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ABSTRACT 
 

While System Dynamics is normally associated with the representation of high-level 
dynamic aggregate models, it has also been successfully applied to modeling agent-based 
systems. Static networks of cooperative agents can be constructed, and their interactions 
modeled through equation assignments from one element of a model to another. Within 
System Dynamics, optimisation has played an important role in defining the best policies 
for any given model: however, traditionally, these optimal solutions are based on finding 
the best combination of model parameters that maximise or minimise a payoff function. 
This paper presents an optimisation approach that can explore a search space in order to 
discover the best combination of parameters and equation-based strategies for a given 
agent-based problem. The approach is validated through a case study based on the four-
agent Beer Game.    

 
 

                                                 
1 The software system presented in this paper runs on the .NET platform,  and is freely available from the 
author. 
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1. Introduction 

In recent years, considerable interest has been shown in exploring synergies between 
system dynamics and agent-based simulation, and it is recognised that both approaches 
have the capacity to deliver overlapping and complimentary insights into complex 
problems (Chaturvedi et al. 2001, Choi et al. 2001). For example, in the domain of 
corporate networks dynamics, Akkermans (2001) presents a system dynamics model of 
100 agents, and focuses on the question of whether such corporate networks can achieve 
stability. His analysis indicates that “lock in” emerges in the supply network, and that 
agents that bias their strategy towards short-term performance outperform agents that 
adopt longer term business relationships. A key point of this research is that the agent 
perspective incorporating state, feedback, and inter-agent interactions can be represented 
in system dynamics, in terms of models of disaggregated integral equations. 
 
Borshchev et al. (2004) show how several agent based models can be constructed from 
existing system dynamics models. Examples include the classic predator-prey model, and 
the Bass diffusion model which simulates the rate of adoption of new products. Scholl 
(2001) reflects on how the emergence of complexity science, and its primary focus on 
agent-based modeling, effectively overlooked the rich body of literature from system 
dynamics. He argues for cross study and closer ties are long overdue, and that one 
practical way forward would be to develop agent-based models of system dynamics 
classics such as the Beer Game. At a technical level Grossler et al. (2003) demonstrate 
how both approaches can be integrated, and RePast® (North et al. 2006) and Vensim®2 
are used to model different actors in a supply chain. Furthermore, the authors suggest that 
future promising areas for synergy between the two approaches include complex problem 
situations such as the dynamic reconfiguration of a supply chain’s structure, and 
determining the effects of changes on overall performance.  
 
The idea of combining system dynamics and agent simulation to dynamic supply chain 
configuration is also explored by Schieritz and Grossler (2003). They contend that the 
combination these approaches reduces the a priori complexity of supply chain models, 
through representation of the micro-level agent schemata by system dynamics models, 
while the higher supply chain network in modeled using a conventional agent approach. 
In this scenario, the phenomenon of agents deciding between suppliers can be 
accommodated, as individual agents maintain mental models (stocks) of key decision 
variables such as supplier attractiveness and perceived delivery time, and the high-level 
agent environment can reorganise the agent network based on the lower level 
preferences. As the authors explain, this level of flexibility would not be possible in a 
conventional system dynamics model, where the structure is determined before 
commencing the simulation, and cannot be altered during the course of a given 
simulation experiment. 
 
 

                                                 
2 RePast and Vensim are registered trade marks. 
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Another study which employed both approaches is one that involved the analysis of 
cellular receptor dynamics (Wakeland et al. 2004). The authors explain that these types of 
problems are frequently tackled using differential equations, and hence the suitability of 
system dynamics. However, in certain scenarios where concentration and reaction 
probabilities are low, agent-based modeling does offer benefits. In their paper, they 
demonstrate how both approaches can be used, although they did not find a clear 
demarcation which would indicate which technique is preferable in a given situation. 
Rahmandad (2004) carries out an extensive analysis of the spread of contagious diseases, 
using system dynamics and agent-based approaches. The impact of heterogeneity in agent 
attributes, and the effect of different network structures are studied, and the work 
demonstrates that agent-based and differential equation elements can be combined in the 
same model. In referring to Forrester’s seminal work on Industrial Dynamics (Forrester 
1961), and in common with Scholl (2001), who commented on the lack of awareness of 
the complexity community of this body of work, Rahmandad writes that “one of 
Forrester’s key contributions to modeling methodology was precisely to view systems as 
comprised of multiple interacting agents, each perceiving only a limited subset of all 
available information, and each with their local goals, norms and decision rules.” This 
view, and indeed the work cited in this paper, clearly confirms that a synergy exists 
between the two modeling methodologies. 
 
