
 
Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-05-20T04:22:38Z

 

Some rights reserved. For more information, please see the item record link above.
 

Title Contributions to deep learning methodologies

Author(s) Bazrafkan, Shabab

Publication
Date 2018-10-26

Publisher NUI Galway

Item record http://hdl.handle.net/10379/14628

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/


Contributions to Deep Learning
Methodologies

Shabab Bazrafkan

College of Engineering and Informatics
National University of Ireland, Galway

This dissertation is submitted for the degree of
Doctor of Philosophy

Supervisor: Prof. Peter Corcoran October 2018





“The art of knowing is knowing what to ignore.”

~Rumi





Table of contents

List of figures xv

List of tables xvii

Nomenclature xix

1 Introduction 1
1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Summery Of the Contributions in This Thesis . . . . . . . . . . . . . . . . 4

1.2.1 Semi Parallel Deep Neural Networks (SPDNN) . . . . . . . . . . . 5
1.2.2 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Deep Generative Models . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 List of the Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Deep Neural Networks 13
2.1 Neural Networks Building Blocks . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Convolutional Layer . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.2 Pooling Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.3 Unpooling Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.4 Fully Connected Layers . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Optimization Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Deep Neural Network Architectures . . . . . . . . . . . . . . . . . . . . . 27

3 Contributions and Methodologies 29
3.1 Semi Parallel Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . 30
3.2 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



vi Table of contents

3.2.1 Augmentation From an Expert Knowledge . . . . . . . . . . . . . 37

3.2.2 Smart Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Deep Generative Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Latent Space Mapping for Generation of Object Elements with Cor-
responding Data Annotation . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Versatile Auxiliary Classifier with Generative Adversarial Network
(VAC+GAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.3 Versatile Auxiliary Regressor with Generative Adversarial Network
(VAR+GAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

References 55

Appendix A Pushing the AI Envelope: Merging deep networks to accelerate edge
artificial intelligence in consumer electronics devices and systems 63

Appendix B Semi-Parallel Deep Neural Network (SPDNN) Hybrid Architecture,
First Application on Depth from Monocular Camera 71

Appendix C Deep Learning for Facial Expression Recognition: A step closer to a
SmartPhone that Knows your Moods 93

Appendix D An End to End Deep Neural Network for Iris Segmentation in Un-
constraint Scenarios 99

Appendix E Smart Augmentation Learning an Optimal Data Augmentation Strat-
egy 117

Appendix F Latent Space Mapping for Generation of Object Elements with Cor-
responding Data Annotation 131

Appendix G Versatile Auxiliary Classifier with Generative Adversarial Network
(VAC+GAN) 139

Appendix H Versatile Auxiliary Classifier with Generative Adversarial Network
(VAC+GAN), Multi Class Scenarios 149



Table of contents vii

Appendix I Versatile Auxiliary Regressor with Generative Adversarial network
(VAR+GAN) 159





Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 80,000 words including appendices, bibliography, footnotes,
tables and equations and has fewer than 150 figures.

Shabab Bazrafkan
October 2018





Acknowledgements

Foremost, I would like to express my sincere gratitude to my Ph.D. advisor Prof. Peter Cor-
coran for the continuous support of my Ph.D. study and research, for his patience, motivation,
enthusiasm, and immense knowledge. His guidance helped me in all the time of research and
writing of this thesis. I could not have imagined having a better advisor and mentor for my
Ph.D. study. Thanks, Peter!

I am forever indebted to Prof. Christopher Dainty for his constant feedback on my work.
I truly appreciate him for being a friend, for providing me with a lot of research insights. I
would also like to thank Dr. Petronel Bigioi and Dr. Alexandru Drimbarean for taking me as
a part of the FotoNation family and involving me in some exciting projects.

I am grateful to all of those with whom I have had the pleasure to work during this and
other related projects. I would be remiss if I did not thank my friends and colleagues at the
C3Imaging group; Hossein Javidnia for being a wonderful friend, for all his support during
my Ph.D. and the great time we spent together, especially in Las Vegas.

A special thanks to Dr. Shejin Thavalengal and Dr. Claudia Costache for their constant
help and support throughout this journey.

Thanks to great friend and flatmate forever (GFFF) Tudor Nedelcu for being a supportive
friend, flatmate and sharing tones of movies and Cuba Libre. Thanks to my other best flat-
mate Mick Walsh who joined us in the last year. Sorry for all the grease in the sink by the way.

Thanks to Viktor Varkarakis for all the wonderful times, laughs, and spicy chicken wings;
Best mentee ever. Thanks to Aoife McDonagh for all the support in running sessions, and
Adrian Ungureanu, Asma Khatoon and Anuradha Kar for all times we had lunch at FotoNa-
tion.



xii Table of contents

Thanks to my unforgettable friends, Joe Lemley and Snail Lemley for their constant
support and the great time in Edinburgh and Porto. We definitely should start our tremoço
business in Ireland.

Thanks to Ashkan Parsi and Saba Madani. All the memorable afternoons that we spent
together in cafes. Sharing the moments, walks and discussions, made me feel home.

Great thanks to Carol Gallego, a wondeful teacher and friend for all the support in last 3
years. I would never forget the Westport trips, non-stop laughs and irish breakfast pizza in
Joyces Headford.

Special thanks to Maeve McManus, Juli Baxter, Denisa Direrova, Tetyana Tyshkevych,
Daisy Spencer and Catherine Fortune for all the fun and support. I owe them all big time for
all those fun moments ;)

Thanks to Pat Fortune and Caroline Askins -my sister from other mother-. It was a
plesure to know these incredibly fun people and have a geat time at "Wexico".

Thanks to Antonino Vespoli and Imma De Francesco which gave me the chance of trying
true italian food and also all the fun times at 1, Ros Caoin, Roscam.

And above everything, throughout the entire journey, I have benefitted immensely from
the support of my family and especially my parents for their love, inspiration and always
being there when I needed. I never thank you enough for being there for me without a doubt.
I also want to thank my brother and sister in law wich were always supporting me in every
stage of my life.

I would like to acknowledge Science Foundation Ireland and Xperi Ireland (FotoNation)
for the generous funding for my Ph.D.



Abstract

In recent years the Deep Neural Networks (DNN) has been using widely in a big range of
machine learning and data-mining purposes. This pattern recognition approach can handle
highly nonlinear problems.
In this work, three main contributions to DNN are presented. 1- A method called Semi
Parallel Deep Neural Networks (SPDNN) is introduced wherein several deep architectures
are mixed and merged using graph contraction technique to take advantage of all the parent
networks. 2- The importance of data is investigated in several attempts and an augmentation
technique know as Smart Augmentation is presented. 3- To extract more information from a
database, multiple works on Generative Adversarial Networks (GAN) are given wherein the
joint distribution of data and its ground truth is approximated and in other projects conditional
generators for classification and regression problems are trained and tested.





List of figures

1.1 The growth in number of GAN models since 2014. . . . . . . . . . . . . . 4

2.1 The typical pipline of model preparation in Deep Learning. . . . . . . . . . 13

2.2 A typical ANN with a fully connected hidden layers. . . . . . . . . . . . . 15

2.3 (a) A biological neuron (illustrated by Kimberly Sowell, used with permis-
sion) and (b) an artificial neuron. . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Visualization of the learned convolutional filters at different layers. (Copy-
right Movidius, used with permission.) . . . . . . . . . . . . . . . . . . . . 18

2.5 (a) A biological neuron (A 4-D filter maps one 3-D space to another 3-D
space using convolutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 A pooling operation reduces the size of the feature space. . . . . . . . . . . 20

2.7 A 2×2 unpooling operation with repeating values. . . . . . . . . . . . . . 20

2.8 A 2×2 sparse unpooling operation. . . . . . . . . . . . . . . . . . . . . . 21

2.9 A generic deep neural network, with convolutional (conv) and pooling layers
followed by fully conneceted dense layers. . . . . . . . . . . . . . . . . . . 27

2.10 An autoencoder is the merged structure of the encoder and decoder in a model. 28

3.1 SPDNN workflow. This technique merges several networks using graph
contraction method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Left: three different networks designed for a specific binary classification
task. Right: the graph correspond to each network. The properties for each
node is written on the top of the nodes in the form (layer structure, distance
from input). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Left: merge input nodes and out nodes in to single input and output. Right:
apply the graph contraction to the graph on the left by merging nodes with
the same label and removing the parallel vertices. . . . . . . . . . . . . . . 33



xvi List of figures

3.4 Labelling for the graph in figure 3.3 (right). The tuples on the top of each
node is (layer structure, distance to output node). The nodes with the same
properties will get the same label. . . . . . . . . . . . . . . . . . . . . . . 34

3.5 The graph contraction is applied to the graph shown in figure 3.4. . . . . . . 34
3.6 The graph can be turned back to the neural network using the layer structure

and the connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.7 Training workflow for work presented in [1] (Appendix B). . . . . . . . . . 35
3.8 Output of four experiments for a road scene. . . . . . . . . . . . . . . . . . 36
3.9 Augmentation workflow applied in [2] (Appendix D). . . . . . . . . . . . . 38
3.10 Segmentation map generated by the network for low quality iris images. . . 39
3.11 Segmentation map generated by the network for low quality iris images. . . 39
3.12 Smart Augmnetation technique explained in [3] (Appendix E). Black lines

correspond to the forward propagation. Red line is backpropagation for NetB,
green lines are backpropagation for NetA1 and blue lines are backpropagation
for NetA2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.13 Augmentation network merges several samples from a class to generate a
new sample from the same class. . . . . . . . . . . . . . . . . . . . . . . . 42

3.14 Training procedure presented in Appendix F. . . . . . . . . . . . . . . . . 45
3.15 The inference for generating samples alongside their corresponding aspects. 45
3.16 Randomly generated faces and their corresponding landmarks. . . . . . . . 46
3.17 Randomly generated low-quality iris images and their corresponding seg-

mentation maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.18 ACGAN vs presented model. . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.19 Generator trained using the proposed method (VAC+GAN). . . . . . . . . . 48
3.20 Samples drawn from conditional generator trained using proposed scheme

(VAC+GAN) on MNIST dataset. each row corresponds to one class. . . . . 49
3.21 The error from the regression network backpropagates through the generator

in VAR+GAN framework. . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.22 The cBiGAN framework merges CGAN and BiGAN approaches in a single

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.23 Generator outputs for proposed method (VAR+GAN) given particular land-

marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



List of tables

2.1 Essential optimization methods for DNN training. . . . . . . . . . . . . . . 25





Nomenclature

Roman Symbols

ADAM Adaptive Moment Estimation

AE AutoEncoder

AI Artificial Intelligence

ANN Artificial Neural Networks

CE Consumer Electronics

CNN Convolutional Neural Networks

ELU Exponential Linear Unit

FCDNN Fully Convolutional Deep Neural Network

GAN Generative Adversarial Network

GD Gradient Descent

GPU Graphics Processing Unit

MSE Mean Squared Error

NIR Near InfraRed

ReLU Rectified Linear Unit

RLReLU Randomized Leaky Rectified Linear Unit

RNN Recurrent Neural Netwrok

SELU Scaled Exponential Linear Unit



xx Nomenclature

SGD Stochastic Gradient Descent

SPDNN Semi Parallel Deep Neural Network

SReLU S-shaped Rectified Linear Unit

VAC+GAN Versatile Auxiliary Classifier with Generative Adversarial Network

VAE Variational Auto-Encoder

VAR+GAN Versatile Auxiliary Regressor with Generative Adversarial Network



Chapter 1

Introduction

In the last few years, we have witnessed an exponential growth in research activity into
the advanced training of convolutional neural networks (CNNs), a field that has become
known as deep learning [4–6]. This has been triggered by a combination of the availability
of massive data sets, thanks in part to a corresponding growth in big data, and the arrival of
new graphics-processing-unit (GPU)-based hardware that enables these large data sets to
be processed in reasonable timescales. Suddenly, a wide variety of long-standing problems
in machine learning, artificial intelligence, and computer vision have seen significant im-
provements, often sufficient to break through long-standing performance barriers [7]. Across
multiple fields, these achievements have inspired the development of improved tools and
methodologies leading to the even broader applicability of deep learning [8–10].

In the recent years deep learning tool kits [11–16] and techniques matured from tools
that were mostly oriented toward researchers into easily used product-enabling technology
that can be used to add intelligence to almost any consumer device, even by nonexperts. We
expect to see an explosion in products that take advantage of these resources in the coming
years, with early adopters differentiating themselves from competitors and further refinement
of technology and deep learning methods. Artificial neural networks (ANNs) are able to
learn something about what they see and then can generalize that knowledge to examples
(or samples) that they have never seen before [17]. This is a very powerful capability that
humans often take for granted because our brains automatically do it so well. You are able to
understand the concept of a rock after seeing and perhaps touching very few examples of
rocks. From that point on, you can identify any rock, even those that are shaped differently
or have different colors or textures from the rocks you’ve seen before. This approach is very
different from the traditional method of teaching or explicitly programming computers based
on detailed rules that must cover every possible outcome [4, 5]. The process of discerning



2 Introduction

the category to which a piece of data belongs is called a classification task; one of the more
famous uses of this technique is that of training a neural network. The ability to classify
unseen examples is referred to as generalization. Not surprisingly, ANNs are especially
powerful in tasks for which the appropriate outcome cannot be determined beforehand and
thus cannot use traditional preprogrammed rules [18].

1.1 Literature Review

2012 is when the Deep Learning wave started with AlexNet [19], the winner of the ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC). The model achieved 15.4% top 5 test
error while the next best algorithm stands at 26.2%. The wave continued by introducing
the ZF Net [20] in 2013 which again won the ILSVRC with 11.2% error rate. The ZF Net
is very similar to AlexNet with the difference that the number of channels increases after
each pooling. But the main contribution of [20] is the new way of visualization that was
introduced to investigate the features which are extracted in each layer of the network. This
method is known as DeConvNet. Thanks to this approach it has been shown that the network
is extracting low-level features at the early stages and while going deeper the filters are
excited by higher level shapes presented in the input. This understanding has led researchers
to find more elaborated applications for DNN such as style transfer [21, 22], wherein the
extracted features in different layers of a pre-trained network (usually VGG 16 or VGG 19)
are utilized to inject different styles into an image.

In 2014 a deep network was proposed known as VGG Net [23] with 19 layers wherein
the convolutional layers are strictly 3× 3 kernels followed by max-pooling layers. (For
more information on convolution and pooling layers see section 2.1). In order to keep the
information flow inside the network, the number of channels are doubled after each pooling
layer. VGG net brought simplicity with depth to the DL science [24]. VGG Net did not win
the ILSVRC in 2014, the reason is by that time the big names were already investing time
and human resources on DL. GoogleNet [25] won the competition with a top 5 error rate of
6.7%. This network is a more than 100 layer DNN which is taking advantage of inception
units. These units give the opportunity of having pooling and convolution at the same layer
by placing them in parallel. There are several 1×1, 3×3 and 5×5 convolutional layers and
3×3 pooling layer in each inception module. Despite its depth, GoogleNet has 12x fewer
parameters compared to AlexNet.



1.1 Literature Review 3

Google was not the only big name interested in DL, in 2015 Microsoft’s ResNet [26]
acquired 3.6% error rate in ILSVRC which is almost twice better than humans. In fact, 2015
was the year that the machine beat up human in object recognition accuracy. The ResNet is
made of several residual blocks wherein the input data goes through several convolutional
layers and then adds up with the original data. The authors in [26] believe that optimizing
the residual mapping is easier than optimizing the original data.

The other high impact work in DL science in recent years is the Region Based CNNs
(RCNN) [27–29]. In these series of works the network provides a bounding box around
objects inside the image and specifies a tag for each box by getting help from an object
recognition module (AlexNet in this case). The works presented in Fast RCNN [28] and
Faster RCNN [29] is obviously around speeding up the original idea for real-time use cases.
After 2015 several object detection networks have been introduced including, Region-based
Fully Convolutional Network (R-FCN) [30], You Only Look Once (YOLO) [31], Single-
Shot Detector (SSD) [32], YOLO9000 and YOLOv2 [33], Neural Architecture Search Net
(NASNet) [34], and Mask Region-based Convolutional Network (Mask R-CNN) [35].

Semantic segmentation is another important application of DNN. SegNet [36, 37] is the
most celebrated semantic segmentation DNN and the reason is the ease of implementation
alongside with its high-quality outputs. SegNet uses the convolutional layers of the VGG16
network as the encoder of the network and eliminates the fully connected layers, thus reduc-
ing the number of trainable parameters from 134M to 14.7M, which represents a reduction of
90% in the number of parameters to be trained. As most of the spatial resolution information
is lost in the max-pooling operation, saving the information of the max-pooling indices
and using this information in the decoder part of the network preserves the high-frequency
information.

Classification and Regression are not the only problems that DL has a solution for.
In 2014, DNNs has been utilized in estimation theory by the introduction of Generative
Adversarial Networks (GAN) [38]. GANs are successful implementations of deep generative
models, and there are multiple variations such as WGAN [39], EBGAN [40], BEGAN [41],
ACGAN [42], and DCGAN [43], which have evolved from the original GAN by altering the
loss function and/or the network architecture. A research [44] shows the exponential growth
of new GAN related models in the literature in the last few years. (see figure 1.11).

1https://github.com/hindupuravinash/the-gan-zoo/blob/master/cumulative_gans.jpg



4 Introduction

Fig. 1.1 The growth in number of GAN models since 2014.

1.2 Summery Of the Contributions in This Thesis

Although the Deep Neural Networks gave promising results in ILSVRC 2012-2014 and few
groups in big companies were working on developing this technique, back in 2015 most
of the scientists and engineers considered this solution as "Smoke and Mirrors". The main
reason was the lack of analytical explanation of data reorientation inside the network in the
training stage. A problem which stayed unsolved while writing these words.

Starting Deep Learning was one of the most challenging decisions in my career since in
2015 there was still a public unacceptability against DL. The main support for DL techniques
is its excellent outcomes. The results are exceptionally better than other methods in a way
that the Machine Learning community turned into using DL without asking for the analytical
explanations.

I started to work on deep learning methods in early 2016. Contributions of this thesis is
divided into three main fields:

1. Semi Parallel Deep Neural Networks (SPDNN).

2. Contributions to Data Preparation.



1.2 Summery Of the Contributions in This Thesis 5

3. Contributions to Deep Generative Models.

In the following sections, these contributions are explained alongside with their correposnding
publications.

1.2.1 Semi Parallel Deep Neural Networks (SPDNN)

This method was one of the earliest works of the current Ph.D. thesis. The main idea started
while working on the iris segmentation project for low-quality images. Several networks
trained on the iris database and in the test stage, each of the networks suffered from a set
of specific artifacts. The solution was to put all these networks in parallel and train them
together. In the test stage, we realized that each network compensated the artifact of other
networks and the quality of the output was higher than each of networks individually. The
next step was to find a way to get rid of similar layers in the parallel model to reduce the
redundancy and size of the network. The proposed SPDNN method solves this problem by
translating the neural network into a graph and apply graph contraction to every node twice.
More information on this method is given in section 3.1. There are three main publications
featuring SPDNN as follows:

Pushing the AI envelope: merging deep networks to accelerate edge artificial intelli-
gence in consumer electronics devices and systems [45]

Deep neural networks (DNNs) are widely used by both academic and industry researchers to
solve many long-standing problems in machine learning. There has been such a growth of
research in this field, and it has been applied to so many varying problems, that it would be
accurate to say that we may be living through the precursor of the singularity. But regardless
of one’s views on artificial intelligence (AI), there is no doubt that there is a wealth of recent
research that leverages the use of various DNNs to solve a broad range of pattern recognition
and classification problems. Examples range from the introduction of smart speakers with
intelligent assistants to the application of DNNs to solve recalcitrant problems in computer
vision for autonomous vehicles. Many of these problems can have very useful applications in
the design of smarter consumer electronics (CE) systems and devices. The question for CE
engineers is how to leverage this wealth of academic and industry research efforts, turning
them into practical DNN solutions suitable for deployment in practical devices and electronic
systems. In this work, an approach to merge and mix several neural networks into a single
design is presented which is helping engineers to construct deep neural networks with lesser
parameters while maintaining the same performance.



6 Introduction

An End to End Deep Neural Network for Iris Segmentation in Unconstraint Scenarios
[2]

With the increasing imaging and processing capabilities of today’s mobile devices, user
authentication using iris biometrics has become feasible. However, as the acquisition con-
ditions become more unconstrained and as image quality is typically lower than dedicated
iris acquisition systems, the accurate segmentation of iris regions is crucial for these devices.
In this work, an end to end Fully Convolutional Deep Neural Network (FCDNN) design is
proposed to perform the iris segmentation task for lower-quality iris images. The network
design process is explained in detail, and the resulting network is trained and tuned using
several large public iris datasets. Comprehensive inter-database comparisons are provided
together with results from a selection of experiments detailing the effects of different tunings
of the network. Finally, the proposed model is compared with SegNet-basic, and a near-
optimal tuning of the network is compared to a selection of other state-of-art iris segmentation
algorithms. The results show very promising performance from the optimized Deep Neural
Networks design when compared with state-of-art techniques applied to the same lower
quality datasets.

Semi-Parallel Deep Neural Network (SPDNN) Hybrid Architecture, First Application
on Depth from Monocular Camera [1]

Deep neural networks are applied to a wide range of problems in recent years. In this work,
Convolutional Neural Network (CNN) is applied to the problem of determining the depth
from a single camera image (monocular depth). Eight different networks are designed to
perform depth estimation, each of them suitable for a feature level. Networks with different
pooling sizes determine different feature levels. After designing a set of networks, these
models may be combined into a single network topology using graph optimization techniques.
This “Semi Parallel Deep Neural Network (SPDNN)”eliminates duplicated common network
layers, and can be further optimized by retraining to achieve an improved model compared
to the individual topologies. In this study, four SPDNN models are trained and have been
evaluated at 2 stages on the KITTI dataset. The ground truth images in the first part of the
experiment are provided by the benchmark, and for the second part, the ground truth images
are the depth map results from applying a state-of-the-art stereo matching method. The
results of this evaluation demonstrate that using post-processing techniques to refine the
target of the network increases the accuracy of depth estimation on individual mono images.
The second evaluation shows that using segmentation data alongside the original data as the



1.2 Summery Of the Contributions in This Thesis 7

input can improve the depth estimation results to a point where performance is comparable
with stereo depth estimation. The computational time is also discussed in this study.

1.2.2 Data Preparation

The biggest lesson of my Ph.D. was to understand the actual value of the data in machine
learning. Data is the most important part of any data-driven method including deep learning. It
determines the structure of the network, the depth of the model and any other hyperparameter.
The first project of deep learning during my Ph.D. was the facial expression classification
using deep learning. In this work, the inter-database evaluations show the importance of
mixing and merging databases in the generalization of the model.
Another contribution of this thesis is the data augmentation techniques which is a game-
changing factor in providing higher quality models. There are three main publications on
Data Preparation as follows:

Deep Learning for Facial Expression Recognition: A step closer to a SmartPhone that
Knows your Moods [46]

By growing the capacity and processing power of the handheld devices nowadays, a wide
range of capabilities can be implemented in these devices to make them more intelligent and
user friendly. Determining the mood of the user can be used in order to provide suitable
reactions from the device in different conditions. One of the most studied ways of mood
detection is by using facial expressions, which is still one of the challenging fields in pattern
recognition and machine learning science. Deep Neural Networks (DNN) have been widely
used in order to overcome the difficulties in facial expression classification. In this paper it
is shown that the classification accuracy is significantly lower when the network is trained
with one database and tested with a different database. A solution for obtaining a general and
robust network is given as well.

An End to End Deep Neural Network for Iris Segmentation in Unconstraint Scenarios
[2]

In this work, the SPDNN method have been used to design the DNN and a set of methods
to generate and augment suitable lower quality iris images from the high-quality public
databases are provided. The network is trained on Near InfraRed (NIR) images initially and
later tuned on additional datasets derived from visible images. These agumentation steps
include contrast reduction, shadowing and motion blurring. The results show the superior
results of the proposed method compared to the state of the art methods in literature.



8 Introduction

Smart Augmentation Learning an Optimal Data Augmentation Strategy [3]

A recurring problem faced when training neural networks is that there is typically not enough
data to maximize the generalization capability of deep neural networks. There are many
techniques to address this, including data augmentation, dropout, and transfer learning. In
this paper, we introduce an additional method, which we call smart augmentation and we
show how to use it to increase the accuracy and reduce over fitting on a target network. Smart
augmentation works, by creating a network that learns how to generate augmented data
during the training process of a target network in a way that reduces that network’s loss. This
allows us to learn augmentations that minimize the error of that network. Smart augmentation
has shown the potential to increase accuracy by demonstrably significant measures on all data
sets tested. In addition, it has shown potential to achieve similar or improved performance
levels with significantly smaller network sizes in a number of tested cases.

1.2.3 Deep Generative Models

Generative Adversarial Networks (GAN) introduced DL to the estimation theory. In this
method, a DNN learns the data distribution and is able to draw random samples from the
same distribution. The contributions to GANs are mainly based on learning the latent space
for a pre-trained GAN which helps to learn the mutual distribution of the data with any aspect
of it. And the other work is to map the aspect space to latent space in order to draw random
samples with specific aspects.
Four main publications on Deep Generative Models are as follows:

Latent Space Mapping for Generation of Object Elements with Corresponding Data
Annotation

Deep neural generative models such as Variational Auto-Encoders (VAE) and Generative
Adversarial Networks (GAN) are giving promising results in estimating the data distribution
across a range of machine learning fields of application. Recent results have been especially
impressive in image synthesis where learning the spatial appearance information is a key
goal. This enables the generation of intermediate spatial data that corresponds to the original
dataset. In the training stage, these models learn to decrease the distance of their output
distribution to the actual data, and in the test phase, they map a latent space to the data
space. Since these models have already learned their latent space mapping, one question
is whether there is a function mapping the latent space to any aspect of the database for
the given generator. In this work, it has been shown that that this mapping is relatively
straightforward using small neural network models and by minimizing the mean square error.



1.2 Summery Of the Contributions in This Thesis 9

As a demonstration of this technique, two example use cases have been implemented: firstly,
the idea to generate facial images with corresponding landmark data, and secondly generation
of low-quality iris images (as would be captured with a smartphone userfacing camera) with
a corresponding ground-truth segmentation contour.

Versatile Auxiliary Classifier with Generative Adversarial Network (VAC+GAN) [47]

One of the most interesting challenges in Artificial Intelligence is to train conditional gen-
erators which are able to provide labeled fake samples drawn from a specific distribution.
In this work, a new framework is presented to train a deep conditional generator by placing
a classifier in parallel with the discriminator and back propagate the classification error
through the generator network. The method is versatile and is applicable to any variations of
Generative Adversarial Network (GAN) implementation, and also is giving superior results
compare to similar methods.

Versatile Auxiliary Classifier with Generative Adversarial Network (VAC+GAN), Multi
Class Scenarios [48]

Conditional generators learn the data distribution for each class in a multi-class scenario and
generate samples for a specific class given the right input from the latent space. In this work,
a method known as "Versatile Auxiliary Classifier with Generative Adversarial Network" for
multi-class scenarios is presented. In this technique, the Generative Adversarial Networks
(GAN)’s generator is turned into a conditional generator by placing a multi-class classifier in
parallel with the discriminator network and backpropagate the classification error through
the generator. This technique is versatile enough to be applied to any GAN implementation.
The results on two databases and comparisons with other method are provided as well.

Versatile Auxiliary Regressor with Generative Adversarial network (VAR+GAN) [49]

Being able to generate constrained samples is one of the most appealing applications of the
deep generators. Conditional generators are one of the successful implementations of such
models wherein the created samples are constrained to a specific class. In this work, the
application of these networks is extended to regression problems wherein the conditional
generator is restrained to any continuous aspect of the data. A new loss function is presented
for the regression network and also implementations for generating faces with any particular
set of landmarks is provided.



10 Introduction

1.3 Thesis Structure

Next chapter, provides a detailed explanation of Deep Neural Networks including building
elements, activation functions, and optimization techniques. And the third chapter presents
the contributions on Deep Learning including network design, database preparation, and
deep generative models. Appendices A to I contain the main contributions to the literature
on DL science.

1.4 List of the Publications

SPDNN

1. S. Bazrafkan, and P. Corcoran,"PUSHING THE AI ENVELOPE: MERGING DEEP

NETWORKS TO ACCELERATE EDGE ARTIFICIAL INTELLIGENCE IN CONSUMER

ELECTRONICS DEVICES AND SYSTEMS",IEEE Consumer Electronics Magazine 7
(2), 55-61

2. S. Bazrafkan, S. Thavalengal, and P. Corcoran, "AN END TO END DEEP NEURAL

NETWORK FOR IRIS SEGMENTATION IN UNCONSTRAINED SCENARIOS",Neural
Networks, vol. 106, pp.79 – 95, 2018. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S089360801830193X

3. S. Bazrafkan, H. Javidnia, J. Lemley, and P. Corcoran, "SEMIPARALLEL DEEP NEU-
RAL NETWORK HYBRID ARCHITECTURE: FIRST APPLICATION ON DEPTH FROM

MONOCULAR CAMERA", Journal of Electronic Imaging, vol. 27, pp. 27 – 47, 2018.
[Online]. Available: https://doi.org/10.1117/1.JEI.27.4.043041

4. S. Bazrafkan, and P. Corcoran, "ENHANCING IRIS AUTHENTICATION ON HAND-
HELD DEVICES USING DEEP LEARNING DERIVED SEGMENTATION TECHNIQUES",IEEE
International Conference on Consumer Electronics, (ICCE 2018)

5. AS. Ungureanu, S. Bazrafkan, and P. Corcoran, "DEEP LEARNING FOR HAND SEG-
MENTATION IN COMPLEX BACKGROUNDS", IEEE International Conference on Con-
sumer Electronics, (ICCE 2018)

Data Preparation

1. S. Bazrafkan, T. Nedelcu, P. Filipczuk, and P. Corcoran, "DEEP LEARNING FOR

FACIAL EXPRESSION RECOGNITION: A STEP CLOSER TO A SMARTPHONE THAT



1.4 List of the Publications 11

KNOWS YOUR MOODS," in IEEE International Conference on Consumer Electronics
(ICCE), 2017.

2. S. Bazrafkan, S. Thavalengal, and P. Corcoran, "AN END TO END DEEP NEURAL

NETWORK FOR IRIS SEGMENTATION IN UNCONSTRAINED SCENARIOS",arXiv
preprint, arXiv:1712.02877. Accepted to be published at the Neural Networks journal,
Elsevier.

3. J. Lemley, S. Bazrafkan, and P. Corcoran, "SMART AUGMENTATION: LEARNING AN

OPTIMAL DATA AUGMENTATION STRATEGY" IEEE Access, vol. 5. pp. 5858-5869,
2017.

4. J. Lemley, S. Bazrafkan, and P Corcoran, "LEARNING DATA AUGMENTATION FOR

CONSUMER DEVICES AND SERVICES", IEEE International Conference on Consumer
Electronics, (ICCE 2018)

Deep Generative Models

1. S. Bazrafkan, and P. Corcoran, "VERSATILE AUXILIARY REGRESSOR WITH GENER-
ATIVE ADVERSARIAL NETWORK (VAR+GAN)",arXiv preprint, arXiv:1805.10864.

2. S. Bazrafkan, H. Javidnia, and P. Corcoran, “VERSATILE AUXILIARY CLASSI-
FIER WITH GENERATIVE ADVERSARIAL NETWORK (VAC+GAN)”, arXiv preprint,
arXiv:1805.00316, 2018.

3. S. Bazrafkan, and P.Corcoran, “VERSATILE AUXILIARY CLASSIFIER WITH GEN-
ERATIVE ADVERSARIAL NETWORK (VAC+GAN), MULTI CLASS SCENARIOS”,
arXiv preprint, arXiv:1806.07751, 2018.

4. S. Bazrafkan, H. Javidnia, and P. Corcoran, "FACE SYNTHESIS WITH LANDMARK

POINTS FROM GENERATIVE ADVERSARIAL NETWORKS AND INVERSE LATENT

SPACE MAPPING", arXiv preprint, arXiv:1802.00390.

Other Works: Related to Neural Networks

1. J. Lemley, S. Bazrafkan, and P. Corcoran, "DEEP LEARNING FOR CONSUMER

DEVICES AND SERVICES: PUSHING THE LIMITS FOR MACHINE LEARNING, AR-
TIFICIAL INTELLIGENCE, AND COMPUTER VISION.," IEEE Consumer Electronics
Magazine, vol. 6, no. 2. pp. 48-56, 2017.



12 Introduction

2. S. Bazrafkan, J. Lemley, and P. Corcoran, "HYPER NEURONS?: ONE NEURON WITH

INFINITE STATES," 26th Int. Conf. Artif. Neural Networks, 2017.

3. H. Javidnia, S. Bazrafkan, and P. Corcoran, "THE APPLICATION OF DEEP LEARN-
ING ON DEPTH FROM MULTI-ARRAY CAMERA", IEEE International Conference on
Consumer Electronics, (ICCE 2018)

4. J. Lemley, S. Bazrafkan, and P. Corcoran, "TRANSFER LEARNING OF TEMPORAL

INFORMATION FOR DRIVER ACTION CLASSIFICATION," in The 28th Modern Artifi-
cial Intelligence and Cognitive Science Conference (MAICS), 2017.

Other Works: Not Related to Neural Networks

1. S. Bazrafkan, A. Kar, and C. Costache, "EYE GAZE FOR CONSUMER ELECTRONICS:
CONTROLLING AND COMMANDING INTELLIGENT SYSTEMS", Consumer Electronics
Magazine, IEEE, 2015, Vol: 4(4),pp 65 - 71

2. S. Bazrafkan, T. Nedelcu, C. Costache and P. Corcoran, "FINGER VEIN BIOMET-
RIC: SMARTPHONE FOOTPRINT PROTOTYPE WITH VEIN MAP EXTRACTION USING

COMPUTATIONAL IMAGING TECHNIQUES," 2016 IEEE International Conference on
Consumer Electronics (ICCE), Las Vegas, NV, USA, 2016, pp. 512-513.

3. A. Kar, S. Bazrafkan, C. Costache and P. Corcoran, "EYE-GAZE SYSTEMS; AN

ANALYSIS OF ERROR SOURCES AND POTENTIAL ACCURACY IN CONSUMER ELEC-
TRONICS USE CASES," 2016 IEEE International Conference on Consumer Electronics
(ICCE), Las Vegas, NV, USA, 2016, pp. 319-320.



Chapter 2

Deep Neural Networks

The power of deep learning first made worldwide news in 2015, when a deep learning algo-
rithm achieved better-than-human visual pattern recognition in an international competition.
The accuracy was six-times better than the nearest nonneural network approach and twice
as accurate as human experts [50]. After first interaction with DL, the impression is the
simplicity of the technique [51]. Figure 2.1 shows the typical steps in producing a DNN. The
network buiding blocks, loss functions and optimization techniques are explained in more
details in sections 2.1, 2.3, and 2.4 respectively.

Considering the available toolkits and libraries, such as Tensorflow [13], Caffe [14],
Theano [11], Lasagne [12], pytorch [15] and MXNet [16], the implementation of DL algo-
rithms are quite convenient. However, after acquiring more experience with DNN models
and dealing with different problems one would realize there are many details and pitfalls
need to be taken care of. Data is the most important part of any data driven machine learning
method including deep learning. Data augmentation is the proccess of expanding a database

Design the 

Network

Specify 

the Loss

Apply Feed 

Forward

Apply 

Backpropagation

Update the 

Parameters

Optimize the Network Parameters

Iterate While Converging

Fig. 2.1 The typical pipline of model preparation in Deep Learning.



14 Deep Neural Networks

particularly for a specific application (see section 3.2.) There are questions which no absolute
answers are provided in DL science such as:

• What is the most optimized network structure for a given dataset?

• What is the best data augmentation technique for a problem?

• What is the best optimization method in training neural networks?

• What is the best initialization for the network parameters?

Moreover, there are several other questions which are not trivial to answer due to the lack of
general understanding of what is happening inside a DNN.

Information Bottleneck [52] is the method to determine the compression bound for a
given dataset while preserving the mutual information with another set of samples. There
are several attempts [53–56] of understanding the training procedure and information flow
inside a DNN using the Information Bottleneck technique. In these approaches, the network
is considered as a compression tool which forgets the unimportant information of its input
in reconstructing the output data. The Information Bottleneck technique is applied to the
model but unfortunately, there are no substantial outcomes on these observations and the
data distribution evolution inside the network is not explained clearly.

In this chapter, the deep neural network’s structure, training methods, and challenges are
explained in more detail.

2.1 Neural Networks Building Blocks

Neural networks typically have an input layer, an output layer, and one or more so-called
hidden layers (Figure 2.2). These layers are full of nodes often called neurons, which are
connected to subsequent and previous layers using a number of schemes. Perhaps the most
common connection scheme is the fully connected layer, in which every neuron in a layer
is connected to every neuron in the previous and next layer. This idea is inspired from
biological neurons, where we have axons and dendrites that connect individual neurons to
each other. In the biological model, axons receive input from other neurons and dendrites
transmit information to other cells [57]. This corresponds to the input and output connections
in a neural network. The concept of multiple connection schemes also comes from biology,
where we see unipolar, bipolar, multipolar, and pseudounipolar connection mechanisms.



2.1 Neural Networks Building Blocks 15

Fig. 2.2 A typical ANN with a fully connected hidden layers.

The body of a biological neuron is called the soma, which can decide when and what to
transmit on the basis of various criteria. Artificial neurons have a similar mechanism called
the activation function. This model of neurons (see Figure 2.3) was first invented in 1943
by Warren McCulloch and Walter Pitts [58]. The first popular implementation of these in
computers was formalized in 1957 by Frank Rosenblatt in the idea of the Perceptron [59].

To store and process analog signals (e.g., voice and biological signals) on a computer,
one must first convert these inputs into a digital form in a process called analog-to-digital
conversion. This transforms the information from a continuous space to a discrete space.
Some information is lost in the process. Often that information isn’t critical to understanding
the underlying analog signal, but in some instances, we could lose critical data, such as
high-frequency information. In digital processing, we often refer to a piece of data, such as
a picture, as a sample. It is convenient, but computationally expensive, to represent these
samples in a high-dimensional space where each unit (or pixel, in the case of images), is
considered as being located on a specific axis with the range of possible values being the size
of that axis (e.g., 0–255 in the case of an 8-b color-channel in an image). An image that is
100×100 pixels would be represented as a vector that is a point in a 10,000-dimensional
space. We call this space the feature space. Since even the most powerful computers can
have trouble with such high-dimensional space, we try to reduce the number of dimensions to
just those that are critical to a task or to change the way these features are represented. In the
traditional pattern recognition approach, to perform a given task, we separate our process into



16 Deep Neural Networks

Fig. 2.3 (a) A biological neuron (illustrated by Kimberly Sowell, used with permission) and
(b) an artificial neuron.



2.1 Neural Networks Building Blocks 17

two steps: feature generation and feature selection. The former generates new features from
the pixel space, while the latter reduces the dimensionality of the feature space. Examples
of feature generation include morphological, Fourier, and wavelet transforms, which create
more useful features for specific tasks. Feature selection includes methods like principal
component analysis and linear Fisher discriminant [60]. A newer technique based on sparse
mapping calls for expanding the dimensions with the goal of representing more abstract
features instead of trying to reduce the dimensions. This is inspired by models of the visual
cortex of animals [61].

Convolutional layers, a key component of deep learning, make use of this sparse mapping
approach. One of the most novel and useful aspects of CNNs is that they can learn the filters
that previously had to be custom-designed by the researcher, a task that would often take
years of trial and error. Convolutional layers are essential to this task in modern deep neural
networks. This layers make use of the convolution operator. The convolution operator is
used on two functions. One is the signal from the sample space and the other, called the filter,
is applied to the sample. On a GPU, convolutions are implemented as matrix multiplications.
This operator has a long history in image processing applications and dates back to the time
when digital image processing started. The convolution operation can be discussed in both
spatial and transform space. In the spatial space, the convolution operator is the equivalent
operation of correlation with the reversed filter, i.e., this operator calculates the similarity of
the input function with the filter. For example, the edge detection and corner detection filters
use the similarity of the input image with a predefined filter mimicking the edge or corner
shape.

This is also happening in the transform space. Looking at the function in the Fourier
space, the convolution is performing frequency filtering. For example, low-pass or high-pass
filters have their equivalent spatial filters, which could be applied to the image using convolu-
tion operations (see Figure 2.4).

These filters used to be designed based on the observations and problem definition. Edge
and Corner detector filters are designed based on the edge and corner models; and high and
low pass filters follow the Fourier model of the signal. All these filters are designed based on
the knowledge of the problem and they ususally take a large amount of research and time to
design. In the deep learning approach, the filter is learned and applied to the data during the
training process with the hope that, after training, the learned filter will be the best choice
for the task. One difference between the way convolutions are used in CNNs from more



18 Deep Neural Networks

Fig. 2.4 Visualization of the learned convolutional filters at different layers. (Copyright
Movidius, used with permission.)

traditional uses is that the convolution operator is applied using a four-dimensional (4-D)
filter. This is essentially a set of three-dimensional (3-D) filters that are stacked in the fourth
dimension. We use 4-D filter to map one 3-D space to another 3-D space (see Figure 2.5).

2.1.1 Convolutional Layer

In general, for an n-dimensional signal, the convolutional layer is an n or (n+1) dimensional
feature space mapping with n+1 or n+2 dimensional kernels (filters). In the well-know
case of a 2D image , the convolutional layer is 3-D with a 4-D kernel. In this case, the four
dimensions of the kernel correspond to

1. the width of the input

2. the height of the input

3. the number of channels of the input

4. the number of channels of the output.

In Figure 2.5, you can see two different convolutional layers. The k channel layer on the left
side is mapped to a p channel layer on the right side using a 4-D kernel. This kernel is shown
using different 3-D kernels with different colors.



2.1 Neural Networks Building Blocks 19

Fig. 2.5 (a) A biological neuron (A 4-D filter maps one 3-D space to another 3-D space using
convolutions.

2.1.2 Pooling Layer

Pooling is an operation that accepts a pool of data values as input and generates one value
from them to be passed to the next layer. This operation is ususally mean or maximum of the
input values. There are two important purposes for pooling operations. One is reducing the
size of the data space to reduce overfitting, and the other is transition invariance. A pooling
layer is performing the pooling operation on its inputs. Figure 2.6 shows how a pooling
operation is applied to a one-channel input to reduce the dimensionality of the dataspace. In
Figure 2.6, we have a 3×3 pooling operation applied to a 12×6 one-channel feature space.
The most frequently used pooling operation is max-pooling, wherein the maximum value of
the features in the pool is selected to be mapped to the next layer.

The importance of this layer is described in the next example. In generic deep neural
networks, a dense, fully connected layer emerges from the convolutional layers. For example,
consider a convolutional layer with ten channels and a 100×100 feature space. Placing a
fully connected layer after it would result in computing 100,000 weights from this layer to
each neuron in the dense layer, which requires significant memory and computation resources.
Using a pooling layer helps reduce resource demands. Pooling also helps provide transition
invariance by helping each kernel cover more space. Additionally, without a pooling layer, a
network this big might suffer from overfitting, especially if there is not enough representative
data in the training set. Overfitting is happening when the number of the learnable parameters



20 Deep Neural Networks

Fig. 2.6 A pooling operation reduces the size of the feature space.

Fig. 2.7 A 2×2 unpooling operation with repeating values.

in the model is more than what the data can train. In this case the model remembers the
samples in the training set while it can not perform generalization to other subsets of data.

2.1.3 Unpooling Layer

Unpooling layers are designed to perform the inverse operation of pooling layers by increasing
the size of the feature space. These layers operate on a single pixel and expand that pixel
into a pool of data. There are different implementations of unpooling layers.

The most popular are repeating values and sparse unpooling in deep neural network
designs. The repeating value technique is expanding the data from one value to a pool of
data with the same value (Figure 2.7). With sparse unpooling, the values of the original data



2.2 Activation Functions 21

Fig. 2.8 A 2×2 sparse unpooling operation.

are mapped to a larger space in sparse form. Figure 2.8 illustrates 2×2 sparse unpooling.
There are different methods for choosing the location where the value is mapped in sparse
unpooling. For example, in [62] the indices have been memorized while applying the pooling
layer, and in the unpooling layer, those indices are used to map the values.

2.1.4 Fully Connected Layers

Fully Connected Layers also known as Dense Layers (see figure 2.2) are exactly the same as
classical neural network layers, where all of the neurons in a layer are connected to all of the
neurons in the subsequent layer. The neurons give the summation of their input multiplied by
their weights, which is then passed through their activation functions. Even more than with
convolutional layers, these can cause the network size to grow, and so, typically, only one or
two fully connected layers will be used in most deep networks.

2.2 Activation Functions

Each neuron in the deep neural network model is taking advantage of a nonlinear activation
function to calculate the output value. This leads to one of the most advantageous properties
of the deep neural networks: their ability to describe highly nonlinear systems. Being highly
nonlinear helps the model be suitable for real-life problems and gives solutions in pattern
recognition that cannot be achieved through more classical methods.

In the early days of the neural networks, the tanh and sigmoid activation functions were
most popular. However, with the beginning of DNN which introduces numerous layers
in a single model, more elaborated activation functions have been introduced to guarantee
the convergence and simplicity of the network implementation. The most popular one is



22 Deep Neural Networks

Rectified Linear Unit (ReLU) [63], given by:

f (x) =





0 for x < 0

x for x ≥ 0
(2.1)

This function introduced with biological motivation and has several advantages over classical
nonlinearities including but not limited to sparse activation, better gradient propagation and
simplicity in implementation [64]. There are several variations of ReLU like LeakyReLU
[65] and parametrized ReLU [66] which allow values in the negative range. Exponential
Linear Unit (ELU) [67] is another variation of ReLU which improved learning characteristics
compared to other activation functions including the speed of learning and generalization
performance. ELU is defined by:

f (x) =





α(ex −1) for x < 0

x for x ≥ 0
(2.2)

This function int There are numerous other modifications of ReLU and ELU like Randomized
Leaky Rectified Linear Unit (RLReLU) [68], Scaled Exponential Linear Unit (SELU) [69]
and S-shaped Rectified Linear Unit (SReLU) [70] each has their advantages and complica-
tions.
A Self-Gated Activation Function known as SWISH [71] is presented recently, and it has
been shown that it works better than ReLU on deeper models. This activation function is
described by:

f (x) = x · sigmoid(x) (2.3)

The authors in [71] claim that “While it is difficult to prove why one activation function
outperforms another because of the many confounding factors that affect training, we believe
that the properties of Swish being unbounded above, bounded below, non-monotonic, and
smooth are all advantageous.”

There are other nonlinearities which are not a function of a single variable from the
previous layer. For example, softmax [72] takes into account the output of all the other
neurons while calculating a single output. This activation function for i’th output is given by:

fi(x) =
exi

∑
N
j=1 ex j

for i = 1,2, . . . ,N (2.4)



2.3 Loss Functions 23

where N is the total number of outputs. This function is used in the last layer of classifiers
because it represents the probability distribution over a set of outcomes and at the same time
performs the normalization on the output layer which reduces the influence of extreme values
and outliers.

Choosing the competent activation function is one of the critical challenges in DNN
science. In [73] authors compare the impact of different nonlinearities on convergence
and performance for several models. In this work several nonlinearities including RELU,
LeakyReLU, parametrized ReLU, ELU, SELU and SWISH are compared in Inception-
ResNet-v2 [74] and MobileNet [75] trained on ImageNet [76] and the results shows the
superior accuracies while using SWISH.

2.3 Loss Functions

In machine learning, mathematical optimization, and decision theory a loss function is a
mapping of the output of the model to a cost value which should be minimized using an
optimization technique. In DL the loss function is also known as the objective function which
generally describes a distance between the output of the network with the ground truth data.
And the optimization is performed to the trainable parameters. For classification problems,
the ground truth is also known as a label.

Selecting the proper loss function is of crucial importance in designing adequate model for
a given problem. The most popular loss functions for classification problems are binary cross-
entropy (for two class problems) and categorical cross-entropy (for multi-class problems.)
The binary cross-entropy is given by

Lbce =−t log(p)− (1− t) log(1− p) (2.5)

where t and p are the target and the prediction values respectively. and categorical cross-
entropy is defined by

Lcce =−∑
j

ti, jlog(pi, j) (2.6)

wherein i and j are the index of samples and network outputs respectively and t and p are the
target and the prediction values respectively. There are other loss functions for classification
purposes such as binary and multiclass hing losses [77].



24 Deep Neural Networks

When dealing with regression problems, the loss function became a matter of design. The
most popular loss function for regression problems is Mean Squared Error (MSE) given by

Lmse = mean(∑
i

∑
j
(pi, j − ti, j)2) (2.7)

where i and j are the index of samples and network outputs respectively and t and p are the
target and the prediction values respectively.

Regressions loss is usually adjusted to the problem’s behavior. For example in [78], the
loss function consists of three parts: Appearance Matching Loss, Disparity Smoothness Loss,
and Left-Right Disparity Consistency Loss. Selecting these specific cost finctions assures the
high quality of disparity reconstruction.There is another kind of loss function which is not
applied to the samples directly. For example in [79] the Kullback-Leibler divergence between
autoencoder’s bottleneck and the ground truth is minimized. The objective is to increase the
similarity between the distribution of the network’s output and the target distribution.Based
on the application, the goal justifies the distance increment as well. For example in [80], the
objective is to find a latent representation of faces which is unique for each person. This is
done by introducing a triplet loss which reduces the distance of the latent vector between
samples of a particular individual while increasing the same distance between different
persons. Ideally, this results in a network which maps different images of the same person
into a particular vector while generates a different vector for a different individual.

Having the representative loss function plays a vital role in training a high-performance
network which in most of the regression cases it is defined by the nature of the problem. In
our works, a new regression loss function is introduced in the VAR+GAN project [49]. This
function is designed to increase the distance between the distributions of samples generated
for any two sets of aspects. This project is described in detail in Appendix I.

2.4 Optimization Algorithms

Optimizing the DNN parameters is the most sophisticated step in the training procedure.
Most of the DL toolkits translate the network into a graph and calculate the derivatives of the
loss function with respect to every single learnable parameter in the corresponding graph
using the back-propagation method which utilizes the chain rule to compute the gradient in
each layer.



2.4 Optimization Algorithms 25

Table 2.1 Essential optimization methods for DNN training.

Method Advantage ∆θ(i)

SGD
Faster convergence than
GD η∇θ F(θ ;X( j, j+k),Y( j, j+k))

SGD + momen-
tum

Less flactuations in the
cost

γ∆θn−1 +η∇θ F(θ)

SGD + Nestrov
momentum

Captures the minimum
more efficiently

γ∆θn−1 +η∇θ F(θn−1 − γ∆θn−1)

AdaGrad
Assigns learning rate to
each parameter

η√
Gn−1,ii+ε

∇θiF(θi)

AdaDelta
solves the learning rate
vanishing problem of
AdaGrad

RMS[∆θ ]n−1
RMS[∇θ F(θ)]n

∇θ F(θ)

ADAM
Assigns a learning rate
and momentum to each
parameter

η√
v̂n+ε

m̂n

There are two main types of optimization methods used in ML. First-order and second-
order methods [81]. The former one utilizes the first order derivatives of the loss function
with respect to the learnable parameters to minimize the loss function, while the second order
methods use the second order derivatives also known as Hessian matrix in optimizing the
cost. The second order methods have the advantage of taking into account the curvature
of the loss by using the information about the change in derivatives. The problem with the
second order methods is their computational complexity especially when the second order
derivatives are not known.

The first-order techniques use the gradient of the loss function with respect to the train-
able parameters which is also known as the Jacobian matrix to minimize the cost function
[6]. These methods are conveniently implementable and converge rapidly on big datasets [82].

The most popular first-order method is Gradient Descent (GD) optimization. Given by:

θn = θn−1 −η∇θ F(θ ;X,Y) (2.8)

wherein θn is the set of parameters in epoch n, F is the model’s mapping function, η is the
learning rate, and X and Y are the input data and targets respectively.



26 Deep Neural Networks

In this method, the weights and biases are moved in the opposite direction of the gradient
which guarantees the decrease in the cost value. DL techniques use different variations of GD
to ensure better performance and faster convergence. In the original GD method, the gradient
is calculated after passing all the samples through the model and the parameter update after
each epoch. This causes very slow convergence, especially for big datasets. Mini-Batch
Gradient Descent also known as Stochastic Gradient Descent (SGD) solves this problem by
processing a batch of samples at a time. It has the advantage of reducing the variance of the
update which stabilizes the convergence and also introduces the possibility of getting more
out of highly optimized deep learning software toolkits which perform matrix multiplications
on GPUs [83]. One can accelerate the convergence by applying a momentum towards the
minimum value [84]. The main issue with the momentum method is when the algorithm gets
close to a minimum. The momentum value pushes the parameters to jump over the optimal
point and continue to go uphill. The Nestrov Momentum method [85] solves this problem by
reducing the momentum value when getting close to a minimum point. In other words, it
slows down the speed around optimum values.

