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Abstract. Semantic relatedness is a critical measure for a wide variety
of applications nowadays. Numerous models, including path-based, have
been proposed for this task with great success in many applications dur-
ing the last few years. Among these applications, many of them require
computing semantic relatedness between hundreds of pairs of items as
part of their regular input. This scenario demands a computationally
efficient model to process hundreds of queries in short time spans. Un-
fortunately, Path-based models are computationally challenging, creating
large bottlenecks when facing these circumstances. Current approaches
for reducing this computation have focused on limiting the number of
paths to consider between entities.
Contrariwise, we claim that a semantic relatedness model based on ran-
dom walks is a better alternative for handling the computational cost.
To this end, we developed a model based on the well-studied Katz score.
Our model addresses the scalability issues of Path-based models by pre-
computing relatedness for all pair of vertices in the knowledge graph be-
forehand and later providing them when needed in querying time. Our
current findings demonstrate that our model has a competitive perfor-
mance in comparison to Path-based models while being computationally
efficient for high-demanding applications.

Keywords: Entity Relatedness · Path-based Semantics · Random Walks

1 Motivation

Graph-based semantic relatedness assessment between two entities has been
applied to a wide verity of applications such as Word Sense Disambiguation
(WSD) [3,16], Entity Search [9,22], Named Entity Disambiguation (NED) [20,16]
and, more recently, the cold start problem found in recommender systems [21]. In
all these cases, semantic relatedness serves two purposes: i) as a pre-processing
step for regular input [3,16,20] or ii) as intermediary step in their processing
pipeline [9,22,21]. For instance, entity search requires to identify a set of named
entities that are semantically close to an original entity under certain user re-
quirements. In this case, semantic relatedness is regarded as a proximity measure
between pairs of entities that are under exploration. A similar situation occurs
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in NED as well. Here semantic relatedness is used to quantify the solution space
such that the instance whose entities have the highest pairwise semantic relat-
edness is the solution to the disambiguation problem. The number of queries
required by these applications in their normal activity can easily reach the thou-
sands in short time spans. Therefore, these applications configure a scenario
where the computational performance of semantic relatedness becomes critical.

Unfortunately, graph-based semantic relatedness models are computation-
ally costly. The reason for this cost is rooted in the formalisation of these
models. Most of them were designed as a ranking of aggregating path-based
scores [22,12,16,20]. Thus, they require to enumerate a large number of paths
between the input entities. Finding these paths is the cause of the high cost as
this task is very expensive for even slightly dense graphs. Although knowledge
graphs are far from being dense, the execution time of this model can be high in
practice. Current attempts to improve the runtime performance of these models
are focused on limiting the number of paths to enumerate [20,16,22] by setting
an upper bound on the number of paths to find. However, this strategy fails to
reduce the complexity as it does not set a bound on the plausible number of
paths to check. Hence keeping the same complexity in the worst case.

Rather than enumerating paths, a more scalable alternative can be achieved
by using random walks. A walk is a generalisation of paths such that cycles (or
edge repetitions) are permitted. Such freedom is exploited extensively as certain
linear algebra properties allow us to represent the walk finding problem as a lin-
ear equation system [17]. Surprisingly, walks are normally overlooked as a source
of semantics. In this paper, we propose an algorithm for semantic relatedness
using a random walk model based on the well-known Katz centrality [17]. We
argue that random walks, in general, have been underestimated as a source of
relatedness. Our work demonstrates that random walks can have a performance
as good as direct paths while being substantially more efficient. We found that
the relatedness scores generated by our model are ranking-equivalent to a well-
known path-based model. Our model reduces dramatically the time required for
processing a single query, being ideal for high-demanding applications.

The rest of this paper is structured in the following way: In the next section,
we introduce our method, detailing its mathematical foundations as well as its
properties. In the third section, a detailed description of the implementation
is given. Later, in the fourth section, we evaluate our algorithm, comparing its
performance against the state-of-the-art methods as well as their runtimes. Next,
we give an account of the related work in section five. Finally, our conclusions
and future work.