An important dimension of system dynamics, and indeed any simulation approach, is the 
use of optimisation in order to traverse the policy space in order to find the best 
combination of parameters, based on a specified objective function. The system dynamics 
literature, for example, Coyle (1996), Dangerfield et al. (1996), Chen et al. (2004), 
Duggan (2005), Keloharju and Wolstenholme (1989), describes how optimisation and 
simulation are complimentary approaches, and how, when used as part of the modeling 
process, optimisation can impart key understandings to decision makers. A common 
thread through these papers is what could be termed the parameter perspective for 
optimisation approaches. For this type of scenario, it is assumed that the policy maker is 
satisfied with the equations, and the only doubt remains as to what values the parameters 
– or the policy levers – should have. This is an important problem to solve, as in many 
systems, different parts of the parameter space can give rise to huge variances in the 
value of a payoff function. However, these optimisation approaches do not explicitly 
allow policy makers to experiment with different equation structures in additional to 
exploring the parameter space.  
 
What this paper now proposes is what could be termed the equation perspective to 
optimisation, which, in addition to allowing for the inclusion of parameters for an 
optimisation problem, also allows the decision maker to allow for the evaluation of many 
different sets of heuristics (i.e. equations) which agents can then employ in order to arrive 
at the optimal set of parameters and policy equations for a given problem. The general 
problem is characterised, the system design described, and a case study based on the Beer 
Game is presented.  
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2. Problem Characterisation 

The type of problem addressed by this work (see figure 1) may be characterised by: 
 

A. A network of N agents (A1, A2, ...AN), represented as a bi-directed graph, 
where each agent AJ can be connected to a predecessor agent AJ-1 and a 
successor agent AJ+1. Agents that have no predecessor or no successor can also 
be represented. 

 
B. A set of M agent strategies (S1, S2, ...SM), and each of these can be deployed 

by any of the N agents. Each strategy SI (i.e. each agent’s behaviour) is 
defined by a set of stock and flow equations. 

 
C. A set of agent parameters (PA1, PA2, ...PAN), which are identified as policy 

“levers” than are to be modified in order to seek out the optimal solution for a 
given payoff function. The number of parameters for each agent is defined as 
P.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Characterisation of the optimisation problem 
 
 
Given these definitions, for a given agent network whose structure can be defined as a bi-
directed graph, and whose behaviour is specified through stock and flow equations,  the 
goal of the system is to find the set of parameters and strategies (equations) that optimises 
the target payoff function.  
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3. System Design 

The structure of the system is similar to how optimisation is usually approached in 
system dynamics, namely optimisation through repeated simulation (Coyle 1996), where 
sets of parameters are passed through to the optimiser, and the payoff function value then 
returned. This result is then used to assess the suitability of the parameter set, and the 
optimisation process continues until a solution converges on an optimal value.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The optimisation process in system dynamics 
 
 
For this system, a purpose-built genetic algorithm and simulation software is used, which 
is an extension of software already developed to discover Pareto-optimal solutions for 
system dynamics models (Duggan 2006).  An example a solution chromosome for this 
equation-based optimiser is shown in figure 3, where the size of the solution is defined 
as: 
 

SIZE(Solution) = (N x P) + (N) 
 

where N is the number of agents, and P is the number of parameters per agent. 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 3: Solution Structure 
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Figure 3 represents a solution that has N agents, and there are P parameters for each 
agent. These parameters have a defined minimum and maximum value, and the optimiser 
generates values with those specified ranges. The additional N cells which are added to 
the solution represent the strategy identification number used by an individual agent, and 
will have a value of [0.. M-1], where M is the total number of strategies.  
 
