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Abstract 

 Advances are presented in the modelling of facial sub-regions, in the use of 

enhanced whole face-models, and based on these sub-region models, in the 

determination of facial expressions. Models are derived using techniques from the 

field of active appearance modelling (AAM). A technical description and review of 

such techniques and a number of additional state-of-art techniques for face detection 

and face region analysis are provided. A detailed literature review covering a range of 

topics relating to facial expression analysis is provided. In particular the prior use of 

AAM techniques for facial feature extraction is reviewed. A range of methodologies 

for classifying facial expressions are also reviewed. Improved eye-region and lips-

region models are presented. These models employ the concept of overlapping 

landmark points, enabling the resulting models to handle eye-gaze, different degrees 

of closure of the eye, and texture variations in the lips due to the appearance of teeth 

when the mouth opens in a smile. The eye model is further improved by providing a 

component-AAM implementation enabling independent modelling of the state of each 

eye. Initialisation of the lips model is improved using a hue-based pre-filter. A whole-

face component-AAM model is provided, combining the improved eye and lips 

models in an overall framework which significantly increases the accuracy of fitting 

of the AAM to facial expressions. A range of experiments are performed to tune and 

test this model for the purpose of the accurate classification of facial expressions in 

unseen images. Both nearest neighbour (NN) and support vector machine (SVM) 

classification methodologies are used. Testing of the system to classify the six 

universal emotions and the neutral face state shows that an accuracy of 83% can be 

achieved when using SVM classification. Preliminary investigations on additional 

enhancements to improve on this performance are provided, including the use of (i) 

pre-filters for gender, race, and age, (ii) person-specific AAM models, and (iii) 

expression tracking across multiple images in a video sequence. All of these 

techniques are shown to have potential to further enhance the accuracy of expression 

recognition of the underlying component-AAM face model with eye and lips sub-

regional models. 
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Chapter 1 - Introduction 

1.1. Background and Motivations 

In the recent past, a digital camera was only able to capture images. Recently, 

however, face-tracking technology has become a common feature of consumer digital 

cameras. The most recent implementations feature hardware coded face tracking in an 

IP-core [1]. Applications to date have been limited to optimising the exposure and 

acquisition parameters of a final image [2]. Yet there are many additional applications 

which have even greater potential to enrich the user experience. 

 The rapid deployment of face tracking technology in cameras suggests that 

other more advanced face analysis techniques will soon become feasible and begin to 

offer even more sophisticated capabilities in such consumer devices. 

 The detailed analysis of facial expression is one such technique which can 

offer a wide range of new consumer applications for mobile and embedded devices. In 

the context of managing our personal image collections it is useful to be able to sort 

images according to the people in those images [3]. It would be even more useful if it 

were possible to determine their emotions and thus enable images to be further sorted 

and categorised according to the emotions of the subjects in an image. 

 Other consumer device applications also can gain from such capabilities. 

Many such devices now feature a camera facing the user, e.g. most mobile smart-

phones, and thus user-interfaces could respond directly to our facial expressions. An 

e-learning system could match its level of difficulty to the degree of puzzlement on 

the student's face. A home health system could monitor the level of pain from an 

elderly person's facial expression [4, 5]. Other domains such as entertainment and 

computer gaming, automotive [6], or security [7] can also benefit from such 

applications. As the underlying expression recognition technologies improve in 

accuracy, the range of applications will grow further. 

 The research undertaken in this thesis represents strategic medium-term 

research for the sponsoring company, FotoNation (Ireland) Ltd. This was originally 

focussed on face analysis and recognition techniques, and in particular on AAM facial 

models which represent practical technology that the company considered as having 

potential for commercialisation as a second-stage development of its in-camera face 
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tracking technology. As the research progressed it was realised that more 

sophisticated applications could be realised using AAM modelling techniques. 

 Thus the core research theme of this doctoral thesis began to emerge. After our 

initial successes with improving the underlying AAM face model it was decided to 

pursue studies of some more ambitious and sophisticated models to determine the 

practicalities of modelling of unconstrained faces with sufficient accuracy to enable a 

determination to be made of facial expressions. 

 For this research we have focussed on AAM modelling techniques, beginning 

with standard AAM face models and extending our techniques to encompass specific 

sub-models for the eye and lip regions and eventually combining these sub-models 

with a global face model to develop an improved component-based AAM model. 

When combined with a support vector decision framework, this approach 

demonstrates the potential of employing such component models for the robust and 

accurate determination of facial expression in unconstrained faces. 

1.2. Summary of Principle Contributions 

There are a number of main contributions arising from this research. Other secondary 

contributions will be described in Chapter 10. 

• In Chapter 6 we present independent sub-models for both eye and lips regions 

of the face. In particular the eye model employs the concept of overlapping key-points 

which enables our model to handle open, closed, and intermediate eye-states. A patent 

application (currently unpublished) directed to this aspect of the model has been filed. 

The AAM techniques are also used to model the mouth area together with a pre-

filtering technique. From our knowledge this approach was not used to independently 

model lips up to date. 

• In Chapter 8 a component AAM model is introduced employing both a global 

model and local sub-models based on the eye and lips models of Chapter 6. Although 

component AAM models are known in the literature their use with specialised eye 

and lips models represents an improvement over known techniques. 

• In Chapter 8 we investigate the optimal AAM parameters for modelling facial 

expressions and we discard the irrelevant or redundant ones. Our proposed design 

used the subset of model parameters which mainly encode expression information, 

discarding thus the information related to variability in pose and identity, leading to 
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more accurate expression recognition rates. Similar approach was proposed by us in 

[8], adapted though for face recognition use. 

1.3. Thesis Outline 

The thesis is structured in ten chapters starting with the introduction and concluding 

with the final chapter dedicated to conclusions and future directions of our research. 

Additionally there are four appendices included dedicated to algorithms and databases 

related to our work, and to several uses of our models. 

 

 Chapter 1 provides introductory information about our field of research and 

states the principal goals and hypothesis of this thesis. Novelties and main 

contributions are also described. 

 

 Chapter 2 is foundation art providing a concise introduction to a range of face 

modelling and analysis techniques. The goal of this chapter is to provide the reader 

with the necessary background knowledge to understand in detail the models and 

associated experiments presented in the later chapters of this thesis. Challenges that 

have to be addressed in order to build robust face expression recognition systems are 

also detailed. 

 Subsequent to our study, the Statistical Model of Appearance together with its 

search algorithm, Active Appearance Model (AAM), were determined to be the most 

suitable technique for our applications in view of the potential to optimise such 

models for use in embedded system and devices. 

 

 In Chapter 3 more specialised foundation art on the fundamentals of statistical 

models is introduced. The aim of Chapter 3 is to provide a background in AAM 

techniques to the reader. We cover the standard formulation of AAM and its state-of-

the-art extensions.  

 Firstly, we look into the construction of AAM. Each step of the technique is 

thoroughly explained. In addition we discuss some of the challenges and weaknesses 

of AAM techniques. We also consider some of the numerous extensions to AAM 

which are proposed in the literature to overcome these weaknesses. We conclude this 
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chapter by explaining the algorithm limitations and by summarising a number of the 

more important research references on the AAM state-of-the-art. 

 

 The purpose of Chapter 4 is to review published work that uses AAM in 

expression modelling, classification, and recognition. We search to understand to 

what extent is expression recognition influenced by gender, familiarity, symmetry, or 

expression intensity. This study helps us to better understand facial expression 

analysis and to identify its challenges. Particular attention to research which relates 

facial expressions to the underlying emotional states of a person is paid. 

 Then, the applicability of the method in the expression analysis field is 

surveyed. Various AAM extensions proposed in literature for still images are 

summarised. We searched partly to emphasise the novelty of certain techniques 

proposed in our work, by comparing it with the existing literature. Then, we survey 

expression classification and recognition based on AAM and compare results for 

different types of classifiers. We also describe research databases designed to provide 

facial images exhibiting a comprehensive range of expressions. 

 

 The main goal of our work is to be able to automatically analyse facial 

expressions. This task requires detailed facial feature models that accurately describe 

facial expressions. In Chapter 5, we adapt the AAM technique in order to develop 

robust models for the eyes and lips regions of the face as these are the most significant 

facial sub-regions which determine facial expression. 

 We begin our approach by verifying the performance of the standard AAM 

formulation when modelling eyes and lips. We then adapt the AAM in order to model 

these challenging facial features. The eye model should depict not only the eye 

appearance, but also states like the degree of closure of the eye or the angle of eye 

gaze. It would also be important to model the state of left and right eyes 

independently. Finally, a lips model should be able to handle challenges, such as the 

complex geometric variability of the lips and the varying textures of this region as the 

mouth opens and a person’s teeth are exposed. Then we test our initial AAM facial 

feature models, analysing their limitations. 
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 In Chapter 6, we propose extensions of our facial feature models, in order to 

solve the challenges of the standard AAM formulation and to make them robust to 

unseen facial variation. 

 In the first part of the chapter, we propose a component-based AAM adapted 

for the eye region. We then test the proposed model by means of some applications, 

such as an eye tracker and a blink detector. The second part of Chapter 6 is dedicated 

to an improved AAM lip model. We propose a hue filter along the AAM approach in 

order to obtain a better lip location. We test the lip model performance by means of 

some applications, such as a lip tracker and a smile detector. 

 

 In Chapter 7 detailed testing and comparisons of our modelling approaches 

are analysed. Their performance is analysed by comparing them with standard AAMs 

or by testing them in the context of several consumer applications. 

 

 In Chapter 8 we build on our earlier work to analyse the feasibility of 

integrating AAM techniques into an automatated facial expression analysis system. 

One of the key challenges of facial expression analysis is the extraction of relevant 

facial features. Our earlier work shows that AAM techniques are useful for analysis of 

both eye and mouth regions. Here we provide details of a comprehensive set of 

experiments on facial expression classification and recognition for still images and we 

propose a component-based AAM facial representation. We proceed to test the 

robustness of this framework to the deformations of typical unconstrained facial 

expressions. 

 Although the results presented at the end of Chapter 8 are very promising it is 

clear that additional improvements are desirable in order to achieve a truly robust and 

reliable facial expression analyser. 

 

 In Chapter 9 we propose a series of model refinements, to further enhance our 

face model. The first topic we consider is the potential to use a person-specific AAM. 

Such a model eliminates the variability between persons from the statistical model, 

enabling it to better model other sources of variability. Then, we describe how our 

approaches for still images can be extended to track and recognise expressions in a 

sequence of images using person-specific AAMs. Alternatives to our basic classifiers 
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are proposed with a view to improve expression analysis rates, such as gender, age, 

and racial classification additional criteria. 

 

 Finally, the conclusions are summarised in Chapter 10. Envisaged topics for 

further research are also suggested in this chapter. 
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Chapter 2 - Face Analysis Techniques 

This chapter provides a concise introduction to a range of face modelling and analysis 

techniques. The goal of this chapter is to provide the reader with the necessary 

background knowledge to understand in detail the models and associated experiments 

presented in the later chapters of this thesis. 

 We begin, in section 2.1 with an overview of the main components of a 

recognition system for facial expressions. In brief this system takes an image as input; 

said image is (i) scanned by a fast face detector; (ii) a more sophisticated face model 

is applied to any detected face regions, enabling the extraction of detailed facial 

features; (iii) these features are subsequently processed to enable a recognition or 

verification output. An overview of the face modelling module which is critical to 

accurate feature extraction is given in section 2.2. Three different techniques are 

studied and compared: Eigenfaces (section 2.2.1), deformable models (section 2.2.2), 

and 3-D techniques (section 2.2.3). Based on our study, we chose the most promising 

face modelling technique that best suited our end-goal of a system which might prove 

suitable for incorporation into an embedded imaging device. 

 A direct application of face modelling, which developed into the core of our 

research and forms the central theme of this thesis, is that of facial expression 

recognition. Section 2.3 defines the main concepts of facial expression modelling and 

provides an overview of existing techniques in facial expression recognition and the 

challenges that remain. 

 In section 2.4, other face analysis techniques related to our work are described. 

We outline the problem of face detection in unconstrained images and focus on the 

Viola-Jones algorithm which is regarded as state-of-art in face detection. This 

particular algorithm is used to determine a starting reference for our more 

sophisticated models, because of its reliable performance and accuracy. Then, 

similarities between face recognition and facial expression recognition are analysed. 

We briefly compare these two applications as they present similar challenges and 

share many common approaches. 
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2.1. System Overview 

A system that performs automatic face recognition or expression recognition typically 

is comprised of three main subsystems, as shown in Figure 2.1: (i) a face detection 

module, (ii) a feature extraction module, and (iii) a classification module which 

determines a similarity between the set of extracted features and a library of reference 

feature sets. Other filters or data pre-processing modules can be used between these 

main modules to improve the detection, feature extraction, or classification results. 

 
Figure 2.1. Steps to perform face recognition/facial expression recognition. 

 In the first module, it is decided whether the input picture or the input video 

sequence contains one or more faces. If so, then facial features are extracted from the 

detected faces, in our case by applying an advanced face model which encodes the 

facial features by a set of parameters. As a third step, the facial features – determined 

as a set of output parameters from the model - are classified in order to perform facial 

recognition or expression classification. 

 A more detailed overview of each module will be given in the remaining of 

this chapter. 

2.2. Face Modelling 

Faces are a rich source of information describing a person’s identity and behaviour. 

Therefore, faces are complex entities, exhibiting a great deal of variation in their 

appearance, i.e., shape and texture. 

 One of the key decisions in face modelling is how to represent a face in order 

to include a large range of viewing conditions? Human faces have been extensively 

studied in vision and graphics for a wide range of tasks from detection, tracking, 
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expression, animation, to non-photorealistic rendering, i.e., portrait and sketch. The 

selection of its representation and model depends on three factors: the objectives of 

the task at hand, the required precision, and the resolution of the observable face 

images. 

 In the next sections we are going to define and survey a subset of face 

modelling approaches, concluding of the remaining challenges in this field. 

2.2.1. Definition and Challenges in Face Modelling 

Facial feature extraction can be viewed as the task of finding some conceptual and 

relevant facial information from raw data, in our case the detected face. Face 

modelling deals with coding these facial features by a set of parameters. The coding is 

useful in order to reduce the quantity of facial information to transmit, usually over a 

channel with low capacity. The parameters should be decoded and synthesised in the 

receiver side of the system with reasonable image quality. 

 While humans are able to detect and localise faces almost effortlessly, an 

automatic system faces a large number of challenges that must be dealt with, in order 

to achieve a good accuracy [9-17]. These challenges are due to various factors that 

affect the way a face is perceived. We are going to enumerate the main challenges and 

cite solutions proposed in literature in order to solve these challenges. 

 

In-plane and Out-of-plane face orientation 

A face can appear in a wide range of out-of-plane, e.g., frontal, 45 degrees, profile, or 

in-plane rotations. Therefore a face appears in many different shapes in an image. The 

in-plane orientation is usually solved by a shape rotation comprised in the similarity 

transformation (section 3.3.1), when modelling faces [18]. For the out-of-plane issue, 

many solutions have been proposed, such as estimating the pose through a correlation 

model [11] or using a full 3-D face model [10]. 

 
Figure 2.2. Faces in different poses. 
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Illumination conditions 

The appearance of a face can change dramatically as the illumination conditions 

change. Due to the 3-D aspect of the face, direct illumination source can cast strong 

shadows and shading which affect certain facial features. It is well known that the 

variation due to illumination changes can be greater than the variation between 

individual faces. When side illumination is used, a part of the face is very bright while 

the other part is very dark. This can cause the occlusion of the darkest part of the face. 

Various methods have been proposed to overcome the illumination challenge. 

Examples include approximation of the human face surface with a Lambertian surface 

and computing a basis for a 3-D illumination subspace [9] or a geodesic illumination 

basis model [13]. 

 
Figure 2.3. The appearance of a face can change dramatically as the lighting conditions change. 

 

Facial expression 

Face appearance is directly affected by a person's facial expression. The appearance 

of a person who is laughing is significantly different from the appearance of the same 

person when is angry. In order to model faces independent of facial expression, 

researchers analyse geometric features [15], appearance features [14], or hybrids of 

the two types of features [17]. A more detailed discussion can be found in section 

2.3.3. 

 
Figure 2.4. Variation in face appearance caused by face expressions. 

 

Occlusions 

A face may be partially occluded by other objects or by itself, i.e., self-occlusion. A 

source of self-occlusion is the complex 3-D shape of the face itself. Elements partially 
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occluding faces can be a person standing in front of another or an object that is placed 

in front of the face. Also beards, moustaches, glasses, or scarves can cover facial 

features. Possible solutions to model occluded faces are including occluded faces in 

the training data [12] or using a Bayesian occluded model [16]. 

 
Figure 2.5. Examples of occluded faces. 

2.2.2. Main Approaches in Face Modelling 

Face modelling can be performed locally, i.e. using local regions of salient features, 

or as a global approach, i.e., using a whole face template. We now present a short 

review of the most significant work described in the literature. 

 Since the 1990s, with the introduction of the Eigenfaces approach [19], global 

methods have dominated face analysis research. Compared to the abundance of global 

methods, e.g., [19-23], only a few techniques have been proposed to perform local 

appearance-based face modelling, e.g., [24, 25]. 

 Comparisons between the two approaches have been made in the literature 

[26, 27]. From these comparisons, it appears that local approaches are generally 

superior to global approaches. Many of the sources of variability in facial appearance 

(listed in section 2.2.1) tend to cause great variation at global level between faces, 

where in a local representation scheme a change affects only the corresponding part of 

the representation and does not modify the facial representation as a whole.

 Despite this limitation, face modelling research has been focused mainly on 

global approaches [19-23]. 

 Local-feature based methods, as they are related to local regions of salient 

facial features, require a robust initialisation of these facial features. It is a non-trivial 

task to develop a precise eye/mouth detector [28, 29]. If the feature detection is not 

highly accurate, the error will propagate further to facial modelling and it will 

significantly affect the overall face modelling. 

 In the next sections, three global face modelling techniques will be analysed. 

We search for a technique that permits us to develop a detailed face model, capable of 
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detecting and measuring facial expression variations and that is robust to 

environmental changes, e.g., pose, illumination. 

2.2.2.1. Eigenfaces 

Eigenface [19], is commonly considered as the baseline technique for face modelling, 

particularly in the field of person recognition. It is based on Principal Components 

Analysis (PCA) techniques [30]. The Eigenface approach aims to find the principal 

components of a distribution of a set of face images, or the eigenvectors of the 

covariance matrix of a set of face images. These eigenvectors can be thought of as a 

set of features which together characterise the variation between face images. As the 

first few 2D eigenvectors retain the global shape and appearance of a face region they 

are known as eigenfaces (see Figure 2.6). 

 
Figure 2.6. Eigenfaces, as presented in [19]: the average face on the left, followed by seven top 

eigenfaces. 

 Every face image is projected, after subtracting the mean face, into the 

principal subspace. The coefficients of the PCA expansion are averaged for each 

subject, resulting in a single representation of that subject. So, each face image in the 

training set can be reconstructed exactly as a linear combination of the eigenfaces 

determined from the PCA. 

 Face recognition, i.e., the ability to recognise people by their facial 

characteristics, is the source of motivation behind the creation of eigenfaces [19]. 

2.2.2.2. Deformable Models: Definitions and Main Approaches 

Among global approaches, deformable models offer a unique and powerful approach 

to image analysis that combines geometry, physics, and approximation theory. They 

exploit bottom-up constraints derived from the image data together with top-down a 

priori knowledge about the location, size, and shape of the object being modelled. 

 A number of deformable modelling techniques which are specifically targeted 

at the human face have evolved. These include shape and/or appearance models, e.g., 

Snakes, Active Shape Model (ASM), Active Appearance Model (AAM), and 3-D 
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Morphable Models (3DMM). Each of these particular techniques will be described in 

detail and considered in the context of our research in the remainder of this section. 

 

Deformable modelling approaches 

In general, deformable models can be divided into two categories: implicit models 

and explicit models, or more exactly free-form models and parametric models. 

 Free-form models can represent any arbitrary shapes as long as some general 

regularisation constraint, such as continuity or smoothness, is satisfied. They are also 

called Active Contours. 

 Parametric models are capable of encoding a specific characteristic shape and 

its variation. The shape is characterised by a parametric formula and by modes of 

deformation. For a detailed review, please refer to the survey paper by [31]. 

 A popular and well-known class of deformable model is that of Snakes or 

deformable contour models [23]. Snakes are planar deformable contours that are 

useful in several image analysis tasks. They are often used to approximate the 

locations and shapes of object boundaries in images based on the reasonable 

assumption that boundaries are piecewise continuous or smooth. Snakes can deform 

to match any smooth contour. They are best suited as an aid in manual segmentation, 

since they have no a priori knowledge of the domain. 

 A smart Snake algorithm, as it has been called, is the Active Shape Model 

(ASM) [20]. ASM is a statistical model describing the shape of an object which 

iteratively deforms to fit to an example of the object in a new image. The shapes are 

constrained by the Point Distribution Model (PDM) [22] to vary only in ways seen in 

a training set of labelled examples. The model is able to capture the natural variability 

within a class of shapes. It includes this large range of variability, but it is still specific 

to the class it represents. 

 The key difference between Snakes and ASM is that the latter can only deform 

in ways consistent with the data in the training set. The ASM fitting algorithm aims to 

match the model to a new image. It iteratively looks in the image around each point 

for a better position for that point and it updates the model parameters to best match 

these new found positions. 

 A direct extension of the ASM approach has lead to the Active Appearance 

Models (AAM). In ASM, the feature model is 1-D profile texture feature around every 

feature point. In AAM, the global appearance model is introduced to conduct the 



 36

optimisation of shape parameters. AAM is a generalisation of ASM, but uses all the 

information in the image region covered by the target object, rather than just that near 

modelled edges. Generally speaking, ASM outperforms AAM in shape localisation 

accuracy and it is more robust to illumination, but has local minima problems. AAM 

is sensitive to illumination and a noisy background, but can get optimal global texture. 

In essence AAM can be seen as a successful combination between the ideas of 

Eigenfaces [19], PDM [22], and ASM [20], with some ingenious refinements. 

2.2.2.3. 3-D Models 

3-D modelling of data in pattern recognition tasks has been largely considered as a 

means to overcome variations in pose and illumination [32]. The 3-D facial data can 

provide more geometric information for face modelling than that of 2-D images. With 

the development of 3-D acquisition system, 3-D capture has become significantly 

faster and cheaper, and techniques based on 3-D information are attracting much 

attention [33]. 

 One of the most common 3-D approaches is called Morphable Modelling 

(3DMM) [2]. Blanz and Vetter derive the 3DMM by transforming the shape and 

texture of 3-D face examples into a vector space representation. New faces and 

expressions can be modelled by linearly combining face prototypes or by varying 

attributes of a single face (see Figure 2.7). In their method, 3-D faces can either be 

generated automatically from one or more photographs, as in [34], or modelled 

directly by a set of 3-D range scans. 

 
Figure 2.7. 3-D variation of facial attributes of a single face [10]. The appearance of an original 

face can be changed by adding or subtracting shape and texture vectors specific to the attribute. 



 37

2.2.3. Comparison of Facial Models 

It is almost two decades since Eigenfaces [19] first came to the attention of the 

computer vision research community. Since its introduction, many other 2-D or 3-D 

techniques or extensions of the Eigenfaces [35] have been proposed. Two other 

important techniques are presented in section 2.2.2.2, and, respectively, 2.2.2.3. 

 Since their introduction, 2-D deformable models became popular among 

researchers. The deformable models adapt themselves to fit the given data. They are 

more powerful than rigid models, due to their capability to deal with shape 

deformations and variations. 

 A comparison between the 2-D and 3-D face models is performed in [36] 

along three axes: representational power, construction, and real-time fitting. The 

authors conclude that, overall, 3-D models are preferable to 2-D models. From their 

experiments, they demonstrated that the 3-D parameterisation is more compact, i.e., 

up to six times fewer parameters, and more natural, i.e., head pose and non-rigid 

shape deformation are separated. 3-D model fitting is more robust and requires fewer 

iterations to converge; also 3-D occlusion reasoning is more powerful. 

 In the same study [36], it is nevertheless concluded that, in practice, the 

differences between 2-D and 3-D models are not as great as is frequently claimed. 

Ignoring the size of the model and assuming a scaled orthographic camera, the 2-D 

models have the same representational power as 3-D models. Separating the head 

pose from the non-rigid head shape deformation in 2-D is possible, and approximate 

occlusion reasoning is achievable. 

 The one limitation of 2-D models that is hard to avoid is that their fitting is 

inherently less robust than of the 3-D models [36]. 

 However, a significant negative aspect of a 3-D representation is that it 

requires a 3-D acquisition system or methodology to obtain 3-D data from 2-D data 

[34]. Also few 3-D face databases [37] are publicly available and the number of 

subjects in existing databases is limited, and the quality is somewhat inconsistent. 

 

 Now, the choice of the face modelling technique is taken in function of its 

suitability for the type of the applications desired by the user. As explained in the 

introductory chapter our research is funded by FotoNation (Ireland) and its parent 

corporation, Tessera Inc. As a consequence our research was targeted to investigate 
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approaches which have potential value for consumer electronic devices, e.g., we wish 

to embed our face models in smart digital cameras for various applications, such as 

face recognition or facial expression recognition. 

 AAM is recommended by its wide applicability, compact representation of 

variations of the model, speed, accuracy, and robustness. Another main advantage of 

AAM, when compared to other 2-D techniques, is that it removes noise [36]. In the 

same paper [36] it is stated that the noise removal in the AAM process and its ability 

to use far more data in the training process, dramatically improve a system 

performance. Also, AAM can be relatively easily implemented in consumer 

applications [38], hence our choice to use AAM as a basis for the research activities 

described in the remainder of this thesis. 

 In the next section, we present an overview of facial expression modelling 

techniques and, in particular, we consider the suitability of AAM to model facial 

expressions. 

2.3. Facial Expression Modelling 

In the previous section we explained some of the complexities of human facial 

appearance and surveyed techniques of face modelling. Complexity in facial 

appearance can be caused, among other factors, by facial expression variations. It is 

well-known that even the simplest of facial expressions, e.g. a wink, creates many 

changes in the facial pattern. AAM was chosen to model facial appearance. Is this 

technique also suitable to model facial expression variations? 

 In the current section we define terms related to facial expressions (section 

2.3.1), discuss challenges in modelling facial expression variations (section 2.3.2), 

and survey facial expression modelling techniques (section 2.3.3). Subsequent to our 

research, we chose AAM as the most appropriate technique for our face expression 

analysis system and for our applications (section 2.3.4). 

2.3.1. Definitions of Facial Expression Related Terms 

It is important to emphasise from the beginning that there is a distinction from a 

computer vision point of view between facial expression recognition and human 

emotion recognition. As Fasel and Luettin explain [39], the former deals with the 

classification of facial motion and facial feature deformation into abstract classes 
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based on visual information. The latter is a result of many different factors and it can 

be revealed on more channels, e.g., voice, pose, gestures, gaze direction, and facial 

expression. To match a facial expression with an emotion implies knowledge of the 

categories of human emotions into which expressions can be assigned. 

 Researchers focused their attention on a coding system for facial expressions. 

Facial Action Coding System (FACS), originally developed by Ekman and Friesen in 

1976 [40], is the most widely used coding system in the behavioural sciences. The 

system was originally developed by analysing video footage of a range of individuals 

and associating facial appearance changes with contractions of the underlying 

muscles. 

 The outcome was an encoding of 44 distinct action units (AUs), i.e., 

anatomically related to contraction of specific facial muscles, each of which is 

intrinsically related to a small set of localised muscular activations. Using FACS, one 

can manually code nearly any anatomically possible facial expression, decomposing it 

into the specific AUs and their temporal segments that produced the expression. All 

resulting expressions can be described using the 44 AUs described by Ekman or a 

combination of the 44 AUs. In 2002, a new version of FACS is published, with large 

contributions by Joseph Hager [41]. 

 Ekman and Friesen [42] have also postulated six primary emotions which they 

consider to be universal across human ethnicities and cultures. These six universal 

emotions, commonly referred as basic emotions are: happiness, anger, surprise, 

disgust, fear, and sadness (Figure 2.8). The leading study of Ekman and Friesen [42] 

formed the origin of facial expression analysis, when the authors proclaimed that the 

six basic prototypical facial expressions are recognised universally. Most of the 

researchers argue that these expressions categories are not sufficient to describe all 

facial expressions in detail. However, most of the existing facial expression analysers 

still use Ekman and Friesen’s theory. 
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Figure 2.8. On each row are represented the six universal facial expressions (in order, anger, 

happiness, neutral, surprise, fear, sadness, and disgust) and the neutral state, as expressed by 

different subjects. 

 There is a connection between FACS and the basic emotions. Each basic 

emotion was described by Ekman and Friesen [43] using specific cues describing 

facial activity. This description is summarised in Table 2.1. 

 In our work, we will study expression recognition using these basic emotions 

categories. The choice of decoding the six universal emotions is based on the 

straightforwardness of the universal emotions compared to FACS. Also, the analysis 

of the universal emotions gives us the possibility to evaluate our work versus the work 

of other researchers who use the same framework. 

 In our work, we consider each of a particular class of facial expressions as the 

source or direct representation of the equivalent human emotional state. Thus the 

terms “facial expression” and “facial emotion” are used interchangeably throughout 

the remainder of this thesis. 
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TABLE 2.1. CUES FOR FACIAL EMOTIONS DETAILED BY EKMAN AND FRIESEN [43]. 

Emotion Observed facial cues 

Surprise Brows raised (curved and high) 

Skin below brow stretched 

Horizontal wrinkles across forehead 

Eyelids opened and more of the white of the eye is visible 

Jaw drops open without tension or stretching of the mouth 

Fear Brows raised and drawn together 

Forehead wrinkles drawn to the centre 

Upper eyelid is raised and lower eyelid is drawn up 

Mouth is open 

Lips are slightly tensed or stretched and drawn back 

Disgust Upper lip is raised 

Lower lips is raised and pushed up to upper lip or is lowered and slightly protruding 

Nose is wrinkled 

Cheeks are raised 

Lines below the lower lid, lid is pushed up, but not tensed 

Brows are lowered, lowering the upper lid 

Anger Brows lowered and drawn together 

Vertical lines appear between brows 

Lower lid is tensed and may or may not be raised 

Upper lid is tensed and may or may not be lowered due to brows’ action 

Eyes have a hard stare and may have a bulging appearance 

Lips are either pressed firmly together with corners straight or down, or are open, tense in 

a squarish shape 

Nostrils may be dilated (could occur in sadness too) 

Unambiguous only if registered in all three facial areas  

Happiness Corners of lips are drawn back and up 

Mouth may or may not be parted with teeth exposed or not 

A wrinkle runs down from the nose to the outer edge beyond lip corners 

Cheeks are raised 

Lower eyelid shows wrinkles below it and may be raised but not tense 

Crow’s-feet wrinkles go outward from the outer corners of the eyes  

Sadness Inner corners of eyebrows are drawn up 

Skin below the eyebrow is triangulated, with inner corner up 

Upper lid inner corner is raised 

Corners of the lips are drawn or lip is trembling 
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2.3.2. Challenges in Modelling Facial Expression Variations 

Although humans recognise facial expressions without effort or delay, reliable facial 

expression recognition by machine is still a challenge. Face variability (as described 

in section 2.2.1) is the main challenge and the best way to improve expression 

modelling is to control this variability; however if we deal with unconstrained images 

such control is not available. 

 In the next section we survey existing techniques for modelling facial 

expressions and consider how such techniques may be further refined to enhance their 

robustness to variability in the input face regions. 

2.3.3. Main Approaches of Facial Expression Modelling 

The facial expression modelling approaches differ from the point of view of the 

employed feature extraction method and of types of facial features used for 

modelling. 

 In this section, we describe different types of facial features and methods to 

extract facial features. In the next stages of expression recognition, the extracted facial 

features are classified in order to perform facial expression classification/ recognition. 

More details about expression classifiers will be given in Chapter 4. 

2.3.3.1. Facial Features 

Several facial feature categories can be extracted, e.g., geometric features [15, 44-46], 

texture features [14, 47-50], or hybrid combinations of the two [17, 47, 51, 52]. We 

next explain what is meant by these. 

 

Geometric Features 

Geometric features describe the shape of facial components, i.e., mouth, eyes, 

eyebrows, nose, and their locations, i.e. corners of the eyes, corners of the mouth, etc. 

They are represented by facial components or facial feature points, forming a feature 

vector that represents face geometry. Geometric feature extraction can be 

computationally more expensive, but it is more robust to variation in face position, 

scale, size, and head orientation. 
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 Pantic and Rothkrantz [15] successfully employ this type of features. In their 

research, a point-based model is described by a set of facial characteristic points (see 

Figure 2.9). An important contribution is the fact that the model is composed of two 

2-D facial views, namely the frontal and the side view. They are considered separately 

and they do not contain redundant information about facial features. When coupled 

together, however, the two facial views reveal redundant information about facial 

expression. 

 
Figure 2.9. Facial points of the frontal-view [15]. 

 Later, Gokturk et al. [44] used a nineteen point face mesh to introduce a 3-D 

model-based tracker. The tracker extracts simultaneously and robustly the pose and 

the shape of the face at every frame of a video sequence. Pose and shape 

characteristics are naturally factored into two separated signatures, leading to good 

facial expression classification rates, even under extreme head pose configurations. 

 Chang et al. [45], using a shape model defined by fifty-eight facial landmarks, 

learn a low-dimensional manifold with a subsequent probabilistic modelling used for 

expression tracking and recognition. 

 Moreover, Kotsia et al. [46] exploit geometrical features using a Candide 

model. The user has to manually place some of Candide grid nodes to face landmarks 

depicted at the first frame of the image sequence. The grid-tracking-and-deformation 

system, based on deformable models, tracks the grid in consecutive video frames (see 

Figure 2.10). Geometrical displacements of certain Candide nodes are extracted. 
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Figure 2.10. Seven Candide nodes are fitted on a facial image [46]. 

Texture Features 

Texture features are also often called appearance features. In our thesis, we will use 

the term of texture, as appearance is used to define both shape and texture. Texture 

features describe the appearance, i.e., skin texture, and the changes of the face, i.e., 

wrinkles, furrows, or bulges. The texture features can be extracted on either the 

whole-face or specific regions in a face image. 

 One approach to texture-feature extraction is performed using Gabor wavelets 

[14, 47]. In [14], specific locations of the face are coded using a set of Gabor filters 

topographically ordered and aligned approximately with the face. 

 Zhang et al. [47] also adopt this method. They compare the expression 

modelling performance of geometric-features, i.e., the positions of thirty-four fiducial 

points on a face, and texture-features, i.e., six hundred and twelve Gabor wavelet 

coefficients extracted from the face image at these thirty-four fiducial points. Better 

results are obtained from the Gabor coefficients. 

 Silapachote et al. use the AdaBoost approach to extract texture features 

relevant for facial expressions [48]. They select the relevant global and local texture 

features by choosing the ones with the most discriminating information. Their 

selectivity reduces the dimensionality of the feature space, resulting in significant 

speed gains during online classification. 

 Bartlett and her colleagues [50] use eigenfaces as texture features for 

expression classification. Three approaches are compared: holistic spatial analysis, 

explicit measurement of features such as wrinkles, and estimation of motion flow 

fields. Best results are obtained when the three methods are combined in a hybrid 

system that successfully classifies expressions. 
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Hybrid Features 

The hybrid features are described by both geometric and texture features. Several 

researchers use the hybrid features to improve expression decoding accuracy. 

 Tian et al. [17] use hybrid features in order to analyse facial expressions, 

based on both permanent facial features, i.e., brows, eyes, mouth, and transient facial 

features, i.e., deepening of facial furrows. Multi-state face and facial component 

models are proposed for tracking and modelling facial features. 

 Wen et al. [51] present an adaptive technique for analysing subtle facial 

appearance changes, including also facial feature point motion. They use a new ratio-

image based appearance feature, independent of a person’s face albedo. 

 There are several comparisons in literature between the various types of 

features. Research shows that appearance-based features can achieve better results 

than the geometric features [47, 50]. Moreover, hybrid features outperform the 

appearance and geometric features [53]. 

2.3.3.2. Feature Extraction Approaches 

A number of approaches have been proposed for feature extraction. Most attempts 

focus on optical flow analysis [54], model-based approaches [4, 55-60], or image-

based approaches [61, 62]. 

 The optical flow approach [54] involves assessing the magnitude and the 

direction of facial motion. It can be used either as a global algorithm or applied on 

local regions. Optical flow generates a matrix of vectors originating from a pixel 

position in one image and terminating at a pixel position within another image. These 

vectors represent the mapping between the pixel intensities in one image and the pixel 

intensities in another. These displacement vectors may be used to describe 

correspondents between similar images. 

 Model-based approaches extract information relying on extensive knowledge 

about the object of interest. These approaches include PCA [60], Eigenfaces and 

Fisher Faces [55], ASM [58, 59], or AAM [56, 57]. 

