

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-03-20T11:15:42Z

Some rights reserved. For more information, please see the item record link above.

Title LargeRDFBench: A billion triples benchmark for SPARQL
endpoint federation

Author(s) Saleem, Muhammad; Hasnain, Ali; Ngonga Ngomo, Axel-
Cyrille

Publication
Date 2018-01-12

Publication
Information

Saleem, Muhammad, Hasnain, Ali, & Ngonga Ngomo, Axel-
Cyrille. (2018). LargeRDFBench: A billion triples benchmark
for SPARQL endpoint federation. Journal of Web Semantics,
48, 85-125. doi: https://doi.org/10.1016/j.websem.2017.12.005

Publisher Elsevier

Link to
publisher's

version
https://doi.org/10.1016/j.websem.2017.12.005

Item record http://hdl.handle.net/10379/14875

DOI http://dx.doi.org/10.1016/j.websem.2017.12.005

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

LargeRDFBench: A Billion Triples Benchmark for SPARQL Endpoint
Federation

Muhammad Saleema,b,∗, Ali Hasnainc, Axel-Cyrille Ngonga Ngomoa,b

aUniversität Leipzig, IFI/AKSW, PO 100920, D-04009 Leipzig
bDICE, University of Paderborn, Germany

cInsight Centre for Data Analytics, National University of Ireland, Galway

Abstract

Gathering information from the distributed Web of Data is commonly carried out by using SPARQL
query federation approaches. However, the fitness of current SPARQL query federation approaches for real
applications is difficult to evaluate with current benchmarks as they are either synthetic, too small in size and
complexity or do not provide means for a fine-grained evaluation. We propose LargeRDFBench, a billion-triple
benchmark for SPARQL query federation which encompasses real data as well as real queries pertaining to
real bio-medical use cases. We evaluate state-of-the-art SPARQL endpoint federation approaches on this
benchmark with respect to their query runtime, triple pattern-wise source selection, number of endpoints
requests, and result completeness and correctness. Our evaluation results suggest that the performance of
current SPARQL query federation systems on simple queries (in terms of total triple patterns, query result
set sizes, execution time, use of SPARQL features etc.) does not reflect the systems’ performance on more
complex queries. Moreover, current federation systems seem unable to deal with real queries that involve
processing large intermediate result sets or lead to large result sets.

Keywords: Benchmark, SPARQL, Federated Queries, Linked Data, RDF

1. Introduction

Accessing the distributed compendium that is the
Web of Data is most commonly carried out by using
SPARQL queries. In particular, federated SPARQL
queries are used when data from several sources5

is required to satisfy the needs of the user. The
importance of SPARQL queries for Linked Data
management has led to the development of several
benchmarks (e.g., [1, 2, 3, 4, 5, 6, 7]) that can as-
sess the performance of SPARQL query processing10

systems. However, all of these benchmarks (except
FedBench [5]) focus on the problem of query eval-
uation over local, centralised repositories. Hence,
these benchmarks cannot be considered for bench-
marking federated queries over multiple interlinked15

datasets hosted by different SPARQL endpoints.

∗Corresponding author
Email addresses: saleem@informatik.uni-leipzig.de

(Muhammad Saleem), ali.hasnain@insight-centre.org
(Ali Hasnain), axel.ngonga@upb.de (Axel-Cyrille Ngonga
Ngomo)

Moreover, many (e.g., [1, 2, 3, 6]) of them either
rely on synthetic data or synthetic queries.

While synthetic benchmarks allow the generation
of datasets of virtually any size to test the scalabil-20

ity of the systems, several works [8, 9, 10, 11, 12]
point out that synthetic queries most commonly
fail to reflect the characteristics of the real queries.
Moreover, artificial benchmarks are typically highly
structured while real Linked Data sources are less25

structured [8]. Hence, these synthetic benchmarks
are not suited for evaluating how systems perform
under realistic loads. A trend towards benchmarks
with real data and real queries (e.g., FedBench [5],
DBPSB [4], BioBenchmark [7]) has thus been pur-30

sued over recent years but has so far not been able to
produce federated SPARQL query benchmarks that
reflect the data volumes and query complexity that
federated query engines already have to deal with on
the Web of Data. In addition, most of the current35

benchmarks for SPARQL query execution focus on
a single performance criterion, i.e., the query exe-
cution time. Thus, they fail to provide results that

Preprint submitted to International Journal of Web Semantics January 28, 2019

allow a fine-grained evaluation of SPARQL query
processing systems to detect the components of sys-40

tems that need to be improved [13, 14, 15]. For
example, performance metrics such as

1. the completeness and correctness of result sets,

2. the effectiveness of source selection both in
terms of total number of data sources selected,45

and

3. the corresponding source selection time (which
both have a direct impact on the overall query
performance)

are not addressed in the existing federated SPARQL50

query benchmarks [13, 14, 15].
In this paper, we present LargeRDFBench, a

SPARQL endpoint federation benchmark that com-
prises real interlinked datasets from multiple do-
mains. Our benchmark provides multiple perfor-55

mance measures as well as a set of queries with
varying complexities. With this benchmark, we aim
to provide means to test the different components of
federation engines within an evaluation environment
that closely reflects reality. Overall, our contribu-60

tions are as follow:

• LargeRDFBench is an open-source benchmark
for SPARQL endpoint query federation. To the
best of our knowledge, this is the first feder-
ated SPARQL query benchmark with real data65

(from multiple interlinked datasets pertaining
to different domains) to encompass more than
1 billion triples.

• We provide three types of queries, namely
simple (from FedBench), complex, and large70

queries. These queries allow the evaluation of
different aspects of the scalability of the current
query federation frameworks. All queries are
provided in SPARQL 1.0 and SPARQL 1.1 ver-
sions. Both versions represent exactly the same75

query and lead to exactly the same result set.
The only difference lies in the SPARQL 1.1 ver-
sion containing explicit SERVICE clauses, thus
making a source selection unnecessary. There-
with, our benchmark allows for the comparison80

of federation engines along the axes of query
execution time with and without source selec-
tion.

• We evaluate state-of-the-art SPARQL endpoint
federation systems by using LargeRDFBench85

against several metrics including the source se-
lection time, number of sources selected, result

set correctness and completeness, the number of
endpoint requests, and the query runtime. This
fine-grained evaluation allows us to pinpoint the90

restrictions of current SPARQL endpoint feder-
ation systems when faced with large datasets,
large intermediate results and large result sets.

• We show that the ranking of these systems
based on benchmarks (i.e., FedBench) with sim-95

ple queries differs significantly from their rank-
ing on more complex queries. Moreover, our
results also suggest that current state-of-the-art
federation engines are not up to the challenge
of dealing with large data queries, i.e., with100

queries that involve processing large intermedi-
ate result sets or lead to large result sets.

The rest of this paper is structured as follows: We
begin by providing an overview of the main com-
ponents of a SPARQL query federation benchmark105

(short: benchmark) and key features that need to
be considered while designing such a benchmark.
Then, we point out the current drawbacks of ex-
isting benchmarks in more detail (Section 3). In
Section 4, we describe LargeRDFBench. In par-110

ticular, we present the datasets and queries con-
tained in the benchmark as well as the metrics used
for benchmarking with LargeRDFBench. An eval-
uation of state-of-the-art systems based on Larg-
eRDFBench follows next. The results are discussed115

before we make our conclusions. The benchmark
and complete evaluation results can be found at
https://github.com/AKSW/largerdfbench.

2. Background

This section presents the main components of120

SPARQL query processing benchmarks and the key
features of each of these components that should be
considered during the benchmark creation. In gen-
eral, a SPARQL query benchmark can be regarded
as consisting of three main components:125

1. a set of RDF datasets,

2. a set of SPARQL queries and

3. a set of performance metrics.

Datasets: A federated benchmark should com-
prise of more than one dataset since a federated130

query is one that collects results from more than
one dataset. Additionally, the datasets should vary
in terms of the total number of triples, number of
classes, number of resources, number of properties,

2

https://github.com/AKSW/largerdfbench

number of objects, average properties and instances135

per class, average indegrees and outdegrees as well
as their distribution across resources [8]. Duan et
al. [8] combines many of these datasets’ features into
a single composite metric called structuredness or
coherence. For a given dataset, the structuredness140

value lies in [0,1], where 0 stands for the smallest
possible amount of structure and 1 points to a per-
fectly structured dataset. A federated SPARQL
query benchmark should comprise datasets of vary-
ing structuredness values.145

SPARQL Queries: To present the key SPARQL
query features that should be considered while de-
signing a SPARQL querying benchmark, we begin
by representing each basic graph pattern (BGP) of
a SPARQL query as a directed hypergraph (DH)150

according to [15]. We chose this representation be-
cause it allows representing property-property joins
(i.e., joins between the predicates of two or more
triple patterns of a SPARQL query), which represen-
tations used in previous works [1, 16] do not allow155

to model. A BGP is formally defined as follows:

Definition 2.1 (Basic Graph Pattern). We use the
term basic graph pattern (BGP) exactly as per the
SPARQL specification.1 Formally, a BGP is defined
as a set of triple patterns, where a triple pattern160

is defined as follows: Assume there are infinite and
pairwise disjoint sets I (set of IRIs), B (set of blank
nodes), L (set of literals) and V (set of variables).
Then, a tuple from (I∪V ∪B)×(I∪V)×(I∪L∪V ∪B)
is a triple pattern. A sequence of triple patterns with165

optional filters is considered a single BGP. As per
the specification of BGPs, any other graph pattern
(e.g., UNION, MINUS, etc.) terminates a basic graph
pattern.

The DH representation of a BGP is formally de-170

fined as follows:

Definition 2.2. Each basic graph patterns BGPi
of a SPARQL query can be represented as a DH
HGi = (V,E, λvt), where

• V = Vs ∪ Vp ∪ Vo is the set of vertices of HGi,175

Vs is the set of all subjects in HGi, Vp the set
of all predicates in HGi and Vo the set of all
objects in HGi;

• E ={e1,. . . , et}⊆ V 3 is a set of directed hyper-
edges (short: edge). Each edge e= (vs,vp,vo)180

1See https://www.w3.org/TR/sparql11-query/

#BasicGraphPatterns

emanates from the triple pattern<vs, vp, vo> in
BGPi. We represent these edges by connecting
the head vertex vs with the tail hypervertex
(vp, vo). We use Ein(v) ⊆ E and Eout(v) ⊆ E
to denote the set of incoming and outgoing185

edges of a vertex v. Formally, Ein(v) con-
tains exactly all edges (vs, vp, vo) ∈ E such
that v = vp or v = vo. Eout(v) contains exactly
all edges (vs, vp, vo) ∈ E such that v = vs.

• λvt is a vertex-type-assignment function. A ver-190

tex v ∈ V can be of type ‘star’, ‘path’, ‘hybrid’,
or ‘sink’ if this vertex participates in at least
one join. A ‘star’ vertex has more than one
outgoing edge and no incoming edge. A ‘path’
vertex has exactly one incoming and one out-195

going edge. A ‘hybrid’ vertex has either more
than one incoming and at least one outgoing
edge or more than one outgoing and at least
one incoming edge. A ‘sink’ vertex has more
than one incoming edge and no outgoing edge.200

A vertex that does not participate in any join
is of type ’simple’.

The representation of a complete SPARQL query
as DH is the union of the representations of its
BGPs. As an example, a query and its DH repre-205

sentation are shown in Figure 1. Based on the DH
representation of SPARQL queries, we can define:

Theorem 1 (Number of Triple Patterns). From
Definition 2.2, the total number of triple patterns
in a BGPi is equal to the number of hyperedges |E|210

in the DH representation of the BGPi.

Proof of Theorem 1. Each hyperedge connects the
head vertex (which represents the subject of the
triple pattern) and tail hyper vertex (which repre-
sents the predicate and object of the same triple215

pattern). Thus, for each triple pattern, a hyperedge
is created in the DH representation of the query.
Consequently, the number of hyperedges in the DH
representation of BGP is equal to the number of
triple patterns in that BGP.220

The total number of triple patterns in a query is
the sum of the total number of triple patterns across
all of the BGPs contained in this query.

Definition 2.3 (Number of Join Vertices). Let ST
={st1,. . . , stj} be the set of vertices of type ‘star’,225

PT ={pt1,. . . , ptk} be the set of vertices of type
‘path’, HB ={hb1,. . . , hbl} be the set of vertices
of type ‘hybrid’, and SN ={sn1,. . . , snm} be the

3

https://www.w3.org/TR/sparql11-query/#BasicGraphPatterns
https://www.w3.org/TR/sparql11-query/#BasicGraphPatterns

SELECT DISTINCT ∗
WHERE
{
? drug : d e s c r i p t i o n ? drugDesc .
? drug : drugType : smal lMolecu le .
? drug : keggCompoundId ?compound .
?enzyme : xSubstrate ?compound .
? Chemica l react ion : xEnzyme ?enzyme .
? Chemica l react ion : equat ion

? ChemicalEquation .
? Chemica l react ion : t i t l e

? Reac t i onTi t l e
}

: drugType
: small
Molecule

Drug
: descri−
ption

drug
Desc

: keggCo−
mpoundId

compound : xSubs−
tract

: xEnzyme enzyme

Chemical
Reaction

: equation
Chemical
Equation

Tail of hyperedge

: title

Reaction
T itle

Simple Star Path Sink

Figure 1: DH representation of the SPARQL query. Prefixes are ignored for simplicity

set of vertices of type ‘sink’ in a DH representation
of a SPARQL query, then the total number of join230

vertices in the query #JV = |ST |+ |PT |+ |HB|+
|SN |.

The total number of join vertices in a query is the
sum of the total number of join vertices across all
of the BGPs contained in this query.235

Definition 2.4 (Join Vertex Degree). The DH rep-
resentation of SPARQL queries makes use of the
notion of Ein(v) ⊆ E and Eout(v) ⊆ E to denote
the set of incoming and outgoing hyperedges of a
vertex v. The join vertex degree of a vertex v is240

denoted JV Dv = |Ein(v)|+ |Eout(v)|.
The join vertex degree of the complete query is

the average of join vertex degree of all the joins
contained in this query. In our example (see Fig-
ure 1), the number of triple patterns is seven and245

the number of join vertices is four (two star, one
sink and path each). The join vertex degree of each
of the ‘star’ join vertex (shown in green color) given
in Figure 1 is three (i.e., three outgoing hyperedges
from both vertices).250

Definition 2.5 (Relevant Source Set). Let D be
the set of all data sources (e.g., SPARQL endpoints),
TP be the set of all triple patterns in query Q. Then,
a source d ∈ D, is relevant (also called capable)
for a triple pattern tpi ∈ TP if at least one triple255

contained in d matches tpi.
2 The relevant source set

2The concept of matching a triple pattern is defined for-
mally in the SPARQL specification found at http://www.w3.

org/TR/rdf-sparql-query/

Ri ⊆ D for tpi is the set that contains all sources
that are relevant for that particular triple pattern.

Definition 2.6 (Total Triple Pattern-wise Sources).
By using Definition 2.5, we can define the total260

number of triple pattern-wise sources selected for
query Q as the sum of the magnitudes of relevant
source sets Ri over all individual triple patterns tpi
∈ Q.

Definition 2.7 (Number of Relevant Sources). The265

sources that potentially contribute to the result set
of a query are those that are relevant to at least
one triple pattern in the query [17], i.e. a source is
relevant to the query if it is able to provide at least
one result for any of the triple patterns of the query.270

For the query S2 (3 triple patterns, ref. page
27) given in the appendix, the relevant source set
for the first and third triple patterns only contains
DBpedia−Subset and the relevant source set for the
second triple pattern only contains NewY orkT imes.275

The total triple pattern-wise sources selected for
this query is equal to 3, i.e., the sum of relevant
sources for individual triple patterns. The distinct
number of relevant sources for this query is two, i.e.,
DBpedia− Subset and NewY orkT imes.280

Definition 2.8 (Triple Pattern Selectivity). Let tpi
be a triple pattern and d be a relevant source for tpi.
Furthermore, let N be the total number of triples
in d and Card(tpi, d) be the cardinality of tpi w.r.t.
d, i.e., total number of triples in d that matches285

tpi, then the selectivity of tpi w.r.t. d denoted by
Sel(tpi, d) = Card(tpi, d)/N . The selectivity of the

4

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

filtered triple pattern (a triple pattern with SPARQL
FILTER clause) is calculated in the same way.

Definition 2.9 (BGP-Restricted Triple Pattern290

Selectivity). Consider a Basic Graph Pattern BGP
and a triple pattern tpi belonging to BGP , let
R(tpi, d) be the set of distinct solution mappings
(i.e., resultset) of executing tpi over dataset d and
R(BGP, d) be the set of distinct solution mappings295

of executing BGP over dataset d. Then the
BGP-restricted triple pattern selectivity denoted by
SelBGP−Restricted(tpi, d), is the fraction of distinct
solution mappings in R(tpi, d) that are compatible
(as per standard SPARQL semantics [18]) with a300

solution mapping in R(BGP, d) [1]. Formally, if Ω
and Ω′ denote the sets underlying the (bag) query
results R(tpi, d) and R(BGP, d), respectively, then

SelBGP−Restricted(tpi, d) =305

|{µ ∈ Ω |∃µ′ ∈ Ω′ : µ and µ′ are compatible}|
|Ω|

Definition 2.10 (Join-Restricted Triple Pattern
Selectivity). Consider a join vertex x in the DH
representation of a Basic Graph Pattern BGP . Let310

BGP ′ belonging to BGP be the set of triple pat-
terns that are incidents to x. Furthermore, let tpi
belonging to BGP ′ be a triple pattern and R(tpi, d)
be the set of distinct solution mappings of executing
tpi over dataset d and R(BGP ′, d) be the set of315

distinct solution mappings of executing BGP ′ over
dataset d. Then the x − restricted triple pattern
selectivity denoted by SelJV x−Restricted(tpi, d),
is the fraction of distinct solution mappings in
R(tpi, d) that are compatible with a solution320

mapping in R(BGP ′, d) [1]. Formally, if Ω and Ω′

denote the sets underlying the (bag) query results
R(tpi, d) and R(BGP ′, d), respectively, then

SelJV x−Restricted(tpi, d) =325

|{µ ∈ Ω |∃µ′ ∈ Ω′ : µ and µ′ are compatible}|
|Ω|

According to previous works [1, 16], a federated
SPARQL query benchmark should vary the queries
it contains w.r.t. the following query characteristics :330

number of triple patterns, number of join vertices,
mean join vertex degree, number of sources
span, query result set sizes, mean triple pattern
selectivities (should be mean Filtered triple pattern
selectivities if SPARQL FILTER clause is attached335

to the triple pattern), BGP-restricted triple pattern
selectivity, join-restricted triple pattern selectivity,

join vertex types (‘star’, ‘path’, ‘hybrid’, ‘sink’),
and SPARQL clauses used (e.g., LIMIT, OPTIONAL,
ORDER BY, DISTINCT, UNION, FILTER, REGEX).340

Performance Metrics: Previous works [14, 15]
show that the result set completeness and correct-
ness, the total triple pattern-wise sources selected,
the number of SPARQL ASK requests used during345

source selection, the source selection time, the num-
ber of endpoint requests, and the overall query exe-
cution time are important metrics to be considered
in SPARQL query federation benchmarks. These
metrics are general and applicable to any SPARQL350

endpoint federation engine. We thus decided to im-
plement these measures in LargeRDFBench. We
did not consider the number of endpoint requests
as they strongly depend upon the configuration of
the engine, especially the block size (e.g., 15 is used355

in FedX by default, doubling the block size will re-
duce the number of endpoint request by 50%) and
buffer size used. Furthermore, the network latency
is important to consider for live SPARQL endpoints
query processing. However, it is almost negligible360

for local, dedicated network setup used in our eval-
uation. A utility that calculates all of the above
benchmark’s key features is provided at the project
home page along with usage instructions.

Finally, it is important to make a distinction be-365

tween the two well-known categories of SPARQL
query federation: SPARQL endpoint federation and
Linked Data federation [15]. In the former type
of federation, the RDF data is made available via
SPARQL endpoints, the sub-queries are directly370

forwarded to the SPARQL endpoints, and the cor-
responding results are integrated by using different
join techniques. The advantage of this category of
approaches is that the execution of queries can be
carried out efficiently because the approach relies on375

SPARQL endpoints. Furthermore, the queries are
answered based on original, up-to-date data with
no synchronization of the copied data required [19].
However, for such approaches to work, the data
needs to be made available through SPARQL end-380

points. Thus, SPARQL query federation approaches
are unable to deal with the data provided by the
whole of the LOD Cloud because data is partly not
exposed through SPARQL endpoints. In Linked
Data federation approaches, the data does not need385

to be exposed via SPARQL endpoints. The only re-
quirement is that the data should follow the Linked

5

Data principles3. However, due to URI’s lookups at
runtime, these type of approaches are usually slower
than SPARQL query federation approaches. In this390

work, we are interested in designing a benchmark
for SPARQL endpoint federation approaches.