2 Method

Before presenting the proposed method, it is necessary to introduce a series of
mathematical concepts required for the formalisation of our method.
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2.1 Preliminaries

A knowledge base is a set of facts coded in the form of triples, which in turn
are formed by a subject, an object, and a predicate. The intersection of subjects
(or objects) between different triples allows us to chain triples around a common
subject (or object). Naturally, this leads to viewing a knowledge base as a graph-
like structure.

Definition 1 (Knowledge Graph). Given a set of triples T ∈ S×Σ×O such
that S∩O 6= ∅. A knowledge graph is a tuple G = (V, E , σ) such that its vertices
are defined by V = S ∩ O, its edges as E = {(i, j) : (i, p, j) ∈ T} ⊆ V2, and
σ : E −→ Σ is a map for an edge to the set of predicate labels Σ. For each triple
(i, p, j) ∈ T there is an equivalent inverse edge ê = (j, i) ∈ E such that its type
is given by the type of the original edge (σ(e) = σ(ê)). The resulting graph G is
strongly connected, i.e. any vertex i is reachable from any other vertex j and the
adjacency matrix of the graph is symmetrical.

The imposition of symmetry is a common practice in the field [16,22,7]. By
setting it, we can traverse the graph in both directions having the same relation-
ships defined in the original triple set. Semantically speaking, this implies that
for every subject-object relationship, there is an equivalent-opposite relationship
connecting the entities. The same situation occurs when considering a sequence
of edges. If there is a sequence of edges connecting two entities, then there is an
equivalent-opposite sequence of edges that connects the same pair of entities in
the opposite direction. Therefore, it is easy to visualise that, for any two entities
pairs, the number of sequences connecting them is the same. This assumption is
crucial to the formalisation of the proposed method as it makes the adjacency
matrix symmetrical.

Definition 2 (Walk). Let G = (V, E , σ) be a knowledge graph. A walk W in
G is a finite, non-empty sequence of edges e1, e2, . . . , ek ∈ E connecting v1 and
vk+1. The vertices v1 ∈ e1 and vk+1 ∈ ek are normally called as the initial and
final vertices of the sequence respectively. The length of a walk (denoted as |W |)
is indicated by the cardinality of the sequence.

Basically, a walk starts at some given vertex and follows a certain sequence
of edges until reaching the final vertex. In semantic terms, the length of a walk
reflects the effort of moving along the graph from one entity to another. As the
length increases, less pertinent become the sequence. In order to compare walk-
based methods against paths-based ones, it is then necessary to formalise the
latter as well.

Definition 3 (Path). Let G = (V, E , σ) be a knowledge graph. A path P in G
is a walk connecting v1 and vk+1 such that there is no repetition of vertices in
the sequence.

Katz centrality [17] is a classical score from social network analysis that
measures the overall influence for each vertex in the graph. The original formal-
isation was based on the geometric progression (βA)0 + (βA)1 + (βA)2 + . . . for



4 P. Torres-Tramón et al.

an adjacency matrix A and real, positive value β which converges under certain
conditions. In this work, however, a formalisation based on random walks is used
instead. A random walk model is a Markov chain such that the next vertex in
the chain will be selected independently at any given time (or step) k, regardless
of previously visited vertices. Katz centrality can also be formalised in this way.

Definition 4 (Katz). Let G be a knowledge graph and A its adjacency matrix.
Let β ∈ (0, 1] ⊂ R be a given parameter. Let D be a diagonal matrix such that
D(i,i) =

∑
i(A:,i). The transition matrix T is given by T = D−1A. A Katz

random walk process over G is a Markov chain M such that:

Mk+1 = βTMk (1)

Where k is the number of steps or time. The initial value of Katz M0 = I, which
is the identity matrix.

Each pair (i, j) of the resulting matrix Mk is the probability of reaching
vertex j by randomly walking k steps from vertex i. For each step taken, β is a
penalty value that reduces the influence of the walks in the final probability.

Knowing that M0 = I, let us consider the following operator for this random
walk process whenever a given value t ∈ Z>0 is given.