 Alternatively, image-based approaches, e.g., Gabor wavelet [62], extract 

features from images without relying on general knowledge about the object to be 

modelled. 
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2.3.4. Comparison of Approaches describing Facial Expression 
Variations 

Comprehensive surveys reviewing facial expression analysis are provided in the 

literature [39, 63-65]. In [63], Pantic and Rothkrantz survey the work done in 

achieving accurate real-time systems that detect faces, extract facial expression 

information, and classify expressions. Automatic facial expression analysis is also 

reviewed by Fasel and Luettin [39], with an emphasis on face normalisation, facial 

expression dynamics and their intensities, and the robustness towards environmental 

changes. Recent advances in machine analysis of expressions and recent work of two 

leading research groups in this field, namely that of Pantic and her colleagues, and 

that of Bartlett and her colleagues, are summarised in [65]. A complete guide to facial 

expression analysis, including more recent advances, is provided by Tian et al. [64]. 

Various types of techniques for facial expression analysis are enumerated in these 

surveys. A summary of these techniques was given in section 2.3.3. 

 In [66], Tian et al. describe the properties of an ideal analysis system, as 

summarised in Figure 2.11. The authors conclude that none of the proposed methods 

in literature are able to entirely satisfy these requirements. 

 
Figure 2.11. Properties of an ideal expression analysis system, as defined by [66]. 

 When comparing feature extraction approaches, the authors of [66] conclude 

that the optical flow approach is relatively insensitive to subtle motions that are rich in 
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facial expression information. However it is sensitive to illumination variations, 

images of low quality, or non-rigid motion. Conversely, image-based techniques are 

fast and simple. They work well under environmental constraints, but lack in 

robustness towards pose, illumination, or non-rigid changes. They also require 

reliable facial features. 

 Facial expressions are defined mainly by contraction of facial muscles that 

produce changes in facial appearance and shape [67]. In [68] it is stated that model-

based approaches have an inherent benefit over purely image-based representations, 

in the sense that they can account for many types of “real-world” variations of the 

face appearance. 

 As a result, this technique is known to have a potential value in facial 

expression applications. AAM yields good results on difficult and noisy data and it 

benefits from real-time model optimisation algorithms [69]. AAM can be suited to 

embedded system environments, such as mobile camera phones [38]. 

2.4. Other Face Analysis Techniques 

2.4.1. Face Detection and the State-of-the-art in Face Detection 

From our experience, we learned that achieving accurate initial face detection is 

essential to any subsequent facial modelling or analysis. In the particular example that 

we give in Figure 2.12, AAM techniques [56, 57] fail due to the poor initialisation. 

We remark that most face models will suffer similar poor convergence if an accurate 

initialisation of the model, both in terms of size and position, is not available. 

 In our system, we employ a face detector module as initialisation for the AAM 

search. Face detection can be defined as the ability to detect and localise faces within 

an image or a scene. In the past several years, many face detection techniques have 

been proposed in literature. A comprehensive survey of the face detection methods is 

presented in [70]. State-of-the-art face detection methods provide real-time solutions 

that report high detection rates. 
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Figure 2.12. Bad AAM fitting, caused by poor initialisation (first column displays the shape after 

the initialisation procedure, while the second column displays the incorrect found shape after the 

AAM search, consequence to poor initialisation). 

 The main idea of the technique is to combine weak classifiers based on simple 

binary features, which can be computed extremely fast. Simple rectangular Haar-like 

features are extracted; face and non-face classification is done using a cascade of 

successively more complex classifiers that discards non-face regions and only sends 

face-like candidates to the next layer’s classifier. Each layer’s classifier is trained by 

the AdaBoost learning algorithm. AdaBoost is a boosting learning algorithm that can 

fuse many weak classifiers into a single more powerful classifier. 

 In our system, we employ the Viola-Jones face detector, as initialisation for 

the AAM search. An example of face detection using the Viola and Jones algorithm is 

shown in Figure 2.13. This algorithm has been implemented in OpenCV [71], which 

is the free computer vision library developed by Intel. It is this implementation that 

has been used in practice throughout our current work. 

 
Figure 2.13. Example of detected faces using the Viola and Jones algorithm. 
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2.4.2. Face Recognition (Relationship and Similarities to Facial 
Expression Modelling) 

Perhaps the most common use of face modelling is to perform face recognition. AAM 

has extended its applicability also in face recognition [8, 72]. In our research group, 

AAM applied to face recognition was investigated in parallel with our work, by a 

fellow PhD researcher, Mr. Mircea Ionita [8]. His work formed the basis for some of 

the experiments described in this thesis (such as the texture normalisation or the 

illumination robust algorithm summarised in Appendix D). 

 Technically speaking we should differentiate between several specific forms 

of classifying or recognising people from their faces: 
 

Face recognition deals with the identification and the verification of one or more 

persons in a still frame or in a sequence of frames, using a stored database of 

reference faces. 

 

Face verification, i.e., “Am I who I say I am?”, is a one-to-one match that compares a 

query of face images against a template face image whose identity is being claimed. 

 

Face identification, i.e., “Who am I?”, is a one-to-many matching process that 

compares a query face image against all the template images in a face database to 

determine the identity of the query face. 

 

 In recent years face recognition has received substantial attention from 

researchers in both academic and industrial environments, in various domains such as 

biometrics, computer vision, pattern recognition, or machine learning. Despite of a 

plethora of articles and solutions proposed, face recognition continues to be a 

challenging task. Many face recognition systems are proposed world wide and despite 

their success in controlled conditions, e.g., frontal non-occluded faces, no variations 

in illumination, there is not yet a common adopted approach for analysing and 

classifying face regions inside an image. 

 There are numerous similarities between face recognition and facial 

expression recognition. Existing work in both applications has demonstrated good 

recognition performance in controlled conditions. The challenge for researchers is 
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when such ideal conditions are not satisfied. Solutions to overcome this challenge, 

such as the techniques mentioned in section 2.2.1, are common to both applications. 

 The existing face recognition and face expression recognition systems usually 

require very large training datasets and significant computing power in order to be 

able to provide faster recognition results. Also, both face recognition and face 

expression recognition necessitate a strong initialisation of the face and a detailed face 

model. As described in section 2.4.1, the applications require robust face detection 

and accurate face feature extraction. 
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Chapter 3 - Statistical Model of Appearance 

In the previous chapter we reviewed face modelling and face expression modelling 

techniques. The Statistical Model of Appearance together with its search algorithm, 

Active Appearance Model (AAM), were determined to be the most suitable technique 

for our application in view of the potential to optimise such models for use in 

embedded system and devices. This thesis is structured around this particular form of 

face modelling technique and we will later investigate a number of enhancements of 

state of the art including sub-models for the eye and mouth and a component 

modelling technique to combine a global face model with such sub-models. First, 

though, we must explain the fundamentals of such statistical models. 

 The aim of this chapter is to provide a proper insight into relevant aspects of 

AAM, such as its standard formulation and its state-of-the-art extensions. 

 An overview of AAM is given in section 3.1. Sections 3.2 and 3.3 are 

dedicated to the construction of the statistical model of appearance and of its 

corresponding search algorithm. Each step of the technique is thoroughly explained. 

 Despite its success, AAM still has to overcome common face modelling 

challenges, as described in section 3.4. Hence, numerous extensions of AAM are 

proposed in literature, both regarding the model realisation or the search algorithm. 

Section 3.5 summarises and compares important references of the AAM state-of-the-

art. 

3.1. Background to Statistical Models of Appearance 

A Statistical Model of Appearance together with its corresponding search algorithm, 

AAM, is a powerful tool for modelling images of deformable objects. The technique 

was originally proposed by Cootes et al. [21] in 1998 as a deformable model, capable 

of interpreting and synthesising new images of the object of interest. Such models are 

particularly effective in modelling deformable objects with limited variability, often 

biological shapes, e.g., human faces, human organs. AAM proved its capability in 

various recognition tasks, such as medical imaging [73], face interpretation and 

tracking [74], and face recognition [75]. 

 The technique includes two concepts: firstly it builds its statistical models of 

shape and texture. This is also known as Statistical Models of Appearance. Secondly 



 52

it includes an algorithm that permits to find, analyse, and synthesise objects belonging 

to the statistical modelled class in unseen images. This is also known as AAM. It is 

commonly thought that researchers use the term AAM to express both concepts: the 

statistical model of appearance and the search algorithm. This convention is often 

used in this thesis. 

 AAM uses Principal Component Analysis (PCA) [30] based linear subspaces 

to model the shapes and textures of the images of a target object class. Such a 

representation allows AAM to represent a certain image with a reduced number of 

parameters. Given a previously unseen image that belongs to the same object class, 

AAM finds the optimal parameters to represent the target image by using an iterative 

scheme that is fast and robust. 

 Each step of this technique is described in further detail in the following 

sections. 

3.2. Building a Statistical Model of Appearance 

The first step in building a Statistical Model of Appearance is data acquisition. This is 

followed by a suitable normalisation, and then the data are analysed and modelled 

based on statistical analysis. 

 As a first step in this process, a shape model is developed - this is described in 

section 3.2.1; the second step is to perform texture modelling - as described in section 

3.2.2. 

 Now these models can be used independently, i.e., concatenated into an 

appearance model where the model parameters independently affect shape or texture, 

but not both; alternatively they may be merged through an additional PCA process to 

provide a combined appearance model with a reduced parameter set, but where each 

of the model parameters affects both shape and texture. In other words we have 

simplified the model by using the correlation between shape and texture to reduce the 

number of input parameters. These two approaches, referred to as independent and 

combined AAM, will be discussed and compared in detail in section 3.2.3. 

3.2.1. Shape Modelling 

Shape is defined as that quality of a configuration of points which is invariant under 

some transformations. In 2-D or 3-D we usually consider the similarity 
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transformation, i.e., translation, rotation, and scaling. So, the shape of an object 

should not change when it is moved, rotated, or scaled. 

 

Face annotation 

The shape of an object is represented by a fixed set of points, i.e., landmarks. An 

important decision is the choice of the landmarks: their number and their position. 

The landmarks should describe the important details of an object, in our case be 

representative of the facial features. Points could be placed at clear corners of object 

boundaries, edges, and T junctions between boundaries, or at easily located biological 

landmarks. However, in the case of human faces there are not enough of such points 

to give anything more than a sparse description of the shape and principle features. To 

overcome this problem we need to place additional equi-distant points between the 

representative landmarks. Examples of different methods of annotating faces are 

given in Figure 3.1. 

 
Figure 3.1. Different types of detailed landmarking describing faces. 

 At present the landmarking of a training set is semi-automated, using 

templates and edge detection techniques but also requiring some fine-tuning by hand. 

Automatic landmarking systems are under development [76] but the wide variability 

of faces, particularly in unconstrained environments, makes this a significant research 

challenge in its own right.  

 One common well-known semi-automated method is to annotate a small 

number of examples and build a model using them. The model is fitted on the 

remaining images in the training set, obtaining new annotations for these pictures. 

Then, if necessary, the points can be manually corrected. Motivated by the simplicity 

and accuracy of this method, we employed it in the construction of our models. 
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 After choosing suitable landmarks to describe the desired shape, a shape 

vector is given by the concatenated coordinates of all landmark points. It is formally 

written as s=(x1,x2,…,xL,y1,y2,…,yL)T, where L is the number of landmark points. 

Given N training examples, we generate N such vectors s. Before we can perform 

statistical analysis on these vectors, it is important that the represented shapes are 

aligned to a reference shape. Subsequently, an alignment algorithm is applied. 

 

Shape alignment 

There is considerable literature on methods of aligning shapes into a common co-

ordinate frame, but the most popular approach can be considered the Procrustes 

Analysis [77]. It is an iterative technique used to remove translation, 2-D rotation, and 

scale differences between the training shapes. It is based on minimising the distances 

from shapes to the mean shape. The algorithm can be summarised as following: 

• Each shape is translated so that its centre of gravity is at a common origin. 

• One shape is chosen as an initial estimate of the mean shape and it is scaled so 

that | | 1=s . 

• The first estimate is saved as s0 and used to define the default reference frame. 

• All shapes are aligned with s0. 

• Iteratively, the mean shape is re-estimated from the aligned shapes. 

• Constraints are applied on the current estimate of the mean by aligning it with s0 

and scaling so that | | 1=s . 

• If convergence is not obtained, all the shapes are re-aligned with the current s0 

and the steps are continued. 

• Convergence is thus declared when the mean shape does not change 

significantly within an iteration. It was observed [18] that two iterations of the 

algorithm are sufficient in most cases. 

 

Modelling shape variation 

After obtaining an aligned set of shapes, intra-class shape variation should be 

described consistently and efficiently. To simplify the problem, we first wish to 

reduce the dimensionality of the data to something more manageable and efficient. 

 An effective and well-known approach is to apply PCA [30] to the data. PCA 

computes the main axes of the data cloud, allowing one to approximate any of the 
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original points using a model with fewer than the original number of parameters. The 

PCA algorithm is detailed in Appendix A. 

 The shape model is obtained by applying PCA on the set of aligned shapes: 

 

    ssbφ+s=s      (3.1) 

where ∑
sN

1=i
i

S

s
N
1=s  is the mean shape vector, and NS is the number of shape 

observations; sφ is the matrix having the eigenvectors as its columns; bs defines the 

set of parameters of the shape model. 

 By varying the elements of bs we can vary the shape s, described in Equation 

(3.1). The variance of the ith parameter, bi, across the training set is given by iλ . By 

applying limits of +/-3 iλ to the parameter bi, we ensure that the generated shape is 

similar to those in the original training set. 

 The allowed variance can be chosen so that the model represents some 

proportion of the total variance of the data; the residual terms can be considered noise. 

Typically a value of 0.95 to 0.98 is chosen, i.e. the original data can be reconstructed 

within, say, a 98% accuracy. In a description of how a statistical model of shape 

models the geometry of a face [78], an elegant example of a linear combination of 

shape parameters and shapes depicting an unseen shape is presented in Figure 3.2: 

 
Figure 3.2. An example of the combination of the 2-D AAMs shape models, as shown in [78], that 

creates an unseen shape, s. 

3.2.2. Texture Modelling 

To complete the appearance of the model, we have to take into account also its 

texture. In this technique, the texture is defined as the variation in pixel values across 

the object of interest [79]. It is statistically modelled following a similar algorithm as 

for the shape. 
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 However, in the case of texture a consistent method of collecting the texture 

information from the 2-D regions delineated by the landmarks is required. Therefore, 

a warping transform is used to project the pixel intensities across each shape from the 

annotated training images into a reference shape in order to generate matching texture 

vectors. This reference shape is normally chosen as the mean shape determined from 

the training set as described in section 3.2.1. 

 

Warping stage 

Image warping is a geometric image transformation used to match two images by 

finding an optimal spatial and pixel value transformation which best aligns them with 

respect to certain criteria. Image warping from image I to image I’ can be defined as: 

 

    y)))T(I(W(x,=y)(x,I ' ,   (3.2) 

where W is a 2-D spatial coordinate transformation and T is a transformation in the 

texture appearance. 

 The choice of the warp technique is based on a compromise between a 

technique that generates a smooth distortion and one which achieves a good match 

[78]. For a survey on warping techniques refer to Glasbey and Mardia [78]. 

 Since AAMs are landmark-based it is common practice to use the class of 

image warping techniques that considers the mapping of one arbitrary point set into 

another. A face patch is warped into the mean shape using a triangulation algorithm, 

so that its control points match the mean shape. The triangulation algorithm is used to 

partition the convex hull of the control points describing the shape. 

 In the original AAM formulation dense image correspondences were 

established by image sampling via a shape-normalised, or shape-free, triangular mesh 

[80]. Fixed sampling points on this mesh were propagated using Barycentric 

coordinates to a mesh similar in structure, but deformed in shape. However, warp 

degeneracy can arise if triangle normals are inverted, e.g. if two vertices of a triangle 

stay fixed and the third is mirrored. Fortunately, for high-quality meshes and 

moderate shape deformations this will rarely happen. To this end, triangular meshes 

are typically established using a Delaunay triangulation. 

 Delaunay triangulation technique connects an irregular point set by a mesh of 

angles satisfying the Delaunay property. This means that no triangle has any points 
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inside its circumcircle, which is the unique circle that contains all three corners, i.e., 

vertices, of the triangle. Examples of faces warped into a mean shape and the 

triangulation of a face are shown in Figure 3.3. 

 
Figure 3.3. Examples of free-shape face image and the corresponding triangulation of a face. 

 The points inside triangles are then mapped via an affine transformation which 

uniquely assigns the corners of a triangle to their new positions. AAM typically only 

uses 50-100 mesh vertices, as they are usually constructed from a set of training 

images with the vertices hand-labelled on them. In practice, AAM meshes are best 

defined on the few facial landmarks that are easy to locate. 

 The Delaunay triangulation is the most popular technique used by researchers 

because of its simplicity. It was proven to work well for frontal faces and where there 

are small occlusions. We also employ this technique in the development of our 

models. 

 Now there are some drawbacks of this technique that led to the development 

of alternative techniques [81]. These drawbacks appear in particular when we deal 

with a large number of landmarks describing the shape. In these cases, when large 

pose variations of faces or occlusions occur, then the corners of some triangles tend to 

get reversed causing the inversion of the triangle normals as described above. 

 A further drawback is the fact that this transformation does not guarantee that 

straight lines across triangles are being preserved. In this case “false” objects can be 

created. The errors are further propagated into the search algorithm, resulting in an 

incorrect fitting. More advanced and accurate techniques, such as Thin Plate Splines 

(TPS) [81] can be employed to solve these drawbacks [82]. 
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 Nevertheless we did not encounter any significant incidence of these problems 

in our work and we concluded that such problems are very infrequent for the number 

of landmarks chosen for our models. 

 It is also worth noting that the rationale to use more landmark points is to 

achieve a more accurate face model. Our research into component models 

demonstrates that such an increase in modelling accuracy can be better achieved using 

fewer landmark points, but integrating these within a framework of several 

complimentary AAM models. 

 

Texture Normalisation 

To minimise the effect of global lighting variation, faces are normalised. This is a 

very important stage in the model creation, as illumination variations have a severe 

negative effect on face texture. The training samples are normalised by applying a 

scaling α  and offset β , as follows: 

    
α
β1t=t im −      (3.3) 

where 1 is the unity vector. α is a scaling factor, while β  is the offset. 

 The values of α  and β  are chosen to best match the vector to the normalised 

mean. In practice, the mean normalised texture vector is offset and scaled to have 

zero-mean and unit-variance. Obtaining the mean of the normalised data is a recursive 

process, as the normalisation is defined in terms of the mean. A stable solution can be 

found by using one of the examples as the first estimate of the mean, aligning the 

others to it, re-estimating the mean and iterating. 

 

Modelling texture variation 

A texture vector t=(t1,t2,…,tp)T is built for each training image by sampling the values 

across the warped samples, i.e. shape normalised patches, with p being the number of 

texture samples. 

 The texture model is also derived by means of PCA on the texture vectors: 

 

    ttbφ+t=t      (3.4) 
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where ∑
tN

1=i
itN

1=t  is the mean texture vector, with Nt as the number of texture 

observations; tφ  is the matrix of eigenvectors, and bt the texture parameters. 

 As in the shape model case, it is common to allow between 95% and 98% 

variance of the model the lower value allowing greater flexibility in fitting the model 

to unseen faces. 

3.2.3. The Combined Statistical Model of Appearance 

The appearance of objects is described by shape and texture parameters. There are 

two approaches to unifying these parameters: they can be used either independently, 

concatenated in an appearance vector, or combined by a third PCA process. In here, 

PCA has the role of remove correlation between shape and texture model parameters 

and to make the model representation more compact. 

 In the first approach, the sets of shape and texture parameters are concatenated 

as follows: 
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bW=c      (3.5) 

where Ws is a suitable weighting between pixel distances and pixel intensities, bs
opt

 

and bt
opt

 are respectively the optimal shape and texture parameters over the training 

set. These parameters are used to describe the overall appearance variability of the 

modelled object, where Ws is a vector of weights used to compensate the differences 

in units between shape and texture parameters. 

 In the second approach, the combined model of appearance, subsequent to 

PCA over the appearance parameters, can be further written as: 

 

    appearanceappearancebφ+c=c    (3.6) 

where c  is the mean appearance vector, φ appearance is the matrix of appearance 

eigenvectors, and bappearance are the combined parameters. 

 Each parameter alters both the shape and texture aspects of the face. As in the 

shape PCA case or in the texture PCA case, we can further compress the combined 

model representation by removing the smallest eigenmodes. It is safe to consider 
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small-scale variation as noise [79]. It is common to conserve 95-98% of the allowed 

appearance variation. This rule was observed throughout our experiments. 

 In Figure 3.4 we present an example of a combination of appearance 

parameters that describes a new facial appearance. Like Figure 3.2 for the shape 

parameters we see that the final facial texture is built from a series of 2-D texture 

components analogous to the construction of a 1-D signal from a Fourier series. 

 
Figure 3.4. An example of the combination of the 2-D AAMs appearance models, as shown in 

[78], that creates an unseen appearance of a face. 

 The main advantage of the combined model is that as we conserve only a 

percentage of the appearance variation, its number of resulting model parameters is 

always less than the total number of initial shape and texture parameters. 

 Historically, as the goal was to have the most compact/efficient model, the 

original work on AAM took this approach. However, in later work, researchers 

wanted to be able to separate out the shape and texture dependencies to better model 

specific facial variations, thus the independent form of AAM evolved later [79]. We 

will exemplify and explain later, in section 8.4, that if we train with a set of faces at 

different left/right poses, then the first shape parameters are mapped onto this 

variation as it is the most significant spatial variation. Later on, researchers showed 

that it is also possible to separate the main shape/texture subspaces into independent 

sub-subspaces [83-86]. 

 In the next section, we describe the AAM search algorithm that enables us to 

find, analyse, and synthesise objects belonging to the same class as the statistical 

model of appearance. 
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3.3. The AAM Search Algorithm 

After a Statistical Model of Appearance is created, the AAM algorithm can be 

employed to obtain an optimal fit of this model to a region of an image. Although the 

AAM algorithm can be applied to a full image we typically pre-process the image 

with a fast pre-filter to extract image regions with a higher probability to include an 

object which can be modelled by the statistical model (section 3.2). We remark that 

some applications of AAM have effectively used these models to perform face 

tracking without pre-filtering the input image. However there are faster algorithms to 

achieve an initial face detection and this is the approach we use. 

 Thus we assume that the AAM algorithm has been provided with a region of 

interest (ROI) with high probability to include a face. The search algorithm then 

determines parameters of the model which generate a synthetic image with an 

optimised similarity to the target image. This set of parameters defines the shape, 

position, and appearance of the target object in an image, and can be used for further 

processing, such as to make measurements or to classify the object. 

 During the optimisation stage, the parameters that we wish to determine 

are ⎥
⎦

⎤
⎢
⎣

⎡
=

c

s

b
g

p , where gs are the shape 2D translation (tx,ty), rotation( ∈θ [0, 2Π]), and 

isotropic scaling (s>0) parameters inside the image frame, and bc are the combined 

model parameters. 

 By adjusting the AAM parameters p, the model gm can be deformed to fit the 

image gimg, in the best possible way. The whole problem is treated as an optimisation 

problem in which we want to minimise the difference between the new image gimg and 

the image synthesised by the appearance model gm: 

    mimg gg=δg −     (3.7) 

We evaluate the current error | |2δg=E  and minimise it by varying the shape and 

texture parameters p with a predicted displacement. The quadratic error norm is 

applied as optimisation criterion: 
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where m is the number of appearance parameters. 
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 Although the model parameterisation can be compacted tremendously by the 

PCA (section 3.2), it is far from an easy task to optimise a system which is still of a 

high dimensionality. This is not only computationally cumbersome, but also 

theoretically challenging since it guarantees that the hyperspace sought is smooth 

[79]. 

 To avoid computational complexity, a linear relationship between parameter 

changes δp  and pixel differences δg  is considered. Cootes et al. show that this 

simple approximation produces good results for the AAM algorithm [21, 87, 88]. 

 This linear assumption is based on the following procedure. A first order 

Taylor expansion of the functions δg(p)  in the neighbourhood of the current point p is 

employed in order to linearise the problem: 
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 Next, a rough approximation is made by completely neglecting the second 

order terms. So we obtain: 

 

   pRpgppg ii δδδδ +=+ )()(     (3.10) 

where R represents the gradient of (p)δgi at point p. 

 The linear relationship between parameter changes δp  and pixel differences 

δg can be assumed as, 

 

    gRp δδ =      (3.11) 

where R is a pre-computed matrix of prediction that is estimated during the model 

building stage. As this matrix is estimated only once, it makes the algorithm runtime 

efficient. 

 

Estimation of the Prediction Matrix 

In practice, R is estimated by a set of experiments on the training set. Each experiment 

consists of displacing a set of ground truth parameters by a known amount and 

measuring the difference between the model and the part of the image below the 

model. Then the image is resampled at the new prediction. A new error vector is 
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calculated and if the resulting error is less than the preceeding error, the new estimate 

is accepted. The procedure is iterative. 

 In his thesis, M.B. Stegmann [79] gave some practical values for the 

pose/model parameter displacements: 

 

Pose parameter displacements 

tx, i.e. translation in the x direction: ± 6, ± 3, ± 1 (pixels) 

ty, i.e., translation in the y direction: ± 6, ± 3, ± 1 (pixels) 

s, i.e., scaling: 95%, 97%, 99%, 101%, 103%, 105% 

θ , i.e., rotation: ± 5, ± 3, ± 1 (degrees) 

 

Model parameter displacements: ±  0.5, ± 0.25 for each parameter over the training 

set 

 

 Other values of displacements were proposed in the literature [82], but in our 

experiments, we employed Stegmann’s update scheme with accurate results. 

 Figure 3.5 shows a practical example of the AAM search algorithm. The 

algorithm is applied for an eye model. The AAM eye model was implemented during 

our work and will be described in Chapter 5. Starting from a new, unseen picture for 

the training set, we want to find the eye parameters that best match it. Using the 

information given by the Viola-Jones face detector, an initial estimate for the eyes is 

given. Then, in an iterative process, we seek to minimise the difference between the 

new image and the synthesised one. 

 In practice, the algorithm required only two iterations. It can be noticed that in 

comparison with the original image, the eyes synthesised by AAM are blurrier 

because of the texture approximation (equation 3.11). 
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Figure 3.5. Example of the AAM search procedure to match an eye model on an unseen picture 

(see Chapter 5). 

3.4. Challenges and Limitations of the Standard AAM 

The main purpose for AAM is to find the appearance parameters in the case of an 

unseen image and to synthesise the object as close as possible to the target image. The 

AAM is a fast and accurate algorithm. Nevertheless, it presents several drawbacks 

that are going to be described in the current section. 

 Solutions to overcome these drawbacks are proposed in the literature. The 

most relevant references will be summarised in section 3.5. 

 

Handling model generality 

The AAM search algorithm is known to converge quickly and accurately if we have a 

picture similar to the ones in the training set [82]. Now as the size of the training set 

has to be restricted for practical reasons – remember the mark-up process for faces 

requires manual user tuning – there are limitations on the amount of facial variation 

we can incorporate into a single statistical model. 

 Thus difficulties will appear when we want to model faces which exhibit 

variations that are not represented in the training set. This is our biggest challenge – to 

model unseen images and unseen image conditions. 

 So the ultimate goal of face modelling is to develop a general Statistical 

Model of Appearance and an algorithm able to handle the generality of the test 

images. By a general model or generality of test images we mean no coarse 

constraints on the environment or on individual cooperation. For example we want to 
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be able to analyse human faces, despite race, age and gender differences, facial 

expression, pose, and various illumination conditions. 

 As you might expect such a goal is somewhat of a “grand challenge” and 

essentially unobtainable as there will always be extremes of facial appearance that are 

not incorporated into any finite sized training set. Nevertheless we can make some 

useful attempts to overcome some of the more challenging problems of face 

modelling such as handling generic lighting and pose variations for semi-frontal faces. 

Ultimately, as we will see in this thesis, we will need to apply more than one model – 

each model being specialised to a certain range of variations and even to modelling 

variations of specific regions or features within a facial region. In this way we can 

achieve useful progress in developing a more generalised solution. 

 

Cluttered background 

Another issue to consider is that AAM inherently models the foreground of the object 

and does not consider the background image. From their experiments, Sung et al. [19] 

concluded that AAM often fails to converge when the estimated object area in the 

target image includes the image background. This happens due to the misalignment 

that can occur when fitting an object. The inclusion of the background image makes 

the backward warped image inconsistent with the original appearance, which causes 

the algorithm to update parameters incorrectly and diverge. 

 This non-convergence of AAM becomes a significant problem when there are 

very bright backgrounds and/or textured backgrounds adjacent to the target object 

[89]. We remark that if pre-filtering techniques are applied to the ROI prior to 

applying the AAM it is generally not very expensive, computationally, to perform a 

foreground/background separation and to replace the background of the detected face 

region with a neutral background. In our research we have been careful to avoid test 

images with error-inducing backgrounds. We assume that in any practical 

implementation of our model that the appropriate pre-filtering would be employed 

prior to fitting the model. 

 

Initialisation problem 

Although the structure of a statistical model of appearance itself is simple, fitting an 

AAM to an image is a complex task that requires a nonlinear optimisation to find 

model parameters. 
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 As discussed in section 2.4.1, AAM is very sensitive to initialisation. A faulty 

initialisation can bring errors that propagate, resulting in poor convergence, or even 

non-convergence of the algorithm. Typically, this initialisation is achieved by using a 

pre-processing method such as a global face detector, or a detector for salient feature 

points. 

 It can also be helpful to use a skin detector [90] to provide horizontal and 

vertical mean-axes for the face location. This will provide a sanity-check on the 

rectangular output from the face detector which may not always be accurately centred 

on the main face region. If this information is reliable, it can be added as an extra 

constraint to the search algorithm. However, there is the drawback of increasing the 

computational time. It would be helpful to find a compromise between the overhead 

of determining additional information about the ROI and the speed of the fitting 

algorithm. 

 

Search algorithm limitations 

Another limitation is the assumption of a constant linear relationship between the 

error image and the additive incremental updates of the parameters (see equation 

3.11). As we might expect the assumption that there is such a simple relationship 

between the error image and the appropriate update to the model parameters is 

incorrect [91]. The result is that the existing AAM search algorithm often performs 

poorly in terms of the number of iterations required to converge and in terms of the 

fitting accuracy which can be obtained after convergence. 

 

 In summary, there are several limitations to both the model training stages and 

the AAM search process. Since Tim Cootes originally proposed the AAM modelling 

technique, there has been constant work aiming to extend its generality and to solve 

these limitations. Several of the most significant extensions proposed in the literature 

are summarised in the next section. 

3.5. Extensions of the Standard AAM 

In order to solve the challenges of a standard AAM, a large number of papers focus 

on new variations from its initial formulation. The variations refer to the building of 
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the statistical model of appearance, section 3.5.1, to the search algorithm, section 

3.5.2, or to both stages. 

3.5.1. Extensions of the Statistical Model of Appearance 

AAM is mostly known in its 2-D version. When adapted for 3-D data, the approach is 

called the 3-D AAM or Morphable Model (3DMM) [10, 92]. We mentioned this 

approach briefly in section 2.2.2.3. The search algorithm respects the standard AAM, 

customised for 3-D data. New face images can be registered by minimising the 

difference between the new face and its reconstruction by the face model function. 

The 3-D extension of the model is used as a means to overcome variations in pose and 

illumination [32]. 

 Now, the 2-D AAM lacks the photorealism of 3DMM, but has two important 

advantages. It uses normal video rather than special-purpose scanning – which 

requires matching stereo images. Also, AAM can process video at full frame rates up 

to 30 fps, which makes real-time applications possible. 

 An alternative to the use of 3-D data is to use a set of models to represent 

appearance from different view-points, as the coupled-view AAM [34]. It has been 

shown [11] that to deal with full 180 degrees rotation, i.e., from left profile to right 

profile, one needs five models. The models are roughly centred on viewpoints at -90, -

45, 0, 45, 90 degrees, where 0 corresponds to front-parallel. The pairs of models at 90 

degrees, i.e., full-profile, and 45 degrees, i.e., half-profile, are simply reflections of 

each other. Thus only three distinct models are required. These models can be used 

for estimating head pose, for tracking faces through wide changes in orientation, and 

for synthesising new views of a subject given a single view. 

 Even when the pose problem is partially solved, fitting a face image for an 

individual who is not in the training set is often limited in accuracy, thereby 

restricting the range of application. This limitation mainly comes from the inability of 

AAM appearance counterpart to generalise, i.e. to accurately generate previously 

unseen visual data. One solution is based on re-training, i.e., iteratively refitting the 

training data with the AAM and re-training, and is shown to improve the 

performances compared to the traditional single step AAM training [93]. 

 Another solution is to combine a global model with a series of sub-models. 

These sub-models are typically component parts of the object to be modelled. This 
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approach benefits from both the generality of a global AAM model and the local 

optimisations provided by its sub-models. It is proposed in different versions, e.g. 

component-based AAM [94, 95], segmented AAM [96], or hierarchical 

decomposition [97]. In the current thesis, we pay special attention to this kind of 

representation. In our work we will demonstrate the benefits of applying such a 

component model are proved in the fields of facial expression decoding, pose 

representation, eye tracking, and eye modelling. 

 The statistical model of appearance has also been extended to exhibit temporal 

stationarity using conditionally linear processes for shape, motion, and appearance. 

This extension is beneficial when tracking a deformable object using AAM. In other 

words, rather than modelling only appearance, i.e., eigenfaces, only shape, i.e., ASM, 

or only motion, i.e., dynamic textures, we model all three characteristics 

simultaneously using the dynamic AAM [98] or the Pairwise Active Appearance 

Model (PAAM) [99]. 

3.5.2. Extensions of the AAM Search Algorithm 

The AAM search algorithm has some limitations, as discussed in section 3.4. Many 

derivations of the algorithm have been proposed to increase its robustness to various 

factors, its accuracy, or its speed. 

 In one enhancement AAM and ASM are combined in a single search 

algorithm intended to combine the advantages of the two algorithms. This is claimed 

to result in a more accurate fitting than either of the two methods considered 

independently [100]. To integrate the local profile and global appearance constraints, 

the subspace reconstruction residual of the global texture is exploited to evaluate the 

fitting degree of the current model on unseen images. And, as in the standard AAM 

approach, global texture is used to predict and adjust the model parameters. 

 In order to solve the generalisation limitation, i.e., fit images which are not 

present in the training set, the Boosted Appearance Model (BAM) was introduced by 

the authors of [101]. Together with the conventional Point Distribution Model (PDM), 

a boosting classifier is used to iteratively update the shape parameters in PDM, based 

on a gradient ascent method, maximising the classification score of the shape-

normalised image, i.e. of the image warped to the mean shape. A boosting-based 

classifier is trained so that is able to learn the decision boundary between two classes: 
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the warped images from the ground truth landmarks, and those from perturbed 

landmarks. The proposed framework is shown to improve the robustness, accuracy, 

and efficiency of the fitting procedure. 

 As mentioned in section 3.4, one of the challenges for AAM is a cluttered 

background. A robust AAM that uses active contour techniques [89] proved to be 

robust to a cluttered background. The proposed contour-based AAM search algorithm 

consists of two alternating procedures: (i) active contour fitting to find the contour 

sample that best fits the face image followed by (ii) the AAM search over the best 

selected facial boundary contour. 

 The original definition of AAM deals only with the segmentation of the input 

image at the original resolution level. A hierarchical, or multi-resolution, processing 

is proposed by the authors of [102] to deal with situations when the optimisation 

process becomes trapped in local minima. For that, a multi-resolution scheme using a 

Gaussian image pyramid is employed to optimise the model parameters in a coarse-to-

fine manner. By applying this approach, computational complexity can be reduced 

and the quality of the results improved. 

 In order to increase the algorithm speed, we can reduce the number of 

parameters that need to be optimised. Direct Appearance Model (DAM) [103] uses 

the texture information directly to predict the shape and to update the estimates of 

position and appearance. In this way, DAM includes admissible appearances 

previously unseen by AAM and improves the accuracy. It is in contrast to the AAM 

idea of modelling the appearance subspace from shape and texture combined. DAM 

cuts down the memory requirement to a large extent, and further improves speed. 

 The shape-driven AAM [88] uses the image residuals for driving only the pose 

and shape parameters, while the texture parameters are directly estimated by fitting to 

the current texture. The convergence speed is increased by reducing the number of 

parameters that need to be optimised. 

 Another limitation of AAM is the convergence scheme which assumes that the 

gradient matrix is fixed around the optimal coefficients for all images (equation 3.11). 