3. Related work

Benchmarks for measuring the advance of
SPARQL query processing engines has been re-395

garded as central for the development of the Se-
mantic Web since its creation. Consequently, a
good number of benchmarks for comparing SPARQL
query processing systems have been developed over
the last decade. These include the Waterloo Stress400

Testing Benchmark (WSTB) [1], the Berlin SPARQL
Benchmark (BSBM) [2], the Lehigh University
Benchmark (LUBM) [3], the DBpedia Sparql Bench-
mark (DBPSB) [4], FedBench [5], SP2Bench [6],
and the BioBenchmark [7]. In addition, FEASI-405

BLE [9] is a customizable SPARQL benchmark
generation framework out of SPARQL queries log.
WSTB, BSBM, DBPSB, SP2Bench, FEASIBLE,
and BioBenchmark were designed with the main
goal of evaluating query engines that access data410

kept in a single repository. They are used for the
performance evaluation of different triple stores.
LUBM was designed for comparing the performance
of OWL reasoning engines. However, all of these
benchmarks do not consider distributed data and415

federated SPARQL queries, thus they are not further
considered in the discussion.

SPLODGE [16] is a heuristic for the automatic
generation of federated queries with conjunctive
BGPs. Non-conjunctive queries that make use of the420

SPARQL UNION, OPTIONAL clauses are not consid-
ered. However, non-conjunctive queries are widely
used in practice. For example, the DBpedia query
log [11] contains 20.87% queries of SPARQL UNION

and 30.02% queries of SPARQL FILTER clauses.425

Moreover, the use of different SPARQL clauses and
triple pattern join types greatly varies from one
dataset to another dataset, thus making it very diffi-
cult for an automatic query generator to reflect the
reality. For example, the DBpedia and Semantic430

Web Dog Food (SWDF) query log [10] differ sig-
nificantly in their use of LIMIT (27.99% for SWDF
vs 1.04% for DBpedia) and OPTIONAL (0.41% for
SWDF vs 16.61% for DBpedia) clauses.

3http://www.w3.org/DesignIssues/LinkedData.html

To the best of our knowledge, FedBench is the only435

benchmark that encompasses real-world datasets,
commonly used federated SPARQL queries and a
distributed data environment. It comprises a total
of 14 queries for SPARQL endpoint federation and
11 queries for Linked Data federation approaches.440

In addition, this benchmark includes a dataset and
queries from SP2Bench. FedBench is commonly
used in the evaluation of SPARQL query federation
systems [17, 20, 21, 15, 22, 23, 24, 25]. However, the
real queries (excluding synthetic SP2Bench bench-445

mark queries) are low in complexity (in terms of
total triple patterns, query result set sizes, execution
time, use of SPARQL features etc.). The 11 Linked
Data federation queries do not make use of any of
the SPARQL clauses given in Table 1, the number450

of triple patterns included in the query ranges from
2 to 5, and the query result set sizes only ranges
from 1 to 1216 (6/11 queries having result set size
less than 51). As mentioned before, we are only
interested in the 14 SPARQL endpoint federation455

queries. Hence, only those are further discussed in
rest of the paper.

Table 1, Figure 2, and Figure 3d show that the
FedBench SPARQL endpoint federation queries are
also low in complexity and do not sufficiently comple-460

ment each other (the systems should not be tested
with queries identical in properties). Consequently,
they favour (as shown by our evaluation in Section
5.2.4) particular types of federation systems.

The number of Triple Patterns (#TP, ref. Figure465

2a) included in the query ranges from 2 to 7. Con-
sequently, the standard deviations of the number
of Join Vertices (#JV, ref. Figure 2b), the Mean
Join Vertices Degrees (#MJVD, ref. Figure 2c), and
the number of Sources the query Span (#SS, ref.470

Figure 2d) are low. In particular, there are: 6/14
queries with #JV exactly equal to 3, 8/14 queries
with #MJVD exactly equal to 2, and 5/14 queries
with #SS exactly equal to 2. The query result set
sizes (#R, ref. Figure 3a) are small (maximum 9054,475

6/14 queries lead to a result set whose magnitude
is less than 4). The query triple patterns are not
highly selective in general (ref. Figure 3b). The im-
portant SPARQL clauses such as DISTINCT, ORDER
BY and REGEX are not used (ref. Table 1). More-480

over, the SPARQL OPTIONAL and FILTER clauses are
only used in a single query (i.e., LS7 of FedBench).
FedBench shows good variation in mean (across all
triple patterns of the query) BGP-restricted (ref.
Figure 3c) and mean join-restricted (ref. Figure 3d)485

triple pattern selectivities. However, the mean join-

6

http://www.w3.org/DesignIssues/LinkedData.html

0

2

4

6

8

10

12

14

S1 S3 S5 S7 S9 S11 S13 C1 C3 C5 C7 C9 L1 L3 L5 L7

#T
ri

p
le

 P
at

te
rn

s

FedBench

FedBench-Mean

LargeRDFBench

LargeRDFBench-Mean

(a) #TP. (±1.33, ±2.64)

0

1

2

3

4

5

6

7

S1 S3 S5 S7 S9 S11S13 C1 C3 C5 C7 C9 L1 L3 L5 L7

#J
o

in
 V

e
rt

ic
e

s

FedBench

FedBench-Mean

LargeRDFBench

LargeRDFBench-Mean

(b) #JV. (±1.33, ±1.41)

0

1

2

3

4

5

6

7

S1 S3 S5 S7 S9 S11S13 C1 C3 C5 C7 C9 L1 L3 L5 L7

M
e

an
 J

o
in

 V
e

rt
ic

e
s

D
e

gr
e

e

FedBench

FedBench-Mean

LargeRDFBench

LargeRDFBench-Mean

(c) MJVD. (±0.30, ±0.76)

0

2

4

6

8

10

12

14

S1 S3 S5 S7 S9 S11 S13 C1 C3 C5 C7 C9 L1 L3 L5 L7

#R
el

e
va

n
t

So
u

rc
es

FedBench

FedBench-Mean

LargeRDFBench

LargeRDFBench-Mean

(d) #RS. (±3.41, ±3.44)

Figure 2: Comparison of structural query characteristics of FedBench and LargeRDFBench. #TP = Number of triple patterns,
#JV = Number of join vertices, MJVD = Mean join vertices degree, #RS = Number of relevant sources. The values inside
bracket show standard deviations for FedBench and LargeRDFBench, respectively. X-axis shows the query name.

7

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

S1 S3 S5 S7 S9

S1
1

S1
3

C
1

C
3

C
5

C
7

C
9 L1 L3 L5 L7

#R
e

su
lt

s
(l

o
g

sc
al

e
)

FedBench
FedBench-Mean
LargeRDFBench
LargeRDFBench-Mean

(a) #R. (±2397, ±113763)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S1 S3 S5 S7 S9 S11S13 C1 C3 C5 C7 C9 L1 L3 L5 L7

M
e

an
 T

ri
p

le
 P

at
te

rn
 S

e
le

ct
iv

it
y

FedBench

LargeRDFBench

(b) MTPS. (±0.11, ±0.14)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

S1 S3 S5 S7 S9 S11S13 C1 C3 C5 C7 C9 L1 L3 L5 L7

M
e

an
 B

G
P

-r
e

st
ri

ct
e

d
 T

ri
p

le
 P

at
te

rn

Se

le
ct

iv
it

y

FedBench

LargeRDFBench

(c) MBRTPS. (±0.31, ±0.24)

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

S1 S3 S5 S7 S9

S1
1

S1
3

C
1

C
3

C
5

C
7

C
9 L1 L3 L5 L7

M
e

an
 B

G
P

-r
e

st
ri

ct
e

d
 T

ri
p

le
 P

at
te

rn

Se

le
ct

iv
it

y
(l

o
g

sc
al

e
)

FedBench

LargeRDFBench

(d) MJRTPS. (±0.13, ±0.09)

Figure 3: Comparison of data-driven characteristics of FedBench and LargeRDFBench. #R = Number of results, MTPS =
Mean Triple Pattern Selectivity, MTPS = Mean Triple Pattern Selectivity, MBRTPS = Mean BGP-restricted Triple Pattern
Selectivity, MJRTPS = Mean Join-restricted Triple Pattern Selectivity. The values inside bracket shows standard deviations
for FedBench and LargeRDFBench, respectively. X-axis shows the query name.

8

Table 1: Queries distribution with respect to SPARQL clauses and join vertex types.

SPARQL Clauses Join Vertex Type
Benchmark LIMIT OPTIONAL ORDER BY DISTINCT UNION FILTER REGEX Star Path Hybrid Sink
FedBench 0% 7.14% 0% 0% 21.42% 7.14% 0% 85.71% 57.14% 14.28% 35.71%
LargeRDFBench 12.5% 25% 9.3% 28.1% 18.75% 31.25% 3.12% 75% 78.12% 40.62% 40.62%

restricted selectivities are in general high, meaning
most of the solution mappings of the triple pattern
are compatible with the solution mappings of other
triple patterns incident on the same join variable.490

This is because the mean join vertex degree (ref. Fig-
ure 2c) of the FedBench queries is in general lower in
comparison to LargRDFBench queries. Most impor-
tantly, the average query execution is small (about
2 seconds on average ref. Section 5.2.4). Finally,495

FedBench relies only on the number of endpoints re-
quests and the query execution time as performance
criteria. These limitations make it difficult to ex-
trapolate how SPARQL query federation engines
will perform when faced with the growing amount of500

data available on the Data Web based on FedBench
results. A fine-grained evaluation of the federation
engines to detect the components that need to be
improved is also not possible [14].

Our benchmark includes all of the 14 SPARQL505

endpoint federation queries (which we named simple
queries) from FedBench, as they are useful but not
sufficient all alone. In addition, we provide 10 com-
plex and 8 large data queries, which lead to larger
result sets (see Figure 3a) and intermediary results510

(see triple pattern selectivities, Figure 3b). Beside
the central performance criterion, i.e., the query
execution time, our benchmark includes result set
completeness and correctness, effective source selec-
tion in terms of the total number of data sources515

selected, the total number of SPARQL ASK requests
used and the corresponding source selection time.
Our evaluation results (section 5.2) suggest that the
performance of current SPARQL query federation
systems on simple queries (i.e., FedBench queries)520

does not reflect the systems’ performance on more
complex queries. In addition, none of the state-of-
the-art SPARQL query federation systems is able
to fully answer the real use-case large data queries.

4. Benchmark Description525

To address the aforementioned limitations, we pro-
pose LargeRDFBench, a billion-triple benchmark
which encompasses a total of 13 real, interconnected
datasets of varying structuredness (ref. Figure 5)

and 32 real queries of varying complexities (see Ta-530

ble 1 and Figure 2) ranging from simple to com-
plex. The idea behind this work was to design a
benchmark based on real data and real queries that
implements all of the key benchmark features dis-
cussed in Section 2. The data was chosen to reflect535

the topology of the current Web of Data, with some
of the datasets being highly connected with other
datasets while others are isolated (ref. Figure 4).
Furthermore, some of the datasets are highly struc-
tured while others are low structured (ref. Figure540

5). The queries were chosen to reflect a wide range
of complexities w.r.t. the number of triple patterns
they contain, the use of different SPARQL clauses,
the triple patterns’ selectivity, the number of join
vertices, the mean join vertices degrees, the number545

of sources span, and the result set sizes they lead to
(see Table 1 and Figure 2). The resulting benchmark,
dubbed LargeRDFBench, consists consequently of
three main components: (1) real-world datasets col-
lected from different domains, (2) queries showing550

typical requests, mostly collected from domain ex-
perts and/or representing real use cases, and (3) a
comprehensive set of fine-grained evaluation mea-
sures. In the following section, we present each of
the three main components in detail.555

4.1. Benchmark Datasets

Our benchmark consists of a total of 13 real-world
datasets4 of which 12 are interlinked. The datasets
were collected from different domains as shown in
Figure 4. We began by selecting all nine real-world560

datasets from Fedbench [5]. We added three sub-
datasets from three different Linked TCGA (Cancer
Genome Atlas) live SPARQL endpoints5 [26] (i.e.
Linked TCGA-A, Linked TCGA-M, and Linked
TCGA-E) along with Affymetrix6. We chose Linked565

TCGA because it is one of the first datasets that
abides by many of the Vs of large data (Volume,

4Live SPARQL endpoints, datadumps URL and more
details about the benchmark at homepage

5http://tcga.deri.ie/
6http://download.bio2rdf.org/release/2/

affymetrix/affymetrix.html

9

http://tcga.deri.ie/
http://download.bio2rdf.org/release/2/affymetrix/affymetrix.html
http://download.bio2rdf.org/release/2/affymetrix/affymetrix.html

Linked
MDB

DBpedia

New York
Times

Linked
TCGA-M

Linked
TCGA-E

Linked
TCGA-A

Affymetrix

SW Dog
Food

KEGG
Drug
bank

Jamendo

ChEBI

Geo
names

basedNear owl:sameAs

x-geneid
#Links: 251.3k

country, ethnicity, race

keggCompoundId

bcr_patient_barcode

Same instance
Life Sciences Cross Domain Large Data

bcr_patient_barcode

#Links: 1.7k

#Links: 4.1k

#Links: 21.7k

#Links: 1.3k

Figure 4: LargeRDFBench datasets connectivity

Veracity, Value, ...) [27, 26, 28]. Moreover, Linked
TCGA has a large number of links to Affymetrix,
which we thus added to the list of our datasets. The570

addition of these four datasets enabled us to include
real federated queries with large result set sizes
(minimum 80459, see Figure 3a) into the benchmark.

Figure 4 shows the topology of all 13 datasets in
LargeRDFBench. Other basic statistics like the total575

number of triples, the number of resources, predi-
cates and objects, as well as the number of classes
and the number of links can be found in Table 2.
Note that ChEBI has no link with any other bench-
mark dataset. However, its predicate ”title” and580

DrugBank’s predicate ”genericName” display the
same literal values. Similarly, the Linked TCGA-A
predicate ”drug name” and DrugBank’s ”generic-
Name” display the same values. Thus, they can be
used in federated SPARQL queries. Furthermore,585

each Linked TCGA patient (uniquely identified by
bcr patient barcode) expression data is distributed
across the three large data datasets, i.e., Linked
TCGA-A, Linked TCGA-E, and Linked TCGA-M
(further explained in 4.1.3 subsection Large Data).590

The datasets in LargeRDFBench belong to three
categories: Cross-domain, Life Sciences domain and
large data.

0

0.2

0.4

0.6

0.8

1

1.2

St
ru
ct
u
re
d
n
e
ss

FedBench FedBench-Mean LargeRDFBench LargeRDFBench-Mean

Figure 5: LargeRDFBench datasets structuredness (±0.26,
±0.27)

4.1.1. Cross-domain Datasets

This category comprises datasets which pertain595

to several domains including news, movies, music,
semantic web conferences and geography. These
datasets include 1) a subset from DBpedia7 compris-
ing infoboxes and the instance types, 2) the music
knowledge base called Jamendo8, 3) LinkedMDB9 , a600

knowledge base containing movie and actor informa-
tion, 4) GeoNames10 , which contains geographical
data about persons, locations, as well as organisa-

7http://DBpedia.org/
8http://dbtune.org/jamendo/
9http://linkedmdb.org/

10http://www.geonames.org/

10

http://DBpedia.org/
http://dbtune.org/jamendo/
http://linkedmdb.org/
http://www.geonames.org/

Table 2: LargeRDFBench datasets statistics. Structuredness is calculated according to [8] and is averaged in the last row.

Dataset #Triples #Subjects #Predicates #Objects #Classes #Links Structuredness
Linked TCGA-M 415,030,327 83,006,609 6 166,106,744 1 - 1
Linked TCGA-E 344,576,146 57,429,904 7 84,403,422 1 - 1
Linked TCGA-A 35,329,868 5,782,962 383 8,329,393 23 251.3k 0.99
ChEBI 4,772,706 50,477 28 772,138 1 - 0.340
DBpedia-Subset 42,849,609 9,495,865 1,063 13,620,028 248 65.8k 0.196
DrugBank 517,023 19,693 119 276,142 8 9.5k 0.726
Geo Names 107,950,085 7,479,714 26 35,799,392 1 118k 0.518
Jamendo 1,049,647 335,925 26 440,686 11 1.7k 0.961
KEGG 1,090,830 34,260 21 939,258 4 30k 0.919
LinkedMDB 6,147,996 694,400 222 2,052,959 53 63.1k 0.729
New York Times 335,198 21,666 36 191,538 2 31.7k 0.731
Semantic Web Dog Food 103,595 11,974 118 37,547 103 1.6k 0.426
Affymetrix 44,207,146 1,421,763 105 13,240,270 3 246.3k 0.506
Total/Average 1,003,960,176 165,785,212 2,160 326,209,517 459 818.7k 0.65

tions, 5) Semantic Web Dog Food11 which describes
Semantic Web conferences and publications, and 6)605

a knowledge base containing news from the New
York Times12. Figure 4 shows the links between
these data sources.

4.1.2. Life Sciences Domain

The life sciences domain contains datasets per-610

taining to human beings, healthcare and life sciences.
Different data sources were selected from the life
sciences domain dealing with chemical compounds,
genomes, gene expressions, reactions and drugs. Life
Sciences domain data sources include:615

1) Drugbank13, which is a knowledge base con-
taining information pertaining to drugs, their com-
position and their interactions with other drugs.
Drugbank is a resource for bioinformatics and chem-
informatics containing details regarding drugs, i.e.,620

chemical, pharmacological and pharmaceutical. It
also contains data with drug target information
i.e. sequence, structure, and pathway. At present
the original drugbank database contains 8261 drug
entries including Food and Drug Administration625

(FDA) approved small molecule drugs, FDA ap-
proved biotech (protein/peptide) drugs, nutraceu-
ticals and over 6000 experimental drugs. It also
contains 4338 non-redundant protein containing tar-
get, enzyme, transporter and carrier sequences.630

2) Kyoto Encyclopedia of Genes and Genomes
(KEGG)14 which contains further information about
chemical compounds and reactions with a focus

11http://data.semanticweb.org/
12http://www.nytimes.com/
13http://www.drugbank.ca/
14http://www.genome.jp/kegg/

on information relevant for geneticists. KEGG
database provides resources for understanding ab-635

stract level functions of any biological system. It
includes the cell, the organism and the ecosystem.
The information is collected from the molecular-level,
especially large-scale molecular datasets generated
by genome sequencing and other experimental tech-640

nologies.
3) Chemical Entities of Biological Interest

(ChEBI)15 knowledge base which describes the life
sciences domain from a chemical point of view.
ChEBI focuses on small chemical compounds in-645

cluding isotopically distinct atoms, molecules, ions,
ions pairs, radicals, radical ions, complex, conform-
ers, etc. These can either be collected from natural
sources or through synthetic products.

4) Affymetrix16 dataset that contains the probe-650

sets used in the Affymetrix microarrays.Affymetrix
microarrays provides high density oligo-nucleotide
gene expression arrays. Each gene on an Affymetrix
microarray is typically represented by a probeset
consisting of 11 different pairs of 25 oligo-nucleotide655

that represents the features of the transcribed region
of particular gene under consideration [29].

4.1.3. Large Data: Linked TCGA

Linked TCGA is the RDF version of Cancer
Genome Atlas17 (TCGA) presented in [26]. This660

knowledge base contains cancer patient data gen-
erated by the TCGA pilot project, started in 2005
by the National Cancer Institute (NCI) and the Na-
tional Human Genome Research Institute (NHGRI).

15https://www.ebi.ac.uk/chebi/
16http://www.affymetrix.com/
17http://cancergenome.nih.gov/

11

http://data.semanticweb.org/
http://www.nytimes.com/
http://www.drugbank.ca/
http://www.genome.jp/kegg/
https://www.ebi.ac.uk/chebi/
http://www.affymetrix.com/
http://cancergenome.nih.gov/

Currently, Linked TCGA comprises a total of 20.4665

billion triples18 from 9000 cancer patients and 27
different tumour types. For each cancer patient,
Linked TCGA contains expression results for the
DNA methylation, Expression Exon, Expression
Gene, miRNA, Copy Number Variance, Expression670

Protein, SNP, and the corresponding clinical data.
Given that we aimed to build a 1-billion-triple

dataset, we selected 306 patient data randomly to
reach the targeted 1 billion triples. The patients
distributed evenly across 3 different cancer types,675

i.e. Cervical (CESC), Lung squamous carcinoma
(LUSC) and Cutaneous melanoma (SKCM). The se-
lection of the patients was carried out by consulting
domain experts. This data is hosted in three TCGA
SPARQL endpoints with all DNA methylation data680

in the first endpoint, all Expression Exon data in
the second endpoint, and the remaining data in
the third endpoint. Consequently, we created three
different datasets, namely the Linked TCGA-M,
Linked TCGA-E, and Linked TCGA-A containing685

methylation, exon, and all remaining data, respec-
tively. Further statistics about these three datasets
can be found at the project homepage.

