis, the results

suggested that prescription of water elevations alone at the open boundary would not

suffice when hydrodynamics were largely governed by momentum. It should also be

noted from Figure 4.26a how the PG flux differed from the SG_40 flux due to PG

inaccuracies resulting from the introduction of the harbour wall.

4.7 Boundary Prescription

In order to improve the conservation of momentum across the nested boundary a

number of different versions of the BNM_HW were developed and tested for different

combinations of variable prescription at the boundary. The different versions are

(a) (b)

(a) (b)
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described in Table 4.7. In all cases, the boundary operator employed a Dirichlet

boundary condition and zeroth order interpolation.

Model Version Prescribed Variables
HW1_E 
HW1_E+V , U, V
HW1_Q qx, qy

HW1_E+Q , qx, qy

HW1_All(Q) , qx , qy – interpolated
Hx, Hy U, V – calculated

HW1_All(V) , U, V – interpolated
Hx, Hy, qx, qy – calculated

Table 4.7: Versions of the BNM_HW used to test boundary prescription.

In the models HW1_E, HW1_E+V, HW1_Q and HW1_E+Q, all of the parameters

listed in the table were interpolated from the PG solution. In the model

HW1_ALL(Q), elevations and volumetric fluxes were interpolated from PG data but

water depths and velocities were also then calculated at the boundary using the

interpolated variables. Similarly, in the model HW1_ALL(V), elevations and

velocities were specified while depths and fluxes were calculated.

4.7.1 HW1_E+V

The initial boundary prescription of water elevations in HW1_E was strongly biased

towards mass conservation and was unable to conserve momentum between the parent

and child models. In an attempt to improve the conservation of momentum, current

velocities were prescribed at the boundary in addition to the water elevations

(HW1_E+V). A schematic of the boundary prescription is shown in Figure 4.27.

Figure 4.27: Boundary prescription at CG boundary cells (shaded) in HW1_E+V.
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Figure 4.28 compares mass flux across the CG boundary for the new model with those

from the PG and SG_40. The relative error between the CG and PG fluxes is also

shown. Mass conservation was again high. The average error in flux was very similar

to that of the previous version, approximately 0.7%. However, the tidal variation in

conservation was different with the new model achieving a more constant degree of

conservation. Figure 4.29 compares the CG momentum flux across the boundary with

PG and SG_40 fluxes. It also shows the relative error between the CG and PG fluxes.

The conservation of momentum for the new model was also relatively high and was a

significant improvement over the HW1_E (Figure 4.26) with the tidally-averaged

error decreasing from 45% to 3%.
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Figure 4.28: (a) Boundary mass fluxes and (b) error in CG flux relative to PG.
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Figure 4.29: (a) Boundary momentum fluxes and (b) error in CG flux relative to PG.

With the boundary operator functioning much better than the previous model’s

implementation, a significant improvement in CG current velocity accuracy was

expected. Figure 4.30 compares the RET in CG current velocities to that for the

previous HW1_E version. A relatively small 10% improvement in the RED in

velocities was found to occur with a reduction from 19.6% to 17.6%. The RED of

17.6% was still substantially higher than the RED for the PG of 9.2% which was the

minimum target for CG accuracy. Part of the reason for the difference in the accuracy

(a) (b)

(a) (b)
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of the CG and the PG was undoubtedly the loss in momentum between the grids.

However, as the magnitude of momentum loss was relatively low, approximately 5%,

it was not thought to be the only source of CG inaccuracy.
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Figure 4.30: RET in CG velocities for (a) the HW1_E and (b) the HW1_E+V models.

Analysis of the error plots suggested that the model was having difficulty in

propagating momentum from the boundary into the domain. To test this theory, the x-

direction momentum flux through the next row of interior CG cells adjacent to the

boundary was computed and compared to that across the boundary. This comparison

is shown in Figure 4.31. A slight difference in flux between the two rows would

normally be expected, however, the diagram clearly shows that a substantial amount

of momentum was lost between the first and second rows of child grid cells. The

tidally-averaged error was actually 40%. Large levels of momentum were lost when

water was entering the domain on the flood tide (for positive fluxes) and this lower

momentum was then propagated into the model causing further inaccuracies.
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Figure 4.31: (a) CG momentum fluxes across boundary cells and cells adjacent to

boundary and (b) error in adjacent flux relative to boundary flux.
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An algorithm of the hydrodynamic solution procedure was presented in Figure 3.6,

Chapter 3. From the algorithm it can be seen that the momentum equation recursion

parameters Ri and Si at an open boundary grid cell are calculated differently

depending on whether the boundary is an elevation or flow boundary. For an elevation

boundary Ri and Si are calculated using equations (B.25) and (B.26) of Appendix B.

The only variable at time n+½ incorporated in these equations is the water elevation

2
1n

j,i


 . This meant that the velocities 2

1n

j,iU


and 2
1n

j,iV


that were specified at the

elevation boundary were not directly incorporated in the momentum equation and

therefore could not directly affect the propagation of momentum into the model

domain. On the other hand, if a flow boundary is specified the recursion parameter Si

is set equal to 2
1

2
1

n

j,ixq


 and the boundary flow can directly affect propagation of

momentum into the domain. It was therefore considered that the specification of the

nested boundary as a flow boundary might be a more effective method for improving

momentum conservation and propagation.

4.7.2 HW1_Q

In the HW1_Q, the nested boundary was designated a flow boundary at which the

volumetric fluxes qx and qy alone were prescribed (see Figure 4.32). The CG fluxes of

mass and momentum across the boundary interface are compared with those from the

PG and SG_40 in Figures 4.33 (mass) and 4.34 (momentum). It can be seen that the

levels of conservation of both mass and momentum were very similar to the

HW1_E+V. The tidally-averaged errors in both fluxes were, in fact, the same as those

from the HW1_E+V, at 0.7% for mass flux and 3% for momentum flux.

Figure 4.32: Boundary prescription at CG boundary cells (shaded) in HW1_Q.
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Figure 4.33: (a) Boundary mass fluxes and (b) error in CG flux relative to PG.
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Figure 4.34: (a) Boundary momentum fluxes and (b) error in CG flux relative to PG.

Comparing the CG boundary momentum flux with that across the adjacent interior

grid cells (Figure 4.35), it can be seen that the specification of the flow boundary

significantly improved the propagation of momentum into the domain. A much more

acceptable difference in the fluxes was observed. The tidally-averaged difference in

the adjacent flux relative to the boundary flux was calculated at approximately 2.3%.

It was therefore concluded the HW1_Q correctly propagated momentum from the

boundary into the domain.
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Figure 4.35: (a) CG momentum fluxes across boundary cells and cells adjacent to

boundary and (b) error in adjacent flux relative to boundary flux.
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To determine the accuracy of the CG solution across the CG domain, the RET in

velocities were compared with those from the previous model. This comparison is

shown in Figure 4.36. Large reductions in error can be seen in the vicinity of the

boundary, commensurate with the improvements in momentum propagation.

Increases in error were observed near the back of the harbour but as the velocities in

this area were low (of the order of 10-3 m/s) the errors were not deemed significant. It

was found that the RED had reduced from 17.6% per grid cell for the HW1_E+V to

10.7% for the HW1_Q; a 40% improvement in accuracy.
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Figure 4.36: RET in velocities for (a) the HW1_E+V and (b) the HW1_Q.

Though the improvement in model accuracy was encouraging, a new problem had

been introduced. The irregular shape of the contour lines in Figure 4.36b suggested

that some instability was being generated in the CG solution; similar irregularities

were observed in the corresponding RET plot for water elevations. When timeseries of

current velocities and water elevations were analysed, it was found that the velocities

were indeed unstable. This is demonstrated by the CG velocity timeseries for location

H shown in Figure 4.37. Since these instabilities were not present in the CG solution

of the HW1_E+V, it was concluded that they were related to the absence of water

elevation prescription at the boundary. It was therefore decided to specify both

volumetric flux and water elevation at the nested boundary.
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Figure 4.37: CG velocity timeseries at point H for the HW1_Q model.

4.7.3 HW1_E+Q

In order to prescribe both volumetric flux and water elevation at the nested boundary

it was necessary to reassign the boundary as an elevation boundary. The reason for

this was partly explained in Section 4.7.1. If the boundary were retained as a flow

boundary the recursion parameter Si would be set equal to 2
1

2
1

n

j,ixq


 and Ri set to zero.

While this would allow the volumetric flux to directly affect the momentum solution

it also means that water elevations, if prescribed, could not directly affect the

momentum solution. On the other hand, if an elevation boundary was assigned then Ri

and Si would be calculated using boundary values of both elevations and volumetric

flux (see the solution algorithm in Figure 3.6, Chapter 3). A schematic of the

boundary prescription is shown in Figure 4.38.

Figure 4.38: Boundary prescription at CG boundary cells (shaded) in HW1_E+Q.

Figure 4.39 compares the CG velocities at point H for the new model to those from

the previous version. It can be seen that the specification of elevations and volumetric

fluxes had the desired effect of stabilising the model solution.
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Figure 4.39: Comparison of CG velocities at location H.

Although the new boundary prescription stabilised the model solution, it was also

found to affect the level of mass and momentum conservation between the parent and

child grids. The boundary mass and momentum fluxes of the CG, PG and SG_40 are

compared in Figures 4.40 and 4.41 respectively. In relation to mass flux, the level of

conservation still remained high with a tidally-averaged error of approximately 0.4%;

however, the level of conservation was more variable over time than in the HW1_Q

(Figure 4.33b).
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Figure 4.40: (a) Boundary mass fluxes and (b) error in CG flux relative to PG.
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Figure 4.41: (a) Boundary momentum fluxes and (b) error in CG flux relative to PG.
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In relation to momentum, the level of conservation deteriorated from that of the

HW1_Q. This was clear both from the visual comparison of Figure 4.41b with its

HW1_Q counterpart of Figure 4.34b and from the tidally-averaged errors in flux, 18%

for the HW1_Q+E compared to 3% for the HW1_Q. However, momentum

propagation still functioned correctly as demonstrated by the relatively small

differences in the comparison of boundary and adjacent cell fluxes in Figure 4.42. The

tidally-averaged difference was at an acceptable level of approximately 3%.
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Figure 4.42: (a) CG momentum fluxes across boundary cells and cells adjacent to

boundary and (b) error in adjacent flux relative to boundary flux.

Upon analysis of the RET spatial plots for current velocities, it was found that the RED

in velocity for the new model was 10.5%. This was similar, albeit slightly lower, to

that achieved by the HW1_Q. The increase in error caused by the deterioration in

momentum conservation had effectively been balanced by the improvement in

accuracy resulting from the damping of the instabilities. Although overall model

accuracy had not changed significantly from that of the HW1_Q, it was concluded

that the specification of elevations in combination with volumetric fluxes was

necessary for model stability.

4.7.4 HW1_All(Q)

Following consideration of the results from the previous models, the additional

prescription of current velocities at the boundary was proposed. The rationale for this

was that the HW1_E+V model had achieved a relatively high level of momentum

conservation at the boundary while conservation had deteriorated for the newer

HW1_E+Q in which velocities had not been directly prescribed. The new boundary

prescription therefore involved the specification of water elevations and volumetric

fluxes interpolated from PG data and the subsequent calculation of current velocities

(a) (b)
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U and V along the boundary using the interpolated data. The boundary prescription is

illustrated in Figure 4.43.

Figure 4.43: Boundary prescription at CG boundary cells (shaded) in HW1_All(Q).

The modifications to the boundary prescription improved momentum conservation

from that of the previous version of the BNM. Figures 4.44 and 4.45 compare the

mass and momentum fluxes across the nested boundary interface for the CG, PG and

SG_40. They also compare the errors in the CG fluxes of the HW1_All(Q) and the

previous HW1_E+Q relative to the PG. Analysis of these timeseries found mass

conservation remained high with a tidally-averaged error of 0.4%. In relation to

momentum conservation, the tidally-averaged error in flux decreased from 18% in the

HW1_E+Q to 11% in the new model. However, though substantially improved,

momentum was still not correctly conserved in the model.

Comparison of the momentum flux through the row of cells adjacent to the boundary

showed good correlation (Figure 4.46a). The differences in fluxes observed were

similar to those for the previous model. As previously mentioned, volumetric and

mass fluxes will usually vary between cross-sections. As demonstrated by Figure

4.46b, the difference in the fluxes crossing the two adjacent interfaces for the CG of

the HW1_All(Q) was similar to the differences in the corresponding fluxes calculated

for the PG and the SG_40.

When the accuracy of the model was assessed using the snapshot data it was found to

have improved beyond that of the PG. This was despite the inaccuracies in

momentum conservation at the boundary. Figure 4.47 compares the RET in velocities

for the CG and PG while Figure 4.48 compares the RET in water elevations. A clear
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improvement in accuracy can be seen in the right half of the CG domain furthest from

the nested boundary. Boundary errors arising from both the inaccuracy of the PG

boundary data and the momentum conservation can be seen to propagate into the

nested domain until they dissipate. With distance from the boundary, the CG solution

begins to deviate from the PG solution imposed at the boundary towards the high

resolution solution of the SG_40. This points to another important design element for

a nested model, namely that the open boundary should be located far enough away

from the area of interest to allow the parent grid error (inherent in the boundary data)

to dissipate.
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Figure 4.44: (a) Boundary mass fluxes and (b) error in CG fluxes relative to PG.
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Figure 4.45: (a) Boundary mass fluxes and (b) error in CG fluxes relative to PG.
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Figure 4.46: (a) CG momentum fluxes across boundary cells and cells adjacent to

boundary and (b) error in adjacent flux relative to boundary in SG_40, PG and CG.
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Figure 4.47: RET in velocity for (a) PG and (b) CG for the HW1_All(Q).
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Figure 4.48: RET in elevation for (a) PG and (b) CG for the HW1_All(Q).

In terms of accuracy quantification, the RED in velocity for the CG was found to be

7.4% giving a 20% increase in accuracy on the PG. The RED in water elevation for the

CG was measured at 0.8% which was the same as that for the PG. This equated to an

AED of 0.7cm and was therefore insignificant. The improved accuracy of the CG can

be seen in Figure 4.49 which compares current velocities at point E for the SG_40, PG

and CG. The CG and SG_40 timeseries appear concurrent for most of the tidal cycle.

A time lag can also be observed in the PG velocities compared to the SG_40 near the

start of the tidal cycle; this time lag does not appear in the CG solution. Water

elevations are not presented as no discernable difference could be observed between

the three solutions and as the accuracy of both the PG and CG solutions were high.
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Figure 4.49: Comparison of velocity at point E for fine, coarse and nested models.

4.7.5 HW1_All(V)

A final version of the HW1 model was developed where the boundary prescription

operated in a similar manner to the HW1_All(Q). In the HW1_All(V) model, water

elevations and velocities were prescribed from interpolated PG data and water depths

and volumetric fluxes were then calculated. Due to the similarity of the boundary

operators, the accuracy of the model was much the same as that of the HW1_All(Q).

4.8 Summary and Conclusions

During Phase I of BNM development an initial version of the BNM was developed.

This consisted of a parent model coupled with a child model. The child model was

capable of operating on a number of static child grids, simultaneously, but all child

grids were required to use the same nesting ratio. The open boundaries of the child

grids were formulated in the same manner as the open boundaries of a single grid

model. A boundary operator was used to interpolate and assign boundary data from

the parent model to the child grids. The operator employed a zeroth-order

interpolation technique and a Dirichlet boundary condition.

The focus of the first phase of BNM development was the prescription of variables at

the CG boundary. The accuracy of the BNM was found to vary quite considerably

depending on the variables prescribed at the CG boundary. Boundary prescription was

tested using the BNM_HW. The spatially-distributed error data from the various

model simulations is summarised in Table 4.8. In all model versions mass was well-

conserved between the parent and child grids. The factors found to contribute to poor
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model performance were inaccuracies in the conservation of momentum across the

nested boundary and its propagation through the domain; instabilities in the model

solution were also a problem. No boundary prescription was found to eliminate all of

these sources of error.

Current Velocities Water Elevations
Model RED

[%]
% of cells
RED >10%

RED

[%]
% of cells
RED >1%

PG 9.2 40 0.8 0
CG: HW1_E 19.6 69 0.8 3
CG: HW1_E+V 17.6 62 0.8 2
CG: HW1_Q 10.7 25 1.5 88
CG: HW1_E+Q 10.5 42 0.8 0
CG: HW1_All(Q) 7.4 28 0.8 0
CG: HW1_All(V) 7.4 28 0.8 0

Table 4.8: Comparison of tidally-averaged relative errors.

The prescription of water elevations alone was found to be sufficient to ensure BNM

accuracy for mass-driven flows; however, it was found to result in poor levels of

momentum conservation between parent and child grids for momentum-driven flows

(HW1_E). The prescription of additional variables was required to improve

momentum conservation in such flows. The prescription of elevations and velocities,

in combination, (HW1_E+V) gave a high level of momentum conservation at the

boundary but suffered from poor momentum propagation through the domain.

However, overall model accuracy was improved from that of the HW1_E. The

reassignment of the boundary as a flow boundary and specification of volumetric

fluxes (HW1_Q) gave similarly high levels of momentum conservation at the

boundary and improved momentum propagation resulting in improved model

accuracy. However, it also led to the generation of instabilities in the model solution.

Reverting to an elevation boundary with retention of the volumetric flux specification

(HW1_E+Q) damped the instabilities but the resulting improvement was balanced by

a deterioration of momentum conservation at the boundary; the improvement in

overall model accuracy was therefore negligible.

The best model performance was achieved when water elevations, velocities and

volumetric fluxes were prescribed in combination at the CG boundary. This was done
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in two different ways: 1) by interpolating water elevations and volumetric fluxes and

then using these data to calculate water depths and velocities (the HW1_All(Q)), and

2) by interpolating water elevations and velocities and then using these data to

calculate water depths and volumetric fluxes (the HW1_All(V)). Both models

achieved the same level of accuracy due to the similarity of their boundary

prescriptions and were the only versions of the BNM to achieve a higher level of

accuracy than the parent model. The RED in the CG domain decreased from 9.2% in

the parent model to 7.2% in the child model while the proportion of the CG domain

within which RED exceeded 10% dropped from 40% in the parent model to 28% in

the child.

Despite the improvements in the accuracy of their CG solutions, both the

HW1_All(Q) and the HW1_All(V) encountered problems conserving momentum at

the CG boundaries. The tidally-averaged error in the CG boundary flux relative to the

PG flux was calculated at 12.5% in both models. This inaccuracy was partly attributed

to the zeroth order interpolation technique used by the boundary operator. However, it

was also thought that there were other possible contributing factors such as the

formulation of the governing equations at the CG boundary and the type of boundary

condition employed. The conservation of properties between parent and child grids is

critical to the performance and accuracy of a nested model. The problem of

momentum conservation at the CG boundary was therefore investigated in the next

phase of model development.

In addition to the findings in relation to the prescription of nested boundary variables

Phase I of BNM development resulted in two important observations in relation to the

location of nested boundaries. Firstly, it was clearly seen that any inaccuracies in the

PG solution were passed from the parent model to the child model at the CG

boundary. It is therefore important that nested boundaries are located in areas of high

parent model accuracy. Secondly, it was noted that errors generated at a CG boundary

will dissipate with distance from the boundary. Nested boundaries should therefore be

located sufficiently distant from an AOI that boundary errors will not adversely affect

the AOI and so that the errors have time to dissipate before reaching the AOI.
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Finally, it should be remembered that, for development purposes, the nested boundary

was strategically located in a region of low parent model accuracy in order to provide

a rigorous test of model performance. It was encouraging that under these testing

conditions, and that even with the boundary momentum problem, the CG still

achieved a significant improvement in accuracy over the PG. It was expected that

further improvements in accuracy could be achieved by improving the level of

momentum conservation between the parent and child grids.
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5. Development of BNM: Phase II

Momentum Conservation

5.1 Introduction

One of the requirements of the optimum boundary operator for a nested model is that

it ensures the conservation of properties (mass, momentum, energy) between the

parent and child grids at the open boundaries of the child grid (e.g. Korres and

Lascaratos, 2003). Phase I of BNM development revealed that the conservation of

properties between grids varied depending on the number and type of variables

prescribed at the CG boundary. The prescription of elevations, volumetric fluxes,

velocities and water depths produced the most accurate CG solution. However, it did

not ensure complete conservation of momentum at the boundary of the CG domain.

As a result, inaccuracies were introduced to the CG solution. Possible causes of the

momentum conservation problem were considered to be the specification of the

boundary operator, the model solution scheme and the boundary formulations.

As previously defined, the boundary operator of a one-way nested model comprises

an interpolation technique and a boundary condition. In keeping with the research

objectives, the simplest type of interpolation technique and BC were initially

employed in the BNM - a zeroth order interpolation technique and a Dirichlet

boundary condition. It was thought the simplicity of the interpolation scheme

employed by the boundary operator could be responsible for the errors in momentum

conservation and that more advanced implementations might enable improved

conservation. In addition, the nested open boundaries were originally formulated in

the same manner as the single grid model open boundaries. The boundary

formulations and the method of their solution were also considered possible causes of

momentum loss at the CG boundary.

As a first step in identifying the cause of the momentum conservation problem, a

number of different interpolation schemes were encoded in the BNM and tested for

accuracy in relation to the conservation of both mass and momentum. Linear,

quadratic, and inverse distance-weighted schemes were tested, in addition to the

existing zeroth order scheme. Following this, the formulations of the governing
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equations at the nested boundary and the model solution scheme were examined to

determine their possible contributions to the momentum problem. The effects of

modifications to the formulations and solution scheme were assessed by forcing the

child model with boundary data from a high resolution single grid model and

comparing the results with those from the high resolution model.

All models used in phase II of BNM development employed a Dirichlet boundary

condition in the boundary operator and the boundary prescription of the HW1_All(Q).

Therefore, ζ, qx, qy, U, V, Hx and Hy were all specified at the CG boundary with ζ, qx,

qy interpolated from the PG solution and U, V, Hx and Hy calculated from the

interpolated data. The BNM_HW was used to investigate the momentum conservation

problem with the grid configuration from phase I retained as shown in Figure 5.1.

50 100 150 200 250 300

50

100
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Figure 5.1: PG domain of BNM_HW showing CG boundary (dotted line) and

timeseries locations.

5.2 Boundary Interpolation

A possible source of the error in momentum conservation between the parent and

child grids of the BNM_HW was thought to be the zeroth order interpolation

technique of the boundary operator. A zeroth order scheme was initially specified as it

was the most basic scheme and the easiest to implement. The scheme is conservative

in nature, that is:
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interpolation procedure; instead, the variable value of the parent grid cell is assigned

to all enclosed child grid cells. To determine whether the interpolation technique was

a contributing factor to the momentum conservation problem, a number of different

versions of the BNM_HW were developed, each with a different interpolation

scheme. Table 5.1 provides a summary of these models. The zeroth order, linear and

quadratic interpolation schemes were all conservative processes; the inverse-distance-

weighted (IDW) scheme was not.

Version Interpolation Technique
BNM_HW1 Zeroth order
BNM_HW2 Linear
BNM_HW3 Quadratic
BNM_HW4 Inverse distance weighted

Table 5.1: Versions of the BNM_HW used to test boundary interpolation.

As a result of the staggered grid system and the placement of the CG boundary,

interpolation of boundary data for the linear, quadratic and IDW schemes was only

required in a single direction, tangential to the boundary, for  and the tangential flux

component. For the flux component normal to the boundary, interpolation was

required in both the tangential and normal directions.

The effect of the interpolation technique on model performance was determined by

calculating fluxes of mass and momentum across the CG boundary interface for all

four nested models. These CG fluxes were then compared with the fluxes computed

by the parent model across the same interface. CG fluxes were calculated using the

interpolated boundary data from the PG solution, thus an accurate interpolation

technique should have resulted in a CG flux closely correlated to the PG flux. Figures

5.2 and 5.3 show the comparisons of the CG and PG mass and momentum fluxes

respectively. Also shown are the errors in the CG fluxes relative to the PG fluxes.

Table 5.2 gives the tidally-averaged errors in the CG fluxes.

It can be seen from the graphs that the interpolation technique had a notable effect on

the conservation of properties between models. In general, all four techniques

achieved quite high levels of mass conservation with tidally-averaged errors of less
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than 1% for all schemes. However, the error in momentum conservation was

substantially higher for the zeroth order and IDW schemes than the linear and

quadratic schemes. It can be seen that the zeroth order and IDW interpolation

techniques both performed to a similar level of accuracy while the linear and

quadratic techniques also performed similarly. The zeroth order scheme, being the

most basic scheme, was less accurate than the higher order linear and quadratic

schemes. The IDW technique, although a more accurate technique than the zeroth

order, only gave a similar level of accuracy for mass flux and gave less accuracy for

momentum flux. This was thought to be due to the fact that it was not a conservative

scheme by nature, unlike the zeroth order.
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Figure 5.2: (a) Boundary mass fluxes and (b) errors in CG fluxes relative to PG.
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Figure 5.3: (a) Boundary momentum fluxes and (b) errors in CG fluxes relative to PG.

Average Relative ErrorModel Interpolation
Scheme Mass Momentum

BNM_HW1 Zeroth order 0.66 % 2.65 %
BNM_HW2 Linear 0.27 % 0.19 %
BNM_HW3 Quadratic 0.27 % 0.41 %
BNM_HW4 IDW 0.66 % 3.07 %

Table 5.2: Tidally-averaged errors in CG fluxes relative to PG fluxes.
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Overall, the linear interpolation technique achieved the highest levels of conservation

for both mass and momentum with tidally-averaged relative errors of only 0.27% for

mass and 0.19% for momentum. These errors were deemed low enough as to be

insignificant. While the quadratic scheme gave almost identical levels of conservation

in mass, its level of momentum conservation was lower than the linear scheme. This

agreed with the literature; Alapaty et al., 1998 state that polynomial schemes often

lead to spurious oscillations of the interpolated variable in regions of sharp gradients

and are thus less accurate than linear schemes.

Due to the accuracy of the linear interpolation technique it was incorporated in the

BNM. The BNM now contained a boundary operator which employed a linear

interpolation scheme and a Dirichlet boundary condition with the prescription of ζ, qx,

qy, U, V, Hx and Hy at the CG boundary. This version of the model was referred to as

the BNM_1. When tested, it was found that the improved momentum conservation at

the CG boundary of the BNM_1 resulting from the use of the linear interpolation did

not have a significant effect on model accuracy. The RED in current velocity for the

nested domain decreased from 7.4% for zeroth order interpolation (Table 4.8, Chapter

4) to 7.3% for linear interpolation while that for water elevation decreased from 0.8%

to 0.79%. This finding supported the argument that the interpolation technique was

not the only source of the error in momentum conservation at the CG boundary. It was

therefore necessary to investigate the other possible contributing factors.

5.3 The Momentum Conservation Problem

The nature of the boundary conservation problem is demonstrated once again in

Figure 5.4, this time for the BNM_1. The figure compares the momentum flux across

the CG boundary interface as computed by the parent and child models. As before, the

fluxes were calculated across the same interface location and were calculated

immediately after the computation of the x-direction hydrodynamic variables, i.e.

immediately after subroutine HYDMODX in the case of the PG or HYDMODX_F in

the case of the CG (see Figure 4.4, Chapter 4). It can be seen that momentum was not

conserved between the parent and child grids. The tidally-averaged error in the CG

flux relative to the PG was 10.5%.
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Figure 5.4: (a) Comparison of boundary momentum fluxes and (b) error in CG flux

relative to PG (fluxes calculated after computation of x-direction hydrodynamics).

From the testing of the linear interpolation scheme of the BNM_1 it was shown that

both mass and momentum were well conserved during the assignment of boundary

data from the parent grid to the child grid. This is demonstrated in Figure 5.5 which

compares the CG boundary momentum flux of the BNM_1 with that calculated by the

PG. In contrast to the fluxes presented above, these fluxes were computed

immediately after the boundary data assignment process and prior to the x-direction

computations. In the case of the CG model this was after subroutine FINEBND and

prior to HYDMODX_F and in the case of the PG this was after HYDBND and prior to

HYDMODX (see Figure 4.4, Chapter 4). Comparison of Figure 5.5 with Figure 5.4

shows that the conservation of momentum at the CG boundary was affected during

the hydrodynamic computations in subroutine HYDMODX_F.
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Figure 5.5: (a) Comparison of boundary momentum fluxes and (b) error in CG flux

relative to PG (fluxes calculated after boundary data assignment).

In the BNM_1 the boundary of a child grid was treated as a normal open boundary. In

other words, the model formulations and the solution scheme applied to a normal

open boundary cell in a single grid model were applied to the boundary cells of the

child grid. The results from the testing of the interpolation schemes had indicated that

(a) (b)

(a) (b)
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CG boundary fluxes were somehow being adversely affected in the main

computational subroutines, i.e. during the solution of the model formulations. For this

reason the solution scheme and the boundary formulations were investigated further.

The main difficulty in resolving the momentum conservation problem was in

determining its role in the generation of CG errors. Even if the BNM were functioning

correctly the child grid solution would still contain boundary specification errors

passed to it from the parent model via the boundary data. However, if the child grid

were forced with boundary data obtained from a high resolution model then,

theoretically, the resulting CG solution should be identical to the high resolution

solution. If it were not, then any errors occurring could be directly attributed to the

momentum conservation problem. This was the approach used to investigate the

possible contributions of the solution scheme and the boundary formulations on the

momentum conservation problem.

To facilitate this approach, the single grid high resolution model of the harbour wall

domain, SG_40, was re-run and the required data (ζ, qx, qy, U, V, Hx, Hy) along the

location of the CG boundary were output at every half-timestep of the simulation.

These data were then specified at the CG boundary of the BNM_1 in place of the PG

data. A second single grid high resolution model of the child grid domain, the

SG_40_CG, was also developed for comparison. The same high-resolution boundary

data used to force the BNM_1 was also used to force this model.

Both models were run for four tidal cycles (50hrs) and the results were compared for

the final tidal cycle (37.5 – 50hrs). The boundary data output by the SG_40 at the end

of each half-timestep was read in by the BNM_1 and the SG_40_CG at the beginning

of each half-timestep in an identical manner. The solution of the SG_40 was assumed

the correct solution and the errors in the BNM_1 and SG_40_CG solutions were

calculated relative to this.

5.3.1 BNM_1 Forced With SG_40 Data

Figure 5.6a shows the RET in CG water elevations of the BNM_1 calculated relative

to the SG_40 while Figure 5.6b shows the RET in CG current velocities. It can be seen

that, even when forced with high resolution boundary data, the CG was less accurate
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than the SG_40. While the error in water elevations was quite low with an RED of

0.05%, the error in current velocity was much more significant with an RED of 4.6%.

In fact, the RET in current velocity was found to exceed 10% in more than 10% of the

domain. Errors, particularly in velocity, were found to be highest near the boundary

and decreased in magnitude with distance from the boundary. Relatively large errors

in velocities were also evident in a small region at the back wall of the harbour.

However, current velocities in this area were very low and the relative errors

corresponded to absolute errors of the order of only 10-4m/s; they were thus deemed

insignificant.
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Figure 5.6: RET in (a) water elevations and (b) velocities for CG relative to BNM_1.

It was not expected for the BNM_1 to compute the same results as the SG_40 since

the momentum conservation problem was known to exist. As the boundary data used

at the CG boundary were sourced from the SG_40 they did not contain any errors; the

errors shown in Figure 5.6 were thus solely attributed to the momentum conservation

problem at the CG boundary.

5.3.2 SG_40_CG Forced With SG_40 Data

Figure 5.7a shows the RET in the water elevations of the SG_40_CG relative to the

SG_40 and Figure 5.7b shows the RET in current velocities. Their comparison with

the same plots for the BNM_1 reveals that both models displayed similar levels of

error. To verify this, the x-direction mass and momentum fluxes across the open

boundaries were calculated for both models and compared with the fluxes across the

corresponding interface in the SG_40. These comparisons are presented in Figure 5.8

(a) (b)
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for the mass flux and Figure 5.9 for the momentum flux. The errors in the BNM_1

and SG_40_CG fluxes relative to the SG_40 fluxes are also shown.
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Figure 5.7: RET in (a) water elevation and (b) velocities for SG_40_CG.
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Figure 5.8: (a) Boundary mass fluxes and (b) errors in fluxes relative to SG_40.
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Figure 5.9: (a) Boundary momentum fluxes and (b) errors in fluxes relative to SG_40.

For both the SG_40_CG and the CG of the BNM_1 the boundary mass and

momentum fluxes were identical; all timeseries data points were coincident. In terms

of the magnitude of error in the models, the average error in mass flux over the tidal

cycle was relatively low at approximately 0.3% while that in momentum flux was

quite significant at approximately 11%. Both the CG of the BNM_1 and the

(a) (b)

(a) (b)

(a) (b)
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SG_40_CG were forced with the same high resolution data and their open boundaries

employed the same formulations and solution scheme. The results therefore suggested

that the momentum conservation problem was related to the formulation and solution

of the governing equations at the CG boundary cells, and, in particular, to the use of

the same formulations and solution scheme as the open boundary cells of a single grid

model.

5.4 The Solution Scheme

The solution scheme used by the model to solve the momentum and continuity

equations was explained in detail in Section 3.2.3. The solution algorithm for the first

half-timestep (in the x-direction) is reproduced again in Figure 5.10. During the first

half-timestep, the continuity equation and the x-direction momentum equation are

solved at each grid point of each integration section. Two iterations of the solution

scheme are required in order to centre all variables in both space and time. Following

investigation of the solution scheme it was noted that at the end of each iteration of

the scheme the volumetric flux component 2
1

2
1

n

J,Ixq


 is calculated for each cell of the

integration section using back substitution (highlighted in Figure 5.10). In other

words, for the grid cell (I,J) the solution scheme calculates the value of the flux qx at

the adjacent grid cell (I-1,J). In the context of the BNM this meant that if the lower

cell of an x-direction integration section of the child grid was bounded by an open

boundary cell then the value of 2
1n

xq


at the boundary cell was recalculated. By using

the same solution scheme as the single grid model the CG boundary volumetric fluxes

were thus modified from their values assigned by the boundary operator.

The depth integrated velocity n

xU and the volumetric flux n

xq are also recalculated at

the end of the first iteration of the solution scheme (also highlighted in Figure 5.10)

These variables are expressed explicitly for timestep n for the first iteration and are

expressed implicitly for timestep n+½ for the second iteration. To achieve this they

are recalculated at the end of the first iteration using 2
1n

xq


calculated during the first

iteration. The recalculation of these variables is carried out at every cell of the model
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domain, including the boundary cells. Thus, the values of n

xU and n

xq at a CG

boundary cell were recalculated using the modified value of 2
1n

xq


described above.

Figure 5.10: Algorithm showing the implementation of the solution procedure for the

continuity and momentum equations in the x-direction during the first half-timestep.

To determine the effect of the recalculation of 2
1n

xq


at the CG boundary cells within

subroutine HYDMODX_F, CG values of 2
1n

xq


were output from the BNM_1 at a

boundary grid cell before and after the subroutine was called. The values output

before the subroutine was called were the values assigned by the boundary operator
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while those output after were the recalculated/modified values. The before and after

values of 2
1n

xq


at a selected boundary grid cell are compared in Figure 5.11.
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Figure 5.11: CG values of 2
1n

xq


output from BNM_1 before and after HYDMODX_F.

The recalculation of volumetric fluxes at an open boundary is necessary if the

boundary is implemented as a water elevation boundary. In such cases, water

elevations alone would be prescribed at the boundary and volumetric fluxes would

therefore have to be calculated. In the case of the BNM, values of both elevations and

volumetric fluxes were prescribed at the CG boundary and the calculation of

volumetric fluxes at boundary cells was therefore unnecessary. The premise of a

nested model is that the values of boundary variables are determined by the parent

model solution alone. The recalculation of the volumetric fluxes meant this was not

the case; it only served to introduce additional error to the CG boundary solution

which was then propagated into the domain.

In light of the findings of the investigation of the solution scheme, the hydrodynamic

subroutines of the child model were modified so that boundary variables could not be

altered from the values assigned by the boundary operator. The recalculation of 2
1n

xq


in HYDMODX_F and 2
1n

yq


in HYDMODY_F at CG boundaries was therefore

prohibited. This new version of the BNM with the modified solution scheme was

termed the BNM_2.
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5.4.1 BNM_2 Forced With SG_40 Data

To determine the effect of the modifications to the solution scheme on model

performance, the CG of the BNM_2 was also forced using the high resolution

boundary data from the SG_40. The CG solution was then compared to that of the

SG_40. The prevention of the recalculation of boundary variables was expected to

have a significant impact on the conservation of properties at the CG boundary. By

preserving the assigned values of variables at the boundary it was hoped to improve

the conservation of momentum.

The boundary mass flux for the BNM_2 is compared with those from the BNM_1 and

the SG_40 in Figure 5.12; the errors in the CG fluxes relative to the SG_40 are also

shown. Figure 5.13 shows the same plots for the momentum flux. It can be seen that

significant improvements in conservation were achieved in comparison to the

BNM_1. Both mass and momentum were highly conserved in the CG of the new

model with the fluxes showing excellent correlation with those from the SG_40. For

both fluxes the tidally-averaged error was only 0.05%. These errors compared with

errors of 0.3% in mass flux and 11% in momentum flux for the CG of the BNM_1.
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Figure 5.12: (a) Boundary mass fluxes and (b) errors in CG fluxes relative to SG_40.
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Figure 5.13: (a) Boundary momentum fluxes and (b) errors in CG fluxes relative to

SG_40.
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To assess the impact of the improved levels of conservation at the CG boundary, the

snapshot data were analysed. Figure 5.14 shows the RET in CG water elevations and

current velocities relative to the SG_40. It can be seen that the modifications to the

solution scheme produced a significant improvement in model accuracy compared

with the BNM_1. The RED in water elevation and current velocity were both quite

low at 0.02% and 1.8% respectively. The results suggested the CG was almost as

accurate as the SG_40 and appeared to demonstrate that the cause of the momentum

conservation problem had been the recalculation of the boundary variables. By

solving the problem the near-boundary errors in the BNM_1 and the FM_S had been

significantly reduced.
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Figure 5.14: RET in (a) water elevations and (b) current velocities for CG of BNM_2.

5.4.2 BNM_2 Forced With PG Data

With the improvements in performance observed when forcing the nested model with

boundary data from the high resolution SG_40, the CG was next forced in the typical

nested manner using boundary data from the parent model. The mass and momentum

fluxes across the CG boundary interface were computed by both the CG and PG and

the errors in the CG fluxes were calculated relative to the PG fluxes. Figure 5.15

compares the error in CG boundary mass and momentum fluxes for both the BNM_1

and the BNM_2 when forced by the PG boundary data. Once again it can be seen that

both mass and momentum were conserved to a very high level in the BNM_2. The

improvement in momentum conservation was quite significant with the tidally-

averaged error dropping from 10.5% in the BNM_1 to 0.4% in the BNM_2. The

improvement in mass conservation was not as significant as mass had already been

(a) (b)
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conserved to a reasonably high level in the BNM_1; the tidally-averaged error

dropped from 0.6% to 0.3%.
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Figure 5.15: Error in (a) CG mass fluxes and (b) CG momentum fluxes relative to PG.