Such a fixed gradient matrix inevitably specialises to a certain region in the texture 

space and is no longer a good estimate of the actual gradient as the target texture 

moves away from this region. Hence, an adaptive AAM algorithm [104] that linearly 

adapts the gradient matrix according to the composition of the target image texture is 
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proposed. This adaptation search for a better estimate for the actual gradient and is 

performed by adding linear modes of change to the gradient matrix. 

 The original formulation of the AAM is additive from the point of view of 

parameters update, but makes the assumption that there is an approximately constant 

relationship between the error image and the parameter updates. This assumption is 

not always satisfactory. The Inverse Compositional [105] update scheme leads to an 

algorithm which requires only linear updates, so it is as efficient as the AAM, but 

which is a true gradient descent algorithm. The initial, general problem is to optimise 

the expression in (3.12) with respect to the parameters p: 

 

   ∑ −
x

2
0 p))]I(W(x,(x)[A     (3.12) 

 There are more versions of image Alignment, such as the Lucas-Kanade 

method, the Forward-Compositional approach, and the Inverse-Compositional 

approach. 

3.5.3. Discussion 

Extensions to the appearance model and to the AAM search algorithm span a large 

range of applications and purposes. In section 3.5, we have described some of the 

most significant AAM extensions. 

 Every extension from the basic approach has its advantages and drawbacks 

and it was created in order to compensate for a specific challenge. A direct 

comparison between AAM extensions would be interesting and helpful. It is not an 

easy task to directly compare results of the AAM extensions, due to different training 

sets used in the model creation and to different test sets used for the model 

assessment. In fact there are not many comparisons in literature between AAM 

extensions. 

 In [88], Cootes et al. compare the sub-sampling and the shape-driven AAM 

with the original formulation. Both extensions are aimed at improving the speed and 

robustness of the AAM search. From their experiments, they determined that both 

extensions lead to faster convergence, but are also more prone to failing to converge. 

The shape based method is able to locate the points slightly more accurately than the 

original formulation. The authors conclude that it may be possible to use 
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combinations of these approaches to achieve good results quickly, for instance using 

the shape based search in the early stages, then polishing with the original. 

 The way in which AAM is implemented, either in its original formulation or in 

one of its extensions, depends on the application requirements. In our work, we 

developed AAM models for various consumer applications, e.g., facial expression 

recogniser, blink detector, smile detector. These types of applications require a precise 

modelling of facial features. 

 The component-based AAM [94] proved flexible, in order to adapt to all 

possible types of facial variability typical to facial expressions (see Chapter 8 for a 

more detailed discussion). In our work we have adopted this approach, modifying and 

extending it to accommodate our applications. 

 In our work, we also address the challenge of pose variation, inherent in 

consumer pictures illustrating real-life conditions. In order to deal with this challenge 

we propose extensions of the standard AAM [83]. These extensions will be detailed in 

Chapter 8. 

 In the next chapter we are going to review published research that investigates 

human facial expression modelling, classification, and recognition, based on AAM. 
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Chapter 4 - Literature Survey: Facial Expression 
Modelling using AAM 

The purpose of the current chapter is to review published work that uses AAM in 

expression modelling, classification, and recognition. Our choice was motivated by 

the popularity and the efficiency of the method in the facial expression modelling 

field and by our earlier experiences in using the AAM approach to model faces and 

facial characteristics. 

 We start the chapter by analysing emotion recognition in the field of 

psychology and neurosciences (section 4.1). We search to understand to what extent is 

expression recognition influenced by gender, familiarity, symmetry, or expression 

intensity. This study helps us to better understand facial expression analysis and to 

identify its challenges. Ultimately the most useful outcome of such an analysis is to 

provide an accurate determination of the emotional state of the person under 

observation. Thus we pay particular attention to research which relates facial 

expressions to the underlying emotional states of a person. 

 Our work is centred on expression analysis using AAM. In section 4.2, we 

survey the applicability of the method in the expression analysis field. Different AAM 

extensions proposed in the literature, for still images or video sequences, are 

summarised. We searched to emphasise the novelty of certain techniques proposed in 

our work, by comparing it with the existing literature. This section ends with a 

qualitative comparison of the results obtained in literature. In section 4.3 we explain 

expression classification based on AAM and compare results for different types of 

classifiers. Expression recognition is explained in section 4.4. 

 Details of several research databases designed to provide facial images 

exhibiting a comprehensive range of expressions are presented in section 4.5. These 

databases are widely used for testing automated expression analysis algorithms and 

systems and provide a useful reference framework for the experiments documented 

later in this thesis. We remark that existing databases were not entirely satisfactory for 

our research as a significant aspect of our research was focussed on providing a 

solution which is sufficiently generic to apply to unconstrained images. Thus we had 

to develop our own database to provide a more challenging test baseline for some of 

our experiments. 
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4.1. Psychological Research on Emotion Recognition 

Facial expression analysis is a multidisciplinary concept. To be able to develop an 

automatic system recognising human expressions, one should first understand the 

concept from social, neurological, and psychological points of view. Researching 

these fields, we studied several factors that influence facial expressions that we 

describe in this section. To what extent is the recognition of expressions influenced by 

factors such as, gender, age, race, facial familiarity and symmetry, type and intensity 

of emotions? In the current section, we try to answer this question and to explain how 

these factors influence our work hypothesis. 

 

Gender 

Studies in psychophysics have shown that there is a relation between facial expression 

and gender. Shrum [106] discovered that women generally perform better at 

expression recognition. He states that the difference in the amount and intensity of 

one’s facial expressions is also gender related, with women more frequently and more 

intensely expressing certain emotions than men. This might be also explained through 

cultural influences. In modern Western society women are expected to be more 

emotionally extrovert, whilst men are required to maintain a more reserved face [107]. 

 In our work we want to obtain robust expression recognition for both genders. 

However, we will investigate gender-specific differences in the appearance of facial 

expressions (see section 9.3.2). 

 

Age 

Age influences facial appearance and in consequence, face expressions are also 

affected. For example, infants have smoother and less textured skin [108]. The 

reduced texture of infants’ skin, their increased fatty tissue, juvenile facial structure, 

and lack of transient furrows may contribute to the differences observed in expression 

analysis between infants and adults. 

 In our work, we aim at accurate expression decoding rates for subjects across a 

range of ages. 

 



 74

Ethnicity and culture 

Research has uncovered that culture is a strong determining factor when interpreting 

facial emotions. A study performed by Yuki et al. [109] reveals that in cultures like 

the Japanese one, where emotional control is the standard, eyes are considered the 

main source of interpreting emotions. Investigating this phenomenon in the United 

States [109], a culture where emotion is much more openly expressed, it was 

determined that the focus is on the mouth. 

 Elfenbein et al. [110] showed that cultural familiarity is associated with 

greater accuracy in emotion recognition. Individuals can more effectively understand 

universal emotions expressed by members of a cultural group to which they have 

greater exposure. However, the universal emotions defined by Ekman and Friesen 

[42] (see section 2.3.1) are considered to be universal across human ethnicities and 

cultures. 

 From the computer vision point of view, ethnicity and cultural diversity is 

present by the fact that some cultures might involve wearing beards, eyeglasses, or 

jewellery, considered as sources of facial occlusion. 

 

Symmetry and asymmetry of the face 

Facial asymmetry is considered an important factor in evaluating facial and 

expression recognition [111]. Sackeim conducted the following study [111]: pictures 

of human faces posing different emotions and their mirror reversals are split down the 

midlines, and left-side and right-side composites are constructed. Subjects judged left-

side composites as expressing emotions more intensely than right-side composites. 

The findings indicate hemispheric asymmetry in the control over emotional 

expression in the face.  

 Mendolia [112] underlines that negative emotions are more easily perceivable 

from the left hemiface than from the right hemiface, and that, in general, the left 

hemiface is perceived to display more emotion than the right hemiface. 

 In our work, we did not explicitly consider the asymmetry contribution to 

facial expressions. 

 

Expression intensity 

Expressions must be seen as dynamic actions. They occur at different levels of 

intensity and at different moments in time. A study conducted by Hess, Blairy, and 
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Kleck [113] involved the measurement of the influence of the intensity of facial 

display on the accuracy with which the facial expressions are decoded. The results 

revealed that the perceived intensity is directly correlated with the pictured expression 

intensity. 

 In our work, we present some preliminary results in decoding expression 

intensities, described in section 9.2. We simplify our approach, by considering only 

two intensity levels for each investigated expression. Note that most of our work is 

focussed on static expressions. This may be considered a weakness of our techniques, 

but there are many applications where live images or video is not available, yet it is 

still desirable to interpret a person's facial expression and attempt to determine their 

corresponding emotional state. And, arguably if we can achieve high recognition rates 

from still images it will be easy to further enhance recognition from dynamic image 

sequences. 

 

Expression categories 

Not all facial expressions are used with the same frequency and some are more 

difficult to perform [114, 115]. Tamminen et al observe that, on average, the easiest 

expressions to perform, e.g., happiness, are the most recognisable. Also, negative 

expressions, such as sadness and fear, do not achieve the same levels of intensity as 

the positive ones, such as happiness, and as a consequence, they are not as distinctive 

[115]. 

 In our experiments, summarised in Chapter 8, we also found happiness to 

consistently be the most recognisable facial expression. Thus, these studies in [114, 

115] corroborate our results. 

4.2. AAM and its Applicability in Expression Modelling 

In this section we describe the use of AAM to model facial expressions. 

 Firstly, by reviewing the literature, we evaluate the standard methods of 

applying AAM when modelling facial expressions (section 4.2.1). We observe and 

discuss inherent challenges of this standard approach. 

 In section 4.2.2, we survey proposed solutions in the literature. There are 

different types of proposed AAM extensions that aim to accurately model facial 

expressions. Some researchers separated the sources of facial variation, such as face 
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expression. This variant is presented in section 4.2.2.1. Then, in order to obtain a 

more precise detection of individual facial features, other researchers have made use 

of facial sub-models. When dealing with facial expressions, local features are 

responsible for most of facial variation, as one might expect and as we also found in 

our experiments, described in detail in section 8.6.1. Section 4.2.2.2 summarises 

approaches that use face sub-models, rather than a global face model. 

 Alternatives to the standard shape and texture AAM formulation were also 

proposed (section 4.2.2.3). Section 4.2.2.4 presents attempts to combine AAM and 

ASM to take advantages of the benefits of each model, while in section 4.2.2.5 we 

present 3-D AAMs applied to model expressions. 

 In addition we summarise research on AAM extensions that track facial 

expressions (section 4.2.3).  

 In section 4.2.4 we discuss all of these AAM extensions or enhancements for 

modelling facial expressions and determine how best to build on this state of art 

research and know-how. This will lead to our own research contribution described in 

Chapters 8 & 9. 

4.2.1. Modelling Face Expression using the Standard AAM 
Formulation 

In section 2.3.4 we concluded that when using AAM, facial features are detected 

quickly and accurately. In addition we concluded that this technique has a potential 

value in facial expression applications. 

 Various research work presented in the literature explores this topic of using 

AAM in the area of expression modelling. When using the standard AAM 

formulation, a first observation is that the model does not separate facial expression 

from other sources of model variability. This fact affects the facial expression 

decoding performance [84, 116]. This conclusion is further supported by the results 

obtained in [84] and summarised in Figure 4.1. 



 77

 
Figure 4.1. Facial expression recognition rates obtained in [84], when using the standard AAM 

formulation (first column) and when using extension of the algorithm (second row). 

 From our experiments (see section 8.6.2) we determined that in the standard 

AAM formulation, where we deal with a holistic model, faces can be too closely 

constrained to the principle model variations, such as pose and illumination, learned 

during the training phase. From a practical perspective this causes difficulties when 

we deal with facial expressions, where more subtle local features are responsible for 

the facial variation that we wish to discriminate. This suggests that alternatives to the 

standard global representation of a face should be found. 

 As already discussed in section 3.4, studies show that AAM is sensitive to 

pose and illumination variations [32]. Extensions of the model that solved the pose 

and illumination challenges also obtain more accurate results in expression modelling 

[117, 118]. 

4.2.2. Modelling Face Expression using Extensions of the Standard 
AAM 

As a consequence of the inherent challenges of the standard global AAM formulation, 

many alternatives were proposed in literature. In the following sub-section we are 

going to summarise the extensions from the literature that we consider as the most 

representative. For each we summarise the core method and comment on how it 

improves the accuracy of the model fitting and also the principle drawbacks. 
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4.2.2.1. The Bilinear AAM and Related Methods 

Initial estimates of the subspaces defining the sources of variability, i.e., lighting, 

pose, identity, and expression, are obtained in [119] by applying PCA on groups of 

images displaying those sources of variability. Four sets of images, each showing 

major variation on one subspace alone were used for training. The authors then 

applied an expectation-maximisation algorithm to maximise the probability of coding 

across these non-orthogonal subspaces. 

 Aboud and Davoine [84, 85] use a global AAM in conjunction with two 

bilinear factorisation models to separate expression and identity factors from the 

global appearance parameters. The results obtained in [84, 85] are highly accurate. 

However, in their approach it is first assumed that identity corresponds to the first 

training identity. This assumption limits the model capability to generalise for new 

subjects. 

 In [86], Macedo et al. separate expression variation using multilinear analysis, 

together with AAM. The authors state that by applying a multilinear analysis 

procedure over shape and texture AAM parameters, they are able to separate the 

identity and expression factors hidden in these parameters. The authors use this 

approach to develop a facial expression transfer application, i.e., mapping a facial 

expression performed by a given subject in a picture, onto the photograph of another 

person’s face. Figure 4.2 explains this application and exemplifies some results. 

 
Figure 4.2. Expression transfer between photographs, as realised in [86]. The first picture 

provides the expression that will be transferred in the second picture. Results in the Lab and, 

respectively, RGB colour spaces are shown in the last two pictures. 

 Alternative methods of deriving quasi-linear models are also able to 

successfully retrieve expression parameters. For example, Buenaposada et al. [120] 

introduce a subspace representation of face appearance which separates expressions 

from illumination variations. Then, the appearance of the face is represented by the 

addition of the independent linear subspace modelling expressions and the one 

modelling illumination. It requires two image sequences; in one sequence a certain 
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expression is subject to all possible illuminations, while in the second image a face 

under one illumination performs all facial expressions. 

 Mercier and Dalle [121] separate sources of variability by introducing a model 

that models the face as a sum of an identity part and weighted expression parts. It can 

be used both for applications in facial recognition and conversely as a face 

anonymiser by removing the identity component from a facial image while retaining 

the facial expression, as displayed in Figure 4.3. 

 
Figure 4.3. The results obtained by the face anonymiser, as illustrated in [121], with the model 

when it fails (a) and when it succeeds (b). The first row contains the faces to anonymise, while the 

results with the modified identity part are on the second row. 

4.2.2.2. Decomposition of the Global AAM into Sub-models 

Component-based AAM [94] has been employed as a solution to the drawback of 

using a holistic AAM model. It combines a global model with a series of sub-models. 

These sub-models are typically component parts of the object to be modelled. This 

approach benefits from both the generality of a global AAM model and the local 

optimisations provided by its sub-models. 

 Zalewski and Gong [97] define expressions as a combination of intrinsic 

functionalities of subcomponents. They provide a hierarchical decomposition as 

follows: jaw outline, nose and centres of the eyes, and the mouth form the root of the 

hierarchy; as branches of the decomposition they use eye-eyebrow pairs and mouth. 

The root component is used for estimating pose. The branches are used for expression 

modelling. 
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 In [122], a component shape model, such as mouth shape and eye-contour 

shape, is used in addition to the global shape model to achieve a stronger 

representation for facial expression components, when subject to complex pose 

variations which tend to dominate the model. 

 The idea of a hierarchical model is also employed in [123], so that major 

appearance modes of each sub-facial model encode the major variation for the 

corresponding area. For example, the highest mode of variation in the left-eye model 

encodes a blink. 

 In our work, and inspired by some of this research from the literature, we 

adopted the idea of decomposing the face model into several sub-models 

corresponding to relevant facial features. A detailed description of our method, its 

motivations and its enhancements over techniques described in the literature will be 

presented in section 8.6.2. 

4.2.2.3. Alternatives to the AAM Shape and Texture Representations 

In order to improve the expression recognition rate, Li et al. propose [124] 

alternatives to shape and texture information. Face texture, intrinsic geometry, and 

expression information are modelled separately, by fitting a generic mask (see Figure 

4.4). Subsequently, texture and geometry attributes are re-combined to form a 

classifier capable of recognising faces with different expressions. 

 
Figure 4.4. The face masked proposed by [124]. 

 Another AAM extension, intended to improve expression modelling, is 

presented in [84, 85]. Shape vectors are multiplied by appropriate weights to 

compensate for differences between pixel distances and intensity values. Linear 

Discriminant Analysis (LDA) is applied to extract the six most discriminating features 

which maximise class separability. 

 Discrete Choice Models (DCM) [125] is a concept known from econometrics. 

In this paper the authors redefine facial expression classification as a discrete choice 
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process. Facial expressions are described with expression descriptive units (see Figure 

4.5), consisting of a set of high level features derived from an AAM. A new classifier 

based on DCM and a set of expression descriptive units of the facial components, i.e., 

eyebrows, eyes, nose and mouth, and the mutual interactions between them, are also 

proposed by these authors. 

 
Figure 4.5. The description of the DCM as shown in [125]: a) Facial landmarks (55 points);b) 

Facial components descriptors; c)Expressions Descriptive Units. 

4.2.2.4. Combining AAM and ASM and Other Extensions 

ASM together with AAM has been widely recognised as a valuable method for image 

understanding [20, 88]. ASM was described in detail in Section 2.2.2.2. 

 One advantage of ASM is the fact that shape parameters bring important 

information in the case of non-rigid facial variations [97, 115]. Shan et al. [59] 

enhance the ASM algorithm with global texture constraints. This approach combines 

the ASM local profile matching with the AAM global texture model, taking 

advantage of both techniques. Each landmark is firstly matched by its local profile in 

its current neighbourhood, and the overall configuration of all the landmarks is re-

shaped by the statistical shape constraints. Then, the global texture is warped out from 

the original image. The texture information is used to predict and update the shape 

parameters before executing the next local match iteration for each landmark point. 

 Both ASM and AAM use PCA to model texture. One drawback of PCA is that 

it does not consider discriminative criteria between samples – feature points, and 

negative samples – non-feature points [58]. As a consequence, its local searching 

stage often falls into local minima, thus failing to converge correctly. 

 An alternative is presented in [58], where classifiers using look-up-table 

(LUT) Haar-like features are trained from a large data set to model texture. The LUT 

Haar-like features are proposed to compensate for this drawback of the PCA 



 82

technique. These features are constructed based on 2-D Haar-like features, 

corresponding to simple rectangle patches and they can be calculated efficiently using 

an integral image representation [126] of the original image. The generality and 

robustness of the boosting method guarantee the performance, when dealing with 

expression changes. 

4.2.2.5. 3-D AAM Deformable Model 

AAM is fundamentally a 2-D affine model. Several 3-D versions were proposed in 

literature [10, 92, 127, 128], as a means to overcome variations in pose and 

illumination [32] and to describe facial expressions more into detail. 

 The debate between modelling faces using 2-D AAM or 3-D AAM remains 

open. Recognition systems using 2-D AAM have been able to claim early success 

especially for constrained types of facial dynamics. Some of the challenges for 2-D 

AAM image segmentation and recognition are viewpoint changes or self-occlusions. 

These challenges come from the fact that less a-priori knowledge about the kinematics 

and shape properties of the faces are known. 

 Usually, in 3-D AAM, researchers use data sets of faces acquired with a 3-D 

scanner [10]. 3-D-Anthropometric-Muscle-Based AAM (AMB-AAM) [92], Candide 

3-D AAM [127], or cylindrical representation of the face [128] are just several ways 

to include 3-D animation in a standard 2-D AAM. 

 Classical AAM parameterises facial shape in 2-D defined by labelled 

landmark values. AMB-AAM [92] employs a different approach for 3-D data: the 

shape is linearly controlled by anthropometric parameters. These are parameters 

dedicated to the measurement of the size and proportions of human faces that control 

facial expressions and facial types. The Anthropometric Action Units (AAUs) used 

are: facial width, mandible width, chin height, nose vertical shift, nose height, nose 

width, mouth vertical shift, mouth width, upper lip height, lower lip height, and 

eyebrow vertical shift. The AMB-AAM trained model appears more compact than 

AAM and it presents less shape parameters. Results show that the AMB-AAM fitting 

results are more accurate than those of AAM on 78% of cases [92]. 

 In [128], the head is modelled as a texture mapped cylinder (see Figure 4.6). 

The authors compared the effectiveness of their approach as opposed to a standard 

planar model. Their cylindrical model out performed the planar model in all the 
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experiments in terms of precision and stability. It is also not as sensitive to errors in 

the initial positioning of the model as the planar model. 

 
Figure 4.6. Mapping from image plane to texture map, as proposed in [128]. 

 The Candide 3-D model is also proposed in the field of face expression, due to 

its simplicity [129]. In this representation, shape is fully described by the 

concatenation of the 3-D coordinates of face vertices. The model is then defined as 

the linear combination between Shape and Animation Units. Shape Units provide a 

way to deform the 3-D mesh such as to make the head or the eyes wider, etc. 

Animation Units provide a way to deform the 3-D mesh according to some predefined 

facial animations. 

 
Figure 4.7. Candide-3D with 113 vertices and 183 triangles, as described in [129]. 

4.2.3. Tracking Face Expression using AAM Extensions 

Facial expression analysis can be performed from static images [84, 85, 114, 116, 

119-121, 124, 125, 130-134] or from video sequences [135-142]. An expression 

tracking system estimates the rigid and the non-rigid motion, e.g., facial expression, 

of an object through an image sequence [136]. The identity factor remains constant, 

while illumination, pose, and expression parameters vary, each with its own 

dynamics. So, in case of tracking, a person-specific model is more appropriate [143]. 
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The output of the model from previous frame is usually used as an initial 

approximation of current parameters. 

 There are several methods described in the literature which adapt AAM 

techniques for expression tracking. Methods such as the Kalman filter [139], a low 

dimensional manifold embedding separated expression parameters [142], Resolution-

Aware Fitting [138], or image differences, based on Discriminant Non-negative 

Matrix Factorisation [140, 141], have been used. 

 One successful approach to catch the dynamics in faces, in terms of facial 

expressions, is the Candide model [135, 136] (also see section 4.2.2.5). The tracking 

algorithm consists of decoupling rigid motion, i.e., head pose, from non-rigid motion, 

i.e., facial expression. After estimating head pose, an AAM search is used to 

determine and track the vector of animation parameters [144]. 

 In an alternative approach to simplify the complexity of global parameters, 

Chen and Davoine [137] analyse local regions of several representative features. 

During tracking, feature-based local distributions are obtained directly from the video 

frames by comparing the local distribution with a pre-computed model. 

 A modular eigenspaces is developed in [143] bringing benefits over global 

eigenspace methods, e.g., more accurate reconstruction of the regions of interest, 

lower computational costs, and robustness to occlusions. The authors use predefined 

masks, i.e., appearance models that decompose face images within regions 

corresponding to the eyes, mouth, and remainder of the face (see Figure 4.8). The 

appearance within regions varies independently. In the current implementation the 

regions move together according to a single affine model. 

 
Figure 4.8. In [143] face images are decomposed using appearance models within regions 

corresponding to the eyes, mouth, and remainder of the face. 

 Choi and Oh [145] improve the AAM fitting algorithm employing a second 

order minimisation approach. The authors prove that this approach gives the ability of 
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correct convergence with a slight loss of frame rate to AAM. The correctly extracted 

facial shape with AAM ensures that facial expressions do not experience large errors. 

4.2.4. Discussion of Prior Research from the Literature 

Following our literature review on facial expression analysis there are a number of 

key questions we need to answer: (i) Which AAM parameters are more relevant to 

expression decoding? (ii) Is a local approach more efficient in modelling expression 

than a global approach? And finally, (iii) what are the future directions in facial 

expression analysis? 

 Let us begin with the first of these questions: 

 

(i) Which AAM parameters are more relevant to expression decoding? 

AAM extracts shape, texture, and the combination of the two, i.e., appearance 

parameters. It is still debatable which of the AAM parameters carries most of the 

expression information. Researchers agree that shape features have a large role to play 

in facial expression recognition [68, 97]. The question is whether texture brings 

sufficient new information in order to justify the additional parameters that it adds to 

the model. 

 In the literature, opinions are divided. In [97], after experimenting with shape, 

texture and AAM parameters, the shape component is preferred. The explanation is 

that texture information is more susceptible to external factors such as illuminations 

or identity changes. 

 Kotsia et al. [140] state that when using appearance parameters, the results are 

significantly better than when using either texture or shape information. The authors 

motivate the affirmation by the fact that the introduction of texture eliminates some of 

the confusions observed when using shape information only. It is stated that shape 

information is not enough to fully describe expression effects, such as furrows and 

wrinkles. The authors conclude that texture can capture all the necessary information 

where the shape description would fail, thus making the fusion of the two types of 

information more powerful. 

 In section 8.3 we will describe experiments that we performed concerning this 

topic. 
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(ii) Is a local approach more efficient in modelling expression than a global 

approach? 

Another disputable aspect is the use of global facial appearance versus local features. 

Holistic approaches are preferred to local approaches when modelling faces [19-23]. 

 However, facial expressions are defined by the dynamics of the individual 

facial features, as we experimented in section 8.6.1. These features have to be 

accurately modelled in order to capture facial expressions. Sub-models modelling 

these features along with the global model can help to improve the performance of an 

expression recognition system [94, 97, 122, 123]. This type of representation [38] also 

promises to solve pose issues. 

 In our work, we ultimately propose such a combination of local sub-models 

with a holistic, global model and demonstrate its benefits over other techniques (see 

section 8.6.2). 

 

(iii) Future work directions? 

In conclusion, there are still unresolved disadvantages to using AAM in expression 

modelling. Citing other research articles, we mention poor quality of the reconstructed 

images, manifesting as blur in the eyes and in the mouth area [146], poorly modelled 

features, e.g., wrinkles, tattoos, piercings, and birthmarks [56], low accuracy against 

high variations caused by unknown occlusions and illumination changes [131]. 

4.3. Facial Expression Classification 

In Chapter 2 we overviewed an automatic facial expression analysis system (see 

Figure 2.1). The last module of such a system typically performs expression 

classification and recognition. 

 Expression classification is achieved by a classifier that uses measurable 

feature vectors to assign an object to one of the two corresponding classes. These 

feature vectors are extracted from input data. In our case we use AAM techniques to 

extract the relevant facial features – represented as parameter values of the AAM 

model. Data samples are then classified based on these parameter values. 
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4.3.1. Classification Challenges 

There are several aspects that have to be considered when using a classifier. Its 

training is one of the most important steps. A careful choice of the type and number of 

features used to train the classifier is important. On one hand, when the training set is 

too small, the classifier does not learn enough useful information about the different 

classes from the particular training set. This effect is also known as under-training. 

 On the other hand, when using a very large number of training examples, many 

classifiers may obtain good performances on this training set, but perform poorly on 

examples outside it. This is also known as over-training. The classifier is not able to 

generalise well, becoming too specific to a particular set of training data. A very large 

number of training examples also make classifiers computationally expensive. A 

compromise between sufficient training data and avoiding a very large number of 

training examples has to be found, often by trial and error. 

 Practical examples of these challenges will be given in Chapter 8. 

4.3.2. Examples of Classifiers used in Expression Classification 

In the literature, most facial expression classification is reduced to a classification 

between the six universal expressions and the neutral one (details are given in section 

2.3.1). We chose to adopt this approach in our work. 

 Different types of classifiers are employed in the literature. Artificial Neural 

Networks (ANN) [56, 147], Enhanced Fisher Classification Models (EFM) [57, 148, 

149], Support Vector Machines (SVM) [107, 115, 118, 125, 150], Nearest Neighbour 

(NN) based on Euclidian [151, 152], Mahalanobis [75, 153], and cosine distances 

[151], Hidden Markov Models (HMM) [154], Linear Discriminant Analysis (LDA) 

[125], Bayesian classifications [155], and several other methods have been 

successfully used. We give some relevant examples, mentioning also published work 

that describes their implementation. 

 In our work, two classifiers are compared: NN (section 8.4.1.1) and SVM 

(section 8.4.1.2). The choice of the two classifiers is based on their positive results 

obtained in the literature [156]. 
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4.3.2.1. Nearest Neighbour (NN) 

One of the simplest classification schemes, that proved though efficient in expression 

classification is the NN classifier based on distance similarity. The theoretical 

description of NN is based on [157]. 

 NN are well-suited for applications where there are many classes and a 

reduced number of examples per class, as in the case of facial expression recognition. 

NN are also suited when we have no apriori knowledge of the distribution of 

observations and classes other than that provided by pre-classified samples. In this 

case, a decision to classify a sample into a specific category will depend only on a 

collection of correctly classified samples. 

 NN are basic classifiers which do not require a training process. The NN rule 

classifies a sample a in the category of its nearest neighbour. More precisely 

}{ nn aaaa ,...,, 21∈′  is a NN to a if min d(ai,a)=d( '
na ,a) where i=1,2,…,n. If the number 

of pre-classified points is large it makes good sense to use the majority vote of the 

nearest k neighbours instead of the single NN. This method is referred to as the k-NN 

rule. A common choice for the metric is the Euclidean distance. Other alternatives 

include cosine and Mahalanobis distances. 

 The Euclidian distance between to p-dimensional vectors x=[x1, x2, .., xp] and 

y=[y1, y2, .., yp] is defined as: 

 

 D(x,y) = x - y = ((x1 - y1)2 + ((x2 - y2)2 + ... + (xp - yp)2) 0.5    (4.1), 

while the cosine, or covariance distance is defined as the cosine of the angle between 

two vectors: 
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where Θ  represents the angle between the two vectors. It equals 1 when the vectors 

are identical, and it is 0 when the two vectors are orthogonal. 

 The cosine distance can be also defined as the angle Θ  between the two 

vectors, i.e., d’(xi,xj)=arcos d(xi,xj) =1-d(xi,xj). The cosine distance ignores absolute 

sizes of the measurements and it only considers their relative sizes. 
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 Different types of distance metrics were used in expression analysis, such as 

the Euclidean distance [151, 152], the cosine [151], or the Mahalanobis distance [75, 

153]. 

 Bartlett et al. [151] compared cosine and Euclidian distances for different 

architectures. The authors prove that ICA performs significantly better using cosines 

distance rather than Euclidean distance, whereas PCA performs the same for both 

distances. 

 In our work, we also evaluated this type of classifier (see Chapter 8). 

4.3.2.2. Support Vector Machines (SVM) 

These appear to be one of the most popular forms of classifier when dealing with 

facial expression. SVMs, introduced by Boser, Guyon, and Vapnik in 1992 [158], 

have been accepted as excellent classifiers for a wide variety of problems. By 

effectively embedding vectors in a higher dimensional space, SVMs can solve highly 

non-linear problems. 

 A detailed description of the SVM techniques can be found in [159]. SVM is a 

widely used classification method that presents several important advantages. SVM 

allows many features even if the training material contains few examples. SVM 

classifiers can be trained to maximally discriminate a particular class. All these 

advantages recommend SVM for expression classification/ recognition and in 

consequence it is a widely used classifier in these tasks. 

 SVMs are more complex than NNs and involve a training stage. They operate 

by finding a hypersurface in the space of possible inputs. This hyperplane attempts to 

split the positive examples from the negative ones. The choice of the hyperplane is 

based on the maximum distance to the nearest of the positive and negative examples. 

When classes cannot be linearly separated in the original input space, the input space 

is nonlinearly transformed into a higher dimension feature space. This procedure is 

done by a nonlinear kernel function, e.g., polynomial, Radial Basis function (RBF), 

multi-linear perception. Then, the linear optimal must be found to separate the 

hyperplanes. 

 Various methods for hyperplane separation can be used, i.e., Quadratic 

Programming, Sequential Minimal Optimisation, and Least-Squares. 
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Figure 4.9. SVM algorithm. 

 Beszedes and Culverhouse [115] adopt SVM for AAM vectors classification 

and they use the human visual system (HVS) as ground truth for comparison. The 

decrease of image sizes reduces the classification accuracy for both SVM and HVS. 

The SVM classifier outperforms the average classification accuracy of human 

respondents in case of expression classification for all the tested image sizes. 

However, the SVM fails in cases of expression level intensity classification. 

 In their research, Bartlett et al. [118] apply machine learning methods such as 

SVM and AdaBoost, to texture-based image representations. The output margin for 

the learned classifiers predicts action units (AU) intensities. Frame-by-frame intensity 

measurements indicate facial expression dynamics that were previously intractable by 

human coding. For their system, AdaBoost performed slightly better than SVM. 

 More details on SVM and experiments based on its implementation will be 

given in Chapter 8, as SVM represents our choice for classifying facial expressions. 

4.3.2.3. Discussion 

The literature lacks any comprehensive comparisons between different methods of 

expression classification. 

 According to Wilhelm et al. [160], who compared results between NN, 

Multilayer perceptron (MLP), Radial Basis function (RBF), and Learning Vector 

Quantisation (LVQ) networks, the best results were obtained with AAM and MLP 

classifiers or ICA with NN classifiers, respectively. Another comparison [125] affirms 

the superiority of Discrete Choice Models (DCM) 78.26% and SVM 76.52%, against 

General Discriminant Analysis (GDA) 62.60% and against Linear Discriminant 

Analysis (LDA) 49.56%. 
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 In Table 4.1, we summarise the accuracies for various classification methods. 

We only compare results for classifiers using AAM features as input. In this way, we 

only compare performances depending on the accuracies of the classifiers and the 

methods of training/ testing the classifiers. 

 Perhaps the most popular classifier in expression classification is SVM. A 

strong motivation of using it in expression classification is its high classification 

performances and its consistency. In our work, we also use this classifier. For 

comparison, we also implement NN based on Euclidean and cosine distances. Results 

of both classifiers will be detailed in Chapter 8. 
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TABLE 4.1. ACCURACY OF VARIOUS METHODS AND THE CONDITIONS OF TESTING. 

System Classifier Acc(%) Database Conditions of testing 

[161] ANN 89%  Karolinska Directed 

Emotional Faces 

-training: 1512 appearance vectors 

-3-layer feed-forward neural network, with 94 input neurons, 15 

hidden neurons and 7 output neurons 

[147] MLP 99%  Their own video 

sequences 

- person-specific oriented 

- 7 input layers, 5 hidden layers, 5 output layers 

[56] ANN 89%  Karolinska Directed 

Emotional Faces 

- training: 980 facial images 

 

[148] EFM 87%  Cohn-Kanade - 5 Cross Validation method 

- 4 expressions tested 

[57] EFM 88.9%  Cohn-Kanade - build AAM on 272 facial images, AAM fit on the remaining 

172 images 

[149] EFM 87.2%  Cohn-Kanade - Inverse Compositional Image Alignment method 

- 4 expressions tested 

- AAM: 498 face images; test: 5 Cross-Validation method 

[150] SVM 90%  Cohn-Kanade -AAM+Gabor+Adaboost+SVM system 

- voting processing to combine SVM outputs  

[107] SVM 79.9%  FEEDTUM -4 expressions tested 

-classifier in cascade, combined with gender classifier  

[160] MLP, RBF, ANN, 

GLVQ 

72%-

MLP 

 Their own database -leave-n-out strategy to train and test the classifiers 

-test: one person showing all facial expressions. 

[115] SVM 70.31%  FEEDTUM -4 expression tested, 3 expression levels for each expression 

-train: 8 subjects, test: 2 unseen subjects, different image 

resolution 

[162] SVM (RBF) 71%  Image sequences from 

meetings 

-presence of noise in the image sequences 

-incorporate 3-D information 

-train: 10-fold Cross-Validation 



4.4. Facial Expression Recognition 

While in expression classification, i.e., a binary class problem, we seek to choose 

between two classes of expression, in expression recognition, i.e., a multi-class 

problem, we want to be able to associate a human face with one particular facial 

expression. 

 Now, there are two main sets of classes used in the literature for automated 

facial expression recognition: the action units defined by Ekman and Friesen [40] and 

the prototypic facial expressions defined by Ekman [42]. Both concepts were 

previously explained in 2.3.1. In the same section we also discussed the differences 

between the two approaches. 

 Most researchers tend to directly interpret facial expressions in terms of the 

prototypic facial expressions. Only a few systems use rules in order to translate coded 

facial actions into expression classes. In our work, we are also going to interpret facial 

expressions in terms of the prototypic facial expressions (more details are given in 

Chapter 8). 

 As in the case of expression classification, different types of classifiers can be 

used. Basically, expression recognition can be seen as multiclass expression 

classification. Binary classifiers can be extended to accommodate multiclass 

classification. We are going to pay special attention to SVM, as it proved one of the 

most successful expression recognisers both in the literature [150] and in our practical 

experience. 