The actual algorithm is standard, and roulette wheel selection with a ranking-based 
approach is used: 
 

Randomise Population (P) 
While (GenerationCount < NumberGenerations) 

CalculatePayoffs(P) 
MP = Selection(P) 
Crossover(MP) 
Mutate(MP) 
P = MP 

End While 
 
The most complex element of the design now lies in preparing the solution so that a 
payoff can be calculated. While the values of each solution can be easily generated, based 
on selecting random values from the parameter range and the allowed set of strategy 
values, the follow-on challenge is to translate this array into a set of stock and flow 
equations which models the particular set of strategies for a given agent.  Figure 3 
illustrates how this is accomplished, where the inputs to the model builder are: the 
solution chromosome, the addition to a network model (see appendix 2), and a set of 
strategy equations (see appendix 3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Steps involved in calculating payoffs 
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The payoff calculation is achieved using the following steps: 
 

1. The input is a solution chromosome, which contains the “genetic information” 
that is needed to configure a simulation run. This information includes the 
values for each parameter, and an identifier for each agent’s strategy. 

 
2. The model builder loads (1) the network model, which specifies, in the form 

of a bi-directed graph, the agents in the network and their interrelationships 
(see appendix B), and (2) all of the strategy files, which contain the sets of 
equations that capture each decision making rule that will be used as part of 
the optimisation. 

 
3. Based on the strategy number specified for each agent, the appropriate 

strategy model file is dynamically loaded and combined with the network 
model to produce a single multi-agent stock and flow model. This stock and 
flow model will have the parameters and strategy set to those values specified 
in the chromosome. Mapping information is contained within the network file 
which maps both sides of an equation that involves information from both 
agents. For example, in the retailer agent specification, the variable 
$ID$.UpstreamShipments has one candidate for assignment, and that is the 
variable $ID$.Downstreamshipments in the wholesaler. [Note that $ID$ is a 
tag that is replaced by the actual ID of the agent in question.] 

 
   <candidates> 
    <variable>$ID$.UpstreamShipments</variable> 
    <candidate> 
     <node_id>Wholesaler</node_id> 
     <variable_id>$ID$.DownstreamShipments</variable_id> 
    </candidate> 
   </candidates> 
 

The mapping is important, as it allows a completely integrated model with 
consistent and valid equations to be created for each payoff calculation. 
  

4. The newly generated stock and flow model is forwarded to a numerical 
integrator, and the payoff variables are then made available to the optimiser. 
The value of the payoffs are then used to rank individual solutions, and the 
standard operators of selection, crossover and mutation are then applied. 

 
The optimisation process concludes when the defined number of generations have been 
reached. The highest ranked solution is the optimal, and this specifies the optimal 
combination of parameter values and strategies.   
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4. Case Study 

In order to verify this approach, a case study based on a simulation of the Beer Game 
(Sterman 2000) is presented. The overall structure of the game is shown in figure 5 (see 
sample equations in appendix 3), where each agent sends orders upstream, and 
subsequently receives shipments after a time delay. In the Beer Game, each agent has a 
decision making heuristic based on the stock management structure, which formulates 
their order rate based on the current stock levels, the amount ordered but not yet arrived, 
and the expected orders.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: The Beer Game Network 
 

An important educational aspect of the Beer Game is how this decision making structure 
of agents influences the overall system behaviour. It has been demonstrated (Sterman 
1989) that when students play the Beer Game, they often use a policy that ignores the 
supply line, and so their ordering patterns are unnecessarily amplified, and this 
amplification increases in magnitude as the demand signals make their way upstream, 
giving rise to the well-documented “bullwhip effect.” In our scenario, in order to 
illustrate how the system operates, we present a range of different strategies which are 
based on a combination of the information cues used for the stock management structure.  
 