The improvement in the conservation of properties between parent and child grids of

the nested model was found to have a significant impact on the accuracy of the model

in general. Figure 5.16 compares the RET in CG water elevations for the new BNM_2

with that for the BNM_1. Figure 5.17 shows the same comparison for CG current

velocities. In relation to water elevation, the RED was actually found to have increased

slightly from 0.79% to 0.81%. It was found that the modification of the boundary

solution scheme resulted in a small increase in error in the cells immediately adjacent

to the boundary, as seen in Figure 5.16a. However, the magnitude of the AED still

remained insignificant at less than 0.008m. In relation to current velocity, large

reductions in error were achieved. The RED was found to have reduced from 7.3% in

the BNM_1 to 4.5% in the BNM_2 giving a 37% reduction in error. In comparison to

the error in the PG solution of 9.2%, this constituted a 51% reduction in error.
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Figure 5.16: RET in CG water elevations for (a) the BNM_2 and (b) the BNM_1.
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Figure 5.17: RET in CG current velocities for (a) the BNM_2 and (b) the BNM_1.

The improvement in the accuracy of the BNM_2 as a result of the modification to the

CG boundary solution scheme was very encouraging. However, the presence of errors

in the BNM_2 when forced with the high resolution SG_40 data suggested that other

factors were also contributing to the inaccuracies of the CG solution. If the CG

boundary was functioning correctly the CG model should have produced the same

solution as the SG_40. Although the solutions were closely matched, the BNM_2

solution still contained a level of inaccuracy. For this reason, it was decided to

investigate the CG boundary formulations.

5.5 The Boundary Formulations

The generation of errors in the region near an open boundary, such as those recorded

in the BNM_1 and SG_40_CG when forced with the high resolution boundary data, is

a recurring problem in hydrodynamic modelling. One common cause is over-

specification of the boundary. In such cases, the constraints placed on the boundary

will prevent some outflowing waveforms from passing through the boundary and

leaving the model domain. These waves are instead reflected back into the domain

generating erroneous noise in the solution (Koch and McQueen, 1987).

A second common cause of near-boundary error is the formulation of the open

boundary. An open boundary is, in effect, a model of “the rest of the world” outside

the boundary. If the mathematical formulation does not, or cannot, fully describe the

rest of the world errors may be generated which then propagate into the model domain

(Williams, 2006). The errors in the boundary momentum fluxes of the BNM_1 and
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the SG_40_CG (shown again in Figure 5.18), and the similarity of the errors,

suggested that the source of the near-boundary errors was the boundary formulation as

opposed to erroneous wave reflections. The fact the models were being forced with

accurate high resolution boundary data also seemed to rule out wave reflection errors.
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Figure 5.18: (a) Boundary momentum fluxes and (b) errors relative to SG_40.

The formulation of the momentum equation was the logical place to begin looking for

an error which might contribute to the momentum conservation problem and thus the

accuracy of the model solution. Momentum, and specifically that component of

momentum normal to the boundary, has the greatest impact on the flow inside a

boundary (Barth et al., 2005); any errors in its formulation will therefore have a

significant impact on model results. From Figure 5.18, it can be seen that the largest

absolute errors in momentum flux across the open boundary occurred for positive

fluxes. Positive fluxes corresponded to the flood tide, when water was entering the

domain in the positive x-direction. For this period of time the BNM_1 underestimated

the momentum flux. A possible explanation was that the boundary formulations were

unable to accurately incorporate the effect of the hydrodynamics immediately outside

the boundary on the hydrodynamics on, and immediately inside, the nested boundary.

It was explained in Section 3.2.4 how the formulation of the momentum equations at

an open boundary grid cell must necessarily differ from those at an interior grid cell.

This is due to the application of the central finite difference method on the space-

staggered grid to develop the finite difference formulations. It was shown that if the

partial derivative of a variable component, e.g. n

j,ix 2
1q  , is required in the component

direction, i.e. n

j,ix 2
1)x/q(  , then the finite difference approximation of that

(a) (b)

ebb tide flood tide



144

derivative requires the values of the variable component ( n

xq ) at the two adjacent

grid points in the positive and negative component directions. This requirement is fine

at interior grid points but is problematic at open boundary grid points where only one

adjacent grid point exists in the direction normal to the boundary. As a result, the

formulations of the FD equations at an open boundary grid cell must be modified so

as not to require the use of values from adjacent external grid cells which do not exist.

Two terms of the momentum equation were found to require modification at an open

boundary: the advective acceleration and the turbulence induced shear force. The

formulations for these terms at an interior grid cell (taken from equation (3.8)) may be

written as:

advective acceleration – interior:
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 (5.2)

turbulence induced shear force – interior:
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For the reason described above, the derivatives ∂qx/∂x in (5.2) and ∂U/∂x in (5.3) 

cannot be determined at an open boundary grid cell. As a result these derivatives are

set to zero at the open boundary to give the simplified open boundary formulations:

advective acceleration – open boundary:
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 (5.4)

turbulence induced shear force – open boundary:
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(5.5)

The simplification of the boundary formulae was considered a possible cause of the

momentum conservation problem and the inaccuracies observed in the BNM_1 and
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SG_40_CG models. However, the open boundary of a nested domain has an

advantage over a normal open boundary; at the nested boundary the hydrodynamic

activity outside the boundary is known. In other words, data are available for the

adjacent grid cells outside the boundary, albeit from a coarser resolution, and thus less

accurate, parent model. It was thought that these data could be incorporated at the

nested boundary in order to allow boundary cells to be formulated in a similar manner

to interior cells and thus better simulate the rest of the world. By internalising the

nested boundary in this manner it was hoped to improve BNM accuracy. The new

model was called the BNM_3.

5.5.1 Internal Boundary Formulations – BNM_3

The BNM_3 was developed by modifying the boundary cell formulations of the

BNM_1 to incorporate data from grid points external to the nested boundary. By

doing so, the nested boundary was converted from an open boundary to an internal

boundary. The original boundary solution scheme from the BNM_1 was employed so

that the full effect of the internalisation of the nested boundary could be measured. To

satisfy the new internal boundary formulations, adjacent external grid cells, or ghost

cells, were introduced at the internal boundary. The configuration of the new CG

boundary interface is shown in Figure 5.19.

Figure 5.19: Configuration of child boundary interface in the BNM_3 showing

internal boundary Γ and adjacent exterior ghost cells Γ*.
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The open boundary formulations of the advective acceleration and turbulence induced

shear force terms in equations (5.4) and (5.5) were replaced with the internal

formulations of equations (5.2) and (5.3) respectively. The source code for the old and

new boundary formulations is given in Appendix A.2. Values of model variables were

assigned to the ghost cells at the same time that values were assigned to the boundary

cells, i.e. at the beginning of each half-timestep. Only values for the components of

velocity and volumetric flux normal to the boundary were required at the ghost cells.

The fluxes were obtained and specified from the parent grid in the same manner as the

boundary data and the velocities were calculated from the fluxes.

To the Author’s knowledge, the ghost cell approach to the conservation of properties

between parent and child grids of nested coastal models has never before been

employed. The majority of the nested models published in the literature have

attempted to ensure conservation through the specification of tailored boundary

operators. The ghost cell method is therefore a novel approach to the solution of this

problem.

5.5.2 BNM_3 Forced With SG_40 Data

The BNM_3 was initially forced with boundary data obtained from the SG_40; it was

hoped that the new formulations incorporating the ghost cells and the specification of

the high resolution data would enable the BNM_3 to achieve the same accuracy as the

SG_40. The SG_40 was re-run and data at those cells corresponding to the CG

boundary cells and the new ghost cells were output at each half-timestep. The data

specified at the boundary cells were the same as before: ζ, qx, qy, U, V, Hx and Hy. At

the ghost cells, values were only required for qx and U as these were the only

variables for which derivatives normal to the boundary were required.

The RET in CG water elevations and current velocities for the BNM_3 are shown in

Figure 5.20. It can be seen that the inclusion of the new boundary formulations and

ghost cell data produced a significant improvement in model accuracy compared to

the BNM_1. The accuracy of the model was also better than that of the BNM_2.

Table 5.3 lists RED in both water elevations and velocities for the CG solutions of the

BNM_1, BNM_2 and BNM_3 when forced with the SG_40 data.
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Figure 5.20: RET in (a) water elevations and (b) velocities for CG of BNM_3.

RED [%]Model
Water Elevation Current Velocity

BNM_1 0.05 4.6
BNM_2 0.02 1.8
BNM_3 <0.01 0.1

Table 5.3: RED in CG solutions relative to SG_40.

It can be seen that the RED in both water elevation and current velocity were lowest in

the BNM_3, at <0.01% and 0.1% respectively. The near-boundary errors were

eliminated and the accuracy at the back wall of the harbour was also improved even

though the magnitudes of the absolute errors in this area had been quite low. The

results suggested the model was almost as accurate as the SG_40 and appeared to

confirm that the original boundary cell formulations were also a contributing factor to

the momentum conservation problem.

To determine the extent of the improvement in momentum conservation due to the

internalisation of the CG boundary, the momentum flux across the boundary in the

BNM_3 was compared with that from the SG_40. This plot is shown in Figure 5.21

together with the relative error in the CG flux. The BNM_1 flux and its relative error

are also included for comparison. The tidally-averaged error in momentum flux was

calculated at approximately 0.2%. However, the error in flux was less than 0.1% for a

large portion of the tidal cycle and only exceeded this level at the time of low tide

slack water (around 43.75 hrs). At times of slack water, velocities are low and a small

absolute error can therefore represent a large relative error. As the momentum formula

(a) (b)
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is based on the square of the velocity any such error is magnified, resulting in the

higher relative errors observed around the time of low water.

The tidally-averaged error in boundary momentum flux of 0.2% for the BNM_3 was

slightly higher than the level of error in the BNM_2 (0.04%). However while the

modified boundary solution scheme of the BNM_2 prevented the recalculation of

boundary variables, the BNM_3 allowed revised recalculation of boundary variables.

As a result, the errors in momentum conservation observed at low tide in the BNM_3

did not occur in the BNM_2 (see Figure 5.13b).
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Figure 5.21: (a) Boundary momentum fluxes and (b) errors in CG relative to SG_40.

The comparisons of mass flux across the boundary are shown in Figure 5.22. Again it

can be seen that the BNM_3 mass flux was almost identical to that of the SG_40. The

average relative error over the tidal cycle was approximately 0.02% indicating

excellent correlation between the models and the level of error was similar to that in

the BNM_2. As with the momentum flux, slightly higher errors were computed at the

times of slack water when velocities were low.
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Figure 5.22: (a) Boundary mass fluxes and (b) errors in CG relative to SG_40.
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As a further test of the accuracy of the BNM_3, CG timeseries data were compared

with corresponding timeseries from the SG_40. Figure 5.23 shows the comparison of

current velocities and water elevations at location B (see Figure 5.1) while Figure 5.24

shows the results of a linear regression analysis of the CG and SG_40 timeseries. It

can be seen that the CG timeseries showed exact correlation with the SG_40.

Comparisons of timeseries data at the other eight output locations yielded similar

levels of correlation between the model solutions.
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Figure 5.23: (a) Current velocities and (b) water elevations at location B.
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Figure 5.24: Linear regression analysis of CG and SG_40 timeseries at location B for

(a) current velocities and (b) water elevations.

On the whole, the introduction of the new formulations incorporating the ghost cells

seemed to enable the boundary to simulate the “rest of the world” with a much greater

degree of realism and accuracy. This resulted in improved model performance over

both the BNM_1 and the BNM_2.
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(a) (b)
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5.5.3 BNM_3 Forced With PG Data

Following the success of the BNM_3 when forced with the SG_40 boundary data, the

model was re-run for the typical nested scenario where nested boundary data was

obtained from the PG solution. The RET in CG water elevations is shown in Figure

5.25 where it is compared with the RET previously computed for the CG of the

BNM_1. The RET in CG current velocities for both the BNM_3 and the BNM_1 are

shown in Figure 5.26.
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Figure 5.25: RET in CG water elevations for (a) the BNM_3 and (b) the BNM_1.
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Figure 5.26: RET in CG current velocities for (a) the BNM_3 and (b) the BNM_1.

The new boundary formulations were found to significantly improve the accuracy of

the CG solution. Table 5.4 compares RED for the BNM_1, BNM_2 and BNM_3. As

the water elevations of the BNM_1 were originally quite accurate, only a small

reduction in error was observed for the BNM_3. The RED in water elevation

decreased from 0.79% in the BNM_1 to 0.78% for the BNM_3, an error reduction of

(a) (b)

(a) (b)
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only 1%. The elevations of the BNM_2 were less accurate than the BNM_1 with a 3%

increase in error. However, in all three models the absolute value of the domain-

averaged error AED was quite insignificant being less than 0.008m.

The most significant improvement in model performance was in the computation of

the CG current velocities; this is clearly seen in Figure 5.26. The RED in velocity for

the BNM_3 was calculated at 4.0%. This represented a 45% reduction in error over

the BNM_1 and a 13% reduction over the BNM_2. In comparison to the parent

solution this represented a 57% reduction in error. Overall, the BNM_3 was found to

be the most accurate version of the BNM to date.

RED [%]Model
Water Elevation Current Velocity

PG 0.80 9.2
CG: BNM_1 0.79 7.3
CG: BNM_2 0.81 4.5
CG: BNM_3 0.78 4.0

Table 5.4: RED in model solutions relative to SG_40.

The accuracy of the BNM_3 was further established by comparing current velocity

and water elevation timeseries from the SG_40 and PG with those from the child grids

of the three nested models. The current velocity timeseries at points A and D are

shown in Figures 5.27 and 5.28 respectively; errors in the PG and CG values relative

to the SG_40 are also shown. Water elevation timeseries are not presented as the

levels of error in elevations were insignificant in all of the models. From the

diagrams, the inaccuracies of the PG and the BNM_1 are readily apparent. Likewise,

the improvement in accuracy of the BNM_2 and the BNM_3 is also readily apparent.

Both of these models were highly accurate for most of the tidal cycle and only lost

accuracy at the times of maximum velocity. From the relative error timeseries it can

be seen that the BNM_3 was the most accurate of the models.

During BNM development, the current velocity magnitude was used as a measure of

accuracy of both the x- and y-direction component velocities. To demonstrate that the

velocity magnitude was also an appropriate measure of component velocity accuracy,

comparisons of the component velocities U and V at locations A and D are also shown
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in Figures 5.27 and 5.28. The inaccuracy of the PG and BNM_1 solutions is also

evident in the component velocities, as is the improved accuracy of the BNM_2 and

BNM_3. It can be seen that improvements in the accuracy of the velocity magnitudes

were matched by corresponding improvements in the accuracy of the component

velocities.
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Figure 5.27: (a) Current velocities at location A and (b) errors relative to SG_40. (c)

and (d) velocity components U and V respectively at location A.
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Figure 5.28: (a) Current velocities at location D and (b) errors relative to SG_40. (c)

and (d) velocity components U and V respectively at location D.
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5.6 Temporal Aspects of Boundary Momentum Conservation

The reason for internalising the nested boundary in the BNM_3 was to improve the

conservation of momentum at the boundary between the parent and child grids. It was

assumed that the higher accuracy observed in the snapshot and timeseries data was a

direct result of this improvement. Comparison of the boundary momentum fluxes

from the CG of the BNM_3 with those from the CG of the BNM_1 and the PG

confirmed that the modifications had improved conservation to a certain extent. The

tidally-averaged error in CG boundary momentum flux relative to the PG was found

to have decreased from 10.5% for the BNM_1 to 6.1% for the BNM_3. However, this

improvement was not as significant as that observed in the BNM_2 where the tidally-

averaged error decreased to 0.4%. In contrast though, the BNM_3 had produced a

more accurate CG solution than the BNM_2. These two outcomes were conflicting

and raised questions about the relationship between the conservation of properties and

nested model accuracy.

Figure 5.29 compares the CG boundary momentum fluxes for the three nested models

(BNM_1, BNM_2 and BNM_3) with that from the parent model. The errors in the

CG fluxes relative to the PG are also shown. The flux comparisons revealed an

important temporal feature of the improvement in conservation based on the stage of

the tide and in particular the ebb and flood tides. During the simulation, the ebb tide

corresponded to that period of time (37.5 – 43.75 hrs) when the boundary flux was

negative, i.e. when the net direction of flow across the boundary was outwards. The

flood tide corresponded to that period of time (43.75 – 50 hrs) when the boundary flux

was positive, i.e. when the net direction of flow was inwards. The relative errors of

Figure 5.29b were averaged over the ebb and flood tides for subsequent analysis; the

averages are presented in Table 5.5.
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Figure 5.29: (a) Boundary momentum fluxes and (b) error in CG flux relative to PG.
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Time-averaged Error in Boundary Momentum Flux [%]
Model Full Tide

[37.5 - 50.0 hrs]
Ebb Tide

[37.5 - 43.75 hrs]
Flood Tide

[43.75 - 50.0 hrs]
CG: BNM_1 10.5 12.4 9.9
CG: BNM_2 0.4 0.4 0.4
CG: BNM_3 6.1 16.3 3.3

Table 5.5: Errors in CG fluxes relative to PG averaged over three time periods.

Looking first at the results for the BNM_3, it can be seen that the most significant

improvement in momentum conservation compared to the BNM_1 occurred on the

flood tide. The flood tide average error in the BNM_3 flux was calculated at 3.3%

while that in the BNM_1 was 9.9%. However, on the ebb tide, it was found that the

flood tide average error actually increased to 16.3% in the BNM_3 from 12.4% in the

BNM_1. The reason for the increase in error on the ebb tide was thought to be due to

the fact that flood tide hydrodynamics are predominantly influenced by the boundary

solution, while ebb tide hydrodynamics are predominantly influenced by the interior

solution. This is the case for most model domains. The aim of a nested model is to

improve, and therefore modify, the interior CG solution from that computed by the

PG. As a result, the ebb tide mass and momentum fluxes of the CG are determined

from a different interior solution to that of the PG. The level of error in the CG ebb

tide flux relative to the PG would therefore be expected to vary depending on the level

of modification of the interior CG solution.

In a typical estuary, flow patterns are primarily driven by the pressure gradients

resulting from the propagation of a tidal wave into the estuary. A typical tidal cycle

consists of an ebb tide, the period from high tide to low tide during which water flows

out of the estuary, and a flood tide, the period from low tide back to high tide during

which water flows into the estuary. Generally, slack water occurs at, or very near, the

times of high and low tide. Current velocities at such times are quite low and the

resultant momentum fluxes are therefore also low. Following high slack water the

surface elevation will be lower at the seaward end of the estuary and higher at the

landward end (see Figure 5.30a). The resulting slope, or pressure gradient, causes

water to flow out of the estuary on an ebb tide; this flow is therefore largely

influenced by the interior water elevations. Following low slack water the situation is
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reversed (see Figure 5.30b) causing water to flow into the estuary on a flood tide

where the flow is largely influenced by the water elevations at the seaward boundary.

Figure 5.30: (a) Water surface at high tide (HT) and a short time after (HT+Δt) and (b)

water surface at low tide (LT) and a short time after (LT+Δt).

For accurate simulation of the hydrodynamic circulation in such a system the most

important variable is the water elevation ζ. In turn, the accurate simulation of ζ is

governed primarily by the continuity equation and hence the conservation of mass.

Such flows are therefore said to be primarily mass-driven. The flows in the original

version of the BNM, the BNM_RH (see Section 4.5), were primarily mass-driven. As

a result, the specification of water elevations alone at the boundary of the child grid

was sufficient to ensure conservation of mass between the parent and child grids. This

allowed the accurate computation of interior elevations on the flood tide which in turn

were used to accurately determine the outward flow on the ebb tide. Since the water

elevation boundary data obtained from the parent model was quite accurate, the

BNM_RH was able to achieve a similar level of accuracy to the high resolution

model.

The harbour wall was introduced in the rectangular harbour design to induce a flow

regime that was driven by both mass and momentum. It is relatively easy to conserve

mass between the parent and child grids of a nested model but more difficult to

conserve momentum. A momentum-driven flow may be distinguished from a mass-

driven flow by the fact that slack water may not necessarily occur at the times of high

and low tide. Figure 5.31a shows the net momentum flux across the CG boundary

interface as calculated by the SG_40 of the rectangular harbour without the wall. The

variation of water elevation at the same interface is also shown. At the times of high

and low tide the momentum flux across the interface was seen to be close to zero,

water surface at HT

water surface at HT+Δt

water surface at LT

water surface at LT+Δt

(a) (b)

seabed seabed
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indicating slack water. This was confirmed by Figure 5.31b which shows

instantaneous momentum fluxes through each grid cell on the interface, at the times of

high and low tide. At both times, the fluxes through the interface cells were at or close

to zero; this is a defining characteristic of a mass-driven flow.

In contrast, Figure 5.32a shows the net momentum flux across the same interface, this

time calculated by the SG_40 of the rectangular harbour with the wall. The

momentum flux was also close to zero at high and low tides, appearing to indicate

times of slack water. However, comparison of the instantaneous fluxes through each

grid cell at high and low tide (Figure 5.32b) revealed that though the fluxes at low tide

were close to zero those at high tide were not. Slack water therefore occurred at low

tide but did not occur at high tide; the water was found to still retain a small quantity

of momentum at high tide. This is indicative of a momentum-driven flow. In such

systems the flood tide flow is influenced by both the mass and momentum fluxes at

the open boundary while the ebb tide flow is influenced by the interior mass and

momentum fluxes.
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Figure 5.31: (a) Net momentum flux and water elevation at boundary interface and (b)

instantaneous fluxes at high and low water through interface cells for the SG_40_RH.
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Figure 5.32: (a) Net momentum flux and water elevation at boundary interface and (b)

instantaneous fluxes at high and low water through interface cells for the SG_40_HW.
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In a nested domain, it is only possible to directly affect the conservation of mass and

momentum at the boundary of the child grid. Since the boundary has most influence

on the flood tide it is most important to ensure conservation on the flood tide when

variables are propagating inwards. Blayo and Debreu (2005) state that “good results

are obtained when primarily … working on the incoming characteristic variables”. As

evidenced by Figure 5.29b the BNM_3 achieved a much higher level of momentum

conservation on the flood tide than the BNM_1; this was the primary contributor to

the overall improvement in accuracy of the model solution. Blayo and Debreu (2005)

also note that the conservation of incoming variables must be associated with some

“consistent use of external data”. In other words the PG data used at the CG boundary

must be accurate. As previously stated, the CG boundary of the BNM was

strategically located in an area where PG accuracy was low. As a result, an inherent

error was passed to the CG solution; thus any improvements in accuracy had to be

analysed with this in mind.

On the ebb tide, the interior solution primarily determines the outward flowing

variables and fluxes. Figures 5.25 and 5.26 showed that the interior CG solution of the

BNM_3 was improved, and thus modified, from those of both the parent model and

the BNM_1. The CG hydrodynamics of the BNM_3 on the ebb tide were therefore

determined by a different interior solution than the parent model or the BNM_1. As a

result the outward momentum flux for the CG of the BNM_3, and by association the

level of error in that flux, was necessarily different to that computed by the other

models. In most cases, the values of the outward flowing variables computed by the

interior CG solution and the values of those imposed at the CG boundary from the PG

solution will be different. If the incompatibilities are large enough, the outflowing

waveforms may be reflected back into the CG domain where they generate spurious

errors or noise close to the boundary. This is one of the recognised sources of error in

a nested model.

The importance of conservation of incoming properties (mass and momentum) on the

flood tide, was further demonstrated when the snapshot data of the nested models was

analysed in more detail. The data were used to calculate time-averaged relative errors

in current velocity and water elevation for the separate periods of the ebb and flood

tides. The snapshot data from 37.5 – 43.5 hrs were used to calculate RET,Ebb while
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those from 44.0 – 49.5 hrs were used to calculate RET,Fld. The relative errors in current

velocity averaged over the ebb and flood tides for the PG, BNM_1, BNM_2 and

BNM_3 are shown in Figure 5.33. Since the errors in water elevations were similarly

low in all three models the error distribution plots for water elevations are not

presented. Domain averages of the ebb and flood tide-averaged error fields shown in

Figure 5.33 were also calculated; these are presented in Table 5.6.

RED in Elevation [%] RED in Velocity [%]Model
RED,Ebb RED,Fld RED,Ebb RED,Fld

PG 0.8 0.8 8.1 10.9
CG: BNM_1 0.8 0.8 4.9 10.1
CG: BNM_2 0.9 0.8 3.6 5.7
CG: BNM_3 0.8 0.7 3.5 4.7

Table 5.6: RED,Ebb and RED,Fld in water elevations and current velocities.

Table 5.6 shows a large variation in velocity errors between the ebb and flood tides

and between the different models. In the case of the BNM_1, it can be seen that the

main improvement in accuracy over the PG occurred on the ebb tide. Although an

improvement in accuracy did occur on the flood tide the level of improvement was

low relative to that on the ebb tide. It was shown in Figure 5.29 that conservation of

momentum in the BNM_1 was poor on the flood tide. As a result, flood tide errors

near the boundary were higher in the CG (Figure 5.33d) than in the PG (Figure

5.33b). Nonetheless, improvements in accuracy were still achieved at the back of the

harbour due to the higher resolution of the CG domain. The net effect was a 7%

reduction in RED,Fld (over the PG solution). On the ebb tide, the variables were largely

determined by the interior solution at the back of the harbour and less so by the

erroneous boundary solution. The accuracy of the interior solution at the back of the

harbour had been improved on the flood tide (Figure 5.33b), therefore a more accurate

solution was computed on the ebb tide with a 40% reduction in RED,Ebb from the PG.



159

50 55 60 65 70 75 80 85 90 95 100

5

10

15

20

25

30

35

40

45

50

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

50 55 60 65 70 75 80 85 90 95 100

5

10

15

20

25

30

35

40

45

50

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

160 180 200 220 240 260 280 300

20

40

60

80

100

120

140

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

160 180 200 220 240 260 280 300

20

40

60

80

100

120

140

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

160 180 200 220 240 260 280 300

20

40

60

80

100

120

140

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

160 180 200 220 240 260 280 300

20

40

60

80

100

120

140

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

160 180 200 220 240 260 280 300

20

40

60

80

100

120

140

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

160 180 200 220 240 260 280 300

20

40

60

80

100

120

140

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Figure 5.33: RET,Ebb and RET,Fld in PG and CG velocities relative to the SG_40.

(c) Ebb – BNM_1 (d) Flood – BNM_1

(e) Ebb – BNM_2 (f) Flood – BNM_2

(g) Ebb – BNM_3 (h) Flood – BNM_3

(a) Ebb – PG (b) Flood – PG
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In the case of both the BNM_2 and the BNM_3 the conservation of momentum on the

flood tide was significantly improved over the BNM_1. This resulted in a 48%

reduction in RED,Fld for the BNM_2 (over the PG) and a 57% reduction for the

BNM_3. From Figure 5.29 it can be seen that the flood tide conservation of

momentum was actually higher in the BNM_2 yet the BNM_3 gave the more accurate

solution. The reason for this was explained when the boundary momentum fluxes

were compared with the corresponding flux from the SG_40. This comparison is

shown in Figure 5.34.
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Figure 5.34: (a) Boundary momentum fluxes and (b) error in fluxes relative to SG_40.

The relative error in the PG and the BNM_2 can be seen to be almost identical. This

was to be expected given that the modification of the solution scheme in the BNM_2

ensured that boundary properties were highly conserved between the parent and child

grids for the full tidal cycle. However, it can be seen that on the flood tide the relative

error of the BNM_3 was lower than that of the PG and the BNM_2. The average flood

tide error for the PG and BNM_2 were 8.9% and 8.7% respectively while that for the

BNM_3 was only 6.8%. The recalculation of boundary variables in the BNM_3 using

the ghost cells had the effect of nudging the CG momentum flux towards that of the

SG_40. This accounted for the more accurate flood tide solution of the BNM_3

(Figure 5.33h) over the BNM_2 (Figure 5.33f).

The improved flood tide CG solutions of both the BNM_2 and BNM_3 in turn led to

improvements in the ebb tide CG solutions. Figure 5.29 showed that the level of CG

momentum conservation in the BNM_3 was much less than that in the BNM_2. From

Table 5.5, the ebb tide average error of the CG boundary momentum flux was 16.3%

in the BNM_3 compared to 0.4% in the BNM_2. However, the RET,Ebb distributions

(Figures 5.33e and 5.33d) show that the level of conservation at the boundary had

(a) (b)
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very little effect on the ebb tide solution. Instead, it was predominantly determined by

the interior solution. As a result the RED,Ebb for CG solution was fairly similar for both

models at 3.6% for the BNM_2 and 3.5% for the BNM_3.

The results from the error analysis demonstrated that in order to obtain the most

accurate CG solution the conservation of momentum between the parent and child

grids at the CG boundary was most important on the flood tide. Conservation of

momentum on the ebb tide was not as important for model performance since the

interior solution, and not the CG boundary, was largely responsible for the

computation of the ebb tide solution.

One final point of note is that both of the two recognised sources of error in a nested

model were visible in the RET,Ebb and RET,Fld distributions. The sources of error are: 1)

errors resulting from inaccurate boundary data, and 2) errors resulting from

incompatibilities between the imposed boundary solution and the computed outgoing

solution. Firstly, errors in the parent model velocities can clearly be seen in Figure

5.33b along the location of the nested boundary. Figure 5.33f and 5.33h then show the

propagation of these errors into the child grid solution on the flood tide. However, it

can also be seen that the magnitude of these boundary errors decreased with distance

from the boundary. This is a common feature of nested model boundary errors

resulting from inaccurate boundary data. It is therefore important to ensure that

boundaries are located sufficiently distant from areas of interest.

Secondly, Figure 5.33 shows the source of possible wave reflection of outflowing

waveforms at the boundary. It can be seen from Figure 5.33a that for the ebb tide, the

PG data at the top, middle and bottom of the boundary is incompatible with the CG

solution, indicated by the high errors. If these incompatibilities were large enough

then outgoing waveforms in the nested solution might be prevented from passing out

of the model domain resulting in their reflection at the boundary and the generation of

disturbances in the nested solution. Although the incompatibilities are clearly visible,

the smooth waveforms of the CG timeseries suggested that they were not large

enough to generate disturbances in the CG solution.
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Incompatibilities were more visible in the BNM_3 than the BNM_2 for two reasons.

Firstly, the incompatibilities at the CG boundary were accentuated due to the

recalculation of the CG boundary values in the BNM_3. This can be seen in Figure

5.34b where the error in the ebb tide flux is larger for the BNM_3 than the BNM_2.

Secondly, the interior CG solution was more accurate in the BNM_3. As a result, the

ebb tide CG solution was also more accurate (see Figures 5.33e and 5.33g) and

therefore incompatibilities at the CG boundary were more pronounced.

5.7 Internal Boundary with Modified Solution Scheme – BNM_4

During the analysis of the temporal aspects of momentum conservation it was found

that BNM_3 had produced the most accurate flood tide solution while BNM_2

resulted in lower incompatibilities at the boundary between the imposed and

computed solutions on the ebb tide. It was therefore decided to combine the modified

boundary solution approach of the BNM_2 with the internal boundary formulation

approach of the BNM_3. In the resulting BNM_4 the CG boundary was formulated as

an internal boundary using ghost cells and the recalculation of model variables on the

boundary was prevented.

The RET in CG current velocities for the BNM_4 is shown in Figure 5.35 where it is

compared with the same error plots for the BNM_2 and the BNM_3. It can be seen

that the tidally-averaged errors of the BNM_4 were different to those of both the

BNM_2 and BNM_3. As shown in Table 5.7, the RED of the BNM_4 was found to be

the lowest of all of the nested models. The difference in the performance of the

BNM_4 compared to the BNM_2 and BNM_3 is best explained by analysis of the

relative errors in CG velocity averaged over the ebb and flood tides, i.e. RET,Ebb and

RET,Ebb. The domain-averages of these error fields are also listed in Table 5.7.

RED in Velocity [%]Model
Full Tide Ebb Flood

PG 9.2 8.1 10.9
CG: BNM_1 7.3 4.9 10.1
CG: BNM_2 4.5 3.6 5.7
CG: BNM_3 4.0 3.5 4.7
CG: BNM_4 3.9 2.9 5.2

Table 5.7: Comparison of RED in CG current velocities for nested models.
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Figure 5.35: RET in current velocity for (a) the BNM_2 (b) the BNM_3 and (c) the BNM_4.
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Figure 5.36: RET,Ebb in CG current velocities for (a) the BNM_2 (b) the BNM_3 and (c) the BNM_4.
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RED,Ebb for the BNM_4 was recorded at 2.9%. This was lower than the corresponding

errors for both the BNM_2 (3.6%) and the BNM_3 (3.5%). In contrast, the RED,Fld for

the BNM_4 of 5.2%, while lower than that for the BNM_2 (5.7%), was higher than

that for the BNM_3 (4.7%).

The reduction in RED,Ebb from that of the previous best performer, the BNM_3,

occurred in the near-boundary region of the CG domain; this can be seen in the

RED,Ebb plots of Figure 5.36. The reduction in near-boundary errors was thought to be

a direct result of the prevention of the recalculation of boundary variables in the

BNM_4. As a result, the difference between the ebb tide flux and the SG_40 flux was

lower in the BNM_4 than the BNM_3; this can be seen in Figure 5.37 which

compares boundary momentum fluxes from BNM_3 and BNM_4 with that from the

SG_40. The inconsistencies between the ebb tide solution near the boundary and the

assigned boundary values were therefore lower in the BNM_4 which in turn resulted

in lower boundary errors on the ebb tide. The inconsistencies between the CG solution

of the BNM_3 and that of the SG_40 were exaggerated by the recalculation of the

boundary variables resulting in higher flux errors.
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Figure 5.37: (a) Boundary momentum fluxes and (b) errors in flux relative to SG_40.

The reason for the increase in RED,Fld from the BNM_3 to the BNM_4 can also be

explained by the comparison of boundary momentum fluxes in Figure 5.37. The

recalculation of boundary variables in the BNM_3 had the effect of nudging the CG

boundary solution towards the SG_40 solution, giving a lower error on the flood tide

flux and therefore a more accurate flood tide solution. The prevention of recalculation

of boundary variables in the BNM_4 meant that the flood tide momentum flux was

matched to that of the PG and the nudging effect was lost. It can also be seen from

Figure 5.35 that the lower flood tide flux of the BNM_4 produced slightly lower

(a) (b)
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currents, and thus higher relative errors, at the back of the harbour than the BNM_3.

However, it should be remembered that the absolute magnitude of the errors in this

region were insignificant.

The CG mass and momentum fluxes of the BNM_4 were identical to those of the

BNM_2 as a result of the prevention of the recalculation of boundary variables in both

models. The incorporation of this modification to the boundary solution scheme in

combination with the internal boundary formulations of the BNM_4 had the desired

effect of improving the conservation of mass and momentum between the parent and

child grids. As for the BNM_2, the errors in BNM_4 CG mass and momentum fluxes

relative to PG fluxes were 0.3% for mass and 0.4% for momentum. Both mass and

momentum were therefore highly conserved in the BNM_4. In contrast with the

BNM_2 though, the internal boundary formulations of the BNM_4 resulted in an

improved flood tide solution (RED,Fld decreased from 5.7% to 5.2%) which in turn

resulted in an improved ebb tide solution (RED,Ebb decreased from 3.6% to 2.9%).

5.8 Summary and Conclusions

The second stage of development of the BNM involved the investigation of the

boundary momentum conservation problem. This problem had come to light during

the initial development of the BNM and is a common one in nested models. The

nature of the boundary conservation problem was the inaccurate conservation of

model properties, in particular momentum, between the parent and child grids of the

nested model. The result was a loss in accuracy of the child grid solution. A number

of possible causes were considered, namely:

 the boundary interpolation technique

 the model solution scheme

 the boundary formulations

All of the possible causes were examined in detail. Alternative interpolation

techniques and modified formulations and solution schemes were implemented and

assessed for their effect on model performance, and in particular for their effect on the

conservation of mass and momentum flux at the open boundary of the child grid. The

problem was solved by using an innovative approach to boundary formulation

whereby the open boundary of the nested domain was, in effect, internalised.
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The interpolation scheme was initially investigated. Four different types of

interpolation scheme were assessed for accuracy: 1) the zeroth order scheme; 2) the

linear scheme; 3) the quadratic scheme; and 4) the IDW scheme. It was found that the

linear and quadratic schemes gave the highest levels of conservation of mass and

momentum when interpolating from the parent to the child grid. This was most likely

due to both schemes being conservative. The linear scheme is conservative by nature

while the quadratic scheme was based on the conservation formula suggested by

Kurihara et al. (1979) and Clark and Farley (1984). The linear scheme was slightly

more accurate than the quadratic scheme; this agreed with the literature (Alapaty et

al., 1998). For the linear scheme, the tidally-averaged errors in CG fluxes relative to

the PG fluxes were 0.27% for mass flux and 0.19% for momentum flux. The linear

interpolation scheme was therefore adopted in a new version of the nested model, the

BNM_1.

Analysing the performance of the BNM_1 it was found that the effect of the improved

conservation of the linear interpolation scheme on model performance was negligible.

It was therefore concluded that the cause of the momentum conservation problem was

either in the formulation or the solution of the governing equations at the boundary. A

clearer picture of the momentum conservation problem and its effect on model

performance was ascertained by forcing the BNM_1 with high resolution boundary

data from the SG_40. By so doing, the typical nested model boundary errors caused

by inaccuracies in the parent grid boundary data were eliminated, allowing any

remaining error to be easily identified. A single grid model of the child grid domain

(SG_40_CG) was also constructed and forced with the same high resolution boundary

data. The errors in both model solutions relative to the SG_40 were found to be

almost identical. The open boundaries of both the BNM_1 and the SG_40_CG were

formulated and solved in a similar manner. Since both models had also been forced

with the same boundary data, the results supported the argument that the boundary

solution scheme or formulations were contributing factors to the momentum

conservation problem.

Investigation of the hydrodynamic solution scheme revealed that some model

variables at the open boundary of the child grid domain were recalculated during the

solution of the momentum equations. The variables qx
n+½, qx

n and Un were all
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recalculated at the end of the first iteration of the solution scheme while qx
n+½ was

again recalculated on the second and final iteration. These variables were thus

modified from the values assigned to them via interpolation from the parent model

solution. This was thought to be a possible cause of the momentum problem as these

variables determined the boundary mass and momentum fluxes. A new model, the

BNM_2, was therefore developed in which the CG boundary solution scheme was

modified to prevent the recalculation of boundary variables.