4.4.1. Multi-Class SVM 

By their nature, SVMs are intrinsically binary classifiers. However there exist 

strategies by which SVMs can be adapted to multiclass tasks. Two of the common 

approaches are One-Against-One (1A1), One-Against-All (1AA), Directed Acyclic 

Graph (DAG), and the cascade techniques. 

 The 1AA approach represents the earliest and most common SVM multiclass 

approach [163] and it involves the division of an N class dataset into N two-class 

cases. In the case of expression recognition, for the seven types of facial expressions, 

i.e., the six universal expressions plus the neutral one, we apply seven classifiers of 

the type expression/ non-expression. 
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 The 1A1 approach [159] involves constructing a machine for each pair of 

classes resulting in N(N-1)/2 machines. In the case of recognising expressions, as N is 

seven, corresponding to the six universal expressions plus the neutral one, we will 

have 21 classifiers of the type expression1/ expression2. When applied to a test point, 

each classification gives one vote to the winning class and the point is labelled with 

the class having most votes. This approach can be further modified to give weighting 

to the voting process. 

 It is stated in the literature [164] that the disadvantage the 1AA approach has 

over 1A1 is that its performance can be compromised due to unbalanced training 

datasets. A practical example of an unbalanced training dataset is the case of 

consumer pictures when we have a reduced number of disgusted training faces, 

compared to a high amount of happy faces. The fact that people prefer to pose smiling 

rather than to have a disgusted face is non-debatable. However, the 1A1 approach is 

more computationally intensive since the results of more SVM pairs ought to be 

computed. 

 Another way to extend SVMs from binary classifiers to multi-class classifiers 

is by a Directed Acyclic Graph (DAG) [159]. N(N − 1)/2 binary classifiers are 

created. Each binary classifier forms a node in the graph structure. Nodes are 

organised in the form of a triangle with the single root node at the top and increasing 

subsequently in an increment of one node in each level, until the last level that will 

have N nodes. 

 The DAG method eliminates one class out from the list at each level. At the 

root node, all classes are in the list. Each node discriminates between the first class 

and the last class in the list. Each level gives the result of one class out of the two 

classes; the class that is not in favour of that level is eliminated from the list. The 

procedure is terminated when only one class remains in the list. 

 An alternative option is to use classifiers for each class in a cascade structure 

[107]. Six classifiers, one for each basic expression, are arranged in a cascade 

structure. Each classifier is added iteratively, based on its binary classification 

performance. We are also going to utilise this approach in our experiments. 

 We conclude this section, by summarising some examples of results obtained 

in expression recognition, using a multi-class SVM approach. 

 Li et al. [150] propose a system that consists of four modules: a warp 

processing module using AAM, a Gabor filtering module, an AdaBoost training 
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module, and the SVM training and testing module. The SVM outputs are combined to 

make a seven alternative forced choice, by using voting to combine SVM outputs for 

multiclass decisions. Typical recognition rates of 90% were achieved. 

 Saatci et al. [107] used a cascade of SVM classifiers to perform expression 

recognition. Recognition rates improved when the expression classifiers cascade 

where preceded by a gender classifier. 

 In [162], Liebelt et al. use an SVM to recognise expressions on images of low 

quality or occluded. The authors obtain on average a recognition rate of 71.3%. 

4.5. Databases used in the Expression Modelling and 
Recognition 

In this section, we present databases used in the expression modelling community. We 

enumerate all the relevant databases that we are aware of, as it will be useful to have 

such a study in the literature. 

 Several databases have been developed for facial expression analysis. Despite 

various options, no single database is shared by all facial-expression research 

communities. Each database has its own particularities, e.g., different picture quality, 

lighting conditions, contrast, number of subjects, modalities to stimulate a subject’s 

emotions, and so on. The lack of consistency between databases means that there is no 

single standard against which different algorithms can be directly compared. In a 

sense this is not surprising as it has taken many years for the research community to 

standardise on a number of large face recognition databases [165, 166]. As the field of 

expression recognition is more recent we expect that the research community is less 

mature and research standardisation less well developed. 

 Few databases contain profile faces. Probably the most important such 

database is the MMI database [167] (samples from this database can be seen in Figure 

4.10). 

 
Figure 4.10. Faces displaying facial expression of fear from profile and frontal views, as 

represented in MMI database [167]. 
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 Another issue is the methodology of collecting suitable data for the databases. 

Artificially posed expressions and facial expressions based on true underlying 

emotion present discrepancies, in both contracted muscles and in their dynamics 

[118]. 

 Fasel and Luettin [39] acknowledged that posed facial expressions tend to be 

exaggerated and easier to recognise, as opposed to spontaneous expressions. This 

observation is supported by the fact that there are two distinct neural pathways that 

mediate facial expressions, i.e., one for volitional facial movement and one for 

involuntary facial movement [118]. Each one originates in a different area of the 

brain. One would expect that facial expressions mediated by these two pathways 

would exhibit differences both in the facial muscles which are involved and in the 

resulting dynamics of the formed expression. One example that supports this idea is 

the lack of constriction in the obicularis oculi1 during artificial smiles [168]. 

 Figure 4.11 displays examples of the universal facial expressions from two 

databases. In the first case, the Cohn-Kanade database [3] contains pictures of posed 

expressions. 

 
Figure 4.11. Examples of posed (first row) and spontaneous expressions (second row) from the 

Cohn-Kanade database (first row) and the MMI database (second row). 

 Before performing each display, an experimenter described and modelled the 

desired display. In the second case, there are presented examples of pictures from the 

FEEDTUM Facial Expressions and Emotions Database [169, 170]. The database 

belongs to the Technical University of Munich and it consists of elicited spontaneous 

expressions of eighteen subjects of the six universal expressions and the neutral one. 

To elicit the emotions by as natural a means as possible, the authors decided to play 

several carefully selected stimuli videos and to record the participants’ reactions. For 

                                                 
1 The obicularis oculi is the muscle that closes the eyelid 
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this purpose a video monitor together with a mounted camera on top were employed, 

which enable a direct frontal view. Both devices were controlled by a dedicated 

software that induced the desired emotions by playing the recordings at specified 

times. 

 Table 4.2 contains a summary of the existing databases used by the expression 

recognition community. Their short description together with other characteristics is 

also enumerated. 
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TABLE 4.2. EXISTING DATABASES FOR EXPRESSION ANALYSIS TOGETHER WITH THEIR DESCRIPTION. 

Database Description Other factors 

CMU- Cohn-Kanade [108] Video sequences of several subjects acting on multiple 

scenarios; each sequence includes a subject showing a 

specific basic facial expression  

Expression intensity- from the neutral state 

to the apex of the emotion. 

JAFFE - Japanese Female Facial Expression [171] 213 images of 7 facial expressions (6 basic facial 

expressions + 1 neutral) posed by 10 Japanese female 

models.  

Each image has been rated on 6 expressions 

adjectives by 60 Japanese subjects. 

MMI [167] 2000 videos and 500 images of about 50 subjects 

displaying various facial expressions on command.  

Metadata (displayed AU) is available. 

Frontal and pose views. 

FABO -Bimodal Face and Body Gesture [172] bimodal face and body expression database Recorded simultaneously by face and body 

cameras.  

Karolinska Directed Emotional Faces set [173] 490 colour pictures showing 70 subjects displaying the 7 

basic expressions, 5 different angles 

Posed database, excludes beards, 

moustaches, earrings, eyeglasses, and visible 

make-up. 

eFEC database [174] 600 facial expression images 258 male and 342 female 

subjects, with 144 ‘neutral’, 124 ‘sleepy’, 177 ‘confuse’ 

and 155 ‘smile’ images; frontal view; inconstant lighting 

minor head rotation and orientation;  

Glass/moustache; age within 20-35; multi-

races/skin colour; with/without hair covered 

by cloth. 

UT Dallas [175] For each person there are 9 static “facial mug shots” and 

a series of video streams (moving facial mug shot, a 

facial speech clip, dynamic facial expression clips, 2 gait 

videos, and a conversation video) 

Controlled lighting conditions; spontaneous 

database. 

RU-FACS Spontaneous Expression [118] 100 subjects asked to either tell the truth or take opposite 

opinion and convince an interviewer they are telling the 

truth. 

Rigorous FACS coding; spontaneous 

database. 

Yale Faces database [176] 90 face images for 15 individuals; 6 different types of 

facial expressions: normal, happy, sad, sleepy, surprise 

and wink 

Only small change in head pose and facial 

expression. 
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Purdue AR database [177] 4000 colour images corresponding to 126 people’s faces 

(70 men and 56 women). The 4 expressions are neutral, 

smile, anger and scream. 

Frontal view faces, various illumination 

conditions, occlusions.  

POFA- Pictures of Facial Affect [178] 110 photographs of facial expression  Black and white pictures. 

JACFEE/JACNeuF -Japanese and Caucasian 

Facial Expressions of Emotion [178] 

56 photographs of different people, half male and half 

female, half Caucasian and half Japanese, illustrating the 

6 universal expressions 

Colour pictures, limitation: small number of 

pictures. 

CVL Face Database [179] 114 persons (108 male, 6 female) in different conditions: 

profile left/right, 45 degrees left/right, frontal, frontal 

smile, and frontal smile with teeth 

Colour pictures 

FG-NET Aging database [180] face images showing a number of subjects at different 

ages 

- 

FEEDTUM- Facial Expressions and Emotions 

[169, 170] 

18 subjects within the MPEG-4 emotion-set plus added 

neutrality 

Spontaneous database 

Cohn and Kanade’s DFAT-504 dataset [108] 100 university students ranging in age from 18 to 30 

years. 65% were female, 15% were African-American, 

and 3% were Asian or Latino 

Includes pose variations 

Pictures of facial affect [181] 110 images consisting of six male and eight female 

subjects performing the 6 basic expressions 

- 

RaFD- Radboud Faces Database [182] 72 models showing expressions of happy, angry, sad, 

contemptuous, disgusted, neutral, fearful, surprised 

Subjects of all ages, 3 different gaze 

directions and 5 different camera angles 

simultaneously. 

MSFDE- Montreal Set of Facial Displays of 

Emotion [183] 

144 facial stimuli expressed by 3 cultural groups; 5 

different levels of intensity for each expression. 

Limitation: small number of pictures 

available 
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Chapter 5 - Facial Feature Modelling with Standard 
AAM 

The main goal of our work is to be able to automatically analyse facial expressions. 

This task requires detailed facial feature models that accurately describe facial 

expressions. In the previous chapters we chose and described AAM as a technique for 

whole-face description. AAM has been shown to work well when modelling whole 

faces [74]. 

 In this chapter we will adapt the AAM technique in order to develop robust 

models for the eyes and lips regions of the face as these are the most significant facial 

sub-regions which determine facial expression. 

 We begin our approach by verifying the performance of the standard AAM 

formulation when modelling eyes and lips. We then adapt the AAM in order to model 

these challenging facial features. The eye model should depict not only the eye 

appearance, but also states like the degree of closure of the eye or the angle of eye 

gaze. Finally, a lips model should be able to handle challenges, such as the complex 

geometric variability of the lips and the varying textures of this region as the mouth 

opens and a person’s teeth are exposed. 

 This chapter is divided into two main sections: in section 5.1, we apply and 

adapt AAM for the eye region. In section 5.1.1 we start by defining several terms 

related to eye actions and to our eye model. Then, in section 5.1.2, we summarise 

relevant work presented in the literature approaching eye detection and tracking, and 

blink and gaze detection. Section 5.1.3 provides a step-by-step description of the 

creation of the eye model, while section 5.1.4 presents some preliminary results and 

draws conclusions regarding our initial eye model. 

 In the second main section of this chapter, we use AAM to develop a lips 

model. Firstly, in section 5.2.1, we analyse and compare state-of-the-art in lips 

modelling. Then, we adapt the standard AAM for the lip region, as described in 

section 5.2.2. We present preliminary results and draw conclusions in 5.2.3. 

 We conclude the chapter in section 5.3, by analysing our initial models. We 

study their performance and describe their remaining challenges. 
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5.1. AAM Eye Model 

5.1.1. Definitions of Main Actions Performed by Eyes 

Several terms related to eye actions used in the current chapter are defined bellow, in 

order to ease reading and understanding of our work. Most of the definitions are cited 

from [184]. 

 Eye movements have been described and analysed thoroughly by scientists 

from various domains. The eyes blink, wink, flutter, gaze, and perform saccades2. 

These actions bring relevant information about one’s emotions or medical conditions 

[6, 185-188]. 

 

 Blinking is defined as the rapid closing and opening of the eyelid. This 

involuntary action has several health benefits, as it spreads tears across the eyes and it 

removes irritants from the surface of the cornea and conjunctiva. A person 

approximately blinks once every five seconds [189]. Infants do not blink at the same 

rate of adults; in fact, infants only blink at an average rate of one or two times per 

minute [190]. On average, a blink takes approximately 300 to 400 milliseconds [189]. 

Blink speed can be affected by elements such as fatigue, eye injury, medication, and 

disease [191]. In consequence, it can be a criterion for diagnosing drowsiness states 

[6, 185], emotions [186], or medical conditions [187, 188], e.g., blink rate decreases 

in Parkinson’s disease [187] and increases in schizophrenia [188]. 

 A few instances of multiple blinks in a short period of time are called eyelid 

flutter, defined as two or more rapidly repeating blinks. 

 When a person only blinks with one eye, it is called winking. Winking is 

usually voluntary and it can be used as a form of body language, communicating 

agreement and affection. 

 Gaze is defined by the direction the eyes are pointing in. 

 On a more general note, eye movements can be divided in fixations, i.e. when 

eye gaze stops at one position, and saccades, i.e., when eye gaze moves suddenly to 

another position. Fixations are eye movements which stabilise the retina over a 

stationary object of interest. Saccades are involuntary rapid changes in the point of 

fixation, during scanning of objects, reading, etc. Saccades are the fastest movements 

                                                 
2 Eye saccades are quick, simultaneous movements of both eyes in the same direction. 
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that human body can perform. During the day the eyes can rotate over 500 degrees per 

second, and on average 1000 of these saccades are performed [192]. 

 Many automatic systems have been developed to analyse, model, and track 

these eye movements. As an initial step the eye region must be detected in a facial 

image. Eye detection is challenging due to the weak contrast between the eye and the 

surrounding skin [28]. 

 In some applications only pupil detection is required [193]. The pupil is the 

black circle in the centre of the iris (see Figure 5.1); it carries important information, 

e.g., the size of the pupil determines the amount of light that enters the eye. 

 
Figure 5.1. Description of human eye. 

 A related application is eye tracking. Eye tracking is the process of measuring 

the gaze, eye position, and their motion. An ideal eye tracker system [28] should be 

robust, non intrusive, i.e., avoid any physical contact with the user, and inexpensive. 

 Eye detection, along with eye and gaze tracking, received a great deal of 

attention for applications such as facial expression analysis [186], computer animation 

[194, 195], driver awareness systems [6, 185], film and advertising industry [196], or 

communication interfaces using blink and gaze for people with severe disabilities 

[197, 198]. 

 In the following section, state-of-the-art eye-related techniques are described 

and compared. We discuss research work in eye detection and tracking, blink 

detection, gaze detection and tracking. 

5.1.2. State-of-the-art in Eye Modelling 

Eye-related techniques can be classified into two categories: intrusive, which require 

direct contact with the eyes, and non-intrusive, which avoid any physical contact with 
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the user. The latter is more of practical interest for consumer applications, as the user 

is not constrained by uncomfortable equipment. 

 A good survey of non-intrusive methods is offered in [28], that broadly 

classifies non-intrusive methods into three principle categories: feature-based [19], 

appearance-based [28, 199-202], and model-based [197, 198, 202-205]. Each category 

is going to be described below. We only describe methods based on active 

illumination, ignoring the methods based on infra-red (IR) illumination [28, 193]. 

5.1.2.1. Eye Detection and Tracking 

Feature-based methods are based on tracking individual features of the eyes, by 

exploring their characteristics, such as edge and intensity of iris, eye colour, or eye 

corners. 

 A popular method is the extraction and tracking of the eyelids [203], robustly 

under various illuminations and face orientations. Firstly, the authors of [203] obtain a 

rough location of the eyes by morphological filtering. This type of filtering permits to 

extract contrasted components of a given size. The dark contrasted components, i.e., 

pupils and eyelids, are combined with the white contrasted components, i.e., the white 

of the eyes, defining the eye region. Then a dynamic programming algorithm, i.e., the 

minimal path algorithm, is applied to extract the precise shape of the eyelids. 

 In [206], instead of detecting the eyes, the authors detect the mid-point 

between the two eyes, based on pixel-value characteristics. The pixel values of this 

point has two circles of bright parts, i.e., forehead and nose bridge, and of dark parts, 

i.e., eyes and brows. A circle-frequency filter that has a local maximum at these 

characteristic points is applied. Eyes are subsequently detected as two dark parts, 

symmetrically located on each side of this mid-point. 

 In appearance-based methods, the model is learned from a large set of 

original images, so it does not need to build further models for objects and no 

additional features need to be extracted. 

 In [35], eigenfaces (section 2.2.2.1) are extended for the eyes. The authors of 

[35] extract an appropriate eye template for training and they build a principal 

component projective space called eigeneyes. Eye detection is accomplished by 

comparing a query image with an eye image in the eigeneye space. 
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 In [202, 207] the motion information between two consecutive frames is 

considered to detect the eyes. This motion is likely to be caused by an eye action, 

hence providing information of the eye location. 

 In model-based methods, firstly a generic eye model is designed and then a 

template matching is used to search the eye images. Deformable templates methods 

[202, 203, 205, 208] are commonly used in this case. These approaches usually 

require a good initialisation for the matching algorithm, i.e., accurate eye detection. 

 In [209], Lam et al. firstly detect the eyes by means of geometric measures. 

Eye corners are detected and used to set the initial parameters. Based on this 

initialisation, the authors locate the eye template in relation to the eye images, greatly 

reducing the processing time. 

 In [210], the eye is modelled as a multilayered parameterised model that 

consists of multiple components corresponding to the anatomy of an eye: iris, upper 

and lower eyelids, white region around the iris, bulge, and furrow. A model for each 

component is rendered in a separate rectangular layer. When overlaid, these layers 

represent the eye region. Tracking eye motion is done by matching the eye region. 

 AAM [208] represents a popular and robust hybrid technique combining 

model-based and appearance-based techniques for eye tracking. Its main advantage is 

that the shape and texture are exploited directly as they appear in the original image. 

The method is also invariant to rotation, scale, or pose. In [208] there are described 

limitations regarding the placement of the recording camera. It has to be below the 

line of sight of the user because it needs to be placed fairly close to the subject, so it 

will not obscure the user and will have a better view of the eyes. 

 An extension of AAM is presented in [211], where the eye region is divided 

into three sub-regions: upper eyelid, lower eyelid, and palpebral fissure, i.e., 

separation between the upper and lower eyelids. An AAM is trained for each. The 

method firstly acquires the intrinsic structure of the eye in the initial frame where the 

eye is known to be neutral, and then tracks the motion across the entire image 

sequence. 

5.1.2.2. Eye Blink Detection 

Current eye models function well for open eyes, but they are not robust against 

physiological changes in eye appearance, such as blinking. A determination of the eye 

state, i.e. open or closed, is more complex than simply determining the eye location. 
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This is due in part to the small size of the eyes relative to the face region and to the 

weak contrast between the eye region and the surrounding skin [212]. 

 Numerous methods to detect the blink have been proposed. In this discussion 

we list some of the more recent work, from a considerable body of literature. Intrusive 

techniques have also been proposed, e.g., analysing features in electro-

encephalograms (EEG) [213] and electro-oculographic potential (EOG) [214], but we 

only focus on non-intrusive techniques. 

 From the feature-based category, we mention blink detection based on iris 

tracking [202]. It is based on the hypothesis that the disappearance of the iris implies a 

blink. The eye is tracked and constantly monitored to establish to what extent it is 

open or closed at each frame. Blink duration is defined as the count of consecutive 

frames of closure. 

 Using images from a high-resolution video-camera, Moryiama et al. [199] 

describe an appearance-based approach. The authors divide the eye-region in two: 

upper and lower half, and calculate the average illumination intensity of these two 

halves. They noticed that the mean intensities for the two halves plotted over time 

cross when eyes blink. Therefore by counting the number of crossings they detect the 

timing, number, and duration of blinks. 

 Blinking can also be detected from frame differencing by detecting the motion 

between two consecutive frames [201]. In this approach head movements have to be 

taken into consideration as well as eye positions, leading though to a quite complex 

analysis. 

 In [200] the second order change, i.e., eye blink, is discriminated from a first 

order change, i.e., head movement. After the pixels corresponding to the head motion 

have been filtered out by the second order change detection using three consecutives 

frames, the remaining motion pixels are used to detect a blink. 

 Template matching techniques, belonging to the model-based category, have 

also been proposed [198, 202]. An example of such approach is presented in [202], 

where Grauman et al. calculate correlation scores between the actual eye detected by 

“blink-like” motion and a closed-eye template. 

5.1.2.3. Eye Gaze Detection and Gaze Tracking 

Gaze tracking can be performed intrusively, e.g., contact lenses [215], electro-

oculography (EOG) [215], and non-intrusively [6, 193, 216, 217]. As in the case of 
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eye detection, the latter category is of practical interest for consumer applications, as 

the user is not constrained by uncomfortable equipment. Also, many methods are 

based on IR illumination [193, 216]. In this section, we only exemplify methods based 

active illumination, as they correspond to our interest. 

 In [217], gaze tracking is performed using a contour-based tracker. This 

technique is based on the fact that the iris is circular and characterised by a large 

contrast to the sclera. A dynamic model of state propagation is combined with an 

observation model determining the iris contour from the image data. 

 Magee et al. [218] determine the gaze direction by exploiting symmetry 

between the left and right eye. Firstly, the authors use frame difference to determine 

changes between frames. When a change has been detected, the left eye is mirrored 

and subtracted from the right eye. If the user is looking at the camera, this difference 

will be very small; if the eyes are looking towards left, the mirrored left eye will be 

looking right, etc. The authors emphasise that their algorithm is able to concurrently 

run with the real-time vision interface systems. 

 In [6], AAM is used to track the whole head, enabling the location of eye 

corners, the eye-region, and the head pose to be determined. Then, a geometric model 

estimates the gaze, as described in Figure 5.2. The authors conclude that the 

robustness and accuracy of the algorithm are actually derived from the AAM tracking 

of the whole head, rather than from the gaze detector. Once the eye corners have been 

located, finding the irises and computing the gaze are straightforward. 

 
Figure 5.2. The gaze estimation geometric model, as proposed in [6]. 

5.1.2.4. Discussion 

The aim of our work is to develop an eye model that will serve several consumer 

applications, e.g., blink detector, eye tracker, facial expression analyser. In 

consequence, in our approach we aim for non-intrusiveness and naturalness. 

 We chose AAM to develop a complex eye model, robust to blink, wink, and 

gaze. Our approach belongs to the model-based category, but ideas from the 
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appearance-based methods are also incorporated. The main advantage of employing 

AAM is that the shape and texture of the eye are modelled directly as they appear in 

the original image. Compared to other approaches, our approach is also invariant to 

rotation, scale, or pose and it is capable of successfully synthesising eyes in unseen 

pictures. 

 Although AAM techniques were used by Hansen et al. [208] and by 

Moriyama et al. [211] to model the eye region, these techniques have not yet been 

applied to model eye blinking. We propose a solution that models eye blink, and can 

be readily adapted to determine eye-gaze and wink. This solution is described in the 

following sections. 

5.1.3. The AAM Eye Model – Initial Implementation 

In this section, we describe an initial implementation of our eye model, using the 

standard AAM formulation. The model we have developed offers a detailed analysis 

of the eye region in terms of degree of eyelid opening, position of the iris, and shape 

and texture of the eye. The model is designed to be robust to small pose variation. 

 Blink and gaze models are subsequently developed. 

 The reader will note that the techniques used in this first statistical appearance 

model of the eye region are mostly drawn from our earlier work with holistic face 

models. There are, however, some novel refinements – in particular the unique use of 

overlapping landmark points to model eye-open and eye-closed states and a range of 

intermediate degrees of the eye being closed. 

 Now in section 5.1.3.1, we begin by describing in detail the way in which 

AAM is employed to model eye appearance. We detail every step in the model 

building, rationalising our choices in shape and texture modelling. 

 Both open and closed eye appearances are modelled, in order to accommodate 

the eye-blink, as described in section 5.1.3.2. In the same section we explain how we 

design the model to make it robust to small pose variation. 

 Finally the model is extended to accommodate variations in eye-gaze. This 

extension is described in detail in section 5.1.3.3. 
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5.1.3.1. Statistically Modelling the Eye Appearance 

The appearance of the eye-region is represented by a statistical model of appearance, 

following the procedure described in section 3.2. 

 As explained in section 3.2.1, an important decision when building a statistical 

model of appearance is the choice of the region to model and of the landmarks that 

demarcate the shape: their number and their positioning. Depending on the required 

level of detail and on the facial image resolution used, the number of landmarks can 

vary. Their choice depends on the application, the answer being a compromise 

between the number of parameters, the fitting accuracy, and speed. 

 Various numbers of landmarks and ways of positioning them were initially 

tested; some initial annotation examples are given in Figure 5.3. From the preliminary 

experiments it was determined that the eyebrows are a key feature for accurate eye 

detection, as they bring significant information related to eye position. The iris is also 

an essential feature; it allows us to incorporate eye-gaze in addition to eye-blink. 

 Our model incorporates both eyes. It is known that left and right eye typically 

blink in a closely synchronised fashion. Thus it should be sufficient to capture the 

trace for one eye in order to measure eye-blink for a single subject. However with a 

detailed two-eye model, we can include additional information and distinguish other 

eye states, such as a wink. 

 
Figure 5.3. Different types of annotations: from left to right, 48, 72, and 38 landmarks. The first 

annotation lacks a precise eye location, caused by the absence of the eyebrows; the second 

annotation is not robust to eye gazing, caused by the absence of the irises; the third annotation is 

only valid for closed eyes. 

 Subsequent to these experiments, we chose to annotate eyes as shown in 

Figure 5.4. The model is composed of the following elements: eyelids, eyebrows, and 

irises. The model annotation is described by a number of 80 points, disposed as to 

capture the most important eye features. The model is unique compared to the 

literature in that it is valid for both open and closed eyes. 
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Figure 5.4. Image annotations for open and closed eyes. 

5.1.3.2. Statistically Modelling the Blink 

One of the main requirements of this eye-model is to robustly model the eye blink. A 

blink sequence can be described by the following sequence of actions: fully-open-eye, 

closed-eye, and fully-open-eye. In order to include blinks, the model has to be able to 

describe this movement. 

 

Including blink appearance 

In order to model eye-blink, we have extended the standard model to incorporate 

within the same model two different templates, for open and closed eyes. A 

consistency between the two templates needs to be found. 

 As explained in section 3.2.1, the number of landmarks used for annotating the 

shape has to be kept fixed over the training data set. The landmarks should 

predominantly target fiducial points, which permit a good description of facial 

geometry. Thus, one should choose a number of landmarks that best characterises 

eyes over the entire training set, whether the eyes are open or closed. One should pay 

attention to the fact that some of the facial details might not be visible in all training 

images, e.g., irises are occluded when eyes are closed. 

 We annotate the variability between open and closed eyes through using the 

same number of points for the two templates, mapped in the same order, where the 

upper and lower inner eyelids overlap. This overlapping is represented in Figure 5.5, 

by the red arrows: points 9, 10, 11, 12, and 1 overlapping with points 7, 6, 5, 4, and 3 

respectively. And in the second eye points 33, 34, 35, 36, and 25 overlap with points 

31, 30, 29, 28, 27. The procedure emulates the physiological blinking action, when 

the upper eyelid closes over the lower eyelid. 
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Figure 5.5. The two annotations for the open/closed eyes; the latter annotation is obtained by 

overlapping the points from the upper inner eyelid. 

 

Separating the blink parameters 

Two different training sets were used in the training procedure, one for open eyes and 

one for closed eyes. The model is able to represent all the states in between, e.g., 

semi-closed eyes, even though they are not included in the training sets. This can be 

explained by the fact that AAM is a deformable model, capable of adapting to the 

variation in both shape and texture between open and closed eyes. 

 In these experiments we use 30 pictures for each training set. Examples of 

these training images are given in Figure 5.6. As we want to develop a general model 

(section 3.5), we include a high degree of variability in these training pictures, in 

terms of subject individuality, illumination, etc. The resulting AAM model has 25 

shape parameters and 33 texture parameters. 

 
Figure 5.6. Examples of training pictures for open and closed eyes. 

 Since we want to be able to separately process shape and texture parameters, 

we use an independent AAM (section 3.2.3). We observe the values of shape and 

texture parameters and we note that there is a differentiation between closed-eye and 
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open-eye parameters, as seen in Figure 5.7. The figure displays an average over the 

parameters with the most important variation of texture, in the first graph, and shape, 

in the second graph. 

 
Figure 5.7. Average values and the unit of standard deviation for texture (first graph) and shape 

parameters (second graph) tested on images with eyes open (green curve) and closed (black 

curve), respectively. 

 The differentiation is more visible for the shape parameters. Figure 5.7 

indicates also that the differentiation is more important for the parameters encoding 

the higher variation, i.e., the first two parameters in the case of shape and the first 

parameter in the case of texture parameters. These parameters correspond to the blink 

action. 

 From our earlier experiments and work with the AAM face model this is as we 

expected. The variation due to blink is decorrelated from other sources of shape 

variability and is also the most significant of the variations encountered in the training 

set. 

 In section 4.2.2.1 we explained that although PCA jointly models all sources 

of variability [130], it gives initial estimates of the sources of variability [119]. We 

visually exemplified the parameter separation in Figure 5.7. The differentiation 

depends on the complexity of the training set. For example, we observed that if the 

training set contains only frontal faces with open eyes, the biggest variation is 

attributed to the difference between individuals. By careful selection of the training 

image set the model differentiation can be selectively chosen to emphasise gaze 

parameters, pose, or shape-of-the-eye parameters. We will experiment with some of 

these later in this section. 
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Including pose variation 

A problem which generally appears in face modelling is that of robustness to pose. As 

we proceeded for full face modelling in [219], the eye model can be designed in order 

to include head-pose variation within a limited range of angles, around the horizontal 

and vertical axes. Decoupling the pose variation from the global shape model can be 

realised by using a specialised training set, in which the individuals are presented in 

several poses, normally covering a range within 30-40 degrees for head tilting. 

 To address this issue, we included additional head pose variations in the initial 

training set, Figure 5.6. 10 pictures containing pose variation were added to the initial 

training set. We obtain 27 shape and 39 texture parameters. Thus, the model is 

enriched with two new shape parameters, accounting primarily for pose variation. 

 Figure 5.8 shows the effect of varying with +/- one unit of standard deviation 

for some representative shape parameters of the model. 

 
Figure 5.8. Modes of variation for the shape parameters by +/- one standard deviation from the 

mean. The variation from the mean of the blink parameters is represented in the first row, while 

the variation of pose and gazing are represented in the last rows. 

The equation (3.1) describing an AAM general shape model can be extended to: 
s= s +φblink bblink+φ pose bpose +φ gaze bgaze +φeye_shape beye_shape    (5.1) 

 

in the case of our eye model. The equation explicitly separates shape parameters that 

account for the different sources of variation, such as blink, gaze, and different eye 

shapes. The types and number of each type of variation depend on the number of 

training pictures describing this variation. 

5.1.3.3. Statistically Modelling the Gaze 

The gaze model is based on information provided by the statistical model describing 

the eye region described in section 5.1.3.1. The original model, while developed for 
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blink, is actually detailed enough to deal with other eye actions, such as eye-gaze. The 

model represents information regarding size and colour of iris, width and boldness of 

the eyelid, iris 2-D position, etc. 

 Based on the same principle as in 5.1.3.2, by including in the training set 

pictures describing gaze variation, the model will learn this variation. Then it will be 

able to model the gaze variation in unseen pictures. For our model, pictures 

containing gaze were initially introduced into the training set. 

 As we already experimented and explained in section 5.1.3.2, equation (5.1) 

separates shape parameters modelling the gaze. In the case of our training set, two 

shape parameters account for gaze variation. 

 The presence of the iris in the model and the knowledge about eye-corners 

give us enough information to describe the gaze. The position of the iris centre moves 

when the gaze direction moves. The variation in the eye regions for various extremes 

of the gaze shape parameters is shown in Figure 5.9. 

 
Figure 5.9. Modes of variation for the eye model by +/- one standard deviation from the mean, 

described by the gaze shape parameters. 

5.1.4. Results and Conclusions for our Initial Eye Model 

Preliminary experiments were performed, in order to analyse the initial AAM eye 

model. The requirement at this stage is that both open-eye and closed-eye shapes are 

accurately fitted. 

 We tested the model described in section 5.1.3 on 60 consumer pictures of 

various subjects, with open or closed eyes. Some of the pictures also included pose 

and illumination variation. None of the test pictures were included in the training set. 

At this stage, we only qualitatively analysed the results. After visual inspection, the 

fitting results were considered as failing in over 60% of pictures indicating a lack of 

generalisation of the model. 

 Some results can be judged from Figure 5.10. In the first row of Figure 5.10, 

we exemplify poor shape fitting in case of facial expressions, e.g., surprise, anger. 

The second row contains poor fitting in case of pose variation. Although we 
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integrated pose in the training variation, the model is still sensitive to even slight 

variation from the training poses. 

 Illumination variation generally affects facial modelling, and in particular, 

affects our eye model. Examples of failures caused by unseen illumination are 

displayed in the third row of Figure 5.10. Other causes of poor fitting are occlusions, 

such as glasses or fringe, red-eyes, or wink-eyes. In the last row, we exemplify 

situations when open eyes are matched with closed ones and closed eyes are matched 

with open ones. These failures are caused by various factors, such as gaze or head 

pose. 

 
Figure 5.10. Examples of shape fitting for our AAM eye model. 

 Our initial AAM model includes open and closed eyes, small pose and gaze 

variation. When tested, we acknowledged the fact that in its current state the model 

fails many challenges, as the ones exemplified in Figure 5.10. The conclusions 

motivate us to improve our eye model to make it more robust to the listed challenges. 

 An improved version of our AAM eye model will be presented in Chapter 6. 

5.2. AAM Lip Model 

In the previous section, we adapted AAM for the eye region. Another facial feature of 

interest is the lip. This facial feature, well known as being the most deformable facial 

feature, represents a major challenge in face modelling. In the current section, we test 

the feasibility of lip modelling using the standard formulation of AAM. 

 This section is organised as follows. Firstly, in section 5.2.1, we summarise 

relevant work in literature aiming to model the lip region. We indicate the main 

categories of approaches, while discussing the remaining challenges. Then, in section 
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5.2.2, we adapt the AAM approach for the lip region. Results and conclusions for the 

proposed model are presented in 5.2.3. 

5.2.1. State-of-the-art in Lip Modelling 

In literature, several methods have been proposed and they can be mainly categorised, 

as explained in [220, 221], as feature-based [29, 221-224], model-based [225-228], or 

combinations of the two, i.e., hybrid approaches [29, 229]. 

 The first category, the feature-based approaches, is based on modelling 

individual lip features by exploring their characteristics, such as lip colour. Lip 

extraction is primarily based on colour-based segmentation techniques. Usually the 

processing is done in the Hue, Saturation, and Value (HSV) space [29, 224]. The 

difficulty of using the RGB space is that it is hardware oriented and is suitable for 

acquisition or display devices, but not particularly applicable in describing the 

perception of colour [230]. Important advantages of HSV are the separability of 

chromatic values and the possibility of using only hue for segmentation. Usually, hue 

is invariant to shadows, shading, and highlights [224]. 

 In [223] the notion of colour constancy is used. Colour constancy refers to the 

ability to identify a surface as having the same colour under considerably different 

viewing conditions. The authors use a Bayesian decision classifier using chrominance 

as feature for segmentation, to make it adaptive to different viewing conditions. The 

segmentation is further improved by including features which describe chromatic 

second order statistics of neighbouring pixels. 

 In [221, 222], segmentation of the colour lip image is achieved by spatial 

fuzzy clustering. 

 Model-based techniques, or holistic approaches, are based on template 

matching to search the lip images. The approaches include Deformable Templates 

[225, 226], Active Shape Models [227, 228], Active Appearance Model [231, 232], 

and Snakes [228]. 

 In [232], Matthews et al. compared the use of AAM, ASM, and multi-scale 

analysis (MSA) in lip reading, concluding that AAM achieved better recognition rates 

than ASM. MSA and AAM yield similar fitting rates, but they fail in different ways. 

 In parallel with our research, Kang et al. [231] uses AAM to model lips. Due 

to poor AAM fitting rates, an improved training method for AAM is proposed to 
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reduce the manual error of landmarks in the training set, based on iteratively adapting 

the landmarks by repeated fitting. 

 Liew et al. [226] state that the use of a parametric lip model as a template has 

the advantage of being more robust since the allowable shape is pre-constrained. In 

addition, the lip shape is described using a small number of parameters and the 

parameters have clear physical interpretation. 