One of the most significant difficulties with any gradient-based method is to find the
proper learning rate, and also how to manipulate it during the training procedure. AdaGrad
[86] solves this problem by assigning learning rate to each parameter in a way that more
frequent parameters get smaller learning rate and vice versa. This method induced a problem
known as vanishing learning rate which causes slow convergence compare to other gradient-
based techniques. The AdaDelta method [87, 88] solves this problem by restricting the
memory for the gradient to a finite number of previous steps.

In AdaDelta method, the learning rate is adjusted for each parameter, but all parameters
share the same momentum value. The ADAM [89] technique improves this matter by as-
signing a learning rate and a momentum for each learnable parameter. This optimization
method presents a solution to problems such as vanishing learning rate, slow convergence,
and fluctuations in the cost value and is one of the most popular optimization techniques
which is implemented in most of the DL toolkits.

Table 2.1 shows the important optimization methods used in deep neural network back-
propagation. In our works, we widely used Nestrov momentum for its power in capturing
minima and fewer fluctuations; and also ADAM optimizer because of its ability to assign
different learning rate and momentum to each parameter which makes it a reliable method in
training procedures.



2.5 Deep Neural Network Architectures 27

Fig. 2.9 A generic deep neural network, with convolutional (conv) and pooling layers followed
by fully conneceted dense layers.

2.5 Deep Neural Network Architectures

Designing the best neural network for a given problem is still an open issue in the DL science.
But knowing the structure of the input and output data provides a solid starting point for
the design procedure. In this section, the most commonly used architectures for DNNs are
presented.

1. Generic deep neural networks are usually made of one or more convolutional layers,
wherein each convolutional layer is generally accompanied by a pooling (max-pooling)
operation. One can also use bigger strides in the convolution layer to reduce the
data dimensionality (the stride of a convolution operation is the number of the pixels
the kernel window is sliding before calculating the convolution in each location). In
generic deep neural networks, the convolutional layers are usually followed by one
or more dense fully connected layers (Figure 2.9). The rectified linear unit is the
most common activation function used in these networks. The last layer is typically
taking advantage of other nonlinearities based on the task. In our works, this type of
networks are used in facial expression calssification [46] (Appendix C), as the auxiliary
classifier and regressor in VAC+GAN [47, 48] (Appendices G and, H) and VAR+GAN
[49] (Appendix I) projects and as classifer network in the Smart Augmentation [3]
(Appendix E) project.

2. Fully convolutional Networks are deep neural networks in which all of the layers are
convolutional, pooling, and unpooling layers, wherein the pooling and unpooling layers
are usually placed between two convolutional layers. They are similar to typical deep
neural networks except they have no dense layer. The output of a fully convolutional
network is as the same type as its input. For example, if the input is a k-channel



28 Deep Neural Networks

Fig. 2.10 An autoencoder is the merged structure of the encoder and decoder in a model.

image, the output of the network could be a p-channel image but not something else
entirely. We used a fully convolutional network in the iris segmentation project [2]
(Appendix D) where the input is the low-quality eye image and the output is the
iris segmentation map, and also the augmentor networks in the Smart Augmentation
project [3] (Appendix E) are fully convolutional.

3. Autoencoders (AE) are a deep neural network design in which the input and output
data are from the same class and also have the same data structure. For example, if the
input of the network is a three-channel, 128×128 image, the output of the autoencoder
is also a three-channel image with the size 128×128. The autoencoder network could
be a fully convolutional network, or it can have one or several fully connected layers
in the middle of the network, which is usually known as the bottleneck of the network.
The idea with this kind of network is to create a compressed version of the input in the
bottleneck. The data can then be reconstructed from the bottleneck. The part of the
network that does the compression is called the encoder. The part that decompresses
the data from the bottleneck is called the decoder. The autoencoder refers to the
merged structure of the encoder and decoder in a model (Figure 2.10). AEs play
important roles in different applications, for example the BEGAN implementation uses
an Autoencoder network as the discriminator part. We used BEGAN in VAC+GAN
[47, 48] (Appendices G and, H), VAR+GAN [49] (Appendix I), and GAN+aspect
(Appendix F) projects.

4. Fully Connected Networks These networks which are also known as Multi-Layer
Perceptron (MLP) networks are the oldest implementation of neural networks. In these
architectures, all the neurons in a layer are connected to every neuron in the next layer.
An MLP with more than one hidden layer is considered as a deep network. In our
work, fully connected networks have been used in the GAN+aspect project (Appendix
F) to map the latent space into the aspect space.



Chapter 3

Contributions and Methodologies

In late 2015 with the fast emerging of Deep Learning, we decided to turn into using this
technique instead of the classical machine learning methods in our research. This was
happening while the DL was not mentioned in the original framework of my Ph.D. course.
In the time with the inevitable influence of DL in every aspect of AI this was a wise decision
to take.

We started with applying an inter-class evaluation to investigate the real world perfor-
mance of a DNN for facial expression classification task. This project is explained in detail
in [46] (Appendix C, Section 3.2).

Next project was to use Fully Convolutional DNN to segment the low-quality iris images
for wild use cases. The idea of Semi Parallel Deep Neural Networks (SPDNN) originally
started from this project, when suddenly we realized that by mixing and merging several
networks and remove redundancy of the repeated layers we can get superior results even
while keeping the number of parameters relatively same to the original networks. This idea
is described in detail in [2, 45], (Appendices A and D, Section 3.1). The monocular depth
estimation project [1] (Appendix B) took advantage of the SPDNN method as well.

Neural network design was not the only contribution to the iris segmentation project. A
great lesson learned from this project was how much data augmentation is important in getting
superior results. This way of thinking led us to introduce a new methodology known as Smart
Augmentation wherein several photos from a specific class are merged nonlinearly to create a
new sample from the same class. This method is explained in [3] (Appendix E, Section 3.2.2).



30 Contributions and Methodologies

Augmentation techniques play a crucial role in expanding datasets for data-driven tech-
niques especially with the introduction of new regulations on the privacy and data security
such as GDPR which turns the data acquisition into engineers nightmare. The Generative
Adversarial Networks (GAN) are one of the best candidates to learn the existing database
distributions and draw randomly generated samples from the learned distribution. We worked
on this technique to learn the joint distribution of data and ground truth (Appendix F, Section
3.3.1) and also expanded the idea of conditional generators which has appealing applications
such as generating gender-specific samples (for more details see [47–49](Appendices G, H,
and I, Sections 3.3.2 and 3.3.3)).

In the next section, the SPDNN technique and the related projects are explained followed
by our contribution to data preparation and smart augmentation in the following section. And
the last section is dedicated to the contributions on Deep Neural Generators.

3.1 Semi Parallel Deep Neural Networks

As previously commented, there has been a spectacular growth in research on artificial
intelligence in general and on the application of deep networking techniques in particular.
In each DNN design there are several factors need to be taken care of including the number
of layers, layer types, nonlinearities, loss function and optimization method. Designing and
training a DNN is not a trivial task especially when dealing with Big Data since the data
distribution is not accessible. Most of the designs in the literature are taken from well-known
models such as VGG [23], Inception [25], and Alexnet [19]. These networks are designed
and trained for a specific task and borrowing their architecture for any other problem is not
always a wise decision. The other difficulty arises when there are several network archi-
tectures designed for a specific problem, some give higher accuracy, and others have less
computational cost. So much so, that faced with almost any contemporary machine learning
problem, it is almost inevitable that one can find a multiple of varying network architectures
derived from a number of core datasets in the literature. Typically each dataset is developed
and annotated for this specific class of problem, and each DDN derived from these datasets
has its own distinct advantages and drawbacks.

The challenge for engineers is to find the best network matched to their specific problem
or design goal. But in practical ‘wild’ use-cases there is often no winning network and much
of the recent literature improves on performance aspects by adding layers to deepen the
network. While this may improve specific aspects of network performance, a price is paid



3.1 Semi Parallel Deep Neural Networks 31

Fig. 3.1 SPDNN workflow. This technique merges several networks using graph contraction
method.

in terms of additional memory requirements to store the network and additional compute
cycles to process the added layers or greater areas of silicon if the goal is to provide a chipset
implementation. And if the design engineer wishes to combine several of these deep networks
in parallel to have the benefits of each, then additional logic or computation needed to merge
the network outputs and the resource requirements can become unrealistic.

It is, naturally, possible to go back to the drawing board and design a completely new
network from scratch, but designing, implementing, testing and optimizing deep networks is
challenging and time-consuming, as is the creation of new annotated datasets to enhance and
focus the network capabilities. The Semi Parallel Deep Neural Networks (SPDNN) proposes
a solution to this issue by introducing a method to mix and merge several DNNs into a single
model. In this technique, each network translates into a graph and after assigning proper
labels to each node, the graph contraction method merges all networks into a single model.
See figure 3.1 This technique is explained step by step as follows:

1. Translate the network into a graph and perform labeling from input to output.

2. Apply graph contraction on the graph.

3. Apply the labeling from output to input.

4. Apply graph contraction.

5. Turn back the graph into the neural network structure.

In order to turn a neural network into a graph:

1. Consider each layer of the network as a node of the graph.



32 Contributions and Methodologies

2. Connect each node to other nodes based on their connection in the original network.
If two layers A and B are connected in the network. Two nodes A and B will be
connected in the corresponding graph.

3. Label each node based on the properties of each layer. Labeling is described below:

(a) The first property of each layer is its structure. For a convolutional layer the
kernel size, for pooling/un-pooling layer the pool size and for the fully connected
layer the number of the neurons.

(b) The second property of each layer is its distance from the input in the graph.

(c) We show the properties of each node as a tuple. (C stands for convolutional F
for fully connected P for pooling and U for un-pooling, for example, 3C mean
a convolutional layer with kernel size 3×3, 4F means a fully connected layer
with 4 neurons, and 2P mean a 2×2 pooling layer). The first term of the tuple
is the structure of the layer and the second term is the distance from the input.
For example, the tuple (5C , 3) means a convolutional layer with a 5×5 kernel
which has distance 3 from the input node.

(d) Sticky and non-sticky properties: The structure properties “pooling” and “un-
pooling” are sticky with respect to convolution. It means that if pooling is
applied to a layer, the pooling property will stay with the data in the following
convolutional layers. except when the graph reaches an un-pooling or a fully
connected layer. Each un-pooling layer will remove one pooling layer and the
fully connected layer will remove all pooling properties from the node. The
structure properties “convolutional” and “fully connected” are non-sticky.

(e) If both properties for several layers are equal, the same label will be assigned to
all of them.

Here, the SPDNN methodology is explained by an example:

Consider three different networks designed to perform a binary classification task shown
in figure 3.2. Graph corresponding to each network is shown in the right side of this figure.
Each node in the graphs stands for one layer. The properties for each node is written on the
top of the node in the tuple (layer structure, distance from input).
The graph contraction task is a reasonably easy task in order to merge different vertices

which leads to a simpler graph with less number of nodes. The task is given below

1. Merge all the input nodes to one input.



3.1 Semi Parallel Deep Neural Networks 33

Fig. 3.2 Left: three different networks designed for a specific binary classification task. Right:
the graph correspond to each network. The properties for each node is written on the top of
the nodes in the form (layer structure, distance from input).

Fig. 3.3 Left: merge input nodes and out nodes in to single input and output. Right: apply
the graph contraction to the graph on the left by merging nodes with the same label and
removing the parallel vertices.

2. Merge all the output nodes to one output.

3. Merge the nodes with the same label.

4. Remove the parallel edges (if exists).

the graph contraction result for the graph shown in figure 3.2 is illustrated in figure 3.3.

The next step is to perform labeling from output to input. The properties of each node
will be of the form: (layer structure, smallest distance from output node). The layer structure
is still the same as the previous step. The nodes with the same property values get the same



34 Contributions and Methodologies

Fig. 3.4 Labelling for the graph in figure 3.3 (right). The tuples on the top of each node is
(layer structure, distance to output node). The nodes with the same properties will get the
same label.

Fig. 3.5 The graph contraction is applied to the graph shown in figure 3.4.

label. Figure 3.4 shows the labeling from output to input.

The graph contraction task is the same as the previous graph contraction task given below:

1. Merge the nodes with the same label.

2. Remove the parallel edges (if exists).

Figure 3.5 shows the graph after applying the graph contraction for the second time.
Since the layer structure is known from the node properties, the graph could be turned back
into neural network structure. If two nodes are connected in the graph then those two layers
will be connected to each other. The network correspond to the graph in the figure 3.5 is
shown in figure 3.6.

In [45, 1, 2] (Appendices A, B and, D) several examples of SPDNN applications are
presented on iris segmentation and depth estimation problems. In [2] (Appendix D) a fully
convolutional DNN has been designed by merging 4 deep neural networks using SPDNN to
perform iris segmentation task in unconstrained scenarios. This work is described in Section
3.2.1



3.1 Semi Parallel Deep Neural Networks 35

Fig. 3.6 The graph can be turned back to the neural network using the layer structure and the
connections.

Fig. 3.7 Training workflow for work presented in [1] (Appendix B).

in [1] (Appendix B1) 8 networks are merged into a single model to perform the depth
estimation from a monocular camera setup. Four SPDNN models are trained and have been
evaluated at two stages on the KITTI dataset. The ground truth images in the first part of the
experiment are provided by the benchmark, and for the second part, the ground truth images
are the depth map results from applying a state-of-the-art stereo matching method. The
training workflow is shown in figure 3.7. The results of this evaluation demonstrate that using
postprocessing techniques to refine the target of the network increases the accuracy of depth
estimation on individual mono images. The impact of segmentation on depth estimation has
been investigated in this work as well and it shows that the segmentation induces marginal
improvements in depth estimation using monocular setups. In this work, there was two

1Code available at: https://github.com/shababqcd/SPDNN-Depth



36 Contributions and Methodologies

Fig. 3.8 Output of four experiments for a road scene.

sets of input (with and without segmentation) and two sets of targets (before and after post
processing). Therefore there are four experiments conducted by training four networks.
Output of these networks are shown in figure 3.8 for a road scene.

The SPDNN method has been employed in several other application including hand
segmentation [90], and Denoising/Demosaicing problems.

3.2 Data Preparation

A big issue in the amateur deep learning community is the tremendous amount of concen-
tration on the "network" compared to the "data." In this way of thinking, most of the credit
is given to the "network"; and "data" is considered as an auxiliary part which helps the
network to learn. In the researches which have been conducted in this thesis, the biggest
lesson was to realize that the network should serve the data not the other way. In fact, the
training data determines how big the network should be, what kind of layers should be used,
what nonlinearity will serve better and what loss function should be employed in the model.
Although finding the best model properties from the data itself is a nontrivial task and still an
open problem to solve. One can expand and reorient the dataset to include more information
and also represent more realistic scenarios. Being able to provide the most representative
data for a given problem is a game-changing factor especially in real-world scenarios.

To improve the generalization of a neural network model, the most obvious solution is
to increase the size of the dataset by providing new samples. This is investigated in [46]



3.2 Data Preparation 37

(Appendix C) wherein different networks are trained on different datasets for the facial
expression problem. Each network is tested on all databases to perform inter-database evalu-
ations. A separate network is trained on the mixture of all databases, and again the same test
procedure is performed. In this work, it has been shown that mixing and merging several
databases has a productive effect on the generalization of the network output.

But acquiring new samples for a specific problem is not always easy since providing
labeled databases needs significant human resources and is time-consuming. The other
solution is to generate new samples by applying different functions and transformations to
current ones. These operations are known as data augmentation. The use of augmentation in
deep learning is ubiquitous, and when dealing with images, often includes the application of
rotation, translation, blurring and other modifications to existing images that allow a network
to better generalize [91]. Augmentation serves as a type of regularization, reducing the
chance of overfitting by extracting more general information from the database and passing
it to the network.

Many deep learning frameworks can generate augmented data. For example, Keras [92]
has a built-in method to randomly flip, rotate, and scale images during training but not all
of these methods will improve performance and should not be used “blindly”. For example,
on MNIST (The famous handwritten number dataset), if one adds flipping, the network
will be unable to distinguish properly between handwritten “6” and “9” digits. Likewise,
a system that uses deep learning to classify or interpret road signs may become incapable
of discerning left and right arrows if the training set was augmented by the indiscriminate
flipping of images.

Applying any augmentation needs to be done based on the problem properties and the
knowledge of the environment of the final solution. For example, if the network is trained
for scenarios where a Gaussian Noise is present, adding this kind of noise to the training set
turns the network robust to this kind of alteration.

3.2.1 Augmentation From an Expert Knowledge

In [2](Appendix D2) an iris segmentation solution is introduced for unconstrained scenarios.
Since there are no big databases available for low-quality iris images, an augmentation
technique has been deployed to turn high-quality images into wild, real-life samples. The

2Code available at: https://github.com/shababqcd/IrisSegDNN



38 Contributions and Methodologies

Fig. 3.9 Augmentation workflow applied in [2] (Appendix D).

difference between a high quality constrained iris images and consumer grade images
depend on five different independent factors: 1- eye socket resolution, 2- image contrast, 3-
shadows in the image, 4- image blurring, 5- noise level [93], [94]. Noise is a well-studied
phenomenon and image de-noising can be done outside the network and also note that
introducing high-frequency noise into the dataset trains a low-pass filter inside the network;
apply de-noising outside the network gives a higher chance to use the whole network potential
to perform the segmentation task. In addition, introducing Gaussian noise into the dataset
will cause underfitting as explained in [95]. Therefore this work focuses on the first four
factors in augmenting the iris database. Figure 3.9 illustrates the augmentation workflow.
This augmentation technique alongside the power of the SPDNN method gives the best
segmentation results compared to the state of the art techniques. The segmentation map
generated by the network for some low equality iris images are shown in figures 3.10 and
3.11.

3.2.2 Smart Augmentation

Besides intuition and experience, there is no universal method that can determine if any
specific augmentation strategy will improve results until after training. Since training deep
neural nets is a time-consuming process, this means only a limited number of augmentation
strategies will likely be attempted before deployment of a model.

Blending several samples in the dataset in order to highlight their mutual information is
not a trivial task in practice. Which samples should be mixed together how many of them
and how they mixed is a big problem in data augmentation using blending techniques. Aug-
mentation is typically performed by trial and error, and the types of augmentation performed
are limited to the imagination, time, and experience of the researcher. Often, the choice of



3.2 Data Preparation 39

Fig. 3.10 Segmentation map generated by the network for low quality iris images.

Fig. 3.11 Segmentation map generated by the network for low quality iris images.



40 Contributions and Methodologies

Net A1

Net A2

Database

Class 1

Database

Class 2

Loss A1

Loss A2

Net B Loss B

Loss A1 = f(LossA1,LossA2,LossB)

Loss A2 = f(LossA1,LossA2,LossB)

Fig. 3.12 Smart Augmnetation technique explained in [3] (Appendix E). Black lines corre-
spond to the forward propagation. Red line is backpropagation for NetB, green lines are
backpropagation for NetA1 and blue lines are backpropagation for NetA2

augmentation strategy can be more important than the type of network architecture used [96].

Before Convolutional Neural Networks (CNN) became the norm for computer vision
research, features were “handcrafted”. Handcrafting features went out of style after it was
shown that Convolutional Neural Networks could learn the best features for a given task. In
[3] (Appendix E), We suggest that since the CNN can generate the best features for some
specific pattern recognition tasks, it might be able to give the best feature space in order to
merge several samples in a specific class and generate a new sample with the same label. Our
idea is to generate the merged data in a way that produces the best results for a specific target
network through the intelligent blending of features between 2 or more samples.

The goal of Smart Augmentation is to learn the best augmentation strategy for a given
class of input data. It does this by learning to merge two or more samples in one class. This
merged sample is then used to train a target network. The loss of the target network is used
to inform the augmenter at the same time. This has the result of generating more data for use
by the target network. This process often includes letting the network come up with unusual
or unexpected but highly performant augmentation strategies.



3.3 Deep Generative Models 41

First, several samples from the training data are drawn from a class and fed to the aug-
mented network called network A in this case. Based on the implementation, there could
be more than one augmentor, each specified for a class. The augmentor’s job is to merge
its input images and produce an output which has the same properties as the input class.
One loss is defined at the output of the augmentor known as augmentation loss. At the next
step, the augmented data is fed to a classifier (also known as network B) alongside with
the original samples. The classifier is updated based on the classification loss. But the loss
function for the augmentor is a mixture of augmentation loss and classification loss. In this
way, the augmentor learns to produce samples that decrease the classification error. The
Smart Agmentation framework is shown in figure 3.12

The smart augmentation is an ongoing group project. My main contribution was preparing
the script for train and test purposes. The biggest issue was in the implementation stage. The
reason is the existance of several data paths in the network graph while each network is tied
to its specific loss function. More than 30 observations including using several augmentors
and trying different databases show the effectiveness of the Smart Augmentation method.
The results include up to 6.7% increase in accuracy on AR Faces dataset, 6.1% on Audiance
dataset and, 5.0% on FERET dataset compared to non augmented data. We also show that this
methodology decreases overfitting, increases generalization capability and can significantly
reduce the number of parameters required to perform the same task (i.e. a smaller network
can work just as well as a large network)

Through several evaluations on different problem sets, the effectiveness of Smart Aug-
mentation has been shown for classification problems. Figure 3.13 shows an example of how
the aumentation network learns to merge two male images and generate a new sample from
the same class.

3.3 Deep Generative Models

Deep neural networks have shown great success when used as generative models. These
models learn the distribution of a specific dataset and can generate new samples from the
learned Probability Distribution Function (PDF). There are classical methods include Vari-
ational Bayesian models, and Markov Chain Monte Carlo, which has been used to model
the data distribution. Taking advantage of the neural networks non-linearity in defining
the generative model goes back to early 2000 when [97] used tanh, the nonlinearity of a
small neural network, in modeling the data distribution. These models are usually limited to



42 Contributions and Methodologies

(a) Sample A. (b) Sample B (c) Merged sample

Fig. 3.13 Augmentation network merges several samples from a class to generate a new
sample from the same class.

small-sized problems due to the complexity, and they are also computationally prohibitive.

With the emergence of the low-cost, high-performance hardware for training deep neural
networks, it became feasible to train and test big networks, and recently the generative models
have also been taking advantage of deep neural networks in learning large size problems
including image and sound generation.

Generative Adversarial Networks (GAN) [38] utilise Deep Neural Network capabilities
and are able to estimate the data distribution for large size problems. These models comprise
two networks, a generator, and a discriminator. The generator makes random samples
from a latent space, and the discriminator determines whether the sample is adversarial,
made by the generator, or is genuine image coming from the dataset. GANs are successful
implementations of deep generative models, and there are multiple variations such as WGAN
[39], EBGAN [40], BEGAN [41], ACGAN [42], and DCGAN [43], which have evolved from
the original GAN by altering the loss function and/or the network architecture. Variational
Autoencoders (VAE) [79] are the other successful implementation of deep generative models.
In these models the bottleneck of a conventional autoencoder is considered as the latent space
of the generator, i.e., the samples are fed to an autoencoder, and besides the conventional
autoencoders loss function, the Kullback-Leibler (KL) divergence between the distribution of
the data at the bottleneck is minimized compared to a Gaussian distribution. In practice, this
is achieved by adding the KL divergence term to the means square error of the autoencoder
network. The biggest downside to VAE models is their blurry outputs due to the mean square
error loss [98]. PixelRNN and PixelCNN [99] are other famous implementations of the
deep neural generative models. PixelRNN is made of 2-dimensional LSTM units, and in
PixelCNN, a Deep Convolutional Neural Network is utilized to estimate the distribution of
the data.



3.3 Deep Generative Models 43

In the following sections, contributions related to GAN are explained. In the most of
these works, the Boundary Equilibrium Generative Adversarial Networks (BEGAN) [41]
has been used to learn data distribution. One of the most challenging works in training
GANs is getting them to converge to the desired distribution. In BEGAN, the discriminator
network is an autoencoder and the generator architecture is the same as the decoder part of
the discriminator. And the loss function is inspired by control theory, as follows: Suppose
that x is the real data coming from the database, z is a sample from the uniformly distributed
random space Z, D is the auto-encoder function with the loss defined by:

L(v) = |v−D(v)|2, (3.1)

where v is the input to the auto-encoder. The objectives for BEGAN are:

Ld = L(x)− kt ·L(G(zd))

Lg = L(G(zg))

kt+1 = kt +λk
(
γL(x)−L(G(zg))

)
(3.2)

where LD is the discriminator loss, LG is the generator loss, G(z) is the output of the generator
for input vector z, is the equilibrium hyperparameter, and λk is the learning rate for k.

In order to be able to use this implementation of GAN in other purposes, we needed to be
able to reproduce the original results given in [41]. This was a challenging task since the code
shared by the authors did not converge to the desired distribution. Therefore we reimplement
the method ourselves and after several failed attempts, the network finally converged.

3.3.1 Latent Space Mapping for Generation of Object Elements with
Corresponding Data Annotation

Being able to learn the data distribution and generate random samples is a powerful tool in
the database expansion and augmentation process. But in order for the generated data to be
useful in any further learning processes, one needs to generate the ground truth alongside the
data itself. In this section, a new method is introduced wherein for a specific data generator,
the corresponding aspect generator is trained. This method gives the opportunity to expand a
dataset and also find the intermediate samples while generating the ground truth for any of
those samples.



44 Contributions and Methodologies

For a given database, if there is a perfect generator mapping a latent space into the data
space (since the generator is a local operation on the latent variable) by considering the data
processing inequality, one can argue that the latent space includes all the information of the
database. This indicates that any aspect of the dataset is extractable from the latent space
alone. The problem considered in this work is to find a local operation that maps the latent
space to the aspect space for a given generator and aspect.

The generator presented by the GAN framworks maps a unformly distributed latent space
into the data space. Note that, inverse transform sampling theorem declares that by knowing
the probability distribution of a random variable xr, there is a transformation, mapping a
uniformly distributed random variable zr into the space of xr. Since the generator network
accepts a uniform random variable and transforms it into the image space, this network is
learning an approximation of the data distribution. At the same time, the aspects of the
dataset are extractable using local operations on the data itself. Therefore the data processing
inequality justifies the ability of a neural network to learn the distribution of any aspect of
the data for a given generator network.

In Appendix F a method for learning the data aspect from the latent space is proposed.
The training step of this approach is illustrated in figure 3.14

This method applies to any reversible generative model. For a trained generator the first
step is to extract the latent space equivalent for each sample in the database. This step is
also known as learning the latent space. Next step is to train a second network mapping the
learned latent space into the aspect space. We showed that the simple Mean Square Error
loss function is sufficient for training the aspect generator.

The inference step is shown in figure 3.15, where the latent variable is fed to two
generators one generating the samples and the other providing the aspect for that sample.
In this work, the BEGAN implementation has been utilized to train the generator, and the
inverse of the generator is implemented using the Mean Absolute Error loss presented in
[41]. Based on the nature of the aspect, the aspect generator could be an MLP or a decoder
network mapping the latent space to the aspect space.

In Appendix F3 this approach has been applied to face generators while the aspects
are the facial landmarks, and also low-quality iris images while the segmentation map is
considered as the aspect. Randomly generated faces and their corresponding generated land-
marks are shown in figure 3.16 and randomly generated iris images and their corresponding
segmentation maps are shown in figure 3.17.

3Code is available at: https://github.com/shababqcd/GAN_ Aspect



3.3 Deep Generative Models 45

Fig. 3.14 Training procedure presented in Appendix F.

Generative 
Network

Random Sample

Aspect 
Generator

Corresponding 
Aspects

Random Space
Z

Fig. 3.15 The inference for generating samples alongside their corresponding aspects.



46 Contributions and Methodologies

Fig. 3.16 Randomly generated faces and their corresponding landmarks.

Fig. 3.17 Randomly generated low-quality iris images and their corresponding segmentation
maps.



3.3 Deep Generative Models 47

Generator

Discriminator
+

Classifier

Database

Feed forward discriminators

Backpropagation for generator

Discriminator Loss
+

Classifier Loss

(a) The ACGAN scheme.

Generator Discriminator

ClassifierDatabase

Feed forward discriminators

Feed forward classifier

Backpropagation for generator

Discriminator s Loss

Classifier s Loss

(b) The presented scheme (VAC+GAN)

Fig. 3.18 ACGAN vs presented model.

3.3.2 Versatile Auxiliary Classifier with Generative Adversarial Net-
work (VAC+GAN)

Conditional generators are one of the generator types that produce samples from a specific
class given the right input sequences. Training conditional generators are one of the most
appealing applications of GAN. With the recent restrictions on data acquisition and manipu-
lation such as GDPR, it is become more important to be able to expand the existing databases
and/or generate a new set of anonymous samples from scrach. The conditional genrators
gives the opportunity to construct data, given a specific class label. These datasets could be
used to train classifiers without raising any concern regarding the data acquisition procedure.

Conditional GAN (CGAN) [100] and Auxiliary Classifier GAN (ACGAN) [42] are
among the most utilized schemes for this purpose. Wherein the CGAN approach uses the
auxiliary class information alongside with partitioning the latent space and ACGAN im-
proves the CGAN idea by introducing a classification loss which back-propagates through
the discriminator and generator network. The CGAN method is versatile enough to apply to
every variation of GAN. But ACGAN is restricted to a specific loss function which decreases
its adaptivity to other GAN varieties.

In the presented scheme [47, 48] (Appendices G4 and, H5), the ACGAN technique is
extended to be applicable to any GAN implementation by placing a classifier in parallel
with the discriminator network. The classification loss backpropagates through the generator
alongside with the original GAN loss value. Figure 3.18 shows the ACGAN and VAC+GAN
techniques in training phase. In these works, it has been shown that using the binary cross-

4Code availabe at: https://github.com/shababqcd/VAC-GAN/tree/master/VACGANbinary
5Code available at: https://github.com/shababqcd/VAC-GAN/tree/master/VACGANcifar10 and

https://github.com/shababqcd/VAC-GAN/tree/master/VACGANmnist



48 Contributions and Methodologies

(a) Constrained to generate male samples (b) Constrained to generate female samples.

Fig. 3.19 Generator trained using the proposed method (VAC+GAN).

entropy (for binary cases) and categorical cross-entropy (for multi-class scenarios) loss
functions for classifier increases the Jensen-Shannon divergence between the distribution of
different classes in the generator.

The results has been compared to other versatile method known as Conditional GAN
(CGAN) for gender specified face generation and also the implementation of CGAN, CD-
CGAN and ACGAN on MNIST dataset and also the comparisons are given on CFAR10
dataset with respect to ACGAN method. The ACGAN gives comparable results, but this
method cannot be applied to other variations of GAN such as BEGAN.

The main advantage of this technique is its versatility. For example for the face generation
application, the VAC+GAN is applied to BEGAN model and for number generation it is
employed to DCGAN approach. The results for the gender specified generator are shown in
figure 3.19 wherein the generator provides male or female samples given right input sequence
and, figure 3.20 shows the results for a multi-class problem which is generating samples for
a class in MNIST dataset.



3.3 Deep Generative Models 49

Fig. 3.20 Samples drawn from conditional generator trained using proposed scheme
(VAC+GAN) on MNIST dataset. each row corresponds to one class.

3.3.3 Versatile Auxiliary Regressor with Generative Adversarial Net-
work (VAR+GAN)

In the previous section, the proposed method trains a generator able to produce samples from
discrete classes. For example, it produces male or female faces given proper input sequence.
But the question is if it is possible to train conditional generators for continuous aspects. for
example, giving a pose or landmark positions to the generator and it produces faces fixed
to those landmarks. In this work, a new framework knows as Versatile Auxiliary Regressor
with Generative Adversarial Network (VAR+GAN) is presented which is able to train such
conditional generators.

The idea of VAR+GAN [49](Appendix I6) is to place a regression network in parallel
with the discriminator network and backpropagate the regression error through the generator
(figure 3.21). In this approach, one can apply restrictions on the generated data to be limited
to some continuous constraints. For example, the generator creates faces given a specific set
of landmarks using the VAR+GAN idea. The other similar idea is conditional Bi-directional
GAN (cBiGAN) [101] which is a mixture of CGAN [100] and Bidirectional GAN (BiGAN)
[102]. See figure 3.22. The main issue with this method is the lack of adaptability to every

6Code availabe at: https://github.com/shababqcd/VAR-GAN



50 Contributions and Methodologies

Generator Discriminator

RegressorDatabase

(Image)

Database

(Aspect)

Latent 

Space

Aspect

Fig. 3.21 The error from the regression network backpropagates through the generator in
VAR+GAN framework.

Generator

Database

(Image)

Database

(Aspect)

Discriminator

Encoder

Latent 

Space

Aspect

Fig. 3.22 The cBiGAN framework merges CGAN and BiGAN approaches in a single model.



3.4 Conclusion 51

GAN variation. This method is only applicable to BiGAN scheme.

The main advantage of the proposed method is that it applies to any GAN variation. This
gives the opportunity of utilizing different GAN implementations since each of them are
designed for some specific problem.

The other main contribution of the VAR+GAN technique is its particular loss function
designed for the regression network. This loss function is inspired by the categorical cross-
entropy loss function and is given by

LR =
∫ ∫

d pz(z)
(
− log

(
1− (y−R(G(z)))

))
dz (3.3)

wherein z is the latent space variable, d pz(z) is the distribution of an infinitesimal partition
of latent space, y is the target variable (ground truth), R is the regression function and G is
the generator function.

This in [49](Appendix I) we show that this loss function guarantees to decrease the
entropy of the generator’s output while increasing the Jensen Shannon Divergence of two
sets of outputs correspond to any two different aspect sets.

The output of the network trained on faces and their landmarks are shown in figure 3.23
for two different sets of landmarks. Again this method gives a powerful tool to generate a set
of anonymous samples for any desired aspect set. The other application of this method is
to expand a dataset for rare aspects. For example if a dataset lacks some specific poses and
landmarks, one can generate many samples for those poses and add to database. This leads
to training better regression solutions in future.

3.4 Conclusion

With the emergence of fast and efficient hardware to train and infer Deep Neural Networks,
they become the most popular approach to solve machine learning problems in recent years.
There has been an immense amount of research on this topic in the last few years and this
thesis targets three fields in the Deep Learning science.

1. Network Design: For a given problem finding an optimum network structure is a
nontrivial task. There are several factors including the depth of the network, layer
type and non-linearity type that should be determined in the design procedure. But



52 Contributions and Methodologies

(a) Landmark set 1. (b) landmark set 2.

Fig. 3.23 Generator outputs for proposed method (VAR+GAN) given particular landmarks

for any given problem one can find several successful deep learning solutions. In
this work, a new method known as Semi Parallel Deep Neural Network (SPDNN)
is presented which merges several network architectures into a single model using
the graph contraction method. Many observations including iris segmentation and
monocular depth estimation problems show the effectiveness of the SPDNN method.
This method also reduces the number of the trainable parameters for the final model
compared to the mixture of every parent network. For example, for the iris segmentation
task [2] (Appendix D), we got 33% reduction of combined network size while for
the Monocular Depth Estimation [1] (Appendix B) network this number goes up to
75% reduction in network size. Also in [45] (Appendix A) it has been shown even by
keeping the network size same as each parent network, the SPDNN gives better results
in the iris segmentation task. SPDNN might not solve all the network design problems
entirely but it is a step forward in this field and also helps to take advantage of several
designs simultaneously.

2. Data augmentation: The biggest lesson learned in this Ph.D. course was the value of
data in Deep Learning. The data define every single aspect of the problem and address
how the problem should be solved. Reorienting the data to be suitable for a particular
task is known as data augmentation. It is usually done blindly by most of the Deep
Learning scientists, such as flipping, rotating and adding noise to the data which in
the most of the cases helps to generalize the solution but by knowing the nature of the



3.4 Conclusion 53

problem, the augmentation process could be designed by an expert. For example in this
thesis, a DNN is trained to segment the iris region out of the low-quality eye socket
image. In order to imitate the low-quality nature of the customer level iris acquisition
handheld devices, several data processing steps have been implied including, contrast
reduction, shadowing and motion blur. The results of this augmentation approach
alongside with the SPDNN design gives the best segmentation accuracy for low-quality
databases such as UBIRIS, and MobBio reported in the literature (By the time of
writing this thesis).

In some cases, the nature of the problem is vague or unknown. This is happening
when the implementation scenarios are not well defined. This uncertainty makes the
augmentation process more difficult. One of the best solutions to expand the database
in these cases is to merge several samples to produce a new representation. The Smart
Augmentation technique presented in this thesis is a method that learns how to mix
and blend several samples of one class to produce a new sample of the same class
while at the same time the generated sample should reduce the classification loss of a
second network. Smart Augmentation has been tested on more than 30 scenarios and
it has been shown that this methodology decreases overfitting, increases generalization
capability and can significantly reduce the number of parameters required to perform
the same task (i.e., a smaller network can work just as well as a large network).

3. Deep Generators: Being able to learn the data distribution and draw randomly generated
samples has many appealing applications in data-driven machine learning methods.
In this thesis, a method is presented to generate samples alongside any aspect of the
sample. For example, a random face is generated and the facial landmarks for that face
are also generated. This is done by training two generators; one for the actual samples
and the other for the aspect.

Another method is presented known as Versatile Auxiliary Classifier with Generative
Adversarial Network (VAC+GAN). In this framework, a conditional generator is
trained which is able to produce samples drawn from a desired class. For example, it
draws randomly generated male faces for some specific input sequence and female
samples for a different sequence. This expands a dataset by adding anonymous
samples suitable for classification tasks. The advantage of the presented method to
other conditional generators is its versatility. It basically is applicable to every variant
of GAN implementations.

The other contribution is an expansion of (VAC+GAN) method known as Versatile Aux-
iliary Regressor with Generative Adversarial Network (VAR+GAN). In this method,



54 Contributions and Methodologies

the generator is constrained to a continuous aspect of the data. For example, this
generator is able to produce random facial images that are fixed to a specific pose or a
set of landmarks. This method is versatile as well. It means that it is simply applicable
to any variant of GAN implementations. This method helps to expand the size of the
database by producing anonymous samples following a specific continuous aspect.
The other application is to produce samples with rare aspects. Like generating faces in
some specific pose or intermediate poses between two samples. This certainly helps to
solve the regression problems in more general scenarios.

3.5 Future Works

The future works include mixing the VAR+GAN and VAC+GAN ideas to train conditional
generators which accept discrete and continuous aspects at the same time. For example, in
the face generation case one can generate random faces which belong to a specific gender
class and also are fixed onto a particular landmark set.

The other idea is to find a way to inject more information during image generation in
order to train a generator for a specific task. In other words in all the GAN ideas so far,
the generator is producing extra samples without looking at a specific problem. One of the
ideas for future work is training generators that produce samples for a specific problem. This
problem can be solved using photo-realistic style transfer as well.

For the Smart Augmentation project, the future works include multi class implementation
of the idea and also mixing it with GAN idea to generate more realistic images.

The future work for the iris segmentation project is to train a network to segment low
quality, consumer level, off-axis iris images which are useful in AR/VR applications.



References

[1] S. Bazrafkan, H. Javidnia, J. Lemley, and P. Corcoran, “Semiparallel deep neural
network hybrid architecture: first application on depth from monocular camera,”
Journal of Electronic Imaging, vol. 27, pp. 27 – 27 – 19, 2018. [Online]. Available:
https://doi.org/10.1117/1.JEI.27.4.043041

[2] S. Bazrafkan, S. Thavalengal, and P. Corcoran, “An end to end deep neural network
for iris segmentation in unconstrained scenarios,” Neural Networks, vol. 106, pp.
79 – 95, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S089360801830193X

[3] J. Lemley, S. Bazrafkan, and P. Corcoran, “Smart augmentation learning an optimal
data augmentation strategy,” IEEE Access, vol. 5, pp. 5858–5869, 2017.

[4] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural networks,
vol. 61, pp. 85–117, 2015.

[5] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, p.
436, 2015.

[6] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT press
Cambridge, 2016, vol. 1.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level control
through deep reinforcement learning,” Nature, vol. 518, no. 7540, p. 529, 2015.

[8] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedi-
cal image segmentation,” in International Conference on Medical image computing
and computer-assisted intervention. Springer, 2015, pp. 234–241.

[9] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,”
in Proceedings of the IEEE International Conference on Computer Vision, 2015, pp.
3730–3738.

[10] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks for text
classification,” in Advances in neural information processing systems, 2015, pp. 649–
657.

[11] J. Bergstra, F. Bastien, O. Breuleux, P. Lamblin, R. Pascanu, O. Delalleau, G. Des-
jardins, D. Warde-Farley, I. Goodfellow, A. Bergeron et al., “Theano: Deep learning
on gpus with python,” in NIPS 2011, BigLearning Workshop, Granada, Spain, vol. 3.
Citeseer, 2011.

https://doi.org/10.1117/1.JEI.27.4.043041
http://www.sciencedirect.com/science/article/pii/S089360801830193X
http://www.sciencedirect.com/science/article/pii/S089360801830193X


56 References

[12] S. Dieleman, J. Schlüter, C. Raffel, E. Olson, S. K. Sønderby, D. Nouri, D. Maturana,
M. Thoma, E. Battenberg, J. Kelly, J. D. Fauw, M. Heilman, D. M. de Almeida,
B. McFee, H. Weideman, G. Takács, P. de Rivaz, J. Crall, G. Sanders, K. Rasul,
C. Liu, G. French, and J. Degrave, “Lasagne: First release.” Aug. 2015. [Online].
Available: http://dx.doi.org/10.5281/zenodo.27878

[13] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard et al., “Tensorflow: A system for large-scale machine learning.” in
OSDI, vol. 16, 2016, pp. 265–283.

[14] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” in
Proceedings of the 22nd ACM international conference on Multimedia. ACM, 2014,
pp. 675–678.

[15] A. Paszke, S. Chintala, R. Collobert, K. Kavukcuoglu, C. Farabet, S. Bengio, I. Melvin,
J. Weston, and J. Mariethoz, “Pytorch: Tensors and dynamic neural networks in python
with strong gpu acceleration, may 2017.”

[16] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and
Z. Zhang, “Mxnet: A flexible and efficient machine learning library for heterogeneous
distributed systems,” arXiv preprint arXiv:1512.01274, 2015.

[17] B. Yegnanarayana, Artificial neural networks. PHI Learning Pvt. Ltd., 2009.

[18] S. Lawrence, C. L. Giles, and A. C. Tsoi, “What size neural network gives optimal
generalization? convergence properties of backpropagation,” Tech. Rep., 1998.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing systems,
2012, pp. 1097–1105.

[20] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,”
in European conference on computer vision. Springer, 2014, pp. 818–833.

[21] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using convolutional
neural networks,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016, pp. 2414–2423.

[22] F. Luan, S. Paris, E. Shechtman, and K. Bala, “Deep photo style transfer,” CoRR,
abs/1703.07511, vol. 2, 2017.

[23] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[24] A. Deshpande, “The 9 deep learning papers you need to know about
(understanding cnns part 3),” 2016. [Online]. Available: https://adeshpande3.github.
io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
A. Rabinovich et al., “Going deeper with convolutions.” Cvpr, 2015.

http://dx.doi.org/10.5281/zenodo.27878
https://adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html
https://adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html


References 57

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[27] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate
object detection and semantic segmentation,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2014, pp. 580–587.

[28] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference on
computer vision, 2015, pp. 1440–1448.

[29] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detec-
tion with region proposal networks,” in Advances in neural information processing
systems, 2015, pp. 91–99.

[30] J. Dai, Y. Li, K. He, and J. Sun, “R-fcn: Object detection via region-based fully
convolutional networks,” in Advances in neural information processing systems, 2016,
pp. 379–387.

[31] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 779–788.

[32] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “Ssd:
Single shot multibox detector,” in European conference on computer vision. Springer,
2016, pp. 21–37.

[33] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” arXiv preprint, 2017.

[34] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learning,” arXiv
preprint arXiv:1611.01578, 2016.

[35] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Region-based convolutional
networks for accurate object detection and segmentation,” IEEE transactions on
pattern analysis and machine intelligence, vol. 38, no. 1, pp. 142–158, 2016.

[36] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional encoder-
decoder architecture for image segmentation,” arXiv preprint arXiv:1511.00561, 2015.

[37] V. Badrinarayanan, A. Handa, and R. Cipolla, “Segnet: A deep convolutional
encoder-decoder architecture for robust semantic pixel-wise labelling,” arXiv preprint
arXiv:1505.07293, 2015.

[38] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural
information processing systems, 2014, pp. 2672–2680.

[39] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial networks,”
in International Conference on Machine Learning, 2017, pp. 214–223.

[40] J. Zhao, M. Mathieu, and Y. LeCun, “Energy-based generative adversarial network,”
arXiv preprint arXiv:1609.03126, 2016.



58 References

[41] D. Berthelot, T. Schumm, and L. Metz, “Began: Boundary equilibrium generative
adversarial networks,” arXiv preprint arXiv:1703.10717, 2017.

[42] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with auxiliary classifier
gans,” arXiv preprint arXiv:1610.09585, 2016.

[43] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with
deep convolutional generative adversarial networks,” arXiv preprint arXiv:1511.06434,
2015.

[44] hindupuravinash, “The gan zoo,” 2018. [Online]. Available: https://github.com/
hindupuravinash/the-gan-zoo

[45] S. Bazrafkan and P. M. Corcoran, “Pushing the ai envelope: merging deep networks
to accelerate edge artificial intelligence in consumer electronics devices and systems,”
IEEE Consumer Electronics Magazine, vol. 7, no. 2, pp. 55–61, 2018.

[46] S. Bazrafkan, T. Nedelcu, P. Filipczuk, and P. Corcoran, “Deep learning for facial
expression recognition: A step closer to a smartphone that knows your moods,” in
Consumer Electronics (ICCE), 2017 IEEE International Conference on. IEEE, 2017,
pp. 217–220.

[47] S. Bazrafkan, H. Javidnia, and P. Corcoran, “Versatile auxiliary classifier with genera-
tive adversarial network (vac+gan),” arXiv preprint arXiv:1805.00316, 2018.

[48] S. Bazrafkan and P. Corcoran, “Versatile auxiliary classifier with generative adversarial
network (vac+ gan), multi class scenarios,” arXiv preprint arXiv:1806.07751, 2018.

[49] ——, “Versatile auxiliary regressor with generative adversarial network (var+gan),”
arXiv preprint arXiv:1805.10864, 2018.

[50] J. Schmidhuber, “Who invented backpropagation?” 2014.

[51] C. Davis. (2017, June) Why is deep learning so easy? [Online]. Available:
https://www.quora.com/Why-is-deep-learning-so-easy

[52] N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck method,” arXiv
preprint physics/0004057, 2000.

[53] N. Tishby and N. Zaslavsky, “Deep learning and the information bottleneck principle,”
in Information Theory Workshop (ITW), 2015 IEEE. IEEE, 2015, pp. 1–5.

[54] R. Shwartz-Ziv and N. Tishby, “Opening the black box of deep neural networks via
information,” arXiv preprint arXiv:1703.00810, 2017.

[55] A. M. Saxe, Y. Bansal, J. Dapello, M. Advani, A. Kolchinsky, B. D. Tracey, and
D. D. Cox, “On the information bottleneck theory of deep learning,” in International
Conference on Learning Representations, 2018.

[56] Aaron. (2018, February) Failure to replicate schwartz-ziv and tishby. [Online].
Available: https://planspace.org/20180213-failure_to_replicate_schwartz-ziv_and_
tishby/

https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo
https://www.quora.com/Why-is-deep-learning-so-easy
https://planspace.org/20180213-failure_to_replicate_schwartz-ziv_and_tishby/
https://planspace.org/20180213-failure_to_replicate_schwartz-ziv_and_tishby/


References 59

[57] P. Lewis, “Analogy between human and artificial neural nets,” Acesso em Setembro de,
2014.

[58] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous
activity,” The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–133, 1943.

[59] F. Rosenblatt, The perceptron, a perceiving and recognizing automaton Project Para.
Cornell Aeronautical Laboratory, 1957.

[60] G. Chandrashekar and F. Sahin, “A survey on feature selection methods,” Computers
& Electrical Engineering, vol. 40, no. 1, pp. 16–28, 2014.

[61] Y. LeCun et al. (2015) Lenet-5, convolutional neural networks. [Online]. Available:
http://yann.lecun.com/exdb/lenet

[62] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional encoder-
decoder architecture for image segmentation,” IEEE transactions on pattern analysis
and machine intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.

[63] R. H. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, and H. S. Seung,
“Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit,”
Nature, vol. 405, no. 6789, p. 947, 2000.

[64] A. Sharma. (2017, March) Understanding activation functions in neural
networks. [Online]. Available: https://medium.com/the-theory-of-everything/
understanding-activation-functions-in-neural-networks-9491262884e0

[65] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural
network acoustic models,” in Proc. icml, vol. 30, no. 1, 2013, p. 3.

[66] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” in Proceedings of the IEEE
international conference on computer vision, 2015, pp. 1026–1034.

[67] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network
learning by exponential linear units (elus),” arXiv preprint arXiv:1511.07289, 2015.

[68] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified activations in
convolutional network,” arXiv preprint arXiv:1505.00853, 2015.

[69] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-normalizing neural
networks,” in Advances in Neural Information Processing Systems, 2017, pp. 972–981.

[70] X. Jin, C. Xu, J. Feng, Y. Wei, J. Xiong, and S. Yan, “Deep learning with s-shaped
rectified linear activation units.” in AAAI, 2016, pp. 1737–1743.

[71] P. Ramachandran, B. Zoph, and Q. V. Le, “Swish: a self-gated activation function,”
arXiv preprint arXiv:1710.05941, 2017.

[72] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[73] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,” 2018.

http://yann.lecun.com/exdb/lenet
https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0
https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0


60 References

[74] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-resnet
and the impact of residual connections on learning.” in AAAI, vol. 4, 2017, p. 12.

[75] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto,
and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision
applications,” arXiv preprint arXiv:1704.04861, 2017.

[76] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large-Scale
Hierarchical Image Database,” in CVPR09, 2009.

[77] L. Rosasco, E. D. Vito, A. Caponnetto, M. Piana, and A. Verri, “Are loss functions all
the same?” Neural Computation, vol. 16, no. 5, pp. 1063–1076, 2004.

[78] C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised monocular depth
estimation with left-right consistency,” in CVPR, vol. 2, no. 6, 2017, p. 7.

[79] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013.

[80] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face
recognition and clustering,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2015, pp. 815–823.

[81] F. E. Curtis and K. Scheinberg, “Optimization methods for supervised machine learn-
ing: From linear models to deep learning,” in Leading Developments from INFORMS
Communities. INFORMS, 2017, pp. 89–114.

[82] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-scale machine
learning,” SIAM Review, vol. 60, no. 2, pp. 223–311, 2018.

[83] A. S. Walia. (2017, June) Types of optimization algorithms used in neural networks
and ways to optimize gradient descent. [Online]. Available: https://goo.gl/q3wosS

[84] V. Bushaev. (2017, December) Stochastic gradient descent
with momentum. [Online]. Available: https://towardsdatascience.com/
stochastic-gradient-descent-with-momentum-a84097641a5d

[85] Y. Nesterov, “A method for unconstrained convex minimization problem with the rate
of convergence o (1/kˆ 2),” in Doklady AN USSR, vol. 269, 1983, pp. 543–547.

[86] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization,” Journal of Machine Learning Research, vol. 12, no. Jul,
pp. 2121–2159, 2011.

[87] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv preprint
arXiv:1212.5701, 2012.

[88] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude,” COURSERA: Neural networks for machine learning,
vol. 4, no. 2, pp. 26–31, 2012.

[89] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

https://goo.gl/q3wosS
https://towardsdatascience.com/stochastic-gradient-descent-with-momentum-a84097641a5d
https://towardsdatascience.com/stochastic-gradient-descent-with-momentum-a84097641a5d


References 61

[90] A.-S. Ungureanu, S. Bazrafkan, and P. Corcoran, “Deep learning for hand segmenta-
tion in complex backgrounds,” in Consumer Electronics (ICCE), 2018 IEEE Interna-
tional Conference on. IEEE, 2018, pp. 1–2.

[91] P. Y. Simard, D. Steinkraus, J. C. Platt et al., “Best practices for convolutional neural
networks applied to visual document analysis.” in ICDAR, vol. 3, 2003, pp. 958–962.

[92] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.

[93] S. Thavalengal, P. Bigioi, and P. Corcoran, “Iris authentication in handheld devices-
considerations for constraint-free acquisition,” IEEE Transactions on Consumer Elec-
tronics, vol. 61, no. 2, pp. 245–253, 2015.

[94] ——, “Evaluation of combined visible/nir camera for iris authentication on smart-
phones,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2015, pp. 42–49.

[95] S. Zheng, Y. Song, T. Leung, and I. Goodfellow, “Improving the robustness of deep
neural networks via stability training,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 4480–4488.

[96] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT press
Cambridge, 2016, vol. 1.

[97] H. Valpola and J. Karhunen, “An unsupervised ensemble learning method for nonlinear
dynamic state-space models,” Neural computation, vol. 14, no. 11, pp. 2647–2692,
2002.

[98] K. Frans, “Variational autoencoders explained,” 2016. [Online]. Available:
http://kvfrans.com/variational-autoencoders-explained/

[99] A. v. d. Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel recurrent neural networks,”
arXiv preprint arXiv:1601.06759, 2016.

[100] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv preprint
arXiv:1411.1784, 2014.