The boundary formulations were also investigated as to their effect on model

performance. In any numerical model the formulation of the momentum equation at a

boundary cell is necessarily different to that at an interior grid cell. Depending on the

type of finite difference method used, the calculation of the derivatives of boundary

variables in the direction normal to the boundary may not be possible. The BNM uses

the central difference method; thus the calculation of the derivatives of boundary

variables in the direction normal to the boundary required values from adjacent cells

outside the boundary which did not exist. These derivatives were therefore set to zero

at a CG boundary cell thus simplifying the boundary formulations. The affected terms

in the momentum equation were the advective acceleration and the turbulence induced

shear force. The effect of the simplification of these terms was that the boundary was

unable to accurately model the effects of the hydrodynamic activity outside the

boundary on that inside the boundary.

The BNM_3 was developed to investigate the effect of the boundary formulation on

the conservation of properties at the CG boundary. In a unique approach to open

boundary formulation, ghost cells were incorporated adjacent to the CG boundary

interface and assigned values from the parent model solution in the same way as the

boundary cells. The CG boundary formulations were modified so that the normal

derivatives, previously set to zero, were instead calculated using the ghost cell data. In

so doing, the CG boundary was converted to an internal boundary which was better

able to simulate the effect of the outside world. The internalisation of the CG

boundary was akin to an inverse radiation boundary, that is, it improved the

propagation of information into the model domain. It should be stated that this

approach was also developed with a view to solving the moving boundary problem
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associated with the incorporation of flooding and drying; this is dealt with in the next

chapter.

Once again, the BNM_2 and BNM_3 were both initially forced with the high

resolution data from the SG_40. The solution of the momentum conservation problem

by either model should therefore have resulted in a BNM solution identical to the

SG_40 solution. As shown in Table 5.8, both the BNM_2 and BNM_3 gave

significant improvements in performance and accuracy over the BNM_1. The BNM_3

was most accurate with only negligible errors between it and the SG_40. Both models

were next forced in the normal nested manner using boundary data interpolated from

the PG. Table 5.9 summarises the errors in the CG’s of all three BNM’s relative to the

SG_40. The error in the PG relative to the SG_40 is also shown. The BNM_3 was

again the most accurate nested model achieving a 57% reduction in error in CG

velocities from the PG. The CG errors must be viewed in light of the strategic location

of the CG boundary in an area of low PG accuracy which resulted in large boundary

specification errors in the CG solution.

RED [%]Model
Water Elevation Current Velocity

BNM_1 0.05 4.6
BNM_2 0.02 1.8
BNM_3 <0.01 0.1

Table 5.8: RED in CG relative to SG_40 for CG forced with SG_40 data.

Model RED [%]
Water Elevation Current Velocity

PG 0.80 9.2
BNM_1 0.79 7.3
BNM_2 0.81 4.5
BNM_3 0.78 4.0
BNM_4 0.78 3.9

Table 5.9: RED in CG relative to SG_40 for CG forced with PG data.

A most interesting aspect of the results of the BNM_2 and the BNM_3 was the

temporal improvement in the conservation of momentum achieved by both models.

This is demonstrated once again in Figure 5.38. It was found that it was more
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important to ensure conservation of boundary properties on the flood tide and that

conservation on the ebb tide may not be desirable or even possible. On the flood tide,

circulation is predominantly influenced by the boundary solution, thus conservation of

properties during this period is crucial for CG accuracy. On the ebb tide circulation is

predominantly influenced by the interior CG solution; therefore the outgoing fluxes

computed by the CG near the boundary may actually be different to the outgoing

fluxes specified at the boundary from the PG solution.
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Figure 5.38: Errors in CG boundary momentum fluxes relative to SG_40 flux.

For the BNM_2 conservation was high on both the ebb and flood tides; however, for

the BNM_3 conservation was only high on the flood tide yet it still out-performed the

BNM_2. It was found that the recalculation of boundary variables on the flood tide in

the BNM_3 nudged the incoming boundary flux towards that of the high resolution

model, thus maximising the accuracy of the interior flood tide solution. However, the

more accurate flood tide solution then generated a more accurate ebb tide solution

causing greater incompatibilities between the outgoing waveforms computed by the

interior solution and that specified at the boundary by the PG data. These

incompatibilities were exacerbated by the recalculation of boundary variables.

However, the magnitudes of the incompatibilities were not large enough to

significantly affect model accuracy or generate instabilities in the model solution as a

result of wave reflection.

The incompatibilities between the boundary and interior solutions were not as

prevalent in the BNM_2 because the recalculation of boundary variables was

prevented. In the BNM_3, where recalculation of boundary variables was allowed,

incompatibilities between the CG solution and the imposed PG boundary data were

amplified by the recalculation process. It was therefore decided to combine both the
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modified boundary solution scheme of the BNM_2 with the internal boundary of the

BNM_3. This approach was implemented in the BNM_4. Errors were found to

increase on the flood tide (from those of the BNM_3) because the nudging effect of

the recalculation of the boundary variables had been eliminated. However, errors were

also found to decrease on the ebb tide with lower boundary incompatibilities. The net

effect was a slight improvement in overall model performance with the RED in current

velocity magnitudes decreasing from 4% for the BNM_3 to 3.9% for the BNM_4

(Table 5.9). The RED in water elevations was the same as that for the BNM_3.

The BNM_4 approach to property conservation at the CG boundary involved the

formulation of an internal boundary with the prevention of the recalculation of

boundary variables. This approach was found to give the best model performance of

the approaches tested; it was therefore installed in the BNM subsequent to any further

development. The approach has four main advantages:

 firstly, it ensures conservation of properties at the boundary by preventing the

recalculation of boundary variables

 secondly, it enables the boundary to accurately simulate the outside world by

incorporating values from ghost cells outside the boundary in the boundary

formulations

 thirdly, it is an approach that could be implemented in any regional coastal model

where boundary data is available from a larger-scale ocean model

 finally, as discussed in the next chapter, the approach also facilitates the simulation

of a dynamic internal boundary meaning that portions of the CG boundary can be

subject to flooding and drying without significant losses in model accuracy
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6. Development of BNM: Phase III

CG Boundary Condition and Dynamic Boundary

6.1 Introduction

The internalisation of the child grid boundary and the prevention of the recalculation

of boundary variables in the BNM_4 significantly enhanced CG performance through

the improvement of momentum conservation at the CG boundary. Boundary variables

were assigned to the internal boundary of the BNM_4 using a Dirichlet boundary

condition. The Dirichlet BC was initially employed in the BNM as it is commonly

used in one-way nested models and has proved both effective and easy to implement.

Although it was found to give quite promising results and ensured high levels of

property conservation, it also resulted in boundary errors due to incompatibilities

between the ebb tide solution imposed at the boundary and that computed by the CG.

If large enough, such incompatibilities could result in wave reflection and the

generation of disturbances in the CG solution. While wave reflection errors can occur

for any type of boundary condition, they tend to be more common when Dirichlet

boundaries are used. To determine the effect of the boundary condition on momentum

conservation and model performance, two other common forms of BC, namely flow

relaxation and radiation, were implemented and tested in the BNM.

Following investigation of boundary condition effects, the final step in the

development of the BNM was the assessment of its performance under conditions of

flooding and drying. The internal boundary approach to the solution of the momentum

conservation problem was formulated with flooding and drying in mind. In particular,

it was hoped that this approach would enable the CG boundary to behave as a

dynamic boundary thus facilitating flooding and drying of the boundary itself. Model

performance was first tested for flooding and drying of the interior of the CG domain

only. Following this, the dynamic boundary was tested by allowing flooding and

drying of both the interior domain and the CG boundary.

6.2 Flow Relaxation Scheme

Relaxation boundaries were identified during the literature review as one of the better

methods of boundary specification in terms of model performance and accuracy. The
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aim of flow relaxation is to reduce wave reflection errors through the absorption of

boundary disturbances as opposed to their propagation out of the domain.

6.2.1 Implementation

The implementation of the FRS, described previously in Section 3.5.2, involves the

relaxation of the CG solution towards the PG solution in a sponge layer according to:

2
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  (6.1)

The flow relaxation scheme was implemented in the BNM_Rlx and was applied to the

rectangular harbour bathymetry with the harbour wall. Figure 6.1 shows the grid

configuration for the BNM_Rlx. To allow comparisons with previous BNM results

the previous CG domain extents were retained. The CG domain was therefore located

so that the outer boundary of the sponge layer Γ’ corresponded to the previous CG

boundary. The relaxation function  was varied linearly from 1 on Γ’, to 0 on , the

inner boundary of the sponge layer.
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Figure 6.1: PG domain of BNM_Rlx showing CG boundary Γ’ and timeseries points.

The implementation of the flow relaxation scheme in the model required both the

specification of the sponge layer and the introduction of a new subroutine

RELAXBND to carry out the relaxation of the solution within Ωs. A schematic of the

structure of the BNM_Rlx showing the incorporation of the relaxation subroutine is

presented in Figure 6.2.
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Figure 6.2: Flowchart of BNM structure.

(CG subroutines are shaded, PG subroutines are not.)

M
ai

n
Pr

og
ra

m

FILINP

FILOUT

BOUND

FIELD

FIND

DEPTH

INITL

HYDBND

HYDMODX

SIDEH

FLDRY

HYDBND

FLDRY

HYDMODY

SIDEH

PRINT

1

2

3

4

6

8

9

10

11

12

13

14

15

16

17

29

EDDY_F

CHEZY

32

34

FIELD_F5

FIND_F7

INITL_F

NEST

30

CHEZY_F

EDDY

31

FINEBND

HYDMODX_F

SIDEH_F

FLDRY_F

FINEBND

FLDRY_F

HYDMODY_F

SIDEH_F

18

19

20

21

23

24

25

26

28
33

RELAXBND

RELAXBND27

22



174

The time-wise progression of the BNM_Rlx can be summarised as follows:

8. progress PG one PG timestep (t+∆tp)

9. interpolate (time-wise) PG data within Ωs to next CG timestep (t+∆tc)

10. interpolate (spatially) PG data at (t+∆tc) to child grid points within Ωs

11. assign interpolated PG data to CG boundary Γ’ using Dirichlet BC

12. progress CG one CG timestep (t t+∆tc)

13. replace estimated CG solution in Ωs (computed in Step 5) with the relaxed

solution using equation (6.1)

14. repeat Steps 2 6 so that CG is synchronised to current timestep of PG (t+∆tp)

15. return to Step 1 and continue

It should be noted that steps 27 above are carried out in the x- and y-directions for

each CG half-timestep.

6.2.2 BNM_Rlx Results

The flow relaxation scheme was first implemented in the BNM_1 for the BNM_HW

bathymetry. The optimal width of the sponge layer is particular to specific modelling

problems. For example, Martinsen and Engedahl (1987) used widths of 3–10 grid

cells while Cooper and Thompson (1989) also used a width of 10 grid cells. The

BNM_Rlx was therefore run for a number of different sponge layer widths ranging

from 3 cells to 15 cells. Five versions were run in total for widths of 3, 6, 9, 12 and 15

CG cells. All versions were run for 50hrs for the same spring tide forcing and the

results from the final tidal cycle (37.5 - 50hrs) were used for analysis. As in previous

analyses the high resolution SG_40 solution was assumed the correct model solution.

To determine the optimum sponge layer width, the accuracy of each CG solution was

determined in relation to the SG_40. RET and RED in CG water elevations and current

velocity magnitudes were calculated and are compared in Tables 6.1 and 6.2

respectively. Errors are presented for two different AOI’s, the first being the CG

domain including the sponge layer and the second being the CG domain excluding the

sponge layer. The extents of the second AOI was taken as 15 CG cells inside Γ’; this

corresponded to the location of the inner boundary Γ of the widest sponge layer

tested.
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AOI inside Γ’ AOI inside ΓΩs Width
[no. CG cells] RED

[%]
RET > 1%

[% of AOI]
RED

[%]
RET > 1%

[% of AOI]
3
6
9
12
15

0.8
0.8
0.8
0.8
0.8

0.2
0.1

<0.1
<0.1
<0.1

0.8
0.8
0.8
0.8
0.8

<0.1
<0.1
<0.1
<0.1
<0.1

Table 6.1: Errors in CG water elevations relative to SG_40.

AOI inside Γ’ AOI inside ΓΩs Width
[no. CG cells] RED

[%]
RET > 10%
[% of AOI]

RED

[%]
RET > 10%
[% of AOI]

3
6
9
12
15

5.4
5.4
5.5
5.6
5.6

5.4
5.7
6.8
8.5
9.9

5.1
5.0
4.9
4.9
4.9

4.3
3.7
3.4
4.1
4.9

Table 6.2: Errors in CG current velocities relative to SG_40.

Little variation in the accuracy of the CG elevations was observed. All versions of the

BNM_Rlx computed elevations to a similarly high degree of accuracy (RED<1%).

Some variations in current velocity accuracy were observed; however, the magnitudes

of variation were quite low. According to the relaxation equation (6.1), the solution in

the sponge layer is a combination of both the CG and PG solutions; thus, any error in

the PG solution is passed directly into the CG solution within Ωs. This explains the

increase in the proportion of the domain in which RET exceeded 10%, seen in the

results for the AOI including Ωs. It can be seen that RET exceeded 10% in

approximately 10% of the AOI when the sponge layer width was 15 cells compared to

approximately 5% of the AOI when the width was just 3 cells. This aspect of the

sponge layer effect is further demonstrated in Figure 6.3 which compares the RET in

CG current velocities for these two versions of the BNM_Rlx. It can be seen that the

wider sponge layer allowed the introduction of a greater amount of PG error to the CG

solution. When analysing the error in the BNM_Rlx solutions it was therefore more

meaningful to analyse those errors for the AOI excluding the sponge layer.
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Figure 6.3: RET in CG velocities of BNM_Rlx relative to SG_40 for (a) sponge layer

width of 3 CG cells and (b) sponge layer width of 15 CG cells.

Based on the errors in the AOI which excluded the sponge layer, the optimum sponge

layer width was found to be 9 CG cells. This configuration produced the lowest RED

(3.4%) and the smallest proportion of AOI with RET>10% (3.4%). Figure 6.4 shows

the RET in CG elevations and velocities for this version of the BNM_Rlx. For

comparison, the corresponding error plots for the BNM_1 and the BNM_4 are also

reproduced in Figures 6.5 and 6.6 respectively. From visual comparison alone, it can

be seen that the velocities of the BNM_Rlx were more accurate than the BNM_1. This

was noteworthy as the BNM_Rlx was, in essence, the BNM_1 with flow relaxation.
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Figure 6.4: RET in (a) elevations and (b) velocities for CG of BNM_Rlx with a sponge

layer thickness of 9 CG cells.
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Figure 6.5: RET in (a) elevations and (b) velocities for CG of BNM_1.
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Figure 6.6: RET in (a) elevations and (b) velocities for CG of BNM_4.

Recalculation of CG boundary variables had been found to be a contributing factor to

the momentum conservation problem of the BNM_1 which resulted in the poor

performance of that model. To summarise, boundary variables were recalculated

during the solution of the momentum and continuity equations using interior domain

values which had been improved and thus modified from the PG solution as a result of

the higher CG resolution. CG boundary values were thus modified from their assigned

PG values. In the BNM_Rlx the solution in the sponge layer adjacent to the CG

boundary was much closer to the PG solution than the CG solution. Recalculation of

boundary values therefore resulted in values which were quite similar to the assigned

PG values. As a result conservation of mass and, in particular, momentum at the CG

boundary was much-improved in the BNM_Rlx compared to the BNM_1. This is

demonstrated in Figures 6.7 and 6.8 which compare the CG boundary fluxes of mass

(a) (b)

(a) (b)
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and momentum, respectively, for the BNM_Rlx with those from the BNM_1 and the

BNM_4.
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Figure 6.7: (a) Boundary mass fluxes and (b) error in CG fluxes relative to PG.
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Figure 6.8: (a) Boundary momentum fluxes and (b) error in CG fluxes relative to PG.

It can be seen that conservation of mass and momentum at the CG boundary of the

BNM_Rlx was quite high. The higher conservation of momentum, in particular, from

that of the BNM_1 explained the better performance of the BNM_Rlx. In comparison

to the BNM_4, the levels of conservation of mass and momentum in the BNM_Rlx

were quite similar, even slightly higher in the case of momentum (0.2% in BNM_Rlx

compared to 0.4% in BNM_4). However, comparison of the RET distribution plots for

CG velocities shows that the BNM_4 was more accurate than the BNM_Rlx. This is

confirmed by Table 6.3 which summarises the error parameters computed for the

parent and child grid solutions in the AOI (including the sponge layer). The table

shows the high accuracy of the water elevations computed by all models and the

superior accuracy of the BNM_4 velocities.

The reason the BNM_Rlx did not perform as well as the BNM_4 despite its equally

high level of momentum conservation can be related back to the importance of

momentum conservation for incoming properties and its lesser importance for

(a) (b)

(a) (b)
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outgoing properties. In the BNM_4, any error in the incoming boundary data obtained

from the PG was passed to the CG at the boundary only; however, in the BNM_Rlx

PG errors were passed to the CG solution not only at the boundary but throughout the

sponge layer. An additional source of error was therefore introduced to the BNM_Rlx.

This is demonstrated by Figure 6.4b where the width of the area of elevated near-

boundary errors for the BNM_Rlx can be seen to be wider than that in Figure 6.6b for

the BNM_4.

Error Parameter CM BNM_1 BNM_4 BNM_Rlx
Water Elevation:

- RED [%]
- AED [x 10-3 m]
- RET > 1% [%]

0.8
7.7

<0.1

0.8
7.7

<0.1

0.8
7.7

<0.1

0.8
7.7

<0.1
Current Velocity:

- RED [%]
- AED [x10-3 m/s]
- RET > 10% [%]

9.2
10.9
40.4

7.3
9.7

27.1

3.9
4.9
2.4

5.5
6.3
6.8

Table 6.3: Error parameters for PG and CG solutions in AOI including Ωs.

A further potential drawback of the BNM_Rlx was its effect on the computation of

water surface elevations. Based on the data in Table 6.3 alone, it could be concluded

the BNM_Rlx computed elevations to the same level of accuracy as the other CG and

PG models. However, comparison of the RET in BNM_Rlx elevations (Figure 6.4a)

with the BNM_1 and the BNM_4 (Figures 6.5a and 6.6a) reveals an anomaly in the

BNM_Rlx solution. Whereas the errors in the CG elevations of the BNM_4 and

BNM_1 varied in a gradual manner, as would be expected, the errors in the BNM_Rlx

solution were found to vary in a wave-like manner. This can only be a manifestation

of the imposed solution in the sponge layer. However, it should be noted that while

unusual, the magnitude of the variations in RET were only of the order of 0.2% and, as

such, they did not have a noticeable effect on the actual values of CG water surface

elevations, nor indeed on the CG current velocities.

It was found that the relaxation boundary facilitated high levels of mass and

momentum conservation at the CG boundary. However, the main reason for the use of

relaxation schemes is to reduce possible wave reflection errors arising from
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incompatibilities between the outgoing CG solution and the imposed PG boundary

data. To determine whether the BNM_Rlx did in fact reduce the potential for wave

reflection errors, errors in CG velocities were calculated for the period of the ebb tide

alone. The RET,Ebb in CG velocities for the BNM_Rlx is compared with that for the

BNM_4 in Figure 6.9.
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Figure 6.9: RET,Ebb in CG solution for (a) BNM_4 and (b) BNM_Rlx.

The first point of interest is again that the BNM_4 solution was superior to the

BNM_Rlx. For the reason discussed above, the flood tide solution of the BNM_Rlx

was not as accurate as the BNM_4; this resulted in higher errors at the back of the

harbour which can be seen in Figure 6.4b. The ebb tide solution of the BNM_Rlx,

being predominantly driven by this less accurate solution at the back of the harbour,

was therefore also less accurate than the BNM_4. The second point of interest is in

relation to the boundary errors caused by the incompatibility of the ebb tide solution

and that imposed at the boundary. A region of elevated errors was generated in the

BNM_4 immediately adjacent to the boundary and along its full length. This region of

higher errors did not appear in the BNM_Rlx with boundary errors being almost zero

along those sections of the boundary J = 85125 and J = 2065. This was thought

to be a direct result of the relaxation of the CG solution towards the PG solution in the

sponge layer. The results demonstrated that the flow relaxation scheme was capable of

reducing the potential for wave reflection errors.

Flow relaxation was also implemented in the BNM_4; however, the effect of

boundary internalisation (which was responsible for the superior performance of the

I

J

(a) (b)
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BNM_4 over the BNM_1) was negligible when the flow relaxation was applied. This

was thought to be because the flood tide flows were more strongly influenced by the

sponge layer solution than the boundary solution when relaxation was employed.

In conclusion, the BNM_Rlx was able to ensure high levels of conservation at the CG

boundary and appeared to reduce the potential for reflection of outgoing waveforms.

However, the introduction of additional PG error to incoming waveforms within the

sponge layer meant that the Dirichlet BC and internal boundary of the BNM_4 proved

to be a superior boundary operator to the flow relaxation scheme.

6.3 Radiation Boundary

Similar to flow relaxation schemes, the main function of a radiation boundary is to

reduce the potential for wave reflection errors; however, the manner in which this is

achieved is different to the manner in which it is achieved by a FRS. Radiation

boundaries aim to allow outgoing waveforms to propagate (or radiate) freely across

the boundary with minimal reflection of the wave. The theory behind the radiation

boundary tested in the BNM was explained in Section 3.5.3. The basic principal of its

operation is: for incoming waveforms the CG boundary data is determined from the

PG while for outgoing waveforms the CG boundary data is predominantly determined

from the CG itself. As a result, the outgoing CG solution is compatible with the data

imposed at the boundary and propagates freely through the boundary; the risk of

disturbances generated by reflected waveforms is therefore reduced.

The radiation boundary was also implemented in the idealised rectangular harbour

with the harbour wall. The new model, termed the BNM_Rad, used the same grid

configuration as previous BNMs. The BNM_Rad domain is shown in Figure 6.10.
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Figure 6.10: PG domain of BNM_Rad showing CG boundary Γ and timeseries points.
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6.3.1 Implementation

It was initially proposed to implement an Orlanski-type radiation boundary condition

where 2
1n

j,ic


 on Γ was calculated according to Miller and Thorpe (1981) as:
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with the phase velocity cw calculated using:
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(6.3)

For outward propagating waveforms, equation (6.3) should yield a value of cw>0 and

so 2
1n

j,ic


 is determined by both the boundary and interior solutions, but

predominantly the interior CG solution for higher values of cw. For inward

propagating waveforms equation (6.3) should yield a value of cw<0; in such cases the

radiation BC of (6.2) is not applied and 2
1n

j,ic


 is instead assigned directly from the

PG solution using a Dirichlet BC.

During model testing the evaluation of the phase velocity proved problematic as the

computed phase velocities were quite unstable. This can be seen in Figure 6.11 which

shows the phase velocity computed for the velocity component normal to the CG

boundary, i.e. the x-direction velocity component U, and the surface elevation ζ. The

instability of cw is not an uncommon problem when using Orlanski’s adaptive

evaluation technique; both Tréguier et al. (2001) and Durran (2001) have reported that

the determination of cw in such a manner seldom yields a meaningful function. The

finite difference approximation of cw (equation (6.3)) is expressed using the grid cells

adjacent to the boundary. The approximation is therefore subject to feedback from any

noise generated by boundary errors which results in the instabilities observed in the

computed solution Durran (2001).
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Figure 6.11: Phase velocity over a single tidal cycle for (a) velocity component

normal to CG boundary and (b) water surface elevation.

Since it was not possible to use the Orlanski-type method to propagate outward flows

through the boundary an alternative radiative approach was formulated termed the

extrapolated radiation condition (ERC). Radiation conditions are typically only

applied to components of flow as surface elevations tend to be computed quite

accurately, regardless of resolution. In addition, wave reflection only occurs at times

of outgoing flow. The adopted approach therefore involved two steps: first, the

determination of the direction of flow and, second, the application of the ERC. At the

CG boundary Γ of Figure 6.10 the ERC was therefore applied to the normal velocities

U in the following manner:
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where the boundary values of n

j,icU and 2
1n

j,icU


for 0U n

1j,ic  were calculated by

extrapolation from the interior grid cells adjacent to the boundary using:
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The ERC was also applied to the tangential velocities V based on the direction of flow

as determined from n

1j,icU  . The unknown volumetric flux components 2
1n

j,icxq


and

(a) (b)
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2
1n

j,icyq


were also calculated at the CG boundary from the velocity components. The

ERC was implemented in the BNM_Rad by modifying the CG boundary operator

subroutine FINEBND. Water surface elevations were assigned to the CG boundary of

the BNM_Rad using the Dirichlet boundary condition.

As can be seen from equation (6.4) extrapolative radiation of CG variables was only

applied to outgoing flows. Boundary variables for incoming flows were assigned

directly from the PG solution using the Dirichlet boundary condition. Since the

BNM_4 ensured the highest level of conservation of incoming properties, the ERC

was initially tested in this version of the BNM. Initial implementation resulted in the

model terminating prematurely due to instabilities resulting from discontinuities in

boundary velocities at times of reversing flow.

To demonstrate, consider the situation where all flow along the CG boundary is

directed outward. All boundary velocities are therefore extrapolated from the interior

solution and the boundary solution is continuous. Now take the case where the flow

reverses to an inward direction. Typically, flow reversal will not occur

instantaneously at every point on a boundary. It is therefore common to have both

inward and outward flow on a boundary at the same time, as shown in Figure 6.12.

According to the ERC implemented in the model, the velocities at grid cell (ic,jc+1)

will now be assigned directly from the parent grid solution (as per equation (6.4)).

The assigned PG values may be significantly different from the values extrapolated

from the interior solution for the outgoing flow at grid cell (ic,jc) resulting in a

discontinuity in the boundary solution. This was the case in the BNM_Rad; the time

of termination, 1.13hrs into the simulation, matched the time of the first flow reversal

at a boundary grid cell. Oddo and Pinardi (2008) also identified this problem in their

review of radiation boundary conditions for nested models. They point out that

inconsistencies could be generated at those boundary points where the flow field

switches in time between flood and ebb regimes.
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Figure 6.12: Schematic of section of CG boundary from BNM_Rad(4) showing the

problem of reversing flows with flow direction indicated by arrows.

The method by which the boundary discontinuity problem was solved was to allow

the recalculation of boundary variables which had been prevented in the BNM_4. The

recalculation of boundary velocities resulted in the smoothing of any discontinuities

when they occurred. To facilitate the recalculation process, the internalised boundary

formulations of the BNM_4 (incorporating the ghost cells) could only be used when

flow through the boundary grid cell was incoming. For outgoing flow the original

simplified boundary formulations (excluding the ghost cells) were applied. Using the

internal boundary formulations for both incoming and outgoing flows resulted in the

premature termination of the model simulation.

6.3.2 BNM_Rad Results

The BNM_Rad was run for 50hrs under a constant spring tide forcing. Model results

were analysed for the final tidal cycle of the simulation (37.5 – 50hrs). The RET in

water surface elevations and current velocity magnitudes for the CG relative to the

SG_40 are shown in Figure 6.13. For comparison, the corresponding RET plots for the

BNM_4 are shown in Figure 6.14. It can be seen that the errors in both model

solutions were quite similar. The RED for water elevation was the same, 0.8%, for

both CG domains. The RED in current velocities, although similar, was slightly lower

in the BNM_4; 3.9% compared to 4.1% for the BNM_Rad. A summary of error

parameters obtained by analysis of the RET plots is given in Table 6.4. The slight loss

in error of the BNM_Rad over the BNM_4 was thought to be due to deterioration in
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the level of momentum conservation at the CG boundary resulting from the

recalculation of boundary variables in the BNM_Rad.
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Figure 6.13: RET in (a) elevations and (b) velocities for CG of BNM_Rad.
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Figure 6.14: RET in (a) elevations and (b) velocities for CG of BNM_4.

Error Parameter CM BNM_4 BNM_Rad
Water Elevation:

- RED [%]
- AED [x 10-3 m]
- RET > 1% [%]

0.8
7.7

<0.1

0.8
7.7

<0.1

0.8
7.7

<0.1
Current Velocity:

- RED [%]
- AED [x10-3 m/s]
- RET > 10% [%]

9.2
10.9
40.4

3.9
4.9
2.4

4.1
5.1
2.1

Table 6.4: Error parameters for PG and CG solutions in AOI.

(a) (b)

(a) (b)
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To determine whether the ERC did, in fact, reduce the potential for wave reflection at

the boundary, errors were calculated for the ebb tide period alone when the flow was

predominantly outgoing. Figure 6.15 compares RET,Ebb plots for the BNM_4 and the

BNM_Rad. The errors in the grid cells adjacent to the boundary (I<160) appeared

lower in the BNM_Rad suggesting that boundary incompatibilities were indeed

reduced by the ERC.
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Figure 6.15: RET,Ebb in CG solution for (a) BNM_4 and (b) BNM_Rad.

To investigate further, the CG boundary momentum fluxes were calculated and

compared with the PG and SG_40 fluxes calculated across the same interface (see

Figure 6.16). Outgoing CG boundary data for the BNM_Rad was obtained from the

interior CG solution while outgoing boundary data for the BNM_4 was imposed from

the PG. It was therefore hoped that the error in the CG ebb tide flux of the BNM_Rad

relative to the SG_40 would be lower than that in the BNM_4 CG flux. As this was

not clear from Figure 6.16, the errors in the CG fluxes relative to the SG_40 for the

ebb tide alone (37.5 – 43.75hrs) were calculated and are shown in Figure 6.17a. From

visual inspection alone, the result was inconclusive as the error in both CG fluxes was

quite low. However, the time-averaged relative error was calculated at 3.8% for the

BNM_4 compared to just 2.9% for the BNM_Rad. These error figures suggested that

the ERC was indeed propagating flows out of the domain with minimum disturbance

but the results were by no means definitive.

A second important observation from the flux comparisons in Figure 6.16 is that

while the flood tide momentum flux of the BNM_4 closely matched that of the PG,

I

J

(a) (b)
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the BNM_Rad flux did not. This is more clearly shown in Figure 6.17b which

compares the errors in CG fluxes calculated relative to the PG flux for the flood tide

alone (43.75 – 50hrs). It can be seen that momentum between the parent and child

grids of the BNM_4 was very well conserved with a time-averaged error of 0.4%;

however, this was as expected. Of more significance was the fact that the level of

conservation in the BNM_Rad, though still relatively high at a time-averaged error of

just 3.5%, was poorer than the BNM_4. This was due to the fact that recalculation of

boundary variables was prevented in the BNM_4 but was, by necessity, allowed in the

BNM_Rad. In this case the recalculation had a positive effect on the CG solution in

that it nudged the CG flux closer the correct SG_40 flux but it was found that this is

not always the case.
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Figure 6.16: Comparison of momentum fluxes across the CG boundary interface.
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Figure 6.17: (a) Error in CG fluxes relative to SG_40 during ebb tide and (b) error in

CG fluxes relative to PG during flood tide.
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As it proved difficult to draw a definitive conclusion as to the effect of the radiation

boundary from the flux comparisons, the BNM_4 and the BNM_Rad were re-run for

a different child grid domain. For these additional simulations the CG boundary was

strategically placed at a location of low ebb tide PG accuracy. The grid configuration

is shown in Figure 6.18.
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Figure 6.18: PG domain of BNM showing new CG boundary Γ and timeseries points.

Figure 6.19 compares the CG momentum fluxes across the new CG boundary

interface computed by the BNM_4 and the BNM_Rad with those from the PG and

SG_40. In the graph, the BNM_4 and PG fluxes are coincident. It can be seen that the

ebb tide PG flux was quite different to the SG_40 flux, indicating low PG accuracy

during this period of the tide. It can also be seen that while the BNM_4 flux was

coincident with the PG flux, the BNM_Rad flux was closer to the SG_40 flux. This is

better demonstrated by the comparison of the errors in CG fluxes calculated relative to

the SG_40 flux for the ebb tide alone which is shown in Figure 6.20a.
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Figure 6.19: Comparison of momentum fluxes across the CG boundary interface.
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Figure 6.20: (a) Error in CG fluxes relative to SG_40 during ebb tide and (b) error in

CG fluxes relative to PG during flood tide.

For the majority of the ebb tide the errors in the BNM_Rad flux relative to the SG_40

were much lower than those in the BNM_4. The time-averaged error for the

BNM_Rad was just 7% compared to 13.3% in the BNM_4; the BNM_Rad outgoing

flux was therefore almost 50% more accurate than the BNM_4. This was much more

definitive proof that the ERC did enable propagation of outgoing flows out of the

domain. The reason the BNM_Rad flux did not exactly match that of the SG_40 was

again due to the recalculation of the boundary variables and, therefore, their

modification from the values assigned by the ERC.

Visual comparison of the flood tide fluxes in Figure 6.19 suggested that they were all

quite similar. However, comparison of the errors in CG fluxes calculated relative to

the PG flux proved differently (Figure 6.20b). The level of momentum conservation

in the BNM_4 was again high with a time-averaged error of just 0.5%. However, due

to the recalculation of boundary variables in the BNM_Rad its level of conservation

was much lower; the time-averaged relative error was 7.1%. This level of error was

significant in that the recalculation of boundary variables in the first simulation had

nudged the BNM_Rad flux closer to the SG_40 flux, but in this simulation it had the

opposite effect, resulting in a loss of accuracy in the flood tide solution. This is

demonstrated by the comparison of the flood tide errors, RET,Fld, in CG velocities of

the BNM_Rad and the BNM_4 in Figure 6.21. The deterioration in flood tide

accuracy in the BNM_Rad resulted in a significantly less accurate BNM_Rad

solution, as a whole, in comparison with the BNM_4.

(a) (b)
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Figure 6.21: RET,Fld in CG velocities for (a) BNM_Rad and (b) BNM_4.

The model results had shown that the BNM_Rad was capable of propagating outgoing

flows out of the CG domain which in turn reduced the potential for the generation of

wave reflection errors. However, the fact that the BNM_Rad could only operate when

the recalculation of boundary variables was permitted meant that it was unable to

conserve momentum between parent and child grids to as high a level as the BNM_4.

The results of the second simulation showed that the poorer conservation of

momentum for incoming flows, in particular, could result in a significant loss in

accuracy in the BNM_Rad. The BNM_4 was therefore adjudged to be the superior

model.

6.4 Flooding and Drying and the Dynamic Boundary

Satisfied that the BNM_4 was the most accurate form of the nested model, the final

stage of its development was the incorporation of flooding and drying of grid cells.

The original single-grid model did incorporate flooding and drying but the process

had been omitted during initial development of the BNM to simplify the development

process. The subroutines relating to the flooding and drying scheme were reinstated in

the BNM_4, and modified where necessary, to form the BNM_FD. The bathymetry of

the BNM_FD was modified to ensure that areas of the domain dried out during ebb

tide. The BNM_FD was then used to test nested model performance for two different

scenarios: 1) flooding and drying of the interior of the child grid alone, and 2)

flooding and drying of the child grid boundary, by means of a dynamic boundary, as

well as the interior domain. These scenarios were similar to the tidal inundation

scenarios that the nested model would be required to simulate in realistic coastal

systems.

(a) (b)
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6.4.1 Flooding and Drying of Interior Only

The BNM_FD1 was a variation of the BNM_FD used to assess model performance

when a portion of the interior CG domain was subjected to flooding and drying during

the course of a tidal cycle. The idealised bathymetry shown in Figure 6.22 was

specified in the BNM_FD1. The design was such that an area at the back of the

harbour dried and flooded in a progressive manner on the ebb and flood tides. As for

previous performance assessments the high resolution single-grid model, SG_40, was

applied to the new bathymetry and its solution was assumed the correct model

solution. All models were run for 50hrs with a constant spring tide forcing and the

results from the final tidal cycle were used for analysis. To allow inter-model

comparisons, errors were only computed within the AOI, in this case taken as the area

of the CG domain.
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Figure 6.22: Bathymetry used in the BNM_FD1 (light grey = water; dark grey = dry

land exposed at low water levels). All dimensions in metres.

The results from the PG and SG_40 were initially compared to ensure that different

model resolutions did in fact result in a noticeable difference in accuracy. The RET in

PG water surface elevations and current velocities relative to the SG_40 are presented

in Figure 6.23. The errors in water elevations were relatively low with an RED of only

0.25%. In contrast, the errors in velocity were more significant with an RED of 5.1%

and RET exceeding 5% in 21% of the AOI. For both variables, an area of high error

was observed along the southern wall of the harbour.

In the case of both variables it can be seen that the highest RET occurred at the back of

the harbour in the area that dried out at low water. This was understandable in both

cases. In relation to water elevations, when a cell dries out its water elevation is

maintained at the value computed at the time of drying until the cell once again
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becomes wet. Due to the different temporal resolutions the elevations computed by

both models at the time of drying were different. In contrast, the elevations computed

by both models when a cell was wet were quite accurate. RET for a periodically dry

cell was therefore higher than that for a permanently wet cell. In relation to current

velocities, since water depths were lower in the area subjected to flooding and drying,

current velocities were also lower. A small absolute error in velocity in this area

therefore represented a higher relative error than in areas of deeper water and higher

current velocities.
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Figure 6.23: RET in (a) elevations and (b) velocities for PG relative to SG_40.

Applying the BNM_4 to the new bathymetry, it was found that the accuracy of the

CG solution was much-improved from the PG. Figure 6.24 shows the RET in CG

water elevations and current velocities. The errors in water elevation at the back of the

harbour were much lower than the PG. The RED in elevation was found to have

decreased from 0.25% to 0.1%, a 60% reduction in error. The accuracy of current

velocities at the back of the harbour was also higher in the CG. The RED in velocity

decreased from 5.1% to 2.3%, a reduction in error of approximately 55%. In addition,

the area of domain in which RET exceeded 5% was reduced from 21% to just 8%, a

62% reduction in area. Finally, the areas of elevated errors along the southern wall of

the harbour that were present in the PG solution were absent from the CG solution.
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Figure 6.24: RET in (a) elevations and (b) velocities for BNM_4 relative to SG_40.

The mass and momentum fluxes across the CG boundary interface were inspected to

investigate the conservation of properties at the CG boundary. Figures 6.25 and 6.26

compare the CG fluxes with the corresponding PG fluxes for mass and momentum

respectively. The errors in CG fluxes relative to PG fluxes are also presented. From

the diagrams it can be seen that both mass and momentum were highly conserved at

the CG boundary. The tidally-averaged error in both mass and momentum flux was

relatively insignificant at just 0.7%.
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Figure 6.25: (a) Boundary mass fluxes and (b) error in CG flux relative to PG.
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Figure 6.26: (a) Boundary momentum fluxes and (b) errors in CG flux relative to PG.
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To assess the accuracy of the nested model, the timeseries from the CG and PG of the

BNM_4 were compared with those from the SG_40. Figure 6.27 shows the

comparison of velocity magnitudes at Point H (see Figure 6.22) while the x- and y-

direction component velocities (U and V respectively) are compared in Figures 6.28

and 6.29. Absolute errors in PG and CG velocities relative to the SG_40 are also

presented. It can be seen that the PG solution was slightly unstable, most likely

because the resolution was not adequate in the area of flooding and drying. The

accuracy of the CG and its improvement over the PG is clearly visible. Similar levels

of accuracy were observed at the other timeseries locations. Water elevation

comparisons are not shown as no discernable difference was visible in the timeseries.
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Figure 6.27: (a) Velocity magnitudes at point H and (b) errors relative to SG_40.
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Figure 6.28: (a) U component velocities at point H and (b) errors relative to SG_40.
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Figure 6.29: (a) V component velocities at point H and (b) errors relative to SG_40.