 Gacon et al. [227] propose a method based on a statistical model of shape. The 

cost function used to fit the model is based on the response of Gaussian local 

descriptors. Knowing the shape, the authors predict the response of the descriptors 

with a non-linear neural network. Their approach is particularly adapted for the inner 

lip contour and mouth bottom which present a high variability and non-linearities. 

 

Discussion 

The feature-based techniques have the advantage of providing simple methods which 

work well under environmental constraints, but that lack the required robustness for 

real conditions [29]. 

 Model-based techniques compensate for the drawbacks of the feature-based 

methods, but they are computationally expensive and dependent on the constraints 

learned from examples [29]. It is common to see non-optimal local alignments, when 

attempting to model an object that is quite different from the training set. It is 

especially noticeable when dealing with features that can fade into the background, 

such as the lips in our case. 

In [29], Pantic et al. combine feature-based and model-based approaches in 

search for a robust mouth detector. The authors develop a hybrid knowledge-based 

technique for mouth feature extraction from facial images. At first, they use a feature-

based approach. A coarse mouth detection is performed by applying a hue filter to 

filter the lips region, given that the natural colour of the lips is red. Then, two model-

based algorithms, namely the curve fitting of the mouth and the mouth template 

matching, localise the mouth contour. 

From the described work, we conclude that lips are considered a weak feature 

because of their complex expression and varying pattern, but also because of their 

weak colour contrast and significant overlap in colour features with the face region. 

Factors such as illumination and skin reflectance, or occlusions, such as teeth and 

tongue, complicate the task. 
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 In our work, we firstly verify the ability of AAM to search for the lip region. 

In the current section, we describe the way in which we adapted AAM for the lip 

region. Then we test the model and discuss remaining challenges. 

5.2.2. Description of our Initial Lip Model 

A statistical model of appearance is built for the mouth region. The development of 

the model follows the algorithm steps described in section 3.3. We follow the same 

approach as for the eye model (section 5.1.3) in: choosing the training set, annotating 

shapes, and observing the separation of the shape parameters following different 

sources of variability. 

 Lip appearance is considered as the most variable facial feature [29]. It is 

conditioned by many factors, such as skin colour, make-up, illumination, head pose, 

mouth expression, or the presence of teeth and the tongue. As in the case of the eye 

model, our end goal is to be able to generalise our model in terms of individuals, pose, 

mouth open (teeth) and closed, and in terms of specific actions performed by the lips, 

etc. We achieve this by including in our training set pictures representative of the 

major factors of variability mentioned above. Some samples of our 30 pictures used in 

the training set are shown in Figure 5.11. 

 
Figure 5.11. Examples of the training images for the lip model. The pictures include different 

degrees of teeth exposure (first row), various individuals with different colour/shape of the lips 

(second row), or different head pose and lip expression finalised in different degrees of lip 

curvature (third row). 

 The next step is shape annotation. If the annotation is optimal, the model will 

provide a detailed analysis of the lip colour, their degree of opening, their curvature 

etc. We empirically determined, by a trial-and-error approach, that a suitable 

annotation would be as the one illustrated in Figure 5.12. The figure shows our 

annotation that uses 24 landmark points. 
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 The only requirement is to coherently annotate all images, using the same 

number of points mapped in the same order. Following the principle developed for the 

eye model (section 5.1.3.2), if the mouth is closed, the corresponding points from the 

inner lip contour are merged, i.e., points 20-23, and 12 overlap with points 14-18. 

 
Figure 5.12. Mouth annotation for different expressions. 

 By training our lip model following the procedure developed in section 3.2, 

we obtain 12 shape parameters and 17 texture parameters. These parameters 

correspond with an allowed variance of 95% for both shape and texture modes. The 

shape parameters can be differentiated into parameters describing the opening of the 

mouth, smile, head pose, etc. The separation is a consequence of applying PCA on an 

educated choice of training pictures, i.e., pictures that include a balance of the 

relevant sources of variation. It is the same effect that we observed in the case of the 

eye model (Figure 5.8). 

 Figure 5.13 shows the effect of varying with +/- one unit of standard deviation 

some representative parameters of the model: texture (first row) and shape (last three 

rows). The shape parameters relate to (i) degree of mouth open/closed; (ii) up-down 

orientation of the mouth; (iii) left-right orientation of the mouth caused by head pose. 

 
Figure 5.13. Modes of variation for the mouth model by +/- one standard deviation from the 

mean. The variation from the mean of texture parameters is represented in the first row, while 

the variation of different expressions and poses are exposed in the last rows. 
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5.2.3. Results and Conclusions of our Initial Lip Model 

As in the case of the eye model, we test the lip model by verifying its matching to a 

group of unseen images. We used 50 pictures, including different individuals, facial 

expressions, e.g., happy, angry, and head poses. 

 The model initialisation is inferred from the face detection step. It uses the 

statistical relation between the rectangle describing the surroundings of the face 

obtained after face detection and the lip position in the rectangle learned from the 

training dataset. 

 In the case of our AAM lip model, after visually inspecting the results, we 

note that it fails to accurately fit unseen images in a proportion of 80%. The model 

faces the same challenges as the eye model, but with even poorer fitting rates. Figure 

5.14 displays some examples of poor fitting. 

 
Figure 5.14. Examples of poor fitting of the AAM lip model. 

 The main difference is that while an initial eye location is accurately 

determined based on face detection stage, the lip model frequently fails this first 

initialisation step. This is mainly due to the weak colour contrast and significant 

overlap in colour features with the face region. As explained in section 3.4, this 

initialisation error will adversely affect the final fitting results. 

 In conclusion, our lips model requires a more reliable initialisation step. In the 

next chapter we propose a solution to this challenge. 
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Chapter 6 - Extensions of the AAM Facial Feature 
Models 

In this chapter, we propose extensions of our facial feature models, in order to solve 

the challenges of the standard AAM formulation and to make them robust to unseen 

facial variation. This approach, as we will shortly see, helps overcome the poor fitting 

of eye and mouth models to unseen images as shown in Chapter 5. An important part 

of the research presented in this chapter was published in [233-235]. 

 This chapter is divided into two main sections: section 6.1 is concerned with 

the presentation of an advanced AAM eye model and section 6.2 develops similar 

improvements for the AAM lips model. 

 In section 6.1, we propose a component-based AAM adapted for our eye 

region model described in Chapter 5. In section 6.1.1 we initially propose two 

versions of this approach. Subsequent to their comparison, in section 6.1.2, we chose 

the approach that best suits the requirements of our eye model. The proposed model is 

then verified by means of some test applications, such as an eye tracker and a blink 

detector, described in section 6.1.3. 

 The second part of Chapter 6 is dedicated to an improved AAM lip model. As 

seen in section 5.2.3, the standard AAM lip model requires a strong initialisation to 

reduce the high rate of fitting errors (> 80%). In section 6.2.1, we propose a hue filter 

in order to obtain an improved initial location of the lips. In the following section, 

6.2.2, we describe the overall lip modelling approach. As in the case of the eye model, 

we verify the lip model performance in section 6.2.3 by means of some test 

applications, such as a lip tracker and a smile detector. 

 Note that this chapter is concerned with the design and implementation of 

enhanced models; thus while we include some qualitative observations in this chapter 

the detailed testing and comparison of these models will be documented in Chapter 7. 

6.1. Extension of the AAM Eye Model 

The initial eye model developed in Chapter 5 is based on the standard formulation of 

AAM [74]. The model offers a detailed analysis of the eye region in terms of degree 

of eyelid opening, position of the iris, and shape and texture of the eye. The model is 
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designed to be robust to small pose variation, as described in section 5.1.3.2. Blink 

and gaze actions were additionally modelled in section 5.1.3.2 and, respectively, 

5.1.3.3. 

 However, when we tested the model on general conditions not included in the 

training set, it failed in 60% of the cases, as we experienced in section 5.1.4. Its 

challenges include unseen head pose, occlusions of one or more components of the 

eye model, or difference in expression between the two eyes, e.g., winking. 

 Its challenges are explained by the limitations of a standard AAM. Although 

AAMs are powerful tools for image interpretation, they present several limitations 

when used as global appearance models. This formulation, despite all its advantages 

described in section 3.2, has the limitation of constraining the model to the variations 

learned during the training phase. As we created a global model for the two eyes 

together, we subsequently realised that this constraint does not allow the two eyes to 

deform independently. 

 Figure 6.1 visually explains this type of drawback. The picture presents two 

types of challenges: in-plane-head-rotation and independent actions of the eyes, i.e., 

winking. In the training set we included pictures with the two eyes open or closed. 

However, as we modelled both eyes together, the model cannot adapt to situations 

such as one eye open, while the other is closed. 

 
Figure 6.1. Example of poor fitting for winking in-plane-rotated eyes. 

 The component-based AAM, as described in [94, 95], offers a solution to this 

particular drawback of AAM, i.e., constraining the model components to global 

variations. The authors of [94, 95] propose a face model that combines a global model 

with a series of sub-models. This approach benefits from both the generality of a 

global AAM and the local optimisations provided by its sub-models. We now adapt 

this approach to independently model the eye regions within a face. 

 In the next section, we propose two versions of the component-based AAM 

adapted for the eye region. We test both versions, in section 6.1.2, and decide for one 
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version that best suits our requirements. This particular version of the component-

based AAM will be implemented for the eye region and used in different applications. 

6.1.1. Component-based AAM Formulations 

In a first stage, we adapted the component-based AAM for the eye-region using two 

different approaches. For the first approach the open-eye and closed-eye states are 

modelled separately; for the second approach we model each eye separately, retaining 

the mixed (overlapping points) open/closed information for each eye region. 

 Using these two distinct approaches we also hope to learn more about how 

AAM models behave under different training constraints. 

 

Component-based eye AAM, separating open and closed eye states 

In our first approach, we separately modelled the two-eye appearance for open or 

closed eyes. We started from the hypothesis that mixing open and closed eye shapes 

or textures can introduce errors into the model. 

 The procedure is as following. We firstly create a global model using both 

eyes, open and then with both eyes closed. The model is refined with two sub-models 

modelling only some particular features of both eyes, meticulously annotated as 

shown in Figure 6.2. A first sub-model represents components of open eyes, i.e., inner 

eyelid and iris. A second sub-model represents components of closed eyes, i.e., inner 

eyelid and outer eyelid. 

 In the case of closed eyes, the inner eyelid is not composed by overlapped 

points, but represented as a straight line. The eyebrows are included only in the global 

model for better eye location. They are considered superfluous for local modelling 

stages, as the eyebrows are mostly necessary for accurate eye location. In these stages, 

the eye location is believed accurate, coming from the initial global stage. 

 
Figure 6.2. Annotation for the global AAM and for the two sub-models: for open and closed eyes. 
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 The fitting process is represented in Figure 6.3. We firstly match the global 

AAM that gives us a rough eye modelling. Then, a blink detector is applied, 

determining if the eyes are open or closed; the blink detector is described in section 

6.1.3.2. Next, the corresponding sub-model is applied, i.e., the closed-eyes sub-model 

if the detector indicated a blink. The local sub-model accurately models the eyes. 

 

 
Figure 6.3. The fitting algorithm for the open/ closed eyes sub-models. 

 Only one of the open or closed sub-models is used in the fitting process, 

saving computational time. Another advantage is the accuracy of the shape 

annotation, as closed-eye shape is no longer obtained from open-eye shape. In 

consequence, fewer errors are introduced in the appearance model. The blinking 

information is still extracted thanks to the global model, but the accuracy of the shape 

is refined by the relevant sub-model. 

 

Component-based eye AAM, independently modelling the left and the right eye 

The idea of our second approach started from our idea to model each eye 

independently. A two-eye global model is necessary for an accurate location and 

initial modelling. Moreover we would like to be able to optimise the matching of the 

two eyes independently. 
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 A global model is created using both eyes open and closed. Then a separate 

sub-model is created describing a single open or closed eye and the different 

variations in between the two states. The two models, i.e., one global model and one 

sub-model, are trained and are independently generated using the same AAM 

approach, as the one described in section 3.2. 

 One valuable aspect of the eye-model is the symmetry between the two eyes. 

This characteristic permits, starting from one eye model, e.g. left eye, to auto-generate 

an equivalent model for the other eye, e.g., right eye, respectively, simply by 

mirroring the data. The advantage is that we have less memory space requirements, as 

only one set of eye-model characteristics needs to be stored. 

 
Figure 6.4. Examples of annotation for the global model, for the local sub-model and its 

mirroring in order to obtain the right eye. 

 The advantage of this version is that it permits that the two eyes find their 

optimal position and shape independently. There are situations, especially when 

dealing with large pose variations, plane rotations, occlusions, or strong facial 

expressions, when the 2-D projection of the eyes loses the property of global 

symmetry. An example of such a situation was presented in Figure 6.1, where we 

exemplified poor fitting of the global AAM. 

 Figure 6.5 describes the fitting algorithm adapted for this component-based 

version. At each iteration, the sub-model is inferred from the global model. Its 

optimum is detected by an AAM fitting procedure. Then the fitted sub-model is 

projected back into the global model. 



 125

 
Figure 6.5. Fitting algorithm for component based AAM eye model. 

 In a first step, the global AAM is fitted, roughly locating the two eyes. The 

points of the global model which correspond to the sub-models are firstly extracted to 

form the two shape vectors, providing a good initialisation for each sub-model, which 

is fitted using the AAM method. 

 Next, we reintegrate the fitted points of the two independent sub-models back 

into the global model. Another projection of the global shape vector onto its principal 

components space is required. This step is necessary in order to constrain the two 

independently obtained eyes such that they remain within the limits specified by the 

global model. 

 In Figure 6.6, we present examples of fitting when we omit to reintegrate the 

fitted sub-models in the global model (Figure 6.6.b), compared to when we apply this 
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constraint (Figure 6.6.c). We also show the standard AAM result (Figure 6.6.a), for 

comparison. 

 
Figure 6.6. Fitting the standard AAM model; b. fitting the left/right eye sub-models without 

refitting the global model; c. fitting the left/right eye sub-models and refitting the global model. 

 In the last step of the fitting process, the fitting error for this refined global 

model is compared with the original global model fitting error and a decision is taken 

to use the global model with the least error. 

6.1.2. Comparison of the Proposed Component-based Approaches 

We proposed two different versions of adapting the component-based AAM for the 

eye region. The first version locally models both eyes, separating the open and closed 

eye situations. The second version independently models each eye, but it 

simultaneously includes open and closed eyes. We tested both versions, with a view 

to using the more effective model in a range of applications. 

 Both versions were trained using the same training set as for the standard eye 

model developed in section 5.1.3. 70 pictures were used presenting a high degree of 

variability in terms of subject individuality, pose, illumination, etc. Samples of the 

training set were already exemplified in Figure 5.6. 

 In order to compare the two versions, we used the same test set as the set used 

for testing the standard AAM eye model. We have described the test set in section 

5.1.4. A detailed description of testing the component-based AAM compared with the 

standard AAM formulation will be given in Chapter 7. 

 For now, we conclude that the second version of the component-based AAM 

proved more useful and effective across a range of applications. In this version, we 

use as local sub-models single-eye models, adapted for open and closed eyes. This 

approach proved capable of accurately determining the eye parameters, particularly in 

cases of facial expression, where the two eyes deform independently. It is especially 

robustly to pose variations and to in-plane rotations. 

 The first version that we proposed, besides a poorer fitting, has the drawback 

that it is critically dependent on the accuracy of blink detection. This drawback is 
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explained in Figure 6.7. In the first picture the blink detector fails by indicating open 

eyes. This causes a catastrophic failure of the algorithm, as the open eye sub-model is 

chosen for fitting.  

 In the second version of the component-based AAM, each eye is fitted 

independently. Even if the global model fails by matching open eyes, the sub-models 

correctly match the eye image with closed eyes. This situation is represented in the 

second picture. 

 
Figure 6.7. Comparison of the two proposed component-based versions: the two-eyes sub-model 

vs. the single-eye sub-model. It can be noticed that the first version fails as the blink detector 

detected open eyes. 

 The second version that we proposed, the component-based eye AAM 

independently modelling the left and right eye, will be employed in the applications 

below and in our work on expression recognition in Chapter 8. 

6.1.3. Practical Uses of our Component-based AAM Eye Model 

Extending the statistical eye-model of appearance to a component-based AAM 

permits the extraction of useful eye-related information. Shape and appearance 

parameters are determined; they describe the position, the degree of aperture of the 

eyes, and the gazing direction. This knowledge permits us to develop applications that 

track the eyes and detect a blink, or that are even capable of inferring facial 

expressions (see Chapters 8 & 9). 

 In the next sections we describe two applications: an eye tracker, in section 

6.1.3.1, and a blink detector, in section 6.1.3.2. We use these two applications in order 

to test our eye model in various situations with unseen images. 

6.1.3.1. Eye Tracker 

Using the previously described eye model, we propose a robust and accurate 

algorithm to track the eyes. The robustness refers to pose variation, eye actions, e.g. 

blink, wink, gaze, and occlusions. This approach is summarised in Figure 6.8. 
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Figure 6.8. The eye tracker system. 

 

Model Initialisation Scheme Based on Efficient Face Detector Estimates 

Firstly, a face is detected in a frame of the video sequence, using the V-J face detector 

(see section 2.4.1). The initialisation step of the eyes is tuned with the V-J detector 

using a statistical relation learned from the training set. The statistical relation 

between the face detector estimates the face position and size, as a rectangle region, 

and the position and size of the reference shape inside the image frame is initially 

learnt offline from the training images. This relation is then used to obtain a more 

accurate initialisation for the reference shape, tuned with the V-J face detection 

algorithm. The approach of using this statistical relation is based on the idea proposed 

in [82]. 

 It is important to have a reasonably close initialisation to the real values in 

order to insure the convergence of the fitting algorithm. Thus, initial rough 

estimations of the eye position, 2D rotation angle, and scale are deduced and are used 

as initial inputs for our eye-model. 
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Eye modelling stage 

Then the model appearance parameters and, if required, blink information, are 

extracted. All the parameters are initially optimised by the component-based AAM 

procedure described in section 6.1.1. They include shape parameters associated with 

pose and blink, texture parameters, as well as parameters which characterise the 

modelled eye-patch inside the image frame. The purpose of this stage is to get an 

initial strong eye position from the first frame of the image sequence. 

 This step is the most computationally expensive. Preferably it is performed on 

the first frame and it is only periodically repeated. In our experiments, this step is 

performed every 10 to 30 frames, but the frequency of initialisation depends on the 

application, quality of input video sequence, resolution, etc. 

 

Eye tracking 

After parameter initialisation, the eye parameters can be tracked in all the following 

frames. An update on each new image frame is made only on the global model 

parameters that encode shape variation, position, 2D rotation, and scaling. Since the 

computational requirements are substantially reduced, this operation is now 

performed on each separate frame. A summary of the eye tracking results and some 

visual exemplification will be detailed in section 7.1.2. 

 From our experience, we conclude that the reduced computational costs of an 

AAM eye tracking scheme, associated with the robustness to blink and gaze 

variations, can meet the requirements for real-time applications in embedded imaging 

appliances. 

6.1.3.2. Blink Detection 

The advantage of modelling the eyes utilising AAM techniques is that we obtain a 

detailed description of the eye and not just its rough location. Using an educated 

choice of geometrical distances of the synthesised shape, or the shape parameters 

itself, a blink criterion can be defined. We now consider a number of potential criteria 

which are useful for detecting eye-blink and quantifying the degree of closure of an 

eye. 
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Blink detection based on geometrical distances 

Firstly, we chose as a blink criterion geometrical details. Our blink detector compares 

the ratio between the width of the eye and its aperture with a predefined threshold. 

The width of the eyes corresponds to the individual characteristics of the eyes and it is 

constant, whether the eyes are open or closed. The aperture of the eyes varies with the 

eyes state, i.e., it is at a minimum when eyes are closed and a maximum when the 

eyes are wide open. 

 The relevant geometrical distances are described in Figure 6.9. The chosen 

distances are between the eleventh and the fifth point on the vertical and the eight and 

the second point on the horizontal, respecting the annotation portrayed in Figure 5.5. 

By a trial-and-error method, we fixed the threshold at 1/6. The method is accurate as 

long as the AAM fitting algorithm provides correct eye location.  

 Note that eye gaze must also be taken into consideration, by introducing gaze 

pictures into the training set. If gaze is not considered, we observed that the model 

will fail to differentiate between eyes with a wide gaze angle and closed eyes. A 

detailed description of tests performed to verify this application will be given in 

section 7.1.3. 

 
Figure 6.9. The proposed method for blink detection. 

Blink detection based on shape parameters 

In section 5.1.3.2 we have explained that blink shape parameters can be differentiated 

from the other types of shape parameters. In consequence, we have developed 

alternatives to the first proposed blink detector, such as identifying if the blink 

parameters belong to the open-eye curve, represented in green in Figure 5.7, or to the 

closed-eye one, the black curve in Figure 5.7. 

 The drawback of this method is that these curves are determined from a set of 

person-specific models, i.e., models based on training sets derived from single 

individuals. Also, the blink parameters have to be identified in advance. Thus the first 

method is preferable for its generality and simplicity. Summary of the blink detection 

results and their analysis will be given in section 7.1.3. 
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6.2. Advance AAM Lip Model Approach 

In Chapter 5 we developed a lip model, based on the standard AAM formulation. We 

observed that the model failed our tests on unseen images in a proportion of 80% 

(section 5.2.3). We concluded that the main cause for this failure is a poor 

initialisation of the model. This is mainly due to the lip weak colour contrast of the 

lips and the significant overlap in colour features with the skin regions of the face (see 

Figure 6.10). 

 
Figure 6.10. A practical exemplification of the weak contrast between lips and skin is described in 

[236] by typical R (dots), G (dashed) and B (plain) histograms of lips and skin; the histograms 

prove strongly similar for the two features. 

 In this section, we propose an improved version of our AAM lips model. We 

improve the standard AAM formulation by applying a pre-processing step that offers 

a more accurate initialisation of the lip region. In section 6.2.1, we describe this pre-

processing initialisation step. The overall approach, embracing the initialisation and 

the AAM modelling, is described in section 6.2.2. We then test the performance of 

our lip model, by developing, in section 6.2.3, two consumer applications: a lip 

tracker and a smile detector. More thorough experimental testing of this model is 

documented in Chapter 7. 

6.2.1. Initialisation of the Lip Region by Chrominance Analysis 

The lips model requires a strong initialisation in order to achieve an accurate fitting to 

unseen images. Consequently we propose a pre-processing method that can provide 

such a robust initialisation. The most valuable information related to lips is their red 

colour, although red varies with respect to individuals, make-up, illumination etc. 
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Therefore, by filtering the red lip colour from the face region, we should be better 

able to identify the global shape of the lip region. 

 This approach is based on the work of Pantic et al [29] and it is adapted for 

our AAM models. Firstly, the input image is transformed into the HSV colour space, 

as hue representation is less affected by variations in illumination [224]. This colour 

space brings invariance to shadows, shading, and highlights and it permits using only 

the hue component for segmentation. 

 Then the object of interest is filtered into the red domain, by applying the 

following hue filter [29]: 
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where h is the shifted hue value of each pixel so that ho=1/3 for red colour. ho 

controls the positioning of the filter in the hue colour plane and w controls the colour 

range of the filter around its ho value. 

 As the colour for the lip region varies with respect to person identity, light 

conditions, make-up etc., the challenge is to find optimal parameters for the filter. 

Although an optimal solution would be an adaptive hue filter as in [29], the simplified 

solution adopted in our case is to find the optimal parameters for predefined 

conditions, e.g., for a specific database. 

 A statistical analysis was performed on our training set (described in Figure 

5.11). The variation of lip colour between individuals and the differences caused by 

varying illumination on lip pixels for the same picture was investigated. We noted that 

standard deviation does not vary much from picture to picture, as the pictures belong 

to the same database, with controlled conditions. The filter coefficients are chosen 

after performing an average on the mean and on the standard deviation for all 

pictures. The overall mean is 0.01 and it corresponds to the positioning of the filter h0. 

The overall standard deviation approximating the filter width w is 0.007. 

 In our use of these techniques, after determining the parameters of the filter 

and performing the actual filtering operation, each image is binarised using a 

predefined threshold. The value of this threshold was set to 0.5, determined after a 

trial-and-error testing. 
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 Morphological operations such as closing, followed by opening, can be used 

in order to fill in gaps and to eliminate pixels that do not belong to the lip region. 

After the lip region is determined, its centre of gravity (COG) is calculated. This point 

is used as the initialisation point for the AAM fitting algorithm. 

 
Figure 6.11. Lip region pre-processing: a. original image, b. after the hue filter, c. after the 

binarisation. 

6.2.2. The Overall Formulation of the AAM Lip Model 

Our lips modelling approach is composed of two main steps: an initialisation step and 

a modelling step. 

 Firstly, before the lip feature can be extracted and analysed, a face must be 

detected in an image and its features must be traced. The face is inferred from the V-J 

face detector applied on the input image. Then, our region of interest (ROI), i.e. the 

lip region, is deducted from the rectangle describing the surroundings of the face. ROI 

is reduced then to the lower third on the y axis, while 3/5 of the face box is retained 

on the x axis, as shown in Figure 6.12. A hue filter is then used to provide an initial 

location of the lip region within this ROI. This hue filter was defined in section 6.2.1. 

 
Figure 6.12. Lip modelling system overview. 

 In a second step, AAM is applied in order to perform a refined detection and 

to determine detailed lips features. The starting point for the algorithm is the COG of 
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the hue filtered ROI. The AAM adjusts the parameters so that a synthetic example is 

generated, which matches the image as closely as possible, as seen in Figure 6.12. 

Optimal texture and shape parameters are determined using the standard AAM lip 

model. In consequence information regarding lip features, such as its curvature, 

degree of opening, or its texture, can be determined. 

6.2.3. Practical Uses of our Improved Lip Model 

Our statistical lip model of appearance, improved with a pre-processing step, permits 

the extraction of useful lip-related information. Shape and appearance parameters are 

determined; they describe the position and the lip expression. This knowledge permits 

us to develop applications that track the lips and detect smiles, or even infer facial 

expressions (see Chapter 8). 

 In the next section we describe two applications which were developed from 

this research: a lips tracker, in section 6.2.3.1, and a smile detector, in section 6.2.3.2. 

We use these two applications to test our lip model with unseen images in a variety of 

situations. 

6.2.3.1. Lip tracking 

One application for the lip model and its corresponding fitting algorithm is a robust 

lip tracker.  

 In this section, we describe a framework for efficiently tracking the lips 

through an image sequence. Robustness to lip movements, slight head rotation, and 

head pose are our goals. A summary of the lip tracker results will be given in section 

7.2.2. 

 The same principle as for the eye tracker described in section 6.1.3.1 is used to 

track the lips. A face detection stage is firstly employed in order to obtain an initial 

rough estimate of the face position, 2D rotation angle, and scale. These estimates are 

used to initialise the statistical model inside the image frame. Then, the lips model is 

initialised using a hue filter, as described in section 6.2.2. As our filter is not adaptive, 

it requires a predetermined parameter setting, following the procedure described in 

section 6.2.2. 

 The COG of the hue filtered ROI is next used as the initialisation point for the 

AAM algorithm. This step should be executed on the first frame and periodically 
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repeated. This step is the most computationally expensive and in the next frames only 

an update of the shape parameters is performed. Once this stage is performed, the 

model is able to deform and accurately track lip movements. As the computational 

requirements are now substantially reduced, this operation is performed on each 

separate frame. A detailed summary of test results for the lip tracker will be given in 

section 7.2.2. 

6.2.3.2. Smile Detector 

Another consumer application that can be developed using our model is a smile 

detector. 

 

Smile detector based on geometrical distances 

If an accurate analysis of the lip region is accomplished, it is possible to build a smile 

detector based on an educated choice of geometrical distances between lips. The 

procedure uses the same principle as for the blink detector described in section 

6.1.3.2. 

 This type of information is provided by the shape parameters determined after 

the fitting stage. The width of the lip region can be used to determine if a smile has 

occurred. However it should be measured relative to a fixed distance and not relative 

to the width of the lips regions itself. This is because the width of the lips region can 

be highly variable. Examples of such distances are the face size, which is determined 

after the face detection stage, or the distance between the eyes, determined after 

modelling the eyes. The lip size is calculated between the two corners of the mouth, 

i.e., the 7th and the 1st points in Figure 5.12. The approach is described in Figure 

6.13. 

 
Figure 6.13. The lip width is calculated between the mouth corners and compared with the face 

width. 
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Smile detector based on a classifier 

Another version is to use a simple classifier to classify between smile-pictures and 

non-smile pictures. This type of approach was employed in our experiments. We use a 

basic Euclidean-distance-based classifier. This classifier is trained using smile and 

non-smile pictures and uses the shape parameters. The results are presented in section 

8.5.1. 
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Chapter 7 - Detailed Testing and Comparison of 
Modelling Approaches 

In Chapter 6, we proposed extensions of the AAM models for the eye and lip regions. 

Here we summarise detailed testing and comparisons of our modelling approaches. 

We analyse their performance by comparing them with standard AAMs or by testing 

them in the context of several consumer applications. 

 Following the structure of the previous chapters, Chapter 7 is divided into two 

parts. In the first part, we test our component-based AAM eye model, while in the 

second part we present our lip model test results. 

 We start by analysing the performance of the component-based AAM eye 

model in section 7.1.1. We compare its results to the standard AAM formulation. 

Then, we analyse our eye model in terms of performance in various consumer 

applications, such as eye tracking, in section 7.1.2, and blink detection, in section 

7.1.3. 

 In the second part of the chapter we summarise our lip model test results. We 

start in section 7.2.1 by testing the improvements brought by the hue filter 

initialisation. We follow its analysis, by testing it in various consumer applications, 

such as lip tracking, in section 7.2.2, and smile detection, in section 7.2.3. 

 We conclude our models performances and limitations in section 7.3. 

7.1. Detailed Testing for the Component-based AAM Eye 
Model 

The eye model is trained using the procedure described in section 5.1.3.2, using 70 

pictures. As we want to develop a general model (section 3.5), we include a high 

degree of variability in the training pictures, in terms of subject individuality or 

illumination. Also, in order to model pose, blink, or gaze variations, we include these 

kinds of variation in our training set, based on the approach detailed in section 5.1.3. 

 The entire training set is displayed in Figure 7.1. It contains 30 open-eye 

pictures, 30 closed-eye pictures, and 10 pictures including small to medium head 

poses, with open and closed eyes. The subjects belong to both genders and various 

age categories. 
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Figure 7.1. The training set used to construct our eye model, containing 35 open-eye pictures and 

35 closed-eye pictures. Between these pictures, there are eye images containing gaze and pose 

variation. 

 The pictures are semi-automatically annotated (see section 3.2.1) using 80 

landmarks, distributed as described in section 5.1.3.1. An independent AAM model 

(see section 3.2.3) is then constructed. The resulting AAM model has 27 shape 

parameters and 39 texture parameters, as 95% of the shape and texture variances are 

allowed after PCA. 

 We tested our model using reduced allowed texture variances and at a 

resolution of 30*10 pixels. We observed that it still performs successfully with as 

little as 65% of variance. This corresponds to 21 shape and 5 texture parameters. The 

choice of the resolution and the allowed variance is motivated by the minimal 

resolution for which the model still performs successfully. 

 From our initial experiments we concluded that shape parameters contain 

more relevant information for our eye-related applications, e.g., from shape 

information we determine an eventual blink. 
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 For our tests we use an adaptation of the Flexible Appearance Modelling 

environment (FAME) [237], modifying and extending it to accommodate the 

techniques described in this thesis. FAME is a software framework containing an 

open source implementation of the AAM. It was designed by Stegmann et al. and it is 

distributed as a public-domain material [237]. We want to express thus our gratitude 

to the authors of this laborious and comprehensive material for making it publicly 

available. 

 We tested our eye model on three test sets; none of the test images has been 

used in the training set, thus these tests are all on unseen images: 

 

• Test Set 1: Georgia Tech Face Database [238] contains images of 50 persons, 

with 15 images per person. Most of the images are taken in two different sessions to 

take into account the variations in illumination conditions, facial expression, and 

appearance. In addition to this, the faces are captured at different scales and 

orientations. 

• Test Set 2: VidTIMIT Video Dataset [239] is comprised of video recordings of 

different subjects reciting short sentences, but it is also useful for blink or gaze 

detection. 

• Test Set 3: a personal collection of the consumer facial images containing 200 

consumer pictures where the subjects blink, gaze, present head rotations, etc. The set 

is described in Appendix B. 

7.1.1. Eye Model Comparisons: Standard vs. Component AAM 
Modelling 

Using the model and test settings presented in the previous section, comparative 

results for the fitting accuracy between the standard AAM eye model and the 

proposed component-based AAM eye model are evaluated. 

 The V-J face detector described in section 2.4.1 is initially applied to localise 

the faces for the three test sets. The detector successfully locates the face region in 

98% of our test images. 
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Qualitative testing 

Firstly, we realise a qualitative testing by visual inspection. We observed that our 

improved model, described in Chapter 6, brings considerable improvements over our 

standard statistical model, described in Chapter 5, especially in cases of posing and 

in-plane rotations. 

 Both the classical and the component-based AAM work well for men, women, 

or children, and for various eye colours. However, the latter model shows a better 

fitting in case of under-trained models or in more complex situations that deal with: 

 

• Pose: e.g., in head rotations, the left eye will have a slightly different shape from 

the right one which is captured by the component AAM approach. 

• Occlusion: using the left/right eye sub-models, the eyes will fit independently 

and theoretically the non-occluded eye will present correct fitting, information that 

can be combined with additional image processing to fit the occluded eye. 

• Face expression: one eye might change its shape independently of the other, e.g., 

winking. 

• Unseen details of the eye: not seen in the training set, e.g., unseen shapes or 

distances between the eyes, distances between the eyebrow and the eye. 

• In-plane-rotation: as represented in Figure 7.2. 

 

 An example of improvements of the eye region fitting when using the 

component-based method is presented in Figure 7.2. 

 

 
Figure 7.2. From left to right: a. the initialisation of the eye-shape inferred from face detection; b. 

the eye-shape from global AAM fitting; c. the eye-shape from AAM sub-model fitting; d. the 

fitted shapes of the component sub-models refitted by the global AAM – note how the two eyes 

are constrained into a two-eye limit. 

 An important qualitative improvement is noticed when using the component-

based AAM for winking eyes, even when wink pictures are not present in the training 
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set. This is possible because the component-based AAM allows the eyes to be 

modelled separately, so one eye can find its closed-eye shape, while the other eye is 

modelled as being open. This case is presented in the last row of Figure 7.3. The same 

figure gives other examples of better fitting in the case of the component-based AAM 

eye model. 

 
Figure 7.3. Component based AAM vs. standard AAM for the eye region. In the first column, the 

standard AAM is fitted. The second column presents examples of the component-based AAM 

when the final constraint was not yet applied (the two eyes are fitted independently). The last 

column shows the component-based AAM results, when a final two-eyes-together constraint is 

applied. 

 

Quantitative testing 

After visually inspecting the results, a quantitative evaluation of the proposed model 

is performed on representative examples of the three test sets. The quantitative 

evaluation of a model performance is realised in terms of boundary errors, calculated 

as Point-to-Point (Pt-Pt) shape error, calculated as the Euclidean distance between 

the ground-truth shape vector and the converged shape vector inside the image frame, 

as shown in equation (7.1): 
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where the index g marks the ground truth data, obtained in our case by hand 

annotation. 

 Another type of error can be calculated, namely the Point-to-Curve shape 

error. It is calculated as the Euclidian norm of the vector of distances from each 
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landmark point of the exact shape to the closest point on the associated border of the 

optimised model shape in the image frame, using equation (7.2): 
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where the border is modelled as a linear spline r(t) = (rx(t); ry(t)). 

 The mean and standard deviation of Pt-Pt and Pt-Crv are used to evaluate the 

boundary errors over a whole set of images. Figure 7.4 presents the histogram of Pt-Pt 

shape errors calculated with respect to manual ground-truth annotations. The ground-

truth annotations represent hand-annotated shapes. In these tests we compare the 

standard AAM formulation, the component-based method, when omitting its last 

stage, i.e., the global fitting, and the component-based AAM with global fitting. The 

initialisation provided from the face detection step is used as benchmark. 

 
Figure 7.4. The histogram of the boundary error for the three algorithms: standard AAM, sub-

model fitting, and the component-based AAM. 

 From the figure it can be observed that the boundary errors for the tested 

fitting algorithms are concentrated within lower values as compared to the initial point 

generated from the detection algorithm, showing the methods improvement for eye 

location. Furthermore, it can be noticed that the shape boundary errors are 
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concentrated within lowest values, indicating that the full component-based AAM 

performs the best in terms of fitting accuracy, thus resulting in a clear improvement 

over the initial position, as well as over the other fitting algorithms. 