These strategies are summarised in table 1, and each strategy presents a different heuristic 
which determines how much an agent orders at any point during the simulation run. For 
this example, six strategies were selected, but this value is an arbitrary selection, and in 
practice, there is no significant upper limit on the number of strategies that can be used. 
While some of these strategies might appear naïve, it is probable that they could be used 
in any given Beer Game scenario. Also, the goal of the case study is not to discover the 
best heuristic for the beer game, rather, it is to demonstrate that the proposed optimisation 
approach can be implemented for a given agent network. 
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ID Formulation of order rate Comments 
 

0 
 
MAX(0,ExpectedOrders+StockAdjust
ment+SupplyLineAdjustment) 

 
Correct stock management structure 
formulation 
 

1 MAX(0,ExpectedOrders+StockAdjust
ment) 

Ignores supply line – models 
misperception of feedback 
 

2 MAX(0, StockAdjustment) Stock adjustment only: ignores 
supply line and expected demand. 
 

3 MAX(0,ExpectedOrders) Expected orders only: no 
consideration of current stock or 
supply line. 
 

4 MAX(0,ExpectedOrders+ 
SupplyLineAdjustment) 

Expected orders and supply line 
adjustment are considered. 
 

5 MAX(0, SupplyLineAdjustement) Only the supply line adjustment is 
taken into account: expected orders 
and stock adjustment are ignored. 
 

 
Table 1: The six ordering heuristics used for the experimental run 

 
 
For each of the four agents, the following parameters, and their associated range, are 
considered: 
 

• Expected Orders Adjustment Time (1, 15) – the adjustment time used to smooth 
out the actual orders using a first order information delay. 

• Stock Adjustment Time (1, 15) – the adjustment time used to decide how many 
units are needed to move the current stock level towards its target value. 

• Supply Line Adjustment Time (1, 15) – the adjustment time deployed to control 
how quickly the supply line approaches its target value. 

 
In summary, for each agent there are four levers to consider: the three adjustment times, 
and the choice of strategy. In order for the optimisation to work, each of the strategies are 
coded into six different plug and play models, which can be configured in any 
combination by the optimiser in order to converge towards the optimal solution.  
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Figure 6 shows the initial conditions for the experimental optimisation run, namely: 
 

• The problem characterisation, which includes the payoff function, the 
optimisation task, the genetic algorithm parameters and the customer demand 
function. 

 
• The strategy files, which encapsulate the set of stock and flow equations that 

capture a particular strategy. 
 

• The constraints for each parameter, and strategy, in the model. While values for 
the parameters can have fractional components, the values generated by the 
strategies will always be rounded to a whole number.   

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
    
 
 
 
 
 
 
 
 

Figure 6: Initial conditions for experimental optimisation run 
 
 
In order to get a good range of results, twenty five optimizations were run, and the results 
of these are presented in table 2. 
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Table 2: Summary of optimisation results 

RUN# RETAILER WHOLESALER DISTRIBUTOR FACTORY PAYOFF
SAT SLAT EOAT SID EOAT SAT SLAT SID EOAT SAT SLAT SID EOAT SAT SLAT SID