(a) (b)

(a) (b)

(a) (b)



196

6.4.2 The Dynamic Boundary

The BNM was next tested for flooding and drying of both the child grid boundary and

its interior domain using the BNM_FD2. The BNM_FD2 contained a new idealised

bathymetry (Figure 6.30) specifically designed to allow drying of grid cells on the

internal CG boundary as well as inside the CG domain. The internal boundary

approach incorporated in the BNM_4 had been developed so that the CG boundary

could act as a dynamic boundary in conditions of flooding and drying. It was hoped

that the approach would allow the CG boundary to shorten as sections of its length

dried on the ebb tide, and lengthen again when those sections were re-wetted. The

models were run for 50hrs under a constant spring tide forcing with the results from

the final tidal cycle used for analysis. The AOI was again taken as the area of the CG

domain.
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Figure 6.30: Bathymetry used in the BNM_FD1 (light grey = water; dark grey = dry

land exposed at low water levels). All dimensions in metres.

Initially, the PG and SG_40 solutions were compared to determine the difference in

accuracy due to resolution. The RET in water elevations and current velocities for the

PG are shown in Figure 6.31. The errors in water elevation were higher than those in

any of the other bathymetries due to the greater expanse of area which dried out at

low tide. The RED in elevation was 1% but this level was exceeded in 32% of the

domain. The highest errors were recorded in those areas subject to flooding and

drying. The RED in current velocity was calculated at 4.1% and the RET was found to

exceed 5% in 23% of the domain.

The RET in elevations and velocities for the BNM_4 are presented in Figures 6.32. It

can be seen that large errors in elevation and velocity were found to occur on and near

the boundary. These errors occurred along those sections of the boundary that were

A

B

C

G

H

I

D

E

F

(a) (b)

CG
Boundary



197

subject to flooding and drying and suggested that the dynamic boundary was not

functioning correctly. However, it can also be seen that errors in the remainder of the

domain were reduced from those in the PG indicating that the higher resolution of the

CG domain was having a positive effect on the CG solution.
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Figure 6.31: RET in (a) water elevations and (b) current velocities for PG.

160 180 200 220 240 260 280 300

20

40

60

80

100

120

140

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

5.0%

160 180 200 220 240 260 280 300

20

40

60

80

100

120

140

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Figure 6.32: RET in (a) water elevations and (b) current velocities for CG of BNM_4.

Investigation of the CG boundary operator was required to detect the reason for the

malfunction of the dynamic boundary. In the model, wet and dry cells are

distinguished from each other by the variable array IWET. If a grid cell is dry it is

assigned a value IWET=0; if it is wet it is assigned a value IWET=1. According to the

flooding and drying scheme employed by the model, when a grid cell is calculated to

have dried out, it is removed from the calculations by changing its IWET value from 1

to 0. While the cell is dry the current velocity and volumetric flux in the grid cell are
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set to zero and the water elevation and water depth are maintained at the values

computed at the time of drying. It was noted that the implementation of the bilinear

interpolation scheme employed by the boundary operator of the BNM_4 had not been

designed to take account of grid cells that had dried out. As a result, variable values

from parent grid cells which had dried out were being used in the interpolation of

child grid values. This was thought to be the cause of the large boundary errors.

The linear interpolation scheme was redesigned to take account of parent grid cells

which had dried out. Figure 6.33 graphically illustrates how the new adaptive linear

interpolation scheme operated. Take the example of a parent grid cell (ip,jp) located on

a CG boundary interface for which the enclosed child grid cell values are required. If

one of the parent grid cells to either side of (ip,jp) was found to be dry, then the other

adjacent parent grid cell was used in the linear interpolation formula (Figure 6.33a

and 6.33b). If both adjacent parent grid cells were found to be dry then the zeroth

order interpolation scheme was used to interpolate the child grid cells enclosed in

(ip,jp) (Figure 6.33c). Finally, if the enclosing parent grid cell (ip,jp) was found to be

dry then all of the enclosed child grid cells were assigned as dry grid cells and their

variable values treated accordingly (Figure 6.33d).

Figure 6.33: Details of adaptive linear interpolation scheme which accounts for drying

of PG cells when interpolating CG cells within PG cell (ip,jp) (shaded cells are dry).

The BNM_4 were re-run using the new adaptive linear interpolation scheme; this

version was termed the BNM_4*. Figures 6.34 shows the RET in water elevations and
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current velocities for the new CG solution. The modifications to the interpolation

scheme eliminated the large errors along that portion of the boundary subject to

flooding and drying. A summary of the analyses of the CG RET before and after the

implementation of the adaptive interpolation scheme is given in Table 6.5. The table

also lists the PG errors calculated for the same AOI.
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Figure 6.34: RET in (a) water elevations and (b) current velocities for CG of BNM_4*.

Water Elevation Current Velocity
Model Type RED

[%]
AED

[mx10-3]
RET >1%

[%]
RED

[%]
AED

[mx10-3/s]
RET >5%

[%]

BNM_4: PG 1.0 9.6 32.0 4.1 4.3 23.2

BNM_4: CG 0.3 3.1 4.1 3.0 3.7 5.8

BNM_4*: CG 0.3 2.6 2.8 1.5 1.7 2.3

Table 6.5: Summary of model errors within the AOI.

The improvement in CG accuracy due to the incorporation of the adaptive

interpolation scheme is immediately apparent from both the RET plots and the

tabulated error data. The RED in CG elevations in the BNM_4* was calculated at

0.3%, a 70% reduction in error over the PG while the AED decreased from 9.6mm to

2.6mm. The proportion of the domain within which the RET exceeded 1% was also

significantly reduced at 2.8% compared to 32% in the PG. In relation to current

velocities, there was a 63% reduction in the RED from 4.1% in the PG to 1.5% in the

CG. The AED also decreased from 4.3mm/s to 1.7mm/s and the proportion of domain

(a) (b)



200

where the RET exceeded 5% reduced from 23.2% to just 2.3%. The BNM_4* results

confirmed that the dynamic boundary was functioning correctly. The boundary errors

observed in the BNM_4 had not been due to its malfunction but, rather, to the mis-

design of the boundary interpolation scheme.

To ensure that mass and momentum were conserved between the parent and child

grids of the BNM_4*, the CG fluxes across the boundary interface were compared

with the corresponding PG fluxes. The comparisons are shown for mass in Figure

6.35 and for momentum in Figure 6.36. Both properties were very well-conserved

with a relatively insignificant tidally-averaged error of 0.6% in both fluxes. It can be

seen that the error was also lower on the flood tide which is the more important flux in

terms of boundary influence. The slightly higher ebb tide error was thought to be due

to the drying of boundary grid cells since the error can be seen to gradually increase

from the time of high water at 37.5hrs to the time of low water at 43.75hrs.
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Figure 6.35: (a) Boundary mass fluxes and (b) error in CG flux relative to PG.
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Figure 6.36: (a) Boundary momentum fluxes and (b) error in CG flux relative to PG.

As a final measure of the accuracy of the BNM_4*, timeseries data were compared

with those from the SG_40. Figure 6.37 shows the comparison of velocities (both

magnitudes and U, V components) over the course of the final tidal cycle for Point H

(a) (b)

(a) (b)
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(see Figure 6.30). Also shown are the absolute errors in the CG and PG velocities

relative to the SG_40. It can be seen that the PG velocity was once more a little

unstable; again, this was most likely due to the inadequate resolution in the area of

mudflats where Point H was located. For the higher resolution of the SG_40 the

instabilities did not occur and for the higher resolution of the CG in the BNM_4* the

instabilities were also absent. The accuracy of the CG is clearly visible in the error

plots with CG errors very close to zero. Also clearly visible in the error plots is the

improvement in accuracy of the CG over the PG.
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Figure 6.37: (a, c, d) Comparison of timeseries at Point H for velocity magnitude, and

U and V component velocities respectively, and (b, d, f) errors in BNM_4* velocities

relative to SG_40.

(a) (b)

(c) (d)

(e) (f)



202

6.5 Summary and Conclusions

The internal boundary approach adopted in the BNM_4 had produced quite accurate

results using the Dirichlet boundary condition. The Dirichlet condition is the simplest

approach to boundary assignment but it is commonly used in one-way nested models.

However, a recognised problem with the Dirichlet BC is the possible generation of

noise in the model solution due to the reflection of outgoing waves that are

incompatible with the imposed boundary data. Although no evidence of noise or

disturbances had been observed in the BNM_4 solution, incompatibilities had been

observed between the computed CG solution and that imposed at the boundary during

the ebb tide.

Two alternative types of boundary condition were therefore implemented in the BNM

to determine their improvement, or otherwise, of the CG solution. Flow relaxation

was implemented in the BNM_1 to form the BNM_Rlx and an extrapolated variation

of the radiation condition was implemented in a modified version of the BNM_4 to

form the BNM_Rad. The main differences in the treatment of the boundary in the

BNM_4, BNM_Rlx and BNM_Rad are summarised in Table 6.6.

Model Boundary
Formulations

Boundary
Solution Scheme

CG Boundary Assignment

BNM_4 Internal formulations No recalculation of
boundary variables

All CG data assigned directly from PG.

BNM_Rlx Original simplified
formulations

Recalculation of
boundary variables

CG solution relaxed towards PG solution
in sponge layer.

BNM_Rad Internal formulations
for incoming velocities.
Original formulations
for outgoing velocities.

Recalculation of
boundary variables

Incoming velocities assigned from PG.
Outgoing velocities extrapolated from CG
Elevations assigned directly from CG.

Table 6.6: Main features of CG boundary treatment for different boundary conditions.

The aim of a flow relaxation scheme is to relax the CG solution towards the PG

solution in the sponge layer and so absorb any disturbances generated by wave

reflection. The scheme was successfully implemented in the BNM_1 and achieved a

high level of conservation of mass and momentum between the parent and child grids

on both the ebb and flood tides. As such its accuracy was much better than that of the

original BNM_1. The scheme also proved effective in the reduction of

incompatibilities in the imposed and computed solutions at the boundary.
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The CG solution of the BNM_Rlx was found to be more strongly influenced by the

solution in the sponge layer than the data imposed at the boundary. As a result the

incorporation of PG data in the relaxed solution of the sponge layer meant that

additional PG errors were introduced to the CG solution. This resulted in a

deterioration of the flood tide solution over that of the BNM_4. The stronger

influence of the sponge layer also meant that when the relaxation scheme was applied

in conjunction with the internal boundary of the BNM_4, the internal formulations

had minimal impact on the CG solution. Whereas the internal boundary formulations

enabled the BNM_4 to better simulate the effect of the exterior hydrodynamics on the

interior dynamics and thus improve model accuracy, this improvement was lost when

flow relaxation was incorporated. Also of note in the BNM_Rlx was the generation of

a wave-like disturbance, albeit of very low amplitude, in the water surface elevations.

Although this did not have any significant effect on the model solution it could only

have been generated by the introduction of the sponge layer.

The radiation condition implemented in the BNM_Rad was not of the typical

Sommerfeld type. It was initially proposed to implement an Orlanski-type radiation

condition with adaptive evaluation of the phase (or radiation) velocity of the outgoing

waveform. The computed functions for the phase velocity were found to be unstable

due to feedback from disturbances generated at the CG boundary; the Orlanski-type

condition could not therefore be implemented. Instead, a variant based on

extrapolation was devised and successfully implemented. The extrapolated radiation

condition proved quite effective in allowing outgoing variables to propagate through

the boundary. The outgoing CG boundary fluxes were found to deviate from the

inaccurate PG fluxes to match themselves to the correct SG_40 fluxes.

The main problem with the radiation condition was that it could only be implemented

in the BNM_4 by allowing the recalculation of boundary variables. By doing so, the

levels of conservation of mass, and more importantly, momentum between the parent

and child grids deteriorated. Depending on local conditions the deterioration in

conservation had the effect of either nudging the CG flux closer to the SG_40 flux or

nudging it further away from the SG_40 flux. Where the former occurred, the

accuracy of the BNM_Rad was similar to that of the BNM_4, albeit still slightly less

accurate. Where the latter occurred the BNM_4 was by far the more accurate solution.
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Based on the testing of the boundary conditions, it was concluded that the BNM_4,

which used the Dirichlet condition in combination with the internal boundary

approach, was the superior version of the nested model. While the Dirichlet BC was

shown to result in incompatibilities in the imposed and computed solutions at the

boundary during times of outgoing flows, the resulting boundary errors did not appear

to cause any disturbances in the model solution or a noticeable deterioration in overall

model accuracy. On the other hand, while both the relaxation scheme and radiation

condition were found to reduce boundary solution incompatibilities they were shown

to have other drawbacks to their implementation which outweighed this sole benefit.

The final stage of development of the BNM was the incorporation of flooding and

drying and the testing of the dynamic boundary. The dynamic boundary was crucial to

the nested model as its real-world application will commonly involve the placement

of nested boundaries in areas of tidal inundation. Two idealised bathymetries were

designed: 1) the BNM_FD1 which allowed flooding and drying inside the CG

boundary only; and 2) the BNM_FD2 which allowed flooding and drying both on and

inside the CG boundary. In order to account for the drying of parent grid cells along

the child grid boundary, it was necessary to modify the boundary interpolation

scheme. A new adaptive linear interpolation scheme was developed. With the

adaptive interpolation scheme incorporated the dynamic boundary functioned quite

satisfactorily enabling the BNM to achieve as high a level of accuracy as the high

resolution SG_40.

Finally, as previously mentioned, the internal boundary approach to momentum

conservation was designed with the dynamic boundary in mind. It was hoped that this

approach would facilitate the operation of a dynamic internal boundary; this was

proven to be the case. In contrast, both the original boundary formulations of the

BNM_1 and the BNM_Rlx were found to encounter problems where flooding and

drying of the boundary occurred. Figure 6.38 shows the RET in the CG current

velocities computed by both models when applied to the bathymetry of the

BNM_FD2. It can be seen that substantial errors occurred near the CG boundary of

both models due to the flooding and drying of the CG boundary.
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Figure 6.38: RET in CG current velocities for (a) BNM_1 and (b) BNM_Rlx when

applied to BNM_FD2 bathymetry.
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7. Results: Basic Nested Model

7.1 Introduction

The development of the BNM was the first stage in the development of the adaptive

mesh model. The aim of any nested model is to achieve computational savings whilst

providing high resolution in the area(s) of interest. It was therefore required that the

accuracy of the child grid solution in the nested domain was not only higher than that

of its lower resolution parent model but that it was also of a similar level to that of a

high resolution single-grid model. In addition, this was to be achieved by a lower

computational effort than that of the high resolution single-grid model. Before

progressing to the second stage of development of the AMM it was necessary to

ensure that that the final version of the BNM was capable of achieving the dual

requirements of improvements in accuracy and savings in computational cost. The

BNM_4* was the final version of the BNM and is henceforth referred to as the BNM.

There are two possible sources of error in a one-way nested model, both of which

occur at the open boundaries of the nested domain. The first source of error is the

boundary operator. This type of error may be minimised by maximising the level of

conservation of properties between the parent and child grids at the CG boundary.

Much of the initial development of the BNM was focussed on minimising boundary

operator errors through careful specification of the boundary variables, the

interpolation scheme and the boundary formulations. The internalisation of the CG

boundary was crucial to this aspect of error reduction.

The second source of error is the boundary specification; i.e. the data specified at the

CG boundary. If the PG solution in the region of the boundary is inaccurate, the

inaccuracies are passed directly into the CG solution during boundary specification.

Boundary specification errors are therefore an inherent source of error in nested

models. During BNM development and, in particular, during testing of the boundary

operator, the boundary was specifically located in an area where PG accuracy was

low. This was necessary so the boundary could be located in an area where flow was

influenced more by momentum than mass, thus providing a more rigorous test of the

boundary operator. As a result, large boundary specification errors were introduced to
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the CG solution. The first scenario chosen to test the performance of the BNM was

therefore the idealised BNM_HW bathymetry with the CG boundary correctly located

in an area of high PG accuracy.

The second test case used to assess the performance of the BNM was an experimental

harbour constructed in a tidal basin. This test was selected as measured data from the

physical model of the system could be used to determine the accuracy of the

numerical model. The physical model consisted of a square harbour located in the

middle of the working area of the tidal basin. The BNM was developed so that the

parent domain enclosed both the square harbour and the tidal basin while the child

grid enclosed the area of interest (AOI), i.e. the square harbour. The accuracy of the

BNM was assessed in two ways: firstly, by comparing child grid and parent grid

results, and secondly, by comparing the numerical model results with current velocity

data recorded in the physical model.

The third and final test of the BNM was its application to an actual coastal system.

This was the most important test case as one of the main objectives of the research

was to develop a model that was applicable to real world systems. The BNM was

applied to Cork Harbour, a large estuary on the south-west coast of Ireland. Cork

Harbour was chosen as the real-world test case because large sections of its coastline

are subject to extensive tidal inundation; it therefore provided a robust test of the

model’s performance in such conditions.

For all test cases, three numerical models were available: the low resolution PG and

high resolution CG of the BNM and a high resolution single-grid model (SG). In all

cases the SG solution was taken to be the ‘correct’ solution. The PG and SG were

used to determine the difference in accuracy arising from model resolution. The

improvement in accuracy of the CG over the PG and its level of accuracy in relation

to the SG were demonstrated by calculating errors in both BNM solutions relative to

the SG solution. Finally, simulation times for the PG, CG and SG were recorded to

determine the computational savings of the BNM.

During the development of the BNM it was noted that large tidally-averaged relative

errors, RET, in current velocities were found to occur in areas of low hydrodynamic
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activity. In such areas of low velocities, a small absolute error which was of no

significance to the overall system dynamics could represent a large relative error.

These large relative errors had the effect of misrepresenting the magnitude of error in

the domain as well as increasing the domain-averaged relative error, RED. Prior to the

application of the BNM to the test cases, a method of error filtering was developed to

remove such errors in current velocity from the error analyses. This meant that the

RET plots gave a clearer indication of the quantity of significant error in the PG and

CG solutions.

7.2 Error Filtering

Error quantification in the parent and child models was primarily carried out using the

tidally-averaged relative error RET. The RET in a particular model variable  at a grid

cell (i,j) was defined in Chapter 4 as:
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, for i=1,2,3… imax; j=1,2,3… jmax (7.1)

where N, the number of snapshots output during one complete tidal cycle, was 25.

Summing RET across the nested domain and dividing by the number of wet grid cells

gave a domain-averaged relative error RED; this was another useful parameter which

combined the temporal and spatial variation of model error in one single figure.

During development of the BNM, changes in accuracy between different versions of

the model were quickly assessed by comparing values of RET and RED and

improvements in accuracy could be achieved by minimising both parameters.

Two other parameters used to quantify error were the tidally-averaged absolute error

AET and its domain-averaged counterpart AED. The AET in a model variable  at a grid

cell (i,j) was calculated as:
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and the AED was calculated in the same manner as the RED. The absolute error is the

magnitude of the actual error between two values. However, when viewed in isolation

it gives no indication of how the magnitude of the error relates to the magnitude of the

values. On the other hand, the relative error provides a measure of how the magnitude

of the error relates to the magnitude of the values but gives no indication of the

magnitude of the error itself. Both parameters must therefore be analysed together and

in combination with the magnitude of the variable if the significance of the error is to

be sensibly determined.

7.2.1 Justification for Filtering

Take, for example, the two fictitious current velocity measurements and their

numerical approximations shown in Figure 7.1. The absolute error is significantly

higher at X1 while the relative error is significantly higher at X2. If the relative errors

were viewed in isolation, the error at X1 would be deemed relatively insignificant

while that at X2 would be deemed highly significant. On the other hand, if the

absolute errors were viewed in isolation, the error at X1 would be deemed much more

significant than that at X2. A small absolute error at a location of low current velocity

can thus generate a large relative error which can be misleading in terms of its actual

significance. The significance of an error can only truly be judged by examining both

the absolute and relative errors, together with the value of the variable of interest.

Figure 7.1: Demonstration of absolute and relative errors.

Figure 7.2 reproduces the RET and the AET in current velocity for the CG of the

BNM_HW. From Figure 7.2a it is seen that the highest relative errors occurred near

the boundary and at the back of the harbour. From Figure 7.2b it is seen that the
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region of high relative errors near the CG boundary corresponded to the region of

highest absolute errors. In contrast, the corresponding absolute errors in the region of

high relative errors at the back of the harbour were quite low, being less than

0.001m/s. The only means by which this order of absolute error could represent a high

relative error was if the corresponding velocities were similarly low.
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Figure 7.2: (a) RET and (b) AET in CG current velocities for BNM_HW.

Figure 7.3 presents the maximum velocities computed by the SG_40 at each grid cell

of the nested domain over the course of a full tidal cycle. It shows that the maximum

current velocities at the back of the harbour were less than 0.05m/s, or less than 5% of

the domain maximum of approximately 1.05m/s. The hydrodynamic activity at the

back of the harbour was therefore much lower than that in the rest of the harbour, and

so, much less significant in terms of the overall circulation within the nested domain.

The high relative errors recorded in this area were therefore insignificant as they

represented errors of low absolute magnitude in an area of low current velocities.

The point is demonstrated graphically in Figure 7.4 which compares the CG velocities

at Points 1 and 2 (see Figure 7.2) with those from the SG_40 over the course of a tidal

cycle. These time-series were extracted from the snapshot data which were output at

half-hourly intervals. At both locations the tidally-averaged absolute error, AET, was

approximately 0.001m/s; however, the RET was 24% at Point 1 and 48% at Point 2.

While the relative errors indicated that the errors were significant the magnitude of the

absolute errors and the magnitude of the velocities showed that they were not.

Point 1
Point 2

a) b)
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Figure 7.3: Maximum velocities computed by the SG within the CG domain.
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Figure 7.4: Comparison of CG and SG_40 velocities and absolute error in CG relative

to SG_40 at (a) Point 1 and (b) Point 2 in Figure 7.2a.

7.2.2 The Error Filter

In order to present only those errors of hydrodynamic significance in the RET

distribution plots an error filter was developed. The filter was applied to the snapshot

datasets during error analyses. The function of the filter was to analyse the relative

error in velocities based on the magnitudes of the velocities themselves, the absolute

values of the associated errors and the relationship between the magnitudes of both

the errors and their corresponding velocities. An appropriate error filter would then

produce a tidally-averaged relative error distribution plot of significant errors only.

The most important aspect of the error filter was the cut-off level at which errors

would be deemed insignificant. It was originally thought to use the high resolution SG

velocity as a cut-off, i.e. if the SG velocity was below a certain threshold value then

the errors related to that velocity were ignored. However, this was not found to be the

most practical approach. It did not allow for the case where the SG velocity at a grid

point might be below the threshold but the CG velocity might be very much greater

(a) (b)
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than the threshold. Such an error might be large enough to be significant but it would

be omitted by the filter. It was therefore decided to base the filter on the magnitude of

the absolute error; this approach would not omit the type of error just described.

Basing the filter on the absolute error meant that the value of absolute error selected

as a cut-off value had to be related to the actual velocity magnitudes within the area of

interest. It was decided to use the maximum velocity data of Figure 7.3 to describe the

level of hydrodynamic activity within the AOI. The dataset was averaged to compute

the average maximum velocity in the domain during a tidal cycle, Vmax,avg. The cut-off

absolute error, AEC, was then set to 3% of Vmax,avg, that is:

AEC = 0.03(Vmax,avg) (7.3)

The filter was applied to the tidally-averaged error data according to the following

rule:

If: Cj,iT AEAE 

then: 0RE j,iT  , 0AE j,iT 

The filter method was found to successfully remove those errors of insignificant

magnitudes in areas of insignificant hydrodynamic activity whilst preserving all other

significant errors. Figure 7.5 shows the filtered RET in CG current velocities for the

BNM_HW. The Vmax,avg computed by the high resolution model for the AOI (i.e. the

CG domain) was 0.19m/s and the cut-off error AEC was therefore 0.0019m/s. It can be

seen that the insignificant errors at the back of the harbour were removed while the

significant errors at the boundary were preserved. As a result, the RED dropped from

4% for the unfiltered errors to 2.7% for the filtered errors.

The error filter was applied to all of the BNM error distribution plots presented in the

following sections. It was also applied to the PG error distribution plots in order to

compare like with like. The filter was only designed for application to the error

analyses of current velocity.

for i=1,2,3… imax;

j=1,2,3… jmax (7.4)
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Figure 7.5: (a) Unfiltered and (b) filtered RET in CG velocities for BNM_HW.

7.3 Test Case 1: BNM_HW

In order to correctly assess the performance and accuracy of the BNM it was

necessary to locate the CG open boundary according to the rules of nested boundary

location. The first rule states that a CG boundary should be located in an area of high

PG accuracy so that boundary specification errors are minimised. The second rule

states that a CG boundary should be located sufficiently distant from the area of

interest. It was shown in previous chapters that both boundary specification and

formulation errors dissipate with distance from the boundary; if the area of interest is

sufficiently distant from the boundary then boundary errors will not adversely affect

it. To carry out a true assessment of the performance and accuracy of the BNM, the

boundary of the CG domain was moved to an area of high PG accuracy which was

sufficiently distant from the area of interest. For consistency, the AOI was designated

as the old child grid domain.

The RET distribution plots offered a convenient method for identifying areas of

inaccuracy in the parent model. The filtered RET in PG current velocities is shown in

Figure 7.6. The boundary of the old CG domain is marked as boundary 1. The sub-

domain inside boundary 1 was therefore taken as the AOI. Three new CG domains,

whose boundaries were located at varying distances from the AOI, were assessed for

model performance. The BNM was run for each new boundary configuration and the

filtered results of the error analyses were compared. As for previous models, each

simulation was run for four tidal cycles (50 hours) with the results of the final tidal

cycle being used for analyses.

(a) (b)
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Figure 7.6: RET in PG velocities and CG boundaries for the BNM simulations (1-4).

7.3.1 Results

The RET in current velocities in the AOI is shown in Figure 7.7 for the PG, the old

BNM simulation 1 (CG_1), and the three new BNM simulations (CG_2, CG_3 and

CG_4). The RET in water elevation is not shown as the PG elevations were originally

quite accurate. However, the results of the error analyses for water elevations are

summarised in Table 7.1 along with those for current velocities for all five models.

For BNM simulation 2 (CG_2), the boundary was moved to a location of low PG

inaccuracies to minimise boundary specification errors; the average error along the

boundary was in the region of 5-10% (Figure 7.6). The boundary was also placed

sufficiently distant from the AOI that boundary errors would not adversely affect it. A

dramatic improvement in model accuracy was observed for the new boundary

location. As can be seen in Figure 7.7c the RET did not exceed 2% anywhere in the

AOI. In fact, the RED in both current velocity and water elevation were very close to

zero (Table 7.1).

The improvement in accuracy was verified by comparing time series data at the nine

output locations shown in Figure 7.7c. Figures 7.8 and 7.9 compare water elevations

and current velocities computed by the SG_40, PG and CG_2 at points A and B

respectively. It can be seen that the CG_2 was found to compute, almost exactly, the

same solution as the SG_40. The same level of accuracy was observed at all of the

other time series locations. The results showed that the placement of boundaries for
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nested domains is crucial to model accuracy. By obeying the rules of boundary

placement it was possible to achieve a highly accurate nested solution much superior

than that of a coarse resolution model.
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Figure 7.7: RET in current velocity for (a) PG, (b) CG_1, (c) CG_2, (d) CG_3 and (e)

CG_4.
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BNMError Analyses
Parameter

PG
CG_1 CG_2 CG_3 CG_4

Water Elevation:
- RED [%]
- AED [x 10-3 m]

0.8
7.7

0.8
7.2

0.1
0.6

0.7
6.7

0.1
0.9

Current Velocity:
- RED [%]
- AED [x10-3 m/s]
- RET > 5% [%]
- RET > 1% [%]

7.1
10.6
65.9
73.4

2.7
4.5
19.6
57.2

0.0
0.1
0.0
0.0

2.2
3.7
15.9
52.7

0.1
0.2
0.0
0.0

Table 7.1: Summary of error analyses of water elevation and current velocity.
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Figure 7.8: Comparison of (a) water elevations and (b) current velocities at point A;

CG_2 and SG_40 curves are coincident.
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Figure 7.9: Comparison of (a) water elevations and (b) current velocities at point B;

CG_2 and SG_40 curves are coincident.

The saving in computational cost attainable for a nested model is directly related to

the size of the nested domain. In an attempt to minimise the size of the nested domain

from that specified in simulation 2, two other boundary locations were examined. For

simulation 3, the boundary was located across the opening in the harbour wall. This

location was selected as the RET in current velocity was quite low across most of the

boundary. However, the model only achieved a small improvement in accuracy over

that of simulation 1 (Figure 7.7d and Table 7.1). The result was not totally unexpected

(a) (b)

(a) (b)
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as there were two small localised areas of high PG error on the boundary to the north

and south of the opening. As the boundary was located quite close to the AOI the

resulting boundary errors were able to propagate into the area causing the accuracy of

the solution to deteriorate.

For simulation 4, the CG boundary was located further away from the AOI in an

effort to prevent boundary errors from reaching it; however the level of error along

the boundary was higher than that in both simulations 2 and 3. Nonetheless, CG_4

was found to achieve almost the same level of accuracy in the AOI as CG_2 and the

SG_40. For both water elevation and current velocity the RED was only 0.1%. The

improvement in CG_4 accuracy was also verified by comparing time series data.

Figure 7.10 shows the comparison of current velocities at points A and B. At all time

series locations, the accuracy of CG_4 was found to be the same as that of the SG_40.
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Figure 7.10: Comparison of current velocities at (a) point A and (b) point B; CG_4

and SG_40 curves are coincident.

It was inevitable that boundary specification errors occurred in CG_4 given the higher

RET values at the CG boundary but, despite this, it was still highly accurate. It was

initially thought that this was due to the boundary location being sufficiently distant

from the AOI to allow errors to dissipate. To test this theory, the RET in CG_4

velocities was computed for the full extent of the CG domain (see Figure 7.11).

Significant errors were present in the boundary region; the source of these errors

could only be the boundary specification as the boundary formulations had been

developed to minimise formulation errors. It was clear that the boundary errors did

not propagate into the area of interest but it was unclear why this was so, particularly

in the case of those errors to the north and south of the opening. Further breakdown of

(a) (b)
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the tidally-averaged relative error into the ebb tide-averaged error, RET,Ebb, and flood

tide-averaged error, RET,Fld, provided the answer.
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Figure 7.11: RET in current velocity for CG_ 4. The dashed line indicates the

boundary of the AOI.

Figure 7.12 presents RET,Ebb and RET,Fld in CG current velocities for CG_4. The

snapshot data from 37.5 – 43.5hrs were used for RET,Ebb while those from 44.0 –

49.5hrs were used for RET,Fld. It can be seen that the boundary error was substantially

lower on the flood tide than on the ebb tide. The boundary error on the flood tide was

primarily due to the inaccuracies of the boundary data obtained from the PG solution.

Inaccuracies in the conservation of mass and momentum also contributed, but as

stated the boundary formulations were developed to ensure a high level of

conservation. The low relative errors along the boundary indicated that the PG

solution at the boundary was actually quite accurate on the flood tide. On the other

hand, the ebb tide errors indicated that the PG solution was quite inaccurate on the

ebb tide.
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Figure 7.12: (a) RET,Ebb and (b) RET,Fld in CG_4 velocities.
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A similar analysis of RET,Ebb and RET,Fld for the PG (see Figure 7.13 and 7.14)

confirmed the error observations. For the flood tide, it can be seen that the errors

outside the harbour wall were lower than those inside the wall. On the flood tide, the

flow outside the wall was primarily influenced by the western elevation boundary;

however, the flow inside the wall was influenced by both the elevation boundary and

the momentum effects of the constricted opening in the wall. Since the low resolution

PG was unable to resolve the opening as well as the high resolution SG_40,

inaccuracies were introduced causing the higher errors inside the wall. The opposite

was true on the ebb tide with the poor resolution of the opening causing higher errors

outside the wall than inside.
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Figure 7.13: RET,Ebb in PG current velocity.
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Figure 7.14: RET,Fld in PG current velocity.

It was demonstrated in Chapters 5 and 6 that it was most important to ensure the

conservation of incoming variables to maximise accuracy, and that the conservation
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of properties on the ebb tide was not so important. The results presented for the CG_ 4

provided further evidence of the truth of this statement. Even though the boundary

data interpolated from the PG solution on the ebb tide were quite inaccurate, the

accuracy of the flood tide boundary data ensured good model performance. On the

flood tide the interior solution was primarily determined by the CG boundary, the data

for which were quite accurate. This ensured an accurate interior solution. As the ebb

tide solution was then primarily determined by the improved interior solution, and not

the inaccurate boundary data, a more accurate ebb tide solution was also computed.

The errors present near the boundary in the ebb tide velocities of the CG_4 (Figure

7.12a) were partly caused by the incompatibilities between the erroneous boundary

solution (assigned from the PG) and the improved (and thus modified) interior

solution. However, the accuracy of the CG solution and, in particular, the absence of

any disturbances in the timeseries suggested that the incompatibilities did not generate

wave reflection errors. The propagation of the inaccurate PG data imposed at the CG

boundary into the CG domain also contributed to the ebb tide errors.

From RET,Fld for the CG, the average of the error in current velocities along the length

of the CG boundary was computed for each BNM simulation. For both simulations 1

and 3, where the errors in the AOI were greatest, the average error in the boundary

data for the flood tide was quite high at 21%. These high errors were then propagated

into the CG domain resulting in an inaccurate interior solution. In contrast, the

average error for simulations 2 and 4 for the flood tide was only 6%, resulting in a

highly accurate interior solution.

The difference in accuracy of the flood tide boundary data was also visible in the net

momentum flux computed by the PG and SG_40 across the CG boundary interface.

The fluxes for the four boundary locations are compared in Figure 7.15. The negative

(outgoing) fluxes correspond to the ebb tide while the positive (incoming) fluxes

correspond to the flood tide. The mass fluxes computed by the PG were quite accurate

for both the ebb and flood tides. For momentum flux, it can be seen that the PG flood

tide momentum flux was very accurate for the two simulations that performed best (2

and 4) but contained significant errors for the two simulations that performed worst (1

and 3).
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Figure 7.15: PG and SG_40 mass and momentum fluxes across (a, b) CG boundary 1

(c, d) CG boundary 2, (e, f) CG boundary 3 and (g, h) CG boundary 4.

Finally, the computational efficiencies achieved by using the BNM over a single grid

high resolution model were calculated. Since the model run-time is a measurement of

the associated computational effort, efficiencies were determined by comparing model

run-times. The simulation times of the SG_40, the PG (run on its own as a single grid

model) and the four BNM simulations are presented in Table 7.2. Substantial

reductions in computational cost were achieved through the use of the BNM. The

reduction in computational effort was directly proportional to the size of the nested

domain. The most applicable boundary location was that of simulation 4 which
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maximised cost reductions by minimising the size of the nested domain without

compromising the required accuracy in the AOI. In so doing, the simulation achieved

a 25% reduction in computational cost over the SG_40.

Model Type Simulation Time
[mins]

Reduction in
Computational Cost

SG_40 20 --
PG 1 --
BNM_HW:
- simulation 1
- simulation 2
- simulation 3
- simulation 4

12
18
13
15

40%
10%
35%
25%

Table 7.2: Simulation times and cost reductions for the BNM_HW.

7.3.2 Discussion

It is a fundamental principal of numerical modelling that a model solution can only be

as accurate as the accuracy of its boundary data allows it to be. One-way nested

models are no different. The results from the BNM_HW showed that model accuracy

in the CG domain was heavily influenced by the accuracy of the CG boundary data,

and hence by the accuracy of the PG solution from which that data was interpolated.

If the PG solution in the region of the CG boundary is inaccurate then those

inaccuracies are transferred to the CG causing boundary specification errors in the

nested solution. The boundaries of nested children should therefore always be located

in areas where inaccuracies in their parent model solutions are low.

The BNM_HW results also confirmed that the accuracy of incoming boundary

variables was more important than the accuracy of outgoing boundary variables. This

finding agreed with literature (see Blayo and Debreu (2005)) and had previously been

demonstrated during development of the BNM. During flood tide flows, interior

hydrodynamics were strongly influenced by the conditions at the CG boundary.

During ebb tide flows, the boundary conditions had less effect and the hydrodynamics

were strongly determined by the interior conditions. This was demonstrated in

particular by CG_4 where boundary data during the ebb tide was quite inaccurate but

did not significantly affect the accuracy of the solution in the AOI. It was also found

that the most accurate simulations, CG_2 and CG_4, had the most accurate flood tide
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boundary data of the four simulations but the least accurate ebb tide boundary data

(see Table 7.3).

BNM
Simulation

Boundary-averaged
RET,Ebb [%]

Boundary-averaged
RET,Fld [%]

Simulation 1 11 21
Simulation 2 13 6
Simulation 3 8 21
Simulation 4 26 6

Table 7.3: Average RET,Ebb and RET,Fld in CG velocities on the CG boundaries.

The RET distribution plot for PG current velocity offered a fast and effective method

of determining suitable locations for the boundaries of the nested domain. It allowed

the swift identification of those areas of low PG inaccuracy. However, the model

results showed that it was important to take account of the direction of net

propagation of model variables, i.e. incoming or outgoing. Using the snapshot data to

compute separate time-averaged errors for the ebb and flood tides enabled the

determination of suitable boundary locations based on the accuracy of the flood tide

solution. In systems with strong rectilinear flows, as was the case in the BNM_HW,

this approach to the selection of boundary locations should produce a more accurate

model.

An alternative, but equally effective method of determining the accuracy of the PG

solution for nested boundary location is the comparison of mass and momentum

fluxes between the low resolution PG and high resolution SG models. The accuracy of

the PG solution was easily observed from the net momentum fluxes of Figure 7.15.

The flux timeseries allow the measurement of model accuracy over both the ebb and

flood tides. The drawback of this method is that boundary locations must first be

identified so that the fluxes across the corresponding interfaces in the PG and SG

models can be computed. However, a number of boundary locations can be examined

in a single simulation of the each model.

While the accuracy of the ebb tide boundary data was not shown to be as important to

the performance of the BNM as the flood tide data, it was shown to be important in

relation to error generation near the CG boundary. The ebb tide boundary data
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determines whether outgoing waveforms pass out through the boundary or are

reflected back into the nested domain where they may generate erroneous noise in the

region of the boundary. If the flood tide boundary data is accurate the interior CG

solution will be improved and thus modified from the parent solution. As a result, the

ebb tide interior CG solution will also be improved and thus modified from the parent

solution. In the event that the ebb tide boundary data, obtained from the parent

solution, is inaccurate, the more accurate CG solution computed by the model at the

boundary will differ from the imposed boundary data. If the incompatibilities are

sufficiently large, wave reflection can occur. In the case of the BNM_HW, if wave

reflection did occur, it was not found to adversely affect the CG solution.