 The presented results show the superiority of the proposed optimisation 

scheme in terms of lower boundary errors. More results for the component-based 

AAM can be evaluated while testing the eye tracker and the blink detector, in the next 

sections (Tables 7.1-7.3). 

7.1.2. Testing the Eye Tracker Application 

We next evaluate the eye tracker proposed and described in section 6.1.3.1 using 12 

test video sequences on unseen images as follows: (i) three sequences from the 

Georgia Tech Face database [238], (ii) three sequences from the VidTIMIT Video 

dataset [239], and (iii) six video sequences collected especially for this experiment.  

 These video sequences are used to measure the performance during tracking. 

Our collection of video sequences contains rotations of the head, blinking of the eyes, 

and partial occlusions. Only face images where the V-J face detector has successfully 

reported a face have been used for these tests. 

 We used the trained models detailed in section 7.1. A specific-person model, 

specialised on each tracked subject, would represent an easier case scenario and it is 

imaginable that it would perform better. However, we chose to use our general AAM 

model, as we want to develop an application which can be generalised to a range of 

individuals and image acquisition conditions. Moreover, manually annotating images 

for each personalised model for each individual in the test sequence is very time 

consuming. 

 It is worth remarking however, that as a consequence of some poor results in 

preliminary tests, we have subsequently introduced some representative pictures, five 

for each dataset, from the Georgia Tech Face and VidTIMIT Video databases into our 

initial training set. Our training set contains now 80 images. We note that even 

introducing a small number of training images from each data set has greatly 

improved the model fitting to unseen images from those respective datasets. 
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Qualitative testing 

Figure 7.5 shows examples of eye tracking for two video sequences from our personal 

collection containing pose variation, blink, and gaze. 
 

 
Figure 7.5. Eye tracking in two examples of video sequences from our collection of video 

sequences using our model, when blinking, facial expression, and small pose variations are 

involved. 

 

Quantitative testing 

Table 7.1 shows the tested performance of the proposed system. In its first row, Table 

7.1 firstly gives a summary of the performance obtained by our standard statistical 

model of appearance in terms of eye tracking accuracies on the three test sets. Then, 

in its second row, it reports the improvements brought by the component-based AAM 

on the same test sets. It is clear that the component-based model improves overall 

accuracy for the system for all the databases used in the test set apart from VidTIMIT 

where both models work equally well. 

 The results were collected in a trial with 15 observations per video sequence, 

where 10 of these observations correspond to the first 10 frames and the remainder 

correspond to randomly chosen frames. These frames were compared by a Pt-Crv 

error (defined in section 7.1.1) with the same hand annotated frames, considered as 

being the ground truth. 
 

TABLE 7.1. SUMMARY OF THE SYSTEM ACCURACY (%) FOR THE STANDARD MODEL OF APPEARANCE. 

Method 
Georgia Tech 
Face Database 

VidTIMIT 
Dataset Our database 

Standard 

AAM 

92 98 75 

Component-

based AAM 

97.5 98 79.24 
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 The tracking system is automatically initialised by the component-based AAM 

procedure and it achieves an average accuracy of 91.5%. Tracking performances 

directly depend on the eye fitting in the first frame. Weak points can be mostly 

noticed when the face becomes partially occluded, e.g. by moving a hand in front of 

the face, or large horizontal or vertical poses, e.g., more than 30 degrees. 

7.1.3. Results of the Blink Detector 

The benefits drawn from our eye modelling method are analysed in the context of 

blink and gaze detection. We evaluate the blink detector based on geometrical 

distances as described in section 6.1.3.2. The iris, indicating gaze movements, and eye 

contours, indicating blink are analysed in order to test our eye model performance. 

 Tables 7.2-7.3 summarise the blink detection and gaze fitting accuracies on 

the three tests sets described in section 7.1.1 for our standard AAM eye model and for 

our component-based approach. The blink detector returns a flag that has the value 1 

if a blink is detected and 0 otherwise. 

 The gaze detection rates were calculated on open eyes pictures with respect to 

the Pt-Crv shape errors, compared to ground truth annotations. 10 frames of each 

video sequence were evaluated. 
 

TABLE 7.2. SUMMARY OF THE SYSTEM ACCURACY (%) FOR THE STANDARD MODEL OF APPEARANCE. 

Method 
Georgia 
Tech Face 
Database 

VidTIMIT 
Dataset Our database 

Gaze accuracy fitting 68.75 52.08 40.25 

Blink detection 90.625 100 67.92 

 

TABLE 7.3. SUMMARY OF SYSTEM ACCURACY (%) FOR THE COMPONENT-BASED MODEL. 

Method 
Georgia Tech 
Face 
Database 

VidTIMIT 
Dataset Our 

database 

Gaze accuracy fitting 78.125 83.33 69.18 

Blink detection 96.875 100 79.24 

 

 The results proved to be encouraging, namely the component model is able to 

correctly analyse the eye, a fact that infers a precise blink detection. A drawback of 

the model and its algorithm is the accuracy to gazing, where future improvements are 

necessary. 
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 We note that failure of the tracking algorithm is often due to unfocused 

images, large face offsets between frames, and partial occlusions, and, in particular, 

large gaze variations. The poorest results were obtained on our own collection of 

pictures, explainable by the fact that our images are more challenging in terms of 

facial variation that either of the standard databases used in the experiment. We also 

note that the Georgia Tech database presents pose variations, while the pictures that 

we used from VidTIMIT incorporate only frontal faces. This fact explains the high 

blink detection rates obtained in the case of the latter test database. 

7.2. Detailed Testing for the Advanced AAM Lip Model 

We trained our lip model as described in section 5.2.2. A high degree of variability is 

considered for the training pictures, in terms of subject individuality, illumination, 

head pose, and lip expression, as we want to develop a general model (section 3.4). 

 The training set is displayed in Figure 7.6. It contains 30 pictures, among 

which six present pose variation. The subjects belong to both genders, to various age 

categories, and present various facial expressions. 

 
Figure 7.6. The training set used to construct our lip model, containing 30 pictures. 
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 The pictures are semi-automatically annotated (see section 3.2.1) using 24 

landmarks, distributed as described in section 5.2.2. We construct an independent 

AAM model (see section 3.2.3). The resulting AAM model has 12 shape parameters 

and 17 texture parameters, as 95% of the shape and texture variances are allowed after 

PCA. In our experiments we use the FAME environment [237], modifying and 

extending it to accommodate the techniques described in this section. 

 The proposed algorithm is tested on several specialised research databases and 

on our custom dataset. We firstly compared the standard AAM formulation and our 

proposed component model approach on the FERET database [165, 166] and on our 

custom dataset. Our dataset comprises 80 general images, in which subjects presented 

different facial expression, various poses, make-up, illumination conditions, image 

resolutions, etc. 

 We also tested the accuracy of our lips tracker scheme on the audiovisual 

speech VidTIMIT Video Dataset [239] which is comprised of video recordings of 

different subjects reciting short sentences, suitable for tracking. The smile detector 

was tested on the standard databases MMI [167], and FEEDTUM [169]. These 

databases display different subjects picturing facial expressions. 

7.2.1. Lips Model Comparisons: Standard vs. Hue Pre-filter AAM 

Using the models and the test settings presented in the previous section, i.e., the 

FERET database and our custom, comparative results for the fitting accuracy between 

the standard AAM lip model and the AAM lip model using a hue filter initialisation 

are evaluated. 

 The V-J face detector, described in section 2.4.1, is initially applied to localise 

faces for the test sets. 

 

Qualitative testing 

Firstly, we realise a qualitative testing by visual inspection. A first observation is that 

although, ideally the hue domain should not be influenced by variations in 

illumination, this is not observed in practice. Therefore, changes of illumination can 

cause important variations in the hue component for the same object. Standard face 

databases are normally created using a controlled environment and thus the hue 



 148

components of all the images are much more consistent regarding differences between 

individuals. 

 In the general case of unknown illumination conditions, the parameters of the 

hue filter have to be adapted for each particular image, which is a very complex task. 

Yet, for a controlled environment, e.g. working with a standard database, the filter 

parameters, i.e. the mean and the standard deviation of the hue component of the lips, 

can now be estimated from within that particular tested database.  

 A statistical analysis is performed in order to investigate each database, from 

the point of view of the effect of the acquisition system over the texture, illumination 

variations, etc. of the pictures, as explained in section 6.2.1. Following this analysis, 

optimal parameters of the hue filter for images from that database can be readily 

determined. 

 We obtained the following parameters, summarised in Table 7.4: 
 

TABLE 7.4. CALCULATED HUE FILTER PARAMETERS FOR EACH TEST SET. 

Database ho w 

FERET 0.03 0.005 

MMI 0.01 0.005 

FEED 0.01 0.004 

VidTIMIT 0.02 0.004 

Our collection 0.01 0.007 

 

 Examples of the results of the proposed fitting algorithm obtained for different 

pictures from FERET database are presented in Figure 7.7. The shape and texture 

parameters after the fitting stage are depicted. The first two columns represent the 

results of the AAM algorithm (respectively shape & texture), used as a stand-alone 

method, while the last two columns are a consequence of the hue filter combined with 

AAM. Note the improved alignment of the shape model and more natural texture of 

the improved hue-filter & AAM. 
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Figure 7.7. Mouth fitting results applying the AAM algorithm. 

 

Quantitative testing 
TABLE 7.5. FITTING ACCURACIES (%) OF OUR LIPS MODEL AS COMPARED TO A STANDARD AAM LIPS MODEL. 

Database Standard AAM Our model 

FERET 38 77 

Our Collection 20 54 

 

 The results were calculated using the Pt-Crv shape error (see equation (7.2)), 

as compared to hand annotated images. The results showed the benefits of an accurate 

initialisation point for the AAM method. 

 The low rates can be explained by the fact that the filter parameters are not 

optimal for each picture, as they were calculated based on a statistical analysis on the 

picture collection. However, the pictures present a high degree of variability between 

them, so the statistical parameters might not be the most favourable for each picture. 

Improving the hue filter to adapt to each individual image is likely to boost these 

performance figures significantly but we did not have time to investigate this 

approach further. 

7.2.2. Results of the Lip Tracker 

The benefits drawn from our AAM enhancement are analysed in the context of lip 

tracking. For the tracking experiments, short movies of sequences of subjects smiling 

or reciting sentences are used. The test sets are selected from the VidTIMIT database 

and from our test sequences. 

 The general model developed in section 7.2 is used, and not a person-specific 

AAM model. However, some representative pictures from the test sets were included 

in the training set. 
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 Our algorithm is applied for the first frame and refreshed periodically. 

Applying the technique on the VidTIMIT database and on our test sequences, it shows 

good tracking results for all individuals up to 30 degrees of face orientation. Sudden 

movements of the head affected the tracking performances. In this situation, the fitting 

algorithm had to be applied more often in the video sequence. In our case, the 

initialisation was applied every 10 frames. An example of the results obtained with 

our mouth tracker is presented in Figure 7.8. The summary of results is presented in 

Table 7.6. 
 

 
Figure 7.8. Example of mouth tracking sequences: the first row contains results from one of our 

video sequences, while in the second row there are exemplified frames from the VidTIMIT 

database. 

 

TABLE 7.6. SUMMARY OF THE SYSTEM ACCURACY (%) FOR THE LIP TRACKER. 

Method VidTIMIT 
(%) 

Our collection 
(%) 

AAM initialised from V-J 45 32 

AAM initialised from the hue filter 78 67 

7.2.3. Results of the Smile Detector 

The benefits drawn from our AAM enhancement are analysed in the context of smile 

detection. 

 A smile detector is implemented based on a simple Euclidean distance, as 

defined in section 6.2.3.2. Its accuracy is verified on smiley and non-smiley pictures 

from the FEED and MMI databases. 
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TABLE 7.7. SUMMARY OF THE SYSTEM ACCURACY (%) FOR THE SMILE DETECTOR. 

Method MMI  
(%) 

FEEDTUM 
(%) 

AAM initialised from V-J 60.71 50 

AAM initialised from the hue filter 73 60 

 

 Another version of smile detection is tested, based on geometrical distances 

between the inner corners of the eyes and the outer corners of the mouth, as described 

in section 6.2.3.2. While the first distance is considered constant despite any facial 

expression, the second distance increases in the case of a smile. For this approach, the 

following results are obtained: 61% for FEEDTUM database, 78% for the MMI 

database, and 60.5% for our collection of consumer images. 

7.3. Chapter Summary and Conclusions 

In this chapter we summarised the results obtained by our facial feature models, 

described in Chapter 6. We analysed our extensions, by comparing them to the results 

obtained in the case of the standard AAM formulation. 

 

Eye model conclusions 

In the first part of this chapter, the performances of our component-based AAM 

adapted for the eye region are evaluated. We evaluated accurate fitting, eye tracking 

performances, and blink detection rates. Better results were obtained for all tasks in 

the case of the component-based AAM. 

 While the standard AAM is based on a rough initialisation inferred from the 

face detection step, the component-based uses the AAM fitting as a starting point. 

Moreover, the fact that each eye is aligned independently permits that each sub-model 

finds its optimum separately. The optimal results are obtained by constraining the two 

eyes within a two-eyes-together limit, which represents a new AAM alignment of the 

result from the independent fitting of sub-models. 

 

Lip model conclusions 

In the second part of this chapter, our lip model based on the AAM formulation, 

together with a hue filter, is evaluated. We tested accurate lip fitting, lip tracking, and 

smile detection rates. 
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 Better results were obtained in case of our proposed method, when we use a 

hue filter to determine a robust lip initialisation. However, our filter needs to be 

adapted for each set of conditions. 

 Weak points of the lip fitting were noticed when the hue filter fails to find the 

correct initialisation point. Situations like bearded people, very weak contrast between 

mouth and skin, strong illumination variation, or lip colour not covered by our 

statistical analysis, are examples in which the hue filter is suspected to fail. For these 

situations, the filter parameters had to be recalculated for its specific constraints. 

 In the next chapter, we are going to use our facial feature models to develop a 

robust complete face model. This face model is going to be used to accurately analyse 

facial expressions. 
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Chapter 8 - A Component-based AAM Representation 
for Facial Expression Modelling 

The detailed analysis of facial expression can offer a wide range of new applications 

and open new areas of research, as seen in Chapter 1. 

 In this chapter we build on our earlier work to analyse the feasibility of 

integrating AAM techniques into an automatated facial expression analysis system. 

One of the key challenges of facial expression analysis is the extraction of relevant 

facial features. Our earlier work shows that AAM techniques are useful for analysis of 

both eye and mouth regions. Here we provide details of a comprehensive set of 

experiments on facial expression classification and recognition for still images and we 

propose a component-based AAM facial representation. We proceed to test the 

robustness of this framework to the deformations of typical unconstrained facial 

expressions. 

 We start in section 8.1 by providing an overview of the key components of an 

automated facial expression analysis system. We have implemented most of these 

already; here we place emphasis on the expression recognition module. 

 The challenges that a standard AAM has to overcome when analysing facial 

expressions are reviewed in section 8.2. These challenges motivate the experiments 

and tests presented later in this chapter. 

 In section 8.3, the most relevant AAM features are analysed in the context of 

facial expression analysis. Firstly we investigate which type of AAM feature, i.e., 

shape, texture, or appearance, contributes the most in modelling of the facial 

deformations caused by facial expressions. 

 In section 8.4, we investigate the optimal AAM parameters for modelling 

facial expressions and we discard the less relevant or redundant ones. 

 Next, in section 8.5, techniques for expression classification/ recognition on 

still images are presented. Expression classification techniques are dealt with in 

section 8.5.1, by comparing two classifiers: the Nearest Neighbour (NN) and the 

Support Vector Machine (SVM) and determining their optimal settings for expression 

classification. While many other classification techniques are known we restrict our 

comparative studies to these two approaches: SVM is considered one of the most 

effective techniques across a wide range of classification problems whereas the NN 
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method is one of the simplest. Restricting ourselves to these two techniques will give 

a good indication of the likely variations due to the classification process. In section 

8.5.2 the same classifiers are adapted for a multi-class classification problem, such as 

expression recognition. We summarise the overall performance of these two 

classifiers in section 8.5.3. 

 Section 8.6 defines and compares the roles of global and local features in 

expression analysis and a component-based AAM approach to improve system 

performance is proposed. We begin in section 8.6.1 by analysing the importance of 

individual facial features, i.e., eyes and lips, in facial expressions analysis. We use the 

eye and lip AAM models developed in Chapter 6, determining through a series of 

experiments their individual usefulness in an automated expression classification 

system. Then, in section 8.6.2, we propose a robust component-based AAM face 

representation adapted for expression variations, focusing on the most significant eye 

and lips features. 

 We end this chapter in section 8.7, by analysing the robustness of our 

proposed facial representation and its performances in expression classification/ 

recognition. 

8.1. Facial Expression Analysis System Overview 

Facial expression analysis is a complex task involving multiple steps. The 

conventional facial expression analysis schematic was already described in Chapter 2 

and depicted in Figure 2.1. We recall that generally, an expression analysis system is 

comprised of three main subsystems: (i) a face detection module, (ii) a feature 

extraction module, and (iii) a classification module which determines a similarity 

between the set of extracted features and a library of reference feature sets. Other 

filters or data pre-processing modules can be used between these main modules to 

improve the detection, feature extraction, or classification results. 

 Now, we aim to adapt this conventional schematic to our requirements. 

Ideally, our facial expression analysis system should be able to handle various 

illumination conditions, plane and out-of-plane head rotations, different image 

resolutions, etc. Also, as it is considered for consumer applications, the system should 

be automated and able to perform in real-time from a user perspective. 
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 Our proposed system adapted for our requirements can be summarised as 

follows. In the first module, the V-J face detection algorithm [126] is applied to the 

current image. This face detection step not only determines whether there is a face in 

the input image, but also provides an accurate initialisation for applying more detailed 

AAMs to perform feature extraction. A statistical relation between the estimates of 

the position and the size of the detected face rectangle, and the position and the size of 

the reference shape inside the image frame is initially learned from a training set of 

images. This relation is further used as starting point for the AAM search. In our case, 

the detector successfully finds over 90% of the tested face images. The main cause of 

failing is large pose variations, i.e., over 45 degrees. Other causes include low image 

resolution (i.e., small faces in the image) or strong variations in illumination. 

 Next, facial features are extracted using AAM. Facial model parameters are 

calculated from the extracted facial area, using the component-based approach 

described in section 8.6.2. 

 The last step in an expression analysis system is expression classification/ 

recognition. 

 We remind the reader that in section 2.3.1 we discussed two modalities of 

describing emotions in computer vision: the Facial Action Coding System (FACS) 

and the six universal emotions. In the same section, we stated that in our work we are 

going to analyse the latter and we justified our choice. The choice of decoding the six 

universal emotions is based on the straightforwardness of the universal emotions 

compared to FACS. Also, the analysis of the universal emotions gives us the 

possibility to evaluate our work versus the work of other researchers who use the 

same framework. 

 We also discussed that in general, in order to determine an emotional state, 

additional factors should be taken into consideration: social and personal knowledge 

of the subject, their individual range of facial expression, etc. Since in our work, we 

consider only the facial expressions as a source for human emotions, the six universal 

emotions may also be referred to as the six universal facial expressions. And, in 

addition, there is the neutral face expression or null emotion which adds a de-facto 

seventh class. 

 Thus our system takes a multi-class decision between the six universal facial 

expressions and the neutral one. For comparison we will perform this step using two 
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distinct methods: a Nearest Neighbour (NN) approach and a Support Vector 

Machine (SVM) approach. Both approaches were previously described in section 4.3. 

 These last two steps will be detailed in sections 8.3-8.6. Experiments will be 

performed on specialised databases as well as on our own custom dataset of images. 

For our experiments, we have chosen the FEEDTUM [169, 170] and MMI [167] 

databases not only because of their popularity among researchers, but also because 

they contain spontaneous (FEEDTUM) and posed (MMI) facial expressions of 

various subjects of both genders and of all ages and ethnicities. These databases were 

described in greater detail in section 4.5. 

 Unfortunately, none of the publicly available databases presents a large range 

of facial deformations under a wide range of head poses and illumination conditions. 

Thus, our experiments will also be performed on our own custom dataset, which 

incorporates both pose and expression variations. We have built this test dataset 

containing eight subjects pictured in the six universal expressions and the neutral one, 

at different out-of-plane rotations. Some examples from our collection of pictures are 

shown in Figure 8.1. A detailed description of our image set is given in Appendix B. 

 
Figure 8.1. Examples of consumer images containing different subjects, presenting both small to 

medium pose variations and facial expressions (left to right, happy, sad, surprised, and 

disgusted). 

8.2. Motivation for our Research 

In section 4.2.1 we have described limitations of the standard AAM formulation when 

modelling facial expressions: 

• unsatisfactory AAM fitting rates on unseen facial images, i.e., pictures not 

used in the training set, unfamiliar faces for the training set. In practice, in the fitting 

stage, faces can become too closely constrained to the model variations learned during 

the training phase, causing poor fitting for unseen facial images. 

• poor initialisations of the model; 
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• lack of robustness to facial expressions deformations, head poses, illumination 

variations, or occlusions; 

• large number of AAM appearance parameters which may not correspond to 

the optimal parameters when decoding facial expressions. 

 Two practical examples of poor AAM fitting in cases of unseen facial 

expression and head pose are given in Figure 8.2. 

 
Figure 8.2. Examples of poor AAM fitting on happy/neutral faces, with unseen variations, caused 

by facial expression, head pose, or variation in illumination. 

 Based on the above listing of issues with standard AAMs when applied to the 

problem of facial expressions it is clear that a more sophisticated approach needs to be 

taken to ensure better fitting of both the main facial region and the sub-regions, i.e., 

eyes, lips, and feature points which are most significant in a determination of the state 

of facial features and the corresponding facial expression. 

 Here we will shortly propose and examine an approach to improve the global 

and local fitting and the model registration for unseen faces and facial expressions. 

This will build on the earlier work described in Chapters 6 & 7. 

 But firstly, we search to optimise the speed of the system, by choosing the 

most relevant AAM model parameters/features. Our approach is described in the next 

section. 

8.3. Relevant AAM Features for Illustrating Facial Expressions 

Two types of features can be extracted when applying an AAM (see section 3.2): 

geometric features and features depicting the texture. If required, appearance 

parameters can be obtained by applying PCA on the concatenated geometric and 

texture parameters. Feature selection consists of keeping the most relevant facial 

features for classification and discarding irrelevant or redundant features. The quality 

of the extracted features plays a key role in their classification. 
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 Both types of feature are important when fitting an AAM model, e.g., for the 

face, eye, or lips region, to unseen images. 

 A question we now need to ask is which of these parameters are more 

significant for expression decoding and which is the most appropriate approach to 

determine that? 

 In section 4.2.4, we have summarised the published research on this topic. We 

concluded that opinions are divided in the literature. Researchers agree that shape 

features have a large role to play in facial expression recognition [68, 97], but some 

are adamant that both shape and texture features are required [140] in order to obtain 

satisfactory results. 

 Let us begin with a qualitative analysis. On one hand, the skin texture of the 

facial region exhibits only slight changes during facial expressions. These minor 

changes arise due to local lighting effects, blushing, or wrinkling of the skin. Such 

changes can be considered relatively invariant when compared with the more obvious 

changes of shape observed for different facial expressions. Such geometrical features 

are very directly related to expressions. As examples, when surprised, we widely open 

the eyes and eventually the mouth, resulting in an elongated chin; when sad, we often 

blink; when angry, the eyebrows are usually drawn together. 

 So, we concur with the hypothesis that shape parameters are the most 

significant features in facial expression decoding. We now conduct some experiments 

to verify our initial hypothesis. In the experiments described in this section, we use a 

global standard AAM build for the face region. 
 

Experimental Series 8.1- Choosing the optimal type of AAM feature 
Goal: find the most representative type of AAM feature for modelling facial expression 

Databases used: FEEDTUM 

Number of training pictures: 30 for each classifier (15 represent the targeted facial expression, 15 

comprise examples of the other categories of expressions) 

Number of tested pictures: 150 for each classifier (50 represent the tested expression and 100 random 

facial expressions, excluding the tested one). The pictures were not previously used in the training set, 

but can contain the same subjects as the ones in the training set. 

Classifier method used: 7 RBF- based SVMs withδ =22 (described in section 8.4.1.2) classifying 

between expression and non-expression pictures 

AAM model: global standard AAM for the face region 

Number and type of AAM parameters used for classification: 95% parameter allowed variance, 

resulting in 18 shape, 22 texture, and 19 appearance parameters 
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 For this experiment shape-only, texture-only, concatenated shape & texture, 

and merged shape & texture parameters are each tested. We are searching for the best 

compromise between a reduced number of parameters and high expression decoding 

accuracy. 

 In order to perform expression classification, we build seven SVM classifiers, 

for each universal expression and the neutral one (see section 8.4.1.2) of the type 

expression/non-expression, following the reasoning detailed in section 4.3. A 

comparison of our experimental results is presented in Table 8.1. 
 

TABLE 8.1. CLASSIFICATION ACCURACIES, WHEN USING SVM, FOR SHAPE PARAMETERS, TEXTURE PARAMETERS, 

SHAPE AND TEXTURED PARAMETERS CONCATENATED INDEPENDENTLY, AND A JOINT COMBINATION OF THE TWO. 

Classifier Shape (%) Texture (%) 
Shape & Texture 

Independent (%) 

Shape & Texture 

Combined (%) 

Happy/Non-happy 92.66 80 97.33 86.66 

Disgusted/Non-disgusted  69.33 64 67.33 67.33 

Surprised/Non-surprised 72 64.66 82 71.33 

Angry/Non-angry 90 76 45.33 79.33 

Sad/Non-sad 68.66 45.33 66.66 67.33 

Fear/Non-fear 72 74 78 77.33 

Neutral/ Non-neutral 61.33 64 70 69.33 

Average 75.14 66.86 72.37 74.10 

 

 Based on the results of these tests we determined that shape parameters did 

indeed prove to be overall the most valuable features for facial expression decoding 

accuracy. Shape results are comparable with the results obtained when applying a 

combined shape and texture model, i.e., when using the appearance features. 

However, as the number of shape parameters is somewhat less, the computational 

requirements both for feature extraction and to subsequently perform classification are 

also reduced. Thus shape parameters on their own have a demonstrable advantage 

over texture-only and both concatenated and merged shape + texture. These finding 

were also confirmed by the authors of [97]. 

 It should be remarked that the accuracy rates of classification are not 

specifically addressed in this series of experiments. Improvements aiming to increase 

the accuracy of expression classifiers will be presented in the next section. 
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8.4. Relevant AAM Parameters for Illustrating Facial 
Expressions 

While we have just shown that the shape parameters of an AAM face model contain 

the greatest “information density” for determining facial expression, there is still 

likely to be a significant amount of redundant information within this parameter set. 

Contra-wise, there may also be significant useful information contained in a small 

subset of the texture parameters. Ideally we would like to be able to further refine our 

use of AAM model parameters to achieve a more optimal set of parameters which are 

more closely tuned to the requirements of facial expression analysis. 

 Thus, in the next two experiments, we begin by investigating the particular 

shape parameters that best represent facial expressions. We note that in the 

experiments described in this section, we use a global standard AAM build for the 

face region. 
 

Experimental Series 8.2- The representative shape parameters for modelling facial 

expressions 
Goal: determine those particular shape parameters most relevant for modelling facial expressions and 

discarding the irrelevant/ redundant ones 

Databases: our own database, FEEDTUM 

Number of training pictures: 42 (21 from our database and 21 from FEEDTUM), 6 per expression 

Number of tested pictures: 150 (50 from our database and 100 from FEEDTUM) 

Classifier method used: Euclidean-based NN for expression recognition 

AAM model: global standard AAM for the face region 

Number and type of AAM parameters used for classification: 17 shape parameters 
 

 Figure 8.3 represents the mean over the AAM shape parameters of each of the 

six universal expressions and the neutral one of the training set that include different 

individuals, poses, and facial expressions. 
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Figure 8.3. Mean over the shape parameters over each of the seven universal expressions. 

 Now, some shape parameters are likely to be redundant and others may reduce 

the system accuracy. In Figure 8.4, we have plotted the expression recognition rates 

versus the number of model parameters employed. A maximum of 17 shape 

parameters was used in total. Then, the number of parameters is reduced, eliminating 

in turn the parameter with the smallest variation across the test set of images. As the 

number of parameters is reduced we are left with the parameters which exhibit the 

widest variation. 

 
Figure 8.4. Expression recognition accuracies versus the number of shape parameters. 

 It can be noticed that optimal results are obtained when the five to six most 

variable parameters are used. As we increase the number of parameters beyond the 6th 

parameter the model accuracy deteriorates. 

 In conclusion, an educated choice of parameters positively affects the system 

performances. In our case, it is proven empirically that using the first 30-40% of 
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model parameters provides higher expression recognition rates after the first 

parameter – which essentially corresponds to pose variation – is eliminated. 

 In this experiment we also noted that after performing PCA on shape 

parameters, the information on out-of-plane head pose was encoded in the first shape 

parameter. This is explained by the fact that the variations caused by pose cause 

significantly more geometric distortion than the variation caused by differences 

between individuals or between facial expressions. Consequently, pose variation is 

decorrelated to a large extent from other sources and manifests in the first-order PCA 

parameter. 

 The pose parameters are very important for the AAM fitting stage and the 

subsequent extraction of facial features. The pose variation information contributes to 

the shape and texture of facial features. However when analysing expressions, the 

pose parameters can be eliminated, as they do not contain the required facial 

expression information. 
 

Experimental Series 8.3- Robustness to face pose 
Goal: test the robustness of our approach to face pose variations 

Databases: our own database, FEEDTUM 

Number of training pictures: 42 (21 from our database and 21 from FEEDTUM), 6 per expression 

Number of tested pictures: 150 (50 from our database and 100 from FEEDTUM) 

Classifier method used: Euclidean-based NN, RBF-SVM with δ =22 

AAM model: global standard AAM for the face region 

Number and type of AAM parameters used for classification: 6 shape parameters 
 

 In this experiment, we compare expression classification/ recognition rates for 

a set of shape parameters that include the pose parameter versus a set of shape 

parameters from which the pose parameter was eliminated. The results are 

summarised in Figure 8.5. 

 The differences between using/ eliminating the shape parameter are more 

significant in the case of expression recognition than in the case of expression 

classification. One possible reason is that in the case of expression classification, the 

classifiers are trained and tested just for two types of expressions, and not for seven as 

for expression recognition, though being able to better learn the pose variation. In 

consequence, the results are slightly comparable for using/ eliminating the pose 
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parameter. This is not the case for expression recognition, where the pose parameter 

decreases the recognition rates. 

 These experiments verify our hypothesis that the elimination of the head pose 

parameter helps decoding facial expressions. 

 
Figure 8.5. A comparison for the case when the pose parameters is taken into account or ignored. 

The benefits of eliminating the pose parameters are evident in all experiments, of classification or 

recognition, when using NN and SVM. 

8.5. Expression Analysis on Still Images 

This section presents a detailed investigation into expression analysis for still images. 

In the experiments described in this section, we use a global standard AAM build for 

the face region. In section 8.5.1 we test Nearest Neighbours (NN) and Support Vector 

Machines (SVM) techniques for expression classification. The same classifiers are 

also adapted and tested in the context of expression recognition, in section 8.5.2. We 

conclude the current section with a comparison of the performances of the NN and the 

SVM classification techniques in section 8.5.3, and chose the most appropriate for our 

expression analysis system. 
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8.5.1. Expression Classification 

Remember that our primary research goal is to establish the validity of our approach 

incorporating both global and local AAM fittings. In our work, two classifiers are 

compared: NN (section 8.5.1.1) and SVM (section 8.5.1.2). 

 The choice of the two classifiers is based on their positive results obtained in 

the literature. In [156] it is stated and it is proved by experiments for gender 

classification and face recognition that SVM is typically among the top two 

classifiers, and the other top ranking classifier is one of the Euclidean-NN rule or the 

cosine-NN rule. As we designed them, in this work these classifiers use the relevant 

AAM parameters to choose between facial expressions. 

8.5.1.1. Nearest Neighbour (NN)-based Classifier 

The principle of a NN-based classifier used for expression classification was detailed 

in section 4.3. Now, we execute some experiments with this technique to determine its 

practical utility. In particular we investigate several different types of similarity metric 

and templates for NN. There are several similarity metrics that are commonly used 

with NN, including the Euclidean, cosine, and Mahalanobis distances, as seen in 

section 4.3. Also, two types of templates can be employed, based on calculating the 

mean or the median over the parameters. We test these settings in the following two 

experiments. 
 

Experimental Series 8.4- The choice of the NN classification metric 
Goal: make a comparison between the benefits of Euclidean distance and cosine distance in the context 

of classifying facial expressions using a NN and choose the one providing the best results 

Databases: FEEDTUM, MMI, our own database 

Number of training pictures: 30 for the FEEDTUM/MMI database, 15 for our own database 

Number of tested pictures: 150 for the FEEDTUM/MMI database, 40 for our own database 

Classifier method used: Euclidean-based NN, cosine-based NN 

AAM model: global standard AAM for the face region 

Number and type of AAM parameters used for classification: 7 shape parameters 
 

 From our experiments on NN-based expression classification we determined 

that Euclidean and cosine distances perform almost equally well, but there is a slight 

advantage for the Euclidean distance from the point of view of a more consistent level 

of performance. Thus our future NN experiments will be based on the Euclidean 
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distance as being representative of the optimal NN technique. Some of the results are 

illustrated in Figure 8.5. 
 

Experimental Series 8.5- Choice of the template used for comparison 
Goal: make a comparison between the benefits of mean or median techniques used to obtain templates 

for each expression; it will be chosen the technique giving the highest and most consistent 

classification rates 

Databases: FEEDTUM, MMI 

Number of training pictures: 30 for each classifier 

Number of tested pictures: 1stseries-the training set 

   2ndseries-150 for each classifier 

Classifier method used: Euclidean-based NN 

AAM model: global standard AAM for the face region 

Number and type of AAM parameters used for classification: 7 shape parameters 
 

 Each test image is classified by comparing its shape parameters with a 

template corresponding to each expression class. In our case, we applied 

mean/median over each 15 pictures depicting each of the two expressions to be 

classified. We obtained two templates for the mean approach and two for the median 

approach. 

 The classifiers are of type expression 1/expression 2, i.e., neutral/non-neutral, 

sad/non-sad, angry/non-angry, disgusted/non-disgusted, fear/non-fear, surprised/non-

surprised, and happy/non-happy, and of type expression/non-expression, e.g., 

happy/angry, happy/disgusted, disgusted/angry, etc. Considering that we have six 

expressions and the neutral one, 28 classifiers are obtained, seven for the former type 

and 21 for the latter. 

 Now, in case of each classifier, we calculate the distance between the shape 

parameter vector of each image test with the shape parameter vector of each template. 

The template yielding the minimum distance is selected. 

 In our experiments, at first, the AAM training and test sets coincide, i.e., there 

are no unseen images. This is so that we do not bias our results with poor AAM 

fittings. The Tables 8.2-8.5 summarise the classification rates. The correct 

classification rates must be read by looking in the tables at the line corresponding to 

class 1 and the column corresponding to class 2. For example, in Table 8.2, the 

correct discrimination between the disgusted expression and the happy one must be 

read at the value at line 2, column 4. 
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TABLE 8.2. EXPRESSION CLASSIFICATION ACCURACIES (%) FOR THE MMI DATABASE (TRAINING AND TEST SETS 

OVERLAP) WHEN USING A NN WITH A MEAN TEMPLATE RULE- AVERAGE OF EXPRESSION CLASSIFICATION 83.67 %. 

 A D F H N Sa Su 

A 80 75 85 90 75 80 87.5 

D  87.5 85 95 92.5 95 95 

F   57.5 85 67.5 72.5 82.5 

H    87.5 85 95 95 

N     80 70 85 

Sa      85 87.5 

Su       85 

 

TABLE 8.3. EXPRESSION CLASSIFICATION ACCURACIES (%) FOR THE MMI DATABASE (TRAINING AND TEST SETS 

OVERLAP) WHEN USING A NN WITH A MEDIAN TEMPLATE RULE- AVERAGE OF EXPRESSION CLASSIFICATION 

83.41%. 

 A D F H N Sa Su 

A 82.5 90 72.5 77.5 77.5 90 85 

D  85 90 82.5 90 97.5 92.5 

F   67.5 75 75 85 82.5 

H    77.5 75 87.5 90 

N     90 72.5 85 

Sa      87.5 88 

Su       85 

 

TABLE 8.4. EXPRESSION CLASSIFICATION ACCURACIES (%) FOR THE FEEDTUM DATABASE (TRAINING AND TEST 

SETS OVERLAP) WHEN USING A NN WITH A WITH A MEAN TEMPLATE RULE- AVERAGE OF EXPRESSION 

CLASSIFICATION 93.58 %. 