∆t
0 =

t∑
k=0

Mk =

t∑
k=0

(βT )k (2)

Here, only the probabilities of the walks formed for a certain time range are
considered. Thus, for any t, ∆t

0(i, j) is the probability of reaching vertex j from
vertex i by randomly walking t or less steps. It has been a well-extended practice
in the field to only consider sequences up to a certain length, normally 4 [20,16]
or 5 [22]. Therefore, this operator will be used to control the length of the
walks. When t → ∞, then ∆t

0 converges exactly to the Katz centrality. The
convergence exists whenever β is less than the reciprocal of the spectral radius
ρ of the transition matrix T , i.e. β < 1/ρ(T ).

2.2 Queries

Given a knowledge graph G and certain input vertex j, the probability of ran-
domly walking from any other vertex in the graph until reaching j in t or fewer
steps can be written as it follows:

Pr(X≤t = j|X0) =

t∑
k=1

Pr(Xk = j|X0)Pr(S = 0)k (3)

Where S is a uniform random variable and it represents the probability of a
walk to finish at any vertex at random. The probability Pr(Xk = j|X0) is the
combined probability of any random walks starting at any vertex at time 0 and
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reaching vertex j at time k. Now, it is evident that if a walk reaches j, it must
have a sequence of edges (X0, X1), (X1, X2), . . . , (Xk−1, Xk) such that Xk = j.
Each unique vertex Xl in this sequence is an independent random variable. Thus,
the probability of a walk is given by the joint probability of its vertices in the
sequence of edges. Therefore, the expression Pr(X0|Xk = j) can be written as
follows:

Pr(X0|Xk = j) =

(
k−2∏
l=0

Pr(Xl|Xl+1)

)
Pr(Xk−1|Xk = j) (4)

The expression Pr(Xl|Xl+1) (as well as Pr(Xk−1|Xk = j)) is the probability of
randomly walk from Xl to Xl+1 for any l < k. In the absence of data, we need
to resort to heuristics in order to estimate Pr(Xl|Xl+1) for any pair (l, l+1) ∈ E
assumming that this probabilities do not change for any pair (l, l + 1).

1. eqv: Each edge has the same probability.
2. pfitf [22]: The probability of a single edge is proportional to the amount of

information contained by this edge at the local context and the frequency of
the edge type across the entire graph. The local context for an edge is the
set of edges incoming or outgoing to any of its two vertices.

3. excl [16]: Each edge probability is proportional to the level of the rareness
of its type, considering only the local context.

These three heuristics defined the three different transition matrices that were
used in the evaluation section. Once these probabilities are estimated, a ranking-
preserving solution for Pr(X<t = j|X0) can be computed directly using the Katz
operator over the transition matrix.

Pr(X≤t = j|X0) ∝ ∆t
0(., j) (5)

Where (., j) means to select the column j of the resulting matrix. This column
contains the probability of randomly walking from any vertex to vertex j.

Now, if a sample set of pairs of entities is given, then a solution can be
generated by the same principle. Suppose that τ is the set of target vertices and
be ι the set of initial vertices defined by the sample set of pairs. The probability
to estimate in this case is given by Pr(X≤t ∈ τ |X0 ∈ ι)

Pr(X≤t ∈ τ |X0 ∈ ι) ∝ ∆t
0(i, j) ∀i ∈ ι, j ∈ τ (6)

2.3 Properties

∆t
0 is the basic operation for solving Pr(X≤t ∈ τ |X0 ∈ ι). Here a comparison

between the ranking produced by this operator and a previous path-based re-
latedness called Katz Relatedness [20,16] is conducted since both are based on a
similar principle. Before proceeding to compare their rankings, both scores will
be re-defined in terms of a path and walk contribution respectively and presented
as similarity (resemblance) measures.
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Definition 5 (Walk-based Relatedness). Let G be a knowledge graph and
t ∈ Z>0 the step parameter. Let ∆̂t

0 be a normalisation operator ∆̂ such that ∆̂t
0

is symmetric. The function φ : (i, j) ∈ E −→ R is called Walk Relatedness at t
such that:

φ(i, j) =

{
∆̂t

0(i, j) if i 6= j
1 otherwise

(7)

Proposition 1. Function φ is a similarity measure.