Boundary specification errors are easily minimised by the appropriate placement of

CG boundaries in areas of low PG inaccuracy. However, boundary formulation errors

can also affect nested model performance even when the specified boundary data is of

high quality. The number of variables specified at the boundary, the OBC used to

assign the boundary variables, the boundary data interpolation technique and the

mathematical formulation of the governing equations at the boundary all form part of

the boundary formulation. The function of the boundary formulation is to conserve

properties as they pass from the PG to the CG. If properties, such as mass and

momentum, are not conserved then errors may be generated in the nested solution.

The initial development of the BNM focussed primarily on the implementation of a

boundary formulation which ensured conservation of mass and momentum between

the models. Comparison of CG and PG mass and momentum fluxes across the CG

boundary interfaces of the BNM simulations (see Figure 7.16) proved that both mass

and momentum were well-conserved. In all four simulations the tidally-averaged

relative error in CG fluxes relative to PG fluxes was less than 1% for both mass and

momentum. Boundary formulation errors in the child grids of the BNM_HW

simulations were therefore at a minimum and the source of the majority of the

recorded errors was the boundary specification. The boundary specification errors

were due to both the propagation of erroneous boundary data into the CG domain on

the flood and ebb tides and the possible generation of wave reflection errors on the

ebb tide.
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Figure 7.16: PG and CG mass and momentum fluxes across (a,b) CG boundary 1 (c,

d) CG boundary 2, (e, f) CG boundary 3 and (g, h) CG boundary 4.

The results of CG_2 and CG_4 showed that suitable boundary placement will result in

a highly accurate nested model solution. Current vector plots from the PG and SG_40

models of the BNM_HW bathymetry were presented in Chapter 4. These plots

demonstrated both the complexity of the flow regime in an area inside the harbour

wall and the improved flow resolution obtained by the use of the higher resolution

SG_40 compared to the PG. The same vector plots are presented in Figures 7.17 and

7.18 together with the vector plots from CG_4 at the corresponding stages of the tide.

(g) (h)

(a) (b)

(c) (d)

(e) (f)
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Figure 7.17: Current vectors at mid-flood for (a) PG and (b) SG_40 and (c) CG_4.

(a)

(b)

(c)
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Figure 7.18: Current vectors at high water for (a) PG and (b) SG_40 and (c) CG_4.

(a)

(b)

(c)
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The flow regimes computed by the CG_4 can be seen to be almost identical to those

of the SG_40. The anti-clockwise gyre and the area of slack water that occurred at its

centre were equally-well resolved by the CG_4 in comparison to the SG_40. The

improvement in accuracy of the CG_4 over the PG is also clearly apparent. The

accuracy of the CG_4 was also demonstrated for two specific locations by the time

series of Figure 7.10a. One of those locations, Point A, was located within this area of

complex flow. The vector plots and time series show that even in areas of extremely

complex flows the nested model can achieve a very high degree of accuracy, provided

that the boundaries of the nested domain are correctly placed.

Finally, in relation to computational savings, efficiencies achieved by the BNM are

directly related to the size of the wetted area of the nested domain(s). Using the run-

time data from Table 7.2, it was possible to derive the following formula which

provides an estimate of BNM run-time, tBNM:

boSG
SG

CG
PGBNM tt.

D
D

tt 







 (7.5)

where tPG and tSG are the run-times of the PG and SG models respectively, and DCG

and DSG are the areas of wet cells in the CG domain and the SG domain respectively.

tbo is the time required by the CG boundary operator subroutine to interpolate and

assign CG boundary data; its value will therefore vary between models depending on

the dimensions of the CG boundaries. Equation (7.5) was found to fit the data in Table

7.2 when tbo was set to 2mins; thus 2mins of the computational time was spent

interpolating and assigning CG boundary data. By estimating the BNM run-time tBNM,

an estimation of the resulting computational saving can be obtained. Unfortunately,

the formula is an approximate one and should be used with caution. In addition, it is

only applicable to domains that are not subject to flooding and drying as both DCG and

DSG will change during the simulation when flooding and drying of grid cells occurs.

7.4 Test Case 2: Tidal Basin

For the second case study, the performance of the BNM was tested by comparing the

numerical model results with those from a physical scale model of an experimental
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harbour constructed within a tidal basin. Current velocities were recorded in the

physical model and were compared with those predicted by the numerical model.

7.4.1 The Tidal Basin

The function of a tidal basin is to generate tides that will induce water circulation

within a scaled model of a real system. The induced hydrodynamics should be an

accurate representation of the hydrodynamic regimes in the real system when

appropriate scaling relationships are adopted. The tidal basin facility used in the

research is shown in Figure 7.19. The internal dimensions of the tank are 8m x 5m x

1m. The tank consists of a reservoir, a manifold chamber and a working area. During

operation water is pumped at a constant rate from the reservoir to the manifold

chamber where it is diffused by a perforated manifold. The water flows from the

manifold chamber into the working area and vice versa through a porous baffle that

separates the two areas. The baffle ensures that the flow approaching the testing area

is uniform and normal to the baffle. The basin was subject to an extensive calibration

process prior to the construction of any physical models within the working area. Full

details of the calibration process are presented in Olbert (2006).

Figure 7.19: Schematic illustration of the tidal basin.

The working area of the basin, where the physical model was constructed, measures

5m x 4.75m. The bed and side walls of the working area are made from fibreglass.

The bed is horizontal and is raised 0.5m above floor level. Due to the weir design, the

maximum water level within the model is restricted to 0.37m. The water level in the

Reservoir

Weir Support
Working Area

Manifold Chamber

Pump
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working area (and the manifold chamber) is controlled by means of an automated weir

located between the manifold chamber and the reservoir. The vertical displacement of

the weir is electronically controlled and can therefore be programmed to simulate

tides of varying ranges and periods.

7.4.2 The Physical Model

The physical model used for the research was a simple square harbour with a flat

bottom, four vertical walls, and one centrally located entrance. The harbour walls

were 0.4m high fibreglass panels. As shown in Figure 7.20a the harbour dimensions

were 1m x 1m with the entrance wall located 1.75m from the baffle wall. The

entrance to the harbour was 0.2m wide and was located equidistant from the side

walls. The mean depth of the water in the working area was set to 0.27m above the

bed and the weir was programmed to simulate a simple sinusoidal tide of amplitude

0.05m and period 789s. The maximum and minimum water depths at high and low

tide were therefore 0.32m and 0.22m respectively.

1m

1m

1.75m

0.2m 5m

4.75m

Figure 7.20: (a) Plan view and (b) 3d view of working area with square harbour.

The geometry and tidal specifications for the physical model were selected using the

conventional Froude law scaling relationships (see Olbert (2006)) to correspond to the

typical conditions found in real coastal systems. A horizontal scaling ratio Lx of 400

and vertical scaling ratio Lz of 50 were employed. The corresponding real-world

square harbour would therefore measure 400m x 400m with a mean depth of 13.5m.

This is representative of medium sized marinas in the USA and larger marinas in the

UK (see Nece and Falconer (1989) and Falconer and Yo Gouping (1991)). In relation

Open Boundary
(baffle wall)

(a) (b)
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to the tidal regime, the model tidal amplitude of 0.05m represented a real-world

amplitude of 2.5m while the temporal scaling ratio ( zx L/L ) meant that the model

tidal period of 789s represented a real-world period of 12.4hrs. These real-world

conditions are typical of the semi-diurnal tidal regimes that occur along Irish and

British coastlines.

Current velocities within the square harbour were recorded using two Nortek Doppler

velocimeters. The velocimeters have an operating range of ±0.03m/s - ±2.5m/s and an

accuracy tolerance of ±1%. These high precision instruments collect all three

components of the flow velocity. The numerical model computes depth-averaged

velocities. In physical modelling, the depth-averaged velocity can be obtained from a

measured velocity profile using a number of methods. In this instance, the one-step

method was employed which uses the velocity measured at 0.6H as the depth-

averaged velocity. The method assumes a logarithmic velocity profile and gives

reliable results in uniform cross-sections without large irregularities (Julien, 1998).

Velocity data were recorded at 40 locations on the four transect lines shown in Figure

7.21. At each location, measurements were taken at one second intervals for

approximately eight tidal cycles; steady flow conditions within the harbour were

reached five tidal cycles after the beginning of the simulation.

Figure 7.21: Plan view of physical model of the square harbour showing measurement

locations along the four transects (A-D).

A B C D
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Due to relatively high levels of noise in the instrument readings, particularly at times

of weak flow, post-processing of the measured data was required. All three velocity

components were first smoothed using a first order recursive smoothing technique and

then averaged over five consecutive readings. Finally, corresponding measurements at

the times of mid-flood, high water, mid-ebb and low water were averaged over

consecutive tidal cycles. This post-processing technique was carefully chosen in order

to damp the noise in the readings without imposing excessive smoothing of real

features. For further details of the post-processing see Olbert (2006).

7.4.3 The Numerical Models

Three numerical models of the experimental harbour were developed using a 1:1

scaling ratio. These included a high resolution single-grid model (SG_2.5) and the

parent and child grid models of the BNM_TB. The SG_2.5 and PG domains both

covered the full extents of the working area of the tidal basin with their open

boundaries located along the baffle wall. The CG domain of the BNM, shown in

Figure 7.22, comprised a sub-domain of the working area which contained the area of

interest - the square harbour. A nesting ratio of 4:1 was used and the resolution of the

SG_2.5 was set to match that of the CG. The numerical models were developed to

represent exactly the same conditions as the physical model. The specifications for the

numerical models are listed in Table 7.4; the specifications for the physical model are

also included for comparison. The dimensions of the model domain were such that the

Coriolis effect was not included in the model equations.

0.5m 2.25m

2.5m

Figure 7.22: The extents of the CG domain used in the BNM_TB.



233

BNMParameter SG_2.5
PG CG

Physical
Model

LX:
- full domain
- square harbour

4.75 m
1.00 m

4.75 m
1.00 m

2.25 m
1.00 m

4.75 m
1.00 m

LY:
- full domain
- square harbour

5.0 m
1.0 m

5.0 m
1.0 m

2.5 m
1.0 m

5.0 m
1.0 m

Mean Depth 0.27 m 0.27 m 0.27 m 0.27 m
Tidal Amplitude 0.05 m 0.05 m 0.05 m 0.05 m
Tidal Period 789 s 789 s 789 s 789 s
Resolution:

- grid spacing
- timestep

0.025 m
0.05 s

0.10 m
0.20 s

0.025 m
0.05 s

--
--

No. of grid cells 38,000 2,400 9,000 --
Bed Roughness * 0.8 mm 0.8 mm 0.8 mm 0.8 mm

Table 7.4: Specifications for numerical and physical models [* the bed roughness

coefficient was determined for the physical model using measured velocity profiles].

The numerical models were each run for eight tidal cycles. In the case of the BNM,

the PG was run on its own for the first four tidal cycles to ensure conditions of steady

flow had been achieved. At this point the CG domain was switched on and the model

was run for a further four tidal cycles, again to ensure that steady flow was achieved.

Model results were compared for the eighth and final tidal cycle of the simulations.

7.4.4 Results

PG Versus SG_2.5

Snapshot data output from the PG and SG_2.5 were first analysed to determine the

level of error in the PG. The RET in water elevations and current velocities for the PG

relative to the SG_2.5 are presented in Figure 7.23. In relation to the current velocity

error filter, the Vmax,avg computed by SG_2.5 for the AOI was 9.86x10-4m/s and the

cut-off error AEC was therefore 2.96x10-5m/s.

PG water elevations were highly accurate with an RED of just 0.7%. This equated to

an AED of 0.21mm and was therefore deemed insignificant. PG current velocities, in

contrast, contained substantial levels of error. The RET exceeded 5% in almost three-

quarters of the domain (71%) and the RED was 16.3%. The errors in current velocity

were a direct result of the low resolution of the PG. Relative errors were therefore
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highest in the waters surrounding and within the square harbour where the low

resolution had the greatest effect. Taking the AOI on its own (i.e. the square harbour)

the RED rose to 43.2% and the RET =5% was exceeded at all points in the AOI. The

PG errors are summarised in Table 7.5.
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Figure 7.23: RET in (a) elevations and (b) velocities for PG relative to SG_2.5.

PGError Analyses
Parameter Full Domain AOI

Water Elevation:
- RED [%]
- AED [x 10-4 m]

0.7
2.1

0.7
2.2

Current Velocity:
- RED [%]
- AED [x10-4 m/s]
- RET > 5% [%]

16.3
3.6

71.0

43.2
3.5

100.0

Table 7.5: Summary of PG error analyses.

The locations of the open boundaries for the CG domain were selected using the PG

time-averaged relative error distributions for velocities. However, the results of the

BNM_HW had shown that instead of using the error data averaged over the full tidal

cycle, the ebb and flood tide averages should instead be used. The ebb and flood tide

time-averaged errors in CM current velocity are shown in Figure 7.24. The boundaries

had to be located in areas of low PG inaccuracy to minimise boundary specification

errors. In addition, it was required that they be far enough away from the AOI that

boundary errors would not adversely affect it, but close enough that the size of the

(a) (b)
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nested domain and the associated computational effort were kept to a minimum. The

chosen open boundary locations, five in total, are also shown in Figure 7.24.
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Figure 7.24: (a) RET,Ebb and (b) RET,Fld in PG velocities. CG boundaries (B1-B5) are

also shown.

To confirm the accuracy of the PG solution at the chosen boundary locations, the net

mass and momentum fluxes across the corresponding interfaces in the PG and SG_2.5

were computed and compared. Flux comparisons are shown for the x-direction

boundaries (B1, B2, B3) in Figure 7.25 and for the y-direction boundaries (B4, B5) in

Figure 7.26. For the comparisons, the x-direction boundaries B2 and B3 (see Figure

7.24) were treated as a single boundary interface. The average errors in PG

momentum fluxes relative to SG_2.5 during the ebb and flood tide periods are

presented in Table 7.6. Errors in PG mass fluxes were low across all boundaries, less

than 3%, and are therefore not presented in the table.

Flow in the tidal basin was predominantly normal to the baffle; this corresponded to

the x-direction in the numerical models. The most important fluxes were therefore

those across the x-direction boundaries B1, B2 and B3. For B1, flood tide fluxes were

incoming and the average error in the flood tide momentum flux was quite low at just

3%. While the error in the ebb tide flux was higher, 7%, the boundary was located

sufficiently distant from the AOI to prevent any adverse effects from the resulting

boundary errors. For the combined boundaries B2+B3, errors in ebb and flood tide

fluxes were relatively high at 9% and 10% respectively. However, their location in

relation to the entrance to the square harbour and the fact that they were substantially

a) b)

I (x)

J (y)
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lower than the B1 fluxes meant that the errors were not significant. For the y-direction

interfaces, both the mass and momentum fluxes can be seen to be much lower than the

predominant fluxes across the x-direction interfaces. Thus any errors in these fluxes

were of much less significance. In any case, both the ebb and flood tide errors were

relatively low at approximately 5%. Once again, the boundaries were located at a

suitable distance from the AOI.
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Figure 7.25: PG and SG_2.5 mass and momentum fluxes across x-direction interfaces.
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Figure 7.26: PG and SG_2.5 mass and momentum fluxes across y-direction interfaces.
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Average Momentum Flux Error [%]Boundary
Ebb Tide Flood Tide

B1 7 3
B2 + B3 9 10
B4 5 5
B5 5 5

Table 7.6: Time-averaged errors in PG momentum fluxes across boundary interfaces.

CG Versus SG_2.5

The RET in the CG current velocities in the AOI is compared with that from the PG in

Figure 7.27. It can be seen that the accuracy of the CG in relation to the SG_2.5 was

quite high with all errors in velocities being less than 5%. This constituted a

significant improvement over the parent model. The RED in velocity was reduced

from 43.2% in the PG to 0.7% in the CG while the AED likewise decreased from

3.5x10-4m/s to 0.1x10-4m/s. The error data calculated within the AOI for both

solutions is summarised in Table 7.7. Water elevation error plots are not presented as

the PG elevations were already highly accurate; they are, however, also summarised

in Table 7.7.
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Figure 7.27: RET in (a) PG velocities and (b) CG velocities for the AOI.

Timeseries of water elevations and current velocities computed by the three numerical

models were compared to verify the accuracy of the CG. Comparisons of water

elevations and current velocities at points A and B (shown in Figure 7.27) are

presented in Figures 7.28 and 7.29 respectively. The time series verified that both the

Point A

Point B

(a) (b)
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PG and CG water elevations were highly accurate. The inaccuracy of the PG

velocities was clearly apparent as was the improvement in accuracy of the CG

velocities. The accuracy of the CG was almost the same as that of the SG_2.5; at both

locations the tidally-averaged relative error in CG velocity was only 2% compared

with 46% and 30% for the PG at Points A and B respectively. Figure 7.30, which

compares current velocity vectors at mid-ebb and mid-flood tides, also demonstrates

the accuracy of the CG in relation to the SG_2.5 and the improvement in flow

resolution and accuracy over the PG.

Error Analyses
Parameter

PG CG

Water Elevation:
- RED [%]
- AED [x 10-4 m]

0.7
2.2

0.7
2.2

Current Velocity:
- RED [%]
- AED [x10-4 m/s]
- RET > 5% [%]
- RET > 1% [%]

43.2
3.5

100.0
100.0

0.7
0.1
0.0

22.8

Table 7.7: Summary of error analyses of elevations and velocities in the AOI.
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Figure 7.28: (a) Water elevations and (b) velocities at Point A (see Figure 7.27a).
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Figure 7.29: (a) Water elevations and (b) velocities at Point B (see Figure 7.27a).
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Figure 7.30: Current velocities at mid-ebb and mid-flood respectively for (a,b)

SG_2.5, (c,d) PG, and (e,f) CG.
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(e) (f)
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Numerical Models Versus Physical Model

The final element of the tidal basin test case was the comparison of the current

velocities computed by the numerical models in the AOI with those measured in the

physical model. The flow pattern within the physical model of the square harbour was

a classic example of tidal pumping. As can be seen from the measured mid-flood

current vectors of Figure 7.31a the flood tide entered the harbour through the

constricted mouth as a confined jet. In contrast, the ebb tide was drawn from all

around the mouth as shown by the measured mid-ebb current vectors of Figure 7.32a.

Figure 7.31: Transect velocities at mid-flood in (a) physical model and (b) SG_2.5.

Figure 7.32: Transect velocities at mid-ebb in (a) physical model and (b) SG_2.5.

The numerical model faithfully reproduced the tidally-pumped circulation patterns;

these are shown in Figures 7.31b and 7.32b for the SG_2.5. The SG_2.5 current

vectors shown here used the same data as those in Figure 7.30 but with vectors only

(a) (b)

a) b)
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plotted at the measurement locations of the physical model. A problem with the

physical model was that of wave reflection off the back wall of the harbour; this is

evidenced in Figure 7.31a by the outward direction of the vectors along transect D on

the flood tide. This wave reflection was not reproduced in the numerical models. It

can also be seen that the current speeds of the flood tide jet were greater in the

physical model. It was thought that the stronger flood tide jets of the physical model

were due to additional recirculation resulting from the wave reflection.

Current velocities from the three numerical models were compared with the measured

velocities along the four transects of Figure 7.21 at the times of high water, mid-ebb,

low water and mid-flood. The comparisons are presented in Figures 7.33 – 7.36 for

transects A – D respectively. It should be noted that, in all of the graphs, the SG_2.5

and CG timeseries are coincident. It can be seen that the results from all three

numerical models were well-correlated with the measured data. Correlation was

slightly better for the x-direction velocity component, U, than the y-direction

component, V, but velocity magnitudes were lower in the y-direction. The difference

in the PG and CG solutions can be seen in most of the transect graphs. The differences

were more apparent in the stronger currents generated at transects A and B that were

closer to the mouth of the harbour.

For transect A, it can be seen that the higher resolution of the CG resulted in improved

correlation with the measured data compared to the PG. In particular, the speeds of

the x-direction component velocities of the central jet were closer to the measured

speeds. However, using the transect comparison graphs alone, it was difficult to

conclusively determine whether or not an overall improvement in accuracy was

achieved by the higher resolution models (in relation to the measured data). As an

alternative approach, the average absolute error in the modelled component velocities

were calculated for each transect in relation to the measured data. The average

transect errors were calculated at each of the four stages of the tide and are presented

in Tables 7.8 and 7.9 for U and V respectively. Where improvements in the accuracy

of the SG_2.5/CG over the PG were observed the corresponding errors were shaded

grey.
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Figure 7.33: Comparison of current velocity components U and V, in the x- and y-

directions respectively, on transect A (see Figure 7.21 for location).
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Figure 7.34: Comparison of current velocity components U and V, in the x- and y-

directions respectively, on transect B (see Figure 7.21 for location).
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Figure 7.35: Comparison of current velocity components U and V, in the x- and y-

directions respectively, on transect C (see Figure 7.21 for location).
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Figure 7.36: Comparison of current velocity components U and V, in the x- and y-

directions respectively, on transect D (see Figure 7.21 for location).
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Transect A Transect BStage of Tide
PG SG_2.5 CG PG SG_2.5 CG

High Water 0.62 0.56 0.57 0.93 0.65 0.66
Mid-ebb 0.50 0.42 0.42 0.56 0.55 0.55
Low Water 0.76 0.38 0.40 0.61 0.82 0.82
Mid-flood 1.03 0.97 1.00 1.85 1.90 1.93

Transect C Transect D
PG SG_2.5 CG PG SG_2.5 CG

High Water 1.41 1.08 1.12 1.19 1.04 1.06
Mid-ebb 0.49 0.46 0.48 0.31 0.25 0.24
Low Water 0.49 0.31 0.31 0.46 0.42 0.42
Mid-flood 1.18 1.58 1.60 1.32 1.43 1.43

Table 7.8: Average absolute errors in x-direction velocity U relative to measured data.

Transect A Transect BStage of Tide
PG SG_2.5 CG PG SG_2.5 CG

High Water 0.50 0.46 0.47 0.54 0.59 0.61
Mid-ebb 0.76 0.49 0.49 0.52 0.42 0.42
Low Water 0.71 0.21 0.21 0.36 0.45 0.45
Mid-flood 0.40 0.48 0.47 0.34 0.78 0.78

Transect C Transect D
PG SG_2.5 CG PG SG_2.5 CG

High Water 0.63 0.79 0.79 0.62 0.56 0.56
Mid-ebb 0.63 0.62 0.62 0.79 0.77 0.78
Low Water 0.21 0.30 0.30 0.70 0.86 0.86
Mid-flood 1.07 1.09 1.10 0.78 0.77 0.77

Table 7.9: Average absolute errors in y-direction velocity V relative to measured data.

For the x-direction velocity U, an improvement in accuracy was recorded at all

transects at the times of high water and mid-ebb and, at low water, improvements

were recorded at all transects except transect B. In contrast, at mid-flood, an

improvement was only found to occur at transect A. If the previous hypothesis as to

the cause of the higher flood tide currents of the tidal basin was true, it would also

explain the lack of improvements at mid-flood in the numerical models. For the y-

direction velocity V, the higher resolution models generally improved the accuracy at

transects A and D, while accuracy deteriorated at transects B and C. Based on the

error data, it was concluded that an overall improvement in the accuracy of the model

velocities in relation to the measured data was achieved by the SG_2.5 and the CG.
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Computational Efficiencies

Both the SG_2.5 and the BNM were run for the same simulation time of eight tidal

cycles. The tidal period specified was 0.219hrs, giving a total simulation time of

1.75hrs. The computation times for the SG_2.5, the BNM without nesting (i.e. the

PG) and the BNM with nesting are given in Table 7.10. The BNM achieved a 71%

reduction in computational cost over the SG_2.5 whilst providing an almost identical

level of accuracy.

Model Type Simulation Time
[mins]

Reduction in
Computational Cost

SG_2.5 240 --
PG 4 --
BNM 69 71%

Table 7.10: Simulation times and cost reductions for the BNM_TB.

7.4.5 Discussion

During model development, and in the first BNM test case, all child grid domains

specified in the BNM had only a single open boundary. Model results demonstrated

that the BNM performed well for such grid configurations. The BNM_TB was the

first application of the BNM which specified a child grid with multiple open

boundaries. The location of the child grid domain meant that there were five open

boundaries in total, with open boundaries meeting at all four corners of the child grid.

In fact, most of the boundary of the child grid constituted an open boundary (Figure

7.24).

In coastal models, the meeting of two open boundaries at the corner of a finite

difference grid can be problematic, often resulting in the generation of disturbances in

the model solution. The problem arises from the fact that the corner grid point is

common to both boundaries and so boundary data must be consistent; high quality

boundary data is therefore essential. In the absence of high quality boundary data, it is

sometimes recommended that a small island be inserted so that the open boundaries

do not actually meet (DHI Software, 2007), thereby preventing the generation of the

aforementioned disturbances. The most common approach to the problem is careful

delineation of the model domain so as to avoid open boundary meeting points.
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It is uncommon for a coastal model domain to have more than a single open boundary

meeting point. In contrast, the child grid domain used in the BNM_TB had four such

meeting points. However, the meeting points were not found to adversely affect the

stability or performance of the BNM. For what was a very complex child grid

configuration, the BNM was able to achieve a similar level of accuracy in the CG

domain to that of a high resolution model. In addition, the CG solution was obtained

at a fraction of the computation effort required to obtain the high resolution solution.

The tidal basin facility proved a useful tool in the assessment of the performance of

the BNM as it confirmed that the numerical models were producing sensible results.

Both the flow patterns and the velocity magnitudes computed by the numerical

models closely resembled those observed in the physical scale model. Although there

was a question over the quality of the measured flood tide velocities, due to possible

recirculation, the comparisons of computed and measured velocities showed that the

use of a higher resolution in the numerical models improved the accuracy of the

model solution.

7.5 Test Case 3: Cork Harbour

The final test case for the BNM was its application to a real-world coastal system,

namely, Cork Harbour. The Harbour, shown in Figure 7.37, is one of the largest sea

inlets in Ireland, with just under 120 miles of coastline. It is essentially divided up

into two main sections, the Upper Harbour, consisting of Lough Mahon, and the

Lower Harbour, or Cork Harbour proper. These two sections are connected by

channels to the west and to the north and east of Great Island. The River Lee is the

main river entering Cork Harbour and it enters via Lough Mahon. The bulk of the

flow into and out of the Upper Harbour passes through Passage West and the main

freshwater influence on the North Channel and Passage East is the Owenacurra River.

The Harbour is relatively deep and long, with a large surface area and it drains a large

freshwater catchment of approximately 1,800 km2. It is a macro-tidal harbour with

typical spring tide ranges of 4.2m at the entrance to the Harbour. The deepest point in

the Harbour, 29m below mean water level (MWL), is found in the Main Channel,

while the average water depth is 8.4m below MWL. At low water, extensive areas of

mud- and sand-flats are exposed throughout the Harbour. It was primarily for this
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reason that the Harbour was chosen as a test case so that it would provide a robust test

of the BNM under conditions of flooding and drying. In addition, the complex

coastline and bathymetry mean that the accuracy of any numerical model of the

system is highly dependent on the spatial resolution.

Tide Guage

Salinity Sampling
Current Meter

Dye Release

T1

T2

T3
T1 - Tivoli
T2 - Passage West
T3 - Currabinny

C6

C9

Figure 7.37: Plan view of model domain showing calibration/validation locations.

7.5.1 The Numerical Models

Three numerical models of Cork Harbour were used to test the performance of the

BNM. The first was an existing high resolution single-grid model at 30m grid spacing

(SG_30), the second was the PG of the BNM at 90m grid spacing and the third was

the CG of the BNM which used a 3:1 nesting ratio giving a child grid spacing of 30m.

The same domain extents, measuring 21km x 17km, were specified in the SG_30 and

the parent grid of the BNM, and the same physical parameters were specified to all

three models. For testing purposes, a repeating spring tide of amplitude 2.1m and

period 12.5hrs was simulated. A summary of the model specifications is presented in

Table 7.11. All model simulations were run for four tidal cycles (50hrs), ensuring

steady-state. The results from the final tidal cycle (37.5 – 50 hrs) were used for

analyses.

North Channel

Passage
EastPassage

West

Lough Mahon

Main
Channel
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BNMParameter FM
PG CG_OB CG_LM

LX 21 km 21 km 4.14 km 16.2 km
LY 17 km 17 km 2.07 km 5.76 km
Tidal Amplitude 2.1 m 2.1 m 2.1m 2.1m
Tidal Period 12.5 hrs 12.5 hrs 12.5 hrs 12.5 hrs
Resolution:

- grid spacing
- timestep

30 m
6 s

90 m
18 s

30 m
6 s

30 m
6 s

No. of grid cells 396,333 44,037 9,729 103,680
Bed Roughness 200 mm 200 mm 200 mm 200 mm

Table 7.11: Summary of model parameters.

While the main aim of the final test case was to assess the nested model’s

performance in a real coastal environment, there was a particular focus on assessing

its performance in intertidal areas subjected to flooding and drying. With this in mind,

two particular areas of the Harbour were chosen for nesting; the first being the

Owenboy Estuary and the second being Lough Mahon. Two nested domains were

thus specified in the BNM_CH – CG_OB and CG_LM. The extents of the CG

domains and the enclosed areas of interest are shown in Figure 7.38. As required for a

nested domain, the boundaries were located in areas of low PG inaccuracy and at

sufficient distances from the areas of interest. The figure also shows the extensive

areas of sea bed that are exposed at low water on a spring tide.

Figure 7.38: Extents of nested grids (shaded) and regions of interest (dashed).

Mudflats on a spring tide are indicated by the -2.1m contour.

Lough
Mahon

Owenboy
Estuary

Lough Mahon

Owenboy Estuary
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It should be noted that the SG_30 had previously been extensively calibrated and

validated using field measurements at the locations shown in Figure 7.37. Figure 7.39

presents a selection of validation plots for water surface elevations and current

velocities. For more complete details of the calibration/validation process the reader is

referred to Costello et al. (2001).
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Figure 7.39: Validation plots: a) tidal elevation at Passage West, b) tidal elevation at

Currabinny, c) current velocity at C6, d) current velocity at C9.

7.5.2 Model Resolution

The PG and SG_30 of Cork Harbour were first used to investigate the relationship

between model accuracy and resolution (both temporal and spatial). The model is

subject to a Courant accuracy criterion such that:

8gH
x
t

Cn 



(7.6)

where H is the average water depth of the model domain measured below MWL. For

a given spatial resolution, the maximum permissible timestep ∆tmax is dictated by

(7.6); for the PG, ∆tmax was therefore equal to 80s. To determine the effect of temporal

resolution on model accuracy, the PG was run for a number of timesteps ranging from

80s to 2s. The RET in current velocity was then computed to quantify the error in the

(a) (b)

(c) (d)
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PG relative to the ‘correct’ SG_30 solution. Figure 7.40 shows contour plots of the

RET in PG velocities for timesteps of 80s, 40s, 20s and 10s.
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Figure 7.40: RET in PG current velocities for different model timesteps.

It is evident from Figures 7.40a and 7.40b that when the timestep was reduced from

80s to 40s the relative error across most of the domain decreased. This relationship

was also evident when the timestep was reduced from 40s to 20s and 20s to 10s,

although the reduction in error was not as significant. It can also be seen that the

highest errors occurred in those areas near the coastline, in bays and loughs, and

around headlands and islands. These areas were characterised by shallow water depths

and flooding and drying. Improvements in model accuracy were less in these areas, if

at all, for a reduction in model timestep alone. In order to achieve significant

improvements in model accuracy in these areas, where the coastline and the sea-bed

play a greater role in the hydrodynamics, a finer spatial resolution was required. It is

in areas such as these that nesting can prove highly beneficial.

(a) ∆t = 80s (b) ∆t = 40s

(c) ∆t = 20s (d) ∆t = 10s



253

From the error data presented in Figure 7.40 a relationship was developed between the

reduction in error in the domain as a whole and the model timestep. This was

achieved by plotting the RED in velocity against the corresponding simulation

timestep; the graph is shown in Figure 7.41. The graph shows that a significant

improvement in model accuracy, approximately 30%, was achieved by halving the

timestep from 80s to 40s. However, this improvement came at the cost of doubling the

computational cost. A further halving of the model timestep from 40s to 20s (and thus

a further doubling of computational cost) only achieved an increase of approximately

10% in accuracy.
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Figure 7.41: Relationship between RED in PG current velocity and model timestep

(trendline fit: r2 = 0.99).

For timesteps below 20s, improvement in accuracy was negligible. The only means by

which further significant improvements were achievable was by improving the spatial

resolution. This is demonstrated in Figure 7.42 which compares the RET in velocity

for the PG and SG_30 for the same temporal resolution of 20s against the ‘correct’

SG_30 (the ‘correct’ SG_30 employed a temporal resolution of 6s). A significant

reduction in error was obtained by improving the spatial resolution from 90m to 30m.

The PG RED was 24% compared to 9% for the SG_30, giving a 62.5% reduction in

error. However, improvements in accuracy due to higher spatial resolution come at a

high cost; in this case, the computation time for the SG_30 (80mins for 50hrs) was

nine times that of the PG (9mins for 50hrs). The use of a nested model allows one to

achieve the significant improvements in accuracy that result from higher spatial
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resolution without incurring the computational expense of high resolution over the

entire model domain.
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Figure 7.42: RET in (a) PG velocities and (b) SG_30 velocities for Δt = 20s.

7.5.3 Results

CG Open Boundaries

The boundaries of the CG domains were chosen based on the RET distribution plot for

the PG current velocities. The plot is shown in Figure 7.43 with the extents of the

AOIs and their enclosing CG domains delineated. PG inaccuracies were quite high

near the limits of the AOIs; this made the selection of suitable boundary locations

more difficult. Areas of low inaccuracies were required which were close enough to

the AOI to minimise the domain size (and hence the cost savings), but far enough

away that any boundary specification errors would not adversely affect conditions

within the AOI.

In the case of the Owenboy estuary, suitable boundary locations were selected a short

distance from the AOI. Two open boundaries were specified; a y-direction boundary,

OBY, to the north and an x-direction boundary, OBX, to the east. Though the PG

solution was inaccurate along the boundaries, the inaccuracies were relatively low

along the majority of the boundary lengths. The most important aspect of CG_OB was

that flooding and drying was prevalent on both open boundaries OBX and OBY.

Indeed, almost half of the boundary OBY dries out at low tide, as can be seen in

Figure 7.44 which shows the bathymetric cross-sections along both open boundaries.

(a) (b)
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Figure 7.43: RET in CM velocity showing AOIs (black) and nested domains (red).
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Figure 7.44: Bathymetric cross-sections (a) north-south along OBX and (b) west-east

along OBY. (SHT = spring high tide, SLT = spring low tide).

For the Lough Mahon domain, a suitable southern boundary, LMY, was available

close to the AOI. However, the closest suitable location for the eastern boundary,

LMX, was a much greater distance from the AOI. While this was not ideal, as a larger

CG domain meant a higher computational cost, it was nonetheless unavoidable. The

northern and western channels to the northwest of the AOI were areas of high

inaccuracy and any CG boundaries placed here generated high boundary specification

errors. Following boundary testing, the western and northern limits of the nested
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domain were placed on land at the farthest reaches of the two channels and were

therefore closed boundaries.

To obtain an indication of the accuracy of the CG boundary locations, the net fluxes

of mass and momentum across the corresponding interfaces in the PG and SG_30

were computed and compared. The net fluxes were calculated normal to the boundary

interfaces. Figures 7.45 and 7.46 compare the mass and momentum fluxes for the

Owenboy estuary domain; the CG fluxes are also shown.
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Figure 7.45: Comparison of (a) mass and (b) momentum fluxes across OBX interface;

PG and CG_OB timeseries are coincident.
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Figure 7.46: Comparison of (a) mass and (b) momentum fluxes across OBY interface;

PG and CG_OB timeseries are coincident.

It can be seen that the predominant forcing-boundary is the x-direction boundary

OBX. The tidally-averaged errors in the PG fluxes across this interface were

approximately 5% for mass and 7% for momentum indicating a low level of PG

inaccuracy. The tidally-averaged errors in CG fluxes relative to the PG were less than

1% for both mass and momentum indicating a high level of conservation; boundary

formulation errors were therefore minimised. For the y-direction boundary, PG

inaccuracy was higher with tidally-averaged errors of 16% in mass flux and 23% in

(a) (b)

(a) (b)
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momentum flux. However, this boundary accounted for a much smaller proportion of

the total boundary-forcing. In addition, the boundary was located farther from the

AOI allowing boundary errors more time to dissipate. Once again, a high level of

conservation was recorded with tidally-averaged errors of less than 0.5% in CG mass

and momentum fluxes relative to PG.

Figures 7.47 and 7.48 compare the mass and momentum fluxes for the Lough Mahon

domain. In this case it can be seen that the y-direction boundary was by far the

predominant forcing-boundary for the CG domain. The tidally-averaged error in PG

fluxes across LMY was approximately 4% for both mass and momentum, indicating a

low level of PG inaccuracy. For the x-direction boundary, PG inaccuracy was also

shown to be low with errors in PG fluxes of 5% and 10% for mass and momentum

respectively. At both boundaries the BNM was found to ensure high levels of

conservation with tidally-averaged errors in CG fluxes relative to PG fluxes all being

less than 2%.
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Figure 7.47: Comparison of (a) mass and (b) momentum fluxes across LMX interface;

PG and CG_OB timeseries are coincident.
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Figure 7.48: Comparison of (a) mass and (b) momentum fluxes across LMY interface;

PG and CG_OB timeseries are coincident.
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Tidally-averaged Relative Errors

Figure 7.49 compares the RET in water elevations in the Owenboy estuary AOI for the

PG and the CG_OB. PG errors can be seen to be much higher than for the previous

test cases; this was due to PG cells flooding and drying at slightly different times to

the SG_30. The CG_OB was found to effect a significant reduction in model error.

While the PG RET exceeded 1% in 47% of the AOI, RET only exceeded this level in

4% of the AOI for the CG_OB. The RED was found to have decreased from 8.3% in

the PG to 0.6% in the CG_OB suggesting a level of accuracy similar to the SG_30.

Figure 7.49: RET in elevations in Owenboy estuary AOI for (a) PG and (b) CG_OB.

Figure 7.50 compares the RET in current velocities in the AOI for the PG and the

CG_OB. The Vmax,avg computed by SG_30 in the AOI was 0.146m/s. The AEC

employed for the current velocity error filter was therefore 4.4x10-3m/s. The CG_OB

was also found to significantly improve the accuracy of the current velocity

computations. In the PG, RET exceeded 5% in 86% of the AOI. In contrast, this level

was not exceeded at all in the CG_OB. In general, the RED was reduced from 45% in

the PG to 0.1% in the CG_OB, again suggesting a level of accuracy similar to the

SG_30.