4.2. Benchmark Queries

LargeRDFBench comprises a total of 32 queries690

for SPARQL endpoint federation approaches. These
queries are divided into three different types: the
14 simple queries (namely S1-S14) are from Fed-
Bench (CD1-CD7 and LS1-LS7). The 10 complex
queries (namely C1-C10) and the 8 large data queries695

(dubbed L1-L8) were created by the authors with
the help of domain experts. All of the queries are
given in an Appendix at the end of the paper. Ta-
ble 3 summarizes the results presented in Table 1,
Figure 2, and Figure 3. In Table 3, we can see that700

the SPARQL 1.1 versions of the query sources (i.e.,
values inside the brackets of #RS) required to com-
pute the complete result set of the query is smaller
than the number of relevant sources. This is because
it is possible that a source is relevant for a triple705

pattern of the query but its results may be excluded
after performing the join with the results of another
triple pattern in the same query [15]. As such this
source only contributes to the intermediate results
and does not contribute to the final result set of710

the query. However, the number of relevant sources
is important since it has a direct impact on the

18http://tcga.deri.ie/

number of intermediate results [15]. The minimum
number of sources required to compute the complete
result set of the query is explicitly annotated at the715

SPARQL 1.1 version of the queries given in the ap-
pendix. The number of relevant sources against the
individual triple patterns of the query is given at
the aforementioned LargeRDFBench homepage.

4.2.1. Simple Queries720

In comparison to the other queries in the bench-
mark, the queries in this category comprise the
smallest number of triple patterns, which range from
2 to 7 (average #TP = 4.3, ref. Table 3). These
queries require the retrieval of data from 2 to 13725

data sources. The number of join vertices and the
mean join vertice degree for these queries are lower
(average #JV = 2.6, MJVD = 2.1, ref. Table 3).
Moreover, they only use a subset of the SPARQL
clauses as shown in Table 1(see FedBench row as all730

of the simple queries are from FedBench). Amongst
others, they do not use LIMIT, REGEX, DISTINCT

and ORDER BY clauses. Finally, we will see in the
evaluation section that the query execution time for
such queries is small (around 2 seconds for FedX).735

It is important to mention that we removed the
FILTER (?mass > ’5’) from the FedBench life sci-
ences query LS7 (S14 in LargeRDFBench) because
the KEGG drug mass is a string. Thus, using this op-
erator on KEGG would lead to semantics, different740

from that intended in the original query. Conse-
quently, the result set size changes from 114 to 1620
rows.

4.2.2. Complex Queries

The complex queries were defined to address the745

restrictions of simple queries with respect to the
number of triple patterns they use, the number of
join vertices, the mean join vertices degree, the
SPARQL clauses, and the small query execution
times. Consequently, queries in this category rely750

on at least 8 triple patterns. The number of join
vertices ranges from 3 to 6 (average #JV = 4.3, ref.
Table 3). The mean join vertices degree ranges from
2 to 6 (average MJVD = 2.93, ref. Table 3). In
addition, they were designed to use more SPARQL755

clauses, especially, DISTINCT, LIMIT, FILTER and
ORDER BY. Later, we will see in the evaluation that
the query execution time for complex queries exceeds
10 minutes.

12

http://tcga.deri.ie/

Table 3: LargeRDFBench query characteristics. (#TP = total number of triple patterns in a query, #RS = distinct number
of relevant source. The values inside brackets show the total number of distinct sources used in the SPARQL 1.1 version (using
SPARQL SERVICE clause) of each of the benchmark queries. the minimum number of distinct sources required to get the
complete result set, #Results = total number of results), #JV = total number join vertices, MJVD = mean join vertices
degree, MTPS = mean triple pattern selectivity, MBRTPS = Mean BGP-restricted triple pattern selectivity, MJRTPS =
mean join-restricted triple pattern selectivity, UN = UNION, OP = OPTIONAL, DI = DISTINCT, FI = FILTER, LI =
LIMIT, OB = ORDER BY, RE = Regex, NA = not applicable since there is no join node in the query, - = no SPARQL
clause used. Avg. = the average values across the individual queries categories, i.e., simple, complex, and large data.

Query Join Vertices #TP #RS #Results #JV MJVD MTPS MBRTPS MJRTPS Clauses

S1 1 Star 3 2(2) 90 1 2 0.333 0.66667 0.33333 UN
S2 1 Star,1 Path 3 2(2) 1 2 2 0.007 0.66671 0.33338 -
S3 1 Star,1 Hybrid 5 8(2) 2 2 3 0.008 0.00031 0.00015 -
S4 2 Star,2 Sink,1 Path 5 8(2) 1 5 2 0.019 0.20003 0.20003 -
S5 1 Star,2 Path 4 8(2) 2 3 2 0.006 0.00067 0.00064 -
S6 1 Star,2 Path 4 6(4) 11 3 2 0.019 0.25013 0.25001 -
S7 1 Star,2 Path 4 8(2) 1 3 2 0.020 0.00227 0.00227 -
S8 No Join 2 1(1) 1159 0 NA 0.001 1.00000 0.00000 UN
S9 1 Path 3 13(2) 333 1 2 0.333 0.37037 0.03704 UN
S10 1 Star,2 Path 5 8(2) 9054 3 2.33 0.016 0.55678 0.00011 -
S11 2 Star,1 Sink,1 Hybrid 7 2(2) 3 4 2.5 0.006 0.04800 0.04788 -
S12 2 Star,1 Path,1 Sink 6 5(3) 393 4 2.25 0.012 0.07633 0.00020 -
S13 3 Star 5 5(2) 28 3 2.33 0.014 0.11996 0.00428 -
S14 2 Star,1 Sink 5 3(2) 1620 3 2 0.012 0.48156 0.00026 OP
Avg. 4.3 5.7(2.1) 907 2.6 2.1 0.057 0.31713 0.08640
C1 2 Star,1 Path,1 Sink 8 5(2) 1000 4 2.5 0.010 0.25162 0.00023 DI, FI, OP, LI
C2 2 Star,1 Path,1 Sink 8 5(3) 4 4 2.25 0.009 0.25065 0.00016 OP, FI
C3 2 Star,1 Path,1 Hybrid 8 8(3) 9 4 2.25 0.020 0.12542 0.00006 DI, OP
C4 2 Star 12 8(3) 50 2 6 0.0124 0.05407 0.00061 DI, OP, LI
C5 2 Star,2 Path,1 Sink 8 13(2) 500 5 2.4 0.0186 0.44883 0.00002 FI, LI
C6 2 Star,1 Path,2 Sink 9 8(2) 148 5 2.8 0.022 0.00103 0.00007 OB
C7 3 Star,1 Path,1 Sink,1 Hybrid 9 5(2) 112 6 2.33 0.014 0.22688 0.11615 DI, OP
C8 2 Star,1 Path,1 Hybrid 11 13(2) 3067 4 3.25 0.012 0.23173 0.00106 DI, OP
C9 2 Star,2 Path 9 8(2) 100 4 2.75 0.011 0.58352 0.00028 OP, OB, LI
C10 2 Star,2 Path,1 Hybrid 10 5(3) 102 5 2.8 0.002 0.03891 0.00082 DI
Avg. 9.2 7.8(2.4) 509.2 4.3 2.93 0.013 0.22127 0.01195
L1 4 Path 6 3(2) 227192 4 2 0.192 0.48437 0.00001 UN
L2 1 Path,1 Hybrid 6 3(2) 152899 2 3.5 0.286 0.15652 0.00098 DI, FI
L3 2 Path,1 Hybrid 7 3(2) 257158 3 3 0.245 0.07255 0.07205 FI, OB
L4 2 Path,2 Hybrid 8 4(2) 397204 4 2.5 0.305 0.38605 0.00008 UN, FI, RE
L5 1 Star,1 Path,1 Sink,2 Hybrid 11 4(3) 190575 5 3 0.485 0.39364 0.00367 FI
L6 1 Star,1 Path,1 Sink,2 Hybrid 10 4(2) 282154 5 2.8 0.349 0.23553 0.00298 FI, DI
L7 2 Path,1 Hybrid 5 13(2) 80460 3 2.33 0.200 0.26498 0.00007 DI, FI
L8 2 Path,2 Hybrid 8 3(2) 306705 4 2.5 0.278 0.33376 0.00001 UN, FI
Avg. 7.62 4.6(2.1) 236793 3.75 2.70 0.293 0.29092 0.00998

4.2.3. Large Data Queries760

The large data queries were designed to test the
federation engines for real large data use cases, par-
ticularly in life sciences domain. These queries span
over large datasets (such as Linked TCGA-E, Linked
TCGA-M) and involve processing large intermediate765

result sets (usually in hundreds of thousands, see
mean triple pattern selectivities in Figure 3b) or
lead to large result sets (minimum 80459, see Figure
3a) and large number of endpoint requests (see Ta-
ble 9). Consequently, we will see in the evaluation770

that the query processing time for large data queries
exceeds one hour. In order to collect real queries
with these characteristics, we contacted different

domain experts and obtained a total of 8 large data
queries to be included in our benchmark.775

4.3. Performance Metrics

As discussed in Section 2, previous works [14, 15,
13, 17] suggest that the following six metrics are
important to evaluate the performance of federation
engines: (1) the total number of triple pattern-wise780

(TPW) sources selected during the source selection,
(2) the total number of SPARQL ASK requests sub-
mitted to perform (1), (3) the completeness (recall)
and correctness (precision) of the query result set
retrieved, (4) the average source selection time, (5)785

the average query execution time, (6) the number
of endpoint requests. In addition, we also show the

13

Table 4: SPARQL endpoints specification used in evaluation

Server CPU(GHz) RAM Hard Disk Server CPU(GHz) RAM Hard Disk
Linked TCGA-M 3.6, i7 32GB 2 TB Jamendo 2.53, i5 4 GB 300 GB
Linked TCGA-E 3.6, i7 32GB 2 TB KEGG 2.53, i5 4 GB 500 GB
Linked TCGA-A 2.8, i7 8GB 500 GB Linked MDB 2.53, i5 4 GB 300 GB
ChEBI 2.53, i5 4 GB 300 GB New York Times 2.53, i5 4 GB 300 GB
DBpedia-Subset 2.9, i7 8 GB 500 GB SW Dog Food 2.53, i5 4 GB 300 GB
DrugBank 2.53, i5 4 GB 300 GB Affymetrix 2.9, i7 8 GB 500 GB
Geo Names 2.9, i7 8 GB 450 GB

results of the data sources index/data summaries
generation time and index compression ratio (i.e.,
index to dataset ratio). However, they are not ap-790

plicable to index-free approaches such as FedX [17].
Previous works [13, 15] show that an overestimation
of triple pattern-wise sources selected can greatly
increase the overall query execution time. This is
because extra network traffic is generated and un-795

necessary intermediate results are retrieved, which
are excluded after performing all the joins between
query triple patterns. The time consumed by the
SPARQL ASK queries during the source selection is
directly added into the source selection time, which800

in turn is added into the overall query execution
time.

4.4. Benchmark Usage

One of the key requirements when designing any
benchmark is the ease of use in terms of data avail-805

ability, setting up the evaluation framework, and
generating results of the benchmark metrics. To this
end, our benchmark homepage contains portable
Virtuoso (version 7.10) SPARQL endpoints (both
Windows- and Linux-based) which can be started by810

using one click utilities19 provided with all SPARQL
endpoint downloads. In addition, we provide data
dumps of all the datasets used in our benchmark.
These data dumps can be uploaded into any other
RDF triple store such as Sesame and Fuseki. The815

total number of TPW sources selected during the
source selection as well as the source selection time
can only be computed if the source code of the under-
lying federation engine is available. However, some
of the federation engines, e.g., ANAPSID, automati-820

cally print the source selection time along with other
statistics (e.g., result size, query planning time etc.)
after the query execution is completed. We used
virtuoso SPARQL endpoints and enabled the http

19Details provided at Benchmark homepage

log caching, thus all of the endpoint requests were825

stored in the endpoints query log file. We calculated
the total number of endpoint requests by using a
simple java program which reads each endpoints
log file line by line and counts the total number of
lines (i.e., in all log files from 13 endpoints). Simi-830

larly, the total number of SPARQL ASK requests
can also be calculated in the same way from the
endpoints log file. We provide a Java utility20 to
measure the completeness and correctness of the re-
sult set in terms of precision, recall and F1 measure.835

This utility is generic and can be used for any other
benchmark.

5. Evaluation

In this section, we evaluate state-of-the-art
SPARQL query federation systems by using both840

SPARQL 1.0 and SPARQL 1.1 versions of Larg-
eRDFBench queries. We first describe our experi-
mental setup in detail. Then, we present our evalu-
ation results. All data used in this evaluation can
be found on the benchmark homepage.845

5.1. Experimental Setup

Each of the 13 Virtuoso SPARQL endpoints used
in our experiments was installed on a separate ma-
chine. The specification of each of the machines
is given in Table 4. To avoid server bottlenecks,850

we started the two largest endpoints (i.e., Linked
TCGA-E and Linked TCGA-M) in machines with
high processing capabilities. To minimise the net-
work latency we used a dedicated local network. We
conducted our experiments on local copies of Virtu-855

oso (version 7.1) SPARQL endpoints with number
of buffers 1360000, maximum dirty buffers 1000000,
number of server threads 20, result set maximum

20LargeRDFBench utility: https://goo.gl/ZmtWG2

14

https://goo.gl/ZmtWG2

rows 100,000,000,000 and maximum SPARQL end-
point query execution time of 6000,000,000 seconds.860

All experiments (i.e., the federation engines them-
selves) were run on a separate Linux machine with a
2.70GHz i7 processor, 8 GB RAM and 500 GB hard
disk. We used the default Java Virtual Machine
(JVM) initial memory allocation pool (Xms) size of865

1024MB and the maximum memory allocation pool
(Xmx) size of 4096MB. Each query was executed 10
times and results were averaged. The query timeout
was set to 20 min (1.2 × 106 ms) both for simple
and complex queries and 2.5 hours (9× 106 ms) for870

large data queries. Furthermore, the query runtime
results were statistically analyzed using Wilcoxon
Signed Rank Test (WSRT), a non-parametric sta-
tistical hypothesis test used when comparing two
related samples. We chose this test because it is875

parameter-free and, unlike a t-test, it does not as-
sume a particular error distribution in the data. For
all the significance tests, we set the p-value to 0.05.

None of the engines evaluated herein was able to
produce results for the large data queries. Moreover,880

all engines were only able to retrieve results for a
single query, i.e., L7. To be able to compare the
selected federation engines, we reran the large data
queries experiments on a more powerful clustered
server with 32 physical CPU cores of 2.10GHz each885

and a total RAM of 512GB. Each of the 13 Virtuoso
SPARQL endpoints used in our experiments was
started as a separate instance on the clustered server.
The federation engines were also run on the same
machine. We set the maximal amount of memory890

for each of the federation engines to 128GB.
We compared five SPARQL endpoint federation

engines (versions available as of October 2015)
– FedX [17], SPLENDID [20], ANAPSID [20],
FedX+HiBISCuS [15], SPLENDID+HiBISCuS [15]895

– on all of the 32 benchmark queries. Note that Hi-
BISCuS [15] is only a source selection approach and
FedX+HiBISCuS and SPLENDID+HiBISCuS are
the HiBISCuS extensions of the FedX and SPLEN-
DID query federation engines, respectively. To the900

best of our knowledge, the five systems we chose are
the most state-of-the-art SPARQL endpoint federa-
tion engines [15]. Of all the systems, only ANAPSID
and HiBISCuS perform join-aware Triple Pattern-
Wise Source Selection (TPWSS). The goal of the905

join-aware TPWSS is to select those data sources
that actually contribute to the final result set of the
query. This is because it is possible that a source
contributes to the triple pattern but its results may
be excluded after performing a join with the results910

of another triple pattern.

FedX [17] is an index-free SPARQL query feder-
ation system which completely relies on SPARQL
ASK queries and a cache (which store the most re-
cent ASK request) to perform TPWSS. This query915

is forwarded to all of the data sources and those
sources which pass the SPARQL ASK test are se-
lected. The result of each SPARQL ASK test is then
stored in cache to be used in future. Thus before
sending a SPARQL ASK request to a particular920

data source, a cache lookup is performed. A bind
(vectored evaluation in nested loop) join is used for
the integration of sub-queries results. We consider
two setups for FedX. We evaluated both FedX(cold)
and FedX(100%) setups of FedX. The former setup925

displays the characteristics of FedX with its cache
empty and the latter means that cache contains all
the information necessary for TPWSS. Thus in later
setup, no SPARQL ASK request is used for TPWSS.
Consequently, the former setup represents the worst930

case and the later setup represents the best case
scenario.

SPLENDID [20] is an index-assisted approach
which makes use of VoiD descriptions as index along
with SPARQL ASK queries to perform the TPWSS.935

A SPARQL ASK query is used when either predicate
is unbound (e.g., < s > ?p < o >) or any of the
subject (e.g., < s > < p > ?o) or object (e.g.,
?s < p > < o >) of the triple pattern is bound.
Both bind and hash joins are used for integrating940

the sub-queries result and a dynamic programming
strategy [30] is used to optimize the join order of
SPARQL basic graph patterns.

ANAPSID [31] is an index-assisted adaptive query
engine that adapts its query execution schedulers to945

the data availability and runtime status of SPARQL
endpoints. ANAPSID performs a heuristic-based
source selection presented in its extension [21]. The
Adaptive Group Join (based on the Symmetric Hash
Join and Xjoin operators) and Adaptive Dependent950

Join (adjoin) which extends the dependent join oper-
ator are used for integrating the sub-queries result.

HiBISCuS [15] is the index-assisted hyper graph
based triple pattern-wise source selection approach
for SPARQL endpoint federation systems. It intelli-955

gently makes use of the hypergraph representation of
SPARQL queries and URI’s authorities21 to perform
TPWSS. FedX+HiBISCuS, SPLENDID+HiBISCuS
are the HiBISCuS extensions of the FedX and

21URI syntax: http://tools.ietf.org/html/rfc3986

15

http://tools.ietf.org/html/rfc3986

Table 5: Comparison of index construction time, compression ratio, and support for index update. (NA = Not Applicable).

FedX SPLENDID ANAPSID HiBISCuS
Index Gen. Time(min) NA 190 6 92
Compression Ratio(%) NA 99.998 99.999 99.998
Index update? NA 7 7 3

SPLENDID, respectively. In both the extensions960

only the source selection is replaced with HiBISCuS.
The underlying query execution plan and join or-
der optimization remain the same. The evaluation
results show that the performance of both of the
original systems are improved with the HiBISCuS965

extension [15].

5.2. SPARQL 1.0 Experimental Results

5.2.1. Index Construction Time and Compression
Ratio

Table 5 shows a comparison of the index/data970

summaries construction time and the compression
ratio22 of the selected approaches. A high compres-
sion ratio is essential for fast index lookups during
source selection and query planning. FedX does not
rely on an index and makes use of a combination975

of SPARQL ASK queries and caching to perform
the whole of the source selection steps it requires
to answer a query. Therefore, these two metrics
are not applicable for FedX. As pointed out in [15],
ANAPSID only stores the set of distinct predicates980

corresponding to each data source. Therefore, its
index generation time and compression ratio are
better than that of HiBISCuS and SPLENDID on
our benchmark.

5.2.2. Efficiency of Source Selection985

We define efficient source selection in terms of:
(1) the total number of triple pattern-wise sources
selected (#T), (2) the total number of SPARQL
ASK requests (#AR) used to obtain (1), and (3)
the source selection time (SST). Table 6 shows the990

results of these three metrics for the selected ap-
proaches. The optimal number of sources were
calculated by looking manually into the interme-
diate results for relevant sources and selecting those
sources which contribute to the final result set.995

Overall, ANAPSID is the most efficient approach
in terms of total TPW sources selected, HiBIS-
CuS is the most efficient in terms of total number

22Compression ratio = 100*(1 - index size/total data dump
size)

of SPARQL ASK requests used, and FedX (100%
cached) is the fastest in terms of source selection1000

time (see Table 6). It is important to note that
FedX(100% cached) means that the complete source
selection is performed by using only cache, i.e., no
SPARQL ASK request is used. This the best-case
scenario for FedX and very rare in practical cases.1005

Still, FedX (100% cached) clearly overestimates the
set of capable sources by more than half to the op-
timal (474 in FedX vs. 229 optimal). FedX (100%
cached) is clearly outperformed by ANAPSID (255
sources selected in total) and HiBISCuS (302 sources1010

selected in total). FedX (100% cached)’s poorer
performance is due to FedX only performing TP-
WSS while both HiBISCuS and ANAPSID perform
join-aware TPWSS. As mentioned before, such over-
estimation of sources can be very costly because of1015

the extra network traffic and irrelevant intermediate
results retrieval. The effect of such overestimation is
consequently even more critical while dealing with
large data queries. HiBISCuS is better than ANAP-
SID in terms of total TPW sources selected both for1020

simple (78 for HiBISCuS and 80 for ANAPSID) and
complex (106 for HiBISCuS and 111 for ANAPSID)
queries. For large data queries (118 for HiBISCuS
and 64 for ANAPSID), HiBISCuS is not able to
skip many sources. This is because the approach1025

makes use of the different URI authorities to per-
form source pruning [15]. However, most of the large
data queries come from Linked TCGA with single
URI authority (i.e., tcga.deri.ie). Hence, HiBIS-
CuS tends to overestimate the number of sources in1030

this case. On the other hand, ANAPSID makes use
of SPARQL ASK requests combined with SSGM
(Star Shaped Group Multiple Endpoints) [21] to
skip a large number of sources. However, SPARQL
ASK queries are expensive compared to local index1035

lookups, as performed in HiBISCuS.