Proof. It is necessary to prove that φ is symmetric and ∀i, j ∈ E , φ(i, i) ≥
φ(i, j). The first condition is trivial since ∆̂t

0 is symmetric. For the second case,
∆̂t

0(i, j) ≤ 1 for every pair (i, j) i 6= j. Since φ(i, i) = 1, then it is evident that
the second condition holds.

As this definition required, it is necessary to introduce a normalisation for
the resulting matrix of Katz operator (equation 2). To this end, the following
normalisation is applied to the result of the Katz operator.

∆̂t
0 = norm(∆t

0 +∆t
0
T

) (8)

Where norm is the max-min normalisation. Notice that adding ∆t
0 with its

transpose generates a symmetric matrix. This addition has also a semantic im-
plication for our model. It reflects the probability of reaching j from i in both
directions.

Katz Relatedness cannot be expressed as a geometric series of the transition
matrix. Instead, it must be defined in terms of the paths connecting each pair
(i, j).

Definition 6 (Path-based Relatedness). Let G be a knowledge graph. Let
P(i,j) =

⋃t
k=1 Pk(i,j) be the union of the set of paths connecting vertices (i, j)

in G with length k. The function ψ : V2 −→ [0, 1] ⊂ R is called Path-based
Relatedness such that:

ψ(i, j) =

{
1

|P(i,j)t|
∑t
k=1

∑
P∈Pk

(i,j)
Pr(P )βk if i 6= j

1 otherwise
(9)

Notice that the operator ∆t
0 can also be written in terms of individual contribu-

tions of its constituents, similar to equation 3.

Proposition 2. Function ψ is a similarity measure.

Proof. Each path connecting (i, j) have a reciprocal path in the opposite direc-
tion, thus ψ(i, j) = ψ(j, i). By definition, the relatedness between an entity and
itself is ψ(i, i) = 1. It is evident then that ψ(i, i) ≥ ψ(i, j) ∀i, j ∈ E .

Naturally, both relatedness functions, φ and ψ, induce a partial order over
the set of unordered pairs of vertices. Thus, the subsequent binary relationships
are defined for any i, j, k, l ∈ V:

(i, j) �φ (k, l) ⇐⇒ φ(i, j) ≤ φ(k, l)
(i, j) �ψ (k, l) ⇐⇒ ψ(i, j) ≤ ψ(k, l)

(10)
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3 Implementation

So far, knowledge graphs have been formalised as a conventional graph with
the particularity of having many relationship types. However, it is this very
same particularity that makes knowledge graph a multi-graph. A multi-graph
(or multi-dimensional graph) is a generalisation of a graph where each edge has
a type associated. A single adjacency matrix cannot represent this type of graph.
Instead, a collection of adjacency matrices, one for each relationship, is required.
Thus, the adjacency matrix is indeed a tensor. A tensor is a generalisation of a
matrix such that there is a third additional coordinate. For multi-graphs, this
new coordinate represents the type of the relationship for a given pair of vertices
(i, j).

Evidently, tensors are more memory-consuming than matrices for storing
data. Notice that, for each relationship, there is a m×m matrix to fill, requiring
in total m × m × k storage space. This situation makes it difficult to employ
tensor models for implementing knowledge graphs in practice. One well-extended
alternative to tensors is collapsing the data into a single adjacency matrix. Here,
each element (i, j) for each relationship k is summed across the entire set of
relationships. The following equation show the resulting adjacency matrix:

A(i, j) =

|k|∑
k=0

T (i, j, k) (11)

Where T (i, j, k) represents the adjacency for vertices (i, j) and the type k. The
resulting adjacency matrix only requires m×m storage space and it can be used
safely to compute a geometric progression, producing the exact result. A more
detailed proof of this technique can be consulted here [1].