For Lough Mahon, Figure 7.51 compares the RET in water elevations for the PG with

that for the CG_LM while Figure 7.52 compares the RET in current velocities. For the

current velocity error filter, a cut-off error AEC of 8.9x10-3 m/s was used; this was

calculated from a Vmax,avg for the AOI of 0.298m/s as computed by the SG_30.
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Figure 7.50: RET in velocities in Owenboy estuary AOI for (a) PG and (b) CG_OB.
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Figure 7.51: RET in elevations in Lough Mahon AOI for (a) CM and (b) CG_LM.
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Figure 7.52: RET in velocities in Lough Mahon AOI for (a) PG and (b) CG_LM.

Once again, the application of the BNM can be seen to have resulted in significant

improvements in the accuracy of the model solution within the AOI. In relation to

water elevations, the RED was reduced from 5.6% in the PG to 1.1% in the CG_LM.

This level of error was slightly higher than that recorded in the Owenboy estuary

(0.6%) and was most likely due to the fact that a substantially greater proportion of

the Lough Mahon AOI was subjected to flooding and drying (see Figure 7.38).

Indeed, the locations of the higher errors in the CG_LM corresponded to those areas

of flooding and drying. Regardless, the level of error was still quite low (the AED was
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just 1cm) and the level of error only exceeded 1% in less than 30% of the AOI. With

regard to current velocity, while the PG RET exceeded 5% in 72% of the AOI, this

value was only exceeded in 4% of the AOI for the CG_LM. Meanwhile, the RED

decreased from 22.4% in the PG to 0.5% in the CG_LM.

A summary of the results of the error analyses for both the Owenboy estuary and

Lough Mahon AOI’s are presented in Table 7.12.

Owenboy Estuary Lough MahonError Analyses
Parameter PG CG_OB PG CG_LM

Water Elevation:
- RED [%]
- AED [x10-2 m]
- RET > 1% [%]

8.3
9.1
47

0.6
0.7
4

5.9
8.0
94

1.1
1.2
28

Current Velocity:
- RED [%]
- AED [x10-3 m/s]
- RET > 5% [%]

45.0
2.49
86

0.1
0.03

0

22.4
2.70
72

0.5
0.13

4

Table 7.12: Summary of error analyses for Owenboy estuary and Lough Mahon AOIs.

Time Series Results

The results of the tidally-averaged error analyses demonstrated that the levels of

accuracy of the CG solutions were much-improved over the low resolution PG

solution. The results also suggested that the CG’s were able to achieve as high a level

of accuracy in the areas of interest as the high resolution SG_30. In order to verify the

accuracy of the CG’s, water elevation and current velocity timeseries were compared

at a number of different locations. The points of comparison are shown in Figure 7.53.

The timeseries comparisons at points A and C in the Owenboy estuary are presented

in Figures 7.54 and 7.55, respectively, while those at points G and I in Lough Mahon

are presented in Figures 7.56 and 7.57, respectively.
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Figure 7.53: Time series locations for (a) Owenboy estuary and (b) Lough Mahon.
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Figure 7.54: Comparison of (a) water elevations and (b) current velocities at point A

in Owenboy estuary.
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Figure 7.55: Comparison of (a) water elevations and (b) current velocities at point C

in Owenboy estuary.
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Figure 7.56: Comparison of (a) water elevations and (b) current velocities at point G

in Lough Mahon.
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Figure 7.57: Comparison of (a) water elevations and (b) current velocities at point I in

Lough Mahon.

It can be seen that while the water elevations computed by the PG were quite

accurate, large inaccuracies were present in the PG current velocities. The CG’s

resulted in significant improvements in the accuracy of velocity computations and

were capable of achieving a similar level of accuracy to the SG_30. This was verified

by using linear regression of the time series data (see Figure 7.58) to calculate the

degree of correlation, r2, between the CG and PG current velocities. The slope, m, and

the intercept, c, of the trend-lines were also recorded and compared. The correlation

parameters calculated from the linear regression analyses of the PG and CG timeseries

are given in Table 7.13.

For two identical datasets, a linear regression analysis will yield the following values:

r2=1, m=1 and c=0. The correlation parameters confirmed that the CG solutions were

highly correlated with the SG_30 solution. Similar values were computed at all of the

time series locations. The BNM was also found to be equally accurate in those areas

subject to flooding and drying as those areas that were not; this is demonstrated by the

timeseries comparisons at point A (Figure 7.54) and the associated correlation values.
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Figure 7.58: Linear regression analyses of time series data showing r2 values.

Correlation ParameterTimeseries
Location

Model
r2 m c

Point A PG
CG

0.66
0.99

4.53
1.00

0.01
0.00

Point C PG
CG

0.97
1.00

1.39
1.00

0.04
0.00

Point G PG
CG

0.84
0.94

0.54
0.97

0.03
0.01

Point I PG
CG

0.89
0.99

1.24
1.01

0.03
0.99

Table 7.13: Results from linear regression analysis of PG and CG timeseries.

With the accuracy of the CGs confirmed, current vector snapshots were compared for

the three models. Figures 7.59 and 7.60 show the Owenboy snapshots at mid-ebb and

mid-flood, respectively, while Figures 7.61 and 7.62 show the corresponding plots for

Lough Mahon. It can be seen that the CG and SG_30 vectors were almost identical.

Point A Point C

Point G Point I
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Figure 7.59: Mid-ebb velocities in Owenboy estuary for (a) SG, (b) PG and (c) CG.

Figure 7.60: Mid-flood velocities in Owenboy estuary for (a) SG, (b) PG and (c) CG.
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Figure 7.61: Mid-ebb velocities in Lough Mahon for (a) SG, (b) PG and (c) CG.
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Figure 7.62: Mid-flood velocities in Lough Mahon for (a) SG, (b) PG and (c) CG.

(a)

(b)

(c)



267

Computational Efficiencies

In addition to achieving improvements in accuracy within the nested domain, it was

also important that the BNM achieved savings in computational cost through

reduction of computational effort. The simulation times and associated cost savings

for the BNM_CH are presented in Table 7.14 for a 50hr simulation. Similar to the

improvements in model accuracy, an equally significant reduction in computational

effort was achieved. The application of the BNM_CH to the two CG domains resulted

in a 70% reduction in computational cost over the SG_30. While specifying both

nested domains in the same model was the most cost-effective solution, the savings

were even more significant when the domains were specified in separate BNM

simulations. The application of the BNM_CH to the Owenboy estuary domain alone

resulted in a 92% reduction in computational cost while its application to the Lough

Mahon domain alone resulted in a 74% reduction in cost.

Model Type Simulation Time
[mins]

Reduction in
Computational Cost

SG_30 261 --
PG 10 --
BNM_CH
(CG x 2)

79 70%

BNM_CH
(CG_OB)

21 92%

BNM_CH
(CG_LM)

68 74%

Table 7.14: Simulation times and cost reductions for the BNM_CH.

7.5.4 Discussion

Child grid boundary location was already identified as the most important factor in

determining the accuracy of the BNM. PG accuracy was easily assessed using the

distribution plots of the RET in current velocities. Velocity errors provide a much

better quantification of PG error than water elevation errors as water elevations are

less sensitive to model resolution. This is demonstrated by the high accuracy of the

PG water elevations in the time series comparisons (Figures 7.54 - 7.57). The

complex bathymetries where model resolution is important have a significant effect

on fluxes of momentum and, by extension, current velocities but they have a much

lesser effect on water surface elevations. Thus, inadequate spatial resolution in such
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areas will first manifest itself in the form of current velocity errors. For example, the

RED in PG current velocity for the full model domain was approximately 19%. In

contrast, the RED in PG water elevation was less than 3% and the RET was actually

less than 1% in 70% of the domain.

From the current velocity RET plots, areas of low PG inaccuracy can be identified as

suitable boundary locations. In real-world coastal systems, nested boundaries will

more often than not intersect the coastline where inadequate resolution and the

resulting high PG inaccuracy is a problem. Boundary specification errors are therefore

unavoidable. To combat this, boundaries should be placed in areas that minimise the

total BS error and that are sufficiently distant from the AOI that the BS errors cannot

adversely affect the AOI. However, these requirements need to be satisfied in such a

way that the size of the nested domain is kept to a minimum and any potential savings

in computational cost are thus maximised. These are conflicting requirements and

experimentation is required to determine the most suitable boundary locations. Take,

for example, the CG_LM domain of the BNM_CH shown in Figure 7.63. Plotted

within the domain is the RET in PG velocities. PG errors at the southern and eastern

boundaries were low while the northern and western boundaries were closed. The

western and eastern boundaries of the domain were moved to the new locations

indicated by the dotted lines in order to minimise the size of the domain and thus

maximise computational savings.

Figure 7.63: Extents of Lough Mahon domain showing alternative boundary locations

(dotted lines) and area of interest (dashed lines).
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The boundaries were placed in areas where the PG errors were low relative to the

surrounding errors. However, in the case of the eastern boundary, the errors were

higher than those at the previous boundary location and, whereas the original western

boundary had been closed, the new western boundary introduced additional boundary

specification errors. The new boundaries were also closer to the AOI than the old

boundaries.

The accuracy of the BNM was significantly reduced for the new boundary locations

with much higher levels of RET in CG velocities in the AOI (see Figure 7.64). The

magnitude of PG error at the western boundary, in particular, coupled with its

proximity to the AOI and the narrow channel width, meant that boundary errors were

able to propagate into the AOI with visible consequences. The effect of the

deterioration in model accuracy can be seen in the comparison of current velocity

timeseries at point G, shown in Figure 7.65. The RET at point G, calculated using the

timeseries data, was 28% for the new boundaries compared to just 4% for the old

boundaries. It is clear that the misplacement of CG boundaries can cause substantial

deterioration in model accuracy. Great care must therefore be taken during their

placement to ensure that the most suitable locations have been found. PG error in the

region of a proposed boundary should be assessed using both the RET in current

velocity and the error in PG mass and momentum fluxes across the CG boundary

interface(s).

For the first test case, the BNM_HW, it was shown that the conservation of incoming

properties at the nested boundary was of greater importance than the conservation of

outgoing properties. This was demonstrated by the ebb and flood tide-averaged errors

(RET,Ebb and RET,Fld) and the boundary fluxes. At those boundary locations that

produced the highest model accuracy the PG flood tide fluxes were highly accurate

while the ebb tide fluxes were not (Figure 7.15). The homogeneity of the harbour

design meant that the influence of the model bathymetry on the flow patterns was

limited to the harbour wall. In contrast, in Cork Harbour, as in most real-world

systems, the coastline and bathymetry play a much more significant role in effecting

changes in momentum and, by extension, current velocities. As a result, there was

very little distinction between the pattern of ebb and flood tide errors in CM

velocities; this is demonstrated by Figure 7.66. The selection of suitable boundary
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locations was therefore based on the relative errors averaged over the complete tidal

cycle, RET.
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Figure 7.64: RET in CG_LM velocities for (a) old and (b) new boundary locations.
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Figure 7.66: (a) RET,Ebb and (b) RET,Flood in PG velocities.

It was shown that Cork Harbour model accuracy increased as the model timestep was

reduced. This is a result of the relationship between model resolution and accuracy

which is governed by the Courant accuracy criterion. The criterion suggests that a

lower PG timestep should produce a more accurate solution which would mean higher

a) b)
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accuracy boundary data for any nested domain. In all of the BNM simulations to date,

the same nesting ratio was used for both the spatial and temporal resolution. However,

the model was developed to allow the specification of different temporal nesting

ratios as well as the possible exclusion of temporal nesting altogether. This offered the

possibility of running the PG of the BNM at the lower timestep of the nested domain

without any temporal nesting, thereby improving the PG solution and minimising

boundary specification errors.

Running the BNM in such a manner produced no discernable improvement in model

accuracy. However, this was thought to be due to the fact that the PG timestep of 18s

was already quite low and its subsequent reduction to 6s had little or no effect on the

accuracy of the solution. The relationship developed between the RED in PG current

velocities and model timestep (see Figure 7.41) supports this argument. The

relationship indicated that a decrease in timestep from 18s to 6s would produce less

than a 1% improvement in accuracy. Although not applicable to the Cork Harbour

model this method of operation may have merit in other models which operate at

larger timesteps. While there is no doubt that the use of the lower timestep in the PG

would increase the computational effort, the additional effort should only be a small

percentage of the total effort as it is the solution of the nested domain(s) that is the

more computationally intensive.

The results of the BNM_CH proved that the BNM is highly applicable to real-world

coastal systems. The accuracy achieved by the BNM_CH was much-improved over

that of the lower resolution PG and was of a similar level to that of the high resolution

SG_30. The BNM_CH also produced significant savings on computational cost over

the SG_30.

7.6 Summary and Conclusions

The performance of the BNM was assessed using three different test cases, the first

being an idealised rectangular harbour, the second being an experimental square

harbour in a tidal basin, and the third being Cork Harbour, a real coastal zone on the

southwest coast of Ireland. Three numerical models of each test system were used to

assess model performance. These included a single grid high resolution model, which

was assumed the correct model solution, and the parent and child grid models of the
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BNM. For each test case, the PG solutions were first compared against the high

resolution SG solutions to determine the loss in accuracy resulting from the lower PG

resolutions. The CG solutions were then compared against the SG solutions to

determine their level of accuracy and these results were compared with those from the

PG comparisons to assess the improvements in CG accuracy over the PG. In the case

of the tidal basin, measured data was also available from a physical scale model with

which to validate the performances of the numerical models. In all three test cases, the

BNM was able to achieve high levels of accuracy at a much-reduced computational

cost.

Based on the results from the test cases, the following conclusions were drawn:

 Careful placement of CG boundaries is crucial to the attainable accuracy of the CG

solution. Boundaries must be placed in areas of high PG accuracy to minimise

boundary specification errors and at sufficient distances from the AOI so that

boundary errors do not adversely affect model performance in the AOI.

 The RET in PG velocities provides a useful means of identifying areas of high PG

accuracy suitable for CG boundary location. The comparison of PG mass and, in

particular, momentum fluxes across CG boundary interfaces with corresponding

fluxes calculated by a high resolution model provides a more accurate measure of

PG accuracy. An effective boundary selection procedure is one for which the RET

in PG velocities is firstly used to identify suitable CG boundary locations and the

comparisons of PG and SG fluxes are then used to select final boundary locations.

In this way, boundary specification errors can be minimised.

 The conservation of mass and momentum for times of incoming fluxes is most

important to the accuracy of the CG solution; analysis of PG fluxes across CG

boundary interfaces is therefore important to identify the times of incoming fluxes

and their accuracy. This type of analysis is particularly important in real coastal

zones. Flux analysis is also very useful in the identification of the predominant

forcing-boundaries which can then be located so as to minimise boundary

specification errors.
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 The BNM is extremely robust and with careful boundary selection it can produce

highly accurate solutions for almost any specified child grid domain. It performs

equally well for child grids with single or multiple open boundaries (BNM_HW

and BNM_TB), for shallow inter-tidal waters or deeper waters (CG_LM) and for

boundaries that are either permanently wet or which alternately flood and dry

(CG_OB). In addition, it performs equally well in both experimental and realistic

environments.
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8. Development of AMM

8.1 Development Overview

The development of the BNM was the first of two stages in the development of the

adaptive mesh model (AMM). The second stage of development involved the

incorporation of advanced features in the BNM. Firstly, a multiple nesting capability

was added to the BNM to form the multiple nested model (MNM). This capability

allowed the specification of a number of layers of nested grids at different nesting

ratios. Secondly, solute transport was incorporated to form the solute transport model

(STM). The STM allowed the simulation of a single solute within any of the model

domains. Finally, dynamic nests were incorporated to form the AMM. Here, the child

grids were given the ability to move within their parent domains during the course of

a model simulation.

Each new model was an adaption of the previous; the final AMM was therefore a

multiple nested, adaptive mesh model capable of simulating both hydrodynamics and

solute transport. All four main models developed during the research, culminating in

the AMM, are listed in Table 8.1. The development process for the advanced nested

models is detailed in the following sections. Each advanced model was rigorously

tested to ensure that the new features functioned correctly and to assess its accuracy.

The details and results of these tests are presented in Chapter 9.

Model Acronym Processes* Multiple Nesting Moving Nests
Basic Nested BNM H No No
Multiple Nested MNM H Yes No
Solute Transport STM H + ST Yes No
Adaptive Mesh AMM H + ST Yes Yes

Table 8.1: The development models (*H=hydrodynamics, ST=solute transport).

8.2 The Multiple Nested Model

Most idealised experiments investigating nested models have shown that satisfactory

results are obtained for spatial nesting ratios of 3:1 or 5:1 (e.g., Spall & Holland,

1991). However, it has been shown in some cases that model accuracy deteriorates for

higher nesting ratios (Barth et. al., 2005). There are two suggested reasons for this.
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The first is that too many fine grid points are required to accurately resolve the coarse

grid waves, and the second is that the incompatibilities between the parent and child

grids are so large that wave reflection and noise generation become excessive.

Therefore, to achieve a high nesting ratio greater than 5:1, without compromising

model accuracy, a multiple nested model was developed.

8.2.1 Description of the MNM

The BNM essentially consisted of two models running simultaneously: the parent grid

model and the child grid model. As the BNM only permitted a single level of nesting,

the model consisted of a single outer parent grid and one or more inner child grids

where all child grids were of similar resolution. The MNM was developed so that any

child grid can successively contain further child grids; thus each child can become a

parent to further children. In this way numerous levels of nesting can be specified.

The grid structure employed by the MNM is graphically illustrated in Figure 8.1.

Figure 8.1: Grid structure for the MNM.

The BNM was adapted to allow multiple nesting by incorporating additional child

grid models to operate at each additional level of nesting. The MNM therefore

consists of a parent grid model and multiple child grid models. A schematic of the

design is shown in Figure 8.2. For simplification, the case for just two levels of

nesting is shown.
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Figure 8.2: Schematic of MNM for NL=2 where NL is the number of levels of nesting. Data input and initialisation has been omitted. The non-

shaded portion of the schematic is the parent grid model. The shaded portions are the child grid models.
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The parameter NL is the total number of nesting levels in the simulation and is also

therefore the number of child grid models required; for the schematic, NL=2.

Applying the grid structure from Figure 8.1 to the schematic of Figure 8.2, model

operation would then involve the following:

 the parent grid model operates on the outermost grid - G1.1

 a first child grid model operates on all of the nested grids at the first level of

nesting (nl = 1) - G2.1, G2.2, G2.3

 a second child grid model operates on all of the nested grids at the second level

of nesting (nl = 2) - G3.1, G3.2

Each level of nesting has its own specific spatial and temporal nesting ratios. Similar

to the BNM these ratios can be any integer value and should usually, but not always,

have the same value. In this way child grids may be telescoped to achieve any

required spatial resolution (Figure 8.3a). For example, a 6:1 spatial nesting ratio can

be achieved by specifying two levels of nesting, the first at a 3:1 ratio and the second

at a 2:1 ratio, or vice versa. The number of children specified at any one nesting level

can vary from one to ten but all will have the same spatial and temporal nesting ratios.

While several children may share the same parent (Figure 8.3b) no child can have

more than a single parent (Figure 8.3c) and overlapping grids, i.e. where a parent grid

point is contained within more than a single child grid, are not allowed (Figure 8.3d).

Figure 8.3: Various grid configurations for the MNM: (a) telescoping; (b) multiple

children; (c) multiple parents - not permitted; (d) overlapping grids - not permitted.
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The time integration of the MNM uses a ‘bottom-up’ approach. Before any parent

grid can be integrated forward in time, all of its children must be integrated to the

parent’s current time-level. An overview of the procedure is shown in Figure 8.4. For

simplicity, the time integration is only shown for two levels of nesting, the first at a

3:1 nesting ratio and the second at a 2:1 ratio. Δtc1 and Δtc2 are the timesteps at the

first and second levels of nesting respectively. The timesteps are numbered in the

order of model progression. The procedure is as follows:

1) the model integrates the uppermost parent grid by a single timestep to time t+Δtp

2) the model integrates all of the CGs at nl=1 by a single timestep to time t+Δtc1

3) the model integrates all of the CGs at nl=2 up to the current time-level of their

parent grids at nl=1 (t+ Δtc1)

4) steps (2) and (3) are repeated until all child grids have been integrated to t+Δtp

5) steps (1) through (4) are repeated

Figure 8.4: Time integration of the MNM.
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8.2.2 Implementation

As with the development of the BNM, the development of the MNM required both

modification of the existing BNM source code and addition of new source code. New

code was added primarily for the reading of input data pertaining to each level of

nesting and for the initialisation of the nested grids. Extensive modification of the

existing source code was required to allow the same computational subroutines to be

used for all levels of nesting while ensuring the preservation of each child grid’s

specific data.

The MNM was developed so that it could run as a normal single-grid model in the

event that nesting was not required. The number of nesting levels, NL, is specified in

the main input data file. If NL=0 then the model runs as a single-grid model. The data

specific to each nesting level is stored in separate input data files. At each level of

nesting the following data are required:

 spatial nesting ratio

 number of rows and columns in the global parent grid

 grid spacing

 timestep

 number of child grids

 locations of child grids on the global parent grid

 time series locations

 land-sea mask for global high resolution grid

 depths below MWL for global high resolution grid

An identification system had been employed in the BNM so the data particular to each

nested grid was stored separately and could be linked back to its owner. This

prevented grid data being mistakenly misused or overwritten. The ID tag employed

was the parameter NG, a unique number assigned to each child grid at the beginning

of a simulation. NG ranged from 1 to MAXNG, the total number of child grids in the

simulation. In the MNM, child grids could exist over multiple levels of nesting. This

required the use of the parameter NL as a second ID tag. Using NL and NG together,

any child grid in the MNM could be uniquely identified. All model arrays used to

store data specific to a particular child grid were therefore upgraded in rank to
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accommodate the new ID tag. For example, the array used to store child grid water

elevations in the BNM (8.1) was upgraded to (8.2) in the MNM as follows:

EU_F ( MAXNG, IMAX_F(NG) , JMAX_F(NG) ) (8.1)

EU_F ( MAXNL, MAXNG, MAX_IRANGE, MAX_JRANGE ) (8.2)

where MAXNL is the total number of nesting levels. The variables MAX_IRANGE

and MAX_JRANGE are explained below. Other arrays that were upgraded in rank

included all of the other grid-wide arrays, those arrays locating CG boundaries, those

storing integration sections and those pertaining to data output.

The basis of the MNM was that a separate child grid model should operate at each

level of nesting. Upgrading the model arrays as described meant that the main

computational subroutines such as HYDMODX_F and HYDMODY_F were

generalised so they could be used by all of the CG models. Instead of having to add a

full set of source code for each CG model, the new models could be incorporated with

a series of short, analogous subroutines (NEST_F1, NEST_F2, etc.) which called on

the main CG computational subroutines. These new subroutines also implemented the

time integration procedure outlined in the previous section.

The main section of new source code in the MNM was the development of the

subroutine ASSIGN, shown in the MNM flowchart in Figure 8.5. The subroutine

carries out a number of important operations on all child grids prior to their

initialisation. The first of these involves establishing the child grid at a local level.

Initially, the child grids are specified in terms of their position on the global parent

grid - the four corners of each CG are specified in terms of PG cell coordinates.

Subroutine ASSIGN converts these PG coordinates to the corresponding CG

coordinates on the global high resolution grids at the relevant levels of nesting. The

extents of each nested grid are then calculated in terms of child grid cells and the

global coordinates are transformed to local coordinates where each CG originates at

(1,1). The transformation from global to local coordinates is required so that the same

generalised computational subroutines can be used on each specific child grid. It

allows computations to be applied in the I-direction from I=1 to I=IMAX(NL,NG) and

in the J-direction from J=1 to J=JMAX(NL,NG) for all child grids.
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The storage requirements for grid-wide datasets, such as EU_F of (8.2) above, can be

quite demanding; between 20 and 30 such datasets must be stored for each child grid

at each level of nesting. The second function of subroutine ASSIGN is to allocate the

minimum amount of space necessary to store all of these arrays. This is done by

setting the extents of the arrays to the lowest possible values. MAXNL is therefore set

to the total number of nesting levels in the simulation while MAXNG is set to the

maximum number of grids occurring on any one nesting level. Lastly, the maximum

number of rows (I) and columns (J) in any child grid is determined (these may not

necessarily occur in the same grid!) and the values are assigned to MAX_IRANGE and

MAX_JRANGE. Since the size of each child grid can vary, MAX_IRANGE and

MAX_JRANGE describe the extents of the smallest array capable of storing the data

from any child grid. After allocating the extents of the variable arrays, the subroutine

also initialises them to zero.

The third and final function of the subroutine is to enable each child grid to identify

its parent. This is crucial to the operation of the MNM as the boundary data for each

child grid must be interpolated from its parent grid. Each child grid is therefore tagged

with the ID number of its parent grid. Any child grid at a nesting level (NL) knows

that its parent is located at the nesting level (NL-1); however, its parent grid could be

any one of many grids at that level. Subroutine ASSIGN establishes the array

PARENT(MAXNL,MAXNG) which associates each child grid with its parent’s grid

number. The boundary formulation subroutine FINEBND (see Figure 8.5) also

required modification to enable extraction and interpolation of the appropriate

boundary data and its subsequent assignment to each child grid.

Finally, subroutine FIND_F was modified so that it initialised the mean water depths

and land-sea masks for each child grid. Using the global high resolution grid

coordinates of each child grid, the subroutine retrieves the corresponding data from

the global grid domain and assigns them to the localised grids. The land-sea masks for

each child grid are then used to determine the location and extent of all open

boundaries.
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8.3 The Solute Transport Model

Coastal models are very seldom used to study hydrodynamics alone. More often than

not, the interest lies in the water quality of the coastal system. Common water quality

constituents of interest include salinity, nutrients (e.g. nitrogen and phosphorus),

oxygen, phytoplankton and sediments. For the wider application of the AMM it was

therefore important that it was capable of simulating solute transport.

Model resolution is the main determinant of computational cost in coastal models.

However, when modelling water quality, the number of constituents to be modelled is

also important. Simulation times can double, triple, or worse, depending on the

number of water quality constituents to be modelled. In DIVAST, for example, the

modelling of phytoplankton growth requires the simulation of nine different

constituents. A nested water quality model can therefore provide substantial savings

over the traditional single-grid water quality model.

8.3.1 Description of the STM

The STM allows the simulation of solute transport within any grid (parent or child) of

the nested model. For simplicity, the model was developed to only allow simulation of

a single solute. (Note: further adaption of the model is therefore required to

incorporate multiple water quality constituents and their kinetics.)

Boundary conditions for the nested solute transport modules are obtained from parent

grids in the form of solute fluxes. Thus, the simulation of solute transport in a

particular child grid requires its simulation on all of the coarser grids within which the

nested grid is embedded. In other words, the simulation of a solute in a child grid at

NL=2 requires the simulation of the same water quality scenario in the child’s parent

grid at NL=1 and in that parent’s parent, i.e. the outermost parent grid. The

computation of solute concentrations is carried out at every half-timestep following

the hydrodynamic computations. The algorithm for the main computational block of

the model is presented in Figure 8.6 for NL=1. The algorithm outlines the main

computational processes and the linkages between the parent and child models. Each

process in Figure 8.6 is numbered; the number corresponds to the subroutine that

carries out the particular process. The subroutines are shown in Figure 8.7 which

presents a flowchart of the overall structure of the STM.
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Figure 8.6: Schematic of STM for NL=1. Data input and initialisation is omitted. Non-

shaded section is PG model, shaded section is CG model. (Process numbers relate to

corresponding subroutines in Figure 8.7).
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Figure 8.7: Flowchart of STM structure; CG subroutines shaded, PG subroutines non-

shaded.
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8.3.2 Implementation

The development of the STM involved the reintroduction of solute transport

subroutines which had been removed from the model prior to the development of the

BNM. Two copies of the main computational subroutines were required, one for the

parent model and the other for the use of the child models. The parent model

subroutines did not require any modification; however, child model subroutines

required extensive modification. Other functions added were to read-in outfall data, to

initialise solute transport arrays and to integrate the solute transport module into the

child model structure.

The main modifications to the solute transport subroutines for the child models

involved changing array names to distinguish between PG and CG parameters and

upgrading variable arrays to incorporate the ID system used in the hydrodynamic

module. For example the array used to store solute concentrations in the PG, SU(

IMAX, JMAX ), was changed in the CG to:

SU_F (MAXNL, MAXNG, MAX_IRANGE, MAX_JRANGE ) (8.3)

Other subroutines such as ASSIGN and INITL_F required the addition of new code to

initialise arrays relating to solute transport processes. Subroutine ASSIGN also has to

establish outfall locations on the child grids in terms of local grid coordinates since

outfall locations are initially specified in terms of global parent grid coordinates. The

boundary formulation subroutine, FINEBND, was also modified to enable it to

extract, interpolate and specify boundary solute fluxes. Finally, modified source code

was added to the main program to read-in outfall data (locations, discharges,

concentrations and decay rates), to call the solute transport subroutines when required

and to reset solute concentrations for the next half-timestep.

Table 8.2 lists the sections of source code that were added to enable solute transport in

the parent grid model. These sections of code were taken from the original DIVAST

model and did not require any modification. Table 8.3 lists the sections of source code

that were added to enable solute transport in the child models. These sections included

modified and new code. The table indicates which sections were modified and which

were new. The tables can be linked to the structure of the STM shown in Figure 8.7.
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Section of Code Function Code Status
Main Program Reads outfall data New
Main program Writes outfall data New
Main program Calculate recalculation times for

dispersion coefficients
Original

Main program Initialise solute transport variables Original
Main program Set constants for recursion coefficients Original
INITL Initialise solute transport variables Original
Main program Check outfall start and finish times Original
Main program Call solute transport subroutines Original
Main program Reset S for next half-timestep Original
Main program Call subroutine to recalculate dispersion

coefficients
Original

HYDMODX,
HYDMODY

Incorporate local effects of discharge Original

SOLBND Read and assign solute transport OBCs Original
SOLMOD Calculates S in the x- and y-directions Original
REMOVE Adjust S for drying Original
DISP Recalculate dispersion coeffs. Original
PRINT Writes results to snapshot files New
Main Program Writes results to timetrace files New

Table 8.2: Sections of source code added to parent model to develop the STM.

Section of Code Function Code Status
Main Program Reads outfall data New
Main program Writes outfall data New
Main program Set constants for recursion coefficients Modified
ASSIGN Initialise solute transport variables and

calculate local coordinates for outfalls
New

INITL_F Initialise solute transport variables Modified
NEST_F1 Call solute transport subroutines Modified
NEST_F1 Reset S for next half-timestep Modified
NEST_F1 Call solute transport subroutines Modified
Main DO Loop Call subroutine to recalculate dispersion

coefficients
Modified

HYDMODX_F,
HYDMODY_F

Incorporate local effects of discharge Modified

FINEBND Extract, interpolate and assign boundary
data from parent

New

SOLMOD_F Calculates S in the x- and y-directions Modified
REMOVE_F Adjust S for drying Modified
DISP_F Recalculate dispersion coeffs. Modified
PRINT Writes results to snapshot files New
Main Program Writes results to timetrace files New

Table 8.3: Sections of source code added to child model to develop the STM.
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8.4 The Adaptive Mesh Model

The main aim of the research was to develop an adaptive mesh model. Adaptive

meshing techniques allow further optimisation of computational cost over classical

static nested models by allowing the nested grid to track a feature of interest as it

moves within the model domain. In this way, the size of the high resolution grid and

the associated computational effort can be minimised.

The final step in the development of the AMM was the conversion of the static child

grids in the STM to dynamic grids that were free to move within the boundaries of

their parents’ domains. The implementation of adaptive meshing in oceanographic

modelling is still relatively new and only two different methods have been applied to

date. The adaptive meshing technique adopted was mainly based on that of Rowley

and Ginis (1999) but contains elements from both methods.

8.4.1 Description of the AMM

The AMM was developed so that any valid child grid can be either a static domain or

a moving nest. The moving nest capability is an additional, optional, feature of a child

grid. All descriptions covering the specifics for static child grids also apply to moving

child grids. The movement of a child may be predetermined by the user (specified) or

automatically controlled by the model itself (automatic). The size and shape of a grid

can be altered upon movement so that the area of high resolution can be minimised. In

addition, a child grid can be generated at any time during the simulation; this differed

from previous models where all child grid simulations were initiated at time zero.

For specified movement, the timing of each move and the new grid location after a

move are defined by the user in the input data file. The new grid locations are input in

terms of their position on the global parent grid. For automatic movement, the timing

and extent of each move is controlled by a predetermined tracking algorithm. Take the

example of an algorithm designed to track the movement of a solute plume. Such an

algorithm might check to see if the solute concentration near a child grid boundary

has exceeded a certain threshold value. If the threshold has been exceeded, indicating

that the plume has moved towards the boundary, the boundary should be shifted

outward by a certain increment.
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At the end of each PG timestep all dynamic child grids must be checked to see if they

should be moved. Following a move, the new grid must be initialised. A common data

region exists where the old and new grids overlap (Figure 8.8). The data from the old

grid cells within this region are transplanted to the appropriate cells in the new grid. A

second region also exists in the new grid which has no data (Figure 8.8). Data for the

grid cells in this region are obtained by interpolation of PG data; an inverse distance

weighted interpolation scheme, similar to that of equation (3.47), is used for this

process. The algorithm for the main computational block of the model is again

presented in Figure 8.9 to show how mesh movement is incorporated. A flowchart of

the structure of the AMM is presented in Figure 8.10.

Figure 8.8: View of child grid before move (dashed) and after move (solid) showing

region of common CG data (dotted) and region of interpolated PG data (shaded).

It is important to monitor the movement of children during the course of a simulation.

A child cannot be allowed to move outside the boundaries of its parent grid. If this

were to happen the child would then have multiple parents and such a situation

contravenes the rules governing valid child grids. In keeping with another rule of

valid grids, care must be taken that a child grid post-movement does not overlap

another child at the same level of nesting. If either of these rules were to be broken by

a potential move, the move is prohibited.

The time integration of the AMM proceeds in the same manner as the other nested

models (see Figure 8.4). The only difference is that, once all children have been

integrated up to the current parent model time-level, and prior to any further

integration of the parent model, all dynamic child grids must be checked to see if a

move is required.
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Figure 8.9: Schematic of AMM for NL=1. Data input and initialisation is omitted.

Non-shaded section is PG model, shaded section is CG model. (Process numbers

relate to corresponding subroutines in Figure 8.10)

Compute hydrodynamics
for 1st half-timestep

Compute hydrodynamics
for 2nd half-timestep

Assign OBCs
for 1st half-timestep

Assign OBCs
for 2st half-timestep

Write results to output files
(PG and CG) FINISH

Do for np = 1,…,N
[N = no. of PG timesteps]

[If: np < N] [If: np ≥ N]

[If: NL = 0]

Compute hydrodynamics
for 1st half-timestep

Compute hydrodynamics
for 2nd half-timestep

Extract boundary data
from parent grid

Interpolate parent data and
specify to boundary

Do for nc = 1,…,M(nl)
[M = temporal nesting ratio]

Interpolate parent data and
specify to boundary

Do for ng = 1,…,NG(nl)
[NG(nl) = no. of child grids]

[If: ng = NG(nl)]
[I

f:
ng

<
N

G
(n

l)
]

[If: nc ≥ M(nl)]

[If: nc < M(nl)]

[If: NL > 0]

[If: NL  1]

[If: NL > 1]

nl=1

Compute solute conc.
for 1st half-timestep

Compute solute conc.
for 2nd half-timestep

Compute solute conc.
for 1st half-timestep

Compute solute conc.
for 1st half-timestep

Check all dynamic nests
for required movement

[If: NL > 0]

Update child grid arrays
after a move

[If: no movement]
[If: movement]

12

13

16

18

19

22

25

25

26

28

30

33

31

36/37

36/37



291

M
ai

n
Pr

og
ra

m

FILINP

FILOUT

BOUND

FIELD

FIND

DEPTH

INITL

HYDBND

HYDMODX

SIDEH

FLDRY

HYDBND

FLDRY

HYDMODY

SIDEH

PRINT

1

2

3

4

6

8

9

10

11

12

13

14

15

16

17

27

EDDY_F

CHEZY

30

32

FIELD_F

5

FIND_F

7

INITL_F

NEST_NL1

CHEZY_F

EDDY

29

FINEBND

HYDMODX_F

SIDEH_F

FLDRY_F

FINEBND

FLDRY_F

HYDMODY_F

SIDEH_F

18

19

20

21

22

23

24

25

26

31

ASSIGN

28

33

NEST_NL2

Repeats 25-34

34

If NL>1

SOLBND

SOLMOD

SOLBND

SOLMOD

SOLMOD_F

SOLMOD_F

35

37

44

39

36

38

DISP_F

DISP

40

41

MOVE_USER

MOVE_AUTO
NADAPT=1

NADAPT=2

42

43

Figure 8.10: Flowchart of STM structure; CG subroutines shaded, PG subroutines
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8.4.2 Implementation

Incorporation of the dynamic nests first required modification of the input data files.

A separate data file is required for each level of nesting. Contained in these data files

are the specifications for any child grids at that nesting level. A flag (NADAPT) was

included for each child grid to indicate whether it was to be static or dynamic; a value

of 0 indicates a static grid, 1 indicates a dynamic grid with specified movement, and 2

indicates a dynamic grid with automatic movement. If specified movement is required

then, for each grid, the number of specified moves must be provided along with the

time of each move and the new grid location after each move.

In relation to modification of the source code, firstly, new source code was added to

read the new input data related to the adaptive meshing. New code was also added to

implement the schematic of Figure 8.8. At the end of each PG timestep and

subsequent to all child grid time integrations, the model checks to see if any child grid

requires movement. If NADAPT=0 for a particular CG, this code is bypassed. If

NADAPT=1 the model checks the current simulation time and the next specified

move-time; if the current simulation time has exceeded the move-time the grid

movement subroutine is called and the next move-time is updated from the user-

specified list. Finally, if NADAPT=2 the subroutine controlling automatic movement

is called.

The main source code modifications were the addition of the subroutines controlling

grid movement: MOVE_USER for specified movement and MOVE_AUTO for

automatic movement (see Figure 8.10). A third subroutine was also added to initialise

the grids after movement, INITFG. The content of the subroutine MOVE_AUTO will

vary depending on the proposed tracking algorithm and so is application-dependent.

For this reason only MOVE_USER is covered here. However, much of the

functionality of MOVE_USER would also be used for an automatic move.

When a child grid moves, the data for the old and new grids are stored in the same

location in order to save space. The arrays that stored the data for the old grid are

therefore overwritten by the data for the new grid. Since a grid’s extent can change

when it is moved, e.g. it may become larger, the model must ensure that the data

arrays are large enough to hold the data for any new grid introduced by the user
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during the simulation. This function is carried out at the beginning of the simulation

by the subroutine ASSIGN.

If a specified grid movement is required, the first function of MOVE_USER is to

determine the boundaries of the area of common data between the old and new grids

(see Figure 8.8). The common data is then copied from the old grid and written to the

correct location in the new grid. To ensure that the data is written to the correct

location, the localised coordinates for each grid must be calculated. It is also

important that the data are copied and written as a block-copy; if copying is done on a

cell-by-cell basis data in the old grid may be overwritten before being copied and

incorrect data will then be copied to the new grid. At this stage a data mask for the

new grid is also initialised; this is similar to a land-sea mask. Those cells in the new

grid that have now been populated with data are assigned a data mask value of 1 while

those grid cells still without data are assigned a value of zero.