5.2.3. Completeness and Correctness of Result Sets

Two systems can only be compared to each other
if they provide the same results for a given query exe-
cution. Table 7 shows the federation engines and the1040

corresponding LargeRDFBench queries for which

16

tcga.deri.ie

Table 6: Comparison of the source selection in terms of total triple pattern-wise sources selected #T, total number of SPARQL
ASK requests #AR, and source selection time SST in msec. SST* represents the source selection time for FedX(100% cached
i.e. #A =0 for all queries). For ANAPSID, SST represents the query decomposition time. (T/A = Total/Avg., where Total
is for #T, #AR, and Avg. is SST, SST*). Where Total shows the sum across the individual queries category (i.e., simple,
complex, and large data). Net Total shows the overall sum of the values across all 32 queries. The same explanation goes for
the average and net average values.

FedX SPLENDID ANAPSID HiBISCuS Optimal
Query #T #AR SST SST* #T #AR SST #T #AR SST #T #AR SST #T
S1 15 39 238 5 15 39 622 3 23 227 4 26 322 3
S2 3 39 229 6 3 26 380 3 1 46 3 13 201 3
S3 12 65 275 5 12 26 358 5 2 70 5 0 52 5
S4 19 65 270 7 19 13 340 5 3 74 5 0 130 5
S5 11 52 268 8 11 13 330 4 1 65 4 0 90 4
S6 9 52 245 5 9 13 303 9 10 197 8 0 96 8
S7 13 52 248 6 13 13 354 6 5 273 6 0 149 6
S8 1 26 223 5 1 0 189 1 0 51 1 0 9 1
S9 15 39 240 6 15 39 592 15 23 356 9 26 449 3
S10 12 65 296 5 12 13 334 5 16 262 5 0 250 5
S11 7 91 300 7 7 26 299 7 0 333 7 0 12 7
S12 10 78 260 5 10 13 355 7 4 105 8 0 115 6
S13 9 65 262 3 9 26 262 5 24 180 7 0 132 5
S14 6 65 268 5 6 13 252 5 2 81 6 0 94 7
T/A 142 793 258 5 142 273 355 80 114 165 78 65 150 67
C1 11 104 308 7 11 13 291 8 1 72 9 0 120 8
C2 11 104 307 6 11 13 347 8 2 180 9 0 23 8
C3 21 104 318 5 21 26 350 10 33 549 11 0 230 10
C4 28 156 360 7 28 0 230 28 32 451 18 0 45 18
C5 33 104 315 6 33 0 199 8 3 156 10 0 56 8
C6 24 117 430 5 24 0 245 9 3 90 9 0 450 9
C7 17 117 436 7 17 26 422 9 5 380 9 0 168 9
C8 25 143 402 4 25 13 300 11 2 308 11 0 200 11
C9 16 117 400 6 16 26 480 9 16 185 9 0 180 9
C10 13 130 350 8 13 0 240 11 6 160 11 0 150 11
T/A 199 1196 363 6 199 117 310 111 103 253 106 0 162 101
L1 14 78 282 5 14 52 720 6 10 260 14 0 124 6
L2 10 78 279 7 10 13 230 6 5 142 10 0 94 6
L3 10 91 314 9 10 26 314 7 5 146 11 0 99 7
L4 18 104 321 7 18 0 198 8 8 338 16 0 80 8
L5 21 143 400 5 21 26 277 12 31 10255 20 0 130 11
L6 20 130 419 4 20 26 298 10 52 13173 18 0 160 10
L7 20 65 320 6 20 13 240 6 7 1822 9 0 270 5
L8 20 104 366 7 20 52 700 9 17 404 20 0 170 8
T/A 133 793 337 6 133 208 372 64 135 3317 118 0 140 61
Net T/A 474 2782 311 6 474 598 345 255 352 980 302 65 151 229

complete and correct results were not retrieved by at
least one of the systems. It is important to note that
the correct results for all benchmark queries were
obtained by loading all the data sources into a single1045

virtuoso triple store and executing the query (a no
more federated query) over it. We have not included
L8 since every system either timed out or resulted
in runtime error, hence the results completeness
and correctness cannot be determined in this case.1050

The precision, recall and F1 measures are calculated

using the LargeRDFBench utility provided at the
aforementioned project home page. Interestingly,
none of the systems is able to provide complete and
correct results. The incomplete results generated1055

by federation systems can be due to a number of
reasons, e.g., their join implementation, the type of
network [14], the use of an outdated index or cache
or even endpoint restrictions on the maximum re-
sult set sizes. However, in our evaluation we always1060

used an up-to-date index and cache, there was no

17

Table 7: Result set completeness and correctness: Systems with incomplete precision and recall. The values inside brackets
show the LargeRDFBench query version, i.e.,SPARQL 1.1. For the rest of the LargeRDFBench queries, all systems give correct
and complete results, hence are not shown in the table. (RE = Runtime erro, TO = Time out)

System FedX SPLENDID ANAPSID FedX+HiBISCuS SPLENDID+HiBISCuS
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

C7 0.25 0.19 0.22 1 1 1 1 1 1 0.25 0.19 0.22 1 1 1
S14 (v1.1) 1 0.65 0.79 1 1 1 1 1 1 1 0.65 0.79 1 1 1
C6 (v1.1) 1 0.98 0.99 1 1 1 1 1 1 1 0.98 0.99 1 1 1
L1 TO TO TO 1 0.03 0.06 1 0.16 0.28 TO TO TO 1 0.03 0.06
L2 0 0 0 TO TO TO TO TO TO 0 0 0 1 0.02 0.04
L3 0 0 0 TO TO TO TO TO TO 0 0 0 1 1 1
L4 TO TO TO 0 0 0 0 0 0 1 0.48 0.65 0 0 0
L5 TO TO TO RE RE RE TO TO TO 0 0 0 RE RE RE
L6 TO TO TO RE RE RE TO TO TO 0 0 0 RE RE RE

restriction on SPARQL endpoints maximum result
set sizes, and a dedicated local network. Thus, the
sole reason (to the best of our knowledge) for the sys-
tems at hand not providing complete/correct result1065

is the existence of flaws in the implementation of
joins or various SPARQL constructs such as FILTER,
REGEX, etc. For example (as discussed further in
the next section), FedX and its HiBISCuS extension
possibly give zero results for L2, L3, and L5 due to1070

a flaw in the FILTER implementation.

5.2.4. Query Execution Time

The query execution time has often been used as
the key metric to compare federation engines. Figure
6, Figure 7, and Table 8 show the query execution1075

time of the selected approaches for simple, complex,
and large data queries, respectively. The negligibly
small standard deviation error bars (shown on top
of each bar) indicate that the data points tend to be
very close to the mean, thus suggest a high consis-1080

tency of the query runtimes in most engines. Note
that we considered each time-out to be equal to a
runtime of 20min while computing the average run-
times presented in Figure 6 and Figure 7. The query
execution time was calculated once all the results1085

were retrieved from the result set iterator. Overall,
our results are rather surprising as no system is best
over all query types. FedX+HiBISCuS and FedX
clearly outperform the remaining systems on simple
queries (see Figure 6). In particular, FedX and its1090

extension were better than SPLENDID+HiBISCuS
in 12/14 queries (11/14 significant improvements on
WSRT). On the other hand, SPLENDID+HiBISCuS
was better than ANAPSID in 8/14 queries (5/8 sig-
nificant improvements on WSRT), which in turn1095

was better than SPLENDID in 10/14 queries (9/10
significant improvements on WSRT).

SPLENDID+HiBISCuS performed better than
SPLENDID on complex queries and was followed

by ANAPSID, FedX+HiBISCuS and FedX. ANAP-1100

SID is better than SPLENDID+HiBISCuS in
4/7 comparable queries, i.e., on those queries
for which complete and correct results are re-
trieved by both systems. Note that these im-
provements were all significant according to the1105

WSRT. SPLENDID+HiBISCuS is better than FedX
and FedX+HiBISCuS in 5/7 comparable queries
(all improvements significant according to WSRT),
which is better than SPLENDID in 5/7 comparable
queries, with all improvements also being significant1110

(WSRT). We can see that the ranking obtained for
complex queries is close to being the reverse of the
ranking achieved on simple queries. For example,
FedX and its HiBISCuS extension ranked last for
complex queries and first in the simple queries. Sim-1115

ilarly, SPLENDID ranked last for simple queries
and second for complex queries. The results clearly
suggest that simple queries benchmarks alone are
not sufficient to evaluate the performance of the
federation engines. Our results also suggest that1120

smaller source selection time is a key feature of sys-
tems which perform well on simple queries as they
have smaller execution time. For example, one of
the reasons for SPLENDID’s poor performance on
simple queries is the extra time spent during the1125

source selection (e.g., 5 ms for FedX vs. 355 ms for
SPLENDID). This difference of 350 ms is of utmost
importance for simple queries given that their exe-
cution times are in milliseconds. Both SPLENDID
and ANAPSID’s performance can be improved by1130

using a source selection cache as used by FedX.

The most important finding for large data queries
is that no system can be regarded as superior be-
cause none can produce complete results for a ma-
jority of the queries. This shows that the current1135

implementation of query planning strategies (i.e.,
bushy trees in ANAPSID, left-deep trees in FedX,
and dynamic programming [30] in SPLENDID) and

18

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 Avg

T
im

e
 -

Lo
g

Sc
al

e
 (

m
se

c)

FedX(cold) FedX(100% cached) SPLENDID ANAPSID FedX+HiBISCuS SPLENDID+HiBISCuS

Figure 6: Query execution time for simple category queries.

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Avg

Ti
m

e
 -

Lo
g

Sc
al

e
(m

se
c)

FedX(cold) FedX(100% cached) SPLENDID ANAPSID FedX+HiBISCuS SPLENDID+HiBISCuS

R
u

n
ti

m
e

e
rr

o
r

R
u

n
ti

m
e

e
rr

o
r

R
u

n
ti

m
e

e
rr

o
r

R
u

n
ti

m
e

 e
rr

o
r R
u

n
ti

m
e

 e
rr

o
r

R
u

n
ti

m
e

 e
rr

o
r

Ti
m

e
 o

u
t

R
u

n
ti

m
e

 e
rr

o
r

R
u

n
ti

m
e

 e
rr

o
r

Ti
m

e
 o

u
t

Ti
m

e
 o

u
t

Ti
m

e
 o

u
t

Ti
m

e
 o

u
t Ti

m
e

 o
u

t

Ti
m

e
 o

u
t

Ti
m

e
 o

u
t

R
u

n
ti

m
e

e
rr

o
r

Figure 7: Query execution time for complex category queries.

join techniques (i.e., adaptive group and dependent
join in ANAPSID, bind and nested loop in FedX,1140

and bind, hash in SPLENDID) in the selected sys-
tems is not mature enough to deal with large data.
In addition, we have found that queries terminating
within the timeout limit and returning zero results
might possibly be caused by a flaw in the FILTER im-1145

plementation. For example, FedX and its HiBISCuS
extension give zero results for queries L2, L3, and
L5 and send a single endpoint request (ref., 9) for
each of these queries. All of these queries contain a
FILTER clause. However, we found that FedX and its1150

HiBISCuS extension are able to retrieve results by
removing the FILTER clause and setting the LIMIT=1
in these queries. We also noticed that for queries
with incomplete results (e.g, L1, L4, L8 etc.), FedX
and its HiBISCuS extension send a large number of1155

endpoint requests and quickly get some initial re-
sults. After that the engines stop sending endpoint
requests until the timeout limit is reached. This
may be due to some memory leak or possible dead-
lock in the query execution portion of FedX. Both1160

SPLENDID and SPLENDID+HiBISCuS are able
to give complete results for 2/8 large data queries,
the highest in comparison to other systems. The
query L4 is executed by ANAPSID, SPLENDID,
SPLENDID+HiBISCuS within the timeout limit1165

with zero results. In Table 9 we see that ANAPSID
sends a total of 11290 requests, SPLENDID sends
16321, and SPLENDID+HiBISCuS send 16220 re-
quests. However, none of these systems is able to
find a match for the projection variables. Again this1170

may be because of the possible flaw in FILTER or
REGEX (both of them are used in L4) implementa-

19

Table 8: Runtimes (in ms) on large data queries with all Virtuoso endpoints. The values inside the brackets show the percentage
of the actual query results obtained.(TO = Time out after 2.5 hour, RE = runtime error).

Qr. FedX (cold) FedX (warm) SPLENDID ANAPSID FedX+HiBISCuS SPLENDID+HiBISCuS
L1 TO (7.2 %) TO (7.2 %) 123735 (2.73 %) 19672 (15.76 %) TO (7.2 %) 123700 (2.73 %)
L2 35 (0 %) 35 (0 %) 45473 (1.8 %) TO (0 %) 76 (0 %) 45479 (1.8 %)
L3 27 (0 %) 27 (0 %) 4877696 (100 %) TO (0 %) 47 (0 %) 4877991 (100 %)
L4 TO (0.08 %) TO (0.08 %) 7535531 (0 %) 8775598 (0 %) 62595 (48.34 %) 7535200 (0 %)
L5 TO (0 %) TO (0 %) RE (0 %) TO (0 %) TO (0 %) RE (0 %)
L6 TO (0 %) TO (0 %) RE (0 %) TO (0 %) 6127090 (0 %) RE (0 %)
L7 122633 (100 %) 122500 (100 %) 114456 (100 %) 105447 (100 %) 119449 (100 %) 114400 (100 %)
L8 TO (0.01 %) TO (0.01 %) TO (0.05 %) TO (0.05 %) TO (0.01 %) TO (0.05 %)

tions. Note for the same query FedX+HiBISCuS
sends 15721 requests to get 48.34% results. The
runtime errors thrown by SPLENDID and its Hi-1175

BISCuS extension for queries L5 and L6 are given
in the project website.

While running large data queries, we found that
Virtuoso imposes a limit23 of maximally 220 =
1,048,576 on the maximum number of rows returned1180

as HTTP response. This means that a federation
engine based on Virtuoso may end up returning in-
complete results if it results for a sub-query with a
result set size larger than 1,048,576 rows. To ensure
that our results were not tainted by this technical1185

limitation of Virtuoso, we have analyzed all the end-
point requests (given in Table 9) sent by each of
the federation engines for each of the LargeRDF-
Bench queries. Our study showed that SPLENDID
sends at least one endpoint request with result size1190

greater than 1,048,576 rows. The rest of the feder-
ation engines do not send endpoint requests with
result size greater than this limit. Given that the
endpoints requests with answer set sizes beyond 220

rows were sent exclusively to the 3 Linked TCGA1195

(i.e. Linked TCGA-A, Linked TCGA-E, Linked
TCGA-E) datasets, we reran our benchmarking ex-
periments with all federation engines on large data
queries (i.e., L1-L8) after replacing the Virtuoso
servers for these 3 datasets with FUSEKI24 servers.1200

Note that the FUSEKI triple store does not have
such limit on the maximum number of results re-
turned in response to a query. In this series of
experiments, SPLENDID times out with a recall of
0 (i.e., no results generated) for the queries L1, L21205

and L4. The other federation engines return results
comparable to those presented in Table 8.

23This Virtuoso problem is now solved. See https://

github.com/openlink/virtuoso-opensource/issues/700
24FUSEKI: https://jena.apache.org/documentation/

serving_data/

In a nutshell, our results clearly suggest that
benchmarks with only simple queries having small
number of result sets are not sufficient to make a1210

fair judgment of the performance of the SPARQL
query federation engines. The performance of these
systems is greatly affected once the queries go from
small to complex and large data. Furthermore, the
current state-of-the-art SPARQL query federation1215

systems are not yet ready to deal with large data
queries pertaining to real large data use cases.

5.2.5. Number of Endpoint Requests

Table 9 shows the number of endpoint requests
submitted by the federation engines during the1220

query execution. Overall, ANAPSID clearly sub-
mits fewer requests than the other engines. For
simple queries, ANAPSID sends less requests than
FedX+HiBISCuS in 8/14 queries, FedX+HiBISCuS
is better (in terms of submitting less requests)1225

than FedX in 10/14 queries, FedX is better than
SPLENDID+HiBISCuS in 6/11 comparable queries
(3 are tied), and SPLENDID+HiBISCuS is better
than SPLENDID in 13/14 queries. For complex
queries, ANAPSID sends less queries than SPLEN-1230

DID+HiBISCuS in 4/5 comparable queries, SPLEN-
DID+HiBISCuS is better than FedX+HiBISCuS in
3/6 comparable queries, FedX+HiBISCuS is better
than FedX in 5/7 comparable queries, and FedX is
better than SPLENDID in 5/6 comparable queries.1235

For large data queries it is hard to compare the feder-
ation engines since we were not able to get complete
results for the majority of the queries. However,
ANAPSID clearly sends fewer requests than the
other federation engines.1240

In summary, we made the following key observa-
tions:

• A smaller number of endpoint requests
does not guarantee better query runtime
performance: For example, although ANAP-1245

SID is able to send the smallest number of

20

https://github.com/openlink/virtuoso-opensource/issues/700
https://github.com/openlink/virtuoso-opensource/issues/700
https://jena.apache.org/documentation/serving_data/
https://jena.apache.org/documentation/serving_data/

endpoint requests, it ranks fourth for simple
queries and third for complex queries in terms
of its query runtime performance. Similarly,
the best query runtime engines (i.e., FedX and1250

its extension for simple queries and SPLEN-
DID+HiBISCuS for complex queries) do not
send the smallest number of endpoint requests.
A careful study of the requests submitted by
ANAPSID shows that they are more complex1255

than those submitted by other systems. Conse-
quently, they require more time to be executed
by the SPARQL endpoints. Thus, it is also
important to consider the complexity of the
requests while generating the optimized query1260

execution plans. For example, a request of the
type <?s ?p ?o> is more complex than the re-
quest of type <s1 p1 ?o>. This also means
that the number of endpoint requests is only
a good performance metric if the complexity1265

of the endpoint requests is exactly the same or
somehow comparable to each other‘s.

• The smaller number of triple pattern-
wise sources selected generally leads
to a smaller number of endpoint re-1270

quests. However, this may not always
be true: From Table 6 we can see that both
FedX+HiBISCuS and SPLENDID+HiBISCuS
select fewer numbers of sources in compari-
son to FedX and SPLENDID. Consequently,1275

in Table 9, we see that these extensions lead
to fewer number of endpoint requests in com-
parison to the original engines. From Table
6, we can see HiBISCuS selects fewer triple
pattern-wise selected sources in 24/25 queries1280

compared to both FedX and SPLENDID. Note
we count a total of 25 queries instead of the
total 32 queries because for 7 queries HiBIS-
CuS, FedX, and SPLENDID select precisely
the same number of sources. From Table 9,1285

we can see FedX+HiBISCuS submits fewer
requests in 16/19 queries (only considering
those queries for which we got complete re-
sults) in comparison to FedX. There are 4 (S2,
S8, C2, C3) queries for which both FedX and1290

FedX+HiBISCuS submit the same number of
endpoint requests. Finally, there are 3 queries
(S7, S10, C6) for which FedX+HiBISCuS se-
lects fewer sources, yet submits more endpoint
requests than FedX. Similarly, from Table 9,1295

we can see SPLENDID+HiBISCuS submits
fewer requests in 20/22 queries (only consid-

ering those queries for which we got complete
results) in comparison to FedX. For query
L3, both SPLENDID+HiBISCuS and SPLEN-1300

DID submit the same number of requests. Fi-
nally, there are 2 queries (S10, L7) for which
FedX+HiBISCuS selects fewer sources, yet sub-
mits more endpoint requests than SPLENDID.
This is because the number of endpoint requests1305

depend upon the query execution plan. Note,
as we already discussed, a smaller number of
endpoint requests does not guarantee better
query runtime performance.