[101] K. Wang, R. Zhao, and Q. Ji, “A hierarchical generative model for eye image synthesis
and eye gaze estimation.”

[102] A. Jaiswal, W. AbdAlmageed, Y. Wu, and P. Natarajan, “Bidirectional conditional
generative adversarial networks,” arXiv preprint arXiv:1711.07461, 2017.

https://github.com/fchollet/keras
http://kvfrans.com/variational-autoencoders-explained/




Appendix A

Pushing the AI Envelope: Merging deep
networks to accelerate edge artificial
intelligence in consumer electronics
devices and systems



MARCH 2018  ^  IEEE Consumer Electronics Magazine2162-2248/18©2018IEEE 55

D
eep neural networks (DNNs) are widely used 
by both academic and industry researchers to solve 
many long-standing problems in machine learning. 
There has been such a growth of research in this 
field, and it has been applied to so many varying 

problems, that it would be accurate to say that we may be liv-
ing through the precursor of the singularity [1]. But regard-
less of one’s views on artificial intelligence (AI), there is no 
doubt that there is a wealth of recent research that leverages 
the use of various DNNs to solve a broad range of pattern 
recognition and classification problems. Examples range 
from the introduction of smart speakers with intelligent assis-

tants to the application of DNNs to solve recalcitrant prob-
lems in computer vision for autonomous vehicles. Many of 
these problems can have very useful applications in the 
design of smarter consumer electronics (CE) systems and 
devices. The question for CE engineers is how to leverage 
this wealth of academic and industry research efforts, turning 
them into practical DNN solutions suitable for deployment in 
practical devices and electronic systems.

FINDING THE FOREST
There are a number of challenges here. First, academic research is 
typically focused on a specific facet of a research problem so that 
the authors can compare their results with different approaches to 
the same problem, thereby trying to show significant improve-
ment in certain aspects of performance, accuracy, or robustness. 

Digital Object Identifier 10.1109/MCE.2017.2775245
Date of publication: 8 February 2018

Pushing the AI Envelope

Merging deep networks to accelerate edge artificial intelligence  
in consumer electronics devices and systems.

By Shabab Bazrafkan and Peter Corcoran

©iStockphoto.com/ktsimage



56 IEEE Consumer Electronics Magazine  ^  MARCH 2018

Rarely does a new technique or tactic perform so well that all 
previous methods become obsolete. However, the engineer, 
approaching this problem from a broader perspective, would 
like to be able to combine multiple DNN techniques, leveraging 
the positive benefits of each and mitigating their weaker aspects.

A second challenge is that academic research is rarely 
concerned with optimizing a technique for size or architectur-
al efficiency. Typically, many resources are directed to the 
narrow problem at hand, and even where optimizations are 
investigated—and, thankfully, the deep-learning research 
community has become more sensitive to their importance—
they apply to only a particular DNN architecture. In general, 
researchers are focused on designing a network to solve an 
immediate problem and do not think more widely about shar-
ing structures or resources between multiple DNNs.

Thus, for the engineer approaching a particular problem in 
machine learning and seeking to adopt techniques from the lit-
erature, there will typically be a handful of different DNN 
solutions available, each adopting different network structures 
and optimizations while still sharing many common network 
layers and data inputs. However, there has been little research 
concerned with techniques for merging and optimizing a com-
bination of existing DNN approaches into a more holistic solu-
tion. In effect, almost everyone seems to be focused on 
growing an insular cluster of trees and developing these as 
quickly as possible, rather than working with others to develop 
and manage a forest where everyone can take advantage of 
economies of scale.

Fortunately, most DNN architectures do share many com-
mon elements, just as many parts of a forest share similar 
trees. Furthermore, it is possible to bring such elements togeth-
er and develop more accurate, optimized, and improved 
DNNs that will deliver better performance and economies of 
scale with efficient implementations that are well suited for 
CE deployments. This is what we will focus on in the remain-
der of this article.

A CRASH COURSE IN DEEP NETWORKS
Here, we provide a quick refresher on some of the most impor-
tant elements of a DNN. For those who are unfamiliar with 
deep learning, our previous article [2] is recommended. DNN 
networks comprise several signal-processing methods applied 
in sequence to an input data structure. In image-understand-
ing tasks, these signal-processing elements are typically con-
volutional and fully connected layers, followed by pooling 

and regularization layers. Data flow through these layers in 
sequence, eventually emerging in a modified structure that 
typically enables a binary interpretation of some feature or 
characteristic of the input data structure. Typically, the chain 
of data processing layers is much longer (deeper) than in clas-
sical neural networks, hence the descriptive term deep that is 
applied to such networks.

THE MAIN CATEGORIES OF DEEP NETWORK LAYERS
Deep networks comprise a succession of data-processing lay-
ers, each taking inputs from a preceding layer and filtering a 
set of inputs to generate a set of outputs. 

▼▼ �Convolutional layers: These are the best-known layers; 
they convolve the input data from the previous layer I with 
a kernel W. In the general case, an offset bias b is added to 
this convolution as follows:

.P I W b)= +

In computer-vision applications, the original input I is typi-
cally a structured set of image pixels, but as the original data 
element is processed by successive layers of the network, it 
becomes altered and transformed until, eventually, a much 
simpler output is obtained from the network output. Often, 
this is a simple binary decision, although other forms of out-
put can also be generated.

Other layer types are also used in deep network architec-
tures, such as the following. 

▼▼ �Pooling layers: These typically apply a nonlinear trans-
form on the input data that is normally used to reduce the 
size of the input data. Such layers can be thought of as 
data concentrator elements, and they are important for con-
trolling the overall size of a network, which could grow 
too large if only convolutional layers were used.

▼▼ �Fully connected layers: These are exactly the same as clas-
sical neural network layers, where all of the neurons in a 
layer are connected to all of the neurons in the subsequent 
layer. The neurons give the summation of their input multi-
plied by their weights, which is then passed through their 
activation functions. Even more than with convolutional 
layers, these can cause the network size to grow, and so, 
typically, only one or two fully connected layers will be 
used in most deep networks.

▼▼ �Regularization layers: These are used to prevent overfit-
ting inside the network. Different kinds of regularizations 
have been proposed, the most important ones being 1) 
weight regularization, 2) dropout regularization, where 
some data are skipped, and 3) batch normalization, where 
output data are averaged across several input data. Each 
of these regularization techniques has advantages and 
drawbacks that make them more (or less) suitable for spe-
cific applications.

THE COSTS OF GOING DEEP
As was previously mentioned, there has been spectacular 
growth in research on AI in general and on the application 

The engineer, approaching this 
problem from a broader perspec-
tive, would like to be able to 
combine multiple DNN techniques, 
leveraging the positive benefits 
of each.



MARCH 2018  ^  IEEE Consumer Electronics Magazine 57

of deep networking techniques in particular. So much so 
that, faced with almost any contemporary machine-learning 
problem, it is almost inevitable that one can find in the lit-
erature a plethora of varying network architectures derived 
from a number of core data sets. Typically, each data set is 
developed and annotated for this specific class of problem, 
and each DNN derived from these data sets has some par-
ticular advantages and drawbacks. The challenge for engi-
neers is to find the best possible network for a specific 
problem or design goal. But, in practical use cases, there is 
often no single champion network, and it may be desirable 
to use several different networks that can provide comple-
mentary outputs.

However, much of the recent literature improves on per-
formance aspects by adding layers to deepen the network. 
While this may improve specific aspects of network perfor-
mance, a price is paid in terms of additional memory require-
ments to store the network and extra compute cycles to 
process the added layers, or a greater area of silicon if the 
goal is to provide a chipset implementation. Additionally, if 
the design engineer wishes to combine several of these deep 
networks in parallel, the resource requirements quickly lead 
to impractical, even infeasible, solutions.

Naturally, it is possible to go back to the drawing board and 
design a completely new network from scratch, but designing, 
implementing, testing, and optimizing deep networks is chal-
lenging and time consuming. The same can be said for the cre-
ation of new annotated data sets to enhance and focus network 
capabilities. It would be a great benefit if it were possible to 
leverage the work of other researchers to obtain improved net-
works without having to go back to the drawing board for each 
new problem that comes across the engineer’s desk.

FROM MANY, ONE (NETWORK TO RULE THEM ALL)
It was this line of thinking that led to the work we next 
describe. Note that this article only provides a top-level over-
view of the technique, but, fortunately, 
one can find more detailed guidelines on 
the applications of these methods for a 
number of different contemporary image 
analysis problems [3].

Now, suppose there is a set of neu-
ral networks designed for a specific 
task. As an example, suppose that, for a 
specific deep-learning problem, one 
can find in the literature N different 
successful networks, each of which 
provides reasonable results on that spe-
cific task. Each, however, also has its 
own drawbacks and would fail on some 
input data. As previously discussed, it 
would not make sense to implement 
multiple parallel networks because of 
the large resource requirements. It is 
known that deep networks often share 
some common layers near the output or 

input ends of the network, but it will still be necessary to 
duplicate the bulk of each network to run them in parallel. In 
addition, there will be a need for a final fully connected net-
work layer, or a convolutional layer to map all of these paral-
lel networks into a concluding output from the DNN (see 
Figures 1 and 2). It would be convenient to have a methodolo-
gy to extract a single deep-network architecture from a selec-
tion of parallel networks and to be able to further refine and 
optimize this newly derived architecture across the original 
training data sets. This is what we are going to outline next.

LET’S TRY AN EXAMPLE
To understand our methodology, it is best to provide a practi-
cal working example. In fact, the original iteration of this 
methodology was somewhat accidental and the results unex-
pected. When we first applied it, our expectation was that the 
new architecture derived from several individual DNNs 
would simply behave as a vote taker.

THE IRIS-SEGMENTATION PROBLEM
As a demonstration, we will consider the iris-segmentation 
problem on mobile devices. It is well known that iris biomet-
rics has become feasible on mobile devices [4]–[7], and a 
number of companies have recently added this feature to 
smartphones [8]. A key issue for the correct operation of the 
biometric authentication chain on mobile devices is that of 

Net 1

Net 2

Input

O
ut

pu
t 1

O
ut

pu
t 2

O
ut

pu
t N

O
ut

pu
t I

m
ag

e

K
er

ne
l

Net N

FIGURE 1. The concatenation of the last layer into a single layer (a convolution case).

There has been little research con-
cerned with techniques for merg-
ing and optimizing a combination 
of existing DNN approaches into a 
more holistic solution.



58 IEEE Consumer Electronics Magazine  ^  MARCH 2018

iris segmentation [9]–[11]. To address the challenges involved, 
we derived a large database of poor-quality iris images from 
the extended CASIA 1000 data set [12]. We augmented the 
database by reducing the resolution, reducing the contrast 
inside and outside the iris, and adding motion blur and shad-
ow to each sample [13]. The augmentation code is available 
online [14]. Then we trained three existing iris-segmentation 
models on the modified data set.
1)	 �The first network was an eight-layer, fully convolutional 

DNN designed for the iris-segmentation task. All layers 
used 7 × 7 kernels. We performed the batch normalization 
technique after each convolutional layer to avoid overfit-
ting and for faster convergence [Figure 3(a)].

2)	 �The second network designed for the problem at hand was 
a six-layer, fully convolutional network, shown in Fig-
ure 3(b). We used a kernel size of 3 × 3 in all layers. We 
did not use any pooling in the network, and we employed 
the batch normalization technique again after each convo-
lutional layer.

3)	 �The third proposed network was a five-layer, fully convolu-
tional neural network, shown in Figure 3(c). Here, the kernel 

Input

Input

Input

Input

Output

Output

Output

Input

Output
7 × 7

Output
3 × 3

Input
Output
11 × 11

7 
×

 7
10

ch

7 
×

 7
10

ch

7 
×

 7
10

ch

7 
×

 7
10

ch

7 
×

 7
10

ch

7 
×

 7
16

ch

7 
×

 7
10

ch

3 
×

 3
8c

h

3 
×

 3
8c

h

5 
×

 5
8c

h

7 
×

 7
16

ch

9 
×

 9
16

ch

3 
×

 3
28

ch

3 
×

 3
28

ch

3 
×

 3
28

ch

3 
×

 3
28

ch

(7C,1)

(3C,1)

(3C,1) (5C,2) (7C,3) (9C,4)

(3C,2) (3C,3) (3C,4) (3C,5)

(7C,2) (7C,3) (7C,3) (7C,4) (7C,5) (7C,6)

(a)

(b)

(c)

FIGURE 3. The networks we used to perform iris segmentation: (a) network 1, (b) network 2, and (c) network 3. ch: channel.

Input

Net 1

Net 2

Net N

O1

O2

OP

O1

O2

OP

O1

O2

OP

O1

O2

OP

FIGURE 2. The concatenation of the last layer into a single layer 
(a fully connected case).



MARCH 2018  ^  IEEE Consumer Electronics Magazine 59

size increased for each layer, starting with 3 × 3 for the first 
layer and 11 × 11 for the output layer. We did not use any 
pooling in the network, and again we performed the batch 
normalization procedure after each convolutional layer.

We trained these three networks using the Nesterov momen-
tum method for the binary cross-entropy loss function on the 
expanded CASIA 1000 data set.

MERGING THE NETWORKS
The main purpose of the semiparallel DNN (SPDNN) model 
is to mix and merge several deep architectures and produce 
a final model that takes advantage of 
the specialized layers of each architec-
ture but is significantly smaller than 
the combined sizes of these networks. 
The approach we adopted is based on 
graph optimization, and we proceeded 
as follows.
1)	 �We translate each network into its 

corresponding graph. The graph rep-
resentation for each network is shown 
at the bottom in Figure 3(a)–(c).

2)	 �We assigned properties to each 
node.

	 –	 �The first property is the opera-
tion of the layer and the kernel 
size: C for convolutional, F for 
fully connected layers, and P for 
pooling operation. (Note that, in 
this simplified example, there 
are no fully connected and pool-
ing layers; please refer to [3] for 
more complex examples.) For 
example, 5C corresponds to a 
convolutional layer with the 5 × 
5 kernel.

	 –	 �The second property is the distance of this layer from 
the input layer. For example, (9C,4) is the label of the 
node with a 9 × 9 convolutional operation and having 
distance 4 from the input data node. 

3)	 �We placed these graphs in parallel, sharing the same input 
and output (see Figure 4). We assigned the same label to 
all nodes with identical properties. In this simple demon-
stration, all of the nodes with, e.g., the property (7C,3) 
were assigned label C.

4)	 �We applied the graph contraction operation to this graph. 
In the graph contraction step, we merged all of the nodes 

7 
×

 7
6c

h
3 

×
 3

5c
h

3 
×

 3
17

ch

3 
×

 3
17

ch

3 
×

 3
17

ch

3 
×

 3
17

ch

5 
×

 5
5c

h

9 
×

 9
10

ch

7 
×

 7
6c

h

7 
×

 7
6c

h

7 
×

 7
6c

h

7 
×

 7
6c

h

7 
×

 7
6c

h

7 
×

 7
6c

h

C
on

ca
t

Output
3 × 3Input

FIGURE 6. The contracted graph is translated into the neural network. Concat: concatenation. 

A B C D E F G

H

H M C N

I J K L

Input Output

(7C,1)

(3C,1)

(3C,1)

(3C,2)

(3C,2)

(3C,3)

(3C,3)

(3C,4)

(3C,4)

(3C,5)

(7C,2) (7C,3) (7C,3) (7C,4) (7C,5) (7C,6)

FIGURE 4. All of the graphs in Figure 3 are placed in parallel, sharing a single input and 
output.

A B

I

D E F G

LKJ

M
N

C

H
Input Output

(7C,1)

(3C,1)
(3C,2) (3C,3) (3C,4) (3C,5)

(5C,2) (9C,4)

(7C,2) (7C,3) (7C,4) (7C,5) (7C,6)
(7C,3)

FIGURE 5. The graph contraction is applied to the graph in Figure 4. 



60 IEEE Consumer Electronics Magazine  ^  MARCH 2018

with the same label into a single node, while saving their 
connections to the previous and next nodes (see Figure 5).

5)	 �We translated the graph back into the neural network. 
Where two or more nodes were merging, the concatena-
tion operation was applied. Additionally, the operation for 
each node was specified by the first property of the node. 
The final network is shown in Figure 6.
For the comparisons to be fair, we selected the number of 

the channels in the final design in a way that the network had 

almost the same number of parameters as each of its parent 
networks. This merged network model was now retrained 
(using the Nesterov momentum method) and for the same 
loss function (binary cross-entropy). In this procedure, we 
employed the data sets used to train the original parent net-
works. Note that, in this simplified example, we worked with 
a single data set derived from CASIA, but, in more complex 
problems, the merged network responded well to cross train-
ing with heterogeneous data sets.

As you can see in Figure 7, the 
losses converged to the best loss of the 
three networks. This shows that using 
the SPDNN with several networks 
helps the model to converge to the best 
available network. The comparisons on 
the test data set for all of the networks 
are shown in Figures 8 and 9. We con-
clude from these that, although the 
SPDNN network has the same number 
of parameters as the original networks 
1, 2, and 3, it returns better results in 
terms of most metrics, including accu-
racy, sensitivity, negative predictive 
value (NPV), F1Score, Matthews cor-
relation coefficient (MCC), informed-
ness, and false negative rate (FNR). 
In particular, the higher accuracy, 
F1Score, and MCC show that the 
SPDNN idea offers better performance, 
in general, compared to its parent net-
works. Not all metrics are improved 
over the best of the three networks, but 
this is a relatively simple application of 
the methodology.

0.8600

0.8800

0.9000

0.9200

0.9400

0.9600

0.9800

1.0000
Accuracy

Sensitivity

Specificity

Precision

NPVF1Score

MCC

Informedness

Markedness

Network 1 Network 2 Network 3 SPDNN

FIGURE 8. The comparisons for all of the networks. (Measurements closer to one indicate 
better performance.) 

Network 1 Network 2
Network 3 SPDNN

100

10–1

10–2T
ra

in
in

g 
Lo

ss
 (

Lo
g 

S
ca

le
)

0 200 400 600 800 1,000
Epochs

(a)

100

10–1

10–2

V
al

id
at

io
n 

Lo
ss

 (
Lo

g 
S

ca
le

)

0 200 400 600 800 1,000
Epochs

(b)

FIGURE 7. (a) The training loss for all of the networks, including the merged (SPDNN) network. (b) The validation loss for all of the net-
works, including the merged (SPDNN) network. 



MARCH 2018  ^  IEEE Consumer Electronics Magazine 61

CONCLUSION
From the training and testing results, we can see that our 
methodology helped the merged network to achieve an opti-
mal design and increased the convergence in the training stage 
and in the test phase. In more extensive studies on heteroge-
nous data sets, we have shown that this methodology can 1) 
generalize the merged network beyond a trivial combination 
of parent networks and 2) achieve a significant reduction in 
size and computational scale for the merged network [3]. In 
other words, the merged network can be significantly smaller, 
often a size similar to the largest of the individual parent net-
works, and perform better on a broader selection of input data 
than a simple combination of the original networks. In effect, 
the merged network learns a more optimal solution that com-
bines elements of each of the individual parent deep networks. 
If you are interested in applying these techniques to your own 
deep-learning problems, we encourage you to contact us and 
explore the potential for collaboration.

ACKNOWLEDGMENTS
This research was funded under the Science Foundation Ire-
land (SFI) Strategic Partnership Program by SFI and FotoN-
ation Ltd., project 13/SPP/I2868 on “Next Generation Imaging 
for Smartphone and Embedded Platforms.” We gratefully 
acknowledge the support of NVIDIA Corp. with the donation 
of a Titan X GPU used for this research. Portions of the 
research in this article use the CASIA-IrisV4 collected by the 
Chinese Academy of Sciences’ Institute of Automation.

ABOUT THE AUTHORS
Shabab Bazrafkan (s.bazrafkan1@nuigalway.ie) earned his 
B.Sc. degree from Urmia University, Iran, in electrical engi-
neering in 2011 and his M.Sc. degree from the Shiraz Univer-
sity of Technology, Iran, in telecommunications engineering, 
image-processing branch, in 2013. Currently, he is a Ph.D. 
student at the Center for Cognitive, Connected, and Compu-
tational Imaging, College of Engineering and Informatics, 
National University of Ireland, Galway, and also works with 
FotoNation Ltd. His research interests are in the fields of 
deep neural networks and neural network design.

Peter Corcoran (dr.peter.corcoran@ieee.org) has been a 
university professor for 28 years and was vice dean of research 

and graduate studies for seven years in the College of Engi-
neering and Informatics, National University of Ireland, Gal-
way. He is the co-inventor of more than 300 granted U.S. 
patents and has been a member of the IEEE Consumer Elec-
tronics Society for more than 20 years. He is the emeritus 
editor-in-chief and founding editor of IEEE Consumer Elec-
tronics Magazine, an industry consultant and expert witness, 
and the cofounder of several startup companies, including 
FotoNation Ltd. He is a Fellow of the IEEE.

REFERENCES
[1] V. Vinge, “Signs of the singularity,” IEEE Spectr., vol. 45, no. 6, pp. 

76–82, 2008.

[2] J. Lemley, S. Bazrafkan, and P. Corcoran, “Deep learning for con-

sumer devices and services: Pushing the limits for machine learning, 

artificial intelligence, and computer vision,” IEEE Consum. Electron. 

Mag., vol. 6, no. 2, pp. 48–56, 2017.

[3] S. Bazrafkan, H. Javidnia, J. Lemley, and P. Corcoran. (2017). Depth 

from monocular images using a semi-parallel deep neural network 

(SPDNN) hybrid architecture. arXiv. [Online]. Available: https://arxiv 

.org/abs/0811.1674v2

[4] S. Thavalengal and P. Corcoran, “Iris recognition on consumer devic-

es: Challenges and progress,” in Proc. IEEE Int. Symp. Technology and 

Society (ISTAS), 2015, pp. 1–4.

[5] S. Thavalengal, P. Bigioi, and P. Corcoran, “Iris authentication in 

handheld devices: Considerations for constraint-free acquisition,” IEEE 

Trans. Consum. Electron., vol. 61, no. 2, pp. 245–253, May 2015.

[6] S. Thavalengal, I. Andorko, A. Drimbarean, P. Bigioi, and P. Corcor-

an, “Proof-of-concept and evaluation of a dual function visible/NIR cam-

era for iris authentication in smartphones,” IEEE Trans. Consum. 

Electron., vol. 61, no. 2, pp. 137–143, May 2015.

[7] S. Thavalengal, P. Bigioi, and P. Corcoran, “Evaluation of combined 

visible/NIR camera for iris authentication on smartphones,” in Proc. 

IEEE Conf. Computer Vision and Pattern Recognition Workshops 

(CVPRW), 2015, pp. 42–49.

[8] E. Wambui, “Samsung drives multiple modes of mobile biometrics 

but suffers recall setback,” Biometric Technol. Today, vol. 2016, no. 10, 

pp. 1–2, 2016.

[9] C. Rathgeb, A. Uhl, and P. Wild, Iris Biometrics: From Segmentation 

to Template Security. New York: Springer, 2013.

[10] J. R. Matey, R. Broussard, and L. Kennell, “Iris image segmentation 

and sub-optimal images,” Image Vis. Comput., vol. 28, no. 2, pp. 215–222, 

Feb. 2010. 

[11] S. Thavalengal, P. Bigioi, and P. Corcoran, “Efficient segmentation 

for multi-frame iris acquisition on smartphones,” in Proc. IEEE Int. 

Conf. Consumer Electronics (ICCE), 2016, pp. 202–203.

[12] Chinese Academy of Sciences, Institute of Automation. (2010). Bio-

metrics ideal test. [Online]. Available: http://biometrics.idealtest.org/

[13] S. Bazrafkan and P. Corcoran, “Enhancing iris authentication on 

handheld devices using deep learning derived segmentation techniques,” 

in Proc. IEEE Int. Conf. Consumer Electronics (ICCE), 2018. 

[14] S. Bazrafkan. (2017). DB augmentation. GitHub. [Online]. Avail-

able: https://github.com/C3Imaging/Deep-Learning-Techniques/tree/Iris_

SegNet/DBaugmentation 

�

0.
05

72

0.
00

34

0.
08

83

0.
03

08

0.
00

18 0.
06

43

0.
03

15

0.
00

18 0.
05

58

0.
03

28

0.
00

19 0.
04

44

FDR FPR FNR

Network 1 Network 2 Network 3 SPDNN

FIGURE 9. The comparisons for all of the networks. (Measure-
ments closer to 0 indicate better performance.) FDR: false discov-
ery rate; FPR: false positive rate.



Appendix B

Semi-Parallel Deep Neural Network
(SPDNN) Hybrid Architecture, First
Application on Depth from Monocular
Camera



Semiparallel deep neural network
hybrid architecture: first application
on depth from monocular camera

Shabab Bazrafkan
Hossein Javidnia
Joseph Lemley
Peter Corcoran

Shabab Bazrafkan, Hossein Javidnia, Joseph Lemley, Peter Corcoran, “Semiparallel deep
neural network hybrid architecture: first application on depth from monocular
camera,” J. Electron. Imaging 27(4), 043041 (2018), doi: 10.1117/1.JEI.27.4.043041.

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 8/21/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Semiparallel deep neural network hybrid architecture:
first application on depth from monocular camera

Shabab Bazrafkan,† Hossein Javidnia,*,† Joseph Lemley, and Peter Corcoran
National University of Ireland Galway, College of Engineering, Department of Electronic Engineering, Galway, Ireland

Abstract. Deep neural networks have been applied to a wide range of problems in recent years. Convolutional
neural network is applied to the problem of determining the depth from a single camera image (monocular depth).
Eight different networks are designed to perform depth estimation, each of them suitable for a feature level.
Networks with different pooling sizes determine different feature levels. After designing a set of networks,
these models may be combined into a single network topology using graph optimization techniques. This
“semiparallel deep neural network (SPDNN)” eliminates duplicated common network layers and can be further
optimized by retraining to achieve an improved model compared to the individual topologies. Four SPDNN
models are trained and have been evaluated at two stages on the KITTI dataset. The ground truth images in
the first part of the experiment are provided by the benchmark, and for the second part, the ground truth images
are the depth map results from applying a state-of-the-art stereo matching method. The results of this evaluation
demonstrate that using postprocessing techniques to refine the target of the network increases the accuracy of
depth estimation on individual mono images. The second evaluation shows that using segmentation data along-
side the original data as the input can improve the depth estimation results to a point where performance is
comparable with stereo depth estimation. The computational time is also discussed in this study. © 2018
SPIE and IS&T [DOI: 10.1117/1.JEI.27.4.043041]

Keywords: deep neural networks; depth estimation; monocular camera; machine learning.

Paper 180344 received Apr. 18, 2018; accepted for publication Jul. 17, 2018; published online Aug. 7, 2018.

1 Introduction
Computing pixel depth values provides a basis for under-
standing the three-dimensional (3-D) geometrical structure
of images. Having the depth and 3-D information of a
scene enables users to infer and understand its semantics
and geometric structure as well as enabling many applica-
tions in computer vision such as autonomous navigation,1

3-D geographic information systems,2 object detection and
tracking,3 medical imaging,4 advanced graphical applica-
tions,5 3-D holography,6 3-D television,7 multiview stereo-
scopic video compression,8 disparity-based segmentation,9

and human detection10/action recognition.11,12

As has been presented in the recent research,13 using
stereo images provides an accurate depth due to the advan-
tage of having local correspondences; however, the process-
ing time of these methods is still an open issue.

To solve this problem, it has been suggested to use single
images to compute the depth values but extracting depth
from monocular images requires extracting a large number
of cues from the global and local information in the
image. Using a single camera is more convenient in indus-
trial applications. Stereo cameras require detailed calibration
and many industrial use cases already employ single cam-
eras, e.g., security monitoring, automotive and consumer
vision systems, and camera infrastructure for traffic and
pedestrian management in smart cities. These and other
smart-vision applications can greatly benefit from accurate

monocular depth analysis. This challenge has been studied
for a decade and is still an open research problem.

Recently, the idea of using neural networks (NN) to solve
this problem has attracted attention. In this paper, we tackle
this problem by employing a deep neural network (DNN)
equipped with semantic pixelwise segmentation utilizing
our recently published disparity postprocessing method.

This paper also introduces the use of semiparallel deep
neural networks (SPDNN). An SPDNN is a semiparallel net-
work topology developed using a graph theory optimization
of a set of independently optimized convolutional neural
networks (CNNs), each targeted at a specific aspect of the
more general classification problem. In Refs. 14 and 15, the
effect of an SPDNN approach on increasing convergence and
improving model generalization is discussed. For the depth
from monocular vision problem a fully connected topology,
optimized for fine features, is combined with a series of
max-pooled topologies (2 × 2, 4 × 4, and 8 × 8) each opti-
mized for coarser image features. The optimized SPDNN
topology is retrained on the full training dataset and con-
verges to an improved set of network weights.

It is worth mentioning that this network design strategy is
not limited to the “depth from monocular vision” problem,
and further application examples and refinements will
be developed in a series of future publications, currently
in press.

1.1 Depth Map
Deriving the 3-D structure of an object from a set of
two-dimensional (2-D) points is a fundamental problem in

*Address all correspondence to: Hossein Javidnia, E-mail: h.javidnia1@
nuigalway.ie

†These authors contributed equally to this work. 1017-9909/2018/$25.00 © 2018 SPIE and IS&T

Journal of Electronic Imaging 043041-1 Jul∕Aug 2018 • Vol. 27(4)

Journal of Electronic Imaging 27(4), 043041 (Jul∕Aug 2018)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 8/21/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



computer vision. Most of these conversions from 2-D to 3-D
space are based on the depth values computed for each 2-D
point. In a depth map, each pixel is defined not by color, but
by the distance between an object and the camera. In general,
depth computation methods are divided into two categories:

1. Active methods.
2. Passive methods.

Active methods involve computing the depth in the scene
by interacting with the objects and the environment. There
are different types of active methods, such as light-based
depth estimation, which uses the active light illumination
to estimate the distance to different objects.16 Ultrasound
and time-of-flight (ToF) are other examples of active meth-
ods. These methods use the known speed of the wave to mea-
sure the time an emitted pulse takes to arrive at an image
sensor.17

Passive methods utilize the optical features of the cap-
tured images. These methods involve extracting the depth
information by computational image processing. In the cat-
egory of passive methods, there are two primary approaches
(a) multiview depth estimation, such as depth from stereo,
and (b) monocular depth estimation.

1.2 Stereo Vision Depth
Stereo matching algorithms can be used to compute depth
information from multiple images. By using the calibration
information of the cameras, the depth images can be gener-
ated. This depth information provides useful data to identify
and detect objects in the scene.18

In recent years, many applications, including ToF,19,20

structured light,21 and Kinect, were introduced to calculate
depth from stereo images. Stereo vision algorithms are gen-
erally divided into two categories: local and global. Local
algorithms were introduced as statistical methods that use
the local information around a pixel to determine the depth
value of the given pixel. These kinds of methods can be used
for real-time applications if they are implemented efficiently.
Global algorithms try to optimize an energy function to
satisfy the depth estimation problem through various optimi-
zation techniques.22

In terms of computation, global methods are more com-
plex than local methods, and they are usually impractical for
real-time applications. Despite these drawbacks, they have
the advantage of being more accurate than local methods.
This advantage recently attracted considerable attention in
the academic literature.23,24

For example, the global stereo model proposed in Ref. 23
works by converting the image into a set of 2-D triangles
with adjacent vertices. Later, the 2-D vertices are converted
to a 3-D mesh by computing the disparity values. To solve
the problem of depth discontinuities, a two-layer Markov
random field (MRF) is employed. The layers are fused
with an energy function allowing the method to handle the
depth discontinuities. The method has been evaluated on
the new Middlebury 3.0 benchmark,24 and it was ranked
the most accurate at the time of the paper’s publication on
the average weight on the “bad 2.0” index.

Another global stereo matching algorithm, proposed in
Ref. 25, makes use of the texture and edge information of
the image. The problem of large disparity differences in

small patches of nontextured regions is addressed by utiliz-
ing the color intensity. In addition, the main matching cost
function produced by a CNN is augmented using the same
color-based cost. The final results are postprocessed using
a 5 × 5 median filter and a bilateral filter. This adaptive
smoothness filtering technique is the primary reason for
the algorithm’s excellent performance and placement in the
top of the Middlebury 3.0 benchmark.24

Many other methods have been proposed for stereo depth,
such as PMSC,24 GCSVR,24 INTS,26 MDP,27 and ICSG,28

which all aimed to improve the accuracy of the depth esti-
mated from stereo vision or to introduce a new method to
estimate the depth from a stereo pair. However, there is
always a trade-off between accuracy and speed for stereo
vision algorithms.

Table 1 shows an overview of the average normalized
time by the number of pixels (s/megapixels) of the most
accurate stereo matching algorithms as they are ranked by
the Middlebury 3.0 benchmark, based on the “bad 2.0” met-
ric. The ranking is on the test dense set. This comparison
illustrates that obtaining an accurate depth from a stereo
pair requires significant processing power. These results
demonstrate that today, these methods are too resource inten-
sive for real-time applications such as street sensing or
autonomous navigation due to their demand for processing
resources.

To decrease the processing power of stereo matching
algorithms, researchers recently began to work on depth from
monocular images. Such algorithms estimate depth from
a single camera while keeping the processing power low.

1.3 Deep Learning
DNN are among the most recent approaches in pattern rec-
ognition science that are able to handle highly nonlinear
problems in classification and regression. These models
use consecutive nonlinear signal processing units in order
to mix and reorient their input data to give the most repre-
sentative results. The DNN structure learns from the input
and then it generalizes what it learns into data samples it
has never seen before.33 The typical DNN model is com-
posed of one or more convolutional, pooling, and fully
connected layers accompanied by different regularization
tasks. Each of these units is as follows:

1.3.1 Convolutional layer

This layer typically convolves the 3-D image I with the four-
dimensional kernel W and adds a 3-D bias term b to it. The
output is given as

EQ-TARGET;temp:intralink-;e001;326;216P ¼ I �W þ b; (1)

where the * operator is nD convolution and P is the output of
the convolution. During the training process, the kernel and
bias parameters are updated in a way that optimizes the error
function of the network output.

1.3.2 Pooling layer

The pooling layer applies a (usually) nonlinear transform
(note that the average pooling is a linear transform, but
the more popular max-pooling operation is nonlinear) on

Journal of Electronic Imaging 043041-2 Jul∕Aug 2018 • Vol. 27(4)

Bazrafkan et al.: Semiparallel deep neural network hybrid architecture: first application. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 8/21/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



the input image, which reduces the spatial size of the data
representation after the operation.

It is common to put a pooling layer after each convolu-
tional layer. Reducing the spatial size leads to less computa-
tional load and also prevents overfitting. The reduced spatial
size also provides a certain amount of translation invariance.

1.3.3 Fully connected layer

Fully connected layers are the same as classical NN layers,
where all the neurons in a layer are connected to all the
neurons in their subsequent layer. The neurons give the
summation of their input, multiplied by their weights, passed
through their activation functions.

1.3.4 Regularization

Regularization is often used to prevent overfitting of an NN.
One can train a more complex network (more parameters)
with regularization and prevent overfitting. Different kinds

of regularization methods have been proposed. The most
important ones are weight regularization, drop-out,34 and
batch normalization.35 Each regularization technique is suit-
able for specific applications, and no single technique works
for every task.

1.4 Monocular Vision Depth
Depth estimation from a single image is a fundamental prob-
lem in computer vision and has potential applications in
robotics, scene understanding, 3-D reconstruction, and medi-
cal imaging.36–38 This problem remains challenging because
there are no reliable cues for inferring depth from a single
image. For example, temporal information and stereo corre-
spondences are missing from such images.

As the result of the recent research, deep CNNs are setting
new records for various vision applications. A deep convolu-
tional neural field model for estimating depths from a single
image has been presented in Ref. 39 by reformulating the
depth estimation into a continuous conditional random

Table 1 Comparison of the performance time between the most accurate stereo matching algorithms.

Algorithm Time/MP (s) W × H (ndisp) Programming platform Hardware

PMSC24 453 1500 × 1000 (< ¼ 400) C++ i7-6700K, 4 GHz-GTX TITAN X

MeshStereoExt23 121 1500 × 1000 (< ¼ 400) C, C++ 8 Cores-NVIDIA TITAN X

APAP-Stereo24 97.2 1500 × 1000 (< ¼ 400) Matlab+Mex i7 Core 3.5 GHz, 4 Cores

NTDE25 114 1500 × 1000 (< ¼ 400) n/a i7 Core, 2.2 GHz-Geforce GTX TITAN X

MC-CNN-acrt29 112 1500 × 1000 (< ¼ 400) n/a NVIDIA GTX TITAN Black

MC-CNN+RBS30 140 1500 × 1000 (< ¼ 400) C++ Intel(R) Xeon(R) CPU E5-1650 0, 3.20 GHz,
6 Cores-32 GB RAM-NVIDIA GTX TITAN X

SNP-RSM24 258 1500 × 1000 (< ¼ 400) Matlab i5, 4590 CPU, 3.3 GHz

MCCNN_Layout24 262 1500 × 1000 (< ¼ 400) Matlab i7 Core, 3.5 GHz

MC-CNN-fst29 1.26 1500 × 1000 (< ¼ 400) n/a NVIDIA GTX TITAN X

LPU24 3523 1500 × 1000 (< ¼ 400) Matlab Core i5, 4 Cores- 2xGTX 970

MDP27 58.5 1500 × 1000 (< ¼ 400) n/a 4 i7 Cores, 3.4 GHz

MeshStereo23 54 1500 × 1000 (< ¼ 400) C++ i7-2600, 3.40 GHz, 8 Cores

SOU4P-net24 678 1500 × 1000 (< ¼ 400) n/a i7 Core, 3.2 GHz-GTX 980

INTS26 127 1500 × 1000 (< ¼ 400) C, C++ i7 Core, 3.2 GHz

GCSVR24 4731 1500 × 1000 (< ¼ 400) C++ i7 Core, 2.8 GHz-Nvidia GTX 660Ti

JMR24 11.1 1500 × 1000 (< ¼ 400) C++ Core i7, 3.6 GHz-GTX 980

LCU24 9572 750 × 500 (< ¼ 200) Matlab, C++ 1 Core Xeon CPU, E5-2690, 3.00 GHz

TMAP31 1796 1500 × 1000 (< ¼ 400) Matlab i7 Core, 2.7 GHz

SPS24 49.4 3000 × 2000 (< ¼ 800) C, C++ 1 i7 Core, 2.8 GHz

IDR32 0.36 1500 × 1000 (< ¼ 400) CUDA C++ NVIDIA GeForce TITAN Black

Journal of Electronic Imaging 043041-3 Jul∕Aug 2018 • Vol. 27(4)

Bazrafkan et al.: Semiparallel deep neural network hybrid architecture: first application. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 8/21/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



field (CRF) learning problem. The CNN employed in this
research was composed of five convolutional and four
fully connected layers. At the first stage of the algorithm,
the input image was oversegmented into superpixels. The
cropped image patch centered on its centroid was used as
input to the CNN. For a pair of neighboring superpixels,
a number of similarities were considered and were used as
the input to the fully connected layer. The output of these
two parts was then used as input to the CRF loss layer.
As a result, the time required for estimating the depth
from a single image using the trained model decreased to
1.1 s on a desktop PC equipped with NVIDIA GTX 780
GPU with 6-GB memory.

It has been found that the superpixelling technique of
Ref. 39 is not a good choice to initialize the disparity
estimation from mono images because of the lack of the
monocular visual cues such as texture variations and gra-
dients, defocus or color/haze in some parts of the image.
To solve this issue, an MRF learning algorithm has been
implemented to capture some of these monocular cues.40

The captured cues were integrated with a stereo system to
obtain better depth estimation than with the stereo system
alone. This method uses a fusion of stereo + mono depth
estimation.

At small distances, the algorithm relies more on stereo
vision, which is more accurate than monocular vision.
However, at further distances, the performance of stereo
degrades; and the algorithm relies more on monocular vision.

The problem of depth estimation from monocular images
has been also studied in Ref. 41, where a network is designed
with two components. First, the global structure of the scene
is estimated and later refined using local information.
Although this approach enables the early idea of estimating
monocular depth using CNNs, the output depth maps do not
clearly represent the geometrical structure of the scene.

In another approach,42 an unsupervised convolutional
encoder is trained to estimate the depth from monocular
images. The depth is estimated considering the small motion
between two images (stereo set as input and target). Later,
the inverse warp of the target image is generated using
the predicted depth and the known displacement between
cameras, which results in reconstructing the source image.
In a similar research,43 an unsupervised CNN is trained
by exploiting epipolar geometry constraints to estimate dis-
parity from single images. The idea is to learn a function that
is able to reconstruct one image from the other by utilizing a
calibrated pair of binocular cameras. A left-right disparity
consistency loss is also introduced, which combines smooth-
ness, reconstruction, and left-right disparity consistency

terms and keeps the consistency between the disparities pro-
duced relative to both the left and right images.

In Refs. 44 and 45, authors presented a method to mix the
output information of multiple CNNs using CRF where two
different models are proposed, one with a cascade of CRFs
and the other with a unified graph. They trained and tested
the networks on NYU Depth V2,46 KITTI,47 and Make 3-D
datasets.48,49 The best results were drawn from ResNet50.

1.5 Paper Overview
In this paper, a DNN is presented to estimate depth from
monocular cameras. The depth map from the stereo sets is
estimated using the same approach as Ref. 50 and they
are used as the target to train the network while using infor-
mation from a single image (the left image in the stereo set)
as input. Four models are trained and evaluated to estimate
the depth from single camera images. The network structure
for all the models is the same. In the first case, the input is
simply the original image. In the second case, the first
channel is the original image and the second channel is
its segmentation map. For each of these two cases, one of
two different targets is used; specifically, these targets
were the stereo depth maps with or without postprocessing
explained in Ref. 50. Figure 1 shows the overview of the
general approach used in this paper. In this figure, the
DNN is shown as a black box. The semantic segmentation
has been used in two experiments out of four. A detailed
explanation of each experiment is given in Sec. 2.3.

1.6 Contributions
In this paper, two major contributions are presented:

1. SPDNN15 is a method to mix and merge several
DNNs. This method is versatile enough to be applied
to any DNN design. In this work, this method is
utilized to design a network to approximate the depth
from the monocular images. Network design pro-
cedure is described in detail in Appendix A.

2. The application of DNNs and SPDNN on estimating
depth from a monocular camera.

3. The effect of using segmentation information in
approximating depth is investigated.

4. Two different ground truth sets have been used to train
the network and comparisons of the network perfor-
mances for each ground truth have been investigated.

The rest of the paper is organized as follows: in the next
section, the network structure, database preparation, and the

Fig. 1 The overview of the trained models in this paper. The semantic segmentation is just used in
two experiments. Detailed explanation on each experiment is given in Sec. 2.3.

Journal of Electronic Imaging 043041-4 Jul∕Aug 2018 • Vol. 27(4)

Bazrafkan et al.: Semiparallel deep neural network hybrid architecture: first application. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 8/21/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



training process are presented. Section 3 discusses the results
and evaluation of the proposed method. The conclusion and
discussions are presented in the last section.

2 Methodology

2.1 Network Structure
2.1.1 Semiparallel deep neural network

This paper introduces the SPDNN concept, inspired by graph
optimization techniques. In this method, several DNNs are
parallelized and merged in a way that facilitates the advan-
tages of each. The final model is trained for the problem.
References 14 and 15 show that using this method increases
the convergence and generalization of the model compared
to alternatives.

The merging of multiple networks using SPDNN is
described in the context of the current depth mapping prob-
lem. In this particular problem, eight different networks were
designed for the depth estimation task. These are described
in detail in Appendix A. None of these networks on their
own gave useful results on the depth analysis problem.
However, it was noticed that each network tended to perform
well on certain aspects of this task while failing at others.
This led to the idea that it would be advantageous to combine
multiple individual networks and train them in a parallelized
architecture. Our experiments showed that better output
could be achieved by merging the networks and then training
them concurrently.

Combined model/architecture. The process of the net-
work design is discussed in detail in Appendix A. In the
final model presented in Fig. 2, the input image is first proc-
essed in four parallel fully convolutional subnetworks with
different pooling sizes. This provides the advantages of dif-
ferent networks with different pooling sizes at the same time.
The outputs of these four subnetworks are concatenated in
two different forms; one is to pool the larger images to be
the same size as the smallest image in the previous part, and
the other one is to unpool the smaller images of the previous
part to be the same size as the largest image.

After merging these outputs, the data are led to two differ-
ent networks. One is the fully convolutional network (FCN)

to deepen the learning and release more abstract features of
the input, and the other network is an autoencoder network
with different architectures for encoder and decoder.

It is mentioned in the network design section in
Appendix A that having a fully connected layer in the net-
work is crucial for correct estimation of the image’s depth,
which is provided in the bottleneck of the autoencoder. The
results from the autoencoder and the fully convolutional sub-
network are again merged in order to give a single output
after applying a one channel convolutional layer.

In order to regularize the network, prevent overfitting, and
increase the convergence, batch normalization35 is applied
after every convolutional layer, and the drop-out technique34

is used in fully connected layers. The experiments in this
paper show that using weight regularization in the fully
connected layers gives slower convergence; therefore, this
regularization was eliminated from the final design. All the
nonlinearities in the network are the ReLU nonlinearity,
which is widely used in DNNs, except for the output layer,
which took advantage of the sigmoid nonlinearity. The value
repeating technique was used in the unpooling layer due
to nonspecificity of the corresponding pooled layer in the
decoder part of the autoencoder subnetwork.

The value repeating technique, shown in Fig. 3, involves
repeating the value from the previous layer in order to obtain
the unpooled image. The figure shows the 2 × 2 unpooling,
and the process is the same for other unpooling sizes.

2.2 Database
In this paper, the KITTI Stereo 2012, 2015 datasets47 are
used for training and evaluation of the network. The database
is augmented by vertical and horizontal flipping to expand

Fig. 2 The model designed for the depth estimation from monocular images. The network design is
explained in Appendix A.2.

Fig. 3 The repeating technique used in unpooling layers.

Journal of Electronic Imaging 043041-5 Jul∕Aug 2018 • Vol. 27(4)

Bazrafkan et al.: Semiparallel deep neural network hybrid architecture: first application. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 8/21/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



the total size to 33,096 images. 70% of this dataset is used for
training, 20% for validation, and 10% for testing. Dividing
the database to train-validation-test subsets is performed
before scrambling the indices so there is minimum corre-
spondence between the samples in each subset. The reason
for this is because the database is drawn from sequences of
images wherein each two consecutive samples look very
similar. Each model is trained for two sets of input samples
and two sets of output targets. The input and target prepara-
tion are explained in the following sections.

2.2.1 Data preparation

Input preparation. Two different sets have been used as
the input of the network. The first set includes the visible
images given by the left camera. The second set is the visible
image + the semantic segmentation of the corresponding
input. This gives the opportunity of investigating the seg-
mentation influence on the depth estimation problem. The
segmentation map for each image is calculated by employing
the well-known model “SegNet.”51,52 This model is one of
the most successful recent implementations of DNN for
semantic pixelwise image segmentation and has surpassed
other configurations of FCNs both in accuracy and simplicity
of implementation. A short description of SegNet is given in
Appendix B.

In our experiments, SegNet was trained using stochastic
gradient descent with learning rate 0.1 and momentum 0.9.
In this paper, the Caffe implementation of SegNet has been
employed for training purposes.53 The gray-scale CamVid
road scene database (360 × 480)54 has been used in the train-
ing step.

Target preparation. The targets for training the network
are generated from the stereo information using the adaptive
random walk with restart algorithm.55 The output of the
stereo matching algorithm suffers from several artifacts,
which are addressed and solved by a postprocessing method
in Ref. 50. In the present experiments, both depth maps
(before postprocessing and after postprocessing) are used
independently as targets. The postprocessing procedure is
based on the mutual information of the RGB image (used
as a reference image) and the initial estimated depth
image. This approach has been used to increase the accuracy
of the depth estimation in stereo vision by preserving the
edges and corners in the depth map and filling in the missing
parts. The method was compared with the top eight depth
estimation methods in the Middlebury benchmark24 at the
time the paper was authored. Seven metrics, including mean
square error (MSE), root mean square error (RMSE), peak
signal-to-noise ratio (PSNR), signal-to-noise ratio (SNR),
mean absolute error (MAE), structural similarity index
(SSIM), and structural dissimilarity index were used to
evaluate the performance of each method. The evaluation
ranked the method as first in five metrics and second and
third in other metrics

2.3 Training
As described in Sec. 2.2.1, there are two separate sets as
inputs and two separate sets as targets for the training proc-
ess. This will give four experiments in total as follows:

1. Experiment 1: Input: left visible image + pixelwise
segmented image. Target: postprocessed depth map

2. Experiment 2: Input: left visible image. Target: post-
processed depth map.

3. Experiment 3: Input: left visible image + pixelwise
segmented image. Target: depth map.

4. Experiment 4: Input: left visible image. Target:
depth map.

The images are resized to 80 × 264 pixels during the
whole process. Training is done on a standard desktop
with an NVIDIA GTX 1080 GPU with 8 GB memory.

In the presented experiments, the MSE value between the
output of the network and the target values have been used as
the loss function, and the Nestrov momentum technique56

with learning rate 0.01 and momentum 0.9 has been used to
train the network. The training and validation loss for each of
these experiments are shown in Figs. 4 and 5, respectively.

These figures show that using the postprocessed depth
map as the target results in lower loss values, which means
that the network was able to learn better features in those

Fig. 4 Train loss for each experiment.

Fig. 5 Validation loss for each experiment.

Journal of Electronic Imaging 043041-6 Jul∕Aug 2018 • Vol. 27(4)

Bazrafkan et al.: Semiparallel deep neural network hybrid architecture: first application. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 8/21/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



experiments, while semantic segmentation decreases the
error only marginally.

The reason that the postprocessed depth maps are consid-
ered as the target in two experiments is twofold: first, the post-
processing pipeline is proven to be effective in increasing the
performance of the depth estimation methods by considering
the geometrical structure of the scene. Second, it helps the
network to avoid the densification process of the sparse
depth maps, which are captured using LIDAR scanners.

3 Results and Evaluations
The evaluation in this paper has been done in four parts. In
the first two parts, the four experiments given in Sec. 2.3 are
compared to each other, given different ground truths. The
third part compares the proposed method to a stereo match-
ing method and the last part shows the comparison against
the state-of-the-art monocular depth estimation method. For
evaluation purposes, eight metrics including PSNR, MSE
(between 0 and 1), RMSE (between 0 and 1), SNR, MAE
(between 0 and 1), SSIM (between 0 and 1),57 universal qual-
ity index (UQI) (between 0 and 1),58 and Pearson correlation
coefficient (PCC) (between −1 and 1)59 are used. For the
metrics PSNR, SNR, SSIM, UQI, and PCC, the larger value
indicates better performance, and for MSE, RMSE, and
MAE, the lower value indicates better performance. PSNR,
MSE, RMSE, MAE, and SNR represent the general similar-
ities between two objects. UQI and SSIM are structural
similarity indicators and PCC represents the correlation
between two samples. To the best of our knowledge, there
have been no other attempts at estimating depth from a mono
camera on the KITTI benchmark.

3.1 Comparing Experiments Given Benchmark
Ground Truth

The KITTI database came with a depth map ground truth
generated by a LIDAR scanner.

The test set has been forward propagated through the four
different models trained in the four experiments, and the out-
put of the networks has been compared to the benchmark
ground truth. The results are shown in Table 2. The best
value for each metric is presented in bold.

Figures 6–8 represent the color-coded depth maps com-
puted by the trained models using the proposed DNN, where
the dark red and dark blue parts represent closest and furthest
points to the camera, respectively. On the top right of each
figure, the ground truth given by the benchmark is illustrated.
For visualization purposes, all of the images presented in this
section are upsampled using joint bilateral upsampling.60

The results show that using semantic segmentation along
with the visible image as input will improve the model

Table 2 Numerical comparison of the models given the benchmark’s
ground truth.

Exp. 1 Exp. 2 Exp. 3 Exp. 4

PSNR 14.3424 13.7677 13.8333 13.8179

MSE 0.0382 0.0436 0.0435 0.0439

RMSE 0.1937 0.2069 0.206 0.2066

SNR 4.4026 3.8279 6.1952 6.1798

MAE 0.1107 0.1212 0.1236 0.1234

SSIM 0.9959 0.9955 0.9955 0.9955

UQI 0.9234 0.9252 0.9053 0.9064

PCC 0.7687 0.8485 0.7702 0.7729

Fig. 6 Estimated depth maps from the trained models, example 1, for
experiments 1 to 4 explained in Sec. 2.3.

Fig. 7 Estimated depth maps from the trained models, example 2, for
experiments 1 to 4 explained in Sec. 2.3.

Fig. 8 Estimated depth maps from the trained models, example 3, for
experiments 1 to 4 explained in Sec. 2.3.

Journal of Electronic Imaging 043041-7 Jul∕Aug 2018 • Vol. 27(4)

Bazrafkan et al.: Semiparallel deep neural network hybrid architecture: first application. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 8/21/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



marginally. Using the postprocessed target in the training
stage helps the model to converge to more realistic results.

As it is shown in Figs. 6–8, the depth map generated in
experiment 1 contains more structural details, and more
precise, less faulty depth levels compared with the other
experiments. In general, the presented models in this paper
are able to handle occlusions and discontinuities at different
depth levels.