Although this compression significantly reduces the overall memory consump-
tion, it still requires m×m space in memory. For a large knowledge graph, this
amount of space is still unfeasible. We observed, however, that the knowledge
graph (and therefore the adjacency matrix) is quite sparse. Indeed, it was ob-
served in the experiments that the sparsity level is about 99.9% for the knowledge
graph employed. The level of the sparsity of a graph is intrinsically connected
to its completeness. In general, knowledge graphs suffer a lack of complete-
ness [13]. Thus, the number of relationships is often low. The implementation
of our method takes advantage of this issue by storing the adjacency matrix as
a sparse matrix. In sparse matrices, only non-zero values are stored, alleviating
significantly the requirements of memory. Using sparse matrices makes the stor-
age space needed by the adjacency matrix linear to the number of triples of the
knowledge graph. We used the well-known Numpy 1 framework and its sparse
package to implement our method.

Once the adjacency matrices are collapsed and stored as one matrix, the
Katz operato (equation 2) can be computed directly from it. The high sparsity
of the matrix is critical in this step to reduce the computation of the geometric

1 http://www.numpy.org

http://www.numpy.org
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Algorithm 1: Computing ∆t
0

Data: A: collapsed adjacency matrix, t: number of steps, β
Result: ∆t

0

1 m = size(A), D = eye(m), M = eye(m);
2 for i < t do
3 M = M*(β*A);
4 D = D + M;

5 end

progression. Since there is a high number of zeros in the matrix, the resulting
matrices of the successive multiplications are also sparse. Therefore, the compu-
tation is dramatically reduced. As depicted in algorithm 1, the final number of
multiplications is given by the length of the progression. In each iteration, the
adjacency matrix is multiplied by itself and the parameter β and stored for the
next iteration. At the same time, the resulting multiplication is accumulated.

4 Evaluation

At the beginning of this paper, we argued that some real-world applications
such as WSD [16] or recommender systems [21] require relatedness functions
in order to rank a set of pairs. Hence, such ability will be tested using pairs
of words as input in this evaluation. There are a few ground truth datasets
that can be useful in this setting. Before going into their details, it is necessary
first to describe the knowledge graph used in this evaluation. Later, we will
compare human-produced rankings with the ones generated by our method and
other state-of-the-art methods. Finally, a detailed account of the computational
performance of the method will be provided.

4.1 WordNet

Since we are basing our evaluation in rankings of pairs of words, it is then
necessary to select a Knowledge Graph according to these requirements. Among
the available alternatives, we found that WordNet 2 presented two important
features for our evaluation: i) it is relatively small in comparison to general
purposes knowledge databases and ii) it is a good fit when analysing of pairs
of words. Due to the cost of multiplying large matrices, we opted for selecting
a relatively small knowledge graph. We left for the future the exploration of
alternatives methods to reduce the amount of computation.

WordNet was introduced as a general purpose lexical database in the be-
ginnings of the 90s [18]. In WordNet, words (referred as lemmas) are linked
to abstract entities, known as concepts or synsets, which in turn are inter-linked
among themselves with certain semantic relationships. Each relationship has a

2 https://wordnet.princeton.edu

https://wordnet.princeton.edu
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type associated that represent the semantic associations between both concepts.
A concept might have several lemmas linked to it and vice-versa. Concepts are
abstract ideas/objects that are evoked by a word when is used in a certain
context or predicate. For example, lemmas: car and automobile normally refer
to self-propelling objects that generally use a combustion engine to self-propel.
However, other uses of the word car are valid as well in different contexts. For
instance, a car might refer to a train wagon. As we mentioned, concepts are
inter-linked according to some semantic relationships. For example, one concept
might be part of a more general concepts (e.g. car −→ vehicle) or they can refer
to opposite ideas (e.g. good −→ bad). WordNet represents these semantic asso-
ciations using a fixed set of relationship types. The latest version of WordNet,
(WN31), contains 26 relationship types.

The resulting graph generated from these concepts and its relationships was
used for computing the Katz operator. During this process, it was found that
some few concepts do not have any edge to other concepts in the graph. There-
fore, these were removed from the graph as we assumed that this must be strongly
connected. In summary, the resulting graph was composed by 116,787 vertices
and 378,203 relationships, with an average degree of 6.476.