As stated, the extents of a grid after a move may be different than those before the

move. In addition, the location and extents of the internal boundaries will be different,

as will the integration sections defined for model computations. The next function

carried out is therefore the re-specification of internal boundaries and x- and y-

integration sections. This function is initially carried out by subroutine FIND_F for all

nested grids. It is therefore called by MOVE_USER to carry out the same task on any

new grid. FIND_F also initialises the mean water depths and the land-sea mask for a

new grid.

The next step is to populate those grid cells still without data; this is done by the

subroutine INITFG which is called by MOVE_USER. Using an inverse distance-

weighted interpolation scheme, the required child grid data is interpolated from its

parent grid. The child grid cells at which data must be interpolated are identified using

the data mask. Data values are interpolated for water elevations, and x- and y-

components of both current velocity and volumetric flux. Following this, Chezy

values and eddy viscosity coefficients are initialised for the full extents of the new

child grid domain and dispersion coefficients are also initialised if solute transport has

been included. The inverse distance-weighted interpolation scheme was tested for

accuracy during model development. Figure 8.11 compares a 30m bathymetry for
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Cork Harbour which was interpolated from a 90m bathymetry using the inverse

distance-weighted code implemented in INITFG with the actual 30m model

bathymetry. The IDW scheme was found to be sufficiently accurate.

-34 m

-30 m

-26 m

-22 m

-18 m

-14 m

-10 m

-6 m

-2 m

-34 m

-30 m

-26 m

-22 m

-18 m

-14 m

-10 m

-6 m

-2 m

Figure 8.11: (a) 30m bathymetry for Cork Harbour and (b) 30m bathymetry

interpolated from 90m bathymetry using the inverse distance-weighted code.

The final function of the subroutine MOVE_USER is to check if any outfalls or time

series locations were specified within the old child grid. If so, they are re-specified at

the corresponding grid cells in the new grid by transformation of local coordinates

from the old grid system to the new grid system. This completes the specified

movement of a grid. For automatic movement, although the criteria for a move will be

different, most of the functions described above are also required by the

MOVE_AUTO subroutine. All of the new sections of source code added to the STM to

develop the final AMM are summarised in Table 8.4.

Section of Code Function Code Status
Main Program Reads dynamic grid data New
Main program Checks all dynamic grids for movement New
ASSIGN Checks extents of proposed new grids and

ensures data arrays are of the correct size
Modified

MOVE_USER Moves a grid according to the
specifications of the user

New

MOVE_AUTO Moves a grid according to a
predetermined algorithm

New

INITFG Initialises the new grid created after a
move has been sanctioned

New

Table 8.4: Sections of source code added to the STM to develop the AMM.

(a) (b)
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8.5 Summary and Conclusions

During this stage of model development the BNM functionality was enhanced to

produce the AMM. Two other advanced models were also developed in the process,

the MNM and the STM. The final AMM incorporated multiple levels of nesting, both

hydrodynamic and solute transport processes and dynamic nested grids. A number of

new subroutines and modification of existing subroutines was required to implement

the advanced features of the MNM, STM and AMM. The functionality of the

advanced models was confirmed by extensive testing during the development process.

However, the performance and accuracy of the advanced models also required

assessment. The assessment procedure involved the application of the advanced

models to various test cases. The details and results of this process are presented in

the next chapter.



296

9. Results: Advanced Nested Models

9.1 Introduction

The development of each advanced nested model involved the adaption of its

predecessor - the AMM was an adaption of the STM, the STM was an adaption of the

MNM and the MNM was an adaption of the BNM. The performance of the final

AMM was therefore dependent on the performance of the STM and the MNM. It was

important that each advanced nested model was tested for performance and accuracy

prior to its subsequent adaption and further development. First, the performance of the

MNM was assessed using the idealised rectangular harbour. Next, the performance of

the STM was assessed using Cork Harbour as the test case. The ultimate objective of

the research was to develop an adaptive mesh model that was applicable to real-world

coastal systems. The final task therefore involved the application of the AMM to a

real system and the subsequent assessment of its performance; Galway Bay, located

on the west coast of Ireland, was chosen as the test case. The following sections

describe the testing of the three advanced nested models.

9.2 The MNM

The performance of the MNM was tested using a second version of the idealised

rectangular harbour (with harbour wall). The model domain is shown in Figure 9.1.

The AOI was located inside the harbour wall. The low resolution PG of the

MNM_HW had dimensions 14.4 x 7.2km and a spatial resolution of 180m.

Figure 9.1: (a) Plan view of rectangular harbour showing CG boundaries (OB1, OB2),

AOI and timeseries locations; (b) bathymetry (depths in metres).
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using a 3:1 nesting ratio. A single child grid (CG1) was specified at the first nesting

level at a spatial resolution of 60m. The grid extended from the open boundary OB1

in Figure 9.1 to the back of the harbour. This grid was in turn parent to a further child

grid (CG2) at the second nesting level at a spatial resolution of 20m. CG2 extended

from the open boundary OB2 in Figure 9.1 to the back of the harbour. In this way a

high level of refinement (9:1) was achieved indirectly using low nesting ratios. This

first scenario allowed the determination of MNM accuracy.

Multiple nesting was incorporated in the model to allow high levels of refinement to

be achieved indirectly. Some literature studies reported that the use of high nesting

ratios led to deterioration of model accuracy. By embedding grids at low nesting

ratios in a telescopic fashion, the need for high nesting ratios (> 5:1) was avoided. In

the second scenario (MNM_2), a single level of nesting was employed and a single

child grid (CG3) was specified at a 9:1 nesting ratio. Its open boundary, OB3, was

coincident with OB2 (Figure 9.1) and it therefore had the same extents and resolution

as CG2 from the first scenario. The results from this second scenario were used to test

the hypothesis that the use of high nesting ratios leads to a loss of model accuracy.

To enable the determination of MNM accuracy, SG models with resolutions matching

the MNM grids were also developed, specifically, a low resolution model (SG_180)

and two higher resolution models (SG_60 and SG_20). All three models simulated the

full harbour domain. Details of the MNM’s and SG’s are given in Tables 9.1 and 9.2

respectively. Domain extents and resolution were the only parameters to differ

between models. All simulations were run for four tidal cycles (50hrs), ensuring

steady-state and results from the final tidal cycle (37.5-50hrs) were used for analyses.

MNM1 MNM2Physical
Parameter PG CG1 CG2 PG CG3

LX 14.4 km 11.7 km 9.7 km 14.4 km 9.7 km
LY 7.2 km 7.2 km 7.2 km 7.2 km 7.2 km
Tidal Amplitude 1.5 m 1.5 m 1.5 m 1.5 m 1.5 m
Tidal Period 12.5 hrs 12.5 hrs 12.5 hrs 12.5 hrs 12.5 hrs
Resolution:

- Δx
- Δt

180 m
126 s

60 m
42 s

20 m
14 s

180 m
126 s

20 m
14 s

No. of grid cells 3,200 23,400 174,960 3,200 174,960
Bed Roughness 30 mm 30 mm 30 mm 30 mm 30 mm

Table 9.1: Details of MNM’s.
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Single Grid ModelsPhysical
Parameter SG_180 SG_60 SG_20

LX 14.4 km 14.4 km 14.4 km
LY 7.2 km 7.2 km 7.2 km
Tidal Amplitude 1.5 m 1.5 m 1.5 m
Tidal Period 12.5 hrs 12.5 hrs 12.5 hrs
Resolution:

- Δx
- Δt

180 m
126 s

60 m
42 s

20 m
14 s

No. of grid cells 3,200 28,800 259,200
Bed Roughness 30 mm 30 mm 30 mm

Table 9.2: Details of SG’s.

9.2.1 Results: Single Grid Models

The single grid models were first used to determine their accuracy in relation to each

other. In particular, they were used to measure the loss in accuracy resulting from the

use of a lower resolution. The solution of the highest resolution model, SG_20, was

assumed the ‘correct’ model solution for the rectangular harbour. Errors in the lower

resolution models were then quantified by computing the RET in water elevations and

current velocities for SG_60 and SG_180 relative to SG_20. Figures 9.2 and 9.3 show

the RET in elevations and velocities for the SG_180 and SG_60 models respectively.
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Figure 9.2: RET in (a) elevations and (b) velocities for SG_180 relative to SG_20.
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Figure 9.3: RET in (a) elevations and (b) velocities for SG_60 relative to SG_20.
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As expected, higher model resolution was found to result in improved model

accuracy. Errors in velocity were significantly lower in SG_60 compared to SG_180.

For SG_180, the RET was found to exceed 10% in approximately 60% of the model

domain while for SG_60 RET =10% was exceeded in less than 7% of the domain.

Similarly, the RED for SG_180 was calculated at approximately 13% compared to 5%

for SG_60. While errors in water elevations were already relatively low in SG_180

with an RED of 1%, their accuracy also improved with higher resolution with an RED

of 0.4% computed for SG_60.

The lower levels of accuracy in the low resolution models compared to the high

resolution SG_20 were further demonstrated by the velocity timeseries comparisons.

The comparisons at Points A and B are shown in Figure 9.4 as they were located in

the areas where velocity errors were greatest. The high level of accuracy of the water

elevations computed by all three models meant that no discernable difference was

visible in the elevation timeseries comparisons. For this reason they are not presented.

From the velocity comparisons it can clearly be seen that model accuracy improved

with the increase in resolution from SG_180 to SG_60.
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Figure 9.4: Comparison of velocity timeseries for SGs at (a) point A and (b) point B.

9.2.2 Results: MNM

Open Boundaries

The open boundaries of the nested domains CG1 and CG2 were selected using the

boundary location procedure outlined in Chapter 7. The accuracy of incoming

boundary data were most important to the accuracy of the nested solutions, therefore

RET in velocities during the period of the flood tide only were used to identify

appropriate CG boundary locations. CG1 was resolved at 60m and its boundary data

were interpolated from the PG which was resolved at180m. The RET,Fld in SG_180

(a) (b)
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velocities relative to the SG_60 (see Figure 9.5a) was therefore used to select

appropriate boundary locations for CG1.
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Figure 9.5: RET,Fld in velocities for (a) SG_180 relative to SG_60, (b) SG_60 relative

to SG_20 and (c) SG_180 relative to SG_20.
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In Scenario 1, CG2 obtained its boundary conditions from CG1 which corresponded

to the SG_60. The RET,Fld in SG_60 velocities relative to the SG_20 (see Figure 9.5b)

was therefore important for boundary selection for this scenario. CG3 of Scenario 2

was specifically designed to have the same extents and resolution as CG2 in order to

allow direct comparison of model results. However, CG3 obtained its boundary data

directly from the PG model; therefore, the RET in SG_180 velocities relative to the

SG_20 (see Figure 9.5c) was important for boundary selection for this scenario. The

selection of an appropriate common boundary location for CG2 and CG3 therefore

took account of both sets of RET,Fld.

The open boundaries OB2 and OB3 were to be located along the same interface. The

interface was placed in an area where RET,Fld in both the SG_60 and the SG_180 were

low. From Figure 9.5, it can be seen that the interface was located at a sufficient

distance from the AOI to prevent boundary errors from adversely affecting the

solution within the AOI, but close enough to the AOI that the size of the domain was

minimised. The internal boundary OB1 for CG1 was located outside of the CG2

domain in an area where RET,Fld in the SG_180 relative to the SG_60 was low. OB1

was also located at a sufficient distance from OB2 that boundary errors would not

adversely affect the boundary data for OB2, but close enough to OB2 that the size of

the domain was once again minimised.

Boundary fluxes were used in conjunction with the RET,Fld data to help determine

parent model accuracy at potential boundary locations. For example, CG1 was

resolved at 60m and obtained its boundary from PG which was resolved at 180m,

therefore fluxes across potential CG1 boundary interfaces were computed by SG_180

and their accuracy was measured against corresponding fluxes from SG_60. Figures

9.6 and 9.7 show the comparisons of mass and momentum fluxes across the selected

CG1 boundary and the relative errors in the parent fluxes.

In the case of CG2, boundary fluxes from SG_60 were compared with those from

SG_20. These mass and momentum flux comparisons are shown in Figures 9.8 and

9.9 respectively. The fluxes from SG_180 are also included in these comparisons as

CG3 in Scenario 2 had the same extents and resolution as CG2 but obtained its

boundary data from the 180m PG.
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Figure 9.6: (a) Mass fluxes across OB1 interface and (b) error in SG_180 flux relative

to SG_60.
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Figure 9.7: (a) Momentum fluxes across OB1 interface and (b) error in SG_180 flux

relative to SG_60.
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Figure 9.8: (a) Mass fluxes across OB2/OB3 interface and (b) errors in SG_180 and

SG_60 fluxes relative to SG_20.
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Figure 9.9: (a) Momentum fluxes across OB2/OB3 interface and (b) errors in SG_180

and SG_60 fluxes relative to SG_20.
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It can be seen that, in all cases, parent model accuracy was high for mass fluxes. RET

in mass flux was calculated at just 1.1% for SG_180 relative to SG_60, 1.3% for

SG_60 relative to SG_20, and 1.8% for SG_180 relative to SG_20. In the case of

momentum fluxes, the accuracy of the parent fluxes was somewhat lower. RET in

momentum flux was calculated at 5.7% for SG_180 relative to SG_60, 8.4% for

SG_60 relative to SG_20, and 17.6% for SG_180 relative to SG_20. However, model

accuracy is most influenced by boundary data during the periods of incoming data, i.e.

on the flood tide when boundary fluxes were positive. Boundary locations were

selected on this basis. The RET in momentum fluxes calculated for the period of

incoming fluxes only, were 4.1% for SG_180 relative to SG_60, 3.6% for SG_60

relative to SG_20, and 6.4% for SG_180 relative to SG_20. These low levels of error

showed that the accuracy of the parent models was relatively high for the periods of

incoming fluxes.

Scenario 1 – MNM1

The accuracy of the MNM1 simulation was determined by comparing PG, CG1 and

CG2 solutions with the SG_20 solution. Figures 9.10, 9.11 and 9.12 show the RET in

water elevations and current velocities for the three MNM1 solutions relative to the

SG_20. Results are only shown for the AOI and velocity errors were filtered to

remove insignificant errors. The Vmax,avg for the SG_20 solution in the AOI was

calculated as 0.195m/s, thus an AEC of 5.85x10-3m/s was used for the error filter. The

filter was applied to all of the velocity error distributions presented for Scenarios 1

and 2.
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Figure 9.10: RET in (a) elevations and (b) velocities for PG relative to SG_20.
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Figure 9.11: RET in (a) elevations and (b) velocities for CG1 relative to SG_20.
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Figure 9.12: RET in (a) elevations and (b) velocities for CG2 relative to SG_20.

From visual comparison of the RET plots, the MNM seemed to perform well; errors in

CG1 were lower than PG and errors in CG2 were lower than CG1. This observation

was supported by error analyses of the plots, the results of which are summarised in

Table 9.3. The accuracy of model velocities, in particular, increased significantly with

the improvement in resolution from the parent grid to the child grids. For velocities,

an RET of 10% was exceeded in approximately half of the AOI for PG; however, this

fell to just 3% in CG1, while RET =10% was not exceeded at all in CG2. In addition,

RED decreased from 9.1% in PG to 2.8% in CG1, and to just 0.1% in CG2. For

elevations, the accuracy of the PG was originally quite high with RED=1.4% which

corresponded to AED =1.4cm. Despite this high level of accuracy, improvements were

still recorded in the CG1 and CG2 solutions. In the CG2 solution RED decreased to

just 0.1%; this corresponded to an AED of approximately 1mm.

(a) (b)

(a) (b)
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MNM1Error Analyses
Parameter PG CG1 CG2

SG_60

Water Elevation:
- RED [%]
- AED [x 10-2 m]
- RET > 1% [%]

1.4
1.4

100.0

0.8
0.8
0.0

0.1
0.1
0.0

0.6
0.6
0.0

Current Velocity:
- RED [%]
- AED [x10-2 m/s]
- RET > 10% [%]

9.1
1.5
48.6

2.8
0.5
2.6

0.1
<0.1

0.0

2.8
0.5
2.4

Table 9.3: Summary of error analyses of water elevations and velocities in AOI.

It was noted that the errors in CG1 were quite similar to those recorded in the

corresponding SG_60 solution; the comparison of RET in both sets of velocities is

shown in Figure 9.13. Comparison of the error data in Table 9.3 for both models also

demonstrates the similarity in the accuracy of the two solutions. The similarity of the

CG1 and SG_60 results confirmed that the nested model was functioning correctly

and that boundary specification and formulation errors were low. The results also

proved that any errors generated at the boundary of the CG1 domain did not adversely

affect the solution within the AOI.
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Figure 9.13: (a) RET in velocity for CG1 and (b) RET in velocity for SG_60.

Based on the analyses of the RET plots, the accuracy of the CG2 of the MNM

appeared quite high. For further confirmation, the timeseries of water elevations and

velocity magnitudes were compared for all models. The x- and y-component

velocities, U and V, were also compared to confirm that the improvements in velocity

(a) (b)
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magnitudes were reflected in both component directions. The timeseries comparisons

at locations B and E (Figure 9.1) are shown in Figures 9.14 and 9.15 respectively.
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Figure 9.14: Timeseries comparisons at point A for (a) elevations, (b) velocity

magnitudes, (c) x-direction velocities U and (d) y-direction velocities V.
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Figure 9.15: Timeseries comparisons at point E for (a) elevations, (b) velocity

magnitudes, (c) x-direction velocities U and (d) y-direction velocities V.

The improvements in the accuracy of the higher resolution solutions are clearly

visible in the velocity comparisons. As the accuracy of the elevations was quite high

(a) (b)

(c) (d)
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regardless of resolution, there were no discernable differences in the elevation

timeseries. The CG2 velocity timeseries showed excellent correlation with the SG_20

velocities, even in the area of complex flows in which point A was located. The

timeseries comparisons thus confirmed the accuracy of the MNM.

Scenario 2 – MNM2

The RET in water elevations and current velocities for the CG3 in the MNM2

simulation are presented in Figure 9.16. The PG of MNM2 was the same resolution as

the PG of MNM1 (180m); the PG errors for MM2 were therefore the same as those in

the PG for MNM1 (Figure 9.10). As previously stated, the extents and resolution of

CG3 were the same as those of CG2 in MNM1. The only difference between the child

grids was the source of their boundary data. If the CG3 errors in Figure 9.16 are

compared with the CG2 errors in Figure 9.12 it can be seen that RET in elevations and

velocities were slightly lower in the CG3. The error analyses for both child grid

solutions are summarised in Table 9.4.
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Figure 9.16: RET in (a) elevations and (b) velocities for CG relative to SG_20.

The loss in accuracy of CG3 in comparison to CG2 was thought to be directly related

to the accuracy of their respective boundary data. The CG2 obtained its boundary data

from a 60m model (CG1 of MNM1) while the CG3 obtained its boundary data from a

180m model (PG of MNM2). It was already shown that the accuracy of the SG_180

solution at the boundary of CG3 was understandably lower than the accuracy of the

SG_60 at the boundary of CG2 (see Figure 9.5). In particular, the error in incoming

fluxes was higher in the SG_180; 6.4% compared to 3.6% in the SG_60 fluxes. From

(a) (b)
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Figure 9.5c, it can be seen that the highest RET,Fld in the SG_180 along the boundary

of CG3 occurred at the centre of the boundary in the main body of flow. These

boundary specification errors propagated into the CG3 domain on the flood tide and

accounted for the slightly elevated errors that can be seen in Figure 9.16b, and the

slightly poorer performance of the CG3 in general.

MNM1 MNM2Error Analyses
Parameter CG2 CG3

Water Elevation:
- RED [%]
- AED [x 10-2 m]
- RET > 1% [%]

0.1
0.1
0.0

0.5
0.4
0.0

Current Velocity:
- RED [%]
- AED [x10-2 m/s]
- RET > 10% [%]

0.1
<0.1

0.0

0.3
<0.1

0.0

Table 9.4: Summary of error analyses of AOI for CG2 and CG3.

From Table 9.4, it can be seen that although the accuracy of the CG3 was slightly

lower than the CG2, it was still highly accurate in relation to the correct SG_20

solution. RED in elevations and velocities were 0.5% and 0.3% respectively. The

accuracy of the CG3 solution is further demonstrated by the velocity timeseries

comparisons of Figure 9.17. As for the CG2, the CG3 velocity timeseries showed

excellent correlation with the SG_20 velocities.
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Figure 9.17: Comparison of CG3 and SG_20 velocities at (a) point A and (b) point E.

9.2.3 Discussion

The results from both of the MNM simulations were very significant. Firstly, the

results from MNM1 showed that the multiple nesting capability functioned correctly

(a) (b)
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and resulted in highly accurate child grid solutions. Multiple nesting is an extremely

useful feature in a nested model as it can be used to telescope child grids to any

required resolution. However, as with any nested domain, care must be taken to

ensure that:

(1) successive CG boundaries are located in areas of high PG accuracy

(2) successive CG boundaries are located sufficiently distant from their PG

boundaries to prevent PG boundary errors being passed to CG’s via the boundary data

Secondly, the results of the MNM2 demonstrated that the use of a high spatial nesting

ratio, 9:1, did not result in a significant deterioration in model accuracy. The literature

suggested that the opposite was true, citing two possible reasons for the loss in

accuracy. The first was that higher grid ratios require too many fine grid points to

adequately resolve the coarse grid waves and the second was that the incompatibilities

between the grids are so large that wave reflection and noise generation become

excessive. Neither of these problems was found to affect the CG3 of MNM2 as the

only discernable loss in accuracy was quite low and resulted from boundary

specification errors arising from the inaccuracy of the PG boundary data. The CG3

boundary was located in an area of complex flows driven by both mass and

momentum; this was a rigorous test of the nested model yet it performed very well.

A multiple nested model which can also use high spatial nesting ratios is a very

powerful modelling tool. Telescoping of child grids can be carried out at much higher

nesting ratios than the typical 3:1 ratio. Take the example shown in Figure 9.18a. A

typical low 3:1 nesting ratio is used to improve model accuracy within CG1 to allow

further nesting in CG2 at a high 9:1 nesting ratio. The boundary data from CG2 is

obtained from the improved solution of CG1. A 27:1 nesting ratio is therefore

achieved using only two nested grids. Using low nesting ratios, e.g. 3:1, it would take

three successive nests to achieve the same resolution, as shown in Figure 9.18b. In

addition, to prevent CG boundary errors from adversely affecting the solutions of

successive child grids the boundaries of each parent grid would need be located

sufficiently distant from its child. This means that larger nested domain extents would

be required in the triply-nested model than in the doubly-nested model. The use of

higher nesting ratios in the MNM can therefore provide significant computational

efficiencies both in terms of child grid extents and the number of child grids required.
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Figure 9.18: Possible configurations to achieve 27:1 nesting ratio by (a) use of high

nesting ratios and (b) use of low nesting ratios.

An example of the computational efficiencies achievable by the MNM is shown in

Table 9.5. The table gives the reductions in computational cost for the MNM1 and the

MNM2 compared to the SG_20 computational cost. The MNM1 achieved a

substantial cost reduction of 37% using two nested grids at a 3:1 nesting ratio. The

MNM2 achieved a higher 46% reduction in cost as it employed only a single nested

grid at the higher 9:1 nesting ratio. Significant computational efficiencies can

therefore be achieved by using multiple nesting and higher nesting ratios.

Model Simulation Time
[mins]

Reduction in
Computational Cost

SG_20 457.0 --
PG 0.5 --
MNM1 286.0 37%
MNM2 249.0 46%

Table 9.5: Simulation times and cost reductions for the MNM_HW.

9.3 The STM

Cork Harbour was selected as the test case for the STM as it had already been used to

test the performance of the BNM. During the testing of the BNM a significant amount

of time had been spent selecting suitable open boundaries for the two nested domains,

Lough Mahon and the Owenboy estuary. Instead of repeating the boundary selection

process for a new nested domain, it was decided to test the STM by nesting the

PG

CG1

CG2

CG3

PG

CG1

CG2
3:1

9:1
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Owenboy Estuary as before. The STM_CH therefore consisted of a parent grid (PG)

covering the full extents of the Cork Harbour domain and a single child grid (CG)

enclosing the Owenboy estuary. The extents of the model domains and the location of

the AOI within CG are shown in Figure 9.19. A 3:1 nesting ratio was employed in the

STM_CH; the parent grid was resolved at 90m and the child grid at 30m.

Figure 9.19: (a) Extents of PG and CG for Cork Harbour STM and (b) CG showing

boundaries OBX and OBY, extents of AOI (dashed) and outfall location.

The STM_CH was used to simulate the transport and fate of total coliforms within the

Owenboy estuary following a timed discharge through an outfall. The discharge

scenario had the following characteristics:

 start time: 6.25hrs

 duration: 1hr

 flow rate: 1m3/s

 coliform concentration: 5,000 counts/100ml (cnts)

 coliform decay rate: 2d-1

The discharge was simulated by both the parent and child grids of the STM_CH. The

discharge was also simulated by the single grid high resolution model of Cork

Harbour (SG_30). Both models were forced by the same spring tide and were run for

four tidal cycles (50hrs) beginning at the time of high water. The SG_30 solution was

assumed the ‘correct’ solution for the modelling scenario and was used to determine

the accuracy of the STM_CH. The numerical models are summarised in Table 9.6.
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SG_30 STMPhysical
Parameter PG CG

LX 21 km 21 km 4.14 km
LY 17 km 17 km 2.07 km
Tidal Amplitude 2.1 m 2.1 m 2.1m
Tidal Period 12.5 hrs 12.5 hrs 12.5 hrs
Resolution:

- grid spacing
- timestep

30 m
6 s

90 m
18 s

30 m
6 s

No. of grid cells 396,333 44,037 9,729
Bed Roughness 200 mm 200 mm 200 mm

Table 9.6: Summary of Cork Harbour models.

9.3.1 Results

Since the hydrodynamics of the nested Owenboy estuary were already validated in

Chapter 7 they are not presented again. Results are only presented for concentrations

of total coliforms (TCL). TCL concentrations were output during the model

simulations at the six locations shown in Figure 9.20. Concentration time series

computed by the PG and CG at the outfall, location E, are compared with those

computed by the SG_30 in Figures 9.21 and 9.22. The timeseries is presented in two

sections, 0 - 12.5hrs and 12.5 – 50hrs, as the magnitudes of the TCL concentrations at

the time of discharge were significantly greater than those computed during the

subsequent tidal cycles. Errors between the timeseries are presented in absolute form

as the corresponding relative errors for the PG were greater than 100% for a

significant proportion of the tidal cycle.

Figure 9.20: Timeseries locations in Owenboy estuary child grid domain.
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Figure 9.21: (a) Comparison of TCL concentrations at point E (outfall) during first

tidal cycle and (b) absolute errors in STM concentrations relative to SG_30.
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Figure 9.22: (a) Comparison of TCL concentrations at point E (outfall) during 2nd, 3rd,

and 4th tidal cycles and (b) absolute errors in STM concentrations relative to SG_30.

The first observation from the timeseries is that there was a significant difference in

the concentrations computed by the low resolution PG compared to the high

resolution SG_30. This was due to the poorer accuracy of the PG hydrodynamics

already discussed in Chapter 7. The highest concentrations occurred during the time

of discharge; however, the highest concentration computed in the PG was only

556cnts compared to 684cnts in the SG_30, a relative error of approximately 19%.

From the absolute errors, it can be seen that PG inaccuracies persisted for the duration

of the simulation. On the whole, the PG was considerably less accurate than the

SG_30.

On the other hand, it can be seen that errors in the CG concentrations were close to

zero for the full simulation period indicating a high degree of accuracy, at the outfall

at least. The highest concentration in the CG was recorded at 665cnts, equating to a

relative error of just 3%. In general, the CG timeseries was almost identical to that of

the SG_30. Comparison of model results at the other timeseries locations (Figures

(a) (b)

(a) (b)
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9.23 – 9.27) showed similar trends. Substantial inaccuracies were present in the low

resolution PG solution but the high resolution CG solution was highly accurate.
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Figure 9.23: (a) TCL concentrations at point A and (b) absolute errors in STM.
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Figure 9.24: (a) TCL concentrations at point B and (b) absolute errors in STM.
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Figure 9.25: (a) TCL concentrations at point C and (b) absolute errors in STM.
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Figure 9.26: (a) TCL concentrations at point D and (b) absolute errors in STM.
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Figure 9.27: (a) TCL concentrations at point F and (b) absolute errors in STM (Note:

a maximum AE of 65cnts occurred in PG but a cut-off of 10 was used for clarity).

In Figures 9.26 and 9.27, it can be seen that for a similar short period of each tidal

cycle TCL concentrations in the SG_30 did not vary. These periods of time

corresponded to the times of low water. In the model, when a grid cell dries out, the

cell is removed from the model computations and its solute concentration is

maintained at the same value until the cell is re-flooded when the water level rises.

From the absolute errors, it can be seen that the CG of the STM was able to compute

almost identical concentrations to the SG_30 at these times. In Figure 9.27, a spike of

concentration was computed by the PG shortly after the time of discharge; this spike

was not computed by the CG or the SG_30. Once again, this was most likely due to

the poorer accuracy of the PG hydrodynamics. It should be noted that the AE in PG at

the time of the spike was approximately 65cnts, however, a cut-off limit of 10cnts was

used in the AE graph for improved visibility of subsequent errors.

The time series locations were strategically placed so that they covered the full length

of the Owenboy AOI, from point A at the downstream boundary of the AOI to point F

near the upstream estuary limit. From the spatial distribution of the timeseries it could

be concluded that the accuracy of the CG solution was equally high across the whole

AOI. To verify this conclusion, snapshots of TCL concentrations from the STM and

SG_30 were compared at corresponding times. The snapshots were compared at the

times of low water during the second, third and fourth tidal cycles, i.e. 18.75hrs,

31.25hrs and 43.75hrs. Low water was chosen for comparison as it corresponded to

the time of highest concentrations. The snapshot comparisons are presented in Figures

9.28 – 9.30.

(a) (b)
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Figure 9.28: TCL concentrations (in counts/100ml) computed by (a) SG_30, (b)

STM_PG and (c) STM_CG at 18.75hrs.
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Figure 9.29: TCL concentrations (in counts/100ml) computed by (a) SG_30, (b)

STM_PG and (c) STM_CG at 31.25hrs.
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Figure 9.30: TCL concentrations (in counts/100ml) computed by (a) SG_30, (b)

STM_PG and (c) STM_CG at 43.75hrs.

In the comparisons, the CG concentrations appear identical to the SG_30

concentrations. The inaccuracies of the PG concentrations are also clearly visible.

Table 9.7 shows the average concentration calculated for each snapshot shown above.

Comparison of the corresponding averages also demonstrates the high level of

accuracy of the CG. Taking all model results into account, it was clear that the solute

transport module of the STM was functioning correctly. It was also clear that the STM

was capable of simulating the transport and fate of a solute within a high resolution

nested grid to the same level of accuracy as a high resolution single grid model.

Snapshot Average Conc. [counts/100ml]
SG_30 STM_PG STM_CG

18.75 hrs 3.989 3.369 4.028
31.25 hrs 1.800 1.434 1.807
43.75 hrs 0.795 0.623 0.795

Table 9.7: Comparison of average TCL concentrations across AOI.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

(a)

(b)

(c)



318

9.3.2 Discussion

The child grid results from the STM_CH demonstrated that the solute transport

module of the model was functioning correctly and that highly accurate simulation of

water quality was possible in a particular area of interest. The Owenboy estuary

domain was a particularly difficult test case. Not only does a significant proportion of

its interior domain dry out at low tide, but large sections of its boundaries also dry out.

The dynamic boundaries of the child grid were already shown to work well for

hydrodynamics; the results from the STM_CH demonstrated that the boundaries also

functioned well for solute fluxes. The CG of STM_CH showed excellent correlation

with the high resolution model of Cork Harbour. Both the spatial and temporal

variations in coliform concentrations were accurately computed by the CG.

The computational efficiencies of the STM are also very important. The model

achieved a 92% reduction in computational cost over the high resolution model. These

savings become even more important when viewed in the context of water quality

modelling. For example, the water quality cycle simulated in DIVAST is shown in

Figure 9.31. It can be seen that the cycle involves the simulation of nine different

water quality parameters. The additional computational effort required for high

resolution water quality modelling can result in excessive simulation times. The STM

offers the possibility of carrying out full water quality modelling studies at a fraction

of the computational cost.

Figure 9.31: Schematic of water quality cycle simulated in DIVAST.
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9.4 The AMM

Galway Bay was used as the test case for the AMM. Performance and accuracy of the

nested model was assessed by comparing results to those from a single grid high

resolution model of the bay. Galway Bay, shown in Figure 9.32 is a large bay on the

west coast of Ireland. The bay is divided into two sections, the inner bay and the outer

bay. The inner bay is relatively shallow with depths less than 30m below SHW. The

outer bay extends seaward to the Aran Islands; it gradually deepens to approximately

60m in the passages to the northwest and southeast of the islands where it meets the

Atlantic Ocean. The main freshwater influence on the bay is the River Corrib with a

mean annual flow of 2.96x109m3 into the bay; this constitutes 70% of the total

freshwater input. Of the remaining 30%, 11% is contributed by two minor rivers, the

Kilkolgan river and the Clarin river, and the remaining 19% by a collection of smaller

rivers (Lei, 1995). Galway Bay is a macro-tidal bay with a spring tidal range of 5m

and a neap tidal range of 2m.
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Figure 9.32: Plan view of Galway Bay model domain (depths in m below SHW).

A single grid model of the bay (SG_100) was first developed using a high spatial

resolution of 100m. The model domain, shown in Figure 9.32, measured

approximately 57 x 33 km2 and contained almost 190,000 grid cells. The SG_100 was

assumed the ‘correct’ model solution for the bay. The AMM consisted of a parent grid

(PG) with the same grid extents as the SG_100. A single level of nesting was used

with a single child grid (CG) at a 3:1 nesting ratio. The PG was resolved at 300m and
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the child grid was resolved at 100m to correspond to the SG_100. The model

parameters are summarised in Table 9.8.

SG_100 AMMPhysical
Parameter PG CG

LX 57 km 57 km variable
LY 33.3 km 33.3 km variable
Tidal Amplitude:

- spring
- neap

2.5 m
1.0 m

2.5 m
1.0 m

2.5 m
1.0 m

Tidal Period 12.5 hrs 12.5 hrs 12.5 hrs
Resolution:

- grid spacing
- timestep

100 m
20 s

300 m
60 s

100 m
20 s

No. of grid cells 189,810 21,090 189,810
Bed Roughness 200 mm 200 mm 200 mm

Table 9.8: Summary of Galway Bay models.

9.4.1 Model Details and Input Data

The scenario used to test the AMM was the modelling of a solute plume resulting

from a discharge from a wastewater treatment plant (WWTP). Domestic and

industrial sewage from Galway city is treated at Mutton Island WWTP. The treated

effluent is discharged into the sea approximately 400m south of Mutton Island (see

Figure 9.32) via an outfall pipe equipped with diffusers. A previous study of Galway

Bay (Harrold, 2010) had investigated the modelling of faecal coliforms contained

within the effluent from Mutton Island WWTP. It was decided to model the same

scenario with the SG_100 and AMM as both input and calibration datasets were

available from the previous study.

A time-varying modified first order decay rate model, first proposed by Mancini

(1978) and later modified by Harris (2003), was employed for the faecal coliform

decay rate. The formulation takes account of light, temperature, salinity, settling and

acidity and may be expressed as:
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where, FP = fraction of attached bacteria

vs = settling velocity (m/s)

tw = water temperature (ºC)

α = constant of proportionality

Io = irradiance at surface (W/m2)

Ke = vertical light extinction coefficient (m-1)

kpH = die-off rate due to pH (d-1)

pH = acidity

The die-off rate due to pH, kpH, is further calculated as:

))pH5.6(445.0cosh(135.0k pH  (9.2)

Table 9.9 lists the values used for the various parameters in (9.1) and (9.2). The

parameters FP and vs were unknown for Galway Bay and were instead estimated from

literature (Harrold, 2010). The constant of proportionality α is a calibration

parameter; its value of 0.32 was determined by Harrold (2010) during model

calibration. The surface irradiance was set to zero in the time between sunset and

sunrise.

Parameter Value
Fraction of attached bacteria, FP 0.9
Settling velocity, vs 1.2 m/d
Water temperature, tw 17ºC
Constant of proportionality, α 0.32
Irradiance at surface, Io 400 W/m2

Light extinction coefficient, Ke 1.0 m-1

pH 8.1

Table 9.9: Parameters used to calculate time-varying modified first order decay rate.

Hourly discharge rates from Mutton Is. WWTP were provided by Galway City

Council for the period 02/08/08 – 05/08/08 (Figure 9.33).The concentration of faecal

coliforms in the effluent was not known, therefore, an estimated concentration of

50,000cnts was used; this estimate was based on a series of effluent water quality

samples taken in 2007 (Harrold, 2010).
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Figure 9.33: Hourly rates of discharge from Mutton Is. WWTP.

Heavy rain was recorded in the region of Galway Bay on the morning of 05/08/08

from 9:00 – 10:00am with resulting storm flow discharge from the WWTP. The

quantity of faecal coliforms discharged during this period of time would therefore

have been much greater than normal. During model calibration, Harrold (2010) found

that omission of this discharge event resulted in lower model concentrations of

coliforms than the measured values, while its inclusion resulted in good agreement

between modelled and measured values. The storm flow discharge is not included in

Figure 9.33 as the flow rates were not provided; Harrold (2010) instead incorporated

the event in the model by increasing the discharge concentration from 50,000cnts to

300,000cnts. The level of 300,000cnts was determined by tuning the model. The

inclusion of the storm flow discharge required that the simulation time be extended to

06/08/08; as discharge data was not provided for this date the data for 05/08/08 was

used instead.

Hydrodynamic circulation in Galway Bay is primarily driven by the tides and the

freshwater flow from the River Corrib. The tidal data specified at the open sea

boundaries of the model domain are shown in Figure 9.34. A flow rate of 50m3/s was

specified at the Corrib freshwater boundary; this was the monthly-averaged flow rate

for August.
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Figure 9.34: Tidal forcing at open sea boundaries.

9.4.2 Model Simulations

In total, four model simulations were required to assess the performance of the AMM.

Firstly, the PG and SG_100 models were run in order to determine the level of error in

the PG solution. Two simulations of the AMM were then carried out. The first

simulation employed a static child grid (CG_Static) and its results were used to

determine a baseline level of accuracy for the CG solution. The second simulation

employed an adaptive child grid (CG_Adapt); its accuracy was analysed in relation to

both the SG_100 and the baseline CG accuracy. All faecal coliform simulations were

run for the same discharge scenario.