3.2 Comparing Experiments Given the Ground Truth
from Stereo Matching

In this section, proposed models are compared to see which
one produces closer results to the target value. This gives
an idea whether using deep learning techniques on the mono
camera can produce reasonable results or not.

Images in the test set have been forward propagated
through the models trained in Sec. 2.3, and the outputs are
compared with the depth map generated in Ref. 50. The
numerical results are shown in Table 3.

The best value for each metric is presented in bold.
Figures 9–11 represent the color-coded depth maps com-
puted by the trained models using the proposed DNN,

where the dark red and dark blue parts represent closest
and furthest points to the camera, respectively. On the top
right of each figure, the ground truth calculated in Ref. 50
is illustrated. For visualization purposes, all of the images
presented in this section are upsampled using joint bilateral
upsampling.60

The results show that using semantic segmentation along
with the visible image as input will improve the model mar-
ginally. Using the postprocessed target in the training stage
helps the model to converge to more realistic results.

Figures 9–11 show that the trained models in this paper
are able to estimate depth maps comparable to state-of-the-
art stereo matching with structural accuracy and precise
depth levels. This is also a result of using the semantic seg-
mentation data and injecting the structural information into
the network.

3.3 Comparing Mono Camera Results with Stereo
Matching

In this section, the results from the mono camera depth esti-
mation given by the proposed method are compared with one
of the top-ranked stereo matching methods given in Ref. 50.
The ground truth for this comparison is the set of depth maps
provided by the KITTI benchmark.

Table 3 Numerical comparison of the models given the ground truth
from stereo matching.

Exp. 1 Exp. 2 Exp. 3 Exp. 4

PSNR 15.0418 14.1895 13.3819 14.0491

MSE 0.0378 0.0447 0.0535 0.0441

RMSE 0.1854 0.203 0.2223 0.2039

SNR 8.822 7.9696 5.4271 6.0943

MAE 0.1442 0.1581 0.1673 0.153

SSIM 0.9952 0.9943 0.994 0.9951

UQI 0.8401 0.8369 0.7951 0.8178

PCC 0.8082 0.795 0.704 0.6919

Fig. 9 Estimated depth maps from the trained models, example 1, for
experiments 1 to 4 explained in Sec. 2.3.

Fig. 10 Estimated depth maps from the trained models, example 2,
for experiments 1 to 4 explained in Sec. 2.3.

Fig. 11 Estimated depth maps from the trained models, example 3,
for experiments 1 to 4 explained in Sec. 2.3.

Journal of Electronic Imaging 043041-8 Jul∕Aug 2018 • Vol. 27(4)

Bazrafkan et al.: Semiparallel deep neural network hybrid architecture: first application. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 8/21/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



The test images have been forward propagated through
the models trained in Sec. 2.3 and the best results are com-
pared with the stereo matching technique. The results are
shown in Table 4.

The results indicate that using mono camera images and
deep learning techniques can provide results that are compa-
rable to stereo matching techniques. As shown in Table 4, the
mono camera DNN method was able to provide depth maps
similar to the stereo matching methods, represented by
PSNR, MSE, MAE, RMSE, and SNR.

Having close values for SSIM (0.9966 and 0.9959 in the
range [0,1]) and UQI (0.9353 and 0.9234 in the range [0,1])
shows how the mono camera DNN method is able to pre-
serve the structural information, as compared to the stereo
matching method.

3.4 Comparison against Other Monocular Depth
Estimation Methods

In this section, the proposed network is compared against the
method presented in Refs. 39 and 41–43. Table 5 represents
the performance of the proposed network compared to the
state-of-the-art methods based on seven metrics including
absolute relative difference, squared relative difference, and
RMSE/RMSE log. The metrics are defined as follows:

• Mean relative error (Rel): 1
P

P
P
i¼1

jd̃i−d�i j
d�i

;

• Root mean squared error (RMSE):
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
P

P
P
i¼1 ðd̃i−d�i Þ2

q
;

• Mean log 10 error: 1
P

P
P
i¼1 klog10ðd̃iÞ − log10ðd�i Þk;

• Accuracy with threshold t: Percentage (%) of d�i ,
subject to max

�
d�i
d̃i
; d̃id�i

�
¼ δ< t ðt∈ ½1.25;1.252;1.253�Þ.

These numbers indicate that the unsupervised CNN pro-
posed by Godard et al.43 outperforms the others because of
the left-right disparity consistency term, which allows the
network to optimize the disparity values based on both
left and right images. However, we believe that the proposed
network has a competitive performance compared to the
studied methods considering the fact that our models are
trained using only the left image without taking into account
the influence of the right disparity values.

3.5 Comparing Running Times
In this section, the computational time of the proposed
method is compared against the stereo matching methods
provided in Table 1. The evaluations indicate that the pro-
posed method is able to perform at a rate of ∼1.23 s∕MP
on a desktop computer equipped with i7 2600 CPU @
3.4 GHz and 16 GB of RAM.

Table 4 Numerical comparison between stereo matching and the
proposed mono camera model.

Stereo matching50 Mono camera DNN

PSNR 14.8234 14.3424

MSE 0.0351 0.0382

RMSE 0.1845 0.1937

SNR 4.8836 4.4026

MAE 0.1017 0.1107

SSIM 0.9966 0.9959

UQI 0.9353 0.9234

PCC 0.823 0.7687

Table 5 Results on the KITTI 2015 stereo 200 training set disparity images.

Method Stereo Dataset Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Eigen et al.41 coarse No KITTI 0.361 4.826 8.102 0.377 0.638 0.804 0.894

Eigen et al.41 fine No KITTI 0.203 1.548 6.307 0.282 0.702 0.890 0.958

Liu et al.39 DCNF-FCSP FT No KITTI 0.201 1.584 6.471 0.273 0.68 0.898 0.967

Garg et al.42 L12 Aug 8× cap 50 m Yes KITTI 0.169 1.080 5.104 0.273 0.740 0.904 0.962

Godard et al.43 Yes KITTI 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Saxena et al.61 No KITTI 0.280 — 8.734 0.327 0.601 0.820 0.926

Zhou et al.62 No KITTI 0.208 1.768 6.858 — 0.678 0.885 0.957

Kuznietsov et al.63 (only supervised) No KITTI — — 4.815 — 0.845 0.957 0.987

Kuznietsov et al.63 Yes KITTI — — 4.621 — 0.852 0.960 0.986

Xu et al.44 No KITTI 0.125 0.899 4.685 0.154 0.816 0.951 0.983

Ours No KITTI 0.288 1.065 4.071 0.401 0.51 0.77 0.893

In columns 4–7 lower is better, in columns 8–10 higher is better.

Journal of Electronic Imaging 043041-9 Jul∕Aug 2018 • Vol. 27(4)

Bazrafkan et al.: Semiparallel deep neural network hybrid architecture: first application. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 8/21/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Figure 12 shows the comparison of the computational
times. The comparison is done in a logarithmic scale due
to the large range of computational times between different
methods.

3.6 Effects of Scaling, Rotation, and Translation
In this section, the effect of the scaling, rotation, and trans-
lation is explained for the proposed method. The test data
have been manipulated in three ways:

1. Scaling: Images have been cropped with random val-
ues for height in U½37;70� and width in U½128;240�
where U½a; b� is the uniform distribution between
a and b. The cropped images are resized to [80, 264]
using bilinear interpolation.

2. Rotating: Each sample in the test set has been rotated
randomly between 3 deg and 30 deg and also −3 deg
and −30 deg.

3. Translating: Each sample has been translated with
random values between 5 and 30 pixels in height and
50 and 100 pixels in width.

Each set of these samples has been tested on the proposed
networks for each experiment and the results are given in
Tables 6–9.

This experiment shows that the method is relatively robust
to scaling in comparison to rotation and translation.
Translation introduces more error than rotation. The main
reason is the change in the sky position in the translated
images. Since the network is trained on samples where the

Calculation time comparison (logarithmic scale)

PMSC[2
4]

Mes
hSte

re
oExt

[2
3]

APAP-S
te

re
o[2

4]

NTDE[2
5]

MC-C
NN-a

cr
t[2

6]

MC-C
NN+R

BS[2
7]

SNP-R
SM[2

4]

MCCNN_L
ay

out[2
4]

MC-C
NN-fs

t[2
6]

LPU[2
4]

MDP[2
8]

Mes
hSte

re
o[2

3]

SOU4P
-n

et
[2

4]

IN
TS[2

9]

GCSVR[2
4]

JM
R[2

4]

LCU[2
4]

TMAP[3
0]

SPS[2
4]

ID
R[3

1]

Pro
pose

d m
et

hod

Methods

0

0.5

1

1.5

2

2.5

3

3.5
lo

g
10

[T
im

e/
M

P
 (

s)
]

Fig. 12 Comparison of computational time in logarithmic scale.

Table 6 Network trained in experiment 1, tested on scaled, rotated,
and translated samples.

Exp. 1,
original

Exp. 1,
scaled

Exp. 1,
rotated

Exp. 1,
translated

PSNR 14.3424 13.4155 7.3789 6.9341

MSE 0.0382 0.0561 0.1890 0.2083

RMSE 0.1937 0.2253 0.4313 0.4533

SNR 4.4026 1.4561 3.0047 2.5507

MAE 0.1107 0.1811 0.3480 0.3609

SSIM 0.9959 0.9924 0.9791 0.9754

UQI 0.9234 0.2234 0.343 0.530

Table 7 Network trained in experiment 2, tested on scaled, rotated,
and translated samples.

Exp. 2,
original

Exp. 2,
scaled

Exp. 2,
rotated

Exp. 2,
translated

PSNR 13.7677 13.1384 7.1016 6.7348

MSE 0.0436 0.0600 0.2017 0.2218

RMSE 0.2069 0.2328 0.4454 0.4660

SNR 3.8279 1.8092 3.7111 2.8531

MAE 0.1212 0.1882 0.3501 0.3665

SSIM 0.9955 0.9919 0.9776 0.9738

UQI 0.9252 0.2244 0.708 0.764

Journal of Electronic Imaging 043041-10 Jul∕Aug 2018 • Vol. 27(4)

Bazrafkan et al.: Semiparallel deep neural network hybrid architecture: first application. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 8/21/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



sky is at the top of the image, the translating the sky position
induces a large amount of uncertainty on the output values.

The other observation is for using segmentation as aux-
iliary information for depth estimation. The observations
show that the segmentation is not introducing any helpful
information while dealing with scaling, rotation, and
translation.

4 Conclusion and Discussion
In this paper, we have introduced the use of the SPDNN
method. An SPDNN is a network topology developed
using a graph theory optimization of a set of independently
optimized CNNs, each targeted at a specific aspect of the
more general classification problem. For depth estimation
from a monocular setup, a model including fully connected
topology optimized for fine features is combined with a
series of max-pooled topologies. The optimized SPDNN top-
ology is retrained on the full training dataset and converges
to an improved set of network weights. Here, we used this
design strategy to train an accurate model for estimating
depth from monocular images.

In this work, eight different DNNs have been mixed and
merged using the SPDNN method in order to take advantage

of each network’s qualities. The mixed network architecture
was then trained in four separate scenarios where each sce-
nario used a different set of inputs and targets during train-
ing. Four distinct models have been trained. The pixelwise
segmentation and depth estimations given in Ref. 50 were
used to provide samples for use in the training stage. The
KITTI benchmark was used for training and experimental
purposes.

Each model was evaluated in two sections, first against
the ground truth provided by the benchmark, and second
against the disparity maps computed by the stereo matching
method (Secs. 3.1 and 3.2). The results show that using the
postprocessed depth map presented in Ref. 50 for training
the network results in more precise models and adding
the semantic segmentation of the input frame to the input
helps the network preserve the structural information in
the output depth map. The results in Sec. 3.2 show how
close the proposed depth estimation using mono camera can
be to the stereo matching method. The semantic segmenta-
tion information helps the network converge to the stereo
matching results, although the improvement is marginal in
this case. The results of the third comparisons in Sec. 3.3
show a slightly higher accuracy obtained by employing the
stereo matching technique, but our results demonstrate that
there is not a big difference between the depths from the
models trained by the proposed DNN and the values com-
puted by stereo matching. The numerical results of this
evaluation show the similarity between the mono camera
using the DNN method and the stereo matching method,
and also the power of the presented method in preserving
the structural information in the output depth map.

An important advantage of these models is the processing
time of ∼1.23 s∕MP. This is equal to 38 fps for an input
image of size (80 × 264) on an i7 2600 CPU @ 3.4 GHz
and 16 GB of RAM. This makes the model suitable for
providing depth estimation in real time. This performance
is comparable to the stereo methods MC-CNN-fst29 and
JMR,24 whose times are 37 and 4 fps, respectively, for the
same size of the image, taking advantage of GPU computa-
tion power (NVIDIA GTX TITAN X and GTX 980, respec-
tively). The IDR method32 can give up to 131 fps for the
same image size by using an NVIDIA GeForce TITAN
Black GPU and CUDA C++ implementation, but the perfor-
mance on a CPU is not given by the authors, so any com-
parisons with this method would be unfair.

Using pixelwise segmentation as one of the inputs of the
network slightly increased the accuracy of the models, and
also helped the model preserve the structural details of the
input image. However, it also brought some artifacts, such as
wrong depth patches on the surfaces. The evaluation results
also illustrate the higher accuracy of the models where a
postprocessed depth map was used as the target in the train-
ing procedure.

4.1 Future Works and Improvements
The model presented in this work is still a big model to
implement in low power consumer electronic devices (e.g.,
handheld devices). Future work will include a smaller design
that is able to perform as well as the presented model. The
other consideration for the current method is the training data
size (which is always the biggest consideration with deep
learning approaches). The amount of stereo data available

Table 8 Network trained in experiment 3, tested on scaled, rotated,
and translated samples.

Exp. 3,
original

Exp. 3,
scaled

Exp. 3,
rotated

Exp. 3,
translated

PSNR 13.8333 11.5803 7.2379 6.2700

MSE 0.0435 0.0808 0.1962 0.2420

RMSE 0.206 0.2740 0.4388 0.4890

SNR 6.1952 4.1375 4.6070 5.3933

MAE 0.1236 0.2187 0.3580 0.3787

SSIM 0.9955 0.9897 0.9780 0.9715

UQI 0.9053 0.826 0.293 0.489

Table 9 Network trained in experiment 4, tested on scaled, rotated,
and translated samples.

Exp. 4,
original

Exp. 4,
scaled

Exp. 4,
rotated

Exp. 4,
translated

PSNR 13.8179 12.0590 8.0581 7.5241

MSE 0.0439 0.0725 0.1649 0.1847

RMSE 0.2066 0.2595 0.4009 0.4253

SNR 6.1798 3.6592 3.5843 4.3851

MAE 0.1234 0.2023 0.3191 0.3294

SSIM 0.9955 0.9908 0.9817 0.978

UQI 0.9064 0.878 0.250 0.468

Journal of Electronic Imaging 043041-11 Jul∕Aug 2018 • Vol. 27(4)

Bazrafkan et al.: Semiparallel deep neural network hybrid architecture: first application. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 8/21/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



in the databases is usually not big enough to train a DNN.
The augmentation techniques can help to expand databases,
but the amount of extra information they provide is limited.
Providing a larger set with accurate depth maps will improve
the results significantly.

The future works also involve designing and training
networks on other databases, such as NYU Depth V246

and Make3D,48,49 and performing interdatabase evaluation
wherein the network is trained on one database and tested
on another one. We will also utilize the SPDNN method
to design a network for a mixed database to get more gen-
eralization power.

The SPDNN approach is currently being applied to other
problems and is giving promising results on both classifica-
tion and regression problems. Those results will be presented
in future publications.

Appendix A: Network Design

A1 Individual Networks for Depth Analysis
The network shown in Fig. 13 is a deep fully CNN (a fully
CNN is a network wherein all the layers are convolutional
layers) with no pooling and no padding. Therefore, no infor-
mation loss occurs inside the network, as there is no bottle-
neck or data compression; this network is able to preserve
the details of the input samples. But the main problem is
that this model is unable to find big objects and coarse
features in the image. In order to solve this problem, three
other networks have been designed as shown in Figs. 14–16.
These three networks take advantage of the max-pooling
layers to gain transition invariance and also to recognize
larger objects and coarser features inside the image. These
networks use 2 × 2, 4 × 4, and 8 × 8 max-pooling operators,

Fig. 13 Top row: network 1, Bottom row: graph corresponds to network 1.

Fig. 14 Top row: network 2, Bottom row: graph corresponds to network 2.

Fig. 15 Top row: network 3, Bottom row: graph corresponds to network 3.

Journal of Electronic Imaging 043041-12 Jul∕Aug 2018 • Vol. 27(4)

Bazrafkan et al.: Semiparallel deep neural network hybrid architecture: first application. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 8/21/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



respectively. Larger pooling kernels allow coarser features to
be detected by the network. The main problem with these
networks is that the spatial details vanished as a result of
data compression in pooling layers.

After several attempts of designing different networks, the
observations showed that in order to estimate the depth from
an image, the network needed to see the whole image as one
object. To do that requires the kernel to be the same size as
the image in at least one layer that is equivalent to a fully
connected layer inside the network.

In fully connected layers, each neuron is connected to
all neurons in the previous/next layer. Due to the computa-
tionally prohibitive nature of training fully connected layers
and their tendency to cause overfitting, it is desirable to

reduce the number of these connections. Adding fully
connected layers results in a very tight bottleneck, which
seems to be crucial for the depth estimation task, but
also causes the majority of the details in the image to be
lost. In Figs. 17–20, the networks with fully connected
layers are shown. These networks correspond to networks
in Figs. 13–16 but with convolutional layers replaced with
fully connected layers on the righthand side of the network.
Using different pooling sizes before the fully connected
layer will cause the network to extract different levels of
features, but all these configurations introduce loss of
detail.

Each of these eight configurations has its own advantages
and shortcomings, from missing the coarse features to

Fig. 16 Top row: network 4, Bottom row: graph corresponds to network 4.

Fig. 17 Top row: network 5, Bottom row: graph corresponds to network 5.

Fig. 18 Top row: network 5, Bottom row: graph corresponds to network 6.

Journal of Electronic Imaging 043041-13 Jul∕Aug 2018 • Vol. 27(4)

Bazrafkan et al.: Semiparallel deep neural network hybrid architecture: first application. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 8/21/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



missing the details. None of these designs converged to a
reasonable depth estimation model.

The main idea of the SPDNN method is to mix and merge
these networks and generate a single model, which includes
all the layers of the original models in order to be able to
preserve the details and also detect the bigger objects in
the scene for the depth estimation task.

A.2 SPDNN Parallelization Methodology

A.2.1 Graph Contraction
A consideration while parallelizing NNs is that having the
same structure of layers with the same distance from the
input might lead all the layers to converge to similar values.
For example, the first layer in all of the networks shown in
Figs. 13–20 is a 2-D convolutional layer with a 3 × 3 kernel.

The SPDNN idea uses graph contraction to merge several
NNs. The first step is to turn each network into a graph in
which it is necessary to consider each layer of the network
as a node in the graph. Each graph starts with the input node
and ends with the output node. The nodes in the graph are
connected based on the connections in the corresponding
layer of the network. Note that the pooling and unpooling
layers are not represented as nodes in the graph, but their
properties will stay with the graph labels, which will be
explained later.

Figures 13–20 presents the networks and their corre-
sponding compressed graphs. Two properties are assigned
to each node in the graph. The first property is the layer struc-
ture, and the second one is the distance of the current node to
the input node. To convert the network into a graph, a label-
ing scheme is required. The proposed labeling scheme uses
different signs for different layer structures, C for convolu-
tional layer (e.g., 3C mean a convolutional layer with 3 × 3
kernel), F for fully connected layer (e.g., 30F means a fully
connected layer with 30 neurons), and P for pooling property
(e.g., 4P means that the data have been pooled by the factor
of 4 in this layer).

Some properties, such as convolutional and fully connected
layers, occur in a specific node, but pooling and unpooling
operations will stick with the data to the next layers. The pool-
ing property stays with the data except when an unpooling or
a fully connected layer is reached. For example, a node with
the label (3C8P, 4) corresponds to a convolutional layer with
a 3 × 3 kernel, the 8P portion of this label indicates that the
data have undergone 8 × 8 pooling, and the four at the end
indicates that this label is at a distance of four from the input
layer. The corresponding graphs, with assigned labels for each
network, are shown in Figs. 13–20.

The next step is to put all these graphs in a parallel format
sharing a single input and single output node. Figure 21
shows the graph in this step.

Fig. 19 Top row: network 7, Bottom row: graph corresponds to network 7.

Fig. 20 Top row: network 8, Bottom row: graph corresponds to network 8.

Journal of Electronic Imaging 043041-14 Jul∕Aug 2018 • Vol. 27(4)

Bazrafkan et al.: Semiparallel deep neural network hybrid architecture: first application. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 8/21/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



In order to merge layers with the same structure and the
same distance from the input node, nodes with the exact
same properties are labeled with the same letters. For exam-
ple, all the nodes with properties (3C, 1) are labeled with
letter A, and all the nodes with the properties (3C2P, 4)
are labeled K, and so on.

The next step is to apply graph contraction on the paral-
lelized graph. In the graph contraction procedure, the nodes
with the same label are merged to a single node while saving
their connections to the previous/next nodes. For instance,

all the nodes with label A are merged into one node, but
its connection to the input node and also nodes B, C, D,
and E are preserved. The contracted version of the graph in
Fig. 21 is shown in Fig. 22.

Afterward, the graph has to be converted back to the NN
structure. In order to do this, the preserved structural proper-
ties of each node are used. For example, node C is a 3 × 3
convolutional layer that has experienced a pooling operation.
Note that the pooling quality will be recalled from the origi-
nal network.

Fig. 21 Parallelized version of the graphs shown in Figs. 13–20 sharing a single input node and single
output node.

Fig. 22 Contracted version of the big graph shown in Fig. 21.

Journal of Electronic Imaging 043041-15 Jul∕Aug 2018 • Vol. 27(4)

Bazrafkan et al.: Semiparallel deep neural network hybrid architecture: first application. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 8/21/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



The concatenation layer is used in the NN in order to
implement the nodes wherein several other nodes lead to
one node. For example, in nodes N and O the outputs of
nodes J, K, L, and M are concatenated with the pooling
qualities taken from their original networks.

The graph is translated back to a DNN. The network
corresponds to the graph shown in Fig. 22.

A.3 SPDNN: How It Works and Why It Is Effective?
One might ask why the SPDNN approach is effective and
what the difference is between this approach and other mix-
ing approaches. Here, the model designed by the SPDNN
scheme is investigated in the forward and backpropagation
steps. The key component is in the backpropagation step
where the parameters in parallel layers influence each
other. These two steps are described below:

Forward propagation: Consider the network designed by
the SPDNN approach shown in Fig. 23. This exemplary net-
work is made of five subnetworks. Just the general view of
the network is shown in this figure and the layers’ details are
ignored since the main goal is to show the information flow
within the whole network.

When the input samples are fed into the network, the data
travel through the network along three different paths shown
in Fig. 24.

At this stage, the parallel networks are blind to each other,
i.e., the networks placed in parallel do not share any infor-
mation with each other. As shown in Fig. 24, the data trav-
eling in Sub-Net 1 and Sub-Net 2 are not influenced by each
other since they do not share any path together, as in Sub-Net
3 and Sub-Net 4.

Backpropagation: While training the network, the loss
function calculated based on the error value at the output
of the NN is a mixed and merged function of the error
value corresponding to every data path in the network. In
the backpropagation step, the parameters inside the network
update based on this mixed loss values, i.e., this value back-
propagates throughout the whole network as shown in
Fig. 25. Therefore, at this stage of training, each subnetwork
is influenced by the error value from every data path shown

in Fig. 25. This illustrates the way each subnetwork is trained
to reduce the error of its own path and also the error from
the mixture of all paths.

The main difference between the SPDNN approach and
other mixing approaches, such as the voting approach, lies in
the backpropagation step where different subnets are influ-
enced by the errors of each other and try to compensate for
each other’s shortcomings by reducing the final mixed error
value. In the voting approach, different classifiers are trained
independently of each other and they do not communicate to
reduce their total error value.

A.3.1 SPDNN versus Inception
One of the approaches that has superficial similarities to
SPDNN is the inception technique.64 For clarity, and to aid
the reader in understanding, the authors list four significant
points of difference between SPDNN and inception with
regard to mixing networks.

1. The main idea in SPDNN is to maintain the overall
structure of the networks, but to mix them in a reason-
able way. For example, if there is a big kernel such
as 13 × 13 in one of the configurations, the SPDNN
method always preserves the structure (13 × 13
kernel) inside the final network. This contrasts with
inception,64 which reduces larger kernels into smaller
ones.

2. In the inception method, all the layers are merged into
one final layer, which does not happen with the
SPDNN approach.

3. The number of the layers in the SPDNN architecture is
less than or equal to the number of layers in the origi-
nal networks. In contrast, the inception idea aims
to increase the number of layers in the network by
(it breaks down each layer into several layers with
smaller kernels).

The SPDNN idea is to design a new network from
existing networks that perform well at some task or subtask
while the idea in inception is to design a network from
scratch.

A.4 Comparisons of Individual Networks
In this section, the behavior of each subnetwork is investi-
gated and compared with the final network. Each of the eight
networks proposed in Appendix A.2 is trained on the training
data explained in Sec. 2.2. The training is performed in the
Lasagne library on top of Theano in Python. Training is done
on a standard desktop with an NVIDIAGTX 1080 GPU with
8 GB memory.

Fig. 23 A network designed using the SPDNN approach. It contains
five subnetworks placed in parallel and semiparallel forms.

Fig. 24 Forward propagation inside the SPDNN. There are three dif-
ferent paths on which the information can flow inside the network.

Fig. 25 Backpropagation for SPDNN. The mixed error is backpropa-
gated throughout the network while updating parameters.

Journal of Electronic Imaging 043041-16 Jul∕Aug 2018 • Vol. 27(4)

Bazrafkan et al.: Semiparallel deep neural network hybrid architecture: first application. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 8/21/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



In the presented experiments, the MSE value between the
output of the network and the target values has been used as
the loss function, and the Nestrov momentum technique with
learning rate 0.01 and momentum 0.9 has been used to train

the network. The training and validation losses for the first
300 epochs are shown Figs. 26 and 27, respectively.

The convergence of the network is significantly increased
after merging the networks for both training and validation
sets. The fluctuations in validation are less for the merged
network, which demonstrates less variance in the loss value.
This shows a more stable training process when the SPDNN
is applied.

This is also shows how much pooling can help the
network to converge and also that networks with fully
connected layers are providing better overall outputs, but
they miss details in the depth maps since they observe the
input sample as a single entity.

The evaluation of each network on the test set is presented
in Table 10.

The merged network is giving superior results compared
to each individual network for all measurements. This is
while the final merged network is designed to have the
same number of parameters as each individual subnetwork.
This means that the same memory efficiency and also the
processing speed for the merged network stay same as for
the subnetworks.

Appendix B: SegNet
SegNet is a fully convolutional semantic image segmentation
framework presented in Refs. 51 and 52. This model uses the
convolutional layers of the VGG16 network as the encoder
of the network and eliminates the fully connected layers, thus
reducing the number of trainable parameters from 134 M to
14.7 M, which represents a reduction of 90% in the number
of parameters to be trained. The encoder portion of SegNet
consists of 13 convolutional layers with ReLU nonlinearity
followed by max-pooling (2 × 2 window) and stride 2 in
order to implement a nonoverlapping sliding window. This
consecutive max-pooling and striding results in a network
configuration that is highly robust to translation in the
input image but has the drawback of losing spatial resolution
of the data.

This loss of spatial resolution is not beneficial in segmen-
tation tasks where it is necessary to preserve the boundaries
of the input image in the segmented output. To overcome
this problem, the following solution is given in Ref. 51.
As most of the spatial resolution information is lost in

Fig. 26 Training loss for each subnetwork and also the merged
network.

Fig. 27 Validation loss for each subnetwork and also the merged
network.

Table 10 Test loss for each subnetwork.

Net #1 Net #2 Net #3 Net #4 Net #5 Net #6 Net #7 Net #8 Net merged

PSNR 12.2409 12.0153 12.3419 12.4382 12.1458 13.0247 12.3698 13.2233 15.0418

MSE 0.0640 0.0672 0.0639 0.0628 0.0676 0.0556 0.0639 0.0527 0.0378

RMSE 0.2486 0.2549 0.2471 0.2447 0.2535 0.2293 0.2467 0.2238 0.1854

SNR 0.8944 1.2153 1.3206 1.5260 2.5726 0.8139 1.5435 0.9104 8.822

MAE 0.2028 0.2081 0.2007 0.1938 0.2009 0.1864 0.2001 0.1798 0.1442

SSIM 0.9918 0.9914 0.9918 0.9922 0.9916 0.9927 0.9918 0.9932 0.9952

UQI 0.0455 0.0526 0.0856 0.1044 0.0954 0.1067 0.1154 0.1015 0.8401

Journal of Electronic Imaging 043041-17 Jul∕Aug 2018 • Vol. 27(4)

Bazrafkan et al.: Semiparallel deep neural network hybrid architecture: first application. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 8/21/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



the max-pooling operation, saving the information of the
max-pooling indices and using this information in the
decoder part of the network preserves the high-frequency
information.

Note that for each layer in the encoder portion of the
network, there is a corresponding decoder layer. The idea
of SegNet is that wherever max-pooling is applied to the
input data, the index of the feature with the maximum
value is preserved. Later these indices will be employed to
make a sparse feature space before the deconvolution step,
applying the unpooling step in the decoder part. A batch
normalization layer35 is placed after each convolutional
layer to avoid overfitting and to promote faster convergence.
Decoder filter banks are not tied to corresponding encoder
filters and are trained independently in the SegNet
architecture.

Acknowledgments
The research work presented here was funded under the
Strategic Partnership Program of Science Foundation
Ireland (SFI) and co-funded by SFI and FotoNation Ltd.
Project ID: 13/SPP/I2868 on “Next Generation Imaging
for Smartphone and Embedded Platforms.” This work is
also supported by an Irish Research Council Employment
Based Programme Award. Project ID: EBPPG/2016/280.

References

1. F. Tombari, S. Mattoccia, and L. D. Stefano, “Stereo for robots:
quantitative evaluation of efficient and low-memory dense stereo algo-
rithms,” in 11th Int. Conf. on Control Automation Robotics and Vision
(2010).

2. S. Yang et al., “Extraction of topographic map elements with SAR ster-
eoscopic measurement,” in Int. Symp. on Image and Data Fusion
(2011).

3. R. Muñoz-Salinas, E. Aguirre, and M. García-Silvente, “People detec-
tion and tracking using stereo vision and color,” Image Vision Comput.
25(6), 995–1007 (2007).

4. P. Haigron et al., “Depth-map-based scene analysis for active navigation
in virtual angioscopy,” IEEE Trans. Med. Imaging 23(11), 1380–1390
(2004).

5. G. Yahav, G. J. Iddan, and D. Mandelboum, “3D imaging camera for
gaming application,” in Digest of Technical Papers Int. Conf. on
Consumer Electronics (2007).

6. M. Grosse et al., “3D shape measurement of macroscopic objects in
digital off-axis holography using structured illumination,” Opt. Lett.
35(8), 1233–1235 (2010).

7. P. Kauff et al., “Depth map creation and image-based rendering for
advanced 3DTV services providing interoperability and scalability,”
Image Commun. 22(2), 217–234 (2007).

8. P. Merkle et al., “The effect of depth compression on multiview render-
ing quality,” in 3DTV Conf.: The True Vision—Capture, Transmission
and Display of 3D Video (2008).

9. S. R. Malireddi et al., “HandSeg: a dataset for hand segmentation from
depth images,” arXiv:171105944 (2017).

10. L. Tian et al., “Robust 3D human detection in complex environments
with depth camera,” IEEE Trans. Multimedia 1 (2018).

11. J. Liu et al., “Skeleton-based human action recognition with global con-
text-aware attention LSTM networks,” IEEE Trans. Image Process.
27(4), 1586–1599 (2018).

12. J. Liu et al., “Skeleton-based action recognition using spatio-temporal
LSTM network with trust gates,” IEEE Trans. Pattern Anal. Mach.
Intell. 1 (2017).

13. M. Weber, M. Humenberger, and W. Kubinger, “A very fast census-
based stereo matching implementation on a graphics processing
unit,” in IEEE 12th Int. Conf. on Computer Vision Workshops, ICCV
Workshops (2009).

14. S. Bazrafkan and P. Corcoran, “Semi-parallel deep neural networks
(SPDNN), convergence and generalization,” arXiv:171101963 (2017).

15. S. Bazrafkan and P. M. Corcoran, “Pushing the AI envelope: merging
deep networks to accelerate edge artificial intelligence in consumer
electronics devices and systems,” IEEE Consum. Electron. Mag. 7(2),
55–61 (2018).

16. B. Freedman et al., “Depth mapping using projected patterns,” Google
Patents, Patent No. US8493496B2 (2013).

17. A. Govari et al., “Tissue depth estimation using gated ultrasound and
force measurements,” Google Patents, Patent No. EP3189785A1
(2016).

18. D. Nair, “3D Imaging with NI LabVIEW,” http://www.ni.com/white-
paper/14103/en/ (24 August 2016).

19. C. Niclass et al., “A 100 m-range 10-frame∕s 340 × 96-pixel time-of-
flight depth sensor in 0.18-μm CMOS,” in Proc. of the ESSCIRC
(ESSCIRC) (2011).

20. C. Niclass et al., “Design and characterization of a 256 × 64-pixel sin-
gle-photon imager in CMOS for a MEMS-based laser scanning time-of-
flight sensor,” Opt. Express 20(11), 11863–11881 (2012).

21. D. Scharstein and R. Szeliski, “High-accuracy stereo depth maps using
structured light,” in Proc. of IEEE Computer Society Conf. on Computer
Vision and Pattern Recognition (2003).

22. R. K. Gupta and S.-Y. Cho, “A correlation-based approach for real-time
stereo matching,” Lect. Notes Comput. Sci. 6454, 129–138 (2010).

23. C. Zhang et al., “MeshStereo: a global stereo model with mesh align-
ment regularization for view interpolation,” in IEEE Int. Conf. on
Computer Vision (ICCV) (2015).

24. D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” Int. J. Comput. Vision
47(1–3), 7–42 (2002).

25. K. R. Kim and C. S. Kim, “Adaptive smoothness constraints for efficient
stereo matching using texture and edge information,” in IEEE Int. Conf.
on Image Processing (ICIP) (2016).

26. X. Huang, Y. Zhang, and Z. Yue, “Image-guided non-local dense match-
ing with three-steps optimization,” ISPRS Ann. Photogramm. Remote
Sens. Spatial Inf. Sci. III-3, 67–74 (2016).

27. A. Li et al., “Coordinating multiple disparity proposals for stereo com-
putation,” in IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, Nevada (2016).

28. M. Shahbazi et al., “Revisiting intrinsic curves for efficient dense
stereo matching,” ISPRS Ann. Photogramm. Remote Sens. Spatial Inf.
Sci. III-3, 123–130 (2016).

29. J. Žbontar and Y. LeCun, “Stereo matching by training a convolutional
neural network to compare image patches,” J. Mach. Learn. Res. 17(1),
2287–2318 (2016).

30. J. T. Barron and B. Poole, “The fast bilateral solver,” arXiv:151103296
(2016).

31. E. T. Psota et al., “MAP disparity estimation using hidden Markov
trees,” in IEEE Int. Conf. on Computer Vision (ICCV) (2015).

32. J. Kowalczuk, E. T. Psota, and L. C. Perez, “Real-time stereo matching
on CUDA using an iterative refinement method for adaptive support-
weight correspondences,” IEEE Trans. Circuits Syst. Video Technol.
23(1), 94–104 (2013).

33. B. Yegnanarayana, Artificial Neural Networks, PHI Learning Pvt. Ltd.,
New Delhi (2009).

34. N. Srivastava et al., “Dropout: a simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res. 15(1), 1929–1958 (2014).

35. S. Ioffe and C. Szegedy, “Batch normalization: accelerating deep net-
work training by reducing internal covariate shift,” arXiv:150203167
(2015).

36. F. Mahmood, R. Chen, and N. J. Durr, “Unsupervised reverse domain
adaptation for synthetic medical images via adversarial training,” IEEE
Trans. Medical Imaging 1 (2018).

37. F. Mahmood and N. J. Durr, “Deep learning-based depth estimation
from a synthetic endoscopy image training set,” Proc. SPIE 10574,
1057421 (2018).

38. F. Mahmood and N. J. Durr, “Deep learning and conditional random
fields-based depth estimation and topographical reconstruction from
conventional endoscopy,” arXiv:171011216 (2017).

39. F. Liu et al., “Learning depth from single monocular images using deep
convolutional neural fields,” IEEE Trans. Pattern Anal. Mach. Intell.
38(10), 2024–2039 (2016).

40. A. Saxena, J. Schulte, and A. Y. Ng, “Depth estimation using monocular
and stereo cues,” in Proc. of the 20th Int. Joint Conf. on Artificial
Intelligence, Hyderabad, India (2007).

41. D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from
a single image using a multi-scale deep network,” in Proc. of the
27th Int. Conf. on Neural Information Processing Systems, Montreal,
Canada, Vol. 2 (2014).

42. R. Garg et al., “Unsupervised CNN for single view depth estimation:
geometry to the rescue,” Lect. Notes Comput. Sci. 9912, 740–756
(2016).

43. C. Godard, O. M. Aodha, and G. J. Brostow, “Unsupervised monocular
depth estimation with left-right consistency,” in IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR) (2017).

44. D. Xu et al., “Monocular depth estimation using multi-scale continuous
CRFs as sequential deep networks,” IEEE Trans. Pattern Anal. Mach.
Intell. 1 (2018).

45. D. Xu et al., “Multi-scale continuous CRFs as sequential deep networks
for monocular depth estimation,” in IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR) (2017).

46. N. Silberman et al., “Indoor segmentation and support inference from
RGBD images,” Lect. Notes Comput. Sci. 7576, 746–760 (2012).

Journal of Electronic Imaging 043041-18 Jul∕Aug 2018 • Vol. 27(4)

Bazrafkan et al.: Semiparallel deep neural network hybrid architecture: first application. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 8/21/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



47. M. Menze and A. Geiger, “Object scene flow for autonomous vehicles,”
in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)
(2015).

48. A. Saxena, S. H. Chung, and A. Y. Ng, “3-D depth reconstruction from a
single still image,” Int. J. Comput. Vision 76(1), 53–69 (2008).

49. A. Saxena, S. H. Chung, and A. Y. Ng, “Learning depth from single
monocular images,” in Proc. of the 18th Int. Conf. on Neural
Information Processing Systems, Vancouver, British Columbia (2005).

50. H. Javidnia and P. Corcoran, “A depth map post-processing approach
based on adaptive random walk with restart,” IEEE Access 4, 5509–
5519 (2016).

51. V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: a deep
convolutional encoder-decoder architecture for image segmentation,”
arXiv:151100561 (2015).

52. A. Kendall, V. Badrinarayanan, and R. Cipolla, “Bayesian segNet:
model uncertainty in deep convolutional encoder-decoder architectures
for scene understanding,” arXiv:151102680 (2015).

53. A. Kendall, V. Badrinarayanan, and R. Cipolla, “Caffe implementation
of SegNet,” https://github.com/alexgkendall/caffe-segnet (18 April
2018).

54. G. J. Brostow et al., “Segmentation and recognition using structure from
motion point clouds,” Lect. Notes Comput. Sci. 5302, 44–57 (2008).

55. S. Lee et al., “Robust stereo matching using adaptive random walk with
restart algorithm,” Image Vision Comput. 37, 1–11 (2015).

56. I. Sutskever et al., “On the importance of initialization and momentum
in deep learning,” in Int. Conf. Machine Learning, Vol. 28, pp. 1139–
1147 (2013).

57. W. Zhou et al., “Image quality assessment: from error visibility to
structural similarity,” IEEE Trans. Image Process. 13(4), 600–612
(2004).

58. W. Zhou and A. C. Bovik, “A universal image quality index,” IEEE
Signal Process. Lett. 9(3), 81–84 (2002).

59. K. Pearson, “Note on regression and inheritance in the case of two
parents,” Proc. R. Soc. Lond. 58, 240–242 (1895).

60. J. Kopf et al., “Joint bilateral upsampling,” ACM Trans. Graph 26(3), 96
(2007).

61. A. Saxena, M. Sun, and A. Y. Ng, “Make3D: learning 3D scene struc-
ture from a single still image,” IEEE Trans. Pattern Anal. Mach. Intell.
31(5), 824–840 (2009).

62. T. Zhou et al., “Unsupervised learning of depth and ego-motion from
video,” in IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR) (2017).

63. Y. Kuznietsov, J. Stückler, and B. Leibe, “Semi-supervised deep learn-
ing for monocular depth map prediction,” in 2017 IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR) (2017).

64. C. Szegedy et al., “Going deeper with convolutions,” in Proc. of the
IEEE Conf. on Computer Vision and Pattern Recognition (2015).

Shabab Bazrafkan received his BSc degree in electrical engineering
from Urmia University, Urmia, Iran, in 2011 and his MSc degree from
Shiraz University of Technology (SuTECH) in telecommunication
engineering, image processing branch in 2013. Currently he is a
PhD student at the National University of Ireland, Galway (NUIG)
and also works with Fotonation Ltd. His field of working is deep neural
networks and neural network design.

Hossein Javidnia received his master’s degree in information tech-
nology engineering from the University of Guilan, Iran, in 2014. He
received his PhD in electrical engineering from the National
University of Ireland, Galway, in 2018. His current research interests
include image processing, machine vision, and automotive
navigation.

Joseph Lemley received his BS degree in computer science from
Central Washington University in 2006. After working in industry
and cofounding a start-up, he went back to Central Washington
University in 2014 and received his master’s degree in computational
science in 2016. Currently he is a PhD student at the National
University of Ireland, Galway (NUIG) funded by Fotonation Ltd.
under the IRCSET “Employment PhD” program. His field of work is
machine learning using deep neural networks for tasks related to
computer vision.

Peter Corcoran is an IEEE fellow; 500+ technical publications and
patents; 80+ peer reviewed papers and articles; 100+ international
conference papers; coinventor on 300+ granted US patents, univer-
sity professor for 28 years; member IEEE Consumer Electronics
Society 20+ years; editor-in-chief and founding editor of IEEE
Consumer Electronics Magazine; former vice-dean of research and
graduate studies (7 year tenure) in the College of Engineering and
Informatics at NUI Galway; cofounder of several start-up companies
including FotoNation (www.fotonation.com); and industry consultant
and expert witness.

Journal of Electronic Imaging 043041-19 Jul∕Aug 2018 • Vol. 27(4)

Bazrafkan et al.: Semiparallel deep neural network hybrid architecture: first application. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 8/21/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use





Appendix C

Deep Learning for Facial Expression
Recognition: A step closer to a
SmartPhone that Knows your Moods



 

 

Abstract—By growing the capacity and processing power of 
the handheld devices nowadays, a wide range of capabilities can 
be implemented in these devices to make them more intelligent 
and user friendly. Determining the mood of the user can be used 
in order to provide suitable reactions from the device in different 
conditions. One of the most studied ways of mood detection is by 
using facial expressions, which is still one of the challenging fields 
in pattern recognition and machine learning science.  

Deep Neural Networks (DNN) have been widely used in order 
to overcome the difficulties in facial expression classification. In 
this paper it is shown that the classification accuracy is 
significantly lower when the network is trained with one database 
and tested with a different database. A solution for obtaining a 
general and robust network is given as well. 

I. INTRODUCTION 
Today’s handheld devices are growing in their capacity to 

interact with end-users. They have access to an ever-growing 
range of network based services and their sensing capabilities 
of the location and local environment continue to grow in 
scope. One remaining challenge for today’s devices is to sense 
and determine the emotional state of the user. This introduces 
new challenges [1], [2] and requires a range of sophisticated 
edge technologies that can capture and analyze information 
from the user on the device. One example is the real-time 
analysis of speech patterns for detecting emotion [3], [4]. 
More recently researchers in this field have turned to deep 
learning techniques [5]. Facial expression analysis is also well 
known in the literature [6]–[11].  

But it is computationally complex and it is challenging to 
achieve high recognition rates using conventional feature 
extraction and classification schemes. In this paper we follow 
the trend from the speech recognition field and explore facial 
emotion recognition using deep learning techniques. The goal 
is to demonstrate the potential for high performance solution 
that can run on relative lightweight convolutional neural 
networks that can be efficiently implemented in hardware or 
on a GPU. Such a solution could realistically enable a new 
generation of smartphones that can understand the moods of 
their owners.       

 
This research is funded under the SFI Strategic Partnership Program by 

Science Foundation Ireland (SFI) and FotoNation Ltd. Project ID: 
13/SPP/I2868 on Next Generation Imaging for Smartphone and Embedded 
Platforms. 

 This work is supported by the Enterprise Partnership Scheme program of the Irish 
Research Council 

A. Facial Expression Classification 
This In recent years the facial expressions classification has 

attracted a lot of attention because of it’s various potential 
applications including psychology, medicine, security [12], 
man-machine interaction and surveillance [13]. There are two 
main approaches to investigate the facial expression in a 
systematic way: Action Unit (AU) based and appearance 
based methods.  

AU model introduces the Facial Action Coding System 
(FACS) which has been developed by Carl-Herman Hjortsjö 
in 1969 [14]. This technique described the facial expression as 
a composition of Action Units which are describing the facial 
muscle motions. This method takes advantage of the strong 
support of the psychology and physiology sciences since it 
uses the facial muscle movements for modeling different 
expressions [13]. The AU based methods suffer from the 
difficulties such as dependencies on invisible muscle motions 
[13] which makes it extremely difficult to model the FACS 
system using machines.  

In contrast the appearance based methods are using feature 
extraction, feature selection and classification methods [15] in 
order to determine the expression in the face. In this approach 
different kinds of features have been used so far including, 
Local Binary Pattern [16], Scale Invariant Feature Transform 
(SIFT) [17] and Histogram of Oriented Gradient [18]. There 
are several main difficulties in facial expression detection, 
like, changes in  the appearance and the shape of the face in 
unexpected ways (because of the non-rigidity of the face) [19], 
imaging conditions, and inter-person differences in facial 
expressions. Because of these basic problems there are no 
golden methods which can be called as a standard for 
automatic facial expression classification.  

B. Deep Learning 
In recent years by emerging powerful parallel processing 

hardware, Deep Neural Networks (DNN) become a hot topic 
in pattern recognition and machine learning science. Deep 
Learning (DL) scheme is based on the consecutive layers of 
signal processing units in order to mix and re-orient the input 
data to their most representative order correspond to a specific 
application.  

Facial expression classification has taken advantage of 
DNN classifiers in recent years. In [13] an AU inspired Deep 
Network has been proposed which uses the DNN to extract the 
most representative features.in [20] a DNN with five layers 

  Deep Learning for Facial Expression Recognition: 
A step closer to a SmartPhone that Knows your Moods.  

Shabab Bazrafkan1,  Tudor Nedelcu1, Pawel Filipczuk2, Peter Corcoran1  Member, IEEE 
1: Center for Cognitive, Connected & Computational Imaging, College of Engineering & Informatics, 

NUI Galway, Galway, Ireland 
2: Fotonation LTD, Galway, Ireland 

E-mails: {s.bazrafkan1 , t.nedelcu1}@nuigalway.ie, pfilipczuk@fotonation.com, 
peter.corcoran@nuigalway.ie  

 

2017 IEEE International Conference on Consumer Electronics (ICCE)

978-1-5090-5544-9/17/$31.00 ©2017 IEEE



 
 

 

and 65K neurons has been designed to classify the expression 
into five categories (Neutral, happy, sad, angry and surprised). 
In [15], a Boosted Deep Belief Network (BDBN) has been 
proposed and implemented using joint fine tune process in 
BDBN framework to classify the facial expression. 

In all DNN based investigations on facial expression, the 
proposed network is trained and tuned for a specific database 
and the test data is drawn from the same database as well. 
Since the network is biased for a specific data type, the result 
on the test data of that dataset will give surprisingly low error 
rate. But if the designed network for database A would be 
tested on database B the results will be shockingly bad. 
Therefore, these classifiers would fail to work in wild 
environments.  

The main goal of this paper is to investigate the amount of 
error caused by network trained with one database and tested 
with other and also design and implement a network which 
can overcome the problem with mixing databases for training 
stage.  

In the next section an introduction to Deep Neural Networks 
(DNN) is presented, and also Databases and database 
expansion is presented. In the Third section the networks 
designed for single and multi database purposes are given and 
results and discussion is given in section 4. 
 

II. METHODOLOGY 
The goal of this research is to investigate the amount of 

error that occurs from training a DNN network for a database 
and test it on other database. This inter-database investigation 
can give a general perspective on design and train networks 
for wild applications and costumer device implementations. 

 

A. Deep Neural Networks (DNN)/Deep Learning (DL) 
Deep Neural Networks training also known as Deep 

Learning is one of the most advanced machine learning 
techniques trending in recent years due to appearance of 
extremely powerful parallel processing hardware and 
Graphical Processing Units (GPU). Several consecutive signal 
processing units are set in serial/parallel architecture mixing 
and re-orienting the input data in order to result in most 
representative output considering a specific problem. The 
most popular image/sound processing structure of DNN is 
constructed by three main processing layers: Convolutional 
Layer, Pooling Layer and Fully Connected Layer. DNN units 
are described below: 

Convolutional Layer: This layer convolves the (in general 
3D) image “I” with (in general 4D) kernel “W” and adds a (in 
general 3D) bias term “b” to it. The output is given by: 

 
P = I*W + b ,                        (1) 
 

where * operator is nD convolution in general. In the training 
process the kernel and bias parameters are selected in a way to 
optimize the error function of the network output. 

Pooling Layer: The pooling layers applies a non-linear 
transform on the input image which reduce the neuron 
numbers after the operation. It’s common to put a pooling 
layer between two consecutive convolutional layers. This 
operation also reduces the unit size which will lead to less 
computational load and also prevents the over-fitting problem. 

Fully Connected Layer: Fully connected layers are exactly 
same as the classical Neural Network (NN) layers where all 
the neurons in a layer are connected to all the neurons in their 
subsequent layer. The neurons are triggered by the summation 
of their input multiplied by their weights passed from their 
activation functions. 

B. Databases 
Three databases has been used in the research. Radboud 

Faces Database (RaFD) [21], Cohn-Kanade AU-Coded Facial 
Expression Database Version 2 (CK+) [22] and The Japanese 
Female Facial Expression (JAFFE) Database [23]. 

RaFD: The Radboud Faces Database is a set of 67 persons 
with different gender and different races (Caucasian and 
Moroccan Dutch), both children and adults. This database 
displays 8 different emotions which in the presented work 
seven of them are used. 

CK+: Cohn-Kanande version 2 (known as CK+) database is 
a facial expression database including both posed and non-
posed expressions wherein the subject changes emotion in 
several sequences from neutral to one of seven different 
expressions. In the presented work just the non-posed data has 
been used. 

JAFFE: The Japanese Female Facial Expression Database 
is made of 213 images of 7 expressions contains faces of 10 
Japanese female models. Since the number of images in this 
database is not sufficient to train a DNN, this database is 
eliminated from our inter-database investigations and is used 
just for multi database network training. 

C. Database Expansion 
Since the number of image sin each database is not enough 

in order to train a DNN a database expansion scheme has been 
used to overcome the problem which includes flipping images 
and rotating them by [-3,-2,-1,1,3,3] degrees and put them 
back in the dataset. Using this approach, we ended up with 
large number of images for each dataset shown in table 1. 
 
 
Table1: Number of images in each database and each dataset 

Database\Dataset  Train Validation Test 
RaFD 13160 312 146 
CK+ 14392 304 187 

JAFFE 1960 42 22 
 

As it has been shown in table 1, we can see that there are 
not enough images in JAFFE database to train a DNN. This 
database is used to train the multi-database network. Just note 
that the database expansion applied to training samples and 
Validation and Test samples remain unchanged. 

2017 IEEE International Conference on Consumer Electronics (ICCE)

978-1-5090-5544-9/17/$31.00 ©2017 IEEE



 
 

 

III. DEEP NEURAL NETWORKS FOR EXPRESSION 
CLASSIFICATION 

A. Single database networks 
For each of databases RaFD and CK+ a DNN has been 

designed and trained and the results for testing on each 
database is calculated as well. The networks designed for each 
database are given in the following list. 
DNN on RaFD: The architecture for network trained on RaFD 
database is given in table 2. 
 
Table 2: Network configuration for RaFD database 

layer Kernel/Units Size/Dropout Probability 
Convolutional 16 3x3 

Maxpool N/A 2x2 
Convolutional 8 3x3 

Maxpool N/A 2x2 
Convolutional 8 3x3 

Maxpool N/A 2x2 
Fully Connected 15 Dropout p=0.8 
Fully Connected 7 Dropout p =0.5 

 
DNN on CK+: The architecture for network trained on CK+ 
database is given in table 3. 
 
Table 3: Network Configuration for CK+ database. 