5.3. SPARQL 1.1 Experimental Results1310

As per current implementations (October 2015),
only ANAPSID and FedX support SPARQL 1.1
queries. Thus, they are the only frameworks we
compared on the simple and complex SPARQL1.1
queries. For large data queries, the results remained1315

comparable to those presented before. Note that our
SPARQL 1.1 version of the queries makes use of the
SPARQL SERVICE clause, which means the TPWSS
is already performed. Furthermore, it is optimally
chosen by manually looking at the intermediate1320

results from all the data sources for a given query.
Thus, the results presented in Figure 8 show pure
query execution performance without the TPWSS.

For simple category queries, ANAPSID is bet-
ter than FedX in 8/14 queries (all significant im-1325

provements on WSRT) in contrast to the results
on SPARQL1.0 queries. A deeper look into the
results shows the reason for ANAPSID’s poor per-
formance on SPARQL 1.0 simple queries was due
to the time consumed by the source selection. On1330

average, FedX (100% cached) spent only 6ms for
the source selection. On the other hand, ANAPSID
spent 165ms on average. For 4/14 queries, ANAP-
SID’s source selection time was greater than the
rest of the query execution time (excluding source1335

selection). This shows that efficient TPWSS and the
corresponding source selection time is of significant
importance while dealing with simple queries. In the
simple queries category, FedX overestimates more
than half (142 FedX vs. 67 optimal ref. Table 6)1340

of the sources on average. Thus, by using a perfect
TPWSS (i.e., in SPARQL 1.1 version), FedX’s per-
formance is improved by 54%. This further shows
that the total triple pattern-wise sources selected is
one of the key performance metrics missing in state-1345

of-the-art SPARQL query federation benchmarks.
Even though ANAPSID does not substantially over-
estimate the relevant sources (i.e., 80 ANAPSID vs.

21

Table 9: Comparison of the average (over 5 runs) number of endpoint requests submitted during the query execution. The case
of incomplete results, values inside brackets show the percentage of the actual query results obtained. Total shows the sum
of the endpoint requests across the individual queries category (i.e., simple, complex, and large data). Net Total shows the
overall (across all 32 queries) number of endpoint requests submitted by the different systems. (TO = Time out after 20 min
for complex queries and 2.5 hours for large data queries, ZRE = zero results with runtime error, ZRT = zero results after the
timeout limit)

Query FedX SPLENDID ANAPSID FedX+HiBISCuS SPLENDID+HiBISCuS
S1 15 46 25 4 4
S2 2 12 3 2 2
S3 34 23 4 10 11
S4 59 15 5 3 3
S5 27 18 3 6 7
S6 276 3694 19 186 2458
S7 341 495 759 2881 482
S8 1 2 1 1 1
S9 53 142 38 29 65
S10 3527 4361 452 4335 71020
S11 3 10 6 2 3
S12 639 7442 400 458 6539
S13 50909 380 21 50896 315
S14 1961 6509 233 1960 6503
Total 57847 23149 1969 60773 87413
C1 1991 5235 26 1191 3147
C2 549 6649 266 (ZRE) 549 5222
C3 6697 13854 1350 (ZRT) 6697 3299
C4 120892 78 (ZRE) 454 370 0 (ZRE)
C5 19450 (ZRT) 311578 (2.2%) 0 (ZRE) 3568 (ZRT) 500
C6 12386 20 274 15738 2
C7 572 (22 %) 761 67 78 (22 %) 78
C8 1290 5871 108 613 609
C9 2487 (ZRT) 5392 (ZRE) 581 183 (ZRT) 37211 (ZRE)
C10 953 984 278 892 901
Total 167267 350422 3404 29879 50969
L1 2320 (7.2 %) 16 (2.73 %) 1947 (15.76 %) 2320 (7.2 %) 16 (2.73 %)
L2 1 (0 %) 80 (1.8 %) 1609 (ZRT) 1 (0 %) 80 (1.80 %)
L3 1 (0 %) 2734572 5553 (ZRT) 1 (0 %) 2734572
L4 3967 (0.08 %) 16321 (0 %) 11290 (0 %) 15721 (48.34 %) 16220 (0 %)
L5 1 (0 %) 28342 (ZRE) 3840 (ZRT) 1 (0 %) 28212 (ZRE)
L6 3830809 (ZRT) 61810 (ZRE) 1707 (ZRT) 3414400 (0 %) 61419 (ZRE)
L7 74387 867628 267 23381 1341384
L8 206859 (0.01 %) 2423783 (0.05 %) 17302 (0.05 %) 206859 (0.01 %) 2423783 (0.05 %)
Total 4118345 6132552 43515 3662684 6605686
Net Total 4343459 6506123 48888 3753336 6744068

22

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 Avg C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Avg

T
im

e
 -

Lo
g

Sc
al

e
 (

m
se

c)

FedX(100% cached) ANAPSID

R
u

n
ti

m
e

e
rr

o
r

Ti
m

e
 o

u
t

Ti
m

e
 o

u
t

R
u

n
ti

m
e

e
rr

o
r

Ti
m

e
 o

u
t

Ti
m

e
o

u
t

Figure 8: Query execution time for the simple and complex SPARQL 1.1 category queries of LargeRDFBench.

67 optimal), its performance is improved by 94% on
SPARQL 1.1 versions of simple queries. The rea-1350

son for this is the poor query decomposition plan25

generated for the SPARQL 1.0 version of queries
S6 (308514 ms vs. 1620 ms) and S7 (298954 ms
vs. 2157 ms). For example, by looking at the query
decomposition plan of the SPARQL 1.0 version of1355

the query S6, ANAPSID is not able able to group
more than one triple pattern into a single SERVICE

clause. This means that no join is migrated to the
endpoints and the complete results of the individual
triple patterns need to be integrated by performing1360

local joins. The total number of SERVICES used in
the query decomposition plan is 9. On the other
hand, for the SPARQL 1.1 version of the same query,
ANAPSID is able to group more than one triple pat-
tern into a single SERVICE clause, thus more joins1365

are migrated into the endpoints. The number of
SERVICES used in the query decomposition plan is
reduced from 9 to 4. The same explanation goes for
S7.

For complex queries the ranking is reversed and1370

FedX is better than ANAPSID in 6/8 comparable
queries (all significant improvements on WSRT).
This result is expected because FedX overestimated
more sources than ANAPSID (199 FedX vs. 111
ANAPSID ref. Table 6). Thus, an optimal TPWSS1375

(as in SPARQL 1.1 version of LargeRDFBench) pro-
vides more benefits to FedX. Through optimal source
selection, FedX’s performance is improved by 28.5%
while ANAPSID’s performance is only improved by
0.8%.1380

25Decomposed plans given at: http://goo.gl/AUa0uS

In general, the results above clearly suggest that
FedX’s performance can be improved significantly
by using smart source selection such as join-aware
triple pattern-wise source selections as implemented
by HiBISCuS and ANAPSID. Furthermore, the met-1385

rics total triple pattern-wise sources selected and the
corresponding source selection time, which were pre-
viously ignored, have a significant impact on overall
query performance and provide tool developers more
fine-grained insights pertaining to their frameworks.1390

5.3.1. Effect of SPARQL Features on Runtime Per-
formance

As mentioned before, previous works [1, 16]
pointed out that the SPARQL benchmark should
consider the following query characteristics : number1395

of triple patterns, number of join vertices, mean join
vertex degree, number of sources span, query result
set sizes, mean triple pattern selectivities, BGP-
restricted triple pattern selectivity, join-restricted
triple pattern selectivity, join vertex types (‘star’,1400

‘path’, ‘hybrid’, ‘sink’) etc. In this section, we want
to measure the impact of these features on the query
runtime performance of the selected engines. To
this end, we calculated the Spearman’s correlation
of the said query features with the query runtime as1405

shown in Table 10. We chose Spearman correlation
because it is free of assumptions pertaining to the
type of correlation and can hence detect non-linear
correlations (in contrast to the Pearson correlation
for example, which is designed to detect linear de-1410

pendencies). We can see that BGP-restricted and
join-restricted triple pattern selectivities have a neg-
ative correlation with the query execution time, i.e.,

23

http://goo.gl/AUa0uS

Table 10: Spearman’s rank correlation coefficient values to show the correlation of the query execution time and the SPARQL
query features. *Results are significant at 1% level (i.e., p<0.01), **Results are significant at 5% level (i.e., p<0.05), ***Results
are significant at 10% level (i.e., p<0.10). (MJVD = Mean Join Vertex Degree, MTPS = Mean Triple Pattern
Selectivity, MBRTPS = Mean BGP-restricted Triple Pattern Selectivity, MJRTPS = Mean Join-restricted
Triple Pattern Selectivity)

Query Feature FedX SPLENDID ANAPSID FedX+HiBISCuS SPLENDID+HiBISCuS
#Triple Patterns 0.654* 0.536* 0.452** 0.620* 0.492*
#Sources Span 0.233 0.232 0.244 0.019 0.290***
#Results 0.582* 0.553* 0.084 0.534* 0.475**
#Join Vertices 0.275*** 0.288*** 0.214 0.301*** 0.283***
MJVD 0.499* 0.210 0.225 0.381** 0.182
MTPS 0.261 0.304*** 0.198 0.237 0.262
MBRTPS -0.064 -0.021 -0.190 -0.014 -0.041
MJRTPS -0.508* -0.334*** -0.223 -0.472** -0.441**

the lower the value of these two query features the
higher the query execution time. However, the join-1415

restricted triple pattern selectivity significantly af-
fects the query runtime compared to BGP-restricted
triple pattern selectivity. Similarly, we can see the
remaining query features have a positive correlation
with query runtime, suggesting all of these features1420

have a direct impact on the query runtime, i.e., the
higher the value of the query feature the higher the
query execution time. We can see that the number of
triple patterns in a query has the highest impact on
the query runtime (i.e., *the impact is significant at1425

1% level for the majority of the federation engines).
It is followed by the result size, join-restricted triple
pattern selectivity, the number of join vertices, the
mean join vertices degree, the mean triple pattern
selectivity, the number of sources span, and the1430

BGP-restricted triple pattern selectivity. We can
also see these query features do not significantly af-
fect the runtime of the ANAPSID engine, suggesting
that the engine may perform well in more complex
queries. Our evaluation results show that the query1435

runtime performance of ANAPSID was improved
in complex queries of our benchmark. Conversely,
FedX is mostly affected by these features. As seen
in our evaluation, its performance was decreased in
complex queries.1440

6. Conclusion

In this paper we presented LargeRDFBench, the
first billion-triple benchmark for federated SPARQL
query engines based on real data and real queries.
We presented the three different types of queries1445

contained in the benchmark and compared state-of-
the-art systems against these queries. Our results

suggest that overall join-aware TPWSS (as imple-
mented by HiBISCuS and ANAPSID) is the superior
paradigm when performing source selection. Our1450

evaluation clearly indicates that benchmarks with
only simple queries are not sufficient to make a
fair judgment of the performance of the SPARQL
query federation engines. In addition, while current
systems can deal with simple and complex queries,1455

they are currently not up to the challenge of dealing
with real large data queries that involve process-
ing large intermediate result sets or lead to large
result sets. Furthermore, it is not sufficient to test
the federation systems with benchmarks containing1460

only simple queries. Alarmingly, the systems re-
turn partly incomplete results without making the
user aware of this incompleteness. It is important
to mention that we are not claiming that we came
up with a perfect benchmark, which might not be1465

possible. However, we have addressed some of the
key flaws in existing federation benchmarks which
allow us to show that the system rankings achieved
via previous federated benchmarks are not the same
when dealing with more complex and large data1470

queries.

In the future, triple stores that support SPARQL
1.1 federated queries can also be tested with this
benchmark. Furthermore, other metrics such as net-
work latency, number of endpoint requests, and the1475

number of intermediate results can also be measured
to provide a more fine-grained evaluation. We have
collected a total of 15,287 real SPARQL SERVICE
queries26 from the Bio2RDF query log and gener-
ated federated benchmarks of various sizes (ranging1480

26Available at https://goo.gl/TiuZUY.

24

https://goo.gl/TiuZUY

from 15 to 500 queries)27 using the FEASIBLE [9]
benchmark generation framework. This is to further
evaluate the restrictions of current federation sys-
tems w.r.t. the real complex and large queries that
they will be faced with. A discussion of these bench-1485

marks and the corresponding results will be carried
out in future work. We hope that this benchmark
will further lead to the development of systems that
are fit for the current and future developments on
the Web.1490

7. Acknowledgement

This work was supported by grants from the
EU H2020 Framework Programme provided for the
project HOBBIT (GA no. 688227) and the BMWi
project SAKE. We are especially thankful to Helena1495

Deus (Foundations Medicine, Cambridge, MA, USA)
and Shanmukha Sampath (Democritus University
of Thrace, Alexandroupoli, Greece) for providing
real use case large data queries.

References1500

[1] G. Aluç, O. Hartig, M. T. Özsu, K. Daudjee, Diversified
stress testing of rdf data management systems, in: The
Semantic Web–ISWC 2014, Springer, 2014, pp. 197–212.

[2] C. Bizer, A. Schultz, The Berlin SPARQL Benchmark, in:
International Journal on Semantic Web and Information1505

Systems (IJSWIS), Vol. 5, IGI Global, 2009, pp. 1–24.
[3] Y. Guo, Z. Pan, J. Heflin, LUBM: A benchmark for OWL

knowledge base systems, in: Web Semantics: Science,
Services and Agents on the World Wide Web, Vol. 3,
Elsevier, 2005, pp. 158–182.1510

[4] M. Morsey, J. Lehmann, S. Auer, A.-C. Ngonga Ngomo,
DBpedia SPARQL benchmark - Performance Assess-
ment with Real Queries on Real Data, in: Aroyo, L.,
Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L.,
Noy, N., Blomqvist, E. (eds.), International Semantic1515

Web Conference (ISWC2011), Part I. LNCS, Vol. 7031,
Springer Heidelberg, 2011, pp. 454–469.

[5] M. Schmidt, O. Grlitz, P. Haase, G. Ladwig,
A. Schwarte, T. Tran, FedBench: A Benchmark Suite
for Federated Semantic Data Query Processing, in:1520

L. Aroyo, C. Welty, H. Alani, J. Taylor, A. Bernstein,
L. Kagal, N. Noy, E. Blomqvist (Eds.), The Semantic
Web ISWC 2011, Vol. 7031 of Lecture Notes in
Computer Science, Springer Berlin Heidelberg, 2011,
pp. 585–600. doi:10.1007/978-3-642-25073-6_37.1525

URL http://dx.doi.org/10.1007/

978-3-642-25073-6_37

[6] M. Schmidt, T. Hornung, G. Lausen, C. Pinkel,
Sp2bench: a sparql performance benchmark, in: In-
ternation Conference Data Engineering, 2009.1530

27Available at https://goo.gl/PsR1wr.

[7] H. Wu, T. Fujiwara, Y. Yamamoto, J. Bolleman, A. Ya-
maguchi, Biobenchmark toyama 2012: an evaluation
of the performance of triple stores on biological data,
Journal of biomedical semantics 5 (1) (2014) 1.

[8] S. Duan, A. Kementsietsidis, K. Srinivas, O. Udrea,1535

Apples and oranges: a comparison of rdf benchmarks
and real rdf datasets, in: Proceedings of the 2011 ACM
SIGMOD International Conference on Management of
data, ACM, 2011, pp. 145–156.

[9] M. Saleem, Q. Mehmood, A.-C. N. Ngomo, Feasible: A1540

feature-based sparql benchmark generation framework,
in: The Semantic Web-ISWC 2015, Springer, 2015, pp.
52–69.

[10] M. Arias, J. D. Fernández, M. A. Mart́ınez-Prieto,
P. de la Fuente, An empirical study of real-world1545

SPARQL queries, CoRR, 2011.
[11] F. Picalausa, S. Vansummeren, What are real sparql

queries like?, in: Proceedings of the International Work-
shop on Semantic Web Information Management, ACM,
2011, p. 7.1550

[12] M. Saleem, M. I. Ali, A. Hogan, Q. Mehmood, A.-C. N.
Ngomo, Lsq: The linked sparql queries dataset, in: The
Semantic Web-ISWC 2015, Springer, 2015, pp. 261–269.

[13] M. Saleem, Y. Khan, A. Hasnain, I. Ermilov, A.-C.
Ngonga Ngomo, A fine-grained evaluation of sparql end-1555

point federation systems, Semantic Web (2015) 1–26.
[14] G. Montoya, M.-E. Vidal, O. Corcho, E. Ruckhaus,

C. Buil-Aranda, Benchmarking Federated SPARQL
Query Engines: Are Existing Testbeds Enough?, in:
P. Cudre Mauroux, J. Heflin, E. Sirin, T. Tudorache,1560

J. Euzenat, M. Hauswirth, J.X. Parreira, J. Hendler,
G. Schreiber, A. Bernstein, E. Blomqvist, editors, The
Semantic Web – ISWC 2012, Part II. LNCS, Vol. 7650,
Springer Heidelberg, 2012, pp. 313–324.

[15] M. Saleem, A.-C. Ngonga Ngomo, HiBISCuS:1565

Hypergraph-Based Source Selection for SPARQL
Endpoint Federation, in: V. Presutti, C. dAm-
ato, F. Gandon, M. dAquin, S. Staab, A. Tordai
(Eds.), The Semantic Web: Trends and Challenges,
Vol. 8465 of Lecture Notes in Computer Science,1570

Springer International Publishing, 2014, pp. 176–191.
doi:10.1007/978-3-319-07443-6_13.
URL http://dx.doi.org/10.1007/

978-3-319-07443-6_13

[16] O. Görlitz, M. Thimm, S. Staab, Splodge: systematic1575

generation of sparql benchmark queries for linked open
data, in: The Semantic Web–ISWC 2012, Springer, 2012,
pp. 116–132.

[17] A. Schwarte, P. Haase, K. Hose, R. Schenkel,
M. Schmidt, FedX: Optimization Techniques for1580

Federated Query Processing on Linked Data, in:
L. Aroyo, C. Welty, H. Alani, J. Taylor, A. Bernstein,
L. Kagal, N. Noy, E. Blomqvist (Eds.), The Semantic
Web ISWC 2011, Vol. 7031 of Lecture Notes in
Computer Science, Springer Berlin Heidelberg, 2011,1585

pp. 601–616. doi:10.1007/978-3-642-25073-6_38.
URL http://dx.doi.org/10.1007/

978-3-642-25073-6_38

[18] M. Arenas, C. Gutierrez, J. Pérez, On the Se-
mantics of SPARQL, Springer Berlin Heidel-1590

berg, Berlin, Heidelberg, 2010, pp. 281–307.
doi:10.1007/978-3-642-04329-1_13.
URL http://dx.doi.org/10.1007/

978-3-642-04329-1_13

[19] O. Hartig, An Overview on Execution Strategies for1595

25

http://dx.doi.org/10.1007/978-3-642-25073-6_37
http://dx.doi.org/10.1007/978-3-642-25073-6_37
http://dx.doi.org/10.1007/978-3-642-25073-6_37
http://dx.doi.org/10.1007/978-3-642-25073-6_37
http://dx.doi.org/10.1007/978-3-642-25073-6_37
http://dx.doi.org/10.1007/978-3-642-25073-6_37
http://dx.doi.org/10.1007/978-3-642-25073-6_37
https://goo.gl/PsR1wr
http://dx.doi.org/10.1007/978-3-319-07443-6_13
http://dx.doi.org/10.1007/978-3-319-07443-6_13
http://dx.doi.org/10.1007/978-3-319-07443-6_13
http://dx.doi.org/10.1007/978-3-319-07443-6_13
http://dx.doi.org/10.1007/978-3-319-07443-6_13
http://dx.doi.org/10.1007/978-3-319-07443-6_13
http://dx.doi.org/10.1007/978-3-319-07443-6_13
http://dx.doi.org/10.1007/978-3-319-07443-6_13
http://dx.doi.org/10.1007/978-3-319-07443-6_13
http://dx.doi.org/10.1007/978-3-642-25073-6_38
http://dx.doi.org/10.1007/978-3-642-25073-6_38
http://dx.doi.org/10.1007/978-3-642-25073-6_38
http://dx.doi.org/10.1007/978-3-642-25073-6_38
http://dx.doi.org/10.1007/978-3-642-25073-6_38
http://dx.doi.org/10.1007/978-3-642-25073-6_38
http://dx.doi.org/10.1007/978-3-642-25073-6_38
http://dx.doi.org/10.1007/978-3-642-04329-1_13
http://dx.doi.org/10.1007/978-3-642-04329-1_13
http://dx.doi.org/10.1007/978-3-642-04329-1_13
http://dx.doi.org/10.1007/978-3-642-04329-1_13
http://dx.doi.org/10.1007/978-3-642-04329-1_13
http://dx.doi.org/10.1007/978-3-642-04329-1_13
http://dx.doi.org/10.1007/978-3-642-04329-1_13

Linked Data Queries, in: Datenbank-Spektrum, Vol. 13,
Springer, 2013, pp. 89–99.

[20] O. Görlitz, S. Staab, SPLENDID: SPARQL Endpoint
Federation Exploiting VoID Descriptions, in: O. Hartig,
A. Harth, and J. F. Sequeda, editors, 2nd International1600

Workshop on Consuming Linked Data (COLD 2011) in
CEUR Workshop Proceedings, Vol. 782, 2011.