4.2 Ground Truth Datasets

Ground Truth datasets are composed by a list of pairs of words, where each
pair have a real, positive score associated. These scores were granted by a set of
human assessors, who evaluateed the degree of semantic association between the
words. The scores determine the position of the pair in the ranking. It is assumed
that in the input list, the pairs of words do not necessarily must have words in
common. Instead, we assumed that each pair was generated independently of
the others, discarding any relationship among themselves.

In the literature, there are several ground truth datasets that fit this purpose.
Among these, the following three were selected:

1. MC [19] (28 pairs of words): This dataset was designed to investigate the
semantic and the contextual similarity for words.

2. RG [23] (65 pairs of words): In this classical dataset, the authors explored the
strength of synonymy between pairs of words. The list of pairs was composed
by 65 pairs, including highly related and unrelated pairs.

3. WS-sim [2] (97 pairs of words): This dataset is a subset of the original
dataset proposed here [11]. Agirre et al. claimed that the original dataset
contained pairs of words for similarity and relatedness, and thus they divided
the pairs in two groups: similarity and relatedness pairs. In this evaluation,
only similarity pairs were used.

The words in these datasets are presented in plain text format. There is no
information about the context in which they were present originally to the human
assessors, or any other information that can help us to determine the sense of
the word. Therefore, it is necessary to disambiguate these words to determine
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their senses. Fortunately, Schwartz et al. [24] already completed this step. In
their work, they labelled the input words using WordNet concepts, obtaining
a synset label for each word. It was necessary to drop some pairs of words from
the datasets to produce a consistent label assignment as there were some cases
where it was not possible to determine the WordNet concept suggested by the
words.

4.3 Evaluation Metrics

In order to evaluate our rankings with respect to the one produced by human
assessors, we used Spearman correlation. This metric measures the correlation
between two random variables, generating an output value that ranges in the
interval [−1, 1]. When there is a positive correlation then the output value would
be close to 1. Instead, if there is a negative correlation then the output would
be near to −1. When there is no correlation, the output is close to 0.

Before comparing the outputs, the scores produced by our algorithm as well
as the scores assessed by human assessors were transformed into positions. If
two pairs or more had an equal score, the same position number was assigned
to all of them. In order to decide whether two scores were equal, we defined a
value ε > 0 such that if |φ(i, j) − φ(l, k)| < ε then the scores in question were
considered to be equal. Since equal pairs have the same position in the ranking,
the next pair started at the position indicated by the last position assigned plus
the number of pairs holding that position. This transformation was done for any
ranking evaluated. The evaluation metrics were then computed using these lists
of positions as the input.

4.4 Discussion

We proceeded to compute the Katz operator for the following values: t ∈ [2, 3, 4]
using WN31 as the knowledge graph and applying the 3 different weighting
schemes. The Spearman correlation between the rankings generated for the
ground truth datasets and the human-produced rankings are shown in Table
1.

We observed that none of the weighting schemes is superior to any other for
every dataset. Instead, each dataset has a scheme whose performance is better
than the rest. For instance, excl weighting scheme has the best performance for
WS-sim dataset. However, it performs relatively poor in the others. eqv and
ptitf have a similar performance for RG, but eqv is significantly better than
ptift when ranking MC.

We noted as well that the best results were achieved whenever β ∈ [0.5, 1]
for every datasets MC and RG. Only dataset WS-sim showed a more balanced
distribution when using exclusivity scheme, being β = 0.5 the setting with the
best performance. This is consistent with de facto value in random processes
for this parameter (β = 0.85) [2]. As β −→ 1, the contributions of larger paths
become more relevant in the final score. Therefore, we can deduce that the
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inclusion of these paths significantly increases the performance of the relatedness.
For instance, the best result for MC was obtained when β = 1.0.

In the case of the number of steps (t), we observed that the best perfor-
mances are well distributed across the range examined in this evaluation. We
also considered the case of t = 1 (not displayed for the sake of space), finding
the performance substantially poorer than any other case. Evidently, the inclu-
sion of larger paths can dramatically increase the performance, particularly t = 2
for datasets MC and RG. However, after reaching a peak, the inclusion of larger
paths did not increase necessarily the correlation. It is interesting to note that in
every scheme examined, the performance was slightly similar when t ∈ [2, 3] for
MC and RG, being t = 2 marginally better. In contrast, the difference between
the results obtained for WS-sim using the same range of t were significantly
larger, obtaining better performance when t = 3.