Layer Kernel/Units Size/Dropout Probability 
Convolutional 8 3x3 

Maxpool N/A 2x2 
Convolutional 8 3x3 

Maxpool N/A 2x2 
Convolutional 8 3x3 

Maxpool N/A 2x2 
Fully Connected 7 Dropout p =0.5 

 
 

B. Multi-Database Network 
A network has been designed and trained for a mixture of all 
three databases. The architecture of the network is given in 
table 4. 
  

Table4: Network Configuration for mixed Dataset 
Layer Kernel/Units Size/Dropout Probability 

Convolutional 16 3x3 
Maxpool N/A 2x2 

Convolutional 13 3x3 
Maxpool N/A 2x2 

Convolutional 10 3x3 
Maxpool N/A 2x2 

Fully Connected 7 Dropout p =0.5 
 

IV. RESULTS AND DISCUSSION 
Three networks explained in the previous section have been 

implemented using Lasagne library (a Theano based DNN 
library in python). The mean categorical cross-entropy loss 

function has been used with Nestrov momentum optimization. 
First and second networks shown in tables 2 and 3 are trained 
by RaFD and CK+ datasets respectively and the third network 
shown in table 4 is trained using a mixture of three databases 
RaFD, CK+ and JAFFE. The main goal of this work is to 
present the cross-database error which is accomplished by 
calculating the amount of error for each network using all 
databases. The classification error is presented in table 5. 

 
Table5: Error given from each network for each dataset 
Network\error Error for 

RaFD 
Error for 
CK+ 

Error for 
JAFFE 

Network 1 6.84% 59.59% 72.73% 
Network 2 21.23% 19.59% 50% 
Network 3 4.1% 16.04% 13.36% 
 
The first two rows of the table 5 are associated with the 

classification test error values for networks trained just with 
one database; RaFD for network 1 and CK+ for network 2. 
Since these networks are trained with just one database, they 
are tuned for that specific database and the test error for that 
specific network is less than the errors for other databases. 
Network 3 is trained with a mixture of three databases given in 
section II.B.  

The most important result is that in network 3 the test error 
for each database is even lower than the value of the error 
from the network which is trained by that specific database. 

While implementing a solution in consumer devices, it is 
crucial to provide algorithms which are robust to environment 
and condition changes. In this work it has been shown that in 
order to obtain a more general and robust DNN, one of the 
solutions is to mix as much data as possible. In fact adding a 
wide range of samples drawn from different conditions and 
properties to DNN training sets, will lead to a more reliable 
network for wild use cases which is one of the most important 
considerations in consumer electronic devices. 

REFERENCE  
 
[1] V. Pejovic and M. Musolesi, “Anticipatory mobile computing: A survey 

of the state of the art and research challenges,” ACM Comput. Surv., vol. 
47, no. 3, pp. 1–29, 2015. 

[2] R. Rana, M. Hume, J. Reilly, R. Jurdak, and J. Soar, “Opportunistic and 
Context-Aware Affect Sensing on Smartphones,” IEEE Pervasive 
Comput., vol. 15, no. 2, pp. 60–69, 2016. 

[3] M. El Ayadi, M. S. Kamel, and F. Karray, “Survey on speech emotion 
recognition: Features, classification schemes, and databases,” Pattern 
Recognit., vol. 44, no. 3, pp. 572–587, 2011. 

[4] C. N. Anagnostopoulos, T. Iliou, and I. Giannoukos, “Features and 
classifiers for emotion recognition from speech: a survey from 2000 to 
2011,” Artif. Intell. Rev., vol. 43, no. 2, pp. 155–177, 2012. 

[5] R. Rana, R. Jurdak, X. Li, and J. Soar, “Emotion Classification from 
Noisy Speech-A Deep Learning Approach,” arXiv Prepr. arXiv, 2016. 

[6] J. Sung and D. Kim, “Pose-Robust Facial Expression Recognition Using 
View-Based 2D + 3D AAM,” Syst. Man Cybern. Part A Syst. Humans, 
IEEE Trans., vol. 38, no. 4, pp. 852–866, 2008. 

[7] I. Bacivarov and P. Corcoran, “Facial expression modeling using 
component AAM models—Gaming applications,” in Games Innovations 
Conference, International IEEE Consumer Electronics Society’s. (ICE-
GIC 2009), 2009, pp. 1–16. 

2017 IEEE International Conference on Consumer Electronics (ICCE)

978-1-5090-5544-9/17/$31.00 ©2017 IEEE



 
 

 

[8] G. Mancini, S. Agnoli, B. Baldaro, P. E. R. Bitti, and P. Surcinelli, 
“Facial expressions of emotions: recognition accuracy and affective 
reactions during late childhood.,” J. Psychol., vol. 147, no. 6, pp. 599–
617, 2013. 

[9] S. L. Happy and A. Routray, “Automatic facial expression recognition 
using features of salient facial patches,” IEEE Trans. Affect. Comput., 
vol. 6, no. 1, pp. 1–12, 2015. 

[10]  L. Ding and A. M. Martinez, “Features versus context: An approach for 
precise and detailed detection and delineation of faces and facial 
features.,” Pattern Anal. Mach. Intell. IEEE Trans., vol. 32, no. 11, pp. 
2022–38, Nov. 2010. 

[11]  I. Bacivarov, “Advances in the Modelling of Facial Sub-Regions and 
Facial Expressions using Active Appearance Techniques,” National 
Uinversity of Ireland Galway, 2009. 

[12]  O. Rudovic, M. Pantic, and I. Patras, “Coupled Gaussian processes for 
pose-invariant facial expression recognition,” IEEE Trans. Pattern Anal. 
Mach. Intell., vol. 35, no. 6, pp. 1357–1369, 2013. 

[13]  M. Liu, S. Li, S. Shan, and X. Chen, “AU-inspired Deep Networks for 
Facial Expression Feature Learning,” Neurocomputing, vol. 159, no. 1, 
pp. 126–136, 2015. 

[14]  C.-H. Hjortsjö, Man’s face and mimic language. Studen litteratur, 1969. 
[15]  P. Liu, S. Han, Z. Meng, and Y. Tong, “Facial Expression Recognition 

via a Boosted Deep Belief Network,” 2014 IEEE Conf. Comput. Vis. 
Pattern Recognit., pp. 1805–1812, 2014. 

[16]  C. Shan, S. Gong, and P. W. McOwan, “Facial expression recognition 
based on local binary patterns: A comprehensive study,” Image Vis. 
Comput., vol. 27, no. 6, pp. 803–816, 2009. 

[17]  U. Tariq, K.-H. Lin, Z. Li, X. Zhou, Z. Wang, V. Le, T. S. Huang, X. 
Lv, and T. X. Han, “Emotion recognition from an ensemble of features,” 
in Automatic Face & Gesture Recognition and Workshops (FG 2011), 
2011 IEEE International Conference on, 2011, pp. 872–877. 

[18]  Y. Hu, Z. Zeng, L. Yin, X. Wei, X. Zhou, and T. S. Huang, “Multi-view 
facial expression recognition,” in Automatic Face & Gesture 
Recognition, 2008. FG’08. 8th IEEE International Conference on, 2008, 
pp. 1–6. 

[19]  Y. Wu, Z. Wang, and Q. Ji, “Facial feature tracking under varying 
facial expressions and face poses based on restricted boltzmann 
machines,” Proc. IEEE Comput. Soc. Conf. Comput.  Vis. Pattern 
Recognit., vol. 1, pp. 3452–3459, 2013. 

[20]  I. Song, H. J. Kim, and P. B. Jeon, “Deep learning for real-time robust 
facial expression recognition on a smartphone,” Dig. Tech. Pap. - IEEE 
Int. Conf. Consum. Electron., pp. 564–567, 2014. 

[21]  O. Langner, R. Dotsch, G. Bijlstra, D. H. J. Wigboldus, S. T. Hawk, and 
A. van Knippenberg, “Presentation and validation of the Radboud Faces 
Database,” Cogn. Emot., vol. 24, no. 8, pp. 1377–1388, 2010. 

[22]  P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. 
Matthews, “The extended cohn-kanade dataset (ck+): A complete 
dataset for action unit and emotion-specified expression,” in 2010 IEEE 
Computer Society Conference on Computer Vision and Pattern 
Recognition-Workshops, 2010, pp. 94–101. 

[23]  M. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba, “Coding facial 
expressions with gabor wavelets,” in Automatic Face and Gesture 
Recognition, 1998. Proceedings. Third IEEE International Conference 
on, 1998, pp. 200–205. 

 

2017 IEEE International Conference on Consumer Electronics (ICCE)

978-1-5090-5544-9/17/$31.00 ©2017 IEEE





Appendix D

An End to End Deep Neural Network for
Iris Segmentation in Unconstraint
Scenarios



Neural Networks 106 (2018) 79–95

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

An end to end Deep Neural Network for iris segmentation in
unconstrained scenarios
Shabab Bazrafkan a,*, Shejin Thavalengal b, Peter Corcoran a

a Department of Electronic Engineering, College of Engineering, National University of Ireland Galway, University Road, Galway, Ireland
b Xperi Galway, Cliona Building One, Parkmore East Business Park, Ballybrit, Galway, Ireland

a r t i c l e i n f o

Article history:
Received 8 December 2017
Received in revised form 8 May 2018
Accepted 21 June 2018
Available online 30 June 2018

Keywords:
Deep Neural Networks
Data augmentation
Iris segmentation

a b s t r a c t

With the increasing imaging and processing capabilities of today’s mobile devices, user authentication
using iris biometrics has become feasible. However, as the acquisition conditions become more uncon-
strained and as image quality is typically lower than dedicated iris acquisition systems, the accurate
segmentation of iris regions is crucial for these devices. In this work, an end to end Fully Convolutional
Deep Neural Network (FCDNN) design is proposed to perform the iris segmentation task for lower-
quality iris images. The network design process is explained in detail, and the resulting network is
trained and tuned using several large public iris datasets. A set of methods to generate and augment
suitable lower quality iris images from the high-quality public databases are provided. The network is
trained on Near InfraRed (NIR) images initially and later tuned on additional datasets derived from visible
images. Comprehensive inter-database comparisons are provided together with results from a selection
of experiments detailing the effects of different tunings of the network. Finally, the proposed model is
compared with SegNet-basic, and a near-optimal tuning of the network is compared to a selection of
other state-of-art iris segmentation algorithms. The results show very promising performance from the
optimizedDeepNeural Networks designwhen comparedwith state-of-art techniques applied to the same
lower quality datasets.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Biometric technology has become increasingly integrated into
our daily life, from unlocking the smartphone to cash withdrawals
from ATMs to shopping in the local supermarket (Pando, 2017).
Various biometric modalities such as face, iris, retina, voice, finger-
prints, palm prints, palm geometry are being used in a multitude
of applications including law enforcement, border crossing and
consumer applications (Corcoran & Costache, 2016; Thavalengal &
Corcoran, 2016). The iris of the human eye – the annular region
between the pupil and sclera – is of particular interest as iris is
a biometric modality with high distinctiveness, permanence, and
performance (Prabhakar, Pankanti, & Jain, 2003).

The historical evolution of Iris recognition systems can be
broadly summarized by a number of key stages, each presenting
a new set of unique challenges over earlier implementations of the
technology:

(i) The original proposal for the use of the iris as a biometricwas
made by the ophthalmologist Burch in 1936 (Irsch, Guyton&
Johns, 2009) and the underlying technology to automate iris

* Corresponding author.
E-mail address: s.bazrafkan1@nuigalway.ie (S. Bazrafkan).

recognition for practical deploymentwas proposed and sub-
sequently developed by Daugman (1994) during the 1990s.
Such systems acquired the iris pattern using a dedicated
imaging system that constrained the target eye and em-
ployed near-infrared (NIR) imaging.

(ii) Systems supporting the acquisition of iris patterns frommo-
bile persons, in unconstrained acquisition conditions, were
developed during the 2000s, with the Iris On The Move
system from Sarnoff being one of the better known of these
(Matey et al., 2006). This system was designed for deploy-
ment in public spaces such as airports and requires people
to walk along a specified path where multiple successive
iris images are acquired by a multi-camera systems under
controlled lighting conditions.

(iii) Most recently iris recognition has been developed and
deployed on handheld devices including smartphones
(Thavalengal & Corcoran, 2016). Such image acquisition
is unsupervised and to a large extent unconstrained. This
introduces new artifacts that are not found in earlier ac-
quisition environments including unwanted reflections, oc-
clusions, non-frontal iris images, low contrast and partially
blurred images. Isolating iris regions accurately in such an
acquisition environment has proved to be more challenging

https://doi.org/10.1016/j.neunet.2018.06.011
0893-6080/© 2018 Elsevier Ltd. All rights reserved.



80 S. Bazrafkan et al. / Neural Networks 106 (2018) 79–95

and requires improvements to the authentication workflow
as will be discussed shortly.

The majority of existing iris recognition systems follow the au-
thentication workflow as (i) image acquisition: an eye image is
acquired using a camera, (ii) iris segmentation: eye/iris region is
located in this image followed by isolating the region representing
iris. (iii) Feature extraction: relevant features which represent the
uniqueness of the iris pattern is extracted from the iris region and
(iv) similarity of the two iris representation is evaluated by pattern
matching techniques.

The work presented in this paper focuses on successful seg-
mentation of non-ideal iris images, an essential element of the
authentication workflow if an unacceptably high level of failed
authentications is to be avoided.

1.1. Significance of iris segmentation

Iris segmentation involves the detection and isolation the iris
region from an eye image. The subsequent feature extraction and
pattern matching stages of any authentication workflow rely on
the accurate segmentation of the iris and failed segmentations
represent the single largest source of error in the iris authentica-
tion workflow (Bigun, Alonso-Fernandez, Hofbauer, & Uhl, 2016;
Erbilek, Da Costa-Abreu, & Fairhurst, 2012; Proença & Alexandre,
2010). For an accurate segmentation, the exact iris boundaries at
pupil and sclera have to be obtained, the occluding eyelids have
to be detected, and reflections have to be removed, or flagged.
Errors at the segmentation stage are propagated to subsequent
processing stages (Bigun et al., 2016; Hofbauer, Alonso-Fernandez,
Wild, Bigun, & Uhl, 2014). Detailed analysis of the impact of iris
segmentation is studied in Bigun et al. (2016), Erbilek et al. (2012)
and Proença and Alexandre (2010).

Numerous factors can introduce challenges in accurate iris
segmentation (Jillela & Ross, 2013) even on high-resolution iris
systems. Examples include (i) occlusions caused by the anatomical
features of the eye; (ii) illumination conditions; (iii) user cooper-
ation; (iv) environmental factors; (v) noise & manufacturing vari-
ations in image sensor technology; (vi) nature of the interacting
population. These factors apply to all iris acquisition systems.

Formobile devices, in addition to these generic factors, there are
additional concerns. Various image quality factors can also affect
iris segmentation (Alonso-Fernandez & Bigun, 2013) and these
become a limiting factor in consumer devices such as smartphones
due to the challenging nature of acquiring suitable high-quality
images in a user-friendly smartphone use-case (Thavalengal, Bi-
gioi, & Corcoran, 2015a, b). Hence, an iris segmentation technique
which can accurately isolate the iris region in such low-quality
consumer images is important for the wider adoption constraint-
free consumer iris recognition system.

This work proposes to significantly improve the quality of iris
segmentation on lower quality images by introducing an end-to-
end deep neural network model accompanied by an augmenta-
tion technique. These improvements should enable improved iris
authentication systems for today’s mobile devices, encouraging a
broader adoption of iris recognition in day-to-day use cases.

1.2. Related literature & foundation methods

1.2.1. Iris segmentation
A detailed review of iris segmentation literature can be found in

Bowyer, Hollingsworth, and Flynn (2008, 2013). Early work on iris
segmentation approximated the pupillary and limbic boundaries
as circles (Bowyer et al., 2008). An appropriate circular fitting
method is incorporated formodeling these boundaries. Daugman’s
original work uses an integrodifferential operator for iris segmen-
tation (Daugman, 2004). This integrodifferential operator acts as

a circular edge detector which searches over the image domain
for the best circle fit. Applying this operator twice, one can obtain
the two circular boundaries of iris. After this step, the occluding
eyelashes are detected with the help of curvilinear edge detection.
There have been several similar techniques for iris segmentation
such as the algorithm proposed by Wildes et al. (1996), Kong and
Zhang (2001), Tisse et al. (1992) and Ma, Wang, and Tan (2002).
(All of these use circular Hough transform for finding the circles).
Another segmentation technique proposed by He, Tan, Sun, and
Qiu (2009) uses an Adaboost-cascade iris detector and an elastic
model named ‘pulling and pushing method’.

Further studies revealed that iris and pupil boundaries are not
always circular, and modeling this accurately, improves the iris
recognition performance (Daugman, 2007). Daugman’s follow up
work (Daugman, 2007) incorporates active contours or snakes to
model the iris accurately. A similar approach proposed by Shah
and Ross (2009) uses geodesic active contours for accurate iris
segmentation. Such techniques were shown to have high segmen-
tation accuracy in highquality images capturedusing dedicated iris
cameras in the NIR region of electromagnetic spectrum. Proenca
and Alexandre noted the poor performance of iris segmentation
techniques developed for high quality images when applied to
non-ideal images (Proença & Alexandre, 2006). A recent literature
survey on non-ideal iris image segmentation can be found in Jan
(2017). Among the literature, it is worth to be noted the efforts of
mobile iris challenge evaluation (MICHE) to provide a forum for
comparative research on the contributions to themobile iris recog-
nition field (De Marsico, Nappi, Riccio, & Wechsler, 2015; Marsico,
Nappi, & Proença, 2017). Techniques based on various adaptive
filtering and thresholding approaches are shown to be performing
well in these non-ideal scenarios (Gangwar, Joshi, Singh, Alonso-
Fernandez, & Bigun, 2016; Haindl & Krupička, 2015).

1.2.2. Applications of CNNs in iris recognition
In the last decade, deep learning techniques have become the

focus of intense research and the most successful approach in
artificial intelligence and machine vision science. Deep learning
based techniques are noted to provide state of the art results in
various applications such as object detection (Szegedy, Toshev, &
Erhan, 2013), face recognition (Schroff, Kalenichenko, & Philbin,
2015), driver monitoring systems (Lemley, Bazrafkan, & Corcoran,
2017a, b, c), etc. In such deep learning based approaches, the input
signal (image) is processed by consecutive signal processing units.
These units re-orient the input data to the most representative
shape considering the target samples. The signal processing units
are known as layers which could be convolutional or fully con-
nected. The fully convolutional models, such as the one presented
in thiswork, are using only convolutional layers. These layers apply
filters (known as kernels) to their input while the filter parameters
are learned in the training step. In order to get better conver-
gence, several techniques including drop-out (Srivastava, Hinton,
Krizhevsky, Sutskever, & Salakhutdinov, 2014) and batch normal-
ization (Ioffe & Szegedy, 2015) are presented in the literature. A
detailed introduction to CNNs (Convolutional Neural Networks)
and its applications can be found in (Lemley et al., 2017a, b, c).

Recently, deep learning and convolutional neural networks are
applied in the domain of iris recognition. Minaee, Abdolrashidiy,
andWang (2017) proposed the deep features extracted from VGG-
Net for iris recognition. Authors in this work skipped iris segmen-
tation step in their framework, and hence it can be considered as
a peri-ocular recognition more than iris recognition. Gangwar and
Joshi (2016) proposed a generalizable iris recognition architecture
for iris representation. An open source OSIRIS implementation for
iris segmentation is used. While authors note high generalizability
and cross-sensor performance, the segmentation errors generated
by OSIRIS could be affecting the result of this system. Liu et al.



S. Bazrafkan et al. / Neural Networks 106 (2018) 79–95 81

proposed DeepIris for heterogeneous iris verification (Liu, Zhang,
Li, Sun, & Tan, 2016). Also, deep learning based approaches for
spoof and contact lens detection can be found in Menotti et al.
(2015) and Silva et al. (2015)

1.2.3. CNN for iris segmentation
Li et al. produced two CNN based models for iris segmentation

(Liu, Li et al., 2016)-(i) hierarchical convolutional neural network
(HCNN) with three blocks of alternative convolutional and pooling
layers fed directly in to a fully connected layer; and (ii) multi-scale
fully convolutional network (MFCN) which contains six blocks of
interconnected alternative Conv and Pool layers fused through a
singlemultiplication layer followed by a Softmax layer. Jalilian and
Uhl (2017) proposed three types of fully convolutional encoder–
decoder networks for iris segmentation. Arsalan et al. (2017) pro-
posed a two-stage iris segmentation based on CNNs for images
captured in visible light. Authors used circular Hough transform to
detect rough iris boundary in the first stage. A pre-trained VGG-
face model is used in the second stage for the fine adjustment
of rough iris boundary obtained in the first stage. In order to
overcome the requirement of large labeled data in the approaches
mentioned above, Jalilia, Uhl and Kwitt proposed a domain adap-
tion technique for CNN based iris segmentation (Jalilian, Uhl, &
Kwitt, 2017).

1.2.4. Foundation methods
The two primary contribution of this work are (i) a novel iris

database augmentation and (ii) a semi parallel deep neural net-
work.

1.2.4.1. Database augmentation. Since deep learning approaches
need a large number of samples to train a deep network, data aug-
mentation becomes a crucial step in the training process. Database
augmentation is the process of adding variation to the samples in
order to expand the database and inject uncertainty to the training
set which help the network avoid overfitting and also generaliz-
ing the results. Also, the augmentation step can introduce more
variations into the database and helps the network to generalize
its results. Themostwell-known augmentation techniques include
flipping, rotating and adding distortions to the image are widely
used in expanding databases. Such techniques are usually used
blindly and do not always guarantee any boost in the performance
(Lemley et al., 2017a, b, c).

In Lemley et al. (2017a, b, c), the authors proposed a smart
augmentation method which combines two or more samples of
the same class and generates a new sample from that class. This
method can give superior results compared to classical augmenta-
tion techniques. Unfortunately, this method is only applicable to
classification problems, and unlike some types of augmentation
it cannot be used to manipulate the network results toward pre-
determined outcome or task. The ability to do this is another
important use of the augmentation, for example adding motion
blur to the samples can introduce the robustness to themotion blur
in the final results.

The data augmentation technique employed in this work is
designed for the specific task of iris recognition. A high quality, ISO
standard compliant iris image (Biometrics, 2007) is degraded to
make a reasonable representation of the real-world, low-quality
consumer grade iris images. This degradation reduces iris–pupil
and iris sclera contrast along with the introduction of various
noises. Iris maps obtained from state of the art iris segmentation
techniques are used to aid this process. This particular strategy
of augmentation is employed to harness the highly accurate seg-
mentation capabilities of the state of the art iris segmentor. In this
way, images which are a reliable representation of the low-quality
consumer images can be obtained along with the corresponding
iris map for the training of the neural network.

1.2.4.2. Semi Parallel Deep Neural Network (SPDNN). The second
contribution of this work is the use of the recently introduced
network design method called Semi Parallel Deep Neural Network
(SPDNN) (Bazrafkan& Corcoran, 2017; Bazrafkan, Javidnia, Lemley,
& Corcoran, 2017) for generating iris maps from low quality iris
images. In an SPDNN, several deep neural networks are merged
into a singlemodel to take advantage of every design. For a specific
task, one can design several DNN models each of them having
advantages and shortcomings. The SPDNNmethod gives the possi-
bility of merging these networks in layer level using graph theory
calculations. This approachmaintains the order of the kernels from
the parent networks in the merged network. The convergence and
generalization of this method along with various application can
be found in Bazrafkan and Corcoran (2017) and Bazrafkan, Javidnia
et al. (2017). In the present work, the model is trained to generate
an iris map from such low-quality images.

1.3. Contribution

This work targets the iris segmentation in low-quality con-
sumer images such as the images obtained from a smartphone. An
end to end deep neural network model is proposed to isolate iris
region from the eye image. The proposed segmentation technique
could be used with any existing state of the art feature extraction
and matching module without changing the whole authentica-
tion workflow. Performance evaluation of the proposed technique
shows advantages over recent iris segmentation techniques pre-
sented in the literature. There are notably three primary contribu-
tions in this work.

1- An improved data augmentation technique optimized to gen-
erate diverse low-quality iris images. Such iris images are rep-
resentative of unconstrained acquisition on a handheld mobile
device from multiple established iris research databases.

2- A sophisticated iris segmentation network design derived us-
ing Semi Parallel Deep Neural Network techniques; Design and
optimization methodologies are presented in detail.

3- A detailed evaluation of the presented iris segmentation ap-
proach is presented on various publically available databases.
The presented method is compared with state of the art tech-
niques in iris segmentation.

In thenext section, the database and augmentation technique is ex-
plained. The network design and Training is explained in Section 3
followed by results given in Section 4. The last section explains
the numerical results, experiments on tuning, and comparisons to
state of the art segmentation methods.

2. Databases & augmentation methodology

In this work, four datasets are used for training and evaluation.
Bath800 (Rakshit, 2007) and CASIA Thousand (‘‘CASIA Iris Image
Database’’, 2010) have been used in training and testing stages.
UBIRIS v2 (Proenca, Filipe, Santos, Oliveira, & Alexandre, 2010)
and MobBio (Sequeira, Monteiro, Rebelo, & Oliviera, 2014) are
taking part in tuning and also testing. Bath800 and CAISA thou-
sand has been augmented to represent more Real world consumer
grade situations. 70% of the samples have been used for train-
ing/tuning, 20% for validation and 10% for testing. The network is
trained initially on CASIA Thousand and Bath800 and tested on all
databases. For further observations, the original network has been
tuned on UBIRIS v2 and MobBio separately and also on a mixed
UBIRIS+MobBio database. The experiments and discussions are
given in Section 5. Following is introducing databases used in this
work, followed by the ground truth generation and augmentation.



82 S. Bazrafkan et al. / Neural Networks 106 (2018) 79–95

Fig. 1. Eye socket samples from CASIA Thousand database.

Fig. 2. Eye socket samples from Bath800 database.

Fig. 3. Eye socket samples from UBIRIS database.

Fig. 4. Eye socket samples from MobBio database.

2.1. Datasets

CASIA Thousand is a subset of CASIA Iris v4 database, and it con-
tains 20000 NIR images captured from 1000 individuals. Images
are constrained high quality with high contrast. The resolution is
[640 × 480] for all images. Samples of this database are shown
in Fig. 1. Bath800 is a high-quality iris database taken under near
infrared illumination using a Pentax C-3516 M with 35 mm lens.
Image resolution is [1280 × 960]. The database is made of 31997
images taken from 800 individuals. The images are high quality
and high contrast. Fig. 2 shows samples of this database. UBIRIS
v2 database has 11102 images taken in visible wavelength with a
Canon EOS 5D which are relatively low-quality images captured
in an unconstrained environment. The resolution of the database
is 400 × 300. This database is not used in our training step. Some
samples of this database are shown in Fig. 3. MobBio is a multi-
modal database including face, iris, and voice of 105 volunteers.
The iris subset is used in the current work. The iris images are
taken in several orientations, with different levels of occlusion. 16
images are taken from each individual and cropped and resized to
resolution 300 × 200. This database is highly unconstrained and
one of the most challenging sets in iris segmentation/recognition.
Some samples of this database are shown in Fig. 4.

2.2. Ground truth generation

2.2.1. Bath800 and CASIA Thousand
Neither of Bath800 and CASIA Thousand databases are pro-

vided with ground truth segmentation. As mentioned before these
databases contain very high-quality images taken in highly con-
strained conditions. In this work, the segmentation from high-
quality images obtained using a commercial iris segmentation
solution (MIRLIN (‘‘MIRLIN’’, n.d.)) is considered as the ground
truth for training stage. It can be noted that any commercial, high
performing segmentation technique could be used here as these
high quality images could be segmented accurately using such
commercial systems. This specific choice of segmentor used in
this work is based on its availability and its performance on large
scale iris evaluations (Quinn, Grother, Ngan, & Matey, 2013) Some
segmentation examples are given in Figs. 5 and 6. The low reso-
lution segmentation for Bath800 and CASIA Thousand is publicly
available.1

2.2.2. UBIRIS and MobBio
The manual segmentation of UBIRIS is available in IRISSEG-

EP database (Hofbauer et al., 2014) generated by WaveLab.2 The
ground truth generation for this database is not completed. Only
segmentations for 2250 images from 50 individuals are given in

1 https://Goo.gl/JVkSyG.
2 http://www.wavelab.at/sources/Hofbauer14b/.



S. Bazrafkan et al. / Neural Networks 106 (2018) 79–95 83

Fig. 5. Bath800 automatic segmentation results.

Fig. 6. CASIA Thousand automatic segmentation results.

Fig. 7. UBIRIS manual segmentation samples in IRISSEG-EP.

IRISSEG-EP. Some samples for UBIRIS segmentation is shown in
Fig. 7.

The manual segmentation for the MobBio database is included
in IRISSEG-CCdatabase (Hofbauer et al., 2014) generated by ISLAB.3
The whole MobBio dataset has been segmented in IRISSEG-CC.
Some samples for MobBio segmentation are given in Fig. 8.

2.3. Data augmentation

In this work two high-quality databases, Bath800 and CASIA
Thousand have been used in training stage. In this section, the aug-
mentations applied to the high-quality iris images are explained.
In order to find the best augmentations for the iris images, precise
observations have been done on low-quality iris images. The differ-
ence between a high quality constrained iris images and consumer
grade images depend on five different independent factors: 1- eye
socket resolution, 2- image contrast, 3- shadows in the image, 4-
image blurring, 5- noise level (Thavalengal et al., 2015a, b). In our
observations, the noise level was low in unconstrained images.
Noise is a well-studied phenomenon, and image de-noising can
be done outside the network and also note that introducing high
frequency noise into the dataset trains a low-pass filter inside
the network; apply de-noising outside the network gives a higher
chance to use the whole network potential to perform the seg-
mentation task. In addition, introducing Gaussian noise into the
dataset will cause underfitting as explained in Zheng, Song, Leung,
and Goodfellow (2016). Therefore, in this work, the focus is on the
first four factors.

The augmentations are applied in a randommanner. For exam-
ple, the contrast, shadow and blurring are applied with random
parameters. These operations are lossy. i.e., there is no inverse
operation which can regenerate original high quality images from
low quality ones. Reducing the resolution of the iris image is a non-
reversible task. The contrast reduction contracts a large portion of
the histogram into a smaller region, and the quantization process
turning the image into unit8 class results in information loss.
Shadowing is reducing the intensity of the pixels and in some

3 http://islab.hh.se/mediawiki/Iris_Segmentation_Groundtruth.

cases turns them into absolute zero intensity. This operation is
not reversible as well. The blurring effect is applied in random
direction and random intensity, which makes it nontrivial to find
the deblurring filter.

All these operations are applied with precise observation on
low quality consumer level iris images and the parameters are
set to simulate the wild conditions. These are next discussed in
turn with details of the augmentation approaches taken for each
independent factor. The code for augmenting the database is also
available.4

2.3.1. Eye socket resolution
The resolution of the eye socket plays an essential role in how

much information one can extract from the image. In fact, while
dealing with the front camera in a mobile phone, the resolution of
the camera is lower than the rear cameras. For example, Bazrafkan,
Kar, and Costache (2015) observed that the number of the pixels in
the iris region for an image taken by a 5MP front camera of a typical
cell phone from the 45 cm distance was just 30 pixels. In order to
simulate the low resolution scenario, the high-quality eye socket
images and their corresponding ground truth have been resized
using bilinear interpolation into smaller images [128 × 96]. This
can help the deep network to train faster as well.

2.3.2. Image contrast
In our observations of low quality iris images taken from hand-

held devices, the intensity properties of the image inside and out-
side the iris region were different. In fact in the low-quality image
set, the region inside the iris was darker than the same region in
high-quality images. There was no specific brightness quality for
the regions outside the iris in low-quality images. They could be
customarily exposed or strongly bright or very dark. In the low-
quality images, the regions outside the iris were suffering from the
low amount of contrast. In order to apply this transformation to
the high-quality images, the contrast reduction inside and outside
of the iris region are targetedwith different operations. For outside

4 https://github.com/C3Imaging/Deep-Learning-Techniques/blob/Iris_SegNet/
DBaugmentation/DBaug.m.



84 S. Bazrafkan et al. / Neural Networks 106 (2018) 79–95

Fig. 8. MobBio manual segmentation samples in IRISSEG-CC.

Fig. 9. The histogram mapping for the outside region of the iris.

of the iris region the followinghistogram transformation is applied.
This mapping can result is bright, dark, or normally exposed low
contrast outputs.

y = norm (tanh (3 × (x/255 − 0.5) + U (−0.3, 0.3))) × 255 (1)

where x is the input intensity in the range [0,255], y is the output
intensity in the same range, U (a, b) is the Uniform distribution
between a and b, and the norm function normalize the output
between 0 and 1. The Uniform distribution injects an amount of
uncertainty into themappingwhich helps the generalization of the
model. Themean and standard deviation of the histogrammapping
curve is shown in Fig. 9.

The inside of the iris is mapped using following histogram
transformation.

y = norm (tanh (3 × (x/255 − 0.5) − U (0, 0.8))) × 255 (2)

The mean and standard deviation of the histogram curve is
shown in Fig. 10. This transformation is darkening the area while
decreasing the contrast at the same time.

An example of applied histogrammapping is showed in Fig. 11.

2.3.3. Shadows in the image
Lowquality unconstrained iris images are profoundly altered by

the direction of the illumination. In this work, shadowing is carried
out by multiplying the image columns by the following function.

y = norm (tanh (2 × randSign
× (x − 0.5 + U (−0.3, 0.3)))) + U (0, 0.1) (3)

where x is the dummy variable for image column number and y
is the coefficient for intensity, U (a, b) is the Uniform distribution
between a and b, and the norm function normalize the output
between 0 and 1 and randSign generates a random coefficient in
the set {−1, 1}. The mean and standard deviation of this function

Fig. 10. The histogram mapping for the region inside the iris.

Fig. 11. For inside the iris region, the contrast is reduced, and the region is getting
darker. The outside of iris is just altered by decreasing the contrast.

is shown in Fig. 12. Based on the value of the randSign function, the
shadowing direction is changed.

An example of shadowing is given in Fig. 13.

2.3.4. Image blurring
Bokeh effect caused by camera focus (Phillips & Komogortsev,

2011), the hand jitter and unwanted head and hand movements
are highly degrading the iris image quality in handheld devices.
One of the main challenge in iris segmentation in this scenario is
the blurring of the iris edges which affects the edge detection task.
In majority of the iris segmentation methods, the gradient of the
pixel intensity is used to find the iris region, and the blurring is
highly altering the gradient quality. The deep neural network is
able to solve this problem if enough variation of motion blurring
is provided in the dataset. In order to include this effect in the
training set, shadowed image is passed through a motion blur
filter applying the linear camera motion by U (5, 10) pixels in the
direction U (−π, π), where U (a, b) is the Uniform distribution



S. Bazrafkan et al. / Neural Networks 106 (2018) 79–95 85

Fig. 12. Mean and standard deviation for shadow coefficients.

Fig. 13. Shadowing applied to low contrast image.

Fig. 14. Applying motion blur in a random direction to the low contrast shadowed
image.

between a and b. The final image after applying motion blur is
shown in Fig. 14.

All the samples in Bath800 and CASIA Thousand databases are
degraded using this augmentation step. Some examples of the low-
quality samples and their corresponding ground truth is given in
Fig. 15.

3. Network design and training

3.1. Network design

Deep neural networks are capable of solving highly nonlinear
and challenging problems. In this work, four different end to end
fully convolutional deep neural networks have been proposed to
perform the iris segmentation on low quality images. These net-
works are merged using SPDNN method, and the number of the
channels in each layer is selected in a way that the number of
the parameters in the proposed network is similar to the SegNet-
basic. The network design and calculating the number of channels
in each layer are explained in detail in Supplementary Material #1
and #2 respectively. The SPDNN method is merging several deep
neural networks in the layer level using graph theory calculation
and graph contraction. This approach is preserving the order of the
layers from the parent networks. The convergence and generaliza-
tion of SPDNN is discussed in Bazrafkan and Corcoran (2017) and
other applications of this method is given in Bazrafkan, Javidnia et
al. (2017).

The parent networks used in this work are fully convolutional
networks with different depths and kernel size each designed to
extract different levels of details. The network after merging these
networks is shown in Fig. 9 of Supplementary Material #1. The
model looks like a U-net (Ronneberger, Fischer, & Brox, 2015) with
the difference that there is no pooling applied in our proposed
network. The number of the channels in each layer is determined
in Supplementary Material #2. The calculations guarantee that
the number of the parameters in the presented method is similar
to SegNet-Basic proposed in Badrinarayanan, Kendall, and Cipolla
(2015). Having the same number of parameters helps to obtain a
fair comparison between SegNet-Basic and proposed model.

3.2. Training

The proposed network is an end to enddesignwhichmeans that
it accepts the eye socket image and gives the iris map. The network
has been trained using lasagna library (Dieleman et al., 2015) on
the top of the theano library (Al-Rfou et al., 2016) in python. The
loss function used in our work is the mean binary cross-entropy
between the output and target given by

L =
1

M × N × B

B∑
k=1

N∑
j=1

M∑
i=1

tij log
(
pij

)
−

(
1 − tij

)
log

(
1 − pij

)
(4)

wherein tij is the value of pixel (i, j) in the target image, pij is the
value of pixel (i, j) in the output image for the image of the size
M ×N and B is the batch size. The stochastic gradient descent with
momentum has been used to update the network parameters. The
momentum term prevents the gradient descent to stick in the local
minimums, and also speeds up the convergence. In this approach,
the gradient decent uses the update value of the previous itera-
tion as the momentum in the current iteration. Suppose the loss
function is L (w) where w, is the set of network parameters. The
stochastic gradient method with momentum is given by

w := w − η∇L (w) + α∆w (5)

wherein ∆w, is the update in the previous iteration, ∇L (w) is the
gradient value in the current iteration, η is the learning rate and,
α is the momentum. In our training experiments, the learning rate
and momentum are set to 0.001 and 0.9 respectively. The training
method and learning parameters in training the proposed network
and SegNet-basic are same.

The network is trained on an augmented version of Bath800 and
CASIA1000 originally. Some experiments have been conducted on
this original network given in Sections 5.2 and 5.3. These databases
are NIR databases. In order to provide a network, segmenting



86 S. Bazrafkan et al. / Neural Networks 106 (2018) 79–95

Fig. 15. Augmented samples and their corresponding segmentation map.

visible images, the original network has been tuned on UBIRIS and
MobBio databases. The same training method has been used in the
tuning stage while learning rate and momentum are set to 0.001
and 0.9 respectively. The train/tune has been done for 1000 epochs.
More details on tuning results is given in Supplementary Material
#3 and #4.

4. Results

In the test step, each eye socket image is given to the
trained/tuned network, and the forward propagation is performed
for this input. In the training stage, the output of the network is
forced to converge to the iris segmentation map which is a binary
image. The output of the network is a grayscale segmentationmap,
and the binarymap is produced by thresholding technique, i.e., the
values bigger than a threshold are shifted to 1 and the others to 0.
The threshold value 0.45 has been used in our experiments. The
output of the proposed model for different databases are shown in
Figs. 16 to 19.

Figs. 16 and 17, show the high-quality output for Bath800 and
CASIA1000 databases. These datasets are high quality constrained
NIR sets, and their images follow a specific distribution which
makes it easier for the DNN to perform the segmentation task.
Figs. 18 and 19, show the output of the proposed network for more
difficult unconstrained UBIRIS and MobBio databases. These two
figures show the results of the network tuned on these databases.
The results are not as good as Bath800 and CASIA1000, but one
should note that these datasets are quite challenging and difficult
to segment. The numerical results are given in the following sec-
tion.

5. Evaluations

Several metrics have been used to evaluate the network and
investigate the tuning effect on the segmentation results. These
metrics are presented in Table 1. In all equations True Positive is
abbreviated as TP, True Negative as TN, False Positive as FP and
False Negative as FN. Letter P stands for the number of all Positive
caseswhich is equal to TP+FN andN is the total number of negative
cases equals to FP+TN.

5.1. Experimental results

Three main experiments have been conducted to investigate
the performance of the proposed network and the effect of the
tuning on the results. These experiments are as follows:

1- Test on the original network: The proposed network is initially
trained on the augmented version of the Bath800 and CA-
SIA1000 databases. The first experiment compares the output
of this network for different databases. The test set of Bath800
and CASIA1000 and all the samples of UBIRIS and MobBio are
used in the test stage. Section 5.2 discusses this experiment in
detail.

2- Comparisonwith SegNet-Basic: This experiment discusses the
results of presented network compared the SegNet basic. Train-
ing and testing for SegNet-Basic is done similar to the proposed
network. This experiment is presented in Section 5.3.

3- Comparison to state of the art: In this experiment, the best
results of the proposed method is compared with other meth-
ods in the literature. The numerical results are presented in
Section 5.4.

Two side experiments has been conducted on tuning the net-
work with visible datasets. These experiments are as follows:

1- Tuning; Network experiment: In this experiment, the original
network trained on the augmented version of Bath800 and CA-
SIA1000 is tuned onUBIRIS andMobBio individually and also on
a mixture of these two databases. In this way, the effectiveness
of each database in boosting the performance is investigated.
The network tuned on each database is tested on all databases.
The results and discussions of this experiment is presented in
Supplementary Material #3.

2- Tuning; Database experiment: This experiment is looking at
the results of previous experiment based on each database.
There are four networks trained and tunedwhich are presented
in experiment 1 and 4 as follows: (i) Initially trained on Bath800
and CASIA1000. (ii) Tuned on UBIRIS. (iii) Tuned on MobBio.
(iv) Tuned on UBIRIS+MobBio. The output of each of these
networks for each database and also the average performance
is investigated in this experiment. Supplementary Material #4
is presenting this experiment in more detail.

In all experiments, µ stands for the average value for the given
measure and σ is its standard deviation over all outputs.

5.2. Test on the original network

In this experiment, the proposed trained network is tested over
four databases (Bath800, CASIA1000, UBIRIS, and MobBio). The
reason for adding two more databases in the testing procedure is



S. Bazrafkan et al. / Neural Networks 106 (2018) 79–95 87

Fig. 16. Output of the network for Bath800 test set. The results show high-quality output in this database.

Fig. 17. Output of the network for CASIA1000 test set. The results show high-quality output in this database.

Fig. 18. Output of the network for UBIRIS test set.



88 S. Bazrafkan et al. / Neural Networks 106 (2018) 79–95

Fig. 19. Output of the network for MobBio test set.

Table 1
Metrics used in the evaluation section.

Measure Description

Accuracy Accuracy represents the ratio of all true results divided by the number
of all samples given by
Accuracy =

TP+TN
P+N

Sensitivity or True Positive Rate (TPR) This measure indicates the ability of the model to recall true positive
over all positive samples. i.e., a model with high sensitivity can rule out
negative samples more efficiently. Sensitivity is given by
Sensitivity =

TP
TP+FN =

TP
P

Specificity or True Negative Rate This measure indicates the ability of the model to recall true negative
over all negative samples. i.e., a model with high specificity can find
positive samples more efficiently. Specificity is given by
Specificity =

TN
FP+TN =

TN
N

Precision or Positive Predictive Value (PPV): Precision is the probability that the positive output is true positive in
the space of all positive outcomes, which is given by
Precision =

TP
TP+FP

Negative Prediction Value (NPV) NPV is the probability that the negative output is true negative in the
space of all negative outcomes, which is given by
NPV =

TN
TN+FN

F1 score This measures the ability of the model to recall true positive cases and
at the same time not missing positive cases. F1 score is given by
F1 score =

2TP
2TP+FP+FN

Matthew Correlation Coefficient (MCC) Is a metric measuring the quality of binary classifiers. The critical
property of MCC is its independence of the size of each class. It varies
in the range (−1,1) wherein 1 indicates the perfect model, and −1
declared that all output values are the inverse of the target value. MCC
is given by
MCC =

TP×TN−FP×FN
√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)

Informedness Is a metric showing the probability of informed decision given by the
model. It ranges from −1 to 1; where 0 shows a random decision and 1
indicates no false outputs. Informedness is given by
Informedness =

TP
TP+FN +

TN
TN+FP − 1

Markedness Is a measure of the information content and information value of the
model’s output (Battistella, 1990). Markedness is given by
Markedness =

TP
TP+FP +

TN
TN+FN − 1

to observe the ability of the network in generalizing over other
databases. One of the main concerns in DNN community is to be
able to generalize the trained network to unconstrained environ-
ments. This is happening since the majority of Machine learning
schemes are sharing the same database in train and test stage. The
neural networks learn the distribution of the data for the given
database, and since the test set follows the same distribution, it
gives promising results on the test set. Bazrafkan, Nedelcu, Fil-
ipczuk, and Corcoran (2017) discusses this problem inmore detail.

Since the network is trained on a merged version of the Bath800
and CASIA1000; only the test sub-set of these databases has been
used in testing stage. However, the network never saw the UBIRIS
and MobBio set before. Therefore all samples of these databases
have been used for testing. The numerical results are shown in
Table 2. From this experiment, the network gives better results for
Bath800 and CASIA1000 which is expected.

The network has already observed these two databases in
training stage and learned their distribution which justifies the



S. Bazrafkan et al. / Neural Networks 106 (2018) 79–95 89

Table 2
Testing on the original network. Metrics measured for different databases. Green
means higher performance and red declares lower quality results. A higher value of
µ and lower value for σ are desirable.

higher performance on these databases. Having a lower value
of sensitivity and precision in UBIRIS and MobBio databases de-
clares the amount of uncertainty of the model in giving back the
positive cases. Moreover, the high value of specificity and NPV
shows that the trained model was able to rule out non-iris pixels
in all databases. The value of F1-score, MCC, Informedness, and
Markedness is high for Bath800 and CASIA1000which indicate the
ability of the network to produce consistent segmentations both
in finding iris and non-iris pixels for these databases. The same
measures return average values for UBIRIS database. This means
that the network is generalized for semi-wild environments.More-
over, the low value for MobBio indicates that the network is not
much reliable to work in consumer level environments. In general,
the presented network is reliable in returning non-iris pixels in
challenging scenarios. Note that both UBIRIS and MobBio are vis-
ible databases and that MobBio is a very challenging database. In
Section 5.4.2 the presented network is compared to othermethods
on the MobBio database.

5.3. Comparison with SegNet-basic

SegNet (Badrinarayanan et al., 2015) is one of the most suc-
cessful DNN approaches in semantic segmentation. SegNet-basic
is the small counterpart of the original SegNet. As explained in
Supplementary Material #2, our proposed architecture contains
almost the same number of parameters as SegNet-basic. This gives
us the opportunity to conduct fair comparisons between twomod-
els. The original SegNet-basic is trained on the road scenes for
object segmentation task. In order to conduct fair comparisons
with the proposed design, the SegNet-basic network is tuned for
iris segmentation by training it on the same data with same hyper-
parameters as our proposed model. Table 3 shows the results for
SegNet-basic tested on four databases Bath800, CASIA1000, UBIRIS
and MobBio. Note that the network is tested on the test set of
Bath800 and CASIA1000 and all samples of UBIRIS and MobBio.

The SegNet-basic and proposed network contain almost the
same number of parameters, so these two networks occupy the
same amount of memory. The proposed architecture has more
weight connections. On a Geforce 750Ti graphic card the process-
ing load for the proposed model was 0.77 Mp/s (Megapixel per

second) which is comparable to the SegNet-basic 0.6144 Mp/s,
while the proposed model have considerably better performance.

Results show SegNet-basic has considerably better perfor-
mance on Bath800 and CASIA1000 than other two databases;
which is expectable since the network is trained on former
databases. In the following subsections, these results are compared
to presented network in order to find the advantages and short-
comings of each design.

5.3.1. Comparing results on Bath800 and CASIA1000
Since both networks are trained on Bath800 and CASIA1000

databases, the numerical test results show the capability of each
design in capturing the probability distribution of the training set.
Figs. 20 and 21 illustrate the comparisons between the proposed
method and SegNet-basic over Bath800 and CASIA100. These fig-
ures show the mean value for each metric.

From these figures, it is concluded that the proposed method
is giving better results on the test set of Bath800 and CASIA1000.
Since these two datasets have been used to train both networks,
these comparisons show the higher capacity of the proposed
method in learning the data distribution in training stage. At the
same time, one can comment that learning the training distribution
can be a sign of overfitting. In order to investigate this effect, both
networks are tested on two other databases UBIRIS and MobBio
explained in the next section.

5.3.2. Comparing results on UBIRIS and MobBio
It is always important to investigate the performance of amodel

over databases which has not been used in the training stage in
order to get better ideas on the model quality in unconstrained
environments. In fact, the network is learning the samples which
are present in the training set, and a good model should be able to
generalize the results for other samples specially unconstrained,
consumer graded and difficult ones. In this section, the results for
the SegNet-basic network is compared with the proposed network
for UBIRIS and MobBio databases (which are not used in the train-
ing stage). The results are shown in Fig. 22 for UBIRIS and Fig. 23
for MobBio.

The presented method is providing higher accuracy than
SegNet-basic which implies the better quality in returning true



90 S. Bazrafkan et al. / Neural Networks 106 (2018) 79–95

Table 3
SegNet-basic. Metrics measured for different databases. Green means better quality and red declares
lower quality results. A Higher value of µ and lower value for σ are desirable.

Fig. 20. Comparisons between the presented network and SegNet-basic on Bath800. A higher value indicates better performance.

Fig. 21. Comparisons between the presented network and SegNet-basic on CASIA1000. Higher value indicates better performance.



S. Bazrafkan et al. / Neural Networks 106 (2018) 79–95 91

Fig. 22. Comparisons between the presented network and SegNet-basic on UBIRIS. A higher value indicates better performance.

results in the space of all results. This is while SegNet-basic has
higher sensitivity and NPV which it means that this architecture
is more efficient in ruling out non-iris pixels while the presented
model has better performance in finding positive samples due to
its higher specificity and precision. Lower FPR shows that the pro-
posedmodel had lower probability in returning a negative decision
and higher FNR shows that SegNet-basic is less probable inmaking
a mistake in returning positive decisions. However, in average the
proposedmethod ismore efficient since it has a higher value for F1-
score which is the harmonic average of precision and sensitivity.
Moreover, also higher MCC shows that the overall performance
of the presented network is better than SegNet-basic for UBIRIS
dataset.

The numerical results of testing both networks on MobBio
dataset are shown in Fig. 23.

Results for MobBio database is in the same direction as UBIRIS.
The proposedmodel got higher accuracywhichmeans it has better
performance in finding iris pixels. Values for sensitivity and NPV
shows better performance of SegNet-basic in ruling out non-iris
pixels. And observations on specificity and precision shows the
better performance of the proposed model in returning iris pixels.
However, on average the proposedmethod has better performance
due to higher numerical values for F1-score and MCC.

The results of testing both networks on UBIRIS and MobBio
datasets demonstrate the overall improved performance of pro-
posed network over SegNet-basic. This shows that themodel is not
only more capable of learning the training data distribution, but
also it has a better ability to generalize to unconstrained, consumer
level environments.

5.4. Comparison to state of the art

In this next experiment, the proposed method is compared to
the most advanced and state of the art segmentation methods in
the literature. In the first part, the accuracy of the proposedmethod
is compared to other methods over UBIRIS database. Moreover,
in the second part, the sensitivity, precision, and F1-score of the
proposed method is compared with some other methods over
UBIRIS, MobBio, and CASIA databases. The results presented here
are the best results of our networks after tuning.

5.4.1. Accuracy on the UBIRIS database
The comparisons of the proposed method with the state of art

methods over UBIRIS database is illustrated in Fig. 24.
The MFCN and HCNN (Liu, Li et al., 2016) methods are using a

22 layer, deep neural network to perform the iris segmentation.
Zhao and Ajay (2015) utilizes the Total Variation (TV) model to

overcome the problem of low contrast and noise interference in
the eye socket image. Tan, He, and Sun (2010) proposes an inte-
grodifferential constellation followed by a curvature fitting model
to find the iris area. In Radman, Zainal, and Suandi (2017) The
Histogram of Oriented Gradients (HOG) is introduced as feature
and Support Vector Machine (SVM) is used to perform the auto-
matic segmentation of iris. The random walker algorithm is used
to generate the iris map in Tan and Kumar (2013). In Proenca
(2010) the sclera and iris regions are detected separately using
neural networks as classifiers, and polynomial fitting is applied
estimating the final iris region. Tan and Kumar (2012) proposes
a post-classification procedure including reflection and shadow
removal and several refinements on pupil and eyelid localizations
to get higher performance on iris segmentation task. From Fig. 24,
the proposedmethods gives the best accuracy for UBIRIS database.
The main advantage of our work was by selecting the proper
data augmentation described in Section 2.3. Augmentation step is
essential in anymodel which is designed to work in unconstrained
conditions.

The network is learning the distribution of the train set and
therefore, designing a set which is representative of the consumer
level conditions is crucial in order to get reasonably high perfor-
mance, i.e., if one can mimic the real-life situations by introducing
enough variations to the training set, it is highly probable that the
network is able to generalize the learning into non constrained
input test samples. Moreover, also tuning is an essential part of our
approach to getting a better result for a pre-defined condition. The
original networkwas trained onBath800 andCASIA1000databases
which are NIR iris images. At the same time, the UBIRIS database
is not big enough to train a DNNwithout encountering over-fitting
condition. One of the best approached to train a network on such
a small database is to transfer the information from the original
network (which is trained on NIR images) and tune it on the new
database.