 A D F H N Sa Su 

A 100 96.7 93.4 100 96.7 96.7 100 

D  80 90 100 70 90 100 

F   83.4 96.7 80 93.4 100 

H    90 90 100 100 

N     100 93.4 100 

Sa      80 100 

Su       100 
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TABLE 8.5. EXPRESSION CLASSIFICATION ACCURACIES (%) FOR THE FEEDTUM DATABASE (TRAINING AND TEST 

SETS OVERLAP) WHEN USING A NN WITH A MEDIAN TEMPLATE RULE- AVERAGE OF EXPRESSION CLASSIFICATION 

89.79%. 

 A D F H N Sa Su 

A 100 63.4 93.4 100 96.7 90 100 

D  73.4 86.7 96.7 70 93.4 100 

F   73.4 96.6 66.7 90 93.4 

H    90 90 96.7 100 

N     83.4 86.7 100 

Sa      83.4 100 

Su       100 

 

 As can be noticed from the experimental results (Tables 8.2-8.5), a template 

obtained by averaging the AAM shape parameters outperforms, slightly, a template 

based on the median approach. 

 Generalisation of the AAM to unseen subjects is tested in the second part of 

this experiment with leave-one-subject-out tests, in which all images of the tested 

subject are excluded from training. We observe a decrease in the classification 

accuracies. As expected, a standard AAM performs poorly for the case of unseen 

pictures. Improvements will be proposed in later sections. 

 Tables 8.6 and 8.7 summarise the corresponding results of these tests. It can be 

noticed also that the classifier performs better on the FEEDTUM database. This is due 

to the fact that MMI presents more variations in illumination, a fact that affects the 

AAM fitting and, consequently, the precisions of facial feature extraction, particularly 

for unseen images. 
 

TABLE 8.6. EXPRESSION CLASSIFICATION ACCURACIES (%) FOR THE MMI DATABASE (TRAINING AND TEST SETS 

DO NOT OVERLAP) WHEN USING A NN WITH A MEAN TEMPLATE RULE- AVERAGE OF EXPRESSION CLASSIFICATION 

62.99 %. 

 A D F H N Sa Su 

A 50 57.5 65 72.5 65 60 60 

D  72.5 60 67.5 70 82.5 75 

F   60 55 42.5 47.5 77.5 

H    65 60 55 80 

N     66 65 52.5 

Sa      65 65 

Su       50 
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TABLE 8.7. EXPRESSION CLASSIFICATION ACCURACIES (%) FOR THE FEEDTUM DATABASE (TRAINING AND TEST 

SETS DO NOT OVERLAP) WHEN USING A NN WITH A MEAN TEMPLATE RULE- AVERAGE OF EXPRESSION 

CLASSIFICATION 66.94%. 

 A D F H N Sa Su 

A 83.33 50 63.4 80 50 63.4 76.7 

D  60 70 66.7 56.7 53.4 73.4 

F   56.7 83.4 56.7 80 63.4 

H    70 73.4 53.4 80 

N     60 56.7 83.4 

Sa      60 86.7 

Su       63.4 

 

 We conclude that a template obtained by averaging the AAM shape 

parameters outperforms, slightly, a template based on the median approach. Thus in 

the experiments that follow, a template obtained by averaging the shape parameters is 

used for NN. 

8.5.1.2. Support Vector Machines (SVM) 

A theoretical description of SVM was given in section 4.3. Now, in our experiments, 

we research the optimal settings for SVM when applied to expression classification. 

 In experiment 8.6 we search for the best kernel function, but also for the 

optimal settings for each function. 

 Two functions are investigated: the RBF and the polynomial function. Best 

grade for polynomials and, respectively, optimal δ values for RBF are searched. 

 The method of hyperplanes separation is also investigated. We recall that 

various methods for hyperplane separation can be used [159], i.e., Quadratic 

Programming, Sequential Minimal Optimisation, and Least-Squares. 

 

Experimental Series 8.6- Choice of the kernel function for SVM 
Goal: compare expression classification results for RBF and polynomial kernel functions, investigating 

also best parameter settings and the optimal hyperplane separation method 

Databases: FEEDTUM, MMI 

Number of training pictures: 30 for each classifier 

Number of tested pictures: 150 for each classifier 

Classifier method used: RBF and polynomial SVMs 

AAM model: global standard AAM for the face region 

Number and type of AAM parameters used for classification: 7 shape parameters 
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 Two strategies can be considered for adjusting the classifier parameters to 

classify facial expressions. The approaches depend on the amount of available 

training data. If there is a considerable amount of data available, a simple validation 

process is sufficient. Otherwise, a V-fold Cross-Validation or a Grid search needs to 

be implemented [159]. In our experiments, we consider the former case. 

 In the first part of the experiment, seven SVM classifiers of type expression 1/ 

expression 2 are built to distinguish the six universal expressions and the neutral one. 

The polynomial kernel, with order from 1 to 6 and the RBF kernel withδ from 2-2 to 

26 results are investigated. The results for the MMI database are detailed in Table 8.8. 
 

TABLE 8.8. EXPRESSION CLASSIFICATION USING SVM FOR THE MMI DATABASE, WHEN USING DIFFERENT 

KERNELS. 

Classifier Polynomial-grade RBF  

 1 2 3 4 5 6 2-3 2-2 2-1 20 21 22 23 

H/non-H 88.7 78.7 82.7 65.4 59.4 51.4 78.7 82 82.7 82.7 90 92.7 92.7 

D/non-D 56 46.7 46 46 41.4 40.7 63.4 58 60.7 55.4 70.7 79.4 62.7 

Su/non-Su 74.7 52.7 51.4 50 46 44.7 40.7 46.7 61.4 71.4 72 71.4 68.7 

A/non-A 51.4 47.4 47.4 46 53.4 53.4 71.4 71.4 40 72.7 66 70 48 

Sa/non-Sa 74 58 54 47.4 45.4 43.4 66 64 61.4 62.7 69.4 68.7 70.7 

F/non-F 78.7 72 71.4 64.7 60.7 54 69.4 69.4 70 70.7 72.7 72 72 

N/non-N 62.7 56 59.4 54.7 50.7 45.5 38.7 42.7 58.7 62.7 61.4 79.4 59.4 

Average 69.5 58.8 58.9 53.5 51 47.6 61.2 62.1 62.2 68.4 71.8 76.3 67.8 

 

 The optimal kernel function proved to be RBF, with δ fixed on small values. It 

is our preferred choice based on the accuracy and the consistency of its results. In the 

second part of this experiment, we sought to confirm the previous conclusions, this 

time by using 28 classifiers, as in experiment 8.4. The results (Tables 8.9-8.10) 

confirmed that RBF with δ fixed on small values achieves the highest classification 

rates. 
 

 

 

 

 

 

 



 170

TABLE 8.9. ACCURACY (%) OF EXPRESSION CLASSIFICATION ON FEEDTUM FOR THE AAM SHAPE PARAMETERS 

WHEN APPLYING A SVM CLASSIFIER FOR RBF 22, AVERAGE OF EXPRESSION CLASSIFICATION 69.43%. 

 A D F H N Sa Su 

A 70 63 70 66.7 70 70 73.4 

D  79.4 63.4 70 73.4 53.4 70 

F   72 66.7 56.7 80 53.4 

H    92.7 73.4 60 66.7 

N     79.4 53.4 80 

Sa      68.7 76.7 

Su       71.4 
 

TABLE 8.10. ACCURACY (%) OF EXPRESSION CLASSIFICATION ON MMI FOR THE AAM SHAPE PARAMETERS 

WHEN APPLYING A SVM CLASSIFIER FOR RBF 22, AVERAGE OF EXPRESSION CLASSIFICATION 62.59%. 

 A D F H N Sa Su 

A 62.5 55 65 52.5 52.5 55 65 

D  65 65 52.5 60 62.5 77.5 

F   55 62.5 60 52.5 77.5 

H    57.5 57.5 65 75 

N     52.5 57.5 77.5 

Sa      57.5 75 

Su       80 
 

 Although not explicitly described, in our experiments, we also experimented 

with the method of hyperplanes separation. The following methods were tested: 

Quadratic Programming, by default in all the other experiments, Sequential Minimal 

Optimisation, and Least-Squares. The results showed that the method of hyperplanes 

separation does not significantly influence the results. 

 We conclude that the RBF kernel function with δ fixed on small values gave 

the best results. Our findings are confirmed also in the literature, where the RBF 

kernel is the most common function to be used in expression recognition with SVM 

[107, 150, 162]. The choice is also motivated by theory. RBF has fewer adjustable 

parameters than any other commonly used kernel and it is easier to compute [159]. 

8.5.2. Expression Recognition 

Now, after we trained a classifier to discriminate between two facial expressions 

(section 8.4.1), we would like to be able to associate a human face with one of the six 

universal expressions or the neutral one, i.e., to perform expression recognition. We 
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will again compare NN and SVM, this time adapted for a multi-class decision 

framework. 

 We begin, in section 8.5.2.1 with a series of experiments investigating the 

performances of NN in expression recognition. Then, in section 8.5.2.2, we describe 

techniques to adapt the binary SVM to a multi-class problem, such as expression 

recognition. We experiment with some of these approaches, making an empirical 

determination of the most suitable one. 

8.5.2.1. Nearest Neighbour 

Experimental Series 8.7- NN performances in expression recognition 
Goal: verify the performance of NN in expression recognition 

Databases: FEEDTUM, MMI, our own database 

Number of training pictures: 30 for MMI, FEEDTUM, 20 for our own database 

Number of tested pictures: 150 for MMI, FEEDTUM, 50 for our own database 

Classifier method used: Euclidean-based NN 

AAM model: global standard AAM for the face region 

Number and type of AAM parameters used for classification: 7 shape parameters 
 

 Table 8.11 summarises expression recognition rates for the standard AAM 

facial representation. It can be noticed that the highest recognition rates are obtained 

on the MMI database. This is explained by the fact that MMI has a better image 

resolution and less variation in illumination that the other dataset we used. And as we 

would expect, the poorest results were obtained on our own database which contains 

the strongest pose and illumination variations. 
 

TABLE 8.11. SUMMARY OF THE SYSTEM ACCURACIES (%) FOR RECOGNISING EXPRESSIONS WITH EUCLIDEAN-NN 

ON THE ENTIRE FACE. 

Database Recognition rate (%) 

FEEDTUM 35.71 

MMI 40.88 

Our database 22.66 

Overall 33.08 

8.5.2.2. Multi-class SVM 

We recall (section 4.4) that by their nature SVMs are binary classifiers. However, 

there exist strategies by which SVMs can be adapted to multi-class tasks, such as 
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One-Against-One (1A1), One-Against-All (1AA), Directed Acyclic Graph (DAG), 

and SVMs in cascade structures. 

 In the following experiments we only exemplify the 1A1 and the cascade 

structures. The choice is based on their simplicity and their good results presented in 

the literature [107, 164]. 
 

Experimental Series 8.8- Multi-class SVM in expression recognition 
Goal: compare the performances of two alternatives of multi-class SVM (1A1 and cascaded SVMs) in 

expression recognition 

Databases: FEEDTUM, MMI 

Number of training pictures: 30 for each classifier 

Number of tested pictures: 150 for each classifier 

Classifier method used: RBF-SVMs withδ =22 

AAM model: global standard AAM for the face region 

Number and type of AAM parameters used for classification: 7 shape parameters 
 

 In the first part of this experiment, we employ the 1A1 approach. 21 classifiers 

are applied for each picture in our test-bench. A general score is calculated for each 

picture. The “recognised” facial expression is considered to be the one which obtains 

the highest score. As an example, to calculate the score for a “happy face” we apply: 

happy/fear, happy/sad, happy/surprised, happy/neutral, happy/angry, and 

happy/disgusted. Every time that a happy face is identified a counter is incremented 

that represents its score. The results are summarised in Table 8.12. 
 

TABLE 8.12. EXPRESSION RECOGNITION ACCURACIES FOR 1AA-SVM ON THE FEEDTUM AND MMI DATABASES. 

Emotion FEEDTUM (%) MMI (%) 

Surprise 71 76.1 

Fear 66.3 62.5 

Happiness 65.4 62.5 

Anger 64.8 56.8 

Neutral 62.8 60.4 

Sadness 61.5 59.7 

Disgust 57.6 64 

Overall 64.2 63.15 

 

 In the second part of the experiment, another alternative to extend the binary 

SVM to a multi-class SVM is investigated. A cascaded structure consisting of the 
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most effective six classifiers of the seven which classifying the six universal 

expressions and the neutral expression are used. An alternative would be to use the 

seven classifiers, so as to have an “error” or unclassified category for expressions that 

pass through the full cascade without being classified. However, in order to reduce the 

computational time, we choose the first alternative. 

 The workflow and the corresponding results are summarised in Figure 8.6. 

The figure shows the recognition rate after each stage of the cascade, e.g. our system 

correctly recognises a surprised face with a probability of 84.5% or an angry face with 

a probability of 70%. 

 
Figure 8.6. Performances of expression recognition of SVM classifiers in a cascade structure, for 

MMI and FEEDTUM databases. 

8.5.3. Conclusion of Classifiers Performances 

In section 8.5, we analysed approaches and corresponding results for expression 

classification and recognition in still images. Two classifiers, namely SVM and NN, 

were compared. After performing a series of five experiments we conclude the 

following: 

• Overall, happiness proved to be the most recognisable expression, followed by 

surprise. These observations can be explained by the fact these particular expressions 

affect the shape of the facial features more than other expressions. Note, in particular, 

the open mouth and raised mouth corners. These expressions are followed by anger, 

sadness, disgust, neutral state, and fear. 
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• The results proved that the system is robust in dealing with subjects of both 

genders and several races and ages. 

• SVM proved overall more effective as a classifier than NN, both from the point 

of view of higher classification/ recognition rates and the consistency of the results. 

• Best results for SVM were obtained when using RBF kernel function with 

δ fixed on small values. These settings are going to be used in the next series of our 

experiments. 

• Best results for NN were obtained when using the Euclidean distance and a 

template obtained from averaging the shape parameters as a metric for classification. 

These settings are also to be used in our next series of experiments. 

8.6. Global vs. Local Features 

Facial expressions are defined by the dynamics of individual facial features. Two 

types of representation can be used: global and local. The global representation 

considers the global properties of the pattern. For the local representation, a set of 

distinct geometrical facial features is determined. The importance of individual facial 

features is exemplified by the Thatcher illusion experiment [240], illustrated in Figure 

8.7, that suggests that facial parts are processed to some extent independently by 

humans, and only loosely connected to the representation of the whole face. 

 
Figure 8.7. The Thatcher illusion experiment [240]. 

 Eyes and lips are considered the most distinct facial features in terms of 

depicting expressions. In section 8.6.1, we examine their independent contributions in 

the context of facial expression analysis in order to confirm our hypothesis. 
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 In section 8.6.2, we make use of our individual feature models and of the 

global face representation in order to obtain a more robust component-based facial 

representation. We compare expression classification/ recognition rates of a global 

representation of the face and with rates obtained for our proposed component-based 

model and conclude on the best approach. 

8.6.1. Relevant Facial Features for Illustrating Emotions 

Eyes play an essential role in relaying feelings, emotions, and thoughts. People tend to 

look downward when sad or embarrassed. They tend to do the opposite, e.g., open 

widely the eyelids, when surprised. If the eyebrows are drawn together, it is often an 

indicator of an angry face. 

 Now, it is interesting to investigate how much information the eye-area brings 

to facial expression analysis. Would this area be sufficient to describe facial 

expressions? If completely and accurately modelled, how many details does it provide 

in order to recognise expressions? Is the lip area also relevant when analysing facial 

expressions? 

 To answer these questions expression classification and recognition for the eye 

and lip areas are now performed using the eye and lip AAM models developed in 

Chapter 6, adapting their training and test sets for expression analysis. A complete 

summary of these results is presented in the next two experiments. 
 

Experimental Series 8.9- Expression analysis using the eye area 
Goal: investigate the quantity of facial expression information carried by the eye area and investigate 

its discriminatory power in classifying/recognising expressions 

Databases: FEEDTUM, MMI 

Number of training pictures: 30 for each classifier 

Number of tested pictures: 150 for each classifier 

Classifier method used: Euclidean-based NN classifier 

AAM model: global standard AAM for the eye region compared to global standard AAM for the face 

region 

Number and type of AAM parameters used for classification: 11 shape parameters 
 

 Results for expression recognition obtained by shape parameters of eye 

models, compared with the ones obtained for the whole face are summarised in Tables 

8.13 and 8.14. On average, around 30% recognition accuracy is obtained performing a 
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simple NN classification on the entire set of shape parameters. This is a lower percent 

than the one obtained for the entire face using the same method in the same 

conditions. We note that the standard eye AAM described in Chapter 5 is used in our 

experiments and not the component-based AAM described in Chapter 6. The fact that 

the fitting accuracies are lower in the case of the standard AAM (Figure 7.4) affects 

the classification/ recognition rates. However, the performances of the standard AAM 

eye model are sufficient in order to make a suggestion of the importance of the eye 

feature in analysing facial expressions. The reasoning is also valid in case of the 

AAM lip model in the experiment 8.10. 

 Around 60% classification accuracy is obtained using a NN classifier for the 

eye area shape. The rates represent over 70% from the rates obtained for the entire 

face. Altogether, the figures indicate that a high amount of expression information is 

comprised by the eye shape. 
 

Experimental Series 8.10- Expression analysis using the lip area 
Goal: investigate the quantity of facial expression information carried by the lip area and investigate 

its discriminatory power in classifying/recognising expressions 

Databases: FEEDTUM, MMI 

Number of training pictures: 30 for each classifier 

Number of tested pictures: 150 for each classifier 

Classifier method used: Euclidean-based NN classifiers 

AAM model: global standard AAM for the lip region compared to global standard AAM for the face 

region 

Number and type of AAM parameters used for classification: 6 shape parameters 
 

 Results for expression recognition obtained by shape parameters of lip models, 

compared with the ones obtained for the eye area and the whole face are summarised 

in Tables 8.13 and 8.14. Naturally, lips are also important emotion feature carriers, 

especially for expressions like happiness or surprise, with around 60% of independent 

contribution. However, when using a combination of eyes, lips, together with other 

facial information, the accuracy of an expression decoder increases as indicated by the 

classification/ recognition rates obtained on the entire face region. 
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TABLE 8.13. EXPRESSION RECOGNITION ACCURACIES WHEN ONLY THE EYE AND, RESPECTIVELY, THE LIP-AREAS 

ARE CONSIDERED. 

Database Recognition rate for the 
eye area (%) 

Recognition rate for the 
lip area (%) 

Recognition rate for the 
face area(%) 

FEEDTUM 27.37 27.37 35.71 

MMI 34.1 26.95 40.88 

Our database 22.57 27.01 22.66 

Overall 28.01 27.11 33.08 

 

TABLE 8.14. EXPRESSION CLASSIFICATION ACCURACIES WHEN ONLY THE EYE AND, RESPECTIVELY, THE LIP-AREAS 

ARE CONSIDERED. 

FEEDTUM MMI Classifier 
Eye-area Lip-area Face-area Eye-area Lip-area Face-area 

Surprised/Disgusted (%) 44.37 55.87 85.83 73.12 76.66 85.62 

Surprised/ Happy (%) 28.75 69.37 88.33 68.75 75 86.25 

Happy/Sad (%) 41.87 46.25 68.33 72.5 50 73.12 

Surprised/ Sad (%) 33.12 51.66 93.33 69.37 52.5 77 

Overall (%) 37.02 55.78 83.95 70.93 63.54 80.49 

 

8.6.2. Component-based AAM 

The low expression classification/ recognition rates obtained in the previous 

experiments when using a global, i.e., standard, holistic AAM face model confirm the 

limitations of this approach, as listed in section 8.2. 

 The poor performance of the standard AAM when used for expression 

analysis can be understood because this model is based on a global approach and is 

thus more sensitive to changes in configuration than to changes in local features. Such 

a representation cannot be sufficiently flexible to permit adaptation to wider ranges of 

facial variability, such as the deformations which are present in the majority of 

distinctive facial expressions. 

 From a practical perspective we note that it is not possible to include all 

possible variations of shape and texture in the training set. The overall degrees of 

freedom inherent in the model are restricted by the number of model parameters. Or 

to put this another way, a model which did incorporate practically all possible facial 

variations in its training set would have a correspondingly large set of model 

parameters making it unwieldy and impractical. Thus any practical model we 

construct must necessarily restrict its potential variations. To achieve real 
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improvements in our classification it would seem that we need more than a single 

AAM model. 

 In this section, we propose to adapt the component-based AAM approach [94] 

for facial expression analysis. This approach benefits from both the generality of a 

global AAM and the local optimisations provided by its sub-models. This approach is 

designed to add degrees of freedom to the global model, by taking into account the 

individual variations of facial features. 

 The principle of the component-based algorithm was previously explained in 

Chapter 6, when applied to the eye area. Figure 8.8 explains its adaptation for the 

entire face region, using two sub-models: both an eye model and a lips model. These 

sub-models are based on the approaches originally proposed in Chapter 6. 

 Figure 8.8 indicates that a holistic AAM face model is created using the 

standard AAM, following the procedure detailed in section 3.3. Then separate sub-

models are created for the eye and lips features, using the approach described in 

Chapter 6. At each iteration, the sub-models are inferred from the global model. Their 

optimums are detected by an AAM fitting procedure, based solely on the shape 

parameters. Then the fitted sub-models are projected back into the global model. 

 In Figure 8.9 we describe one practical example of the benefits of a 

component-based representation, on an image containing both pose and expression 

variations. This shows how the sub-models improve fitting of the global model to the 

entire face region, which in turn improves the alignment of each sub-model with the 

local features which are some important to accurate expression recognition. 
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Figure 8.8. Component-based AAM fitting algorithm, aimed to fit the entire facial region. 

 
Figure 8.9. Example of shape fitting on an unseen picture with expression and pose. The first is 

the result of a standard AAM; the second picture represents the fitting of the AAM sub-models, 

while the third picture depicts the component-based result. 

 Now, in order to quantitatively evaluate the overall performances of a 

component-based AAM, we must next measure its accuracy in terms of expression 

classification/ recognition rates. 
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Experimental Series 8.11- The standard AAM vs. the component-based AAM in 

expression analysis 

Goal: compare the performances of a standard AAM global approach, compared to our component-

based representation 

Databases: FEEDTUM, MMI, our own database 

Number of training pictures: 30 for FEEDTUM/MMI, 20 for our database 

Number of tested pictures: 150 for FEEDTUM/MMI, 50 for our database 

Classifier method used: Euclidean NN, RBF-SVM with δ =22 

AAM model: a global standard AAM and a component-based AAM for the face region 

Number and type of AAM parameters used for classification: first 40% of the shape parameters for 

each trained model 
 

 Tables 8.15-8.17 compare results for expression classification/ recognition 

rates for a global face model, when compared to a component-based formulation. The 

first two tables use an NN classifier, while the last is based on SVM classification. In 

Tables 8-15-8.16, we also restate for comparison the results for the eye and lip 

features, i.e., the sub-models of our component-based representation obtained in 

section 8.5.1 and originally presented in Table 8.13. 
 

TABLE 8.15. SUMMARY OF THE SYSTEM ACCURACIES (%) FOR RECOGNISING EXPRESSIONS WITH EUCLIDEAN-NN. 

Database 
Recognition 
rate-eyes (%) 

Recognition 
rate-mouth 
(%) 

Recognition 
rate-face (%) 

Recognition 
component-
based (%) 

FEEDTUM 27.37 27.37 35.71 54.28 

MMI 34.1 26.95 40.88 60 

Our 

database 

22.57 27.01 22.66 28.19 

Overall 28.01 27.11 33.08 47.49 
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TABLE 8.16. SUMMARY OF THE SYSTEM ACCURACY (%) FOR CLASSIFYING EXPRESSIONS (NN) USING THE EYE-

AREA, THE MOUTH-AREA, THE FACE MODELLED WITH A STANDARD OR WITH A COMPONENT-BASED AAM. 

FEEDTUM MMI 
Classifier Eyes Lips Face Comp Eyes Lips Face Comp 

Surprised/ 

Disg. (%) 

44.37 55.87 85.83 83.33 73.12 76.66 85.62 78.33 

Surprised/ 

Happy (%) 

28.75 69.37 88.33 83.33 68.75 75 86.25 79.16 

Happy/Sad 

(%) 

41.87 46.25 68.33 82.22 72.5 50 73.12 77.5 

Surprised/ 

Sad (%) 

33.12 51.66 93.33 83.33 69.37 52.5 77 73.33 

Overall (%) 37.02 55.78 83.95 83.05 70.93 63.54 80.49 77.08 
 

 Table 8.17 presents the results of the standard AAM (in the columns marked 

with index 1) and of the component-based AAM (in the columns marked with index 

2). The classification rate average when using a component-based AAM is of 73.02%, 

while for a classical AAM is of 69.43%. The results confirm the improvement 

brought by a sub-models representation. 
 

TABLE 8.17. SUMMARY OF THE SYSTEM ACCURACIES (%) FOR CLASSIFYING EXPRESSIONS WITH SVM FOR A 

STANDARD AAM (1) AND FOR A COMPONENT-BASED AAM (2). 

 A D F H N Sa Su 

 1 2 1 2 1 2 1 2 1 2 1 2 1 2 

A 70 75 63 75 70 75 66.7 68 70 75 70 79.4 73.4 68.7 

D   79.4 73.4 63.4 70 70 75 73.4 75 53.4 68 70 71.4 

F     72 70 66.7 73.4 56.7 68.7 80 83.4 53.4 63 

H       92.7 93.4 73.4 75 60 75 66.7 66.7 

N         79.4 68.7 53.4 63 80 83.4 

Sa           68.7 63.4 76.7 75 

Su             71.4 73.4 

 

8.7. Chapter Summary and Outcomes 

In this chapter, we analysed the feasibility of integrating AAM techniques into an 

automated facial expression analysis system. We provided details of a comprehensive 

set of experiments on facial expression classification and recognition for still images 

using the standard AAM formulation. We investigated the effect of reducing the 
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number of features (model parameters) used for classification, focusing only on 

expression-specific shape parameters. Using AAM as feature extraction method 

proved partially successful, even with a simple Euclidean-distance classification 

scheme. More sophisticated classifiers, such as SVMs, achieved improved results 

although the overall performance was disappointing. 

 We then analysed the limitations of this approach and we proposed a 

component-based AAM facial representation which combined the benefits of a global 

pose match with localised matching of sub-models to eyes and lips features. This 

approach has been shown to significantly improve facial expression analysis, as 

demonstrated by our positive results presented in section 8.6. This methodology for 

facial expression recognition has been shown to achieve accuracies of up to 83% and 

we expect that it can be further improved on through a number of additional 

refinements which are outlined in Chapter 9. 
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Chapter 9 - Facial Expression Model Refinements 

Although the results presented at the end of Chapter 8 are very promising it is clear 

that additional improvements are desirable in order to achieve a truly robust and 

reliable facial expression analyser. In earlier discussion we have identified some of 

the drawbacks which are generic to all AAM models. Consideration of these 

drawbacks suggests some approaches to further enhance our face model. In this 

chapter we explore some such approaches, presenting preliminary findings which 

indicate that further improvements can be achieved on the performance results 

presented in Chapter 8. 

 The first topic we consider is the potential to use a person-specific AAM. Such 

a model eliminates the variability between persons from the statistical model, 

enabling it to better model other sources of variability. Thus in section 9.1 we present 

a comparison between person-specific and generic AAMs. While there are advantages 

to using a model trained explicitly for a particular person, the complexity of this 

approach does make it more difficult to realise practical solutions as the user must 

perform training according to quite strict criteria. In this section we shall attempt to 

quantify the performance differences so that the reader can judge the advantages of a 

person-specific model. 

 Then, in section 9.2 we describe how our approaches for still images can be 

extended to track and recognise expressions in a sequence of images using person-

specific AAMs. Applying a model to a sequence of images enables techniques which 

could track and analyse the transitions between facial expressions, providing an 

additional level of sophistication. In this section we examine some simple 

improvements which can be achieved from an analysis of image sequences 

demonstrating the potential and scope of such dynamic analysis methods. 

 In section 9.3 alternatives to our basic classifiers are proposed with a view to 

improve expression analysis rates. Firstly, additional criteria which may be used to 

classify facial images using AAM features are described in section 9.3.1. These 

include gender, age, and racial classification. We have performed some preliminary 

work on using AAM for such criteria and summary details are provided here. 

 Motivated by the successful preliminary results of gender classification, in 

section 9.3.2 it is shown how a combination of classifiers can improve facial 
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expression analysis results. The concept is to use more specific AAM models once a 

particular criterion has been determined. So once a person's age class is determined 

we may select an appropriate model for the relevant class: child, youth, young adult, 

mature adult, senior. Similar logic applies to gender. As in the case of a person-

specific model this approach removes one significant source of model variability. 

9.1. Expression-Specific vs. Expression-Generic Models 

By definition, the expression of a face is the focal element in facial expression 

analysis. Consequently, identity-related information represents an unwanted source of 

variability. 

 There are two modalities of training an AAM, resulting in two types of models 

[241]: generic AAMs and person-specific AAMs. Depending on the chosen training 

approach, AAM can contain, or not, information variations which describe aspects of 

a person's identity. In applications such as facial recognition [82] it is essential to 

capture, and even seek to emphasise, such identity information. However for the 

specific purpose of determining facial expression such information is not directly 

useful, although it will enable the model to adapt to different individuals. This leads 

us to consider the differences between generic and person-specific AAM models: 

 Generic AAMs, i.e., models that represent a general variation in appearance, 

have the advantage that it can model any face, including unseen subjects for the 

training set. One common application where it is essential to employ such a generic 

AAM would be face recognition. In such an application the core purpose of the model 

is to measure the differences between individuals.  

 Person-specific AAMs model the variations in appearance of a single person 

across poses, illuminations, expressions and any other sources of variability 

incorporated into the training set. Such a person-specific AAM might be useful for 

interactive user interface applications that involve head pose estimations, gaze 

estimations, or expression recognition. Note that the model really is person-specific 

and will perform unreliably if it is used to measure the characteristics of another 

person. The challenge for such models in practical use applications is how to train and 

verify an accurate model with minimal user input. 
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 In the literature Gross et al. [241] analysed the two models and proved that in 

the context of the fitting algorithm, the performances of a person-specific AAM are 

significantly better than the performances of a generic AAM. 

 In our previous experiments described in Chapter 8, we acknowledged the fact 

that fitting a single generic AAM on an unseen face under any pose and expression is 

challenging. The variability of information is really high, so that the fitting process 

usually gets stuck in a local minimum. In the current section we analyse the influence 

of the model generality in the context of facial expression recognition. 
 

Experimental Series 9.1- Generic vs. Person-Specific AAM in expression analysis 
Goal: compare generic with person-specific AAMs in the context of expression recognition, so to 

analyse the influence of the model generality in the context of facial expression variations 

Databases used: FEEDTUM 

Number of training pictures: 70 (10 for each universal expression and the neutral one) 

Number of tested pictures: 210 (30 for each universal expression and the neutral one) 

Classifier method used: Euclidean-based NN 

AAM model: global standard AAM for the face region 

Number and type of AAM parameters used for classification: 

1st series- 22 shape parameters for the generic AAM, 4 shape parameters for the person-specific AAM 

2nd series- 31 appearance parameters for the generic AAM, 18 appearance parameters for the person-

specific AAM 
 

TABLE 9.1. EXPRESSION RECOGNITION RATES (%) OF GENERIC AND PERSON-SPECIFIC AAMS. 

Type of model 
No. and type of 

parameters 

Recognition 

rate (%) 

Generic 22 shape 40 

Person-specific 4 shape 85 

Generic 31 appearance 38 

Person-specific 18 appearance 94.28 

 

 The results of our experiment are summarised in Table 9.1. The person-

specific AAM proved to be both easier to optimise, i.e., the number of parameters, 

shape or appearance, is consistently lower, and more robust to fit than a generic 

AAM, by the higher expression recognition rates obtained for a person-specific AAM. 
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9.2. Expression Classification on Video Sequences-
Expression Tracking 

Most studies in the literature restrict their analysis of facial expression to still images. 

As we have shown in this thesis, still images provide sufficient information to 

recognise many expressions with a reasonable degree of accuracy. They are also 

preferable from the point of view of the simplicity of their acquisition, manipulation, 

and analysis. 

 But we note that facial expressions are dynamic actions. Some expressions, 

such as agreement and disagreement, require particular details, e.g., head motion, that 

cannot be determined from a single picture [242]. Also, aspects of the six universal 

expressions, considered in our previous experiments, can be more easily detected in 

video sequences than on single images, e.g., eyebrow rising when surprised. 

Analysing a video sequence of images can provide information about such dynamic 

features.  

 Thus if both permanent and transient feature changes could be tracked in an 

image sequence, the accuracy of analysing facial expression would be improved and 

the range of expressions which could be determined would be broadened. 

 To give the reader some initial insights into the potential of dynamic 

expression analysis from video sequences we present in this section some preliminary 

experiments on expression tracking. 

 In our work we simplify the spatio-temporal problem of facial expression 

variations, by dividing a video sequence into a collection of static snapshots. One may 

argue that this assumption does not bring any additional information to a static-based 

system. We consider that by analysing a series of consecutive frames we learn more 

about: 

• Time segmentation, i.e., automatic detection of the time boundaries of 

expressive sequences. 

• Expression intensities, i.e., neutral, onset, offset, and apex states. For each of the 

universal expressions we can define at least two level of intensity: happiness- ecstasy, 

anger-rage, fear-terror, sad-grief, disgust-loathing, and surprise-startle. 

• Increasing the algorithm speed, as the AAM fitting is applied only on the first 

frame. For the consecutives ones, shape parameters should only be updated. 
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The tracking algorithm 

In our experiments, for simplification, we used a standard AAM. For the same 

considerate, only the cases when one face is present in the pictures are taken into 

account. The first two stages of the tracking algorithm, i.e., initial model fitting and 

parameters update, were already described in the context of eye tracking (described in 

section 6.1.3.1) and lip tracking (described in section 6.2.3.1). 

 Our tracking scheme can be summarised as follows: 

 In a first stage, an initial model fitting is done on the first frame of the image 

sequence. The model is trained to match a specific face to be tracked. It is preferable 

to use a person-specific model as described in [136]. Firstly, facial parameters, 

describing shape and texture, are extracted using the AAM approach. This stage is the 

most computationally expensive and it is performed on the first frame of an image 

sequence. 

 Afterwards, in a second stage, only the shape parameters are used. These 

parameters encode head poses and expression variations, as well as position, 2D 

rotation, and scale parameters. In this stage, the shape parameters are simply updated. 

As the computational requirements are substantially reduced, this operation is now 

performed on each separate frame. 

 In a third stage, using the updated shape parameters, the expression variation 

is tracked and interactively recognised, using the same classification/ recognition 

principles as the ones described in section 8.5. 
 

Experimental Series 9.2- Preliminary experiments in expression tracking 
Goal: give a preliminary insight of the performances obtained by a standard person-specific AAM in 

tracking happiness, i.e., one of the universal facial expressions 

Databases: FEEDTUM 

Number of training pictures: person-specific standard AAM trained on 70 

Number of tested pictures: 210 

Classifier method used: Euclidean-based NN, RBF- based SVM withδ =22 trained for happiness 

AAM model: global standard AAM for the face region 

Number and type of AAM parameters used for classification: 4 shape parameters 
 

 Due to time constraints, we have focused on tracking the happy expression. 

We tested classification accuracies, time segmentation of the happy state, and its 

intensity. For the last criteria, we restricted ourselves to just two intensities: happy 
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and very happy, determined previously by visual inspection. The results are presented 

in Table 9.2. 
 

TABLE 9.2. SUMMARY OF THE SYSTEM ACCURACIES (%) FOR EXPRESSION TRACKING FOR A PARTICULAR SUBJECT 

OF FEEDTUM DATABASE. 

Classifier Sequence 1(%) Sequence 2(%) Sequence 3(%) 

SVM (no intensities) 89.2 82.2 88.2 

NN (no intensities) 65.4 65.4 76.8 

NN (with intensities) 65.4 65.4 58.3 

 

 The results of these initial tests are encouraging. Our tracker based on 

template updating techniques works well in providing a means for real-time 

classification of these facial expressions. We remark that while these initial tests are 

somewhat subjective and limited to a very restricted set of expression classes, our 

goal here is simply to show the practical potential of expression tracking techniques. 

 There are issues emphasised by a tracker system. If the fitting on the first 

frame is not reasonable, caused by limitations of the standard AAM, the errors are 

transmitted to the following frames, where only shape updates are performed, 

affecting the classification performances. 