[21] G. Montoya, M.-E. Vidal, M. Acosta, A Heuristic-Based
Approach for Planning Federated SPARQL Queries,
in: J. F. Sequeda, A. Harth, and O. Hartig, editors,1605

3rd International Workshop on Consuming Linked Data
(COLD 2012) in CEUR Workshop Proceedings, Vol. 905,
2012.

[22] M. Saleem, A.-C. Ngonga Ngomo, J. Xavier Parreira,
H. Deus, M. Hauswirth, DAW: Duplicate-AWare1610

Federated Query Processing over the Web of Data,
in: H. Alani, L. Kagal, A. Fokoue, P. Groth, C. Bie-
mann, J. Parreira, L. Aroyo, N. Noy, C. Welty,
K. Janowicz (Eds.), The Semantic Web ISWC
2013, Vol. 8218 of Lecture Notes in Computer Sci-1615

ence, Springer Berlin Heidelberg, 2013, pp. 574–590.
doi:10.1007/978-3-642-41335-3_36.
URL http://dx.doi.org/10.1007/

978-3-642-41335-3_36

[23] Y. Khan, M. Saleem, A. Iqbal, M. Mehdi, A. Hogan,1620

P. Hasapis, A.-C. N. Ngomo, S. Decker, R. Sahay, SAFE:
Policy Aware SPARQL Query Federation Over RDF
Data Cubes, in: A. Paschke, A. Burger, P. Romano, M.
S. Marshall, A. Splendiani, editors, Proceedings of the
7th International Workshop on Semantic Web Applica-1625

tions and Tools for Life Sciences in CEUR Workshop
Proceedings, Vol. 1320, 2014.

[24] Y. Khan, M. Saleem, M. Mehdi, A. Hogan, Q. Mehmood,
D. Rebholz-Schuhmann, R. Sahay, Safe: Sparql feder-
ation over rdf data cubes with access control, Jour-1630

nal of Biomedical Semantics 8 (1). doi:10.1186/

s13326-017-0112-6.
URL http://dx.doi.org/10.1186/s13326-017-0112-6

[25] A. Hasnain, Q. Mehmood, S. Sana e Zainab, M. Saleem,
C. Warren, D. Zehra, S. Decker, D. Rebholz-Schuhmann,1635

Biofed: federated query processing over life sciences
linked open data, Journal of Biomedical Semantics 8 (1)
(2017) 13. doi:10.1186/s13326-017-0118-0.
URL http://dx.doi.org/10.1186/s13326-017-0118-0

[26] M. Saleem, S. S. Padmanabhuni, A.-C. N. Ngomo,1640

A. Iqbal, J. S. Almeida, S. Decker, H. F. Deus, Topfed:
Tcga tailored federated query processing and linking to
lod, Journal of biomedical semantics 5 (1) (2014) 1.

[27] M. Saleem, R. Maulik, I. Aftab, S. Shanmukha, H. Deus,
A.-C. Ngonga Ngomo, Fostering Serendipity through1645

Big Linked Data, in: Semantic Web Challenge at Inter-
national Semantic Web Conference, 2013.

[28] M. Saleem, M. R. Kamdar, A. Iqbal, S. Sampath, H. F.
Deus, A.-C. N. Ngomo, Big linked cancer data: Inte-
grating linked {TCGA} and pubmed, Web Semantics:1650

Science, Services and Agents on the World Wide Web
2728 (2014) 34 – 41, semantic Web Challenge 2013. doi:
http://dx.doi.org/10.1016/j.websem.2014.07.004.
URL http://www.sciencedirect.com/science/

article/pii/S15708268140005231655

[29] N. Jiang, L. J. Leach, X. Hu, E. Potokina, T. Jia,
A. Druka, R. Waugh, M. J. Kearsey, Z. W. Luo, Methods
for evaluating gene expression from affymetrix microar-
ray datasets, BMC bioinformatics 9 (1) (2008) 284.

[30] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.1660

Lorie, T. G. Price, Access Path Selection in a Relational
Database Management System, in: Proceedings of the
1979 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’79, ACM, New York, NY,
USA, 1979, pp. 23–34. doi:10.1145/582095.582099.1665

URL http://doi.acm.org/10.1145/582095.582099

[31] M. Acosta, M.-E. Vidal, T. Lampo, J. Castillo,
E. Ruckhaus, ANAPSID: An Adaptive Query Pro-
cessing Engine for SPARQL Endpoints, in: L. Aroyo,
C. Welty, H. Alani, J. Taylor, A. Bernstein, L. Kagal,1670

N. Noy, E. Blomqvist (Eds.), The Semantic Web
ISWC 2011, Vol. 7031 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 2011, pp. 18–34.
doi:10.1007/978-3-642-25073-6_2.
URL http://dx.doi.org/10.1007/1675

978-3-642-25073-6_2

Appendix: LargeRDFBench queries

The LargeRDFBench queries are given in the
Listing below and can also be downloaded from the
project website.1680

26

http://dx.doi.org/10.1007/978-3-642-41335-3_36
http://dx.doi.org/10.1007/978-3-642-41335-3_36
http://dx.doi.org/10.1007/978-3-642-41335-3_36
http://dx.doi.org/10.1007/978-3-642-41335-3_36
http://dx.doi.org/10.1007/978-3-642-41335-3_36
http://dx.doi.org/10.1007/978-3-642-41335-3_36
http://dx.doi.org/10.1007/978-3-642-41335-3_36
http://dx.doi.org/10.1186/s13326-017-0112-6
http://dx.doi.org/10.1186/s13326-017-0112-6
http://dx.doi.org/10.1186/s13326-017-0112-6
http://dx.doi.org/10.1186/s13326-017-0112-6
http://dx.doi.org/10.1186/s13326-017-0112-6
http://dx.doi.org/10.1186/s13326-017-0112-6
http://dx.doi.org/10.1186/s13326-017-0112-6
http://dx.doi.org/10.1186/s13326-017-0118-0
http://dx.doi.org/10.1186/s13326-017-0118-0
http://dx.doi.org/10.1186/s13326-017-0118-0
http://dx.doi.org/10.1186/s13326-017-0118-0
http://dx.doi.org/10.1186/s13326-017-0118-0
http://www.sciencedirect.com/science/article/pii/S1570826814000523
http://www.sciencedirect.com/science/article/pii/S1570826814000523
http://www.sciencedirect.com/science/article/pii/S1570826814000523
http://dx.doi.org/http://dx.doi.org/10.1016/j.websem.2014.07.004
http://dx.doi.org/http://dx.doi.org/10.1016/j.websem.2014.07.004
http://dx.doi.org/http://dx.doi.org/10.1016/j.websem.2014.07.004
http://www.sciencedirect.com/science/article/pii/S1570826814000523
http://www.sciencedirect.com/science/article/pii/S1570826814000523
http://www.sciencedirect.com/science/article/pii/S1570826814000523
http://doi.acm.org/10.1145/582095.582099
http://doi.acm.org/10.1145/582095.582099
http://doi.acm.org/10.1145/582095.582099
http://dx.doi.org/10.1145/582095.582099
http://doi.acm.org/10.1145/582095.582099
http://dx.doi.org/10.1007/978-3-642-25073-6_2
http://dx.doi.org/10.1007/978-3-642-25073-6_2
http://dx.doi.org/10.1007/978-3-642-25073-6_2
http://dx.doi.org/10.1007/978-3-642-25073-6_2
http://dx.doi.org/10.1007/978-3-642-25073-6_2
http://dx.doi.org/10.1007/978-3-642-25073-6_2
http://dx.doi.org/10.1007/978-3-642-25073-6_2

LargeRDFBench queries.

PREFIX owl : <http ://www.w3 . org /2002/07/ owl#>
PREFIX dbpediaR : <http :// dbpedia . org / resource>
PREFIX dbpedia : <http :// dbpedia . org / onto logy/>
PREFIX nytimes : <http :// data . nytimes . com/ elements/>
PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX linkedmdb : <http :// data . linkedmdb . org / r e sou r c e /movie/>
PREFIX pur l : <http :// pur l . org /dc/ e lements /1.1/>
PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
PREFIX geonames : <http ://www. geonames . org / onto logy#>
PREFIX drugbank : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e /drugbank/>
PREFIX drugs : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e /drugs/>
PREFIX drugcategory : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e / drugcategory

/>
PREFIX kegg : <http :// b i o2 rd f . org /ns/kegg#>
PREFIX bio2RDF : <http :// b i o2 rd f . org /ns/ b i o2 rd f#>
PREFIX cheb i : <http :// b i o2 rd f . org /ns/ b i o2 rd f#>
PREFIX drugtype : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e /drugtype/>
PREFIX mo: <http :// pur l . org / onto logy /mo/>
prefix geo : <http ://www.w3 . org /2003/01/ geo/wgs84 pos#>
PREFIX dcterms : <http :// pur l . org /dc/ terms/>
PREFIX r d f s : <http ://www.w3 . org /2000/01/ rdf−schema#>
prefix swc : <http :// data . semanticweb . org /ns/swc/ onto logy#>
prefix swrc : <http :// swrc . ontoware . org / onto logy#>
prefix eswc : <http :// data . semanticweb . org / con f e r ence /eswc/>
prefix i swc : <http :// data . semanticweb . org / con f e r ence / iswc /2009/>
PREFIX tcga : <http :// tcga . d e r i . i e /schema/>
PREFIX xsd : <http ://www.w3 . org /2001/XMLSchema#>
PREFIX a f f ymet r i x : <http :// b i o2 rd f . org / a f f ymet r i x vocabu la ry :>
######################### S1: SPARQL 1.0 #########################
#Find a l l in format ion about Barack Obama .
SELECT ? p r ed i c a t e ? ob j e c t
WHERE
{
{ dbpediaR : Barack Obama ? pr ed i c a t e ? ob j e c t }
UNION
{
? sub j e c t owl : sameAs dbpediaR : Barack Obama .
? sub j e c t ? p r ed i c a t e ? ob j e c t

}
}

#−−−−−−−−−−−−−−−−−−−− S1 : SPARQL 1.1 −−−−−−−−−−−−−−−−−−−−−
SELECT ? p r ed i c a t e ? ob j e c t
WHERE
{
{ SERVICE <dbpedia−subset endpoint> { dbpediaR : Barack Obama ? pr ed i c a t e ? ob j e c t } }

UNION
{

SERVICE <newyork−t imes endpoint> {
? sub j e c t owl : sameAs dbpediaR : Barack Obama .
? sub j e c t ? p r ed i c a t e ? ob j e c t }

}
}

27

LargeRDFBench queries.

######################### S2: SPARQL 1.0 #########################
#Return Barack Obama ' s par ty membership and news pages .
SELECT ? party ?page
WHERE
{

dbpediaR : Barack Obama dbpedia : party ? party .
?x nytimes : topicPage ?page .
?x owl : sameAs dbpediaR : Barack Obama .

}
#−−−−−−−−−−−−−−−−−−−− S2 : SPARQL 1.1 −−−−−−−−−−−−−−−−−−−−−
SELECT ? party ?page
WHERE
{

SERVICE <dbpedia−subset endpoint> {dbpediaR : Barack Obama dbpedia : party ? party .}
SERVICE <newyork−t imes endpoint>
{

?x nytimes : topicPage ?page .
?x owl : sameAs dbpediaR : Barack Obama .

}
}
######################### S3: SPARQL 1.0 #########################
Return f o r a l l US p r e s i d en t s t h e i r par ty membership and news pages about them .
SELECT ? p r e s i d en t ? party ?page
WHERE
{

? p r e s i d en t rd f : type dbpedia : Pres ident .
? p r e s i d en t dbpedia : n a t i o n a l i t y dbpediaR : Uni t ed State s .
? p r e s i d en t dbpedia : party ? party .
?x nytimes : topicPage ?page .
?x owl : sameAs ? p r e s i d en t .

}
#−−−−−−−−−−−−−−−−−−−− S3 : SPARQL 1.1 −−−−−−−−−−−−−−−−−−−−−
SELECT ? p r e s i d en t ? party ?page
WHERE
{

SERVICE <dbpedia−subset endpoint>
{
? p r e s i d en t rd f : type dbpedia : Pres ident .
? p r e s i d en t dbpedia : n a t i o n a l i t y dbpediaR : Uni t ed State s .
? p r e s i d en t dbpedia : party ? party .
}
SERVICE <newyork−t imes endpoint>
{
?x nytimes : topicPage ?page .
?x owl : sameAs ? p r e s i d en t .
}

}

28

LargeRDFBench queries.

######################### S4: SPARQL 1.0 #########################
#Find a l l news about ac t o r s s t a r r i n g in a movie wi th name Tarzan .
SELECT ? ac to r ?news
WHERE
{

? f i lm pur l : t i t l e 'Tarzan ' .
? f i lm linkedmdb : ac to r ? ac to r .
? ac to r owl : sameAs ?x .
?y owl : sameAs ?x .
?y nytimes : topicPage ?news

}
#−−−−−−−−−−−−−−−−−−−− S4 : SPARQL 1.1 −−−−−−−−−−−−−−−−−−−−−
SELECT ? ac to r ?news
WHERE
{

SERVICE <l inked−mdb endpoint>
{
? f i lm pur l : t i t l e 'Tarzan ' .
? f i lm linkedmdb : ac to r ? ac to r .
? ac to r owl : sameAs ?x .
}
SERVICE <newyork−t imes endpoint>
{
?y owl : sameAs ?x .
?y nytimes : topicPage ?news
}

}
######################### S5: SPARQL 1.0 #########################
#Find the d i r e c t o r and the genre o f movies d i r e c t e d by I t a l i a n s .
SELECT ? f i lm ? d i r e c t o r ? genre
WHERE
{

? f i lm dbpedia : d i r e c t o r ? d i r e c t o r .
? d i r e c t o r dbpedia : n a t i o n a l i t y dbpediaR : I t a l y .
?x owl : sameAs ? f i lm .
?x linkedmdb : genre ? genre .

}
#−−−−−−−−−−−−−−−−−−−− S5 : SPARQL 1.1 −−−−−−−−−−−−−−−−−−−−−
SELECT ? f i lm ? d i r e c t o r ? genre
WHERE
{
SERVICE <dbpedia−subset endpoint>
{
? f i lm dbpedia : d i r e c t o r ? d i r e c t o r .
? d i r e c t o r dbpedia : n a t i o n a l i t y dbpediaR : I t a l y .
}
SERVICE <l inked−mdb endpoint>
{
?x owl : sameAs ? f i lm .
?x linkedmdb : genre ? genre .
}

}

29

LargeRDFBench queries.

######################### S6: SPARQL 1.0 #########################
#Find a l l musica l a r t i s t s based in Germany .
SELECT ?name ? l o c a t i o n
WHERE
{

? a r t i s t f o a f : name ?name .
? a r t i s t f o a f : based near ? l o c a t i o n .
? l o c a t i o n geonames : parentFeature ?germany .
?germany geonames : name ' Federa l Republ ic o f Germany '

}
#−−−−−−−−−−−−−−−−−−−− S6 : SPARQL 1.1 −−−−−−−−−−−−−−−−−−−−−
SELECT ?name ? l o c a t i o n
WHERE {
{
SERVICE <jamendo endpoint>
{
? a r t i s t f o a f : name ?name .
? a r t i s t f o a f : based near ? l o c a t i o n .}
}
UNION
{
SERVICE <swdf endpoint>
{
? a r t i s t f o a f : name ?name .
? a r t i s t f o a f : based near ? l o c a t i o n .}
}
{

SERVICE <geonames endpoint> {
? l o c a t i o n geonames : parentFeature ?germany .
?germany geonames : name ' Federa l Republ ic o f Germany '
}
}
UNION
{
SERVICE <newyork−t imes endpoint>
{
? l o c a t i o n geonames : parentFeature ?germany .
?germany geonames : name ' Federa l Republ ic o f Germany '
}
}
}
######################### S7: SPARQL 1.0 #########################
#Find a l l news about l o c a t i o n s in the s t a t e o f Ca l i f o rn i a .
SELECT ? l o c a t i o n ?news
WHERE
{

? l o c a t i o n geoname : parentFeature ? parent .
? parent geoname : name ' Ca l i f o r n i a ' .
?y owl : sameAs ? l o c a t i o n .
?y nytimes : topicPage ?news

}

30

LargeRDFBench queries.

#−−−−−−−−−−−−−−−−−−−− S7 : SPARQL 1.1 −−−−−−−−−−−−−−−−−−−−−
SELECT ? l o c a t i o n ?news
WHERE
{
{
SERVICE <newyork−t imes endpoint>
{

? l o c a t i o n geoname : parentFeature ? parent .
? parent geoname : name ' Ca l i f o r n i a ' .
}

}
UNION
{
SERVICE <geonames endpoint>
{

? l o c a t i o n geoname : parentFeature ? parent .
? parent geoname : name ' Ca l i f o r n i a ' .
}
}
SERVICE <newyork−t imes endpoint>
{
?y owl : sameAs ? l o c a t i o n .
?y nytimes : topicPage ?news
}

}
######################### S8: SPARQL 1.0 #########################
#Find a l l drugs from Drugbank and DBpedia wi th t h e i r me l t ing po in t s .
SELECT ?drug ?melt
WHERE
{

{
?drug drugbank : melt ingPoint ?melt .
}
UNION
{
?drug drugbank : Drug/melt ingPoint ?melt .
}

}
#−−−−−−−−−−−−−−−−−−−− S8 : SPARQL 1.1 −−−−−−−−−−−−−−−−−−−−−
SELECT ?drug ?melt
WHERE
{

{
SERVICE <drugbank endpoint> {? drug drugbank : melt ingPoint ?melt .}
}

UNION
{
SERVICE <dbpedia−subset endpoint> {? drug drugbank : Drug/melt ingPoint ?melt .}
}

}

31

LargeRDFBench queries.

######################### S9: SPARQL 1.0 #########################
#Find a l l e n t i t i e s from a l l a v a i l a b l e da tabases d e s c r i b i n g Ca f f e ine .
SELECT ? p r ed i c a t e ? ob j e c t
WHERE
{

{
drugs : DB00201 ? p r ed i c a t e ? ob j e c t .
}

UNION
{
drugs : DB00201 owl : sameAs ? c a f f .
? c a f f ? p r ed i c a t e ? ob j e c t .
}

}
#−−−−−−−−−−−−−−−−−−−− S9 : SPARQL 1.1 −−−−−−−−−−−−−−−−−−−−−
SELECT ? p r ed i c a t e ? ob j e c t
WHERE
{

{
SERVICE <drugbank endpoint> {drugs : DB00201 ? p r ed i c a t e ? ob j e c t .}
}

UNION
{
SERVICE <drugbank endpoint> {drugs : DB00201 owl : sameAs ? c a f f .}
SERVICE <dbpedia−subset endpoint> {? c a f f ? p r ed i c a t e ? ob j e c t .}
}

}
######################### S10: SPARQL 1.0 #########################
#For a l l drugs in DBpedia f i nd a l l drugs they i n t e r a c t wi th a long wi th an

exp l ana t i on o f the i n t e r a c t i o n .
SELECT ?Drug ? IntDrug ? I n tE f f e c t
WHERE
{

?Drug rd f : type dbpedia : Drug .
?y owl : sameAs ?Drug .
? Int drugbank : in te rac t i onDrug1 ?y .
? Int drugbank : in te rac t i onDrug2 ? IntDrug .
? Int drugbank : t ext ? I n tE f f e c t .

}
#−−−−−−−−−−−−−−−−−−−− S10 : SPARQL 1.1 −−−−−−−−−−−−−−−−−−−−−
SELECT ?Drug ? IntDrug ? I n tE f f e c t
WHERE
{

SERVICE <dbpedia−subset endpoint> {?Drug rd f : type dbpedia : Drug .}
SERVICE <drugbank endpoint>
{
?y owl : sameAs ?Drug .
? Int drugbank : in te rac t i onDrug1 ?y .
? Int drugbank : in te rac t i onDrug2 ? IntDrug .
? Int drugbank : t ext ? I n tE f f e c t .
}

}

32

LargeRDFBench queries.

######################### S11: SPARQL 1.0 #########################
#Find a l l the equa t i ons o f r e a c t i on s r e l a t e d to drugs from ca tegory Ca thar t i c s and

t h e i r drug d e s c r i p t i o n .
SELECT ?drugDesc ?cpd ? equat ion
WHERE
{

?drug drugbank : drugCategory drugcategory : c a t h a r t i c s .
?drug drugbank : keggCompoundId ?cpd .
?drug drugbank : d e s c r i p t i o n ?drugDesc .
?enzyme kegg : xSubstrate ?cpd .
?enzyme rd f : type kegg : Enzyme .
? r e a c t i on kegg : xEnzyme ?enzyme .
? r e a c t i on kegg : equat ion ? equat ion .