The other advantage of the proposedmethod is the semi parallel
design of the network. In this approach, one can take advantage
of several architectures at the same time. This is while the infor-
mation flow inside the network is not limited to a single path but
mixing and merging of several paths.

5.4.2. Experiments on sensitivity, precision, and F1-score
The sensitivity, precision, and F1-score of five iris segmenta-

tion methods (CAHT, GST, IFFP, Osiris, and WAHET) on several
databases including UBIRIS, MobBio and CASIA are given in Hof-
bauer et al. (2014). In our work, the comparisons with these meth-
ods have been conducted on the same databases, and the results
are given in Figs. 25 to 27. The results reported by Hofbauer et al.



92 S. Bazrafkan et al. / Neural Networks 106 (2018) 79–95

Fig. 23. Comparisons between the presented network and SegNet-basic on MobBio. A higher value indicates better performance.

Fig. 24. Accuracy of proposed method vs. other methods over UBIRIS database.

(2014) for UBIRIS database provides a detailed performancemetric
including sensitivity, precision and f1-score. Thesemetrics for each
presented algorithm (CAHT, GST, IFFP, OSIRIS, andWAHET) are cal-
culated by comparing the algorithms resultswith the ground truth.
Hofbauer et al. (2014) work aim to streamline the development
and analysis of newer iris segmentation algorithms by providing
a detailed baseline result. Hence the results presented there for
CAHT, GST, IFFP, OSIRIS, and WAHET segmentation algorithms is
expected to be the best results for these methods.

More recent work on UBIRIS, including the segmentation ap-
proach based on CNNs such as Liu, Li et al. (2016) provides just
the segmentation accuracy. A detailed comparison of segmentation
accuracy of these techniques to our proposed technique is shown
in Fig. 24. As the algorithms used in these works are not available
for research community for reproducing their results, calculating
newmetricswhich are not provided by the authors are not feasible.

Other recent works on iris segmentation such as Abdullah,
Dlay,Woo, and Chambers (2017); Ehsaneddin (Jalilian &Uhl, 2017;
Morley & Foroosh, 2017) neither compare their results on UBIRIS
dataset nor make the segmentation technique public for a fair
comparison of their techniques in the other databases.

Sensitivity and precision metrics measure the quality of the
network in ruling out non-iris pixels and detection iris ones respec-
tively, and F1-score is the harmonic average of these two metrics.
The higher values correspond to better performance. As shown in
Figs. 25 to 27, the proposed method gives superior results com-
pared to other approaches on UBIRIS andMobBio databases. More-
over, on the high-quality CASIA database, the proposed method is
still giving better results. This shows that the proposed method is

performing on low-quality consumer graded iris images as good as
constrained high-quality samples. This is essential while the user
tries to capture the iris information in handheld devices where
there is hand shaking, sparse illumination and low-quality front
cameras. The proposed network shows that this conditions could
be compensated by augmenting the data and also merging several
designs into a single network and the numerical results show
promising performance of the proposed scheme.

6. Conclusions

In this work, a deep neural network framework has been pre-
sented to segment low quality, consumer graded iris images.

There are three main contributions in this work.

(i) The data augmentation, wherein the high quality eye socket
images fromBath800 and CASIA1000 database are degraded
and manipulated to give a proper approximation of the low
quality images. Four different factors have been considered
including image resolution, contrast, shadow and motion
blurring. The augmented images give a close approximation
of low quality unconstrained iris images.

(ii) The recently introduced Semi Parallel Deep Neural Network
method has been used to design a fully convolutional net-
work by mixing and merging four parent networks. Each of
these networks take advantage of different kernel sizes and
depthswhich are extracting andprocessing different feature
levels. The final design is similar to U-Net without pooling.



S. Bazrafkan et al. / Neural Networks 106 (2018) 79–95 93

Fig. 25. Sensitivity, Precision, and F1-score on UBIRIS database for proposed method vs. five other methods. Higher values indicate better performance.

Fig. 26. Sensitivity, Precision, and F1-score on MobBio database for proposed method vs. five other methods. Higher values indicate better performance.

Fig. 27. Sensitivity, Precision, and F1-score on CASIA database for proposed method vs. five other methods. Higher values indicate better performance.

(iii) Inter-database evaluations are giving a more realistic
overview of the network performance. Here a very essential
problem in deep leaning community is addressed wherein
the researchers are training a DNN on a specific database
and test it on the same database. In thiswork, every network
was tested on Bath800, CASIA1000, UBIRIS, and MobBio.
Employing this approach gives a realistic foresight of the
performance on real world situations.

The proposed model has been initially trained on the aug-
mented version of the Bath800, and CASIA1000 databases and
further experiments were carried out by tuning the original net-
work on UBIRIS and MobBio. Tuned networks were tested on all

databases, and the effect of tuning was widely investigated. Our
experiments show that the tuning boosts the performance for the
database that the network is tuned on. This is expectable except for
databases with very unspecific distributions which will decrease
the performance after tuning. Another conclusion is that tuning the
model is only advisable when the end use conditions are known.
But if the end use conditions are not known, such tuning is not
advised.

Since the presented network is a largemodel which is not easily
implementable on a low power handheld hardware, the future
works include optimizing the network, training a smaller network,
or binarizing the model to reduce the number of calculations and
the memory usage. Optimizing the network includes reducing the



94 S. Bazrafkan et al. / Neural Networks 106 (2018) 79–95

parameter precision down to binary or ternary (Li, Zhang, & Liu,
2016). This will give, up to 32x memory compression and also
reduces the calculation load extensively by eliminating most of
multiplications in the model. Another approach is to design a
model with fewer parameters. Currently, our target is to reduce
the number of parameters to the rate of 10x without causing
considerable cutback in the performance.

Acknowledgments

This research is funded under the SFI Strategic Partnership
Program by Science Foundation Ireland (SFI) and FotoNation Ltd.
Project ID: 13/SPP/I2868 on Next Generation Imaging for Smart-
phone and Embedded Platforms.

We gratefully acknowledge the support of NVIDIA Corporation
with the donation of a Titan X GPU used for this research.

Portions of the research in this paper use the CASIA-IrisV4 col-
lected by the Chinese Academy of Sciences’ Institute of Automation
(CASIA).

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.neunet.2018.06.011.

References

Abdullah, M. A. M., Dlay, S. S., Woo, W. L., & Chambers, J. A. (2017). Robust iris
segmentation method based on a new active contour force with a noncircular
normalization. IEEE Transactions on Systems, Man, and Cybernetics: Systems,
47(12), 3128–3141.

Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau, D., & Ballas, N., et al.,
(2016). Theano: A {Python} framework for fast computation of mathematical
expressions. arXiv E-Prints, abs/1605.0. Retrieved from http://arxiv.org/abs/
1605.02688.

Alonso-Fernandez, F., & Bigun, J. (2013). Quality factors affecting iris segmentation
andmatching. In Proceedings - 2013 international conference on biometrics, http:
//dx.doi.org/10.1109/ICB.2013.6613016.

Arsalan, M., Hong, H. G., Naqvi, R. A., Lee, M. B., Kim, M. C., Kim, D. S., et al.
(2017). Deep learning-based iris segmentation for iris recognition in visible light
environment. Symmetry, 9(11).

Badrinarayanan, V., Kendall, A., & Cipolla, R. (2015). SegNet: {A} Deep Convolutional
Encoder-Decoder Architecture for Image Segmentation. CoRR, abs/1511.0. Re-
trieved from http://arxiv.org/abs/1511.00561.

Battistella, E. L. (1990).Markedness: The evaluative superstructure of language. SUNY
Press.

Bazrafkan, S., & Corcoran, P. (2017). Semi-Parallel Deep Neural Networks (SPDNN),
Convergence and Generalization. Retrieved from http://arxiv.org/abs/1711.
01963.

Bazrafkan, S., Javidnia, H., Lemley, J., & Corcoran, P. (2017). Depth from Monocular
Images using a Semi-Parallel Deep Neural Network (SPDNN) Hybrid Architec-
ture. arXiv Preprint arXiv:1703.03867 (pp. 1–15). Retrieved from http://arxiv.
org/abs/1703.03867.

Bazrafkan, S., Kar, A., & Costache, C. (2015). Eye gaze for consumer electronics:
Controlling and commanding intelligent systems. IEEE Consumer Electronics
Magazine, 4(4), 65–71. http://dx.doi.org/10.1109/MCE.2015.2464852.

Bazrafkan, S., Nedelcu, T., Filipczuk, P., & Corcoran, P. (2017). Deep learning for facial
expression recognition: a step closer to a smartphone that knows your moods.
In IEEE international conference on consumer electronics.

Bigun, J., Alonso-Fernandez, F., Hofbauer, H., & Uhl, A. (2016). Experimental analysis
regarding the influence of iris segmentation on the recognition rate. IET Biomet-
rics, 5(3), 200–211. http://dx.doi.org/10.1049/iet-bmt.2015.0069.

Biometrics, I. S. O. J. S. (2007). ISO 29794-1 biometric sample quality. Committee
Draft, 1.

Bowyer, K. W., Hollingsworth, K., & Flynn, P. J. (2008). Image understanding for iris
biometrics: A survey. Computer Vision and Image Understanding , 110, 281–307.
http://dx.doi.org/10.1016/j.cviu.2007.08.005.

Bowyer, K. W., Hollingsworth, K. P., & Flynn, P. J. (2013). A survey of iris biometrics
research: 2008–2010. Handbook of Iris Recognition, (August), 15–54. http://dx.
doi.org/10.1007/978-1-4471-4402-1_2.

CASIA Iris Image Database, (2010). Retrieved July 24, 2017, from http://biometrics.
idealtest.org/.

Corcoran, P., & Costache, C. (2016). Smartphones, Biometrics, and a Brave New
World. IEEE Technology and SocietyMagazine, 35(3), 59–66. http://dx.doi.org/10.
1109/MTS.2016.2593266.

Daugman, J. G. (1994,March). Biometric personal identification systembased on iris
analysis. Google Patents.

Daugman, J. (2004). How iris recognition works. IEEE Transactions on Circuits and
Systems for Video Technology, 14(1), 21–30. http://dx.doi.org/10.1109/TCSVT.
2003.818350.

Daugman, J. (2007). New methods in iris recognition. IEEE Transactions on Systems,
Man, and Cybernetics. Part B, Cybernetics: A Publication of the IEEE Systems, Man,
and Cybernetics Society, 37(5), 1167–1175.

De Marsico, M., Nappi, M., & Proença, H. (2017). Results from MICHE II–mobile iris
challenge evaluation II. Pattern Recognition Letters, 91, 3–10. http://dx.doi.org/
10.1016/j.patrec.2016.12.013.

De Marsico, M., Nappi, M., Riccio, D., & Wechsler, H. (2015). Mobile iris challenge
evaluation (MICHE)-I, biometric iris dataset and protocols. Pattern Recognition
Letters, 57, 17–23. http://dx.doi.org/10.1016/j.patrec.2015.02.009.

Dieleman, S., Schluter, J., Raffel, C., Olson, E., Sonderby, S. K., & Nouri, D. et al., (2015,
August). Lasagne: First release. http://dx.doi.org/10.5281/zenodo.27878.

Erbilek, M., Da Costa-Abreu, M. C., & Fairhurst, M. (2012). Optimal configuration
strategies for iris recognition processing. In IET conference on image processing
(pp. B2–B2). http://dx.doi.org/10.1049/cp.2012.0451.

Gangwar, A., & Joshi, A. (2016). DeepIrisNet: Deep iris representation with appli-
cations in iris recognition and cross-sensor iris recognition. In Proceedings -
international conference on image processing, Vol. 2016–Augus, (pp. 2301–2305).
http://dx.doi.org/10.1109/ICIP.2016.7532769.

Gangwar, A., Joshi, A., Singh, A., Alonso-Fernandez, F., & Bigun, J. (2016). IrisSeg:
A fast and robust iris segmentation framework for non-ideal iris images. In
2016 international conference on biometrics http://dx.doi.org/10.1109/ICB.2016.
7550096.

Haindl, M., & Krupička, M. (2015). Unsupervised detection of non-iris occlusions.
Pattern Recognition Letters, 57, 60–65. http://dx.doi.org/10.1016/j.patrec.2015.
02.012.

He, Z., Tan, T., Sun, Z., & Qiu, X. (2009). Toward accurate and fast iris segmentation
for iris biometrics. IEEE Transactions on Pattern Analysis andMachine Intelligence,
31(9), 1670–1684. http://dx.doi.org/10.1109/TPAMI.2008.183.

Hofbauer, H., Alonso-Fernandez, F., Wild, P., Bigun, J., & Uhl, A. (2014). A ground
truth for Iris segmentation. In Proceedings - international conference on pattern
recognition (pp. 527–532). http://dx.doi.org/10.1109/ICPR.2014.101.

Ioffe, S., & Szegedy, C. 2015. Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. In International conference on machine
learning (pp. 448–456).

Irsch, K., Guyton, D. L., & Johns, H. M. (2009). Anatomy of eyes. Encyclopedia of
Biometrics,(April), 1212–1217. http://dx.doi.org/10.1007/978-0-387-73003-5_
257.

Jalilian, E., & Uhl, A. (2017). Iris segmentation using fully convolutional encoder–
decoder networks. Advances in Computer Vision and Pattern Recognition, PartF1,
133–155. http://dx.doi.org/10.1007/978-3-319-61657-5_6.

Jalilian, E., Uhl, A., & Kwitt, R. (2017). Domain adaptation for CNN based iris
segmentation. In 2017 International conference of the biometrics special interest
group (pp. 1–6). http://dx.doi.org/10.23919/BIOSIG.2017.8053502.

Jan, F. (2017). Segmentation and localization schemes for non-ideal iris biometric
systems. Signal Processing . http://dx.doi.org/10.1016/j.sigpro.2016.11.007.

Jillela, R., & Ross, A. A. (2013). Methods for iris segmentation. In M. J. Burge, & K.
W. Bowyer (Eds.), Handbook of iris recognition (pp. 239–279). London: Springer
London. http://dx.doi.org/10.1007/978-1-4471-4402-1_13.

Kong,W. K., & Zhang, D. (2001). Accurate iris segmentation based onnovel reflection
and eyelash detection model. In Proceedings of 2001 international symposium on
intelligent multimedia, video and speech processing (IEEE Cat. No.01EX489), (pp.
263–266), http://dx.doi.org/10.1109/ISIMP.2001.925384.

Lemley, J., Bazrafkan, S., & Corcoran, P. (2017a). Deep learning for consumer devices
and services: Pushing the limits for machine learning, artificial intelligence,
and computer vision. IEEE Consumer Electronics Magazine, 6(2), 48–56. http:
//dx.doi.org/10.1109/MCE.2016.2640698.

Lemley, J., Bazrafkan, S., & Corcoran, P. (2017b). Smart augmentation learning
an optimal data augmentation strategy. IEEE Access. http://dx.doi.org/10.1109/
ACCESS.2017.2696121.

Lemley, J., Bazrafkan, S., & Corcoran, P. (2017c). Transfer learning of temporal infor-
mation for driver action classification. In The 28th modern artificial intelligence
and cognitive science conference.

Li, F., Zhang, B., & Liu, B. (2016). Ternary weight networks. arXiv Preprint arXiv:
1605.04711.

Liu, N., Li, H., Zhang, M., Liu, J., Sun, Z., & Tan, T. (2016). Accurate iris segmenta-
tion in non-cooperative environments using fully convolutional networks. In
2016 international conference on biometrics, http://dx.doi.org/10.1109/ICB.2016.
7550055.



S. Bazrafkan et al. / Neural Networks 106 (2018) 79–95 95

Liu, N., Zhang, M., Li, H., Sun, Z., & Tan, T. (2016). DeepIris: Learning pairwise filter
bank for heterogeneous iris verification. Pattern Recognition Letters, 82, 154–
161. http://dx.doi.org/10.1016/j.patrec.2015.09.016.

Ma, L., Wang, Y., & Tan, T. (2002). Iris recognition using circular symmetric filters.
Object Recognition Supported By User Interaction for Service Robots, 2, 414–417.
http://dx.doi.org/10.1109/ICPR.2002.1048327.

Matey, J. R., Naroditsky, O., Hanna, K., Kolczynski, R., LoIacono, D. J., Mangru, S.,
et al. (2006). Iris on the move: Acquisition of images for iris recognition in
less constrained environments. Proceedings of the IEEE, 94. http://dx.doi.org/10.
1109/JPROC.2006.884091.

Menotti, D., Chiachia, G., Pinto, A., Schwartz, W. R., Pedrini, H., Falcão, A. X., et al.
(2015). Deep representations for Iris, face, and fingerprint spoofing detection.
IEEE Transactions on Information Forensics and Security, 10(4), 864–879. http:
//dx.doi.org/10.1109/TIFS.2015.2398817.

Minaee, S., Abdolrashidiy, A., & Wang, Y. (2017). An experimental study of deep
convolutional features for iris recognition. In 2016 IEEE signal processing in
medicine and biology symposium, SPMB 2016 - proceedings http://dx.doi.org/10.
1109/SPMB.2016.7846859.

MIRLIN. (n.d.). Retrieved from https://www.fotonation.com/products/biometrics/
iris-recognition/.

Morley, D., & Foroosh, H. (2017). Improving ransac-based segmentation through cnn
encapsulation. In Proc. IEEE conf. on computer vision and pattern recognition.

Pando, A. (2017). Beyond Security: Biometrics Integration Into Everyday Life.
Retrieved November 21, 2017, from https://www.forbes.com/sites/forbestech
council/2017/08/04/beyond-security-biometrics-integration-into-everyday-lif
e/#ce400be431fb.

Phillips, C., & Komogortsev, O. V. (2011). Impact of Resolution and Blur on Iris
Identification.

Prabhakar, S., Pankanti, S., & Jain, A. K. (2003). Biometric recognition: security and
privacy concerns. IEEE Security & Privacy Magazine, 1(2), 33–42. http://dx.doi.
org/10.1109/MSECP.2003.1193209.

Proenca, H. (2010). Iris recognition: On the segmentation of degraded images
acquired in the visible wavelength. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 32(8), 1502–1516.

Proença, H., & Alexandre, L. A. (2006). Iris segmentation methodology for non-
cooperative recognition. IEE proceedings - vision, image, and signal processing .
http://dx.doi.org/10.1049/ip-vis:20050213.

Proença, H., & Alexandre, L. A. (2010). Iris recognition: Analysis of the error rates
regarding the accuracy of the segmentation stage. Image and Vision Computing ,
28(1), 202–206. http://dx.doi.org/10.1016/j.imavis.2009.03.003.

Proenca, H., Filipe, S., Santos, R., Oliveira, J., & Alexandre, L. A. (2010). The
{UBIRIS.v2}: A database of visible wavelength images captured on-the-move
and at-a-distance. IEEE Transactions on Pattern Analysis Machine Intelligence,
32(8), 1529–1535. http://dx.doi.org/10.1109/TPAMI.2009.66.

Quinn, G. W., Grother, P. J., Ngan, M. L., & Matey, J. R. (2013). IREX IV: part 1,
evaluation of iris identification algorithms. NIST Interagency/Internal Report-
7949.

Radman, A., Zainal, N., & Suandi, S. A. (2017). Automated segmentation of iris images
acquired in an unconstrained environment using HOG-SVM and GrowCut.
Digital Signal Processing , 64, 60–70.

Rakshit, S. (2007). Novel methods for accurate human iris recognition. University of
Bath.

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for
biomedical image segmentation. In N. Navab, J. Hornegger, W. M. Wells, & A.
F. Frangi (Eds.), Medical image computing and computer-assisted intervention–

MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015,
proceedings, Part III (pp. 234–241). Cham: Springer International Publishing.
http://dx.doi.org/10.1007/978-3-319-24574-4_28.

Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for
face recognition and clustering. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 815–823).

Sequeira, A. F., Monteiro, J. C., Rebelo, A., & Oliviera, H. P. (2014). MobBIO: A multi-
modal database captured with a portable handheld device. In 9th international
conference on computer vision theory and applications (pp. 133–139). Lisbon.

Shah, S., & Ross, a. (2009). Iris segmentation using geodesic active contours. IEEE
Transactions on Information Forensics and Security, 4(4), 824–836. http://dx.doi.
org/10.1109/TIFS.2009.2033225.

Silva, P., Luz, E., Baeta, R., Pedrini, H., Falcao, A. X., &Menotti, D. (2015). An approach
to iris contact lens detection based on deep image representations. In Brazilian
symposium of computer graphic and image processing, Vol. 2015–Octob (pp. 157–
164). http://dx.doi.org/10.1109/SIBGRAPI.2015.16.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research (JMLR), 15(1), 1929–1958.

Szegedy, C., Toshev, A., & Erhan, D. (2013). Deep neural networks for object detec-
tion. In Advances in Neural Information Processing Systems (pp. 2553–2561).

Tan, T., He, Z., & Sun, Z. (2010). Efficient and robust segmentation of noisy iris images
for non-cooperative iris recognition. Image and Vision Computing , 28(2), 223–
230.

Tan, C.-W., & Kumar, A. (2012). Unified framework for automated iris segmentation
using distantly acquired face images. IEEE Transactions on Image Processing ,
21(9), 4068–4079.

Tan, C.-W., & Kumar, A. (2013). Towards online iris and periocular recognition under
relaxed imaging constraints. IEEE Transactions on Image Processing , 22(10),
3751–3765.

Thavalengal, S., Bigioi, P., & Corcoran, P. (2015a). Evaluation of combined visible/NIR
camera for iris authentication on smartphones. In 2015 IEEE conference on
computer vision and pattern recognition workshops, (pp. 42–49). http://dx.doi.
org/10.1109/CVPRW.2015.7301318.

Thavalengal, S., Bigioi, P., & Corcoran, P. (2015b). Iris authentication in hand-
held devices - considerations for constraint-free acquisition. IEEE Transactions
on Consumer Electronics, 61(2), 245–253. http://dx.doi.org/10.1109/TCE.2015.
7150600.

Thavalengal, S., & Corcoran, P. (2016). User authentication on smartphones: Focus-
ing on iris biometrics. IEEE Consumer Electronics Magazine, 5(2), 87–93. http:
//dx.doi.org/10.1109/MCE.2016.2522018.

Tisse, C.-, Martin, L., Torres, L., Robert, M., Zi, S., & Rousset, R. et al., (1992).
Person identification technique using human iris recognition Advanced System
Technology, (i).

Wildes, R. P., Asmuth, J. C., Hanna, K. J., Hsu, S. C., Kolczynski, R. J., & Matey, J. R.
et al., (1996). Automated, non-invasive iris recognition system and method. US
Patent US5572596 A.

Zhao, Z., & Ajay, K. (2015). An accurate iris segmentation framework under relaxed
imaging constraints using total variation model. In Proceedings of the IEEE
international conference on computer vision (pp. 3828–3836).

Zheng, S., Song, Y., Leung, T., & Goodfellow, I. (2016). Improving the robustness of
deep neural networks via stability training. In Proceedings of the IEEE conference
on computer vision and pattern recognition (pp. 4480–4488).



Appendix E

Smart Augmentation Learning an
Optimal Data Augmentation Strategy



Received February 16, 2017, accepted April 11, 2017, date of publication April 24, 2017, date of current version May 17, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2696121

Smart Augmentation Learning an Optimal
Data Augmentation Strategy
JOSEPH LEMLEY, (Student Member, IEEE), SHABAB BAZRAFKAN, (Student Member, IEEE),
AND PETER CORCORAN, (Fellow, IEEE)
Collage of Engineering and Informatics, National University of Ireland Galway, SW4 794 Galway, Ireland

Corresponding author: Joseph Lemley (j.lemley2@nuigalway.ie)

This work was supported by the SFI Strategic Partnership Program on Next Generation Imaging for Smartphone and Embedded Platforms
by Science Foundation Ireland and FotoNation Ltd., under Project 13/SPP/I2868, and in part by the Irish Research Council Employment
Based Programme Award under Project EBPPG/2016/280.

ABSTRACT A recurring problem faced when training neural networks is that there is typically not enough
data tomaximize the generalization capability of deep neural networks. There aremany techniques to address
this, including data augmentation, dropout, and transfer learning. In this paper, we introduce an additional
method, which we call smart augmentation and we show how to use it to increase the accuracy and reduce
over fitting on a target network. Smart augmentation works, by creating a network that learns how to generate
augmented data during the training process of a target network in a way that reduces that networks loss. This
allows us to learn augmentations that minimize the error of that network. Smart augmentation has shown
the potential to increase accuracy by demonstrably significant measures on all data sets tested. In addition,
it has shown potential to achieve similar or improved performance levels with significantly smaller network
sizes in a number of tested cases.

INDEX TERMS Artificial intelligence, artificial neural networks, machine learning, computer vision
supervised learning, machine learning algorithms, image databases.

I. INTRODUCTION
In order to train a deep neural network, the first and probably
most important task is to have access to enough labeled
samples of data. Not having enough quality labeled data
will generate overfitting, which means that the network is
highly biased to the data it has seen in the training set and,
therefore will not be able to generalize the learned model to
any other samples. In [1] there is a discussion about howmuch
the diversity in training data and mixing different datasets
can affect the model generalization. Mixing several datasets
might be a good solution, but it is not always feasible due to
lack of accessibility.

One of the other approaches to solving this problem is
using different regularization techniques. In recent years
different regularization approaches have been proposed and
successfully tested on deep neural networkmodels. The drop-
out technique [2] and batch normalization [3] are two well-
known regularization methods used to avoid overfitting when
training deep models.

Another technique for addressing this problem is called
augmentation. Data augmentation is the process of supple-
menting a dataset with similar data that is created from the
information in that dataset. The use of augmentation in deep
learning is ubiquitous, and when dealing with images, often

includes the application of rotation, translation, blurring and
other modifications to existing images that allow a network
to better generalize [4].

Augmentation serves as a type of regularization, reducing
the chance of overfitting by extracting more general infor-
mation from the database and passing it to the network. One
can classify the augmentation methods into two different
types. The first is unsupervised augmentation. In this type of
augmentation, the data expansion task is done regardless of
the label of the sample. For example adding a different kind
of noise, rotating or flipping the data. These kinds of data
augmentations are usually not difficult to implement.

One of the most challenging kinds of data expansion is
mixing different samples with the same label in feature space
in order to generate a new sample with the same label. The
generated sample has to be recognizable as a valid data
sample, and also as a sample representative of that specific
class. Since the label of the data is used to generate the new
sample, this kind of augmentation this can be viewed as a type
of supervised augmentation.

Many deep learning frameworks can generate augmented
data. For example, Keras [5] has a built inmethod to randomly
flip, rotate, and scale images during training but not all of
these methods will improve performance and should not be

5858
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 5, 2017



J. Lemley et al.: Smart Augmentation Learning an Optimal Data Augmentation Strategy

used ‘‘blindly’’. For example, on MNIST (The famous hand-
written number dataset), if one adds rotation, the network will
be unable to distinguish properly between handwritten ‘‘6’’
and ‘‘9’’ digits. Likewise, a system that uses deep learning
to classify or interpret road signs may become incapable
of discerning left and right arrows if the training set was
augmented with by indiscriminate flipping of images.

More sophisticated types of augmentation, such as selec-
tively blending images or adding directional lighting rely on
expert knowledge. Besides intuition and experience, there is
no universal method that can determine if any specific aug-
mentation strategy will improve results until after training.
Since training deep neural nets is a time-consuming process,
this means only a limited number of augmentation strategies
will likely be attempted before deployment of a model.

Blending several samples in the dataset in order to high-
light their mutual information is not a trivial task in practice.
Which samples should be mixed together how many of them
and how they mixed is a big problem in data augmentation
using blending techniques.

Augmentation is typically performed by trial and error,
and the types of augmentation performed are limited to the
imagination, time, and experience of the researcher. Often,
the choice of augmentation strategy can be more important
than the type of network architecture used [6].

Before Convolutional Neural Networks (CNN) became the
norm for computer vision research, features were ‘‘hand-
crafted’’. Handcrafting features went out of style after it was
shown that Convolutional Neural Networks could learn the
best features for a given task. We suggest that since the
CNN can generate the best features for some specific pattern
recognition tasks, it might be able to give the best feature
space in order to merge several samples in a specific class
and generate a new sample with the same label. Our idea is
to generate the merged data in a way that produces the best
results for a specific target network through the intelligent
blending of features between 2 or more samples.

II. RELATED WORK
Manual augmentation techniques such as rotating, flipping
and adding different kinds of noise to the data samples, are
described in depth in [4] and [7] which attempt to measure the
performance gain given by specific augmentation techniques.
They also provide a list of recommended data augmentation
methods.

In 2014, Srivastava et al. introduced the dropout tech-
nique [2] aiming to reduce overfitting, especially in cases
where there is not enough data. Dropout works by temporarily
removing a unit (or artificial neuron) from the Artificial
Neural Network and any connections to or from that unit.

Konda et al. Showed that dropout can be used for data
augmentation by ‘‘projecting the the dropout noise within a
network back into the input space’’ [8].

Jaderberg et al. devised an image blending strategy as
part of their paper ‘‘Synthetic Data and Artificial Neural
Networks for Natural Scene Text Recognition’’ [9]. They

used what they call ‘‘natural data blending’’ where each of the
image layers is blended with a randomly sampled crop of an
image from a training dataset. They note a significant (+44%)
increase in accuracy using such synthetic images when image
layers are blended together via a random process.

Another related technique is training on adversarial exam-
ples. Goodfellow et al. note that, although augmentation is
usually done with the goal of creating images that are as
similar as possible to the natural images one expects in the
testing set, this does not need to be the case. They fur-
ther demonstrate that training with adversarial examples can
increase the generalization capacity of a network, helping to
expose and overcome flaws in the decision function [10].

The use of Generative Adversarial Neural Networks [11]
is a very powerful unsupervised learning technique that
uses a min-max strategy wherein a ’counterfeiter’ network
attempts to generate images that look enough like images
within a dataset to ’fool’ a second network while the second
network learns to detect counterfeits. This process contin-
ues until the synthetic data is nearly indistinguishable from
what one would expect real data to look like. Generative
Adversarial Neural Networks can also be used to generate
images that augment datasets, as in the strategy employed by
Shrivastav et al. [12].

Another method of increasing the generalization capacity
of a neural network is called ‘‘transfer learning’’. In transfer
learning, we want to take knowledge learned from one net-
work, and transfer it to another [13]. In the case of Convolu-
tional Neural Networks, when used as a technique to reduce
overfitting due to small datasets, it is common to use the
trained weights from a large network that was trained for a
specific task and to use it as a starting point for training the
network to perform well on another task.

Batch normalization, introduced in 2015, is another pow-
erful technique. It was discovered upon the realization that
normalization need not just be performed on the input layer,
but can also be achieved on intermediate layers [3].

Like the above regularization methods, Smart Aug-
mentation attempts to address the issue of limited train-
ing data to improve regularization and reduce overfitting.
As with [10], our method does not attempt to produce aug-
mentations that appear ‘‘natural’’. Instead, our network learns
to combine images in ways that improve regularization.
Unlike [4] and [7], we do not address manual augmentation,
nor does our network attempt to learn simple transformations.
Unlike the approach of image blending in [9], we do not arbi-
trarily or randomly blend images. Smart augmentation can
be used in conjunction with other regularization techniques,
including dropout and traditional augmentation.

III. SMART AUGMENTATION
Smart Augmentation is the process of learning suitable aug-
mentations when training deep neural networks.

The goal of Smart Augmentation is to learn the best
augmentation strategy for a given class of input data.
It does this by learning to merge two or more samples

VOLUME 5, 2017 5859



J. Lemley et al.: Smart Augmentation Learning an Optimal Data Augmentation Strategy

FIGURE 1. Smart augmentation with more than one network A.

FIGURE 2. Diagram illustrating the reduced smart augmentation concept with just one network A.

in one class. This merged sample is then used to
train a target network. The loss of the target network
is used to inform the augmenter at the same time.
This has the result of generating more data for use by the tar-
get network. This process often includes letting the network
come up with unusual or unexpected but highly performant
augmentation strategies.

A. TRAINING STRATEGY FOR SMART AUGMENTATION
During the training phase, we have two networks:
Network A, which generates data; and network B, which
is the network that will perform a desired task (such as
classification). The main goal is to train network B to do
some specific task while there are not enough representative
samples in the given dataset. To do so, we use another
network A to generate new samples.

This network accepts several inputs from the same
class (the sample selection could be random, or it could use

some form of clustering, either in the pixel space or in the
feature space) and generates an output which approximates
data from that class. This is done by minimizing the loss
function LA which accepts out1 and image i as input. Where
out1 is the output of network A and mage i is a selected
sample from the same class as the input. The only constraint
on the network A is that the input and output of this network
should be the same shape and type. For example, if N samples
of a P-channel image are fed to network A, the output will be
a single P-channel image.

B. THE GENERATIVE NETWORK A AND LOSS FUNCTION
The loss function can be further parameterized by the inclu-
sion of α and β as f (LA,LB;α, β). In the experiments and
results sections of this paper, we examine how these can
impact final accuracy.

Network A can either be implemented as a single net-
work (figure 2) or as multiple networks, as in figure 1. Using

5860 VOLUME 5, 2017



J. Lemley et al.: Smart Augmentation Learning an Optimal Data Augmentation Strategy

more than one network A has the advantage that the networks
can learn class-specific augmentations that may not be suit-
able for other classes, but which work well for the given class.

Network A is a neural network, such as a generative model,
with the difference that network A is being influenced by
network B in the back propagation step, and network A
accepts multiple samples as input simultaneously instead of
just one at a time. This causes the data generated by net-
work A to converge to the best choices to train network B
for that specific task, and at the same time, it is controlled by
loss function LA in a way that ensures that the outputs are
similar to other members of its class.

The overall loss function during training is f (LA,LB)
where f is a function whose output is a transformation of
LA and LB. This function could be an epoch-dependent
function i.e. the function could change with the epoch num-
ber. In the training process, the error back-propagates from
network B to network A. This tunes network A to generate the
best augmentations for network B. After training is finished,
Network A is cut out of the model and network B is used in
the test process. The joint information between data samples
is exploited to both reduce overfitting and to increase the
accuracy of the target network during training.

FIGURE 3. The image on the left is created by a learned combination of
the two images on the right. This type of image transformation helped
increase the accuracy of network B. The image was not produced to be an
ideal approximation of a face but instead, contains features that helped
network B better generalize the concept of gender which is the task it
was trained for.

C. HOW SMART AUGMENTATION WORKS
The proposed method uses a network (network A) to learn the
best sample blending for the specific problem. The output of
network A is the used for the input of network B. The idea
is to use network A to learn the best data augmentation to
train network B. Network A accepts several samples from the
same class in the dataset and generates a new sample from
that class, and this new sample should reduce the training loss
for network B. In figure 3 we see an output of network A
designed to do the gender classification. The image on the
left is a merged image of the other two. This image represents
a sample from the class ‘‘male’’ that does not appear in the
dataset, but still, has the identifying features of its class.

Notice that in figure 3, an image was created with an open
mouth and open eyes from two images. The quality of the face
image produced by networkA does notmatter. Only its ability
to help network B better generalize. Our approach is most
applicable to classification tasks but may also have applica-
tions in any approach where the selective blending of sample

features improves performance. Our observations show that
this approach can reduce overfitting and increase accuracy.
In the following sections, we evaluate several implementa-
tions of our smart augmentation technique on various datasets
to show how it can improve accuracy and prevent overfitting.
We also show that with smart augmentation, we can train a
very small network to perform as well as (or better than) a
much larger network that produces state of the art results.

IV. METHODS
Experiments were conducted on NVIDIA Titan X GPU’s
running a pascal architecture with python 2.7, using the
Theano [14] and Lasange frameworks.

A. DATA PREPARATION
To evaluate our method, we chose 4 datasets with character-
istics that would allow us to examine the performance of the
algorithm on specific types of data. Since the goal of our
paper is to measure the impact of the proposed technique,
we do not attempt to provide a comparison of techniques that
work well on these databases. For such a comparison we refer
to [15] for gender datasets or [16] for the places dataset.

1) HIGHLY CONSTRAINED FACES DATASET (db1)
Our first dataset, db1 was composed from the AR faces
database [17] with a total of 4,000 frontal faces of male and
female subjects. The data was split into subject exclusive
training, validation, and testing sets, with 70% for training,
20% for validation, and 10% for testing. All face images were
reduced to 96X96 grayscale with pixel values normalized
between 0 and 1.

2) AUGMENTED, HIGHLY CONSTRAINED
FACES DATASET (db1a)
To compare traditional augmentation with smart augmenta-
tion and to examine the effect of traditional augmentation
on smart augmentation, we created an augmented version
of db1 with every combination of flipping, blurring, and
rotation (-5,-2,0,2,5 degrees with the axis of rotation at the
center of the image). This resulted in a larger training set
of 48360 images. The test and validation sets were unaltered
from db1. The data was split into a subject exclusive training,
validation, and testing sets with 70% for training, 20% for
validation, and 10% for testing. All face images were reduced
to 96X96 with pixel values normalized between 0 and 1.

3) FERET
Our second dataset, db2, was the FERET dataset. We con-
verted FERET to grayscale and reduced the size of each
image to 100X100 with pixel values normalized between
0 and 1. The data was split into subject exclusive training,
validation, and testing sets, with 70% for training, 20% for
validation and 10% for testing.

Color FERET [18] Version 2 was collected between
December 1993 and August 1996 and made freely avail-
able with the intent of promoting the development of face

VOLUME 5, 2017 5861



J. Lemley et al.: Smart Augmentation Learning an Optimal Data Augmentation Strategy

FIGURE 4. Arbitrarily selected images from FERET demonstrate
similarities in lighting, pose, subject, background, and other
photographic conditions.

FIGURE 5. Arbitrarily selected images from the Adience show significant
variations in lighting, pose, subject, background, and other photographic
conditions.

recognition algorithms. The images are labeled with gender,
pose, and name.

Although FERET contains a large number of high-quality
images in different poses and with varying face obstruc-
tions (beards, glasses, etc), they all have certain similarities
in quality, background, pose, and lighting that make them
very easy for modern machine learning methods to correctly
classify (see figure 4). In our experiments, we use all images
in FERET for which gender labels exist.

4) ADIENCE
Our third dataset, db3, was Adience (see figure 5). We con-
verted Adience to grayscale images with size 100× 100 and
normalized the pixel values between 0 and 1. The data was
split into subject exclusive training, validation, and testing
sets, with 70% for training, 20% for validation and 10% for
testing.

5) DB4
Our fourth dataset, db4, was the MIT places dataset [16].
The MIT PLACES dataset is a machine learning database
containing has 205 scene categories and 2.5 million labeled
images.

The Places Dataset is unconstrained and includes complex
scenery in a variety of lighting conditions and environments,
as shown in figure 6.

We restricted ourselves to just the first two classes in the
dataset (Abbey and Airport). Pixel values were normalized
between 0 and 1. The ‘‘small dataset,’’ which had been
rescaled to 256× 256 with 3 color channels, was used for all
experiments withoutmodification except for normalization of
the pixel values between 0 and 1.

V. EXPERIMENTS
In these experiments, we call network B the network that
is being trained for a specific task (such as classification).

FIGURE 6. Example images from the MIT places dataset showing two
examples from each of the two classes (abbey and airport) used in our
experiments.

TABLE 1. Full listing of experiments.

We call network A the network that learns augmentations that
help train network B.

All experiments are run for 1000 epochs. The test accuracy
reported is for the network that had the highest score on the
validation set during those 1000 epochs.

To analyze the effectiveness of Smart Augmentation,
we performed 30 experiments using 4 datasets with different
parameters. A brief overview of the experiments can be seen
in Table I. The experiments were conducted with the motiva-
tion of answering the following questions:

1) Is there any difference in accuracy between using smart
augmentation and not using it? (Is smart augmentation
effective?)

2) If smart augmentation is effective, is it effective on a
variety of datasets?

3) As the datasets become increasingly unconstrained,
does smart augmentation perform better or worse?

4) What is the effect of increasing the number of channels
in the smart augmentation method?

5) Can smart augmentation improve accuracy over tradi-
tional augmentation?

6) If smart augmentation and traditional augmentation
are combined, are the results better or worse than not
combining them?

5862 VOLUME 5, 2017



J. Lemley et al.: Smart Augmentation Learning an Optimal Data Augmentation Strategy

FIGURE 7. Illustration of network B1.

7) Does altering the α and β parameters change the
results?

8) Does Smart Augmentation increase or decrease over-
fitting as measured by train/test loss ratios?

9) If smart augmentation decreases overfitting, can we use
it to replace a large complex networkwith a simpler one
without losing accuracy?

10) What is the effect of the number of network A’s on
the accuracy? Does training separate networks for each
class improve the results?

As listed below, we used three neural network architectures
with varied parameters and connection mechanisms. In our
experiments, these architectures were combined in various
ways as specified in table 1.

• Network B1 is a simple, small Convolutional neural
network, trained as a classifier, that takes an image as
input, and outputs class labels with a softmax layer. This
network is illustrated in figure 7.

• Network B2 is a unmodified implementation of
VGG16 as described in [19]. Network B2 is a large
network that takes an image as input and outputs class
labels with a softmax layer.

• Network A is a Convolutional neural network that takes
one or more images as input and outputs a modified
image.

A. SMART AUGMENTATION WITH ONE NETWORK A ON
THE GENDER CLASSIFICATION TASK
Experiments 1-8, 19,22, and 24 as seen in table 1 were
trained for gender classification using the same technique as
illustrated in figure 9. In these experiments, we use smart
augmentation to train a network (network B) for gender clas-
sification using the specified database.

The first, k images are randomly selected from the same
class (male or female) in the dataset. These k samples are
merged into k channels of a single sample. The grayscale
values of the first image, img0, are mapped to channel 0 and
the grayscale values of the second image im1 are mapped to
channel 1 and so on until we reach the number of channels
specified in the experiments table. This new k channel image
is fed into the network A. Network A is a fully convolutional
neural network (See figure 8) which accepts images as the
input and gives the images with the same size at the output in
a single channel.

FIGURE 8. Illustration of network A.

An additional grayscale image is then randomly selected
from the same class in the dataset (this image should not be
any of those images selected in step 1). The loss function
for this network A is calculated as the mean squared error
between this randomly selected image and the output of
network A. The output of network A, and the target image
is then fed into network B as separate inputs. Network B is
a typical deep neural network with two convolutional layers
followed by batch normalization and max-pooling steps after
each convolutional layer. Two fully connected layers are
placed at the end of the network. The first of these layers has
1024 units and the second dense layer is made of two units as
the output of network B using softmax. Each dense layer takes
advantage of the drop-out technique in order to avoid over-
fitting. The loss function of network B is calculated as the
categorical cross-entropy between the outputs and the targets.

The total loss of the whole model is a linear combina-
tion of the loss functions of two networks. This approach is
designed to train a network A that generates samples which
reduce the error for network B. The validation loss was calcu-
lated only for network B, without considering network. This
allows us to compare validation loss with and without smart
augmentation.

Our models were trained using Stochastic Gradient
Descent with Nesterov Momentum [20], learning rate 0.01
and momentum 0.9. The lasagne library used to train the
network in python.

In these experiments, we varied the number of input chan-
nels and datasets used. Specifically, we trained a network B
from scratch with 1-8 input channels with a single network A
on db1, 2 channels on networkA for db2 and 3, and 2 channels
on network db1a as shown in the table of experiments.

B. SMART AUGMENTATION WITH TWO NETWORK A’s ON
THE GENDER CLASSIFICATION TASK
In experiments 9-16 and 20we evaluate a different implemen-
tation of smart augmentation, containing a separate network
A for each class. As before, the first k images are randomly
selected from the same class (male or female) in the dataset.
These k samples are merged into k channels of a single
sample.The grayscale values of the first image, img0, are
mapped to channel 0 and the grayscale values of the second
image, im1, are mapped to channel 1, and so on until we
reach the number of channels specified in the experiments
table just as before. Since we now have two network A’s, it is
important to separate out the loss functions for each network
as illustrated in figure 10.

VOLUME 5, 2017 5863



J. Lemley et al.: Smart Augmentation Learning an Optimal Data Augmentation Strategy

FIGURE 9. Diagram of simplified implementation of Smart Augmentation showing network A and network B.

FIGURE 10. Diagram of our implementation of Smart Augmentation with one network A for each class.

All other loss functions are calculated the same way as
before.

One very important difference is the updated learning
rate (0.005).While performing initial experiments we noticed
that using a learning rate above 0.005 led to the ‘‘dying

RELU’’ problem and stopped effective learning within the
first two epochs. This network is also more sensitive to vari-
ations in batch size.

The goal of these experiments was to examine how
using multiple network As impacts accuracy and overfitting

5864 VOLUME 5, 2017



J. Lemley et al.: Smart Augmentation Learning an Optimal Data Augmentation Strategy

compared to just using one network A. We also wanted to
know if there were any differences when trained on a manu-
ally augmented database (experiment 20).

FIGURE 11. Diagram of implementation of network B without Smart
Augmentation.

C. TRAINING WITHOUT SMART AUGMENTATION ON
THE GENDER CLASSIFICATION TASK
In these experiments, we train a network [network B (see
figure 11)] to perform gender classification without applying
network A during the training stage. These experiments (23,
21, 18, and 17) are intended to serve as a baseline comparison
of what network B can learn without smart augmentation
on a specific dataset (db3,db2, db1a, and db1 respectively).
In this way, we measure any improvement given by smart
augmentation. A full implementation of Network B is shown
in figure 7.

This network has the same architecture as the network B
presented in the previous experiment except that it does not
utilize a network A.

As before, two fully connected layers are placed at the end
of the network. The first of these layers has 1024 units, and
the second dense layer has two units (one for each class). Each
dense layer takes advantage of the drop-out technique in order
to avoid over-fitting.

All loss functions (training, validation, and testing loss)
were calculated as the categorical cross-entropy between the
outputs and the targets.

As before, models were trained using Stochastic Gradi-
ent Descent with Nesterov Momentum [20], learning rate
0.01 andmomentum 0.9. The lasagne library was used to train
the network in python.

D. EXPERIMENTS ON THE PLACES DATASET
In the previous experiments in this section, we used 3 dif-
ferent face datasets. In experiments 25 - 30 we examine the
suitability of Smart Augmentation with color scenes from
around the world from the MIT Places dataset to evaluate our
method on data of a completely different topic. We varied
the α and β parameter in our global loss function so that we
could identify how they influence results. Unlike in previous
experiments, we also retained color information.

Experiment 25 utilized a VGG16 trained from scratch as
a classifier, chosen because VGG16 models have performed
very well on the places dataset in public competitions [16].
The input to network A was 256× 256 RGB images and the
output was determined by a 2 class softmax classifier.

In experiment 26 we use a network B, identical in all
respects to the one used in the previous subsection, except that
we use the lower learning rate specified in the experiments
table and take in color images about places instead of gender.

These two experiments (25,26) involved simple classifiers
to establish a baseline against which other experiments on the
same dataset could be evaluated.

In experiments 27-28, k images were randomly selected
from the same class (abbey or airport) in the dataset. These
k samples are merged into k × 3 channels of a single sam-
ple. The values of the first three channels of image img0
are mapped to channel 0-2, and the first three channels of
the second image im1 are mapped to channels 3-5, and so
on, until we reach the number of channels specified in the
experiments table multiplied by the number of color channels
in the source images. This new k×3 channel image is used by
network A. Network A is a fully convolutional neural net-
work) which accepts images as the input, and outputs just one
image.

An additional image is then randomly selected from the
same class in the dataset. The loss function for network A is
calculated as the mean squared error between the randomly
selected image and the output of network A. The output of
network A, and the target image is then fed into network B as
separate inputs. Network B is a typical deep neural network
with two convolutional layers followed by batch normaliza-
tion and max-pooling steps after each convolutional layer.
Two fully connected layers are placed at the end of the net-
work. The first of these layers has 1024 units and the second
dense layer is made of two units as the output of network B
using softmax. Each dense layer takes advantage of the drop-
out technique in order to avoid over-fitting. The loss function
of network B is calculated as the categorical cross-entropy
between the outputs and the targets.

The total loss of the whole model is a linear combination of
the loss functions of two networks. This approach is designed
to train a network A that generates samples that reduce
the error for network B. The validation loss was calculated
only for network B, without considering network A. This
allows us to compare validation loss with and without smart
augmentation.

Our models were trained using Stochastic Gradient
Descent with Nesterov Momentum [20], learning rate 0.005
and momentum 0.9. The Lasagne library was used to train the
network in python.

In these experiments, we varied the number of input chan-
nels and datasets used. Specifically, we trained a network B
from scratch with 1-8 input channels on network A on db1,
2 channels on network A for db2 and 3, and 2 channels on
network db1a as shown in the table of experiments.

In experiments 29-30, k images are randomly selected
from the same class (abbey or airport) in the dataset. These
k samples are merged into k × 3 channels of a single sam-
ple. The values of the first three channels in image img0
are mapped to channel 0-2 and the first three channels of
the second image im1 are mapped to channels 3-5 and so

VOLUME 5, 2017 5865



J. Lemley et al.: Smart Augmentation Learning an Optimal Data Augmentation Strategy

on until we reach the number of channels specified in the
experiments table multiplied by the number of color channels
in the source images. This new k × 3 channel image is fed
into the network A. Network A is a fully convolutional neural
network which accepts images as the input and outputs a
single color image.

An additional image is then randomly selected from the
same class in the dataset. The loss function for each net-
work A is calculated as the mean squared error between the
randomly selected image and the output of network A. The
output of network A, and the target image is then fed into
network B as separate inputs. Network B is a typical deep
neural network with two convolutional layers followed by
batch normalization and max-pooling steps after each convo-
lutional layer. Two fully connected layers are placed at the end
of the network. The first of these layers has 1024 units, and
the second dense layer is made of two units as the output of
network B using softmax. Each dense layer takes advantage
of the drop-out technique in order to avoid over-fitting. The
loss function of network B is calculated as the categorical
cross-entropy between the outputs and the targets.

The total loss of the whole model is a linear combination
of the loss functions of the two networks. This approach is
designed to train a network A that generates samples that
reduce the error for network B. The validation loss was cal-
culated only for network B, without considering network A.
This allows us to compare validation loss with and without
smart augmentation.

Our models were trained using Stochastic Gradient
Descent with Nesterov Momentum [20], learning rate 0.005
and momentum 0.9. The lasagne library was used to train the
network in python.

In these experiments, we varied the number of input chan-
nels and datasets used. Specifically, we trained a network B
from scratch with 1-8 input channels on network A on db1,
2 channels on network A for db2 and 3, and 2 channels on
network db1a as shown in the table of experiments.

VI. RESULTS
The results of experiments 1-30 as shown in Table 1 are listed
in tables 2 and 3 and are listed in the same order as in the
corresponding experiments table. These results are explained
in detail in the subsections below.

A. SMART AUGMENTATION WITH ONE NETWORK A
ON THE GENDER CLASSIFICATION TASK
In figure 12, we show the training and validation loss for
experiments 1 and 17. As can be observed, the rate of overfit-
ting was greatly reduced when smart augmentation was used
compared to when it was not used.

Without smart augmentation, network B had an accuracy
of 88.15 for the AR faces dataset; for the rest of this subsec-
tion, this result is used as a baseline by which other results on
that dataset are evaluated.

One can see how the smart augmentation technique could
prevent network B from overfitting in the training stage.

TABLE 2. Results of experiments on face datasets.

TABLE 3. Results of experiments on place dataset.

The smaller difference between training loss and validation
loss caused by the smart augmentation technique shows how
this approach helps the network B to learn more general
features for this task. Network B also had higher accuracy
on the test set when trained with smart augmentation.

In figures 13 and 14 we show examples of the kinds
of images network A learned to generate. In these figures,
the image on the left side is the blended image of the other
two images produced by network A.

We observe an improvement in accuracy from 83.52% to
88.46% from smart augmentation on Feret with 2 inputs and
an increase from 70.02% to 76.06% on the adience dataset.

We see that there is no noticeable pattern when we vary the
number of inputs for network A. Despite the lack of a pattern,
a significant difference was observed with 8 and 3 channels
providing the best results at 95.38% and 95.09% respectively.
At the lower end, 7, 5, and 4 channels performed the worst,
with accuracies of 91.62%, 91.04%, and 91.04%.

Recall that the accuracy without network A was: 88.15%
for the AR faces dataset. We suspect that much of the varia-
tion in accuracy reported above may be due to chance. Since
in this particular experiment, images are chosen randomly
there may be times when 2 or more images with very helpful
mutual information are present by chance and the opposite
is also possible. It is interesting that when 3 and 8 channels
were used for network A, the accuracy was over 95%.

5866 VOLUME 5, 2017



J. Lemley et al.: Smart Augmentation Learning an Optimal Data Augmentation Strategy

FIGURE 12. Training and validation losses for experiments 1 and 17, showing reductions in overfitting by using Smart Augmentation.
The smaller difference between training loss and validation loss caused by the smart augmentation technique shows how this
approach helps the network B to learn more general features for this task. To avoid confusion, we remind the reader that the loss for
smart augmentation is given by f (LA, LB;α, β). This means that the loss graphs are a combination of the losses of two networks
whereas the losses without smart augmentation are only f (LB).