The correlations for φ and ψ were very similar for the analysed datasets as
we expected. It was necessary to set β in the range of [0.05, 0.2] as larger values
performed poorly in this case. This situation was also observed before [16].

4.5 Runtime

We evaluated the execution runtime for: i) generating ∆t
0 (Figure 1) and ii)

solving queries using φ and ψ (Figure 2). The measurements were conducted in
a 24 core machine with 100 GB of RAM on Ubuntu 12.10. The query runtimes
were obtained by measuring the wall time needed to solve each query in our
datasets using different configurations. In total we executed 3, 800 instances for
each function.

As we expected, the cost of computing ∆t
0 increased quickly as the number

of steps did. However, the average of runtime for the maximum t tested was less
than 100s. Thus, commodity hardware is more than enough for computing this
operator for the range examined. The cause of these low runtimes is due to the
high sparsity of the transition matrix. This dramatically reduces the number of
operations needed when computing the geometric progression.

For the case of query evaluation, the results show that the average time
required for solving a single query using ψ increased exponentially as the steps
did. The runtimes show that some of these queries were very costly to handle
using this model. For instance, there were cases that required more than 10t ms
to complete a single query. The function ψ was implemented using a simple BFS
algorithm with some minor optimisations. Although optimising BFS is out of the
scope of this paper, it is worth to mention that there are many optimisations for
BFS that can be used to improve the performance of ψ [10].

In contrast, the computational cost was close to constant for single queries
using φ. A relevant proportion of the queries required less than 1ms in order to
get completed.
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Table 1. Spearman Correlation of our method with different parameters (β, t, weight-
ing scheme) for each dataset

Method Weight β MC RG WS-sim
t = 2 t = 3 t = 4 t = 2 t = 3 t = 4 t = 2 t = 3 t = 4

φ(i, j) eqv 0.25 0.788 0.788 0.788 0.780 0.785 0.785 0.568 0.626 0.625
0.50 0.788 0.788 0.763 0.780 0.785 0.779 0.570 0.632 0.613
0.75 0.788 0.788 0.774 0.780 0.785 0.782 0.571 0.635 0.621
1.00 0.788 0.790 0.801 0.780 0.786 0.794 0.570 0.640 0.620

pfitf 0.25 0.796 0.795 0.795 0.782 0.785 0.788 0.552 0.598 0.591
0.50 0.796 0.795 0.795 0.782 0.785 0.792 0.553 0.614 0.596
0.75 0.796 0.796 0.772 0.782 0.785 0.780 0.551 0.614 0.589
1.00 0.796 0.796 0.767 0.782 0.785 0.775 0.550 0.615 0.590

excl 0.25 0.785 0.764 0.764 0.780 0.786 0.786 0.578 0.627 0.629
0.50 0.785 0.785 0.785 0.780 0.784 0.787 0.580 0.645 0.630
0.75 0.785 0.785 0.785 0.780 0.784 0.790 0.578 0.644 0.621
1.00 0.785 0.779 0.755 0.780 0.782 0.778 0.577 0.644 0.616

ψ(i, j) eqv 0.05 0.782 0.795 0.784 0.781 0.781 0.786 0.552 0.598 0.577
0.10 0.782 0.795 0.785 0.781 0.781 0.787 0.542 0.587 0.552
0.15 0.782 0.795 0.765 0.781 0.781 0.779 0.528 0.575 0.521
0.20 0.782 0.795 0.710 0.781 0.781 0.747 0.520 0.538 0.407

pfitf 0.05 0.787 0.787 0.769 0.779 0.779 0.785 0.524 0.575 0.536
0.10 0.787 0.794 0.782 0.779 0.779 0.785 0.508 0.555 0.498
0.15 0.787 0.799 0.781 0.779 0.776 0.777 0.496 0.539 0.451
0.20 0.787 0.788 0.735 0.779 0.763 0.750 0.478 0.497 0.376

excl 0.05 0.782 0.778 0.787 0.780 0.781 0.789 0.576 0.625 0.621
0.10 0.782 0.752 0.765 0.780 0.773 0.784 0.575 0.622 0.613
0.15 0.782 0.753 0.769 0.780 0.767 0.773 0.570 0.614 0.602
0.20 0.782 0.747 0.753 0.780 0.759 0.758 0.569 0.606 0.576