}
#−−−−−−−−−−−−−−−−−−−− S11 : SPARQL 1.1 −−−−−−−−−−−−−−−−−−−−−
SELECT ?drugDesc ?cpd ? equat ion
WHERE
{
SERVICE <drugbank endpoint>
{
?drug drugbank : drugCategory drugcategory : c a t h a r t i c s .
?drug drugbank : keggCompoundId ?cpd .
?drug drugbank : d e s c r i p t i o n ?drugDesc .
}

SERVICE <kegg endpoint>
{
?enzyme kegg : xSubstrate ?cpd .
?enzyme rd f : type kegg : Enzyme .
? r e a c t i on kegg : xEnzyme ?enzyme .
? r e a c t i on kegg : equat ion ? equat ion .
}

}
######################### S12: SPARQL 1.0 #########################
#Find a l l drugs from Drugbank t o g e t h e r wi th the URL of the corresponding page s t o r ed

in KEGG and the URL to the image der i v ed from ChEBI .
SELECT ?drug ? keggUrl ? chebiImage
WHERE {

?drug rd f : type drugbank : drugs .
?drug drugbank : keggCompoundId ?keggDrug .
?keggDrug bio2RDF#ur l ? keggUr l .
?drug drugbank : genericName ?drugBankName .
? chebiDrug pur l : t i t l e ?drugBankName .
? chebiDrug bio2RDF : image ? chebiImage . }

#−−−−−−−−−−−−−−−−−−−− S12 : SPARQL 1.1 −−−−−−−−−−−−−−−−−−−−−
SELECT ?drug ? keggUrl ? chebiImage
WHERE {

SERVICE <drugbank endpoint> {
?drug rd f : type drugbank : drugs .
?drug drugbank : keggCompoundId ?keggDrug .
?drug drugbank : genericName ?drugBankName .}

SERVICE <kegg endpoint> {?keggDrug bio2RDF#ur l ? keggUr l .}
SERVICE <cheb i endpoint> {
? chebiDrug pur l : t i t l e ?drugBankName .
? chebiDrug bio2RDF : image ? chebiImage .}}

33

LargeRDFBench queries.

######################### S13: SPARQL 1.0 #########################
#Find KEGG drug names o f a l l drugs in Drugbank be l ong ing to ca tegory Micronutr ient .
SELECT ?drug ? t i t l e
WHERE {

?drug drugbank : drugCategory drugcategory : mic ronutr i ent .
?drug drugbank : casRegistryNumber ? id .
?keggDrug rd f : type kegg : Drug .
?keggDrug bio2RDF : Ref ? id .
?keggDrug pur l : t i t l e ? t i t l e .

}
#−−−−−−−−−−−−−−−−−−−− S13 : SPARQL 1.1 −−−−−−−−−−−−−−−−−−−−−
SELECT ?drug ? t i t l e
WHERE {

SERVICE <drugbank endpoint>
{
?drug drugbank : drugCategory drugcategory : mic ronutr i ent .
?drug drugbank : casRegistryNumber ? id .
}
SERVICE <kegg endpoint>
{
?keggDrug rd f : type kegg : Drug .
?keggDrug bio2RDF : Ref ? id .
?keggDrug pur l : t i t l e ? t i t l e .
}

}
######################### 14: SPARQL 1.0 #########################
#Find a l l drugs t ha t a f f e c t humans and mammals . For those having a d e s c r i p t i o n o f

t h e i r b i o t rans f o rmat i on . Also re turn t h i s d e s c r i p t i o n .
SELECT ?drug ? trans form ?mass
WHERE {
?drug drugbank : af fectedOrganism> 'Humans and other mammals ' .
? drug drugbank : casRegistryNumber ? cas .
?keggDrug bio2RDF : xRef ? cas .
?keggDrug bio2RDF : mass ?mass .
OPTIONAL { ?drug drugbank : b i o t rans f o rmat i on ? trans form . }
}
#−−−−−−−−−−−−−−−−−−−− S14 : SPARQL 1.1 −−−−−−−−−−−−−−−−−−−−−
SELECT ?drug ? trans form ?mass
WHERE {
SERVICE <drugbank endpoint>
{
?drug drugbank : af fectedOrganism> 'Humans and other mammals ' .
? drug drugbank : casRegistryNumber ? cas .
}
SERVICE <kegg endpoint>
{
?keggDrug bio2RDF : xRef ? cas .
?keggDrug bio2RDF : mass ?mass .
}
OPTIONAL {SERVICE <drugbank endpoint> {? drug drugbank : b i o t rans f o rmat i on ? trans form

.}
}
}

34

LargeRDFBench queries.

######################### C1: SPARQL 1.0 #########################
#Find the equa t i ons o f chemica l r e a c t i on s and reac t i on t i t l e r e l a t e d to drugs wi th

drug d e s c r i p t i o n and drug type ' smal lMolecu le ' . Show only those whose molecu lar
we igh t average l a r g e r then 114.

SELECT DISTINCT ?drug ?drugDesc ?molecularWeightAverage ?compound ?
Reac t i onTi t l e ?ChemicalEquation

WHERE
{
?drug drugbank : d e s c r i p t i o n ?drugDesc .
?drug drugbank : drugType drugtype : smal lMolecu le .
?drug drugbank : keggCompoundId ?compound .
?enzyme kegg : xSubstrate ?compound .
? Chemica l react ion kegg : xEnzyme ?enzyme .
? Chemica l react ion kegg : equat ion ?ChemicalEquation .
? Chemica l react ion pur l : t i t l e ? Reac t i onTi t l e
OPTIONAL
{
?drug drugbank : molecularWeightAverage ?molecularWeightAverage .
FILTER (? molecularWeightAverage > 114)
}
}
LIMIT 1000
#−−−−−−−−−−−−−−−−−−−− C1 : SPARQL 1.1 −−−−−−−−−−−−−−−−−−−−−
SELECT DISTINCT ?drug ?drugDesc ?molecularWeightAverage ?compound ?

Reac t i onTi t l e ?ChemicalEquation
WHERE
{
SERVICE <drugbank endpoint>
{
?drug drugbank : d e s c r i p t i o n ?drugDesc .
?drug drugbank : drugType drugtype : smal lMolecu le .
?drug drugbank : keggCompoundId ?compound .
}
SERVICE <kegg endpoint>
{
?enzyme kegg : xSubstrate ?compound .
? Chemica l react ion kegg : xEnzyme ?enzyme .
? Chemica l react ion kegg : equat ion ?ChemicalEquation .
? Chemica l react ion pur l : t i t l e ? Reac t i onTi t l e
}
OPTIONAL
{
SERVICE <drugbank endpoint>
{
?drug drugbank : molecularWeightAverage ?molecularWeightAverage .
FILTER (? molecularWeightAverage > 114)
}
}
}
LIMIT 1000

35

LargeRDFBench queries.

######################### C2: SPARQL 1.0 #########################
#Find a l l the drugs wi th t h e i r mass and chebiIupacName o p t i o n a l l y the Inch i va l u e s

r e t r i e v i n g from two sources are equa l .
SELECT ?drug ?keggmass ? chebiIupacName
WHERE
{
?drug rd f : type drugbank : drugs .
?drug drugbank : keggCompoundId ?keggDrug .
?keggDrug bio2RDF : mass ?keggmass .
?drug drugbank : genericName ?drugBankName .
? chebiDrug pur l : t i t l e ?drugBankName .
? chebiDrug cheb i : iupacName ?chebiIupacName .
OPTIONAL
{

?drug drugbank : i n c h i I d e n t i f i e r ? drugbankInchi .
? chebiDrug bio2RDF : i n ch i ? cheb i In ch i .
FILTER (? drugbankInchi = ? cheb i In ch i)
}
}
#−−−−−−−−−−−−−−−−−−−− C2 : SPARQL 1.1 −−−−−−−−−−−−−−−−−−−−−
SELECT ?drug ?keggmass ? chebiIupacName
WHERE {
SERVICE <drugbank endpoint>
{
?drug rd f : type drugbank : drugs .
?drug drugbank : keggCompoundId ?keggDrug .
}
SERVICE <kegg endpoint> {?keggDrug bio2RDF : mass ?keggmass .}
SERVICE <drugbank endpoint> {? drug drugbank : genericName ?drugBankName .}
SERVICE <drugbank endpoint>
{
? chebiDrug pur l : t i t l e ?drugBankName .
? chebiDrug cheb i : iupacName ?chebiIupacName .
}
OPTIONAL {
SERVICE <drugbank endpoint> {? drug drugbank : i n c h i I d e n t i f i e r ? drugbankInchi .}
SERVICE <cheb i endpoint> {? chebiDrug bio2RDF : i n ch i ? cheb i In ch i .}
FILTER (? drugbankInchi = ? cheb i In ch i) }
}
######################### C3: SPARQL 1.0 #########################
#Find the names o f music a r t i s t s wi th the news about l o c a t i o n s where t h e s e a r t i s t

are based .
SELECT DISTINCT ? a r t i s t ?name ? l o c a t i o n ? any loca t i on
WHERE {

? a r t i s t a mo: MusicArt i s t ;
f o a f : name ?name ;

f o a f : based near ? l o c a t i o n .
? l o c a t i o n geonames : parentFeature ? locationName .
? locationName geonames : name ? any loca t i on .
? nytLocat ion owl : sameAs ? l o c a t i o n .
? nytLocat ion nytimes : topicPage ?news

OPTIONAL {? locationName geonames : name ' I s l am i c Republ ic o f Afghanistan ' . }
}

36

LargeRDFBench queries.

#−−−−−−−−−−−−−−−−−−−− C3 : SPARQL 1.1 −−−−−−−−−−−−−−−−−−−−−
SELECT DISTINCT ? a r t i s t ?name ? l o c a t i o n ? any loca t i on
WHERE {
SERVICE <jamendo endpoint> {

? a r t i s t a mo: MusicArt i s t ;
f o a f : name ?name ;
f o a f : based near ? l o c a t i o n . }

{
SERVICE <geonames endpoint> {

? l o c a t i o n geonames : parentFeature ? locationName .
? locationName geonames : name ? any loca t i on . }

}
UNION
{
SERVICE <newyork−t imes endpoint> {

? l o c a t i o n geonames : parentFeature ? locationName .
? locationName geonames : name ? any loca t i on . }

}
SERVICE <newyork−t imes endpoint> {

? nytLocat ion owl : sameAs ? l o c a t i o n .
? nytLocat ion nytimes : topicPage ?news }

OPTIONAL
{
SERVICE <geonames endpoint> {? locationName geonames : name ' I s l am i c Republ ic o f

Afghanistan ' . }
}
}
######################### C4: SPARQL 1.0 #########################
#Find the country name with i t s r e l e v an t in format ion such as popu la t i on country code

e t c .
SELECT DISTINCT ?countryName ? countryCode ? locationMap ? populat ion ? l ong i tude ?

l a t i t u d e ?nationalAnthem ? foundingDate ? l a r g e s tC i t y ? ethnicGroup ?motto
{
?NYTplace geonames : name ?countryName .
?NYTplace geonames : countryCode ? countryCode .
?NYTplace geonames : populat ion ? populat ion .
?NYTplace geo : long ? l ong i tude .
?NYTplace geo : l a t ? l a t i t u d e .
?NYTplace owl : sameAs ? geonameplace .
OPTIONAL
{

? geonameplace dbpedia : c a p i t a l ? c a p i t a l .
? geonameplace dbpedia : anthem ?nationalAnthem .
? geonameplace dbpedia : foundingDate ? foundingDate .
? geonameplace dbpedia : l a r g e s tC i t y ? l a r g e s tC i t y .
? geonameplace dbpedia : ethnicGroup ? ethnicGroup .
? geonameplace dbpedia : motto ?motto .
}
}
LIMIT 50

37

LargeRDFBench queries.

#−−−−−−−−−−−−−−−−−−−− C4 : SPARQL 1.1 −−−−−−−−−−−−−−−−−−−−−
SELECT DISTINCT ?countryName ? countryCode ? locationMap ? populat ion ? l ong i tude ?

l a t i t u d e ?nationalAnthem ? foundingDate ? l a r g e s tC i t y ? ethnicGroup ?motto
{ {

SERVICE <newyork−t imes endpoint> {
?NYTplace geonames : name ?countryName ;

geonames : countryCode ? countryCode ;
geonames : populat ion ? populat ion ;
geo : long ? l ong i tude ;
geo : l a t ? l a t i t u d e ;
owl : sameAs ? geonameplace . }

}
UNION
{
SERVICE <geonames endpoint> {
?NYTplace geonames : name ?countryName ;

geonames : countryCode ? countryCode ;
geonames : populat ion ? populat ion ;
geo : long ? l ong i tude ;
geo : l a t ? l a t i t u d e ;
owl : sameAs ? geonameplace . }

}
OPTIONAL
{

SERVICE <http :// dbpedia−subset endpoint> {
? geonameplace dbpedia : c a p i t a l ? c a p i t a l ;
dbpedia : anthem ?nationalAnthem ;
dbpedia : foundingDate ? foundingDate ;
dbpedia : l a r g e s tC i t y ? l a r g e s tC i t y ;
dbpedia : ethnicGroup ? ethnicGroup ;
dbpedia : motto ?motto . }

}
}
LIMIT 50
######################### C5: SPARQL 1.0 #########################
#The names o f the actors , t h e i r data o f b i r t h , t h e i r Spouse name who worked in any

movie wi th movie name , i t s t i t l e and date o f movie r e l e a s e .
SELECT ? ac to r ?movie ?movieTit l e ?movieDate ? birthDate ?spouseName
{

? ac to r r d f s : l a b e l ? actor name en ;
dbpedia : b irthDate ? birthDate ;
dbpedia : spouse ? spouseURI .

? spouseURI rd f s : l a b e l ?spouseName .
? imdbactor linkedmdb : actor name ? actor name .
?movie linkedmdb : ac to r ? imdbactor ;

dcterms : t i t l e ?movieTit l e ;
dcterms : date ?movieDate

FILTER(STR(? actor name en)= STR(? actor name))
}
LIMIT 500

38

LargeRDFBench queries.

#−−−−−−−−−−−−−−−−−−−− C5 : SPARQL 1.1 −−−−−−−−−−−−−−−−−−−−−
SELECT ? ac to r ?movie ?movieTit l e ?movieDate ? birthDate ?spouseName
{

SERVICE <dbpedia−subset endpoint> {
? ac to r r d f s : l a b e l ? actor name en ;

dbpedia : b irthDate ? birthDate ;
dbpedia : spouse ? spouseURI .
? spouseURI rd f s : l a b e l ?spouseName . }

SERVICE <l inked−mdb endpoint> {
? imdbactor linkedmdb : actor name ? actor name .
?movie linkedmdb : ac to r ? imdbactor ;

dcterms : t i t l e ?movieTit l e ;
dcterms : date ?movieDate }

FILTER(STR(? actor name en) = STR(? actor name))
}
LIMIT 500
######################### C6: SPARQL 1.0 #########################
#Find a l l news , i t s var ian t s , t o t a l number o f news a r t i c l e s , when i t was f i r s t used

and when i t was l a t e s t l y used , about ac t o r s s t a r r i n g in any movie .
SELECT ? ac to r ? f i lmT i t l e ?news ? va r i an t s ? a r t i c l eCount ? f i r s t u s e ? l a t e s t u s e
WHERE
{
? f i lm pur l : t i t l e ? f i lmT i t l e .
? f i lm linkedmdb : ac to r ? ac to r .
? ac to r owl : sameAs ?dbpediaURI .
?nytURI owl : sameAs ?dbpediaURI .
?nytURI nytimes : topicPage ?news ;

nytimes : number o f var iant s ? va r i an t s ;
nytimes : a s s o c i a t e d a r t i c l e c o u n t ? a r t i c l eCount ;
nytimes : f i r s t u s e ? f i r s t u s e ;
nytimes : l a t e s t u s e ? l a t e s t u s e

}
ORDERBY (? ac to r)
#−−−−−−−−−−−−−−−−−−−− C6 : SPARQL 1.1 −−−−−−−−−−−−−−−−−−−−−
SELECT ? ac to r ? f i lmT i t l e ?news ? va r i an t s ? a r t i c l eCount ? f i r s t u s e ? l a t e s t u s e
WHERE
{

SERVICE <l inked−mdb endpoint> {
? f i lm pur l : t i t l e ? f i lmT i t l e .
? f i lm linkedmdb : ac to r ? ac to r .
? ac to r owl : sameAs ?dbpediaURI . }
SERVICE <newyork−t imes endpoint> {
?nytURI owl : sameAs ?dbpediaURI .
?nytURI nytimes : topicPage ?news ;
nytimes : number o f var iant s ? va r i an t s ;
nytimes : a s s o c i a t e d a r t i c l e c o u n t ? a r t i c l eCount ;
nytimes : f i r s t u s e ? f i r s t u s e ;
nytimes : l a t e s t u s e ? l a t e s t u s e }

}
ORDERBY (? ac to r)

39

LargeRDFBench queries.

######################### C7: SPARQL 1.0 #########################
#For a l l the authors and t h e i r corresponding p u b l i c a t i o n who a l s o had r o l e in ESWC

2010 , a long wi th the in format ion in which coun t r i e s t h e s e authors l i v e d in wi th
the op t i ona l in format ion o f g eog raph i ca l l o c a t i o n o f t h a t country and the name
i t s c a p i t a l (i f a v a i l a b l e) .

SELECT DISTINCT ? author ? r o l e ? paper ? p lace ? c a p i t a l ? l a t i t u d e ? l ong i tude ?
proceed ings

WHERE
{
? r o l e swc : i sRoleAt eswc : 2 0 1 0 .
? r o l e swc : heldBy ? author .
? proceed ings swc : re latedToEvent eswc : 2 0 1 0 .
? paper swrc : author ? author .
? author f o a f : based near ? p lace .
? paper swc : i sPartOf ? proceed ings .
OPTIONAL
{
? p lace dbpedia : c a p i t a l ? c a p i t a l ;

geo : l a t ? l a t i t u d e ;
geo : long ? l ong i tude .

}
}
#−−−−−−−−−−−−−−−−−−−− C7 : SPARQL 1.1 −−−−−−−−−−−−−−−−−−−−−
SELECT DISTINCT ? author ? r o l e ? paper ? p lace ? c a p i t a l ? l a t i t u d e ? l ong i tude ?

proceed ings WHERE
{

SERVICE <swdf endpoint>
{
? r o l e swc : i sRoleAt eswc : 2 0 1 0 .
? r o l e swc : heldBy ? author .
? proceed ings swc : re latedToEvent eswc : 2 0 1 0 .
? paper swrc : author ? author .
? author f o a f : based near ? p lace .
? paper swc : i sPartOf ? proceed ings .
}

optional
{

SERVICE <dbpedia−subset endpoint>
{
? p lace dbpedia : c a p i t a l ? c a p i t a l ;
geo : l a t ? l a t i t u d e ;
geo : long ? l o n g i t i t u d e .
}

}
}

40

LargeRDFBench queries.

######################### C8: SPARQL 1.0 #########################
#For a l l the proceed ings o f ISWC along wi th proceed ing address and the l i s t o f

authors , t h e i r complete name , t h e i r corresponding pub l i c a t i on s ,
t h e i r a f f i l i a t i o n s and in which country they a c tua l l y based in with the optional

i n fo rmat ion o f c ap i t a l , language , government type , l e ade r name and populat ion
dens i ty o f t h e i r country .

SELECT DISTINCT ∗
WHERE
{
? paper swc : i sPartOf iswc : proceed ings .
i swc : proceed ings swrc : address ? proceedingAddress .
? paper swrc : author ? author .
? author swrc : a f f i l i a t i o n ? a f f i l i a t i o n ;
r d f s : l a b e l ? fu l lnames ;
f o a f : based near ? p lace .

OPTIONAL
{
? p lace dbpedia : c a p i t a l ? c a p i t a l ;

dbpedia : populat ionDens i ty ? populat ionDens i ty ;
dbpedia : governmentType ?governmentType ;
dbpedia : language ? language ;
dbpedia : l e a d e rT i t l e ? l e a d e rT i t l e .

}
}
#−−−−−−−−−−−−−−−−−−−− C8 : SPARQL 1.1 −−−−−−−−−−−−−−−−−−−−−
SELECT DISTINCT ∗ WHERE
{

SERVICE <swdf endpoint>
{
? paper swc : i sPartOf iswc : proceed ings .
i swc : proceed ings swrc : address ? proceedingAddress .
? paper swrc : author ? author .
? author swrc : a f f i l i a t i o n ? a f f i l i a t i o n ;
r d f s : l a b e l ? fu l lnames ;
f o a f : based near ? p lace .
}

optional
{

SERVICE <dbpedia−subset endpoint>
{
? p lace dbpedia : c a p i t a l ? c a p i t a l ;
dbpedia : populat ionDens i ty ? populat ionDens i ty ;

dbpedia : governmentType ?governmentType ;
dbpedia : language ? language ;
dbpedia : l e a d e rT i t l e ? l e a d e rT i t l e .
}

}
}

41

LargeRDFBench queries.