FIGURE 13. The image on the left is a learned combination of the two
images on the right as produced by network A.

FIGURE 14. The image on the left is a learned combination of the two
images on the right as produced by network A.

B. SMART AUGMENTATION AND TRADITIONAL
AUGMENTATION
We note that traditional augmentation improved the accuracy
from 88.15% to 89.08% without smart augmentation on the
gender classification task. When we add smart augmentation
we realize an improvement in accuracy to 95.66%.

The accuracy of the same experiment when we used 2 net-
works A’s was also 95.66% which seems to indicate that both
configurations may have found the same optima when smart
augmentation was combined with traditional augmentation.

This demonstrates that smart augmentation can be used
with traditional augmentation to further improve accuracy.
In all cases examined so far, Smart Augmentation performed
better than traditional augmentation. However, since there are
no practical limits on the types of traditional augmentation
that can be performed, there is no way to guarantee that
manual augmentation could not find a better augmentation
strategy. This is not a major concern since we do not claim
that smart augmentation should replace traditional augmen-
tation. We only claim that smart augmentation can help with
regularization.

C. SMART AUGMENTATION WITH TWO NETWORK A’s
ON THE GENDER CLASSIFICATION TASK
In this subsection, we discuss the results of our two network
architecture when trained on the gender classification set.

These experiments show that approaches which use a dis-
tinct network A for each class, tend to slightly outperform
networks with just 1 network A. This seems to provide sup-
port for our initial idea that one network A should be used for
each class so that class-specific augmentations could be more
efficiently learned. If the networks with just 1 and 0 input
channels are excluded, we see an average increase in accuracy
from 92.94% to 93.19% when smart augmentation is used,
with the median accuracy going from 92.49% to 93.35%.

There is only one experiment where smart augmentation
performedworse than not using smart augmentation. This can
be seen in the 9th row of table II where we use only one chan-
nel which caused the accuracy to dip to 86.99%, contrasted
with 88.15% when no smart augmentation is used. This is
expected because when only one channel is used, mutual

VOLUME 5, 2017 5867



J. Lemley et al.: Smart Augmentation Learning an Optimal Data Augmentation Strategy

information can not be effectively utilized. This experiment
shows the importance of always using at least 2 channels.

D. EXPERIMENTS ON THE PLACES DATASET
As with previously discussed results, when the places dataset
is used, networks with multiple network A’s performed
slightly better. We also notice that when α is higher than β
an increase in accuracy is realized.

The most significant results of this set of experiments is
the comparison between smart augmentation, VGG 16, and
network B trained alone. Note that a small network B trained
alone (no Smart Augmentation) had an accuracy of 96.5%
compared to VGG 16 (no Smart Augmentation) at 98.5%.
When the same small network B was trained with smart
augmentation we see accuracies ranging from 98.75% to 99%
which indicates that smart augmentation, in some cases, can
allow a much smaller network to replace a larger network.

VII. DISCUSSION AND CONCLUSION
Smart Augmentation has shown the potential to increase
accuracy by demonstrably significant measures on all
datasets tested. In addition, it has shown potential to achieve
similar or improved performance levels with significantly
smaller network sizes in a number of tested cases.

In this paper, we discussed a new regularization approach,
called ‘‘Smart Augmentation’’ to automatically learn suit-
able augmentations during the process of training a deep
neural network. We focus on learning augmentations that
take advantage of the mutual information within a class. The
proposed solution was tested on progressively more difficult
datasets starting with a highly constrained face database and
ending with a highly complex and unconstrained database
of places. The various experiments presented in this work
demonstrate that our method is appropriate for a wide range
of tasks and demonstrates that it is not biased to any particular
type of image data.

As a primary conclusion, these experiments demonstrate
that the augmentation process can be automated, specifically
in nontrivial cases where two or more samples of a certain
class are merged in nonlinear ways resulting in improved
generalization of a target network. The results indicate that
a deep neural network can be used to learn the augmentation
task in this way at the same time the task is being learned.
We have demonstrated that smart augmentation can be used
to reduce overfitting during the training process and reduce
the error during testing.

It is worthwhile to summarize a number of additional
observations and conclusions from the various experiments
documented in this research.

Firstly, no linear correlation between the number of sam-
ples mixed by network A and accuracy was found so long as
at least 2 samples are used.

Secondly, it was shown that Smart Augmentation is
effective at reducing error and decreasing overfitting and
that this is true regardless of how unconstrained the
database is.

Thirdly, these experiments demonstrated that better accu-
racy could be achieved with smart augmentation than with
traditional augmentation alone. It was found that altering the
α and β parameters of the loss function slightly impacts
results but more experiments are needed to identify if optimal
parameters can be found.

Finally, it was found that Smart Augmentation on a
small network achieved better results than those obtained
by a much larger network (VGG 16). This will help
enable more practical implementations of CNN networks
for use in embedded systems and consumer devices
where the large size of these networks can limit their
usefulness.

Future work may include expanding Smart Augmentation
to learn more sophisticated augmentation strategies and per-
forming experiments on larger datasets with larger numbers
of data classes. A statistical study to identify the number of
channels that give the highest probability of obtaining optimal
results could also be useful.

ACKNOWLEDGEMENTS
The authors gratefully acknowledge the support of NVIDIA
Corporation with the donation of a Titan X GPU used for this
research.

REFERENCES
[1] S. Bazrafkan, T. Nedelcu, P. Filipczuk, and P. Corcoran, ‘‘Deep learning

for facial expression recognition: A step closer to a smartphone that
knows your moods,’’ in Proc. IEEE Int. Conf. Consum. Electron. (ICCE),
Jan. 2017, pp. 217–220.

[2] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, ‘‘Dropout: A simple way to prevent neural networks
from overfitting,’’ J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[3] S. Ioffe and C. Szegedy. (2015). ‘‘Batch normalization: Accelerating deep
network training by reducing internal covariate shift.’’ [Online]. Available:
https://arxiv.org/abs/1502.03167

[4] P. Y. Simard, D. Steinkraus, and J. C. Platt, ‘‘Best practices for convo-
lutional neural networks applied to visual document analysis,’’ in Proc.
ICDAR, vol. 3. Aug. 2003, pp. 958–962.

[5] F. Chollet. (2015). Keras. [Online]. Available: https://github.com/
fchollet/keras

[6] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
Cambridge, MA, USA: MIT Press, 2016. [Online]. Available: http://
www.deeplearningbook.org.

[7] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. (2014). ‘‘Return
of the devil in the details: Delving deep into convolutional nets.’’ [Online].
Available: http://arxiv.org/abs/1405.3531

[8] X. Bouthillier, K. Konda, P. Vincent, and R. Memisevic. (2015).
‘‘Dropout as data augmentation.’’ [Online]. Available: https://arxiv.
org/abs/1506.08700

[9] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman. (2014). ‘‘Syn-
thetic data and artificial neural networks for natural scene text recogni-
tion.’’ [Online]. Available: http://arxiv.org/abs/1406.2227

[10] I. J. Goodfellow, J. Shlens, and C. Szegedy. (2014). ‘‘Explaining
and harnessing adversarial examples.’’ [Online]. Available: https://
arxiv.org/abs/1412.6572

[11] I. Goodfellow et al., ‘‘Generative adversarial nets,’’ in Proc. Adv. Neural
Inf. Process. Syst., 2014, pp. 2672–2680.

[12] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and
R. Webb. (2016). ‘‘Learning from simulated and unsupervised images
through adversarial training.’’ [Online]. Available: https://arxiv.org/
abs/1612.07828

[13] S. J. Pan andQ. Yang, ‘‘A survey on transfer learning,’’ IEEE Trans. Knowl.
Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

5868 VOLUME 5, 2017



J. Lemley et al.: Smart Augmentation Learning an Optimal Data Augmentation Strategy

[14] Theano Development Team. (May 2016). ‘‘Theano: A python framework
for fast computation of mathematical expressions.’’ [Online]. Available:
http://arxiv.org/abs/1605.02688

[15] J. Lemley, S. Abdul-Wahid, D. Banik, and R. Andonie, ‘‘Compari-
son of recent machine learning techniques for gender recognition from
facial images,’’ in Proc. 27th Modern Artif. Intell. Cognit. Sci. Conf.,
2016, pp. 97–102.

[16] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, ‘‘Learning deep
features for scene recognition using places database,’’ in Proc. Adv. Neural
Inf. Process. Syst., 2014, pp. 487–495.

[17] A. Martinez and R. Benavente, ‘‘The AR face database,’’ CVC,
Tech. Rep. #24, 1998. [Online]. Available: http://www2.ece.ohio-state.
edu/~aleix/ARdatabase.html

[18] P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss, ‘‘The
FERET evaluation methodology for face-recognition algorithms,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 22, no. 10, pp. 1090–1104,
Oct. 2000.

[19] K. Simonyan and A. Zisserman. (2014). ‘‘Very deep convolutional net-
works for large-scale image recognition.’’ [Online]. Available: https://
arxiv.org/abs/1409.1556

[20] I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton, ‘‘On the impor-
tance of initialization and momentum in deep learning,’’ in Proc. ICML,
Feb. 2013, vol. 28. no. 3, pp. 1139–1147.

JOSEPH LEMLEY (S’17) received the B.S. degree
in computer science and the master’s degree in
computational science from Central Washington
University in 2006 and 2016, respectively. He is
currently pursuing the Ph.D. degree with the
National University of Ireland Galway. He was
with the industry and co-founded a start-up.
His field of work is machine learning using deep
neural networks for tasks related to computer
vision. His Ph.D. was funded by FotoNation, Ltd.,
under the IRCSET Employment Ph.D. Program.

SHABAB BAZRAFKAN (S’16) received the B.Sc.
degree in electrical engineering from Urmia Uni-
versity, Urmia, Iran, in 2011, and the M.Sc. degree
in telecommunication engineering, image process-
ing branch from the Shiraz University of Technol-
ogy in 2013. He is currently pursuing the Ph.D.
degree with the National University of Ireland
Galway. He is currently with FotoNation, Ltd.
His field of working is deep neural networks and
neural network design.

PETER CORCORAN (M’95–F’10) was the former
Vice-Dean of Research and Graduate Studies
(seven years tenure) with the College of Engineer-
ing and Informatics, National University of Ireland
Galway. He has been a University Professor for
28 years. He is the co-founder of several start-up
companies including FotoNation, industry consul-
tant and expert witness. He has over 500 technical
publications and patents, over 80 peer reviewed
papers and articles, over 100 international con-

ference papers. He has co-invented over 300 granted U.S. patents. He is
a member of the IEEE Consumer Electronics Society for over 20 years.
He is the Editor-in-Chief and the Founding Editor of the IEEE Consumer
Electronics Magazine.

VOLUME 5, 2017 5869





Appendix F

Latent Space Mapping for Generation of
Object Elements with Corresponding
Data Annotation



 

 

Pattern Recognition Letters 
journal  homepage:  www.e lsevier .com  

 

Latent Space Mapping for Generation of Object Elements with Corresponding Data 

Annotation 

Shabab Bazrafkan
a
, Hossein Javidnia

a, 
and Peter Corcoran

 a
 

a Department of Electronic Engineering, College of Engineering, National University of Ireland Galway, University Road, Galway, Ireland 

                                                 

 Corresponding author. Tel.: +353-83-466-7835; e-mail: s.bazrafkan1@nuigalway.ie 

 

AB ST R ACT  

Deep neural generative models such as Variational Auto-Encoders (VAE) and Generative Adversarial Networks (GAN) are 

giving promising results in estimating the data distribution across a range of machine learning fields of application. Recent 

results have been especially impressive in image synthesis where learning the spatial appearance information is a key goal. This 

enables the generation of intermediate spatial data that corresponds to the original dataset. In the training stage, these models 

learn to decrease the distance of their output distribution to the actual data, and in the test phase, they map a latent space to the 

data space. Since these models have already learned their latent space mapping, one question is whether there is a function 

mapping the latent space to any aspect of the database for the given generator. In this work, it has been shown that that this 

mapping is relatively straightforward using small neural network models and by minimizing the mean square error. As a 

demonstration of this technique, two example use cases have been implemented: firstly, the idea to generate facial images with 

corresponding landmark data, and secondly generation of low-quality iris images (as would be captured with a smartphone user-

facing camera) with a corresponding ground-truth segmentation contour. 

Keywords: Generative models; Latent space mapping; Deep neural networks 

2012 Elsevier Ltd. All rights reserved. 

 

Manuscript
Click here to download Manuscript [Word or (La)TeX]: Manuscript - V2.docx



1. Introduction 

Deep neural networks are a key driver of contemporary 

machine learning and artificial intelligence research and have 

begun to infiltrate the consumer world [1].  Advanced deep 

learning techniques are used to solve a wide range of long-

standing problems in pattern recognition science. These 

approaches are famous for their power in designing and 

implementing regression and classification models.  

Deep neural networks have shown great success when used as 

generative models. These models learn the distribution of a 

specific dataset and can generate new samples from the learned 

Probability Distribution Function (PDF). Classical methods 

include Variational Bayesian models, and Markov Chain Monte 

Carlo, which has been used to model the data distribution. Taking 

advantage of the neural networks non-linearity in defining the 

generative model goes back to early 2000 when [2] used     , 

the nonlinearity of a small neural network, in modelling the data 

distribution. These models are usually limited to small-sized 

problems due to the complexity, and they are also 

computationally prohibitive. 

1.1. Deep Neural Networks as Generator 

With the emergence of the low-cost, high-performance 
hardware for training deep neural networks, it became feasible to 
train and test big networks, and recently the generative models 
have also been taking advantage of deep neural networks in 
learning large size problems including image and sound 
generation.      

In [3], the authors introduced two models to learn the data 
distribution. 1. PixelRNN which is composed of 12 2D Long 
Short Term Memory (LSTM) layers in which the LSTM units are 
applied in row and diagonal directions, namely RowLSTM and 
Diagonal BiLSTM respectively. 2. PixelCNN which is a fully 
convolutional deep neural network used to predict the conditional 
distribution at each pixel location. Since these models do not 
make use of latent space mapping, the framework proposed in 
this paper does not apply to them. 

Variational Auto-Encoders (VAE) [4] are another approach for 
constructing a generative model. In this idea, the bottleneck of 
the auto-encoder network forms the latent space for the 
generative model. The encoder maps the input image to the latent 
space, and the decoder is a generator that maps the latent space 
into the sample space. The main difference between VAE and 
ordinary auto-encoders is the constraint on the latent space 
distribution. In VAE, the latent space is forced to obtain the 
Gaussian distribution by reducing the Kullback-Leibler (KL) 
divergence between the latent space distribution and the 
Gaussian. In practice, this is done by adding a term to the loss 
function to optimize the KL divergence in addition to the mean 
square error of the auto-encoder. The downside of this approach 
is that the network generates blurred images due to the mean 
square error loss [5]. 

Generative adversarial networks (GAN) presented by [6] are 
another type of generative model wherein two deep neural 
networks -a generator and a discriminator- are engaged in a min-
max game. The generator accepts samples from the latent space 
with a uniform distribution. A deep neural network (the 
generator) converts this latent sample into a signal in the shape of 
the original dataset. The discriminator sees the signal from the 
generator and the original samples from the database and 
performs a binary classification task of whether it is drawn from 
the database or not. Authors in [6] show that the min-max loss 
function of GAN decreases the Jensen-Shanon Divergence (JSD) 
between the generator output and the data distribution. 

 

 

1.2. Proposed Problem 
A latent variable is a variable that is not observed but is used to 

describe the model or the observed data. Latent variables are said 
to exist in a “Latent space.” Generative models like VAE and 
GAN consider a latent variable for each data point and map the 
latent space to the data space by reducing the divergence between 
their output and data distribution. In this work a new problem is 
defined: by knowing the generator for a database, is there a 
function mapping the latent space onto any aspect of the 
database? (For the definition of ‘aspect’, see Table I) and if so, 
how can this mapping be defined? In this work, it has been 
shown that a deep neural network is able to accomplish this 
mapping, and the loss function can be as simple as mean square 
error, i.e., there is no need to enter the divergence into the 
objective of the mapping anymore. Solving such a problem has 
several applications, including consumer electronic design and 
data augmentation for regression problems. To the best of our 
knowledge, this is the first time such a problem has been 
considered in the literature. 

The most relevant research work is that of the Gender 
Preserving Generative Adversarial Network (GP-GAN) [7] 
where adversarial networks are exploited to synthesize faces 
from the landmarks. The generator sub-network in GP-GAN is 
based on UNet [8] and DenseNet [9] architectures while the 
discriminator sub-network is based on [10]. Note that the 
network is using a new gender-preserving loss in parallel with the 
perceptual loss. 

Another relevant study, Age-cGAN [11], employs a GAN to 
generate random faces and corresponding facial metadata. The 
focus of Age-cGAN is identity-preserving face aging where the 
person’s facial attributes are altered to age his/her face while the 
identity is preserved. The generator and discriminator sub-
networks of Age-cGAN have the same architecture as [12]. This 
network can be used to synthesize augmented facial datasets 
incorporating aging of subjects. 

The rest of the paper is organized as follows. Sec 2 presents 
the proposed method in detail. Two individual observations are 
illustrated in Sec 3 to generate random samples and their 
corresponding aspects. Finally, the conclusion and future works 
are presented in Sec 4. 

2. Proposed Method 
2.1. Problem Definition 

The definitions of the phrases used in this work are given in 

Table I. 
Table I. Phrases used throughout the paper, their definitions and 

symbols 

Phrase Definition Symbol 

Latent variable 
A latent variable is a variable that is not 

observed but is used to describe the model or 

the observed data. 
  

Latent space Latent space is the space of the latent variable  -space 

Aspect of 

dataset 

Is the output of any local operation on the 

samples of the data 
- 

Perfect 
generator 

A generator that gives the one-to-one 

correspondence between samples in the  -
space and every image in the database 

     

Perfect inverse 

of generator 

A function that for each image in the 

database, gives the corresponding  -space 
sample 

       

Perfect aspect 

generator 

Accepts the image and generates the perfect 

output for the specific aspect of the image 
  

Aspect 

generator 

Generates the data aspect directly from the 

latent space 
      

Deep neural 

sample 

generator 

The generator from VAE, GAN, etc. Learns 

the data distribution and generates new 
samples. It is considered an approximation of 

the perfect generator. 

      

Problem definition: For a given database, if there is a perfect 

generator mapping a latent space into the data space -since the 



generator is a local operation on the latent variable- by 

considering the data processing inequality, one can argue that the 

latent space includes all the information of the database. This 

indicates that any aspect of the dataset is extractable from the 

latent space alone. The problem considered in this work is to find 

a local operation that maps the latent space to the aspect space for 

a given generator and aspect. To the best of our knowledge, this 

is the first time such a problem has been defined. Solving this 

problem can facilitate high-speed implementation of regression 

solutions (in the presence of a real-time inverse of the generator,) 

which is a valuable solution in consumer electronic design. The 

other application will be data augmentation for regression 

problems. More discussion on applications of the proposed idea 

is given in section 4. 

Naïve solutions: Suppose that there is a deep neural generator 

   mapping a uniformly distributed latent variable   
  to the data 

point   
 . This mapping is shown by   

       
  . A new 

generator could be trained just for the specific data aspect, but 

training a new generator specifically for a feature set of the 

database would map an entirely different latent space (let's call it 

  -space) to the feature space. It is not trivial to find the 

correpondance between the   
 -space and   -space. The other 

naïve solution would be to train a single model to learn the data 

and the feature distribution at the same time. This solution comes 

with complexities in implementation procedures. Since the 

feature and the data space might not be from the same class, and 

since the dimension and the objective function for each output 

could be totally different, the single model solution would not 

converge to a reasonable output. 

Proposed solution: Inverse transform sampling theorem 

declares that by knowing the probability distribution of a random 

variable   , there is a transformation, mapping a uniformly 

distributed random variable    into the space of   . Since the 

generator network accepts a uniform random variable and 

transforms it to the image space, this network is learning an 

approximation of the data distribution. This provides justification 

for the ability of a neural network to learn the distribution of any 

aspect of the data for a given generator network. Our results 

firstly demonstrate that it is possible to train a network that learns 

the distribution of landmark annotations for a face generator, and 

secondly a network was trained that learns the segmentation for 

an iris generator.  

Suppose that there is a perfect generator, mapping   -space to 

the data space,         . And the perfect inverse of the 

generator is shown by     where for each image    in the 

database, the inverse of the generator gives the corresponding   -

space sample              . 
The inverse of the generator is applied to all images in the 

database. The output space of the inverse of the generator is 

called      -space which is a subspace of   -space, but its 

distribution can be non-uniform. This      -space and the perfect 

generator   contain all the information about the database, i.e., 

by knowing the      -space and the perfect generator  , one can 

recreate the database. Since all the aspects of the database can be 

extracted using local operations on the data itself, considering the 

signal processing inequality, no further information is needed to 

produce any aspect of the database if      -space and   are 

known. In fact, since   is a local operation, itself, any aspect of 

the database is extractable solely from knowing      -space. 

2.2. Mapping to the Aspect-Space 

In this work, the aspect of a database is defined as the output 

of any local operation on the data samples. For example, the 

facial landmark detector gives an aspect (the landmark positions) 

of its input image, or an iris segmentor returns an aspect (the 

binary segmentation map) of its input iris image. 

Suppose that for a given database there is a perfect aspect 
generator,  , which accepts the image       and generates the 
perfect output for the specific aspect of the image         . This 
generator can be a human making the facial landmark, or a super 
computer extracting features from an image, but if the aspect is 
simple enough to be estimated by a non-linear network   , the 
mean square error loss function between    and the perfect 
aspect generator   will be: 

              
                   

 

  (1) 

where       
    is the probability distribution of      . This loss 

function could be re-written as: 

            
                  

 

  

 

        
   

 (2) 

Since        
    is positive for every   in      -space, the 

minimum of this integral is zero and is achieved when: 

                            -space (3) 

The interesting part of the proposed method is that while the 
perfect generators on the right side of equation 3 are potentially 
very complicated, the aspect generator       can be small and 
simple. This is understandable by considering that the perfect 
aspect generator,  , needs to compress the information of the 
     and rule out the unnecessary information generated by the 
perfect generator,  , in order to produce the desired aspect. But 
on the left side of the equation the aspect generator,   , is 
bypassing all the complexity of   and  , and mapping the latent 
space      -space to the aspect space. Adding any terms to 
reduce the divergence between the distribution of the aspect 
generator   ,  and perfect aspect generator  , is unnecessary 
since the latent space      -space where the samples are drawn 
from is already learnt by the inverse of the generator. 

In the following section, the results of the proposed method are 
presented for a face generator when the aspect is the facial 
landmarks and another observation is done for low-quality iris 
generation while the aspect is considered to be the binary map of 
the iris. 
3. Results and Simulations 

In this section, two different sets of data and various aspects of 
these datasets are presented. First, a generator is trained on 
CelebA [13] database, and the aspect of this database is a 49 
point facial landmark [14] generated for each image. The second 
simulation is done on an augmented version of the Bath800 [15] 
and CASIA1000 [16] iris database, while the aspect is considered 
to be the iris segmentation map. These observations are described 
in detail in the following sections. 

The Boundary Equilibrium Generative Adversarial Network 
(BEGAN) [17] scheme has been used to train the deep neural 
generator. In the BEGAN framework, the generator is similar to 
the generator in the original GAN method, but the discriminator 
is a deep auto-encoder, and the loss function tries to reduce the 
Wasserstein distance between the error of the auto-encoder for 
generated and original data. The reasons for selecting BEGAN 
are the simplicity of implementation, and the high-quality results 
of the generator. The BEGAN implementation is described in 
detail in Appendix A. 

Since the generator learned the distribution of the database, it 
can map an    dimension random vector onto an interpolation 
point of the database distribution where    is the dimensionality 
of the latent space. The reverse applies as well. Having an image 
from the dataset, one can estimate the sample in the   -space, 
which, when fed to the generator, will generate the image. The 
method used in this work is similar to one presented in [17] 
wherein the sample from the   -space is approximated by 
optimizing the error function: 

                (4) 



where    is the sample image and    is the generator function. In 
all examples, the ADAM optimizer is used to solve the problem, 
with learning rate,   , and    equal to 0.1, 0.9, and 0.999, 
respectively. So the inverse of the generator accepts an image and 
produces the latent value for the given sample. If one applies the 
inverse of the generator to all the samples in the database, the 
output is a space of latent variables, which is a subset of   –
space called      –space. As described before, this new space 
does not need to be uniformly distributed. One can also call this 
space the learnt latent space since it is derived from the inverse of 
the generator. In our experiments, this learned latent space is 
used to produce the aspect of the database. 

3.1. Experiment 1: Face + landmarks 
3 .1 .1 .  Database  

The CelebA dataset [13] consisting of 202,599 original images 

with 40 unique attributes is used for training the GAN 

framework. The OpenCV frontal face cascade classifier [18] is 

used to detect facial regions, which are cropped and resized to 

128 128 pixels. Initial landmark detection is performed using 

the method presented in [14] due to its ability to be effective on 

unconstrained faces. Authors in [14] have augmented the original 

cascade regression framework of [19] by proposing an 

incremental algorithm for cascade regression learning. This 

method personalizes the Supervised Descent Method (SDM) [20] 

for facial point localization, initializing the SDM offline on a 

large database of faces, and using newly tracked faces to update 

it incrementally. The detector in [14] uses a discriminative 3D 

facial deformable model fitted to the 2D image. The detector was 

trained on the 300W dataset [21]. It estimates a set of 49 

landmarks defined by the contours of eyebrows, eyes, mouth and 

the nose as shown in Fig. 1. 

 
Fig. 1. Facial landmark detection from the discriminative deformable 

model [14] 

3.1 .2 .  Generat ing  data ,  inverse  o f  the generator  
and aspect  mapping  

Using the BEGAN framework, a generator has been trained 

on the CelebA database.  The latent space is considered to be 64 

dimensions. The ADAM optimizer was used with learning rates 

  , and    equal to 0.0001, 0.5, and 0.999, respectively. BEGAN 

was trained with the Lasagne library and Theano library in 

Python. A Geforce 1080ti desktop GPU was used to train the 

generator. Some randomly generated samples are shown in Fig 2. 

The inverse of the generator (Equation 4) is then applied to all 

images in the dataset. All the outputs of the inverse of the 

generator make the      –space. Figure 3 shows how well the 

inverse of the generator works. In this figure, the estimated latent 

sample is fed to the generator and a very similar image is 

generated at the output. 

Knowing all the samples in the      –space and also 

landmarks for each image (the output of perfect aspect generator 

  described in section 2.1,) an aspect generator is trained, 

mapping the      –space to the landmark space. See Fig 4. 

The architecture of the Landmark Generator network trained to 

approximate the landmarks is shown in Table II. This network 

accepts 64-dimensional samples from the   -space and the 

output is a set of 98 dimensions corresponding to 49 2D 

landmark points. 

 

 
Fig. 2. Generating a random set of images using BEGAN framework on 

CelebA dataset. 

 
Fig. 3. The inverse of the generator can produce an accurate estimate of the 

latent value corresponding to each image in the database.  

 

 
Fig. 4. Proposed method; the landmark generator maps  -space onto a 

“learned” landmark space 

The loss function for this network is the Mean Square Error 

given by: 

      
 

     
         

 

  

   

  

   

 (5) 

wherein    is the  ’th output of the output layer,    is the  ’th 

target value, and    is the batch size which is set to 16. The 

ADAM optimizer is used to train the network with learning rates 

  , and    equal to 0.0003, 0.9, and 0.999 respectively. The 

training was done for 1000 epochs using all data. No validation 

and test set were used in the method.  

Adding validation and test sets made the results less accurate, 

since after reducing the number of samples in the training set, the 

network was blind to some examples and could not reconstruct 

the landmark distribution accurately. To the best of our 

knowledge, this is the first attempt to generate samples and their 

corresponding landmarks at the same time.  

In the feedforward step shown in Fig 5, a uniformly 

distributed random vector is fed concurrently into the Generator 

(from BEGAN) and the Landmark Generator. The first generates 

a random interpolated face, and the Landmark Generator 



provides a 2D set of landmarks corresponding to the generated 

face. 

Table II. The architecture of the landmark generator. It is a small, fully 

connected deep neural network  

Layer name Layer kind Number of nodes Activation 

Input Layer Input 64 --- 

First Hidden Fully connected 128 RELU 

Second Hidden Fully connected 128 RELU 

Third Hidden Fully connected 128 RELU 

Output Layer Fully connected 98 Sigmoid 

 
Fig. 5. Feedforward of the proposed method. The uniformly distributed 

random vector is fed to the Generative network given by BEGAN, and the 

Landmark Generator from the proposed method produces the landmark 

positions for the generated face image 

Fig. 6 shows example results. Initial results show the 

Landmark Generator has learned to map a set of landmark points 

from the same   -space as the facial generator, with good 

generalization across varying pose & illumination conditions.  

 
Fig. 6. Random generated faces and their corresponding landmarks. 

In [17] the authors investigate the continuity of the face 

distribution given by the BEGAN face generator by feeding it a 

random set of numbers, interpolating two samples in   -space, 

and observing the gradual changes from one face to another. To 

investigate the continuity of the landmark estimator distribution, 

the same approach is used. The    vectors for a given image and 

its mirror image are estimated using the inverse generator 

method, and 14 interpolation points between the two   -space 

samples are fed into the face generator and Landmark Generator 

networks. One example result from this experiment is shown in 

Fig. 7. This figure shows that the landmark distribution estimated 

by the Landmark Generator network is smooth in the   -space. 

More results, including illumination variation and pose variation 

are presented in a video
1
 that is generated by smoothly moving 

the latent variable to make the face and landmarks. 

3.2. Experiment 2: Iris+segmentation 
3 .2 .1 .  Datase t  

In this experiment, two iris databases, Bath800 and 
CASIA1000, have been used to learn the generator. Bath800 is 
made of 31,997 iris images with a resolution of [1280 960] 
taken from 800 individuals, and CASIA1000 has 20,000 Near 
Infrared images with a resolution of [640 480]. All these images 
are resized to [128 96] in this experiment. None of these 

                                                 
1 https://youtu.be/PWdT3Q5T5U8 

databases are provided with ground truth, but since they are high-
quality datasets taken in highly constrained conditions, any 
industry standard segmentation tool will give a reasonably high-
quality segmentation result. In this work, the segmentation 
provided by a commercial iris segmentation tool (MIRLIN [22]) 
is treated as the ground truth for the segmentation task. To 
increase the number of samples in the database, several 
augmentation techniques have been applied to the original 
dataset, including contrast reduction inside and outside of the iris 
region, and adding shadow and motion blur. For a detailed 
description of the augmentation process, see [23]. Some samples 
of the database after applying the augmentation, and their 
corresponding ground truth maps are shown in Fig 8. 

 
Fig. 7. Interpolating in the   -space between a face and its mirror image 

indicates strong continuity for both BEGAN and the landmark generator. 

 
Fig. 8. Iris samples after applying augmentation and their corresponding 

segmentation map. 

After the augmentation process, there are 262K samples in our 

training set. This database is designed initially to train a deep 

neural network, segmenting low-quality iris images [23]. In this 

section, it is used to show that the aspect of the dataset could be 

something more than points or features of the image. In fact, it 

can be the same size as the image like a binary map. 

3.2 .2 .  Generat ing  data ,  inverse  o f  the generator  
and aspect  mapping  

The method to train the deep neural generator is exactly 

similar to the previous experiment. The BEGAN scheme has 

been used to learn the data distribution for the low-quality iris 

database. The only difference is the size of the images where, in 

the previous experiment, the face images were 128 128, but in 

this experiment, the images are 128 96. The latent space is 64 

dimensions. The ADAM optimizer was used with learning rates 

  , and   , equal to 0.0001, 0.5, and 0.999, respectively. The 

BEGAN model was trained with the Lasagne library and Theano 

library in Python. A Geforce 1080ti desktop GPU was used to 

train the generator. Some randomly generated samples are shown 

in Fig 9. The next step is to apply the inverse of the generator to 

all samples in the dataset. The inverse of the generator accepts an 



image and estimates its corresponding latent space sample. After 

applying the inverse of the generator to all samples in the dataset, 

all samples will be in      -space. 

 
Fig. 9. The random samples drawn from the generator trained using the 

BEGAN method on the low-quality iris database 

In this experiment, the aspect of the dataset is the binary 

segmentation map of the iris image. The perfect aspect generator 

  is the iris segmentation tool (MIRLIN [22]), described in the 

previous section. The architecture of the aspect generator 

network, (mapping the latent space to the aspect space) is exactly 

similar to the generator in BEGAN, as described in Appendix A. 

The loss function for the aspect generator is the mean square 

error given by: 

      
 

         
            

 
   

   

  

   

  

   

 (6) 

where     is the      ’th pixel of the output layer,     is the 

     ’th pixel of the target (iris segmentation map), and    is the 

batch size, which is set to 16. The ADAM optimizer is used to 

train the network with the learning rates   , and   , equal to 

0.0003, 0.9, and 0.999 respectively. The training was done for 

1000 epochs using all data. No validation and test set were used 

in the method. 

The feedforward model is shown in Fig 10. 

 
Fig. 10. The feedforward model for generating a random low-quality iris 

image and its corresponding segmentation map. 

The results of this experiment are shown in Fig 11. In this 

figure, the iris image is generated by the generator trained in the 

BEGAN method, and the segmentation maps are generated using 

the proposed aspect generation method. 

In order to investigate the continuity of the mapping for both 

the iris and the segmentation, a video
2
 illustrates the smooth 

changes in both the iris samples and the segmentation. The 

sequences are created by smoothly moving the latent sample in 

the   -space. 

4. Conclusion and Future Works 
One of the most amazing applications of the deep neural 

networks is to learn the data distribution and draw new samples 
from the learned distribution. VAE and GAN are two successful 

                                                 
2 https://youtu.be/BY9cVZPmgRU 

implementations of such an application. In each of these 
methods, the objective is to reduce the divergence of the 
generator output and the original data. These methods also take 
advantage of using a latent space that gives an opportunity to 
manipulate data and also learn any aspect of the database straight 
from the latent space. 

After training the generator, it can be considered a 
deterministic local nonlinear operation that maps the latent space 
onto the data space. Considering the data processing inequality, 
any local operation on the data set cannot inject extra information 
to the data. This means that all information of the individual 
samples is already in the latent space. This explains why any 
aspect of the database can be extracted straight from the latent 
space. 

In this work, it has been shown that the previous statement is 

true, and different aspects of the database, landmarks for the face 

and segmentation map of an iris image can be mapped from the 

latent space. 

 
Fig. 11. Randomly generated low-quality iris images and their corresponding 
segmentation maps. First and third columns are randomly generated iris 

images; second and third columns are their corresponding segmentation maps 

created by the proposed framework. 

There are several applications for the presented framework. Since 

the latent space is smaller than the actual data space, this method 

can be used as a compression method. The feature extraction 

from latent space is fast, which is useful in designing fast 

consumer electronic devices. The other application is using the 

generative models as an augmentation technique. Data 

augmentation is a crucial step for modern machine learning 

frameworks, including deep learning approaches. New deep 

neural networks need a large number of samples to be trained in 

order to avoid overfitting. The augmentation process introduces a 

certain amount of uncertainty into the database, which helps the 

network prevent overfitting and generalizes the results. To the 

best of our knowledge, augmentations presented for regression 

problems are all applied in the image space. These operations 

include flipping, rotating, manipulating the contrast and 

illumination of the image, and applying distortions to the image. 

The framework presented in this work can utilize the data and 

ground truth generation in latent space. Our observations show 

that the mapping for both the data generator and aspect generator 

is continuous and smooth in the latent space. This gives the 

opportunity to generate a large number of samples and their 

corresponding ground truth, thus expanding the database by 

introducing more variations through the generation of multiple 

intermediate samples. Future work will include the investigation 

of the influence of the generative augmentation technique in 

training regression networks. 

Acknowledgments 
The authors would like to thank Joseph Lemley and Kimberly 

Sowell for their helpful comments.  



The research work presented here was funded under the 

Strategic Partnership Program of Science Foundation Ireland 

(SFI) and co-funded by SFI and FotoNation Ltd. Project ID: 

13/SPP/I2868 on “Next Generation Imaging for Smartphone and 

Embedded Platforms”.  

Portions of the research in this paper use the CASIA-IrisV4 

collected by the Chinese Academy of Sciences' Institute of 

Automation (CASIA). 

References  
[1] J. Lemley, S. Bazrafkan, P. Corcoran, Deep Learning for Consumer 

Devices and Services: Pushing the limits for machine learning, 
artificial intelligence, and computer vision., IEEE Consum. 

Electron. Mag. 6 (2017) 48–56. doi:10.1109/MCE.2016.2640698. 

[2] H. Valpola, J. Karhunen, An unsupervised ensemble learning 
method for nonlinear dynamic state-space models, Neural Comput. 

14 (2002) 2647–2692. 

[3] A. van den Oord, N. Kalchbrenner, K. Kavukcuoglu, Pixel 
recurrent neural networks, arXiv Prepr. arXiv1601.06759. (2016). 

[4] D.P. Kingma, M. Welling, Auto-encoding variational bayes, arXiv 

Prepr. arXiv1312.6114. (2013). 
[5] K. Frans, Variational Autoencoders Explained, (2016). 

[6] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-

Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial 
nets, in: Adv. Neural Inf. Process. Syst., 2014: pp. 2672–2680. 

[7] X. Di, V.A. Sindagi, V.M. Patel, GP-GAN: Gender Preserving 

GAN for Synthesizing Faces from Landmarks, arXiv Prepr. 
arXiv1710.00962. (2017). 

[8] O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional 

Networks for Biomedical Image Segmentation, in: N. Navab, J. 
Hornegger, W.M. Wells, A.F. Frangi (Eds.), Med. Image Comput. 

Comput. Interv. -- MICCAI 2015 18th Int. Conf. Munich, Ger. Oct. 

5-9, 2015, Proceedings, Part III, Springer International Publishing, 
Cham, 2015: pp. 234–241. doi:10.1007/978-3-319-24574-4_28. 

[9] G. Huang, Z. Liu, L. v. d. Maaten, K.Q. Weinberger, Densely 

Connected Convolutional Networks, in: 2017 IEEE Conf. Comput. 

Vis. Pattern Recognit., 2017: pp. 2261–2269. 

doi:10.1109/CVPR.2017.243. 

[10] P. Isola, J.-Y. Zhu, T. Zhou, A.A. Efros, Image-to-image translation 
with conditional adversarial networks, arXiv Prepr. 

arXiv1611.07004. (2016). 
[11] G. Antipov, M. Baccouche, J.-L. Dugelay, Face Aging With 

Conditional Generative Adversarial Networks, arXiv Prepr. 

arXiv1702.01983. (2017). 
[12] A. Radford, L. Metz, S. Chintala, Unsupervised representation 

learning with deep convolutional generative adversarial networks, 

arXiv Prepr. arXiv1511.06434. (2015). 
[13] Z. Liu, P. Luo, X. Wang, X. Tang, Deep Learning Face Attributes 

in the Wild, in: 2015 IEEE Int. Conf. Comput. Vis., 2015: pp. 

3730–3738. doi:10.1109/ICCV.2015.425. 
[14] A. Asthana, S. Zafeiriou, S. Cheng, M. Pantic, Incremental Face 

Alignment in the Wild, in: 2014 IEEE Conf. Comput. Vis. Pattern 

Recognit., 2014: pp. 1859–1866. doi:10.1109/CVPR.2014.240. 

[15] S. Rakshit, Novel methods for accurate human iris recognition, 

University of Bath, 2007. 

[16] CASIA Iris Image Database, (2010). 
[17] D. Berthelot, T. Schumm, L. Metz, Began: Boundary equilibrium 

generative adversarial networks, arXiv Prepr. arXiv1703.10717. 

(2017). 
[18] OpenCV, Face Detection using Haar Cascades, (n.d.). 

[19] X. Cao, Y. Wei, F. Wen, J. Sun, Face alignment by Explicit Shape 

Regression, in: 2012 IEEE Conf. Comput. Vis. Pattern Recognit., 
2012: pp. 2887–2894. doi:10.1109/CVPR.2012.6248015. 

[20] X. Xiong, F.D. la Torre, Supervised Descent Method and Its 

Applications to Face Alignment, in: 2013 IEEE Conf. Comput. Vis. 
Pattern Recognit., 2013: pp. 532–539. doi:10.1109/CVPR.2013.75. 

[21] C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, M. Pantic, 300 Faces 

in-the-Wild Challenge: The First Facial Landmark Localization 
Challenge, in: 2013 IEEE Int. Conf. Comput. Vis. Work., 2013: pp. 

397–403. doi:10.1109/ICCVW.2013.59. 

[22] F. Inc., MIRLIN, (2015). 
[23] S. Bazrafkan, S. Thavalengal, P. Corcoran, An End to End Deep 

Neural Network for Iris Segmentation in Unconstraint Scenarios, 

arXiv Prepr. arXiv1712.02877. (2017). 
[24] D.-A. Clevert, T. Unterthiner, S. Hochreiter, Fast and Accurate 

Deep Network Learning by Exponential Linear Units (ELUs), 

CoRR. abs/1511.0 (2015). 
 

Appendices 
A. Boundary Equilibrium Generative Adversarial Networks 

In this work, the Boundary Equilibrium Generative Adversarial 

Network (BEGAN), presented in [17] is implemented to train a 

generator. In this approach, the discriminator network is an auto-

encoder, and the generator architecture is the same as the decoder 

part of the discriminator. The encoder and decoder parts are 

shown in Fig A.1 and Fig A.2 respectively. 

In the encoder, all kernels are 3 3, and ELU [24] nonlinearity 

is used in all layers apart from the red layers where the kernel 

size is 1 1, and no nonlinearities are employed. Also no non-

linearity is applied to the fully connected layers. In the decoder 

network, all convolutional layers have 64 channels, while in the 

encoder, the number of the channels is gradually increased to 

128, 192, and 256 after each pooling layer. 

Suppose that   is the real data coming from the database,   is a 

sample from the uniformly distributed random space  ,   is the 

auto-encoder function with the loss defined by: 

               (A.1) 

where   is the input to the auto-encoder. The objectives for 

BEGAN given by [17] are: 

 

                                                                                                   

                                                                                                           

                                                                       

  

 
Fig A.1. Encoder architecture for BEGAN 

 
Fig A.2. Decoder architecture for BEGAN 

where    is the discriminator loss,    is the generator loss,      
is the output of the generator for input vector  ,  is the 

equilibrium hyper parameter set to 0.5 in this work, and   is the 

learning rate for  . The ADAM optimizer is used with learning 

rates   , and   , equal to 0.0001, 0.5, and 0.999, respectively. 

BEGAN was trained with the Lasagne library on the top of 

Theano library in Python. 

..
.

64 

dimensions

...

...

64 

dimensions



Appendix G

Versatile Auxiliary Classifier with
Generative Adversarial Network
(VAC+GAN)



Versatile Auxiliary Classifier with Generative
Adversarial Network (VAC+GAN)

Shabab Bazrafkan
Dept. Electrical & Electronic Engineering, College of Engineering & Informatics

National University of Ireland Galway
s.bazrafkan1@nuigalway.ie

Hossein Javidnia
Dept. Electrical & Electronic Engineering, College of Engineering & Informatics

National University of Ireland Galway
h.javidnia1@nuigalway.ie

Peter Corcoran
Dept. Electrical & Electronic Engineering, College of Engineering & Informatics

National University of Ireland Galway
peter.corcoran@nuigalway.ie

Abstract

One of the most interesting challenges in Artificial Intelligence is to train con-
ditional generators which are able to provide labeled adversarial samples drawn
from a specific distribution. In this work, a new framework is presented to train a
deep conditional generator by placing a classifier in parallel with the discriminator
and back propagate the classification error through the generator network. The
method is versatile and is applicable to any variations of Generative Adversar-
ial Network (GAN) implementation, and also gives superior results compared to
similar methods.

1 Introduction

Deep Learning influences almost every aspect of the machine learning and artificial intelligence.
It gives superior results for classification, and regression problems compare to classical machine
learning approaches [6]. The other impact of Deep Learning is on generative models [5]. In this
work, the problem of conditional generators is considered, and a global solution is presented. The
conditional generative models are models which can generate a class-specific sample given the right
latent input. As one example, these generators can learn the data distribution for male/female faces
and produce outputs that match a single (male/female) class. Several researchers have attempted to
provide a solution to this problem [8, 9]. But none of them are able to propose a global solution.
In [8] the authors introduce a variation of GAN known as conditional GAN, wherein the model is
similar to the ordinary GAN, but the latent space is conditional with respect to the class label. This
approach is versatile enough to be extended to other GAN variations, but there is no mathematical
proof that the trained generator is able to provide distinct samples for different classes.
In our experiments, applying this method to the BEGAN [2] scheme to generate male/female images
did not generate gender-specific samples. This is explained in more detail in section 3.
The most successful implementation of the class specified generative model is Auxiliary Classifier
GANs (ACGAN) [9] wherein by adding a classification term to the generator and discriminator loss,
the generator is forced to generate a specific class of data for a given input. see figure 1a.

Preprint. Work in progress.

ar
X

iv
:1

80
5.

00
31

6v
3 

 [
ee

ss
.I

V
] 

 1
8 

Ju
n 

20
18



Generator

Discriminator
+

Classifier

Database

Feed forward discriminators

Backpropagation for generator

Discriminator Loss
+

Classifier Loss

(a) The ACGAN scheme.

Generator Discriminator

ClassifierDatabase

Feed forward discriminators

Feed forward classifier

Backpropagation for generator

Discriminator s Loss

Classifier s Loss

(b) The presented scheme (VAC+GAN)

Figure 1: ACGAN vs presented model.

The main problem with ACGAN is that it is not versatile enough to be applied to other GAN
variations. Mixing the loss of discriminator and the classifier will alter the training convergence
specially if the output of the discriminator is from a different type compare to the classifier’s output.
For example in the BEGAN implementation, the output of the discriminator is an image (2D matrix)
compare to the output of the classifier which is a (1D) vector. Merging the loss for two different
output types into a single loss alters the convergence of the network.
In this work, a new approach for training a class specified generator model is presented which
is independent of the generator and discriminator structure. i.e., the presented method can be
applied to any model that is already converging. The method is called Versatile Auxiliary Classifier
with Generative Adversarial Network (VAC+GAN). The mathematical proof for the effectiveness
of the method is also presented. The idea is to get the classification term (in ACGAN) out of
the discriminator’s loss function by adding a classifier network that back-propagates through the
generator.
In the next section, the proposed idea is presented alongside with the mathematical proof of the
effectiveness of the method, the experimental results are given in section three and conclusions are
presented in the last section.

2 Versatile Auxiliary Classifier with Generative Adversarial Network
(VAC+GAN)

The concept proposed in this research is to place a classifier network in parallel with the Discriminator.
The classifier accepts the samples from the generator, and the classification error is back-propagated
through the classifier and the generator. The model structure is shown in figure 1b.

In this section, the proposed method is investigated for two class problems. In this case, the classifier
is a binary classifier with binary cross-entropy loss function. The notations used in the mathematical
proof are as follows:

1. V (G,D): is the objective function for a general generative model, wherein G and D are
Generator and Discriminator.

2. The latent space Z is partitioned into Z1, Z2 subsets. This means that Z1 and Z2 are disjoint
and their union is equal to the Z-space.

3. C is the classifier function.
4. Lce is the binary cross-entropy loss function.

Proposition 1. For a fixed Generator and Discriminator, the optimal Classifier is

C∗
G,D =

pX1
(x)

pX1(x) + pX2(x)
(1)

wherein C∗
G,D is the optimal classifier, and pX1

(x), and pX2
(x) are the distributiuons of generated

samples for the first and second class respectively.

Proof. The objective function for the model is given by:

O(G,D,C) = V (G,D) + Lce(C) (2)

2



This can be rewritten as

O(G,D,C) = V (G,D)− Ez∼pZ1
(z)

[
log(C(G(z)))

]
− Ez∼pZ2

(z)

[
log(1− C(G(z)))

]
(3)

which is given by

O(G,D,C) = V (G,D)−
{∫

pZ1
(z) log

(
C(G(z))

)
+ pZ2

(z) log
(
1− C(G(z))

)
dz

}
(4)

Considering G(z1) = x1 and G(z2) = x2 we get

O(G,D,C) = V (G,D)−
{∫

pX1
(x) log

(
C(x)

)
+ pX2

(x) log
(
1− C(x)

)
dx

}
(5)

The function f → m log(f)+n log(1−f) reaches its maximum at m
m+n for any (m,n) ∈ R2\{0, 0},

concluding the proof.

Theorem 1. The maximum value for Lce(C) is log(4) and is achieved if and only if pX1
= pX2

.

Proof. For pX1 = pX2 =⇒ C∗
G,D = 1

2 and by observing that

−Lce(C) = Ex∼pX1
(x)(log(C(x))) + Ex∼pX2

(x)(log(1− C(x))) (6)

results in
Lce(C

∗
G,D) = − log(

1

2
)− log(

1

2
) = log(4) (7)

To show that this is the maximum value, from equation 5 we have

Lce(C
∗
G,D) = −

∫
pX1

(x) log

(
pX1

(x)

pX1
(x) + pX2

(x)

)
dx−

∫
pX2

(x) log

(
pX2

(x)

pX1
(x) + pX2

(x)

)
dx

(8)
which is equal to

Lce(C
∗
G,D) = log(4)−

∫
pX1

(x) log

(
pX1(x)

pX1
(x)+pX2

(x)

2

)
dx−

∫
pX2

(x) log

(
pX2(x)

pX1
(x)+pX2

(x)

2

)
dx

(9)
results in

Lce(C
∗
G,D) = log(4)−KL

(
pX1(x)

∣∣∣
∣∣∣pX1

(x) + pX2
(x)

2

)

−KL
(
pX2

(x)
∣∣∣
∣∣∣pX1

(x) + pX2
(x)

2

) (10)

Where KL is the Kullback-Leibler divergence, which is always positive or equal to zero, concluding
the proof.

Theorem 2. Minimizing the binary cross-entropy loss function Lce for the classifier C is increasing
the Jensen-Shannon divergence between pX1

and pX2
.

Proof. the Jensen-Shannon divergence between p1 and p2 is given by

JSD(p1||p2) =
1

2
KL

(
p1
∣∣∣∣p1 + p2

2

)
+

1

2
KL

(
p2
∣∣∣∣p1 + p2

2

)
(11)

considering equation 10 and 11, it gives

Lce(C
∗
G,D) = log(4)− 2JSD(pX1 ||pX2) (12)

minimizing Lce is equal to maximizing JSD(pX1
||pX2

), concluding the proof.

Here it has been shown that placing the classifier C and add its loss value the generative framework
pushes the generator to increase the distance of samples that are drawn from a specific class with
respect to the other class. For example, in the male/female face scenario, one can use a partition of Z
space to generate male and and another partition to generate female samples.

3



(a) Encoder. (b) Decoder.

Figure 2: Encoder and Decoder architectures used in BEGAN approach.

3 Experimental Results

In this section, an experiment is conducted to show the effectiveness of the proposed scheme while
different measures are used to show the diversity of the generated samples including Mean Square
Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Universal Quality
Index (UQI), and Structural Similarity Index (SSIM). These measurements are explained in Appendix
A. MSE, RMSE and MAE show the difference between two images. The higher values for these
metrics correspond to higher variation of the generated images. UQI and SSIM measure the structural
similarity between two samples. Lower value for these measurements correspond to less similarity.
In evaluating generative models higher values for MSE, RMSE, and MAE and lower values for UQI
and SSIM is desirable.
In this section, all the networks are trained in Lasagne [4] on top of Theano [1] library in Python.
The experiment is conducted by training a gender specified generator using the BEGAN [2] structure
trained on CelebA database. The results of the proposed method are compared against the results of
conditional GAN idea applied to the BEGAN framework. The comparisons with ACGAN method is
not available since applying this method to BEGAN framework altered the convergence of the model
and the generator constrained to a deterministic output even after the first epoch.
The CelebA dataset [7] consisting of 202,599 original images is used for training our GAN framework.
The OpenCV frontal face cascade classifier [10] is used to detect facial regions which are cropped
and resized to 48 × 48 pixels. In the BEGAN framework the generator network is a typical GAN
generator which has the same architecture as the decoder part of an auto-encoder. The network used
in our experiment contains one fully connected layer which maps the input to a 3D layer. Next layers
are all convolutional layers followed by (2, 2) un-pooling layers for every second convolution. The
exponential linear unit (ELU) [3] is used as activation function except in the last layer wherein no
non-linearity has been applied. And the discriminator network is an auto-encoder. The input of the
auto-encoder is the image (48 × 48). The encoder part of the network is made of convolutional
layers with ELU activation function. The downscaling in these layers is obtained by using (2, 2)
stride in every second convolutional layer. The architecture of decoder is the same as the generator
network. And the bottleneck of the auto-encoder is a fully connected layer with no activation function.
The encoder and decoder networks used for training the BEGAN are shown in figures 2a and 2b
respectively. The layers shown in red apply no nonlinearity to the data.