5 Related Work

Entity relatedness is a well-studied problem [5,4,16,20,22,9,8,6]. The origins of
the field are rooted in computational linguistics [6], where for many years func-
tions for assessing semantic relatedness have been developed. The emergence of
large knowledge graph during the 90s and earlier 2000s triggered the develop-
ment of graph-based models [5,22,9,16,20]. Here, the semantics between entities
is determined according to sequences connecting the entities. Other forms of
semantics under this approach included isomorphism of sequences and join op-
erations between them.

Depending on the application, graph-based models can be classified into two
broad categories. On the one hand, semantic relatedness is used as a tool for con-
ducting an exploratory search over a knowledge graph. In this scenario, a single
user wants to find hidden connections that are neither obvious nor intuitive from
the relationships themselves. Thus, the main objective of semantic relatedness
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here is to generate a minimum, connected subgraph that explains why two (or
more) entities are related [22,9]. Different techniques have been employed to
this end, including path covering in graphs [9] and SPARQL query listing [22]
Optionally, paths composing the resulting subgraph can be ranked individually
when the subgraph is large. These rankings of paths aim to display to the user
the most relevant paths that integrate the subgraph [22]. An important number
of applications have been developed for this use-case [15,8].

On the other hand, semantic relatedness is regarded as a ranking function.
Here, the need is centred on the partial order generated by the semantic relat-
edness function [4,16,20,21]. The resulting ranking is then used as the input for
another problem (e.g. WSD [16] or recommender systems [21]). Nunes et al. [20]
proposed a ranking function that employed a mixture of textual and graph-based
scores. Their graph score quantified the walks connecting a pair of entities in a
similar fashion as Katz measure does. However, they restricted the type of walks
considered in their score, allowing only paths. This idea was taken by Hulpuş et
al. [16] where the paths were further restricted, using the top-k shortest paths
only. In both cases, the restriction of paths marginally alleviates the computa-
tional requirements. Our method instead, pre-computes the relatedness for any
pair of vertices using random walks, solving queries in constant time.

Semantic relatedness models based on random walks have also been applied
before. Agirre et al. [3] introduced a method based on the cosine similarity
between two vectors that represent the Personalised Page Rank (PPR)for each
word. Their method required to define a context, that later is used for deter-
mining the initial weight of PPR. In contrast, our method does not require any
context or any other additional data. Moreover, it only requires computing the
progression a single time, thus being more efficient. Gentile et al. [14] used a
random walk model inspired in eigencentrality to derive a semantic relatedness
score for concepts. They employed a parameter t to control the length of the
walks in a similar fashion as our approach. However, they set this parameter to
a fixed value (t = 2) as opposite to our method in which it is variable.
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6 Conclusions

In this work, a method for entity relatedness based on the Katz centrality has
been introduced. The proposed method is significantly more efficient than state-
of-the-art methods based on graph properties for the same use-case scenario.
While being more efficient, the proposed method has a similar performance than
state-of-the-art methods, being an effective solution when a large number of
entity rankings is demanded. As a drawback, our method requires theoretically
O(m2) space in order to store the relatedness scores. However, the high sparsity
of ∆t

0 suggests that this setback is much smaller in practice.
If the thechnique is to prove useful, a more efficient storage solution needs

to be designed. Based on the expriments outlined here, approximated distances
matrix appeared to be a reliable option for this end. Our evaluation only incor-
portated a relatively small knowledge graph (WordNet), therefore it is espically
relevant to evaluate the peformance on larger knowledge graphs, such as Babel-
Net 3 or DBpedia 4. Additionally, we hope to conduct a more robust evaluation
to validate the rankings produced by this method and those generated by human
assessors. Finally, alternative random walk models present a good opportunity
for exploring alternatives to Katz centrality, for instance pagerank.
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