######################### C9: SPARQL 1.0 #########################
#For a l l drugs in DBpedia , f i nd a l l drugs they i n t e r a c t wi th each other , a long wi th

the d e t a i l s o f the i n t e r a c t i on , wi th op t i ona l in format ion o f drug de s c r i p t i on ,
i t s s t r u c t u r e and casReg i s t r y Number f o r one o f the i n t e r a c t e d drug t ha t a f f e c t s
hummans and mammals .

SELECT ∗
WHERE
{
?Drug rd f : type dbpedia : Drug .
?drugbankDrug owl : sameAs ?Drug .
? InteractionName drugbank : in te rac t i onDrug1 ?drugbankDrug .
? InteractionName drugbank : in te rac t i onDrug2 ?drugbankDrug2 .
? InteractionName drugbank : t ex t ? I n tE f f e c t
OPTIONAL
{
?drugbankDrug drugbank : a f fectedOrganism 'Humans and other mammals ' ;
drugbank : d e s c r i p t i o n ? d e s c r i p t i o n ;
drugbank : s t r u c tu r e ? s t r u c tu r e ;
drugbank : casRegistryNumber ? casRegistryNumber
}
}
ORDERBY (? drugbankDrug)
LIMIT 100
#−−−−−−−−−−−−−−−−−−−− C9 : SPARQL 1.1 −−−−−−−−−−−−−−−−−−−−−
SELECT ∗ WHERE
{

SERVICE <dbpedia−subset endpoint> { ?Drug rd f : type dbpedia : Drug .}
SERVICE <drugbank endpoint>
{
?drugbankDrug owl : sameAs ?Drug .
? InteractionName drugbank : in te rac t i onDrug1 ?drugbankDrug .
? InteractionName drugbank : in te rac t i onDrug2 ?drugbankDrug2 .
? InteractionName drugbank : t ex t ? I n tE f f e c t
}

optional
{

SERVICE <drugbank endpoint>
{
?drugbankDrug drugbank : a f fectedOrganism 'Humans and other mammals ' ;
drugbank : d e s c r i p t i o n ? d e s c r i p t i o n ;
drugbank : s t r u c tu r e ? s t r u c tu r e ;
drugbank : casRegistryNumber ? casRegistryNumber
}

}
}
order by (? drugbankDrug)
l imit 100

42

LargeRDFBench queries.

######################### C10: SPARQL 1.0 #########################
#Get c l i n i c a l in format ion about TCGA pa t i e n t a long wi th drug and l o c a t i o n

in format ion .
SELECT DISTINCT ? pa t i en t ? gender ? country ? popDensity ?drugName ? i nd i c a t i o n ?

formula ?compound
WHERE
{
? u r i tcga : b c r pa t i en t ba r code ? pa t i en t .
? pa t i en t tcga : gender ? gender .
? pa t i en t dbpedia : country ? country .
? country dbpedia : populat ionDens i ty ? popDensity .
? pa t i en t tcga : bcr drug barcode ? drugbcr .
? drugbcr tcga : drug name ?drugName .
?drgBnkDrg drugbank : genericName ?drugName .
?drgBnkDrg drugbank : i n d i c a t i o n ? i nd i c a t i o n .
?drgBnkDrg drugbank : chemicalFormula ? formula .
?drgBnkDrg drugbank : keggCompoundId ?compound .
}
#−−−−−−−−−−−−−−−−−−−− C10 : SPARQL 1.1 −−−−−−−−−−−−−−−−−−−−−
SELECT DISTINCT ? pa t i en t ? gender ? country ? popDensity ?drugName ? i nd i c a t i o n ?

formula ?compound ?ChemicalEquation ? Reac t i onTi t l e
WHERE
{

SERVICE <LinkedTCGA−A endpoint>
{
? u r i tcga : b c r pa t i en t ba r code ? pa t i en t .
? pa t i en t tcga : gender ? gender .
? pa t i en t dbpedia : country ? country .
? pa t i en t tcga : bcr drug barcode ? drugbcr .
? drugbcr tcga : drug name ?drugName .
}
SERVICE <dbpedia−subset endpoint> {? country dbpedia : populat ionDens i ty

? popDensity .}
SERVICE <drugbank endpoint>
{
?drgBnkDrg drugbank : genericName ?drugName .
?drgBnkDrg drugbank : i n d i c a t i o n ? i nd i c a t i o n .
?drgBnkDrg drugbank : chemicalFormula ? formula .
?drgBnkDrg drugbank : keggCompoundId ?compound .
}

}

43

LargeRDFBench queries.

######################### L1: SPARQL 1.0 #########################
#Get the exon and gene expre s s i on va l u e s f o r TCGA pa t i e n t no . TCGA−37−3789.
SELECT ? expValue
WHERE
{
{
? s tcga : b c r pa t i en t ba r code <http :// tcga . d e r i . i e /TCGA−37−3789>.
<http :// tcga . d e r i . i e /TCGA−37−3789> tcga : r e s u l t ? r e s u l t s .
? r e s u l t s tcga :RPKM ?expValue .
}

UNION
{
? u r i tcga : b c r pa t i en t ba r code <http :// tcga . d e r i . i e /TCGA−37−3789>.
<http :// tcga . d e r i . i e /TCGA−37−3789> tcga : r e s u l t ? geneResu l t s .
? geneResu l t s tcga : s c a l e d e s t ima t e ? expValue .
}

}
#−−−−−−−−−−−−−−−−−−−− L1 : SPARQL 1.1 −−−−−−−−−−−−−−−−−−−−−
SELECT ? expValue
WHERE
{
{
SERVICE <LinkedTCGA−E endpoint>
{
? s tcga : b c r pa t i en t ba r code <http :// tcga . d e r i . i e /TCGA−37−3789>.
<http :// tcga . d e r i . i e /TCGA−37−3789> tcga : r e s u l t ? r e s u l t s .
? r e s u l t s tcga :RPKM ?expValue .
}
}

UNION
{
SERVICE <LinkedTCGA−A endpoint>
{
? u r i tcga : b c r pa t i en t ba r code <http :// tcga . d e r i . i e /TCGA−37−3789>.
<http :// tcga . d e r i . i e /TCGA−37−3789> tcga : r e s u l t ? geneResu l t s .
? geneResu l t s tcga : s c a l e d e s t ima t e ? expValue .
}
}

}
######################### L2: SPARQL 1.0 #########################
Get the tumor type and Exon va l u e s f o r a l l the p a t i e n t having lung cancer and

tumor we igh t l e s s than 56.
SELECT DISTINCT ? pa t i en t ?tumorType ? exonValue
WHERE
{
? s tcga : b c r pa t i en t ba r code ? pa t i en t .
? pa t i en t tcga : d i sease acronym <http :// tcga . d e r i . i e / lusc >.
? pa t i en t tcga : tumor weight ?weight .
? pa t i en t tcga : tumor type ?tumorType .
? pa t i en t tcga : r e s u l t ? r e s u l t s .
? r e s u l t s tcga :RPKM ?exonValue .
FILTER(? weight <= 55)
}

44

LargeRDFBench queries.

#−−−−−−−−−−−−−−−−−−−− L2 : SPARQL 1.1 −−−−−−−−−−−−−−−−−−−−−
SELECT DISTINCT ? pa t i en t ?tumorType ? exonValue
WHERE
{
SERVICE <LinkedTCGA−A endpoint>
{

? s tcga : b c r pa t i en t ba r code ? pa t i en t .
? pa t i en t tcga : d i sease acronym <http :// tcga . d e r i . i e / lusc >.
? pa t i en t tcga : tumor weight ?weight .
? pa t i en t tcga : tumor type ?tumorType .
}
SERVICE <LinkedTCGA−E endpoint>
{
? pa t i en t tcga : r e s u l t ? r e s u l t s .
? r e s u l t s tcga :RPKM ?exonValue .
}

FILTER(? weight <= 55)
}
######################### L3: SPARQL 1.0 #########################
Get the methy la t ion va l u e s f o r a l l the p a t i e n t s who have been t r e a t e d drug ”

Tarceva” and they d ied wh i l e a t i n i t i a l p a t h o l o g i c d i a gno s i s age o f l e s s than
52.

WHERE
{
? s tcga : b c r pa t i en t ba r code ? pa t i en t .
? pa t i en t tcga : v i t a l s t a t u s ”Dead” .
? pa t i en t tcga : bcr drug barcode ?drug .
?drug tcga : drug name ”Tarceva” .
? pa t i en t tcga : a g e a t i n i t i a l p a t h o l o g i c d i a g n o s i s ? age .
? pa t i en t tcga : r e s u l t ? r e s u l t s .
? r e s u l t s tcga : be ta va lue ?methylat ionValue .
FILTER(? age <= 51)
}
ORDERBY (? pa t i en t)
#−−−−−−−−−−−−−−−−−−−− L3 : SPARQL 1.1 −−−−−−−−−−−−−−−−−−−−−
SELECT ? pa t i en t ?methylat ionValue
WHERE
{

SERVICE <LinkedTCGA−A endpoint>
{

? s tcga : b c r pa t i en t ba r code ? pa t i en t .
? pa t i en t <http :// tcga . d e r i . i e /schema/ v i t a l s t a t u s> ”Dead” .
? pa t i en t tcga : bcr drug barcode ?drug .
?drug tcga : drug name ”Tarceva” .
? pa t i en t <http :// tcga . d e r i . i e /schema/ a g e a t i n i t i a l p a t h o l o g i c d i a g n o s i s > ?

age .
}
SERVICE <LinkedTCGA−M endpoint>

{
? pa t i en t tcga : r e s u l t ? r e s u l t s .
? r e s u l t s tcga : be ta va lue ?methylat ionValue .
}

FILTER(? age <= 51)
}
ORDERBY (? pa t i en t)

45

LargeRDFBench queries.

######################### L4: SPARQL 1.0 #########################
#Get the exp re s s i on va l u e s f o r a l l the p a t i e n t s e i t h e r be long to Bra z i l or Argentina

. SELECT ? expres s ionVa lues
WHERE
{
{
? u r i tcga : b c r pa t i en t ba r code ? pa t i en t .
? pa t i en t dbpedia : country ? country .
? pa t i en t tcga : r e s u l t ? r e s u l t s .
? r e s u l t s tcga : reads per mil l ion miRNA mapped ? expre s s i onVa lues .
}

UNION
{
? s tcga : b c r pa t i en t ba r code ? pa t i en t .
? pa t i en t dbpedia : country ? country .
? pa t i en t tcga : r e s u l t ? exonResults .
? exonResults tcga :RPKM ? expre s s i onVa lues .
}

FILTER REGEX(? country , ” Bra z i l | Argentina ” , ” i ”)
}
#−−−−−−−−−−−−−−−−−−−− L4 : SPARQL 1.1 −−−−−−−−−−−−−−−−−−−−−
SELECT ? expre s s i onVa lues
WHERE
{
{
SERVICE <LinkedTCGA−A endpoint>
{

? u r i tcga : b c r pa t i en t ba r code ? pa t i en t .
? pa t i en t dbpedia : country ? country .
? pa t i en t tcga : r e s u l t ? r e s u l t s .
? r e s u l t s tcga : reads per mil l ion miRNA mapped ? expre s s i onVa lues .
FILTER REGEX(? country , ” Bra z i l | Argentina ” , ” i ”)
}
}

UNION
{
SERVICE <LinkedTCGA−A endpoint>
{
? pa t i en t dbpedia : country ? country .
? s tcga : b c r pa t i en t ba r code ? pa t i en t .
FILTER REGEX(? country , ” Bra z i l | Argentina ” , ” i ”)
}
SERVICE <LinkedTCGA−E endpoint>
{

? pa t i en t tcga : r e s u l t ? exonResults .
? exonResults tcga :RPKM ? expre s s i onVa lues .
}
}

}

46

LargeRDFBench queries.

######################### L5: SPARQL 1.0 #########################
#Get the methy la t ion va l u e s f o r CNTNAP2 gene o f a l l t he cancer p a t i e n t s .
SELECT ?methylationCNTNAP2
WHERE
{
? s a f f ymet r i x : x−symbol <http :// b i o2 rd f . org /symbol :CNTNAP2>.
? s a f f ymet r i x : x−gene id ? geneId .
? geneId rd f : type tcga : exp r e s s i on gene l ookup .
? geneId tcga : chromosome ? lookupChromosome .
? geneId tcga : s t a r t ? s t a r t .
? geneId tcga : stop ? stop .
? u r i tcga : b c r pa t i en t ba r code ? pa t i en t .
? pa t i en t tcga : r e s u l t ? recordNo .
? recordNo tcga : chromosome ?chromosome .
? recordNo tcga : p o s i t i o n ? po s i t i o n .
? recordNo tcga : be ta va lue ?methylationCNTNAP2 .
FILTER (? p o s i t i o n >= ? s t a r t && ? po s i t i o n <= ? stop && str (? chromosome) = str (?

lookupChromosome))
}

#−−−−−−−−−−−−−−−−−−−− L5 : SPARQL 1.1 −−−−−−−−−−−−−−−−−−−−−
SELECT ?methylationCNTNAP2
WHERE
{

SERVICE <a f f ymet r i x endpoint>
{

? s a f f ymet r i x : x−symbol <http :// b i o2 rd f . org /symbol :CNTNAP2>.
? s a f f ymet r i x : x−gene id ? geneId .
}
SERVICE <LinkedTCGA−A endpoint>

{
? geneId rd f : type tcga : exp r e s s i on gene l ookup .
? geneId tcga : chromosome ? lookupChromosome .
? geneId tcga : s t a r t ? s t a r t .
? geneId tcga : stop ? stop .
}
SERVICE <LinkedTCGA−M endpoint>

{
? u r i tcga : b c r pa t i en t ba r code ? pa t i en t .
? pa t i en t tcga : r e s u l t ? recordNo .
? recordNo tcga : chromosome ?chromosome .
? recordNo tcga : p o s i t i o n ? po s i t i o n .
? recordNo tcga : be ta va lue ?methylationCNTNAP2 .
}

FILTER (? p o s i t i o n >= ? s t a r t && ? po s i t i o n <= ? stop && str (? chromosome) = str (?
lookupChromosome))

}

47

LargeRDFBench queries.

######################### L6: SPARQL 1.0 #########################
#Descr ip t i on : For a l l cancer pa t i en t s , g e t the genomic l o c a t i o n s and corresponding

gene expre s s i on va l u e s f o r chromosome a s s o c i a t e d wi th KRAS gene .
SELECT DISTINCT ? pa t i en t ? s t a r t ? stop ?geneExpVal
WHERE
{

? s a f f ymet r i x : x−symbol <http :// b i o2 rd f . org /symbol :KRAS>.
? s a f f ymet r i x : x−gene id ? geneId .
? geneId rd f : type tcga : exp r e s s i on gene l ookup .
? geneId tcga : chromosome ? lookupChromosome .
? u r i tcga : b c r pa t i en t ba r code ? pa t i en t .
? pa t i en t tcga : r e s u l t ? recordNo .
? recordNo tcga : chromosome ?chromosome .
? recordNo tcga : s t a r t ? s t a r t .
? recordNo tcga : stop ? stop .
? recordNo tcga : s c a l e d e s t ima t e ?geneExpVal
FILTER (str (? lookupChromosome)= str (? chromosome))

}
#−−−−−−−−−−−−−−−−−−−− L6 : SPARQL 1.1 −−−−−−−−−−−−−−−−−−−−−
SELECT DISTINCT ? pa t i en t ? s t a r t ? stop ?geneExpVal
WHERE
{

SERVICE <a f f ymet r i x endpoint>
{

? s a f f ymet r i x : x−symbol <http :// b i o2 rd f . org /symbol :KRAS>.
? s a f f ymet r i x : x−gene id ? geneId .
}

SERVICE <LinkedTCGA−A endpoint>
{

? geneId rd f : type tcga : exp r e s s i on gene l ookup .
? geneId tcga : chromosome ? lookupChromosome .
? u r i tcga : b c r pa t i en t ba r code ? pa t i en t .
? pa t i en t tcga : r e s u l t ? recordNo .
? recordNo tcga : chromosome ?chromosome .
? recordNo tcga : s t a r t ? s t a r t .
? recordNo tcga : stop ? stop .
? recordNo tcga : s c a l e d e s t ima t e ?geneExpVal
}

FILTER (str (? lookupChromosome)= str (? chromosome))
}

48

LargeRDFBench queries.

######################### L7: SPARQL 1.0 #########################
#Find the c l i n i c a l a l i q u o t data f o r a l l the p a t i e n t s b e l ong ing to those coun t r i e s

wi th popu la t i on den s i t y g r ea t e r than 31.
SELECT DISTINCT ? pa t i en t ?p ?o
WHERE
{
? u r i tcga : b c r pa t i en t ba r code ? pa t i en t .
? pa t i en t dbpedia : country ? country .
? country dbpedia : populat ionDens i ty ? popDensity .
? pa t i en t tcga : b c r a l i quo t ba r c od e ? a l i quo t .
? a l i quo t ?p ?o .
FILTER(? popDensity >= 32)
}
#−−−−−−−−−−−−−−−−−−−− L7 : SPARQL 1.1 −−−−−−−−−−−−−−−−−−−−−
SELECT DISTINCT ? pa t i en t ?p ?o
WHERE
{

SERVICE <LinkedTCGA−A endpoint>
{

? u r i tcga : b c r pa t i en t ba r code ? pa t i en t .
? pa t i en t dbpedia : country ? country .
}
SERVICE <http :// dbpedia−subset endpoint> { ? country dbpedia :

populat ionDens i ty ? popDensity . }
SERVICE <LinkedTCGA−A endpoint>

{
? pa t i en t tcga : b c r a l i quo t ba r c od e ? a l i quo t .
? a l i quo t ?p ?o .

}
FILTER(? popDensity >= 32)
}
######################### L8: SPARQL 1.0 #########################
#Get the o u t l i e r s e xp re s s i on va l u e s f o r TCGA pa t i e n t TCGA−D9−A1X3.
SELECT ?chromosome ? expres s ionValue
WHERE
{
{
? u r i tcga : b c r pa t i en t ba r code <http :// tcga . d e r i . i e /TCGA−D9−A1X3> .
<http :// tcga . d e r i . i e /TCGA−D9−A1X3> tcga : r e s u l t ? recordNo .
? recordNo tcga : chromosome ?chromosome .
? recordNo tcga : p r o t e i n e xp r e s s i o n va l u e ? expres s ionValue .
}
UNION
{
? s tcga : b c r pa t i en t ba r code <http :// tcga . d e r i . i e /TCGA−D9−A1X3> .
<http :// tcga . d e r i . i e /TCGA−D9−A1X3> tcga : r e s u l t ? r e s u l t s .
? r e s u l t s tcga : chromosome ?chromosome .
? r e s u l t s tcga : be ta va lue ? expres s ionValue .
}
FILTER (? expres s ionValue > 0 . 05)
}

49

LargeRDFBench queries.

#−−−−−−−−−−−−−−−−−−−− L8 : SPARQL 1.1 −−−−−−−−−−−−−−−−−−−−−
SELECT ?chromosome ? expres s ionValue
WHERE
{
{

SERVICE <LinkedTCGA−A endpoint>
{

? u r i tcga : b c r pa t i en t ba r code <http :// tcga . d e r i . i e /TCGA−D9−A1X3> .
<http :// tcga . d e r i . i e /TCGA−D9−A1X3> tcga : r e s u l t ? recordNo .
? recordNo tcga : chromosome ?chromosome .
? recordNo tcga : p r o t e i n e xp r e s s i o n va l u e ? expres s ionValue .
}

}
UNION
{

SERVICE <LinkedTCGA−M endpoint>
{

? s tcga : b c r pa t i en t ba r code <http :// tcga . d e r i . i e /TCGA−D9−A1X3> .
<http :// tcga . d e r i . i e /TCGA−D9−A1X3> tcga : r e s u l t ? r e s u l t s .
? r e s u l t s tcga : chromosome ?chromosome .
? r e s u l t s tcga : be ta va lue ? expres s ionValue .
}

}
FILTER (? expres s ionValue > 0 . 05)
}

50

	Introduction
	Background
	Related work
	Benchmark Description
	Benchmark Datasets
	Cross-domain Datasets
	Life Sciences Domain
	Large Data: Linked TCGA

	Benchmark Queries
	Simple Queries
	Complex Queries
	Large Data Queries

	Performance Metrics
	Benchmark Usage

	Evaluation
	Experimental Setup
	SPARQL 1.0 Experimental Results
	Index Construction Time and Compression Ratio
	Efficiency of Source Selection
	Completeness and Correctness of Result Sets
	Query Execution Time
	Number of Endpoint Requests

	SPARQL 1.1 Experimental Results
	Effect of SPARQL Features on Runtime Performance

	Conclusion
	Acknowledgement