The loss function for training the conditional BEGAN (CBEGAN) is given by:

Ld = L(x)− kt · L(G(z|c))
Lg = L(G(z|c))
kt+1 = kt + λk

(
γL(x)− L(G(z|c))

) (13)

Where Lg and Ld are generators and discriminators losses respectively. G is the generator function,
z is a sample from the latent space, c is the class label, x is the sample drawn from the database, λk
is the learning rate for k, γ is the equilibrium hyper parameter set to 0.5 in this work, and L is the
auto-encoders loss defined by

L(v) = |v −D(v)|2 (14)

4



Table 1: the classifier structure for the CelebA+BEGAN experiment.
Layer Type kernel Activation
Input Input(48× 48) – –
Hidden 1 Conv 3× 3(16 ch) ReLU
Pool 1 Max pooling 2× 2 –
Hidden 2 Conv 3× 3(8 ch) ReLU
Pool 2 Max pooling 2× 2 –
Hidden 3 Dense 1024 ReLU
Output Dense 1 Sigmoid

(a) Constrained to generate female samples. (b) Constrained to generate male samples.

Figure 3: Generator trained using CBEGAN method.

The proposed method needs a classifier to back-propagate the classification error throughout the
generator. The classifier used in this experiment is a simple deep classifier given in table 1. The loss
functions used to train the VAC+GAN applied to BEGAN is given by

Ld = L(x)− kt · L(G(z|c))
Lg = ϑ · L(G(z|c)) + ζ ·BCE
kt+1 = kt + λk

(
γL(x)− L(G(z|c))

) (15)

where BCE is the binary cross-entropy loss of the classifier, and ϑ and ζ are set to 0.997 and
0.003 respectively. The optimizer used for training the generator and discriminator is ADAM with
learning rate, β1 and β2 equal to 0.0001, 0.5 and 0.999 respectively. And the classifier is optimized
using nestrov momentum gradient descent with learning rate and momentum equal to 0.01 and 0.9
respectively.
The latent space has 64 dimensions and the first dimension is used to partition the latent space in
two subspaces corresponding to two classes. The results for the CBEGAN and proposed method are
shown in figures 3 and 4.
As it is shown in these figures, the gender-specific generator fails to correctly generate samples for a

specific class when the conditional GAN is applied. But the proposed method is able to correctly
constrain the generator to make samples drawn from a specific class. In order to compare the models,
80 random male and 80 random female samples have been generated using the trained generators.
Three observations have been conducted on these samples:

1. Each male sample has been compared to all the other male samples, and all the metrics have
been calculated for these comparisons, and the average of these numbers has been obtained
(blue bars).

5



(a) Constrained to generate female samples. (b) Constrained to generate male samples.

Figure 4: Generator trained using the proposed method (VAC+GAN).

Figure 5: UQI and SSIM metrics for presented method vs. CBEGAN. Lower values show higher
performance.

2. Each female sample has been compared to all the other female samples, and all the metrics
have been calculated for these comparisons, and the average of these numbers has been
obtained (purple bars).

3. Each male samples has been compared to all female samples, and all the metrics have
been calculated for these comparisons, and the average of these numbers has been obtained
(yellow bars).

The aforementioned measurements are illustrated in figures 5 and 6 for the CBEGAN and proposed
method. The lower value of UQI and SSIM shows the less similarity between samples. In figure 5,
from the first two observations (blue and purple bars) it is shown that the proposed method is able
to generate samples in each class that are not similar. From the third observation (yellow bars) it is
shown that the inter-class similarity in the proposed method is less than CBEGAN i.e., This shows
that the generated samples from different classes are less similar to each other. The higher value

6



Figure 6: MSE, RMSE and MAE metrics for presented method vs. CBEGAN. higher values show
better performance.

of MSE, RMSE, and MAE shows the higher variation of the generated images. As it is shown in
figure 6 the proposed method is able to generate a higher variation of samples for each class and also
between classes.

4 Discussion and Conclusion

In this work a new approach has been introduced to train conditional deep generators. In this work
it has been proven that VAC+GAN is applicable to any GAN framework regardless of the model
structure and/or loss function (see Section 2). The idea is to place a classifier in parallel to the
discriminator network and back-propagate the loss of this classifier through the generator network in
the training stage. It has also been shown that the presented framework increases the Jensen Shannon
Divergence (JSD) between classes generated by the deep generator. i.e., the generator can produce
samples drawn from a desired class. The results has been compared to another versatile method
known as Conditional GAN (CGAN) for gender specified face generation.
The future work includes applying the method to datasets with large number of classes and also
extend the implementation for bigger size images. Other idea is to extend the current approach to
regression problems. This can help to generate samples with specific continuous aspect.

Acknowledgments

This research is funded under the SFI Strategic Partnership Program by Science Foundation Ireland
(SFI) and FotoNation Ltd. Project ID: 13/SPP/I2868 on Next Generation Imaging for Smartphone
and Embedded Platforms.

References
[1] James Bergstra, Frédéric Bastien, Olivier Breuleux, Pascal Lamblin, Razvan Pascanu, Olivier

Delalleau, Guillaume Desjardins, David Warde-Farley, Ian Goodfellow, Arnaud Bergeron, et al.
Theano: Deep learning on gpus with python. In NIPS 2011, BigLearning Workshop, Granada,
Spain, volume 3. Citeseer, 2011.

[2] David Berthelot, Tom Schumm, and Luke Metz. Began: Boundary equilibrium generative
adversarial networks. arXiv preprint arXiv:1703.10717, 2017.

[3] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

7



[4] Sander Dieleman, Jan Schlüter, Colin Raffel, Eben Olson, Søren Kaae Sønderby, Daniel Nouri,
Daniel Maturana, Martin Thoma, Eric Battenberg, Jack Kelly, Jeffrey De Fauw, Michael
Heilman, Diogo Moitinho de Almeida, Brian McFee, Hendrik Weideman, Gábor Takács, Peter
de Rivaz, Jon Crall, Gregory Sanders, Kashif Rasul, Cong Liu, Geoffrey French, and Jonas
Degrave. Lasagne: First release., August 2015.

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural
information processing systems, pages 2672–2680, 2014.

[6] Joe Lemley, Shabab Bazrafkan, and Peter Corcoran. Deep learning for consumer devices and
services: Pushing the limits for machine learning, artificial intelligence, and computer vision.
IEEE Consumer Electronics Magazine, 6(2):48–56, 2017.

[7] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in
the wild. In Proceedings of the IEEE International Conference on Computer Vision, pages
3730–3738, 2015.

[8] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

[9] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with
auxiliary classifier gans. arXiv preprint arXiv:1610.09585, 2016.

[10] OpenCV. Opencv face detection using haar cascades, 2018.

[11] Zhou Wang and Alan C Bovik. A universal image quality index. IEEE signal processing letters,
9(3):81–84, 2002.

[12] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–
612, 2004.

Appendices
A Diversity Measurements

1. MSE (Mean Squared Error):MSE measures the average of the squares of the errors or
deviations; representing the difference between the estimator and what is estimated. The
lower value of MSE shows lesser error.

MSE(f, g) =
1

mn

m−1∑

0

n−1∑

0

||f(i, j)− g(i, j)|| (16)

2. RMSE (Root Mean Squared Error): RMSE is a quadratic scoring rule that measures the
average magnitude of the error. It is the square root of the average of squared differences
between prediction and actual observation. The lower value of RMSE shows lesser error.

RMSE(y, ŷ) =

√√√√ 1

n

n∑

i=1

(yi − ŷi)2 (17)

3. MAE (Mean Absolute Error):MAE also measures the average magnitude of the errors in
a set of predictions, without considering their direction. It is the average over the test sample
of the absolute differences between prediction and actual observation where all individual
differences have equal weight. The lower value of MAE shows lesser error.

MAE(f, y) =
1

n

n∑

i=1

|fi − yi| (18)

8



4. UQI (Universal Quality Index) [11]: UQI measures the structural distortion of the images
by modeling the distortion as a combination of three factors: loss of correlation, luminance
distortion, and contrast distortion. The higher value of UQI shows lesser error.

5. SSIM (Structural Similarity Index) [12]: SSIM is a perception-based model that considers
image degradation as perceived change in structural information, while also incorporating
important perceptual phenomena, including both luminance masking and contrast masking
terms. The higher value of SSIM shows lesser error.

9



Appendix H

Versatile Auxiliary Classifier with
Generative Adversarial Network
(VAC+GAN), Multi Class Scenarios



Noname manuscript No.
(will be inserted by the editor)

Versatile Auxiliary Classifier with Generative Adversarial
Network (VAC+GAN), Multi Class Scenarios
Training Conditional Generators

Shabab Bazrafkan · Peter Corcoran

Received: date / Accepted: date

Abstract Conditional generators learn the data distri-
bution for each class in a multi-class scenario and gen-

erate samples for a specific class given the right input
from the latent space. In this work, a method known
as “Versatile Auxiliary Classifier with Generative Ad-

versarial Network”for multi-class scenarios is presented.
In this technique, the Generative Adversarial Networks
(GAN)’s generator is turned into a conditional gener-
ator by placing a multi-class classifier in parallel with

the discriminator network and backpropagate the clas-
sification error through the generator. This technique is
versatile enough to be applied to any GAN implemen-

tation. The results on two databases and comparisons
with other method are provided as well.

Keywords Conditional deep generators · Generative

Adversarial Networks · Machine learning

1 Introduction

With emerge of affordable parallel processing hardware,

it became almost impossible to find any aspect of Arti-
ficial Intelligence (AI) that Deep Learning (DL) has not
been applied to [9]. DL provides superior outcomes on

classification and regression problems compared to clas-
sical machine learning methods. The impact of DL is
not limited to such problems, but also generative mod-
els are taking advantage of these techniques in learning

S. Bazrafkan
Cognitive, Connected & Computational Imaging Research
National University of Ireland Galway
Tel.: +353-83-466-7835
E-mail: s.bazrafkan1@nuigalway.ie

P. Corcoran
Cognitive, Connected & Computational Imaging Research
National University of Ireland Galway

data distribution for big data scenarios where classical
methods fail to provide a solution. Generative Adver-

sarial Networks (GAN) [6] utilise Deep Neural Network
capabilities and are able to estimate the data distribu-
tion for large size problems. These models comprise two

networks, a generator, and a discriminator. The gener-
ator makes random samples from a latent space, and
the discriminator determines whether the sample is ad-

versarial, made by the generator, or is genuine image
coming from the dataset. GANs are successful imple-
mentations of deep generative models, and there are
multiple variations such as WGAN [1], EBGAN [15],

BEGAN [3], ACGAN [11], and DCGAN [13], which
have evolved from the original GAN by altering the loss
function and/or the network architecture. Variational

Autoencoders (VAE) [7] are the other successful imple-
mentation of deep generative models. In these models
the bottleneck of a conventional autoencoder is consid-
ered as the latent space of the generator, i.e., the sam-

ples are fed to an autoencoder, and besides the conven-
tional autoencoders loss function, the KullbackLeibler
(KL) divergence between the distribution of the data

at the bottleneck is minimized compared to a Gaussian
distribution. In practice, this is achieved by adding the
KL divergence term to the means square error of the au-

toencoder network. The biggest downside to VAE mod-
els is their blurry outputs due to the mean square error
loss [5]. PixelRNN and PixelCNN [12] are other famous
implementations of the deep neural generative models.

PixelRNN is made of 2-dimensional LSTM units, and
in PixelCNN, a Deep Convolutional Neural Network is
utilized to estimate the distribution of the data.

Training conditional generators are one of the most ap-
pealing applications of GAN. Conditional GAN (CGAN)
[10] and Auxiliary Classifier GAN (ACGAN) [11] are
among the most utilized schemes for this purpose. Wherein

ar
X

iv
:1

80
6.

07
75

1v
1 

 [
cs

.L
G

] 
 1

9 
Ju

n 
20

18



2 Shabab Bazrafkan, Peter Corcoran

the CGAN approach uses the auxiliary class informa-
tion alongside with partitioning the latent space and
ACGAN improves the CGAN idea by introducing a
classification loss which back-propagates through the

discriminator and generator network. The CGAN method
is versatile enough to apply to every variation of GAN.
But ACGAN is restricted to a specific loss function

which decreases its adaptivity to other GAN varieties.
In [?], the ACGAN technique is extended to be appli-
cable to any GAN implementation for binary problems

(2 class scenarios). The technique is known as Versatile
Auxiliary Classifier with Generative Adversarial Net-
work (VAC+GAN) and is implemented by placing a
classifier in parallel with the discriminator and back-

propagate the classification error through the generator
alongside the GAN’s loss.
This work expand the original VAC+GAN [?] idea to

multi-class scenarios. In this approach, the classifier
is trained independently from the discriminator which
gives the opportunity of applying it to any variation
of GAN. The main contribution of VAC+GAN is its

versatility, and proofs are provided to show the appli-
cability of the method regardless of the GAN structure
or loss functions.

In the next section the VAC+GAN for multi-class sce-
narios is explained. And in the third section the im-
plementations of the ACGAN and VAC+GAN is pre-

sented alongside with the comparisons with other meth-
ods. The discussions and future works are given in the
last section.

2 Versatile Auxiliary Classifier + Generative

Adversarial Network (VAC+GAN)

The concept proposed in this research is to place a
classifier network in parallel with the Discriminator.
The classifier accepts the samples from the generator,
and the classification error is back-propagated through

the classifier and the generator. The model structure is
shown in figure 1.

In this section it is shown that by placing a clas-
sifier at the output of the generator and minimizing
the categorical cross-entropy as the classifiers loss, the

Jensen-Shannon Divergence between all the classes is
increased. The terms used in the mathematical proofs
are as follows:

1. N is the number of the classes.

2. The latent space Z is partitioned in to {Z1, Z2, . . . , ZN}
subsets. This means that {Z1, Z2, . . . , ZN} are dis-
joint and their union is equal to the Z-space.

3. C is the classifier function.
4. Lce is the binary cross-entropy loss function.

Generator Discriminator

ClassifierDatabase

Feed forward discriminators

Feed forward classifier

Backpropagation for generator

Discriminator s Loss

Classifier s Loss

Fig. 1 The presented model for training conditional deep
generators.

5. Lcce is the categorical cross-entropy loss function.

Proposition 1. In the multiple classes case, the clas-

sifier C has N outputs, where N is the number of the
classes. In this approach, each output of the classifier
corresponds to one class. For a fixed Generator and Dis-

criminator, the optimal output for class c (c’th output)
is:

C∗G,D(c) =
pXc

(x)
∑N
i=1 pXi(x)

(1)

Proof. Considering just one of the outputs of the clas-
sifier, the categorical cross-entropy can be reduced to
binary cross-entropy given by

Lce(C(c)) =− Ez∼pZc (z)

[
log
(
C(G(z))

)]

− Ez∼∑i6=c pZi
(z)

[
1− log

(
C(G(z))

)] (2)

which is equal to

Lce(C(c)) =

∫ (
pZc

(z) log
(
C(G(z))

)

+
(∑

i 6=c
pZi

(z)
)

log
(
1− C(G(z))

)
dz
) (3)

By considering G(zi) = xi we have

Lce(C(c)) =

∫ (
pXc

(x) log(C(x))

+
(∑

i 6=c
pXi(x)

)
log(1− C(x))dx

) (4)

The function f → m log(f) +n log(1− f) gets its max-

imum at m
m+n for any (m,n) ∈ R2 \ {0, 0}, concluding

the proof.

Theorem 1 The maximum value for Lcce(C) is N log(N)
and is achieved if and only if pX1

= pX2
= . . . = pXN

.



Versatile Auxiliary Classifier with Generative Adversarial Network (VAC+GAN), Multi Class Scenarios 3

Proof. The categorical cross-entropy is given by

Lcce = −
N∑

i=1

Ez∼pZi
(z)

[
log
(
C(G(z))

)]

= −
N∑

i=1

∫
pXi

(x) log(C(x))dx

(5)

From equation 1 we have

Lcce = −
N∑

i=1

(∫
pXi(x) log

(
pXi

(x)
∑N
j=1 pj(x)

)
dx

)

= −
N∑

i=1

(∫
pXi

(x) log

(
pXi

(x)
∑N
j=1

pj(x)
N

)
dx

)
+N log(N)

= Nlog(N)−
N∑

i=1

KL

(
pXi

(x)

∣∣∣∣
∣∣∣∣
N∑

j=1

pXj
(x)

N

)

(6)

Where KL is the Kullback-Leibler divergence, which is
always positive or equal to zero.

Now consider pX1 = pX2 = · · · = pXN
. From 6 we have

Lcce = N log(N)−
N∑

i=1

KL
(
pXi

(x)
∣∣∣
∣∣∣pXi

(x)
)

= N log(N)

(7)

concluding the proof.

Theorem 2 Minimizing Lcce increases the

Jensen-Shannon Divergence between pX1 , pX2 , . . . , pXN

Proof. From equation 6 we have

Lcce = N log(N)

−
∫ N∑

i=1

(
pXi

(x)

[
log(pXi

(x))

− log
( N∑

j=1

pXj (x)

N

)])
dx

(8)

Which can be rewritten as

Lcce = N log(N)−
N∑

i=1

(∫
pXi(x) log(pXi(x))dx

)

+

∫ N∑

i=1

(
pXi(x) log

( N∑

j=1

pXj
(x)

N

))

︸ ︷︷ ︸
(∑N

i=1 pXi
(x)
)(

log

(
∑N

j=1

pXj(x)

N

))

dx

(9)

Which is equal to

Lcce = N log(N)

−N
N∑

i=1

(
1

N

∫
pXi

(x) log(pXi
(x))dx

)

+N

∫ ( N∑

i=1

pXi(x)

N

)(
log
( N∑

j=1

pXj(x)

N

))
dx

(10)

This equation can be rewritten as

Lcce = N log(N)

−
[
H

( N∑

i=1

1

N
pXi(x)

)
−

N∑

i=1

1

N
H
(
pXi(x)

)
]

(11)

wherein the H(p) is the Shannon entropy of the distri-
bution p.
The Jensen Shannon divergence between N distribu-
tions p1, p2, . . . , pN , is defined as

JSDπ1,π2,...,πN

(
p1, p2, . . . , pN

)
= H

( N∑

i=1

πipi

)

−
N∑

i=1

πiH(pi)

(12)

From equations 11 and 12 we have

Lcce = N log(N)

−N JSD 1
N ,

1
N ,...,

1
N

(
pX1

(x), pX2
(x), . . . , pXN

(x)
)

(13)

Minimizing Lcce is increasing the JSD term, concluding
the proof.

In this section it has been shown that by placing a clas-
sifier at the output of the generator and back-propagate
the classification error throughout the generator one

can increase the dis-similarity between the classes for
generator and therefore train a deep generator that can
produce class specified samples. In the next section the

proposed idea is implemented for multi-class cases and
also compared with state of the art methods.

3 Experimental Results

In this section, two main experiments are explained to
show the effectiveness of VAC+GAN. The first one is on
MNIST database and visual comparisons with CGAN,

CDCGAN and ACGAN is presented. The second ex-
periment is on CFAR10 dataset and the classification
error is compared against ACGAN method. All the net-

works are trained in Lasagne [4] on top of Theano [2]
library in Python, unless stated otherwise.



4 Shabab Bazrafkan, Peter Corcoran

Table 1 the generator structure for the MNIST+DCGAN
experiment. All deconvolution layers are using (2,2) padding
with stride (2,2).

Layer Type kernel Activation
Input Input(10) – –
Hidden 1 Dense 1024 ReLU
BatchNorm 1 – – –
Hidden 2 Dense 128 × 7 × 7 ReLU
BathNorm 2 – – –
Hidden 3 Deconv 5 × 5 (64ch) ReLU
BathNorm 3 – – –
Output Deconv 5 × 5 (1ch) Sigmoid

Table 2 the discriminator structure for the
MNIST+DCGAN experiment. All convolution layers
are using (2,2) padding with stride (2,2).

Layer Type kernel Activation
Input Input – –
Hidden 1 Conv 5 × 5 (64 ch) LeakyR(0.2)
BatchNorm 1 – – –
Hidden 2 Conv 5 × 5 (128 ch) LeakyR(0.2)
BathNorm 2 – – –
Hidden 3 Dense 1024 LeakyR(0.2)
Output Dense 1 Sigmoid

Table 3 the classifier structure for the MNIST+DCGAN ex-
periment.

Layer Type Kernel Activation
Input Input(28 × 28) – –
Hidden 1 Conv 3 × 3(16 ch) ReLU
Pool 1 Max pooling 2 × 2 –
Hidden 2 Conv 3 × 3(8 ch) ReLU
Pool 2 Max pooling 2 × 2 –
Hidden 3 Dense 1024 ReLU
Output Dense 10 Softmax

3.1 MNIST

In this experiment, the performance of the proposed

method is investigated on MNIST database. MNIST
(”Modified National Institute of Standards and Tech-
nology”) is known as the ”hello world” dataset of com-

puter vision. It is a historically significant image clas-
sification benchmark introduced in 1999, and there has
been a considerable amount of research published on

MNIST image classification. MNIST contains 60,000
training images and 10,000 test images, both drawn
from the same distribution. It consists of 28× 28 pixel
images of handwritten digits. Each image is assigned a

single truth label digit from [0, 9].
The proposed method has been applied to the DCGAN
scheme. The Generator, Discriminator and the Classi-

fier used in this experiment are given in tables 1, 2 and
3 respectively. And the loss function for the proposed

Fig. 2 Samples drawn from conditional generator trained us-
ing CGAN scheme on MNIST dataset. each row corresponds
to one class.

method (VAC+GAN) is given by:

Lg = ϑ ·BCE(G(z|c), 1) + ζ · CCE
Ld = BCE(x, 1) +BCE(G(z|c), 0)

(14)

where, Lg, and Ld are the generator and discriminator

losses respectively, G is the generator function, BCE
is the binary cross-entropy loss for discriminator and
CCE is the categorical cross-entropy loss for the clas-
sifier. In this experiment, ϑ and ζ are equal to 0.2 and

0.8 respectively.
The optimizer used for training the generator and dis-
criminator is ADAM with learning rate, β1 and β2 equal

to 0.0002, 0.5 and 0.999 respectively. And the classifier
is optimized using nestrov momentum gradient descent
with learning rate and momentum equal to 0.01 and
0.9 respectively. The results of the conditional genera-

tors trained using Conditional GAN (CGAN)1, Condi-
tional DCGAN (CDCGAN)2, ACGAN3, and proposed
method (VAC+GAN) on MNIST dataset are shown in

figures 2, 3, 44,and 5 respectively.
As it is shown in these figures the presented method

gives superior results compare to CGAN and CDCGAN

while using the exact same structure of generator as in
CDCGAN. The results are comparable with ACGAN

1 https://github.com/znxlwm/tensorflow-MNIST-cGAN-
cDCGAN
2 https://github.com/znxlwm/tensorflow-MNIST-cGAN-

cDCGAN
3 https://github.com/buriburisuri/ac-gan
4 https://github.com/buriburisuri/ac-

gan/blob/master/png/sample.png



Versatile Auxiliary Classifier with Generative Adversarial Network (VAC+GAN), Multi Class Scenarios 5

Fig. 3 Samples drawn from conditional generator trained
using CDCGAN scheme on MNIST dataset. each row corre-
sponds to one class.

Fig. 4 Samples drawn from conditional generator trained us-
ing ACGAN scheme on MNIST dataset. each row corresponds
to one class.

and the difference here is that this method is more ver-

satile and can be applied to any GAN model regardless
of model architecture and loss function.

Fig. 5 Samples drawn from conditional generator trained us-
ing proposed scheme (VAC+GAN) on MNIST dataset. each
row corresponds to one class.

Table 4 the generator structure for the CFAR10 experi-
ment. All deconvolution layers are using ’SAME’ padding
with stride (2,2).

Layer Type kernel Activation
Input Input – –
Hidden 1 Dense 384 × 4 ReLU
Reshape Reshape 384ch 4 × 4 –
Hidden 2 DeConv 5 × 5 (192 ch) ReLU
BathNorm 2 – – –
Hidden 3 DeConv 5 × 5 (96 ch) ReLU
BathNorm 3 – – –
Output DeConv 5 × 5 (3 ch) tanh

3.2 CFAR10

The CFAR10 database [8] consists of 60000 images in
10 classes wherein 50000 of these images are for train-
ing and 10000 for testing purposes. The next exper-

iment is comparing ACGAN5 to VAC+GAN method
on generating images and also the classification accu-
racy of these methods are compared. Networks utilized

in this experiment are shown in tables 4,5 and 6 cor-
respond to generator, discriminator6 and classifier re-
spectively. The same generator and discriminator ar-
chitectures have been used in both implementations to

obtain fair comparisons.

5 https://github.com/King-Of-Knights/Keras-ACGAN-
CIFAR10
6 https://github.com/King-Of-Knights/Keras-ACGAN-

CIFAR10/blob/master/cifar10.py



6 Shabab Bazrafkan, Peter Corcoran

Table 5 the discriminator structure for the CFAR10 exper-
iment. All deconvolution layers are using ’SAME’ padding
with kernel size 3× 3, st stands for stride size and MBDisc is
Mini Batch Discrimination layer explained in [14].

Layer Type kernel Activation
Input Input 32 × 32 × 3 –
Gaussian Noise σ = 0.05 –
Hidden 1 Conv 16ch st(2, 2) LeakyR(0.2)
DropOut 1 DropOut p = 0.5 –
Hidden 2 Conv 32ch st(1, 1) LeakyR(0.2)
BathNorm 1 – – –
DropOut 2 DropOut p = 0.5 –
Hidden 3 Conv 64ch st(2, 2) LeakyR(0.2)
BathNorm 2 – – –
DropOut 3 DropOut p = 0.5 –
Hidden 4 Conv 128ch st(1, 1) LeakyR(0.2)
BathNorm 3 – – –
DropOut 4 DropOut p = 0.5 –
Hidden 5 Conv 256ch st(2, 2) LeakyR(0.2)
BathNorm 4 – – –
DropOut 5 DropOut p = 0.5 –
Hidden 6 Conv 512ch st(1, 1) LeakyR(0.2)
BathNorm 5 – – –
DropOut 6 DropOut p = 0.5 –
MBDisc [14] – – –
Output Dense 1 sigmoid

Table 6 the classifier structure for the CFAR10 experiment.

Layer Type kernel Activation
Input Input 32 × 32 × 3 –
Hidden 1 Conv 5 × 5 (128ch) ReLU
BatchNorm 1 – – –
MaxPool 1 MaxPool (2,2) –
Hidden 2 Conv 5 × 5 (256ch) ReLU
BatchNorm 2 – – –
MaxPool 2 MaxPool (2,2) –
Hidden 3 Conv 5 × 5 (512ch) ReLU
BatchNorm 3 – – –
MaxPool 3 MaxPool (2,2) –
Hidden 4 Dense 512 ReLU
Output Dense 10 softmax

The loss function used to train the VAC+GAN is
given by

Lg = ϑ ·BCE(G(z|c), 1) + ζ · CCE
Lg = BCE(x, 1) +BCE(G(z|c), 0)

(15)

where, Lg, and Ld are the generator and discriminator
losses respectively, G is the generator function, BCE

is the binary cross-entropy loss for discriminator and
CCE is the categorical cross-entropy loss for the clas-
sifier. In this experiment, ϑ and ζ are equal to 0.5 and
0.5 respectively.

The optimizer used for training the generator and dis-
criminator is ADAM with learning rate, β1 and β2 equal
to 0.0002, 0.5 and 0.999 respectively. And the classifier

is optimized using nestrov momentum gradient descent
with learning rate and momentum equal to 0.01 and

Fig. 6 Generated samples using ACGAN.

Fig. 7 Generated samples using VAC+GAN.

0.9 respectively. The results for ACGAN and proposed

method are shown in figures 67 and 7 respectively. The
CFAR10 database is an extremely unconstrained and
there are just 10000 samples in each class. Therefore

the output of both implementations are vague and in
order to compare these methods the classification errors
are compared. The confusion matrix for ACGAN and

7 https://github.com/King-Of-Knights/Keras-ACGAN-
CIFAR10/blob/master/plot epoch 220 generated.png



Versatile Auxiliary Classifier with Generative Adversarial Network (VAC+GAN), Multi Class Scenarios 7

Fig. 8 Confusion matrix for ACGAN method on CFAR10.

Fig. 9 Confusion matrix for VAC+GAN method on
CFAR10.

VAC+GAN are shown in figures 88 and 9 respectively.
Confusion matrices show the better classification per-

formed by the VAC+GAN compared to the ACGAN.

Classification accuracies for ACGAN and VAC+GAN
on CFAR10 are 71.89% and 74.49% respectively after
200 epochs. The proposed method gives higher accu-
racy. The main advantage of the proposed method is

the versatility in choosing the proper classifier network
while in the ACGAN method the classification task
is restrained to discriminator because the discrimina-

tor is performing as classifier as well. The VAC+GAN
method is versatile in choosing the GAN scheme as well.
It can be applied to any GAN implementation just by

placing a classifier in parallel with discriminator.

8 https://github.com/King-Of-Knights/Keras-ACGAN-
CIFAR10/blob/master/Confusion Matrix.png

4 Discussion and Conclusion

In this work, a new approach introduced to train con-

ditional deep generators. It also has been proven that
VAC+GAN is applicable to any GAN framework re-
gardless of the model structure and/or loss function (see

Sec 2) for multi class problems. The idea is to place a
classifier in parallel to the discriminator network and
back-propagate the classification loss through the gen-
erator network in the training stage.

It has also been shown that the presented framework in-
creases the Jensen Shannon Divergence (JSD) between
classes generated by the deep generator. i.e., the gen-

erator can produce more distinct samples for different
classes which is desirable.
The results has been compared to the implementation
of CGAN, CDCGAN and ACGAN on MNIST dataset

and also the comparisons are given on CFAR10 dataset
with respect to ACGAN method. The ACGAN gives
comparable results, but the main advantage of the pro-

posed method is its versatility in choosing the GAN
scheme and also the classifier architecture.
The future work includes applying the method to datasets

with larger number of classes and also extend the im-
plementation for bigger size images. The other idea is
to apply this method to regression problems

Acknowledgements This research is funded under the SFI
Strategic Partnership Program by Science Foundation Ire-
land (SFI) and FotoNation Ltd. Project ID: 13/SPP/I2868
on Next Generation Imaging for Smartphone and Embedded
Platforms.

References

1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein gener-
ative adversarial networks. In: International Conference
on Machine Learning, pp. 214–223 (2017)

2. Bergstra, J., Bastien, F., Breuleux, O., Lamblin, P., Pas-
canu, R., Delalleau, O., Desjardins, G., Warde-Farley, D.,
Goodfellow, I., Bergeron, A., et al.: Theano: Deep learn-
ing on gpus with python. In: NIPS 2011, BigLearning
Workshop, Granada, Spain, vol. 3. Citeseer (2011)

3. Berthelot, D., Schumm, T., Metz, L.: Began: Bound-
ary equilibrium generative adversarial networks. arXiv
preprint arXiv:1703.10717 (2017)

4. Dieleman, S., Schlter, J., Raffel, C., Olson, E., Snderby,
S.K., Nouri, D., Maturana, D., Thoma, M., Battenberg,
E., Kelly, J., Fauw, J.D., Heilman, M., de Almeida, D.M.,
McFee, B., Weideman, H., Takcs, G., de Rivaz, P., Crall,
J., Sanders, G., Rasul, K., Liu, C., French, G., Degrave,
J.: Lasagne: First release. (2015). DOI 10.5281/zenodo.
27878. URL http://dx.doi.org/10.5281/zenodo.27878

5. Frans, K.: Variational autoencoders ex-
plained (2016). URL http://kvfrans.com/

variational-autoencoders-explained/

6. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.:



8 Shabab Bazrafkan, Peter Corcoran

Generative adversarial nets. In: Advances in neural in-
formation processing systems, pp. 2672–2680 (2014)

7. Kingma, D.P., Welling, M.: Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114 (2013)

8. Krizhevsky, A., Hinton, G.: Learning multiple layers of
features from tiny images (2009)

9. Lemley, J., Bazrafkan, S., Corcoran, P.: Deep learning
for consumer devices and services: Pushing the limits for
machine learning, artificial intelligence, and computer vi-
sion. IEEE Consumer Electronics Magazine 6(2), 48–56
(2017)

10. Mirza, M., Osindero, S.: Conditional generative adversar-
ial nets. arXiv preprint arXiv:1411.1784 (2014)

11. Odena, A., Olah, C., Shlens, J.: Conditional image syn-
thesis with auxiliary classifier gans. arXiv preprint
arXiv:1610.09585 (2016)

12. Oord, A.v.d., Kalchbrenner, N., Kavukcuoglu, K.:
Pixel recurrent neural networks. arXiv preprint
arXiv:1601.06759 (2016)

13. Radford, A., Metz, L., Chintala, S.: Unsupervised rep-
resentation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434
(2015)

14. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V.,
Radford, A., Chen, X.: Improved techniques for train-
ing gans. In: Advances in Neural Information Processing
Systems, pp. 2234–2242 (2016)

15. Zhao, J., Mathieu, M., LeCun, Y.: Energy-based
generative adversarial network. arXiv preprint
arXiv:1609.03126 (2016)





Appendix I

Versatile Auxiliary Regressor with
Generative Adversarial network
(VAR+GAN)



Versatile Auxiliary Regressor with Generative

Adversarial network (VAR+GAN)

Shabab Bazrafkan, Peter Corcoran

National University of Ireland Galway

Abstract

Being able to generate constrained samples is one of the most appealing
applications of the deep generators. Conditional generators are one of the
successful implementations of such models wherein the created samples are
constrained to a specific class. In this work, the application of these net-
works is extended to regression problems wherein the conditional generator
is restrained to any continuous aspect of the data. A new loss function is
presented for the regression network and also implementations for generating
faces with any particular set of landmarks is provided.

Keywords: Generative Adversarial Networks, Conditional Generators, Face
Generation

1. Introduction

Generative Adversarial Networks (GAN) [1] are among the most success-
ful implementations of deep generators. The idea of GAN is to train two
agents, a generator, and a discriminator, simultaneously. The generator is a
deep neural network which accepts a vector from a latent space (uniformly
distributed noise) and outputs a sample, same type of the database. The dis-
criminator is a binary classifier determining whether this sample is generated
or is a genuine data coming from the database. The training is accomplished
by playing a min-max game between these two networks. There are several
extensions to the original GAN idea wherein the original GAN is adapted to
a specific condition by changing the network structures and/or loss function.
For example, Conditional GAN (CGAN) [2], Auxiliary Classifier GAN (AC-
GAN) [3], and Versatile Auxiliary Classifier with GAN (VAC+GAN) [4] are
utilizing the original GAN idea to train conditional generators wherein the

Preprint submitted to Neural Networks May 29, 2018

ar
X

iv
:1

80
5.

10
86

4v
1 

 [
ee

ss
.I

V
] 

 2
8 

M
ay

 2
01

8



output of the generator is constrained to a specific class given the right in-
put sequence. CGAN does this by partitioning the latent space and also the
auxiliary knowledge of the data class. In ACGAN the loss of the CGAN is
manipulated by adding a classification term which back-propagates through
generator and discriminator. The VAC+GAN extends the ACGAN scheme
to be more adaptable to different GAN variations. This is done by adding a
classifier network in parallel with the discriminator network, and the classi-
fication error is back-propagated through the generator.
In this work, the idea of VAC+GAN is extended to regression problems by
replacing the classifier with a regression network. A new loss function is pre-
sented for this network. The regression error is back-propagated through the
generator. This gives the opportunity to train a generator while constraining
the generated samples to any continuous aspect of the original database.
Similar ideas include the scheme presented in [5] wherein a Hierarchical Gen-
erative Model (HGM) is utilized for eye image synthesis and eye gaze estima-
tion. This work introduces a variation of GAN known as conditional Bidirec-
tional GAN (cBiGAN) which is a mixture of CGAN and Bidirectional GAN
(BiGAN). The main issue with this method is the lack of adaptability to ev-
ery GAN variation. This method is only applicable to BiGAN scheme. This
approach is shown in figure 1. In our observations, cBiGAN implementation
is able to generate samples for each aspect but there are very low variations
in generated samples for a specific aspect. The proposed VAR+GAN scheme
produces higher variations in the same condition. This is discussed in more
details in section 3.4. The other advantage of the proposed method is its ver-
satility, i.e., it applies to any GAN implementation regardless of the network
architecture and/or loss function.

In the next section, the idea of VAR+GAN is explained alongside with
the presented loss function for regression network. Section 3 explains im-
plementation, results and the comparisons for the presented method against
cBiGAN and the conclusions and future works is discussed in the last section.

2. Versatile Auxiliary Regressor with Generative Adversarial net-
work (VAR+GAN)

The idea of proposed scheme is to place a regression network in parallel
with the discriminator and back-propagate the regression error through the
generator (see figure 2). In this method, the generator is constrained to
generate samples with specific continuous aspects. For example, in the face

2



Generator

Database

(Image)

Database

(Aspect)

Discriminator

Encoder

Latent 

Space

Aspect

Figure 1: cBiGAN scheme used for training conditional generators.

generation application, given the right latent sequence, the generator creates
faces with particular landmarks. The following loss function is introduced
for the regression network

LR =

∫ ∫
dpz(z)

(
− log

(
1− (y −R(G(z)))

))
dz (1)

wherein z is the latent space variable, dpz(z) is the distribution of an in-
finitesimal partition of latent space, y is the target variable (ground truth),
R is the regression function and G is the generator function.

Proposition 1. For the loss function in equation 1 the optimal regressor is

R∗ =
p(x)

c
+ y − 1 (2)

wherein p(x) is the distribution of the generator’s output, c is post-integration
constant, and y is the target function.

Proof. Considering the inner integration of equation 1 and by replacing
G(z) = x, the extremum of the loss function with respect to R is

d

dR

∫
dpx(x)

(
− log

(
1− (y −R(x))

))
dx = 0 (3)

3



Generator Discriminator

RegressorDatabase

(Image)

Database

(Aspect)

Latent 

Space

Aspect

Figure 2: Presented method (VAR+GAN) for training conditional generators.

which can be written as
∫ −dpx
R− y + 1

= 0 ⇒ px
R− y + 1

= c (4)

this results in

R =
p(x)

c
+ y − 1 (5)

concluding the proof.

Theorem 1. Minimizing the loss function in equation 1 decreases the entropy
of the generator’s output.

Proof. by replacing equation 2 in 1 we have

LR =

∫ ∫
− log

(px(x)

c

)
dpxdx (6)

which can be rewritten as

LR = −
∫
px(x) log(px(x))dx+ log(c) = H(px(x)) + log(c) (7)

wherein H is the shannon entropy. Minimizing LR results in decreasing
H(px(x)) concluding the proof.

Adding the regressor to the model decreases the entropy of the generated
samples. This is expectable since the idea is to constrain the output of the
generator to obey some particular criteria. This is shown in observations in
section 3.4.

4



Theorem 2. For any two sets of samples and their corresponding targets
(y1 and y2), the loss function in equation 1 increases the Jensen Shannon
Divergence (JSD) between generated samples for these two sets.

Proof. Consider z1 and z2 are two partitions of the latent space correspond
to two sets of samples with targets y1 and y2. In this case, the loss function
in equation 1 is given by:

LR =−
∫
pz1(z) log(1− (y1 −R(G(z1))))dz

−
∫
pz2(z) log(1− (y2 −R(G(z2))))dz

(8)

Considering G(z1) = x1, G(z2) = x2, c1 = 1 − y1, and c2 = 1 − y2 equation
8 simplifies to

LR = −
∫
px1(x) log(c1 +R(x))dx−

∫
px2(x) log(c2 +R(x))dx (9)

To find the optimum R(x) the derivative of the integrand is set to zero given
by

px1

c1 +R
+

px2

c2 +R
= 0 (10)

which results in

R = −px1c2 + px2c1
px1 + px2

(11)

By replacing equation 11 in equation 9 it simplifies to

LR = −
∫
px1 log

(
(c1 − c2)px1

px1 + px2

)
+

∫
px2 log

(
(c2 − c1)px2

px1 + px2

)
dx (12)

which can be rewritten as

RL =−
∫

log

(
px1

px1+px2
2

)
−
∫

log

(
px2

px1+px2
2

)

− log(c1 − c2)− log(c2 − c1)− log(4)

(13)

which equals to

RL = − log(c1 − c2)− log(c2 − c1)− log(4)− 2JSD(px1 ||px2) (14)

minimizing RL increasing JSD(px1||px2) term, concluding the proof.

In this section, it has been shown that the presented loss function in-
creases the distance between generated samples for any two set of aspects,
which is desirable.

5



...

...

k 

dimensions

Output

(a) Decoder network.

..
.

k 

dimensions

Input

(b) Encoder network.

Figure 3: Network architectures used for implementation purposes.

3. Implementation and Results

In this section, the implementation of the VAR+GAN is presented and
compared to cBiGAN method. To keep the consistency in comparisons,
the same architecture for generator network has been kept throughout all
implementations. All the networks are trained using Lasagne [6] library on
the top of Theano [7] library in Python.

3.1. Network Architectures

Three main architectures used in this section are encoder, decoder, and
regression networks. The first two are shown in figure 3. The decoder con-
tains one fully connected layer which maps the input to a 3D layer. Next
layers are all convolutional layers followed by (2, 2) un-pooling layers for ev-
ery second convolution. The exponential linear unit (ELU) [8] is used as
activation function except in the last layer wherein no non-linearity has been
applied except for the encoder in cBiGAN scheme wherein tanh nonlinearity
is applied in the output layer. The encoder network is made of convolutional
layers with ELU activation function. The downscaling in these layers is ob-
tained by using (2, 2) stride in every second convolutional layer.In the decoder
network, all convolutional layers have 64 channels while in the encoder, the
number of the channels is gradually increased to 128, 192, and 256 after each
pooling layer. The layers shown in red are applying no nonlinearity to their
input. The regression network is a conventional deep neural network shown
in table 1.

6



Table 1: the Regression network used in experiments.

Layer Type kernel Activation
Input Input(48× 48) – –
Hidden 1 Conv 3× 3(64 ch) ReLU
Pool 1 Max pooling 2× 2 –
Hidden 2 Conv 3× 3(64 ch) ReLU
Pool 2 Max pooling 2× 2 –
Hidden 3 Dense 1024 ReLU
Output Dense 98 Tanh

3.2. Database

The dataset used in this work is CelebA database [9] which is made of
202,599 frontal posed images. Face regions are cropped and resized to 48×48
pixels using OpenCV frontal face cascade classifier [10]. Supervised Descent
Method (SDM) [11] is used for facial point detection. The detector is based
on [12] and it utilizes the discriminative 3D facial deformable model to find 49
facial landmarks including contours of eyebrows, eyes, mouth and the nose.
These landmarks are used as the data aspect in this work.

3.3. Implementation

3.3.1. VAR+GAN

For the proposed scheme (figure 2), the Boundary Equilibrium Generative
Adversarial Network (BEGAN) [13] is utilized to train the deep generator.
In this method the generator architecture is same as the decoder network
shown in figure 3a with input dimension k = 128. The discriminator is
an auto-encoder network wherein the decoder architecture is same as the
generator and the encoder is the network shown in figure 3b with k = 128.
The regression network is shown in table 1 and the loss function for proposed
implementation is a modified version of the original BEGAN loss [13] given
by:

Ld = L(x)− kt · L(G(z|y))

Lg = ϑ · L(G(z|y)) + ζ · LR

kt+1 = kt + λk
(
γL(x)− L(G(z|y))

) (15)

Where Lg and Ld are generators and discriminators losses respectively. G
is the generator function, z is a sample from the latent space, x and y are

7



genuine image and corresponding ground truth drawn from the database ,
λk is the learning rate for k, γ is the equilibrium hyper parameter set to 0.5
in this work, LR is the regression loss given by equation 1, and ϑ and ζ are
set to 0.97 and 0.03 respectively, and L is the auto-encoders loss defined by

L(v) = |v −D(v)|2 (16)

The optimizer used for training the generator and discriminator is ADAM
with learning rate, β1 and β2 equal to 0.0001, 0.5 and 0.999 respectively.
And the regression network is optimized using nestrov momentum gradient
descent with learning rate and momentum equal to 0.01 and 0.9 respectively.

3.3.2. cBiGAN

The cBiGAN scheme is implemented for the same generator architec-
ture and on the same database to make fair comparisons with the proposed
method. The generator architecture is same as the decoder network shown
in figure 3a with input dimension k = 128. The discriminator model is same
as the encoder network in figure 3b with k = 1 and sigmoid non-linearity at
the output layer. And the encoder network in figure 1 has the architecture
shown in figure 3b with k = 98 and tanh non-linearity at the output layer.
The loss function for this scheme is presented in [5] given by

LD = log(pr) + log(1− pI) + log(1− ps)
LG = log(pI)

LE = log(ps) + θ||s− − y||2
(17)

wherein s− is the encoder’s output, y is the genuine aspect coming from the
database, and

pr = D(y, x) , pI = D(y,G(z|y)) , ps = D(s−, x) (18)

where D and G are discriminator and generator functions respectively, x
and y are genuine image and corresponding ground truth drawn from the
database, and z is a sample from the latent space. The coefficient θ is set to
0.8. The optimizer used for training the model is ADAM with learning rate,
β1 and β2 equal to 0.0001, 0.5 and 0.999 respectively.

8



(a) Proposed method (VAR+GAN). (b) cBiGAN.

Figure 4: Generator outputs for proposed method (VAR+GAN) vs cBiGAN.

3.4. Results

In this section, the proposed method is compared against the cBiGAN
method while generating faces for a particular landmark point set. The
results for six sets of landmarks are shown in figures 4 to 9. In each figure
(left) the outputs from the proposed method for a particular set of landmarks
are illustrated while in right side of the figures the output of the generator
trained in cBiGAN scheme is given for the same landmarks.

As shown in these figures, both methods are able to generate samples
constrained to a particular set of landmarks but the proposed method gener-
ates higher variations of faces for a given landmark set while cBiGAN fails to
create different samples in the same condition. The advantage of VAR+GAN
is the versatility of the method which facilitates the implementation and also
guarantees the higher quality in generated samples. For example in this work
the proposed method is taking advantage of simplicity and power of BEGAN
implementation and only change applied is to place a regression network
and add its error value to the generator’s loss. While cBiGAN method is
constrained to a specific loss function which is a big disadvantage.

9



(a) Proposed method (VAR+GAN). (b) cBiGAN.

Figure 5: Generator outputs for proposed method (VAR+GAN) vs cBiGAN.

(a) Proposed method (VAR+GAN). (b) cBiGAN.

Figure 6: Generator outputs for proposed method (VAR+GAN) vs cBiGAN given partic-
ular landmarks.

10



(a) Proposed method (VAR+GAN). (b) cBiGAN.

Figure 7: Generator outputs for proposed method (VAR+GAN) vs cBiGAN given partic-
ular landmarks.

(a) Proposed method (VAR+GAN). (b) cBiGAN.

Figure 8: Generator outputs for proposed method (VAR+GAN) vs cBiGAN given partic-
ular landmarks.

11



(a) Proposed method (VAR+GAN). (b) cBiGAN.

Figure 9: Generator outputs for proposed method (VAR+GAN) vs cBiGAN given partic-
ular landmarks.

4. Conclusion and Future Work

In this work, a new scheme for training conditional deep generators has
been introduced wherein the generator is able to constrain the generated
samples to any continuous aspect of the dataset. The presented method is
versatile enough to be applicable to any GAN variation with any network
structure and loss function. The idea is to place a regression network in
parallel with the discriminator network and back-propagate the regression
error through the generator. A new loss function is also presented and it has
been shown that it increases the JSD between data generated for any two set
of aspects. The other property of the proposed loss is the reduction of the
entropy for generated samples which is expectable because of the constraints
applied to generated data.
The proposed method is also compared with the only available method with
the same purpose (to the best of our knowledge in the time writing the arti-
cle). cBiGAN method generates samples with a particular aspect but there
are very low variations between generated samples while VAR+GAN pro-
duces higher variations for a specific set of aspects. Being able to generate
variable samples is crucial for tasks including augmentation purposes. Be-
ing able to augment the database for certain data aspects and use them in

12



training the final products is one of the most interesting applications for the
conditional generators.
The future works include merging the VAC+GAN and VAR+GAN meth-
ods to constrain the generator to create samples from a specific class with
a particular continuous aspect. And also investigating the influence of the
generated samples in augmentation task for different applications.

References

References

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, in: Ad-
vances in neural information processing systems, 2014, pp. 2672–2680.

[2] M. Mirza, S. Osindero, Conditional generative adversarial nets, arXiv
preprint arXiv:1411.1784.

[3] A. Odena, C. Olah, J. Shlens, Conditional image synthesis with auxiliary
classifier gans, arXiv preprint arXiv:1610.09585.

[4] S. Bazrafkan, H. Javidnia, P. Corcoran, Versatile auxiliary classifier+
generative adversarial network (vac+ gan); training conditional genera-
tors, arXiv preprint arXiv:1805.00316.

[5] K. Wang, R. Zhao, Q. Ji, A hierarchical generative model for eye image
synthesis and eye gaze estimation.

[6] S. Dieleman, J. Schlter, C. Raffel, E. Olson, S. K. Snderby, D. Nouri,
D. Maturana, M. Thoma, E. Battenberg, J. Kelly, J. D. Fauw, M. Heil-
man, D. M. de Almeida, B. McFee, H. Weideman, G. Takcs, P. de Rivaz,
J. Crall, G. Sanders, K. Rasul, C. Liu, G. French, J. Degrave, Lasagne:
First release. (Aug. 2015). doi:10.5281/zenodo.27878.
URL http://dx.doi.org/10.5281/zenodo.27878

[7] J. Bergstra, F. Bastien, O. Breuleux, P. Lamblin, R. Pascanu, O. Delal-
leau, G. Desjardins, D. Warde-Farley, I. Goodfellow, A. Bergeron, et al.,
Theano: Deep learning on gpus with python, in: NIPS 2011, BigLearn-
ing Workshop, Granada, Spain, Vol. 3, Citeseer, 2011.

13



[8] D.-A. Clevert, T. Unterthiner, S. Hochreiter, Fast and accurate deep
network learning by exponential linear units (elus), arXiv preprint
arXiv:1511.07289.

[9] Z. Liu, P. Luo, X. Wang, X. Tang, Deep learning face attributes in the
wild, in: Proceedings of the IEEE International Conference on Com-
puter Vision, 2015, pp. 3730–3738.

[10] D. Cristinacce, T. F. Cootes, Feature detection and tracking with con-
strained local models., in: Bmvc, Vol. 1, 2006, p. 3.

[11] X. Xiong, F. De la Torre, Supervised descent method and its applica-
tions to face alignment, in: Computer Vision and Pattern Recognition
(CVPR), 2013 IEEE Conference on, IEEE, 2013, pp. 532–539.

[12] A. Asthana, S. Zafeiriou, S. Cheng, M. Pantic, Incremental face align-
ment in the wild, in: Proceedings of the IEEE conference on computer
vision and pattern recognition, 2014, pp. 1859–1866.

[13] D. Berthelot, T. Schumm, L. Metz, Began: Boundary equilibrium gen-
erative adversarial networks, arXiv preprint arXiv:1703.10717.

14


	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Literature Review
	1.2 Summery Of the Contributions in This Thesis
	1.2.1 Semi Parallel Deep Neural Networks (SPDNN)
	1.2.2 Data Preparation
	1.2.3 Deep Generative Models

	1.3 Thesis Structure
	1.4 List of the Publications

	2 Deep Neural Networks
	2.1 Neural Networks Building Blocks
	2.1.1 Convolutional Layer
	2.1.2 Pooling Layer
	2.1.3 Unpooling Layer
	2.1.4 Fully Connected Layers

	2.2 Activation Functions
	2.3 Loss Functions
	2.4 Optimization Algorithms
	2.5 Deep Neural Network Architectures

	3 Contributions and Methodologies
	3.1 Semi Parallel Deep Neural Networks
	3.2 Data Preparation
	3.2.1 Augmentation From an Expert Knowledge
	3.2.2 Smart Augmentation

	3.3 Deep Generative Models
	3.3.1 Latent Space Mapping for Generation of Object Elements with Corresponding Data Annotation
	3.3.2 Versatile Auxiliary Classifier with Generative Adversarial Network (VAC+GAN)
	3.3.3 Versatile Auxiliary Regressor with Generative Adversarial Network (VAR+GAN)

	3.4 Conclusion
	3.5 Future Works

	References
	Appendix A Pushing the AI Envelope: Merging deep networks to accelerate edge artificial intelligence in consumer electronics devices and systems
	Appendix B Semi-Parallel Deep Neural Network (SPDNN) Hybrid Architecture, First Application on Depth from Monocular Camera
	Appendix C Deep Learning for Facial Expression Recognition: A step closer to a SmartPhone that Knows your Moods
	Appendix D An End to End Deep Neural Network for Iris Segmentation in Unconstraint Scenarios
	Appendix E Smart Augmentation Learning an Optimal Data Augmentation Strategy
	Appendix F Latent Space Mapping for Generation of Object Elements with Corresponding Data Annotation
	Appendix G Versatile Auxiliary Classifier with Generative Adversarial Network (VAC+GAN)
	Appendix H Versatile Auxiliary Classifier with Generative Adversarial Network (VAC+GAN), Multi Class Scenarios
	Appendix I Versatile Auxiliary Regressor with Generative Adversarial network (VAR+GAN)