 Another important observation is that the algorithm works better if the frame 

rate is higher. Because of the parameters updating stage, the tracker is not able to 

follow rapid movements or large spatial displacements. If the frame rate is higher, 

then the motion between each frame is smaller. In consequence fewer iterations are 

needed per frame, so less time is spent per frame. When processing frames are 

captured at a low frame rate, the algorithm suffers from being greedy and sometimes 

it gets stuck in a local minimum. Around 10 frames/second and around two iterations 

seem to be sufficient for handling normal head motion. 

9.3. Improvements of Expression Analysis Rates 

In the previous chapters, we analysed ways to improve expression analysis rates, by 

selecting only relevant facial features/parameters (sections 8.2-8.3), proposing 

improvements of the facial representation (section 8.6.2), or provide best settings for 

the classifiers (section 8.5). 

 In the current section we analyse the impact of a combination of classifiers 

aiming to recognise facial expressions. We start by investigating other classification 
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criteria using AAM features, in section 9.3.1. Then, in section 9.3.2, we use these 

criteria together with our expression classifiers to accurately classify facial 

expressions. 

9.3.1. Other Classification Criteria which can use AAM Features 

Although our main research presented in this chapter is focussed on classification of 

human expressions using AAM we note that the same techniques can be employed to 

make other determinations from a person's face. As examples we mention age [160, 

243], gender [107, 160], and race classifications [244], each of which have been 

actively researched in the literature.  

 Note that to the best of our knowledge, there is no prior work addressing the 

problem of race classification using AAM features. To show the flexibility of our 

AAM based approach we now present some illustrative tests for each of these criteria. 
 

Experiment 9.3- Series 1: Race classification using AAM features 
Goal: test the AAM discriminative power to classify between races, i.e., Asian vs. Non-Asian 

Databases used: FERET for Asian faces, FEEDTUM for Non-Asian faces 

Number of training pictures: 30 

Number of tested pictures: 150 (not used in the training set) 

Classifier method used: Euclidean-based NN, RBF- based SVMs withδ =22 

AAM model: global standard AAM for the face region 

Number and type of AAM parameters: 18 shape, 22 appearance parameters 
 

Experiment 9.3- Series 2: Age classification using AAM features 
Goal: test the AAM discriminative power to classify between ages, i.e., child vs. adult 

Databases used: personal pictures for child faces, FEEDTUM for adult faces 

Number of training pictures: 30 

Number of tested pictures: 150 (not used in the training set) 

Classifier method used: Euclidean-based NN, RBF- based SVMs withδ =22 

AAM model: global standard AAM for the face region 

Number and type of AAM parameters: 17 shape, 20 appearance parameters 
 

Experiment 9.3- Series 3: Gender classification using AAM features 
Goal: test the AAM discriminative power to classify between gender, i.e., male vs. female 

Databases used: FEEDTUM 

Number of training pictures: 30 

Number of tested pictures: 150 (not used in the training set) 
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Classifier method used: Euclidean-based NN, RBF- based SVMs withδ =22 

AAM model: global standard AAM for the face region 

Number and type of AAM parameters: 18 shape, 19 appearance parameters 
 

 The experiments in this section are simplified, aiming just an overview of the 

capabilities and the broadness of the AAM information. The results, summarised in 

Figure 9.1, underline the superiority of SVM and show that the appearance parameters 

are indispensable in terms of gender, age, and race information. Now while for 

expression, shape carries the relevant information, for gender, age, and race 

description, appearance parameters, i.e., merged shape and texture, proves to be 

more valuable. 

 
Figure 9.1. Accuracies (%) for Gender, Age, and Race classifiers. 

9.3.2. Combination of Classifiers 

From the results of our expression classification/ recognition experiments described in 

section 8.5, it is clear that for our application SVM significantly outperforms NN-

based classifiers. Now, a combination of classifiers may be able to further improve 

these initial classification results [107, 245]. 

 In literature [107, 245] it was experimented that it is easier to find several 

relatively good classifiers, than finding one single highly discriminant classifier. 

Another advantage of combining classifiers is that they are less probable to over fit, 

by reducing the variance of the decision function [246] and they require less 

computational time [245]. Also, the deficiencies of one classifier can be compensated 
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by the other classifiers [245], e.g., in our case, one classifier may only poorly 

distinguish between anger/sadness, but if one of the other classifiers provides very 

strong discrimination between these two expressions, then the combination of these 

two classifiers will help resolve the deficiency of the first classifier. 

 There are many ways to combine classifiers and there is nearly no limit in 

inventing other combination rules. Meynet researched in his thesis [245] the effect of 

combining classifiers and modalities to combine them. Between the approaches that 

the author of [245] proposes, we mention: 

• Combine different learning algorithms instead of only keeping the one giving 

the lowest estimation of the expected risk. 

• For a given learning algorithm, combine several candidate solutions. Several 

candidates can be obtained by various initialisation procedures or various model 

selection strategies. 

• Combination of several classifiers can be obtained from different sources 

(different training patterns or different features). 

• Different training sets can be collected at different times or in different 

conditions. 

 In our experiments, we limit ourselves to combining two different classifiers 

designed for distinct tasks. Motivated by the good results obtained by our gender 

classifier (section 9.3.1), we test the benefits brought by using a gender classifier 

previous to performing expression classification, i.e., test “male” and “female”-

specific sets of expression classifiers. This idea was already proposed and 

successfully used in [6]. 

 Features extracted by a trained AAM are used to construct SVM classifiers for 

four expressions, i.e., happy, angry, sad, neutral. These classifiers are arranged into a 

cascade structure in order to optimise overall recognition performance. We note that 

in [160], it is stated that there are gender-specific differences in the appearance of 

facial expressions that can be exploited for automated recognition. The results we 

now present corroborate these findings and that cascades are an efficient and effective 

way of performing multi-class recognition. 

 

Experiment 9.4- Combination of classifiers 
Goal: experiment combinations of classifiers aiming to increase the expression recognition rates 

Databases: FEEDTUM, MMI 



 192

Number of training pictures: 30 for each classifier 

Number of tested pictures: 150 for each classifier 

Classifier method used: cascaded RBF-SVM classifiers withδ =22 

AAM model: global standard AAM for the face region 

Number and type of AAM parameters: 6 shape parameters for FEEDTUM, 7 shape parameters for 

MMI 
 

 A gender SVM is applied prior to applying a SVM cascade of expression 

classifiers, resulting in a gender-specific expression recognition scheme. The cascade 

workflow and the obtained results are summarised in Figure 9.2. We remind the 

reader that in section 8.5.2.2 a similar SVM cascaded structure was proposed, without 

the gender/race related discrimination stage. 59.8% expression recognition rate was 

obtained on the MMI and 64.8% on the FEEDTUM database, as compared to 63.7% 

and respectively 68.9%, when gender-related information is used. 

 So, we conclude that a set of pre-filters, i.e., a gender discriminator pre-filter 

in our experiment, lead to more specifically trained cascades; moreover this has the 

effect of pushing recognition accuracy levels over 90%. Based on the positive results 

obtained in section 8.6, we believe that the rates can be improved even more using our 

proposed component-based AAM representation for facial expression. 

 
Figure 9.2. Performances of expression recognition of SVM classifiers in a cascade structure, 

including gender classifications for the MMI and FEEDTUM databases. 
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Chapter 10 - Conclusions and Future Research 

This chapter provides an opportunity to stand back and review the research problems 

presented, the solutions proposed and implemented, and the experimental results 

presented in this thesis. 

 In section 10.1, we summarise our work, emphasising the outcomes and 

conclusions which resulted. 

 The main contributions of our work are listed in section 10.2, while in section 

10.3, based on the research undertaken for this thesis we identify new problems and 

propose research directions for those who wish to build on our contributions. 

 We end this chapter by listing in section 10.4 the most relevant publications 

that resulted from the work described in this thesis. 

10.1. Research Summary 

The research undertaken in this thesis represents strategic medium-term research for 

the sponsoring company, FotoNation (Ireland) Ltd. This was originally focussed on 

face analysis and recognition techniques, and in particular on AAM face models 

which represent practical technology that both my supervisor and the sponsoring 

company considered as having potential for commercialisation as a second-stage 

development of its in-camera face tracking technology. As the research progressed it 

was realised that more sophisticated applications than basic face recognition could be 

realised using AAM modelling techniques. 

 Thus the core research theme of this doctoral thesis began to emerge. After our 

initial successes with improving the underlying AAM face model it was decided to 

pursue studies of some more ambitious and sophisticated models to determine the 

practicalities of modelling of unconstrained faces with sufficient accuracy to enable a 

determination to be made of facial expressions. 

 Thus the eventual end goal of our research became the design and 

implementation of a working facial expression recogniser based on enhancements of 

standard AAM techniques. 



 194

10.1.1. Review of our Work 

The starting point of our research was to survey the literature in order to find an 

optimal face modelling technique. This was defined as one capable of modelling 

unseen faces and facial expressions. Following our literature study, we concluded that 

AAM based techniques presented the best trade-off between efficiency and 

performance for both face and facial expression modelling. They also offered a 

practical scaling to embedded devices. 

 Tests on the standard AAM model used in unconstrained conditions and 

applied to faces with unseen facial expressions were, however, less than satisfactory. 

From this work we determined several limitations of the standard AAM technique. 

After further study and review of the literature we proposed several solutions which 

should compensate for these limitations. 

 Firstly, we verified which facial features contribute the most in depicting 

facial expression. We found that the eyes and lips are the most significant. Thus, we 

adapted the standard AAM to model eyes and then lips, as detailed in Chapter 5. We 

tested optimal shape annotations, training sets, or allowed variances for shape and 

texture in each case. We next developed shape patterns that accommodate these 

features in all their states, e.g., (i) open and closed eyes in the same eye template, (ii) 

neutral or smiling lips in the same lips template. We concluded that the standard 

AAM formulation, although successful in the case of neutral faces, still exhibited 

limitations when modelling individual facial features and facial expressions. 

 Specific challenges for the eye model included unseen head poses and 

expressions, occlusions of one or more components of the eye model, or differences 

in expression between the two eyes, e.g., winking. To address these challenges we 

further developed our eye model into a component-based AAM eye model. We 

adapted this approach for the eye region, by combining a two-eye global model with a 

single-eye sub-model, as described in Chapter 6. This approach benefited from both 

the generality of the global AAM and the local optimisations provided by its sub-

models. Then, we proposed, implemented and verified several practical applications 

for our novel eye model, i.e., a blink detector and an eye tracker. 

 With regard to the lips feature, we concluded that the main cause for failures 

of the standard AAM is the poor model initialisation. This was mainly due to the 

weak lip colour contrast and significant overlap in colour features with the face 
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region. So, we improved the standard AAM formulation by applying a pre-processing 

step, i.e., a hue filter that offers more accurate initialisation of the lip region, as 

described in Chapter 6. In addition we proposed a practical application of the novel 

lip model - a smile detector. 

 We next undertook detailed testing and comparison of our modelling 

approaches. We analysed their performance by comparing them with standard AAMs 

or by testing them in the context of several consumer applications. We concluded that 

for all tasks, better results were obtained in the case of our model enhancements. 

 The model enhancements above were then studied in the context of an 

automatic face expression recognition system, as described in Chapters 8 and 9. We 

reported results on a series of experiments comparing feature selection methods and 

recognition engines. Using AAM as feature extraction method was acceptable, even 

with a simple Euclidean-distance classification scheme. More sophisticated 

classifiers, such as SVMs, performed significantly better. Overall, this initial work has 

shown the potential of AAM as a means for determining robust feature sets for 

expression classification. 

 We investigated the effect of using a reduced number of features for 

classification, focusing only on expression specific shape parameters. Irrelevant 

features in the vector increased classifier complexity, decreasing performance in the 

majority of cases. 

 We also determined that the accuracy of feature alignment is a key 

determining factor for system performances. The goal of face alignment is firstly to 

accurately locate facial features such as eyes, nose, mouth, and face outline, and 

secondly to normalise shape and texture accordingly. Motivated by the amount of 

information contained in these facial features and by the good results obtained for 

expression decoding we developed a detailed face representation based on facial sub-

models. 

 The proposed approach towards facial expression recognition has been 

evaluated to achieve accuracies of up to 83%. The adopted technique is tailored to 

cater to both genders and a variety of races. We further enhanced and proved the idea 

that performances can be further improved by combining gender and expression 

classifications. In our work, we also addressed the problem of dynamic classification. 

Finally, a preliminary evaluation of the use of video sequences showed that additional 

discriminative power could be added to the classification task. 
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10.2. Principle Outcomes of this Research 

10.2.1. Main Contribution 

There are a number of principle contributions arising from this research: 

 

Development of an eye model using variations of AAM robust to blink (described in 

Chapters 5, 6 and published in [233, 235]) 

We have adapted AAM techniques to provide a model of the eye region which can 

describe open, closed, and intermediate eye-states. The eye model employs the 

concept of overlapping key-points which enables our model to handle both open, 

close, and intermediate eye-states. A patent application (currently unpublished) 

directed to this aspect of the model has been filed. 

 Although AAM was used before to model the eye appearance and gaze [3, 4], 

the authors of [208, 211] could not successfully model eye-blink. We propose a 

solution that models eye blink, and can be readily adapted to determine eye-gaze and 

wink. 

 We later refined the technique by applying a component-based AAM, 

previously used to model faces [94], adapted now to details of the eye area. 

 

An improved component-based AAM model adapted for facial expressions 

(described in Chapter 8 and proposed to be published) 

A component facial AAM model is introduced employing both a global model and 

local sub-models based on the eye and lips models of Chapter 6. Although component 

AAM models are known in the literature [94] their use in facial expression analysis 

with our specialised eye and lips models represents an improvement over known 

techniques. 

10.2.2. List of Other Contributions 

Other additional contributions resulted from our work can be named: 
 
Development of a lip model using AAM and pre-processing techniques (described in 

Chapters 5, 6 and published in [234]) 

It consists of the development of a lip model using a combination of AAM and hue-

filtering pre-processing techniques. 
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 Previously to our research, AAM was used by other researchers [232] to 

model the lips area. However, we propose an improved approach, by using a hue filter 

as a pre-processing technique for a more robust initialisation of the model together 

with AAM. The combination of the two techniques is a novel approach that proved 

able to increase the AAM fitting rates (section 7.2). 

 
Development and implementation of a series of applications based on our AAM 

sub-models (described in Chapter 6 and published in [233-235]) 

Novel approaches for blink/ smile detections and for eye/lip tracking are proposed, 

based on our improved facial sub-models. These techniques were not previously used 

to develop such applications. 

 

Choice of optimal AAM features/ parameters for expression analysis (described in 

Chapter 8 and proposed to be published) 

The most relevant AAM features/ parameters are analysed in the context of 

expression analysis. We investigated which type of AAM feature, i.e., shape, texture, 

appearance, contributes the most in modelling facial deformations caused by facial 

expressions. Although similar studies exist in literature [68, 97, 140], opinions are 

divided among researchers; consequently, we searched for the relevant feature for our 

framework. 

 Then, we investigated the optimal AAM parameters for modelling facial 

expressions and we discard the irrelevant or redundant ones. Our proposed design 

used the subset of model parameters which mainly encode expression information, 

discarding thus the information related to variability in pose and identity, leading to 

more accurate expression recognition rates. Similar approach was already proposed 

by us in [8], adapted though for face recognition use. 

 

Evaluation of the expression discrimination power of independent facial features, 

such as the eyes and the lips (described in Chapter 8) 

Although the results do not motivate us to propose an expression analysis system 

based only on the eyes or lips facial features, this study brings novel information 

concerning the individual usefulness of these features in an automated expression 

classification system and motivates our component AAM facial expression approach. 
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Elaboration of a reduced database containing concomitantly variations in pose and 

in facial expressions, including blink and gaze, useful for our tests (described in 

Appendix B) 

As we noticed that the literature lacks in databases presenting a range of facial 

deformations under several head poses and illuminations, we proposed our own 

collection of pictures, incorporating concomitantly both pose and the six universal 

expressions and the neutral one, or blink and gaze actions. The database is described 

in Appendix B. 

10.3. Future Directions 

The work presented in this dissertation showed areas for interesting future research: 

 

An adaptive hue filter 

In Chapter 6, we have used a hue filter as a pre-filtering method in order to initialise 

the lips model. The filter parameters were calculated based on statistical 

characteristics of the constrained conditions of a set of images. Our work could be 

further improved through the implementation of an adaptive hue filter capable of 

changing its parameters to match the original acquisition conditions of each image. 

 

Robustness to illumination variations 

In Appendix D, we conducted preliminary experiments in which we incorporated an 

AAM algorithm extension aiming to increase robustness to directional illumination 

variations. We demonstrated that applying such an algorithm at the training stage 

increases the fitting accuracies of the resulting AAM model. The increase in 

convergence accuracy has a direct, positive impact on the expression recognition rates 

of our system. 

 In the future, more robust and efficient solutions should be incorporated in 

order to solve robustness to unconstrained illumination conditions. 

 

Robustness to partial facial occlusions 

The problem of occlusion, although a classical limitation of AAM, was not directly 

studied in this thesis. A robust solution directly approaching this issue should be 

implemented into our system to be able to decode partially occluded facial 
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expressions. One approach may be through using sequences of images rather than a 

single still image; temporary spatial occlusions could then be handled in a number of 

ways by tracking the face (or other object) across multiple image frames and by 

extrapolating the face in an occluded facial from earlier or later non-occluded frames. 

 

Towards real-time applications 

Our system is not developed with the explicit purpose of performing in real-time, but 

we have studied some optimisations which could significantly improve performance 

in real-time embodiments. One such optimisation is a reduced number of input 

features. We have shown that as few as 6 shape parameters can provide the highest 

model performance while providing at least a 4x speed up. 

 

Extending expression recognition to the FACS system 

Our system should be extended to take into account other categories and combinations 

of emotions, like the FACS system (defined in section 2.3.1). 

10.4 Summary of Relevant Publications 

After the completion of each stage in our work, we published papers to report our 

research progress to the academic world. A list of published or submitted academic 

material is presented in the following: 

 

Conference papers & associated presentations 

• M.C. Ionita, I. Bacivarov, P. Corcoran, Separating Directional Lighting 

Variability in Statistical Face Modelling based on Texture Space Decomposition, 

DSP, Cardiff, Wales, June 2007. 

 The paper proposes an AAM-based face representation in which two sets of 

parameters are used to control inter-individual variation and separately intra-

individual variation due to changes in illumination conditions. The idea is applied and 

tested in Appendix D of this thesis in the context of facial expression analysis. The 

main author is responsible for the main idea of the paper, while I participated with the 

survey of the literature, wrote Section 1 of the paper, executed some of the 

experiments, and gave valuable comments. 
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• M.C. Ionita, P. Corcoran, I. Bacivarov, Next Generation Face Tracking 

Technology Using AAM Techniques, ISSCS, Iasi, Romania, July 2007. 

 The paper proposes solutions to problems related to the implementation of 

AAM in real-time face tracking applications for embedded systems. Another 

contribution is a new AAM training and model construction approach with increased 

robustness to head pose and illumination variations. The training approach and 

tracking schematic are described and used for our eye and lip models (Chapter 6) and 

for our face model dedicated to expression analysis (Chapters 8, 9). The main author 

is responsible for the main idea of the paper. I participated with the survey of the 

literature, wrote Section 1 of the paper, executed some of the experiments, and gave 

valuable comments. 

 

• P. Corcoran, I. Bacivarov, M.C. Ionita, A Statistical Modeling Based System for 

Blink Detection in Digital Cameras, ICCE, Las Vegas, January 2008. 

 The paper describes initial experiments of an AAM eye model robust to blink 

(see Chapter 6 of this thesis). The idea is extended in the corresponding journal paper 

(no.6 in this list). From our knowledge, AAM was not used to model blink up to date. 

The first author is responsible for the idea of using AAM to model eyes and other 

valuable comments. I am responsible for the novel approach, the experiments, and the 

paper writing. I also received feedback from the third author, who also helped with 

some aspects of the model practical implementation. 

 

• I. Bacivarov, M.C. Ionita, P. Corcoran, A Combined Approach to Feature 

Extraction for Mouth Characterisation and Tracking, ISSC, Galway, June 2008. 

 AAM and hue filter pre-processing techniques are coupled and adapted to 

model and track lips. From our knowledge, AAM was not used to model lips up to 

date. Complete description and testing of the approach are described in Chapters 6-7 

of this thesis. I am responsible for the idea, the experiments, and the writing of this 

paper. The other authors participated with valuable feed-back. 

 

• M.C. Ionita, P. Corcoran, I. Bacivarov, Smart Cameras: 2D Affine Models for 

Robust Person Recognition in Consumer Images, ICCE, Las Vegas, January 2009. 



 201

 An initial proof-of-concept using AAM to perform face recognition which is 

robust to pose and illumination variations is presented. The ideas presented in this 

paper are adapted also in the context of facial expression recognition in Chapters 8-9. 

My contribution to this paper is related to the execution of some experiments, and 

other valuable comments 

 

Journal papers 

• I. Bacivarov, M.C Ionita, P. Corcoran, Statistical Models of Appearance for Eye 

Tracking and Eye-Blink Detection and Measurement, in the IEEE Transactions of 

Consumer Electronics, 2008. 

 AAM is developed to track and detect eye blink, robust to variations in head 

pose or gaze. This global model is further extended using a series of sub-models to 

enable independent modelling and tracking of the two eye regions. Several methods to 

enable measurement and detection of eye-blink are proposed and evaluated. Complete 

description and testing of the approach are described in Chapters 6-7 of this thesis. I 

am responsible for the idea, the experiments, and the writing of this paper. The others 

authors participated with valuable feed-back. 

 

Submitted papers 

• I. Bacivarov, P. Corcoran, M. C. Ionita, Smart Cameras: 2D Affine Models for 

Determining Subject Facial Expression, in the IEEE Transactions of Consumer 

Electronics, 2009. 

 An initial proof-of-concept using a component-based AAM formulation to 

measure facial parameters and a set of SVM classifiers to determine facial expressions 

are described. The schematic is designed as to be robust to variations in pose and 

illumination and able to perform in real-time. Complete description and testing of the 

approach are described in Chapters 8-9. I am responsible for the idea, the 

experiments, and the writing of this paper. The other authors participated with 

valuable feed-back. 
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Patent disclosures and filings 

• 20090003661- M.C. Ionita, I. Bacivarov, P. Corcoran, Separating a Directional 

Lighting Variability In Statistical Face Modelling Based On Texture Space 

Decomposition 01-01-2009. 

• 20080205712- M.C. Ionita, I. Bacivarov, P. Corcoran, Separating Directional 

Lighting Variability in Statistical Face Modelling Based on Texture Space 

Decomposition 08-28-2008. 

 These disclosures are based on paper number 1. 

 

Papers in preparation 

• P. Corcoran, I. Bacivarov, Facial Expression Modelling for Gaming 

Applications, to be submitted for the ICE-GIC 2009, and an extended version for the 

IEEE CE Transactions. 

 The paper proposes solutions to problems related to the implementation of 

facial expression AAM solutions in real-time gaming applications for embedded 

systems. The paper is based on experiments developed in Chapters 8-9 of this thesis. 

The main author participated with the idea of using our model in gaming applications 

and partially wrote the paper. I am responsible for the ideas, experiments, and I wrote 

parts of the paper. 

 

• I. Bacivarov, P. Corcoran, Person-Specific vs. Generic AAMs in facial 

expression analysis and tracking, to be submitted for the Pattern Recognition Letters. 

 The paper proposes a comparison of the two approaches in the context of 

facial expression analysis and tracking, from the point of view of building and fitting 

the models and facial expression recognition performances. The paper is based on 

experiments developed in Chapters 8-9 of this thesis. I am responsible for the idea, the 

experiments, and the writing of this paper. The second author participated with 

valuable feed-back. 
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Appendix A - Principal Component Analysis 
 

Our short description of the Principal Components Analysis (PCA) algorithm is based 

on the complete tutorial [247] of Smith. PCA is an unsupervised subspace extraction 

method. The central idea of PCA is to reduce the dimensionality of a data set 

consisting of a large number of interrelated variables, while retaining as much as 

possible of the variation present in the dataset. This is achieved by transforming to a 

new set of variables the principal components which are uncorrelated and which are 

ordered so that the few first retain most of variation present in all original variables. 

The algorithm is formed of several steps: 

 

Step 1: Data collection 

For simplicity, in our current description we presume that the collected data have only 

two dimensions, x and y. 

 

Step 2: Subtract the mean 

For PCA to work properly, we have to subtract the mean from each of the data 

dimensions. The mean subtracted is the average across each dimension. So, all the x 

values have x , i.e., the mean of the x values of all the data points, subtracted, and all 

the y values have y subtracted from them. This produces a data set whose mean is 

zero. 

 

Step 3: Calculate the covariance matrix 

Then, the data covariance has to be calculated. Covariance is always measured 

between two dimensions, using the following formula: 
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where n refers to the number of elements in the data set. 

 If we have a data set with more than two dimensions, there is more than one 

covariance measurement that can be calculated. In fact, for a n-dimensional data set, 

we can calculate n!/(n-2)!*2 different covariance values. 
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 A useful way to get all the possible covariance values between all the different 

dimensions is to calculate them all and put them in a matrix. So, the definition for the 

covariance matrix for a set of data with n dimensions is Cn*n=(cij), where 

cij=cov(Dimi, Dimj), C
n*n is a matrix with n rows and n columns, and Dimi is the ith 

dimension. 

 

Step 4: Calculate the eigenvectors and eigenvalues of the covariance matrix 

Since the covariance matrix is square, we can calculate the eigenvectors and 

eigenvalues for this matrix. These are rather important, as they tell us useful 

information about our data. By the process of taking the eigenvectors of the 

covariance matrix, we have been able to extract lines that characterise the data. The 

rest of the steps involve transforming the data so that it is expressed in terms of them 

lines. 

 

Step 5: Choosing components and forming a feature vector 

In this step we produce data compression and dimensionality reduction. In general, if 

we look at the eigenvectors and eigenvalues of a set of data, we notice that the 

eigenvalues are quite different values. In fact, it turns out that the eigenvector with the 

highest eigenvalue is the principle component of the data set. 

 In general, once eigenvectors are found from the covariance matrix, the next 

step is to order them by eigenvalue, highest to lowest. This gives us the components 

in order of significance. Now, we can decide to ignore the components of lesser 

significance. To be precise, if we originally have n dimensions in the data, we 

calculate n eigenvectors and eigenvalues, and then we choose only the first p 

eigenvectors, then the final data set has only p dimensions. 

 

Step 6: Deriving the new data set 

This is the final step in PCA, and is also the easiest. Once we have chosen the 

components, i.e., eigenvectors, that we wish to keep in our data and formed a feature 

vector, we simply take the transpose of the vector and multiply it on the left of the 

original data set, transposed. 

 FinalData=RowFeatureVector*RowDataAdjust  (A.2) 
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where RowFeatureVector is the matrix with the eigenvectors in the columns 

transposed so that the eigenvectors are now in the rows, with the most significant 

eigenvector at the top. RowDataAdjust is the mean-adjusted data transposed, i.e., the 

data items are in each column, with each row holding a separate dimension. 

FinalData is the final data set, with data items in columns, and dimensions along rows 

 PCA has many applications in Computer Vision, such as finding patterns, or 

image compression. 
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Appendix B - Description of Databases used in our 
Work 
 

Our own database of Expression& pose, blink, and smile 

For some of our experiments, we collected a series of pictures and video sequences 

depicting facial expressions and pose, or blink, gaze, and smile. Our collection 

emulates conditions of consumer pictures, as they embrace different lighting 

conditions, subjects, or head poses. Examples of our collection of pictures are given in 

Figure B.1-B.2. 

 

FERET 

The colour FERET database [165, 166] was collected between December 1993 and 

August 1996. In 2003 DARPA released a high-resolution, 24-bit colour version of 

these images. The dataset tested includes 2413 still facial images, representing 856 

individuals. Some sample images from the colour version of the database are 

presented in Figure B.3. 

 

MMI 

The MMI database [167] contains still images and videos displaying both the six 

basic emotional displays and the individual activations of each of 44 existing facial 

muscles. The database holds over 2000 videos and over 500 images of about 50 

subjects displaying various facial expressions on command. Along with the data 

samples, metadata in terms of displayed AUs is available. The database represents a 

number of demographic variables including ethnic background, gender, and age. 

Although it contains a large number of variables, i.e., six emotions, combinations of 

44 AUs, various human aspects, the database is easily searchable. Examples of the 

MMI database are presented in Figure B.4. 

 

FEEDTUM 

The FEEDTUM Database [169] with Facial Expressions and Emotions from the 

Technical University of Munich is an image database containing face images showing 

a number of subjects performing the six different basic emotions defined by Eckman 

and Friesen. The database has been developed in an attempt to assist researchers who 
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investigate the effects of different facial expressions. The database contains material 

gathered from 18 different individuals. It is intended to expand this gallery in the 

future. Each individual performed all six desired actions three times. Additionally 

three sequences doing no expressions at all are recorded. Altogether this gives an 

amount of 399 sequences. Depending on the kind of emotion, a single recorded 

sequence can take up to several seconds. 

 An important aspect of the database is that consists of elicited spontaneous 

emotions. To elicit the emotions as natural as possible, the authors decided to play 

several carefully selected stimuli videos and record the participants’ reactions. For 

this purpose a video monitor together with a mounted camera on top were employed, 

which enables a direct frontal view. Both devices were controlled by a dedicated 

software that induced the desired emotions and started the recordings at the expected 

times. Samples from the FEEDTUM database are presented in Figure B.5. 

 

Georgia Tech Face Database 

Georgia Tech face database [238] contains images of 50 people taken in two or three 

sessions between 06/01/99 and 11/15/99 at the Centre for Signal and Image 

Processing at Georgia Institute of Technology. All people in the database are 

represented by 15 colour JPEG images with cluttered background taken at resolution 

640*480 pixels. The average size of the faces in these images is 150*150 pixels. The 

pictures show frontal and/or tilted faces with different facial expressions, lighting 

conditions, and scale. Each image is manually labelled to determine the position of 

the face in the image. Samples from the Georgia Tech Face database are presented in 

Figure B.6. 

 

VidTIMIT Video Dataset 

The VidTIMIT database [239] is comprised of video and corresponding audio 

recordings of 43 people, reciting short sentences. The sequence consists of the person 

moving their head to the left, right, back to the centre, up, then down and finally 

return to centre. The images are stored as JPEG files with a resolution of 512*384 

pixels. Samples from the VidTIMIT database are presented in Figure B.7. 
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Figure B.1. Samples from our collection of pictures concomitantly depicting expression and pose. 

 

 
Figure B.2. Samples from our collection of pictures concomitantly depicting blink, gaze, wink, in 

various illuminations and head poses. 
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Figure B.3. Samples from the FERET database. 

 



 210

 
Figure B.4. Samples from the MMI database; each column depicts a specific facial expression: 

from left to right happiness, fear, anger, surprise, sadness, disgust, and neutral face. 

 

 
Figure B.5. Samples from the FEEDTUM database: each row presents a specific subject 

depicting the seven universal facial emotions. 
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Figure B.6. Samples from the Georgia Tech Face Database. 

 

 
Figure B.7. Samples from the VidTIMIT Video Dataset. 
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Appendix C -Applications of our Models-The “Eyes-
Wide-Open” Application 
 
In section 6.1.3.2 we have described the principle of a blink detector. A blink detector 

would be very useful in digital cameras. If a camera has a blink detector, this device 

would alarm the camera if a subject has his/ her eyes closed. If a blink flag is raised, 

the camera could either wait until all subjects have their eyes open or reshoot. So a 

blink detector would ensure that the camera grabs a shot when all subjects are wide-

eyed, embellishing our collection of personal pictures. The benefits of such a camera 

would be particularly significant for parents with several children who can never get 

that perfect group shot! 

 Other potential applications of such a model would enable post-acquisition 

manipulation of an image, or a sequence of images, super-imposing an adjusted eye 

region over the original image. This would enable undesirable blinking events to be 

corrected in an image, or conversely an eye-wink could be inserted into an image to 

enhance its impact or attractiveness. 

 If the photo is already taken and one has closed eyes, we still want to be able 

to correct it. It would be useful to have an application, embedded or not in the digital 

camera, that automatically open one’s eyes in the picture. Our eye-model (described 

in section 6.1) enables a replacement to be made of the subject’s closed eyes with 

equivalent open-eyes. Two pictures are used as input: the blinked photo to be fixed 

and a picture of the same subject, having its eyes open. The pictures including open 

eyes can be obtained from prior information in the camera, for instance by reviewing 

already existing photos. 

 The principle is graphically exposed in Figure C.1. Our methodology is 

applied as follows: an AAM fitting is performed on both pictures, i.e. with open and 

closed eyes. The procedure enables segmenting the eyes in the two photos and 

retrieving their shape, pose, and texture parameters. The original texture for the open 

eyes is transferred into the closed eye photos, respecting the closed eye pose 

parameters, i.e. translation, rotation, and scaling. For more realistic results, the 

eyebrow textures are discarded. Some initial experiments are performed. The main 

requirement for our application is that both the open-eye and closed-eye shapes are 

fitted highly accurate. The results can be judged from Figure C.2. 
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Figure C.1. The original pictures with a. open, b. closed eyes, and c. the processed picture, where 

closed eyes were replaced by open eyes. 

 

 
Figure C.2. Examples of the original pictures with closed eyes-upper row and the resulting 

pictures after the “eye-opening” process-lower row. The examples were chosen from the pictures 

for which AAM found the eye parameters correctly. 
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Appendix D - Robustness to Illumination Challenges 
 
Illumination robustness- The illumination directional model 

In order to deal with illumination problems, we use an earlier technique that we 

proposed in [83]. For a more detailed description of the algorithm, please refer to the 

thesis of a fellow researcher, M.C. Ionita [82]. 

 It is known that PCA, used by AAM to model shape and texture, cannot 

differentiate between various sources of texture variability. A special technique to 

process the illumination is used along the standard method to build a statistical model. 

The texture space is separated into two subspaces, one for inter-individual variability 

and another for variations caused by directional changes of lighting conditions. The 

model is built in the following manner: 

 - A shape model and a texture model are built from different individuals at 

constant frontal illumination. 

 - A set of images with various directional lighting conditions are filtered by 

projecting the corresponding textures on the previously built space; the residues are 

used to build a second subspace for directional lighting. 

 The two texture subspaces are then reintegrated into a single texture model. 

The resulted texture space allows a more advanced control on the two sources of 

facial variability represented by identity and directional lighting. The resulting 

subspaces are orthogonal, so the overall texture model can be obtained by a simple 

concatenation of the two subspaces. 

 The main advantage of this representation is that two sets of parameters are 

used to control separately inter-individual variation and intra-individual variation due 

to changes in illumination conditions. It significantly improves the fitting stage, the 

improvements being transmitted to the expression decoding stage, too. 

 Some preliminary tests have been performed in order to evaluate this approach 

in the context of expression decoding. Although this aspect is not the main focus of 

this research, and exact figures are not provided, it is believed, and also supported by 

our preliminary tests, that this algorithm can add accuracy in cases of directional 

illumination. 

 



 215

Texture Normalisation 

Texture normalisation can help to improve the performances of an AAM fitting and, 

subsequently, the accuracy of decoding expression information [82]. This research 

demonstrated that the use of an on-channel-normalisation instead of a global 

normalisation significantly improves fitting accuracy and AAM convergence when 

dealing with colour images. 

 In [82] it was shown that the RGB colour space has high inter-channel 

correlations and that an improved colour AAM can be obtained if each image channel 

is decorrelated from the other image channels and individually normalised. This can 

be realised by employing the I1I2I3 colour space, originally proposed by Ohta et al. 

[248]. 

 

Experimental Series D1- On-channel texture normalisation 
Goal: test the texture normalisation effects, standard vs. on-channel, from the point of view of 

expression recognition rates 

Databases: FEEDTUM 

Number of training pictures: 70 for MMI, 70 for FEEDTUM, 35 for our own database 

Number of tested pictures: 210 for MMI, 210 for FEEDTUM, 70 for our own database 

Classifier method used: Euclidean-based NN 

AAM model: component-based AAM for the face region 

Number and type of AAM parameters used for classification: 18 shape parameters for FEEDTUM, 

17 shape parameters for MMI, 17 shape parameters for our own database 

 

 Here we present some basic experiments performed to confirm this theory and 

its applicability to facial expression modelling. The figures refer to expression 

recognition when applying a Euclidean-based NN classifier. The results are slightly 

better when applying on-channel normalisation (31.9%) than the standard global 

normalisation approach (30.4%). This type of normalisation is useful especially when 

dealing with unconstrained scenarios that contain variations in illumination. 

 
TABLE D.1. A COMPARISON OF EXPRESSION RECOGNITION ACCURACY WHEN USING A STANDARD TEXTURE 

NORMALISATION APPROACH AND AN ON-CHANNEL TEXTURE NORMALISATION APPROACH. 

Normalisation MMI (%) FEEDTUM (%) Our database (%) Average (%) 

Standard 32.14 38.09 20.96 30.4 

On-channel 33.85 38.09 23.70 31.9 
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