The extents of the static child grid for the first AMM simulation were determined

using the boundary location procedure developed during the research, but with the

added requirement that the discharge plume be fully contained within the grid for the

full simulation time. The minimum required grid extents were determined from the

plume results of the SG_100. Grid S in Figure 9.35 corresponds to the child grid used

in the static grid simulation.

Grid movements in the adaptive mesh simulation were specified at the beginning of

the simulation in the form of move times and corresponding grid locations. The move

times and extents of the grid movements were also determined from the results of the

SG_100 by noting plume movements and extents during the course of the simulation.
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Selection of grid extents was based solely on the plume movements in SG_100, the

accuracy of the PG solution at locations of CG boundaries was not considered. Five

timed moves were specified; the location and extents of the adaptive child grid

following each move are shown in Figure 9.35. The initial grid extents at time zero

are also shown. The grid numbers shown in the diagram correspond to the following

move times:

- 0 hrs: Grid 1

- 18.75 hrs: Grid 2

- 31.25 hrs: Grid 3

- 43.75 hrs: Grid 4

- 56.25 hrs: Grid 5

123456S

Outfall

Figure 9.35: Various grid configurations used in the AMM simulations; grid S was

used for CG_Static, grids 1-6 were used for CG_Adapt.

To enable model calibration, water quality sampling was undertaken on 05/08/08.

Samples were taken from near the water surface at five different locations at early-

morning, midday and mid-afternoon; three samples were collected at each time giving

45 samples in total. The sampling locations, shown in Figure 9.36, were chosen to

give a good cross-section of the effluent plume. Site 2 corresponds to the location of

the outfall. Table 9.10 presents the concentrations of total coliforms recorded for each

sample and the approximate times of sampling.
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Figure 9.36: Water sampling sites; site 2 corresponds to the outfall location.

Sample Site Approximate
Time of Sampling

Total Coliforms
[MPN/100ml]

09:35 659
11:50 >2005Site 1
15:30 1445
09:40 >2005
11:55 697Site 2
15:20 2005
09:50 1184
12:00 124Site 3
15:15 254
09:55 271
12:05 >2005Site 4
15:05 30
10:10 271
12:15 150Site 5
14:20 164

Table 9.10: Water quality sampling data on 05/08/08.

9.4.3 Results: Hydrodynamics

Prior to the coliform simulations being carried out, the hydrodynamics of both the PG

and CG_Static of the AMM were analysed to determine their accuracy relative to the

SG_100.
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PG Versus SG_100

Figure 9.37 shows the RET in PG water elevations and current velocities. Errors are

only presented for the AOI which was taken as the area of the domain bounded by

Grid 1 of the AMM (see Figure 9.35). The velocity results were filtered to remove

insignificant errors. In the SG_100, Vmax,avg was calculated as 0.199m/s in the AOI,

thus an AEC of 5.97x10-3m/s (3% of Vmax,avg) was used for the error filter. The

inaccuracy of the PG solution is clearly visible from the RET plots. As expected, the

level of inaccuracy was higher in shallow water areas where bathymetry and land

boundaries are more complex and require a higher resolution. The level of errors in

current velocities was particularly high around the discharge location at Mutton

Island. It was expected that this would have important implications for coliform

transport.

While errors in water elevations were relatively low, it was still found that RET =1%

was exceeded in 20% of the AOI; those areas where elevation errors were highest

corresponded to areas of flooding and drying. Current velocities errors were

significantly higher; RET =5% was exceeded in 44% of the domain. The RED for

velocity was calculated at 13.4% and equated to an AED of 0.013m/s.
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Figure 9.37: RET in (a) elevations and (b) velocities for PG relative to SG_100.

Figures 9.38 and 9.39 compare vector plots of current velocities computed by the PG

and the SG_100 in the region of Mutton Island WWTP. Vector plots are shown at

mid-ebb (21:55, 2/8/08) and mid-flood (04:05, 2/8/08) respectively. The improvement

in hydrodynamic resolution of the SG_100 is quite clear. The flow patterns around

Mutton Island are much better defined, particularly on the seaward side of the

causeway connecting the island to the mainland.

(a) (b)
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Figure 9.38: Current vectors at mid-ebb computed by (a) PG and (b) SG_100.

(a)

(b)
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Figure 9.39: Current vectors at mid-flood computed by (a) PG and (b) SG_100.

(a)

(b)



329

The inaccuracy of the PG current velocities was also investigated using the timeseries

output at the five calibration sites. Figure 9.40 compares the current velocities at the

outfall location, site 2, and at site 4. At the outfall location it can be seen that the ebb

tide velocities of the PG were lower than those of the SG_100 while the opposite was

true on the flood tide. At site 4, PG velocities were higher on both stages of the tide. A

quite noticeable phase difference is also visible in the velocity curves; this

corresponded to a PG time lag of approximately 12mins.
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Figure 9.40: Comparison of PG and SG_100 velocities at (a) site 2 and (b) site 4.

AMM Versus SG_100

The results of the CG_Static simulation were used to determine the accuracy of the

AMM in relation to the SG_100. The RET in water elevations and current velocities

for the CG_Static are presented in Figure 9.41. For consistency, errors are only

displayed for the AOI.
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Figure 9.41: RET in (a) elevations and (b) velocities for CG_Static relative to SG_100.

It can be seen that significant improvements were observed in both the elevations and

the velocities of the CG solution. For water elevations, an RET =1% was exceeded in

less than 1% of the AOI; this compared with 20% in the PG. The area within which

this level was exceeded was the channel through which the R. Corrib enters the inner

Ebb Tide Flood Tide Ebb Tide Flood Tide

(a) (b)
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bay. From Figure 9.37, it is seen that PG errors were present in the river channel

where the CG_Static boundary was located. The errors in the CG_Static observed in

the river channel were therefore the result of inaccurate PG boundary data. These

boundary specification errors were then propagated into the CG domain. In previous

models, it was noted that boundary errors dissipated within a relatively short distance

from the boundary. However, the narrow width of the channel at this location is

thought to have caused boundary errors to propagate much further into the domain

than normal, before complete dissipation could occur. The level of error in the

channel was commensurate with the level of error present in the PG at the same

location, approximately 3%. It should be stated that this error was still quite low.

Elsewhere, and particularly in the inter-tidal areas, the accuracy of the CG_Static

elevations was as good as the SG_100 with RED calculated at 0.16%.

An equally significant level of improvement was achieved in the CG_Static current

velocities. The proportion of the AOI within which RET =5% was exceeded decreased

from 44% in the PG to 3% in the CG_Static and RED also decreased from 13.4% to

just 0.4%. The boundary specification errors in the Corrib channel were also present

in the velocities. Again, the level of error in the CG_Static velocities in the channel

(approximately 12%) was similar to the level of error in the PG velocities

(approximately 8%).

The improvement in accuracy observed in the spatial error distributions was also

recorded in the time series comparisons. Figure 9.42 compares velocities from the

SG_100, PG and CG_Static at site 2 (outfall) and site 4. Linear regression analyses of

these data are presented in Figure 9.43 (site 2) and Figure 9.44 (site 4). From the time

series, the CG_Static velocities can be seen to closely match the SG_100 velocities.

The results from the regression analyses demonstrate the high level of correlation with

r2 values of 1 calculated for the CG_Static data at both sites. These compare with PG

r2 values of 0.76 at site 2 and 0.89 at site 4. In addition, CG_static trendlines were

both found to pass exactly through the origin with a slope of 1, thus providing further

confirmation of CG_Static accuracy. It should also be noted that the time lag present

in the PG velocity waveforms was absent in the CG_Static; instead the phases of its

velocity waveforms were the same as those of the SG_100.
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Figure 9.42: Comparison of velocity time series at (a) site 2 and (b) site 4.
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Figure 9.43: Linear regression analysis of velocity time series data at site 2.
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Figure 9.44: Linear regression analysis of velocity time series data at site 4.

9.4.4 Results: Coliform Simulations

Four different sets of coliform results were available for comparison from the model

simulations: SG_100, PG, CG_Static and CG_Adapt. Model results consisted of

(a) (b)
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snapshots of plume extents and time series at the calibration sites. The period of

interest for coliform transport was the period following the storm flow discharge

which took place on the morning of 05/08/08. Snapshots were output from the model

at hourly intervals for a period of 24 hours after the hour-long discharge ended

(10:00hrs). Time series data were output over the full simulation period.

Figure 9.45 compares snapshots of plume extents for the SG_100 and PG at +3hrs,

+7hrs, +10hrs, +14hrs and +19hrs after storm flow discharge. A clear difference in

model results can be seen. Both the plume shape and extents, and the coliform

gradients, were quite different in the PG. This was a direct result of the less accurate

hydrodynamics of the PG resulting from its lower resolution.

Examining the snapshots in more detail a number of observations can be made. In the

SG_100, the main body of discharge is transported seaward on the first ebb tide some

distance off shore (Figure 9.45a); however, a secondary plume from previous

discharges is also transported seaward along the coast. This secondary plume is not

present in the PG. In addition, the ebb-tide plume of the SG_100 is much narrower

than the PG plume. By the time of low water, the main body of the SG_100 plume has

separated itself from the discharge location so that there are, in effect, two plume

centres (Figure 9.45c); in the PG the plume remains connected to Mutton Island. The

area of 100+counts/100ml concentration in the PG plume at low water is also much

larger than that in the SG_100.

On the subsequent flood tide, in the SG_100, the main plume is carried back into the

bay towards Mutton Island. Two plume centres are still visible and the second, at the

discharge location, is carried to the back of the island. At high water the main plume

is seen to have split once again to create an off-shore plume and a coastal plume

(Figure 9.45g); these two plumes correspond to the plumes observed on the ebb tide in

Figure 9.45a. Once again, there is no evidence of the secondary coastal plume at high

water in the PG (Figure 9.45f).
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Figure 9.45: Comparison of SG_100 and PG coliform plumes +3hrs, +6hrs, +10hrs,

+13hrs and +19hrs after end of storm flow discharge (10:00, 5/8/08).

(a) SG_100: +3hrs (mid-ebb)

(c) SG_100: +6hrs (low water)

(e) SG_100: +10hrs (mid-flood)

(g) SG_100: +13hrs (high water)

(i) SG_100: +19hrs (low water)

(b) PG: +3hrs (mid-ebb)

(d) PG: +6hrs (low water)

(f) PG: +10hrs (mid-flood)

(h) PG: +13hrs (high water)

(j) PG: +19hrs (low water)
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Figure 9.46 presents the plume snapshots for CG_Static and CG_Adapt from the

AMM for the same times as those presented for the SG_100 and PG. The

improvement in coliform predictions was significant. Comparing the CG_Static

snaphots with those from the SG_100, it appeared that the accuracy of the CG_Static

was similar to that of the high resolution model. Plume shape and extents, and

concentration gradients, were all closely matched by the CG_Static. In particular, the

plume behaviour described previously for the SG_100 was truthfully replicated by the

CG_Static.

Upon initial comparison of CG_Adapt snapshots with the SG_100, they also appeared

quite accurate. The complex plume behaviour was once again closely replicated and

plume characteristics appeared similar. However, closer examination of the snapshots

revealed some differences in the seaward extent of the plume. For example, at low

water (Figure 9.46d) the 10cnts contour does not extend as far seaward as that of the

SG_100, or indeed that of the CG_Static. Differences in the extents of the 10cnts

contour are in fact visible on the seaward side of the plume in all of the CG_Adapt

snapshots shown in Figure 9.46. However, all higher contour extents and gradients

seemed to compare quite well with those of the SG_100.

To further measure the accuracy of the PG and CG results, the time series of coliform

counts were compared at the five calibration sites. Figures 9.47 and 9.48 show the

time series comparisons at site 2 (the point of discharge) and site 4, respectively. The

time series comparisons for the other three sites are presented in Appendix C. Time

series comparisons are shown for both the full simulation period 02/08/08 – 06/08/08

and for a 24-hour period spanning the time before, during and after the storm flow

discharge.

The inaccuracy of the PG was clearly visible at both sites but was particularly

apparent at the discharge location, site 2. The SG_100 was highly accurate, showing

excellent correlation with the measured data, but the PG demonstrated high levels of

error for a large proportion of the simulation time. The peak concentration recorded

during storm flow discharge in the SG_100 was approximately 2,338cnts compared to

1,930 in the PG; an absolute error of 408cnts or a relative error of 17%.
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Figure 9.46: Comparison of CG_Static and CG_Adapt coliform plumes +3hrs, +6hrs,

+10hrs, +13hrs and +19hrs after end of storm flow discharge (10:00, 5/8/08).

(a) CG_Static: +3hrs (mid-ebb)

(c) CG_Static: +6hrs (low water)

(e) CG_Static: +10hrs (mid-flood)

(g) CG_Static: +13hrs (high water)

(i) CG_Static: +19hrs (low water)

(b) CG_Adapt: +3hrs (mid-ebb)

(d) CG_Adapt: +6hrs (low
water)

(f) CG_Adapt: +10hrs (mid-flood)

(h) CG_Adapt: +13hrs (high water)

(j) CG_Adapt: +19hrs (low water)
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Figure 9.47: Comparison of coliform counts at Site 2 for (a, c) full simulation and for (b, d) 24hr period about storm flow discharge.
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Figure 9.48: Comparison of coliform counts at Site 4 for (a, c) full simulation and for (b, d) 24hr period about storm flow discharge.
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In contrast, the time series from both child grid solutions compared well with the

SG_100. A difference in peak concentrations during the storm flow discharge was

observed. Peak concentration in CG_Static was 2,466cnts giving an absolute error of

128cnts or relative error of 5%; peak concentration in CG_Adapt was 2,502cnts

giving an absolute error of 164cnts or a relative error of 7%. At site 2, it can be seen

that the accuracy of both child grid solutions was high for the vast majority of the

simulation time and especially so during, and after, storm flow discharge. However, at

site 4 it can be seen that while CG_Static accuracy was high throughout, CG_Adapt

accuracy was slightly lower, particularly in the early stages of the simulation. This

was further demonstrated by calculating and comparing the absolute errors in the time

series data relative to the SG_100. The AE comparisons are shown in Figure 9.49 and

9.50 for site 2 and site 4, respectively. The AE comparisons for sites 1, 3 and 5 are

included in Appendix C.
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Figure 9.49: Absolute errors in CG coliform timeseries relative to SG_100 at site 2.
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Figure 9.50: Absolute errors in CG coliform timeseries relative to SG_100 at site 4.

9.4.5 Discussion

The AMM results were extremely encouraging. The dynamic nesting capability of the

AMM had been shown to be functioning correctly and the accuracy of the model was

superior to that of the low resolution model and quite similar to that of the high

resolution model. The results confirmed that the AMM was capable of simulating

flow regimes and the resulting transport of contaminants to a high degree of accuracy

in a highly resolved area of interest. The AMM offered significant computational

efficiencies compared to the high resolution model of Galway Bay and, also,

compared to the static nested model (Scenario 1). As can be seen in Table 9.11, the

static nested model achieved a 75% reduction in computational cost over the high

resolution model while the AMM achieved an 84% reduction in cost.

Model Simulation Time
[mins]

Reduction in
Computational Cost

SG_100 457 --
PG 19 --
Static AMM
(Scenario 1)

113 75%

AMM
(Scenario 2)

71 84%

Table 9.11: Simulation times and cost reductions for the AMM.
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While the accuracy of the CG_Adapt was very similar to that of both the CG_Static

and the SG_100, slight differences in the extents of the 10cnts contour on the seaward

side of the plume were noted in the CG_Adapt snapshots shown in Figure 9.46. These

differences are further demonstrated by Figure 9.51 which again compares the model

plumes 19hrs after the storm flow discharge, but with the addition of a 1cnt/100ml

contour. The improvement in accuracy of the CG plumes over the PG is clearly

apparent, but while the gradients and extents of the CG_Static plume are almost

identical to the SG_100, the extents of the CG_Adapt are slightly different.

Regardless of the fact that the difference in plume extents was only apparent at very

low concentrations (<10cnts/100ml), further investigation was carried out.
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Figure 9.51: Comparison of coliform plumes +19hrs after discharge with additional

1count/100ml countour.

Since the accuracy of the solute transport module was dependent on the accuracy of

the hydrodynamics, the velocity timeseries of the CG_Adapt were compared with

those from the CG_Static and the SG_100. As can be seen in Figure 9.52 the

velocities of the CG_Adapt, although much more accurate than the PG, were less

accurate than the CG_Static and SG_100. It was thought that this was most likely due

to the locations of the CG_Adapt boundaries. The CG_Static boundaries were

(a) SG_100 (b) PG

(c) CG_Static (d) CG_Adapt
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identified using the boundary selection procedure based on the accuracy of the PG

solution. However, CG_Adapt boundaries were selected solely on the basis of the

plume movements in SG_100; the accuracy of the PG solution was not considered.

From Figure 9.37 it can be seen that significant inaccuracies were present in the PG

solution along both boundaries of Grid 1. The inaccuracy of the PG solution at the CG

boundaries resulted in the deterioration of CG_Adapt accuracy. The inaccuracy of the

PG solution at the dynamic boundary locations was therefore the cause of the

deterioration in CG_Adapt accuracy.
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Figure 9.52: Comparison of current velocities at (a) point B and (b) point D.

A second source of inaccuracy in the CG_Adapt solution was the initialisation of the

child grid following a specified move. Following a move, the area of the new grid that

is also common to the old child grid is initialised with the high resolution data from

the old grid. However, the remaining area of the new grid is initialised by

interpolation of the PG solution. If the PG solution used for the interpolation is

inaccurate, then those inaccuracies are passed to the new child grid. This additional

source of error was also thought to have contributed to the inaccuracy of the

CG_Adapt.

9.5 Summary and Conclusions

The advanced nested models were tested for performance and accuracy using a

combination of idealised and realistic model domains. The MNM was applied to the

idealised rectangular harbour (with the harbour wall), the STM was applied to Cork

Harbour and, finally, the AMM was applied to Galway Bay.

The results from the MNM_HW were extremely positive. Firstly, a 9:1 nesting ratio

was achieved through the specification of two embedded nests, each at a 3:1 nesting

(a) (b)
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ratio – MNM1. This multiple nesting resulted in a highly accurate nested

hydrodynamic solution which showed excellent correlation with the hydrodynamic

solution of a high resolution model of the full domain. Secondly, the 9:1 nesting ratio

was achieved more directly through the specification of a single nested grid at a 9:1

nesting ratio – MNM2. This scenario was designed to test the hypothesis that the use

of higher nesting ratios leads to substantial degradation of the model solution (Barth et

al., 2005). It was found that the direct use of the 9:1 nesting ratio still resulted in a

highly accurate nested solution. A slight loss of accuracy was observed in comparison

to the MNM1 solution but this was attributed to the lower accuracy of the CG

boundary data in the MNM2 as opposed to any source of error relating to the high

nesting ratio.

The STM_CH was used to simulate a discharge of coliforms to the receiving waters

of the Owenboy estuary in Cork Harbour. A single parent and child grid configuration

was used; the same configuration had been used to test the performance and accuracy

of the BNM. The CG domain was particularly selected as extensive areas of mudflats

were exposed at low water both within the domain and along its boundaries. The

STM_CH was shown to produce a highly accurate CG solution in relation to coliform

concentrations. Both the spatial and temporal variation in CG concentrations were

almost identical to those computed by a high resolution model of Cork Harbour and

CG accuracy was equally high in both permanently wet areas and inter-tidal areas.

The CG coliform results were also a significant improvement on the PG results.

The AMM was also used to simulate the discharge of coliforms, this time from

Mutton Island WWTP to Galway Bay. Two different nested grid configurations were

used to assess the performance and accuracy of the AMM_GB. The first was a single

static child grid, CG_Static. This configuration was used to obtain base-line accuracy

for the AMM_GB. The second configuration was an adaptive child grid, CG_Adapt.

The movement of CG_Adapt was user-specified with the specified moves based on

the analysis of plume movements in the high resolution model. The results of

CG_Adapt were compared with those from CG_Static and the high resolution

SG_100. Both child grid solutions were found to be superior to the low resolution PG

solution and showed excellent correlation with the SG_100 solution.
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At low coliform concentrations (<10cnts/100ml), the accuracy of the CG_Adapt was

found to be slightly lower than that of the CG_Static. This was attributed to the

slightly lower accuracy of the CG_Adapt hydrodynamics resulting from the

placement of CG boundaries. Unlike CG_Static, CG_Adapt boundaries were selected

solely on the basis of the plume movements and did not account for PG inaccuracies

at CG boundary locations. A second source of error in the CG_Adapt hydrodynamics

was the initialisation of part of the CG domain with data interpolated from the PG

solution; PG inaccuracies were thus passed directly to the CG solution.

For all three model applications the nested model was found to offer significant

computational efficiencies over the corresponding high resolution single grid models.

The MNM achieved cost reductions of approximately 35-45%, the STM achieved a

cost reduction of approximately 90% and the AMM achieved cost reductions in the

range of 75-85%.

Based on the results from the testing of the MNM, STM and AMM the following

conclusions were drawn:

 the advanced nesting capabilities of multiple nesting, solute transport and dynamic

nests functioned correctly and resulted in highly accurate child grid solutions

 multiple nesting, together with the use of high nesting ratios provides a very

powerful modelling tool. Any number of AOIs can be selected in a model domain,

each of which can be nested to different resolutions depending on the complexity

of the AOI or the process of interest

 the solute transport capability offers the possibility of developing the nested model

to incorporate full water quality modelling. With the significant additional

computational effort involved in modelling multiple water quality parameters, the

nested model would allow high resolution water quality modelling in AOIs at low

computational costs

 dynamic nests offer further additional computational efficiencies over static nests;

an additional 10% reduction in computational cost was recorded in the case of the
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AMM_GB. However, careful planning is required for the application of dynamic

nests. It is recommended that moves are user-specified, as opposed to automated,

and that the moves are planned using correct CG boundary placement procedures

based on PG accuracy, otherwise significant degradation of model accuracy could

occur. For optimum model performance, the selection of dynamic grid extents

should be informed by analysis of hydrodynamic and water quality results from the

low resolution parent model.
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10. Summary and Conclusions

10.1 Summary

This thesis is concerned with the development of an efficient dynamically-nested

model for tidal hydraulics and solute transport in the coastal zone. Numerical

modelling of coastal zones typically requires a high spatial resolution to accurately

simulate land-sea interactions, particularly in areas of complex coastlines. The

computational cost of coastal models is therefore much higher than that of

oceanographic models and, in some cases, can be quite prohibitive. High

computational costs are particularly problematic if one wishes to incorporate such

models in coastal management. Nested models are a possible solution to the spatial

resolution problem, allowing the specification of high spatial resolution in areas of

interest only. The primary objectives of the thesis were twofold: firstly, to develop a

multiple nested adaptive mesh model, and secondly, to ensure that the model was

applicable to real marine environments. The nested model was developed using the

two-dimensional finite difference model DIVAST; this model was chosen, in

particular, for its robust flooding and drying module.

The development of the AMM was carried out in two stages. The BNM was first

developed to allow a single level of nesting for the simulation of tidal hydraulics

alone. The BNM was used to test various elements of the nested boundary operator

such as the type, and number, of variables to be prescribed at the boundary, the

boundary data interpolation technique, and the boundary condition. It was also used to

investigate the formulation and solution of governing equations at the nested

boundary. The final version of the BNM was subsequently adapted, during the

second stage of model development, to incorporate the advanced model features of

multiple nesting, solute transport and dynamic nests. The final AMM is a one-way,

multiple nested, adaptive mesh model which simulates both tidal hydraulics and

solute transport. Water surface elevations, velocities, and volumetric and solute

fluxes are all specified at the nested boundaries; these data are linearly interpolated

from the parent grid and are assigned to the child grid boundary cells using a Dirichlet

boundary condition.
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Conservation of mass and momentum between the parent and child grids of a nested

modelling system are crucial to model accuracy. In particular, it was found that the

conservation of incoming fluxes at the child grid boundary is of greatest importance,

as boundary data has most influence on the interior solution during the period of

inward propagating fluxes. A novel approach to boundary formulation was developed

which reduced boundary formulation errors and thus ensured high levels of

conservation of incoming fluxes of mass and momentum. The approach internalises

the open boundaries of a child grid by incorporating ghost cell data in modified

boundary formulations of the governing equations. The approach is general in nature

and could therefore be applied to any modelling system.

Flooding and drying of near-shore areas is a process that is prevalent in most coastal

zones. The internal boundary approach, together with the implementation of a tailored

adaptive linear interpolation scheme, also enabled the child grid boundary to behave

dynamically. The dynamic internal boundary facilitates the flooding and drying of

boundary grid cells without adversely affecting model performance. This feature was

particularly important with a view to the modelling of inter-tidal zones in real-world

applications.

Boundary specification errors are a potential source of error in nested models. They

arise from inaccuracies in the parent grid data at the locations of child grid

boundaries. Inaccuracies in the parent grid solution are inevitable due to its lower

resolution; minimisation of boundary specification errors is therefore also crucial to

model accuracy. A two-step boundary selection procedure was developed to identify

optimum boundary locations for nested domains. The first step involved the use of a

novel method of error quantification based on the tidally-averaged error in parent grid

velocities relative to those computed by a high resolution model. This error data

captures both the temporal and spatial variations in parent grid error and allows their

visualisation in the form of error distribution plots. Based on the error plots, suitable

boundary locations can quickly be identified. The second step of the procedure

involves the comparison of mass and momentum fluxes computed by the parent grid

across the suitable boundary interfaces with similar fluxes computed by the high

resolution model. This gives a more accurate measure of parent grid error at the
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boundaries and enables the selection of optimum boundary locations. The use of the

boundary selection procedure was shown to result in highly accurate nested solutions.

The BNM was extensively tested for performance and accuracy prior to subsequent

development. It was applied to an idealised rectangular harbour, an experimental

harbour in a tidal basin, and a real coastal system, namely Cork Harbour. The

accuracies of the nested hydrodynamic solutions were determined by comparison with

high resolution model solutions. In the case of the tidal basin test, measured data from

a physical scale model were also used to verify nested model accuracy. The Cork

Harbour test case, in particular, presented a rigorous test of model performance as

significant proportions of the interior nested domains dried out at low water, as did

large sections of the boundaries of one of the nested domains. In all three test cases,

the child grid solutions were found to demonstrate similar levels of accuracy to the

high resolution models for a much lower computational cost.

Following the incorporation of each advanced nesting feature, and prior to subsequent

development, the nested model was assessed for performance and accuracy. The

multiple nested model was tested using an idealised harbour. Two levels of nesting,

each at a 3:1 nesting ratio, were used to achieve a 9:1 nesting ratio and the resulting

nested solution was found to give excellent correlation with a corresponding high

resolution model. A direct 9:1 nesting ratio was also tested at a single level of nesting;

this was also found to give a similar level of accuracy. This was a significant outcome

as it has previously been purported that the use of high nesting ratios results in

substantial degradation of model accuracy. The accuracy achieved when using the

high nesting ratio was facilitated by the high levels of mass and momentum

conservation achieved by the internal boundary approach and the identification of the

optimum locations for the child grid boundaries.

The solute transport model and the adaptive mesh model itself were both tested for

real coastal environments, Cork Harbour and Galway Bay respectively. The solute

transport model was used to simulate a coliform discharge and its subsequent

transport and dilution. The nested model computed coliform concentrations to the

same degree of accuracy as the high resolution model of Cork Harbour; even in areas

of flooding and drying the spatial and temporal variation in coliform levels were
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identical to those of the high resolution model. Lastly, the AMM was used to simulate

the realistic discharge of faecal coliforms from Mutton Island wastewater treatment

plant into Galway Bay. The extents and gradients of the coliform plume computed by

the dynamic child grid showed excellent correlation with the plume computed by the

high resolution model of the bay. In comparisons with measured coliform

concentrations, the accuracy of the high resolution and child grid solutions was

evident, as was the improvement in performance of the child grid over the lower

resolution parent grid. The use of dynamic nests was found to offer additional

computational efficiencies over the static nest approach.

10.2 Conclusions

The work carried out during the research has led to the following conclusions:

 An efficient dynamically-nested model for tidal hydraulics and solute transport in

the coastal zone was successfully developed. Results showed that the nested model

can provide accurate high resolution solutions in areas of interest for a much lower

computational effort than standard single grid models. The positive results from the

nested models of Cork Harbour and Galway Bay demonstrated that the model is

applicable to real coastal environments.

 Mass and momentum conservation between parent and child grids at the child grid

boundary is a main determinant of model accuracy. In particular, the conservation

of mass and momentum for inward propagating fluxes is critical as the boundary

has most influence during this period; during the period of outward propagating

fluxes, the child grid boundary has little or no influence on the interior solution.

 The accuracy of boundary data propagating into the child grid domain is therefore

much more important to the accuracy of the child grid solution than the accuracy of

boundary data propagating out of the child grid domain. Child grid boundaries

should be carefully located to coincide with areas of high parent grid accuracy to

minimise boundary specification errors. Child grid boundaries must also be located

sufficiently distant from the area of interest to prevent boundary errors from

adversely affecting the AOI, while at the same tame being located as close as

possible to the AOI to minimise computational effort.
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 A procedure for the identification of optimum child grid boundary locations was

developed. The spatial distributions of tidally-averaged relative errors in parent

grid velocities should be used to identify suitable child grid boundary locations in

areas of high parent grid accuracy. The parent grid model and a high resolution

model should then be used to compute mass and momentum fluxes across the

identified boundary interfaces. The comparison of the boundary fluxes will then

enable the selection of the optimum boundaries. In particular, the flux analyses will

allow the identification of the periods of incoming and outgoing fluxes and the

accuracy of those fluxes. This type of boundary selection procedure has particular

applications in the area of operational modelling where optimum boundary

selection is particularly important for both accuracy and computational cost.

 The internal boundary approach to child grid boundary formulation, developed for

this research, ensures high levels of mass and momentum conservation during the

most important period of incoming fluxes. The use of external ghost cells and

modified formulations to internalise the nested boundary could easily be

implemented in other modelling systems. The approach also facilitates a dynamic

internal boundary which allows flooding and drying of nested grid boundaries.

 The use of a Dirichlet boundary condition was found to work best with the internal

boundary approach. While relaxation and radiation boundary conditions were also

tested, they were found to produce inferior nested solutions. A recognised problem

with Dirichlet boundary conditions is the possible generation of noise in the model

solution due to reflection of outgoing waves; however, this was not found to be a

problem in any of the numerous model test cases. This was most likely due to the

use of the optimum boundary location procedure for the placement of child grid

boundaries.

 To the Author’s knowledge, the AMM is the first nested coastal/oceanographic

model to incorporate solute transport. The model is able to accurately simulate the

transport and fate of contaminants in coastal waters, even in complex inter-tidal

zones. This bodes well for the incorporation of a full water quality module within

the nested model.
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 The results from the testing of the dynamic child grid showed that adaptive

meshing should be used with caution. It is best to plan and specify child grid

movements based on analyses of both hydrodynamics and solute transport in a low

resolution model. These analyses will provide a rough guide to plume, and thus

child grid, movements, whilst also allowing the identification of areas of high

parent grid accuracy for child grid boundary location.

 The use of the internal boundary approach to ensure high levels of conservation

between the parent and child grids, together with the use of the optimum boundary

identification procedure, facilitates the use of high spatial nesting ratios. Previous

studies which did not adopt these approaches reported deteriorations in model

accuracy for high nesting ratios.

 Due to the spatial resolution problem, coastal models are typically applied to

individual bays/estuaries on a case-by-case basis. The multiple nesting capability

of the AMM facilitates a system-wide approach to modelling studies. Consider the

case of the Irish Sea. A possible modelling system might consist of the low

resolution parent grid shown in Figure 10.1 with multiple child grids for each

major estuary/embayment. Each child grid could be resolved at the most suitable

resolution using successive embedded child grids. This type of system would allow

simultaneous modelling of hydrodynamic and water quality processes in any

number of coastal environments at any number of different spatial resolutions.

Such a system would provide an extremely useful coastal management tool.
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Figure 10.1: Multiple nested model of Irish Sea showing top-level nesting only.

10.3 Recommendations for Further Research

The dynamically-nested model developed herein is a very effective modelling system

in its own right; it provides efficient, high resolution results at low computational

costs and has many uses within the realms of scientific research, coastal monitoring,

coastal management and general public interest. The following are recommendations

for future research which would, in the Author’s opinion, enhance the functionality

and usage of the nested modelling system:

 Development of the model into a two-way nested model where the high resolution

child grid solutions are used to improve their parent grid solutions
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 Incorporation of a water quality module within the model

 Development of functionality to allow specification of rotated nested domains. For

example, the child grids in Figure 10.1 are specified at various angles to the parent

grid. This capability would involve transformation of the parent grid boundary data

 Development of functionality to allow specification of non-rectangular nested

domains

 Further investigation of boundary conditions such as the relaxation and radiation

conditions which enable evacuation/absorption during times of outgoing data

 Development of functionality to allow the specification of child grids with

different nesting ratios at the same level of nesting

 Application of the nesting procedure to three-dimensional models to enable both

horizontal and vertical nesting
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Appendix A

Model Formulation of Momentum Equation
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A.1 DIVAST Representation of X-direction Momentum Equation

Term (1) - local acceleration

Finite difference formulation:
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DIVAST formulation:

QXU(I,J) = QXL(I,J) (A.2)

Term (2) - advective accelerations

Finite difference formulation:
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DIVAST formulation:
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Term (3) - Coriolis force

Finite difference formulation:
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DIVAST formulation:

+ D3CORI . QYMAV (A.9)

where:

D3CORI = DT . CORI (A.10)

QYMAV = VMAV(I,J) . DEPX(I,J) (A.11)
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Term (4) - pressure gradient

Finite difference formulation:
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DIVAST formulation:

- D1DPC . [EU(I+1,J) + EL(I+1,J) – EU(I,J) – EL(I,J)] (A.14)

where:

D1DPC = D1 . DEPX(I,J) (A.15)

DELX
GRAV

.
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DT
1D  (A.16)

Term (5) - wind shear force

Finite difference formulation:
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DIVAST formulation:

+ WSTRESS (A.18)
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where:

WSTRESS = D3WINC . WINVX (A.19)

D3WINC = DT . WINCON (A.20)

WINCON = CFSURF . DENRAT . WINSPD (A.21)

DENWAT
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 FOR (1.0 ≤ WINSPD < 15.0) (A.23)

CFSURF = 2.6x10-3 FOR (WINSPD ≥ 15

Term (6) - bed shear resistance

Finite difference formulation:
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DIVAST formulation:

– D4BDFR . QXU(I,J) – D4BDFR . QXL(I,J) (A.25)

where:
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Term (7) - turbulence induced shear force

Finite difference formulation:
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DIVAST formulation:

+ D5 . EDDVAL . [UM(I+1,J) + UM(I-1,J) + UM(I,J+1) (A.31)

+ UM(I,J-1) – 4.UM(I,J)]

where:
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COEDRG = (COED)(ROOTG) (A.35)

QMAG = (VELMAG)(DEPCEN) (A.36)

VELMAG=(UCEN 2 + VCEN 2)½ (A.37)
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DEPCEN = HCEN(I,J) + EU(I,J) (A.39)
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VISLAM = VISCMM x 10-6 (A.40)

A.2 DIVAST Representation of Modified Internal Boundary Formulations

advective accelerations: open boundary

DUUHDX = 0 (A.41)

advective accelerations: internal boundary
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turbulence induced shear force: open boundary

D5 . EDDVAL . [UM(I,J+1) + UM(I,J-1) – 2.UM(I,J)] (A.43)

turbulence induced shear force: internal boundary

D5 . EDDVAL . [UM(I+1,J) + UM(IM1,J) + UM(I,J+1) (A.44)

+ UM(I,J-1) – 4.UM(I,J)]
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Appendix B

Recursion Formulae
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B.1 Derivation of Continuity Equation Recursion Coefficients

Partial difference form of Continuity equation:
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Finite difference form of Continuity equation:
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Rearranging (B.2) taking all unknowns to LHS gives:
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Multiplying out LHS:
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Replacing known terms in (B.4) gives:
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where di, ei and fi are recursion coefficients such that:
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and n

iA is the combination of known variables:
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B.2 Derivation of x-direction Momentum Equation Recursion Coefficients

Partial difference form of x-direction momentum equation:
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Partial difference form of x-direction momentum equation:
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Rearranging (B.10) taking all unknowns to LHS:
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Rewriting LHS of (B.11):
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Replacing known terms in (B.12) gives:
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where ai, bi and ci are recursion coefficients such that:

n

j,iii 2
1H

x2
tg

ca 



(B.14)

ib
n

j,i
2

2
y

2

x

2
1

2
1

)HC(2

)q'q(tg
1







(B.15)

and n

iB is the combination of known variables:
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B.3 Recursive Forms of Continuity and Momentum Equations:

Take equations (B.13) and (B.5) in that order, unknown values of 2
1

2
1

n

j,ixq


 and 2
1n

j,i




can now be evaluated by a process of elimination of the unknowns. Starting at i=1 of

an x-direction integration section and assuming that 2
1n

j,1


 is a known boundary

condition, the unknown 2
1

2
1

n

j,1xq


in (B.13) can be written in the form:
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At i=2, (B.17) can then be substituted into (B.5) to eliminate the flux 2
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obtaining

an equation for 2
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 of the form:
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At i=3, (B.18) can then be substituted into (B.13) to eliminate 2
1n

j,2


 and so on and so

forth for i=1,…imax for the integration section. The elimination of unknowns in this

manner is known as Gaussian elimination.

Using Gaussian elimination, the general recursive forms of the continuity and x-

direction momentum equations can be written respectively as:
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where Pi, Qi, Ri and Si are recursion formulae computed at i=2,…,imax as follows:
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If i=1 is an open water elevation boundary the recursion terms are computed as:
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However, if i=1 is an open flow boundary or a closed boundary then:
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The value of
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is specified at a flow boundary or zero at a closed boundary.

The recursion terms Pi and Qi are not required at i=1.

B.4 Model Representation:

In the model the water elevation 2
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j,i


 is calculated first from (B.19). Using backward

substitution the flux at the preceding grid cell 2
1

2
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j,ixq


 is then calculated using (B.20).

The general form of the recursion equations are therefore represented in the model as

follows:
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    QXU(IM1,J) = -R(IM1)*EU(I,J) + S(IM1) (B.30)

The recursion terms Pi, Qi, Ri, Si are represented in the model as:
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From equations (B.31) – (B.34) it can be seen that the model representations of the

recursive coefficients ai, bi, ci, di, ei, fi, Ai, Bi are as follows:
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and for the special case i=1, Ri and Si are represented as:
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Appendix C

AMM Coliform Results
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Figure C.1: Comparison of coliform counts at Site 1 for (a, c) full simulation and for (b, d) 24hr period about storm flow discharge.
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Figure C.2: Comparison of coliform counts at Site 3 for (a, c) full simulation and for (b, d) 24hr period about storm flow discharge.
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Figure C.3: Comparison of coliform counts at Site 5 for (a, c) full simulation and for (b, d) 24hr period about storm flow discharge.
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(c) (d)
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Figure C.4: Absolute errors in coliform timeseries relative to SG_100 at (a) site 1, (b)

site 3 and (c) site 5.
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