1 8.47 11.21 9.52 1 6.66 14.53 3.84 1 1.88 2.23 2.67 0 3.02 7.05 1.55 1 60,355
2 6.67 2.89 5.44 3 11.78 4.8 2.72 0 2.53 9.03 4.62 0 2.38 12.77 1.25 0 68,645
3 11.15 14.65 3.53 0 8.45 14.4 2.72 0 12.99 1.87 1.15 0 1.88 9.16 3.6 1 51,468
4 6.22 13.43 6.18 3 4.71 1.66 2.96 0 8.26 7.28 1.76 0 2.65 9.43 2.01 1 68,040
5 11.06 3.44 1.23 3 8.07 7.26 2.79 0 2.2 4.65 5.45 0 1.74 2.74 1.05 1 54,009
6 14.57 11.1 2.11 1 7.12 1.03 2.93 1 3 1.08 2.73 1 1.45 7.56 1.28 1 55,262
7 10.93 1.19 6.24 1 3.73 6.75 1.4 4 3.44 2.12 4.58 0 7.27 11.88 1.69 0 76,171
8 7.21 6.59 14.08 1 5.96 5.14 3.55 0 11.95 1.55 1.06 0 1.68 6.78 7.82 1 57,751
9 8.36 6.91 9.37 1 7.21 13.96 1.4 1 7.62 5.93 1.9 0 1.85 3.11 1.77 1 58,682
10 7.21 11.86 14.38 0 1.57 10.06 6.99 1 4.88 11.27 6.95 1 1.19 14.16 10.25 1 133,028
11 13.05 11.53 6.48 1 10.84 2.72 3 1 2.6 14.74 4.92 0 1.17 6.88 9.04 1 64,917
12 13.52 12.13 1.8 4 6.32 2.94 2.62 0 14.77 9.92 1.59 0 3 4.97 1.91 0 64,463
13 8.96 2 2.74 3 7.14 11.22 7.82 1 9.02 5.83 1.15 0 2.3 6.87 2.35 1 71,833
14 10.26 14.06 11.29 0 6.76 10.56 1.31 1 13.71 6.35 1.87 0 5.47 6.36 1.93 1 74,686
15 12.14 1.78 11.45 4 7.55 1.17 2.74 0 2.02 2.53 14.84 0 1.52 9.48 8.36 1 79,018
16 10.93 11.72 1.56 4 5.88 7.91 6.84 1 2.98 1.23 1.52 0 3.03 8.83 1.12 0 54,797
17 12.11 6.42 7.52 1 6.62 11.4 5.72 0 3.71 7.39 3.41 1 5.04 10.73 1.7 0 78,336
18 2.44 9.76 7.77 3 9.96 6.06 1.94 0 10.11 9.8 1.87 1 2.65 12.14 3.95 1 77,622
19 12.09 6.83 3.21 3 12.69 13.89 1.88 0 7 1.19 1.55 0 3.72 5.73 2.71 1 57,920
20 7.54 4.76 1.87 3 2.45 7.81 14.82 0 7.9 1.8 1.93 1 1.17 10.01 8.84 1 68,730
21 13.74 5.39 4.52 0 5.54 9.02 1.08 0 7.46 11.98 2.27 0 9.52 4.63 1.03 0 69,471
22 3.98 5.37 14.46 1 11.78 7.37 1.39 1 3.81 4.56 1.65 1 9.59 1.14 1.39 0 62,375
23 7.21 9.46 1.35 3 9.85 9.51 2.13 0 2.24 4.04 8.23 1 1.76 1.8 1.12 0 54,888
24 13.61 5.89 3.67 1 3.62 7.67 8.61 1 3.49 12.92 1.77 1 1.37 3.04 1.23 0 54,143
25 7.78 1.74 9.06 3 13.12 12.89 1.09 0 14.75 8.03 3.19 1 11.25 6.65 1.59 0 92,893
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Figure 8 captures, over all the optimal solutions, the percentage of individual strategies 
used by each agent. The ones most prominent are those with ID 0 (use supply line) and 
ID 1 (ignore the supply line). While intuitively the reader may expect that the first 
strategy should win out for most cases, this is clearly not the case. Part of the reason for 
this is the complex interrelationships in the Beer Game, and also the effects that the 
adjustment times can play in “damping out” poor decision making. Furthermore, for this 
particular optimisation the simulations started in steady state equilibrium, and only one 
demand pattern was considered, which was the classical step increase in orders after five 
time units.  
 
 
 

 
 

Figure 8: Breakdown of strategy adoption by each agent, for all recorded optimal 
solutions 
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5. Conclusions 

This paper demonstrated a new optimisation method that can discover the optimal 
combination of parameters, and equation-defined strategies, for a given system dynamics 
agent-based problem. Such a system has the potential to be used in larger-scale agent-
type problems, where the challenge is to test a range of heuristics in order to find the best 
one for a given scenario. Future work will involve the construction of a user-interface to 
augment the current file-based definitions. This will allow for: the construction of agent 
networks; the definition of agent behaviour; and the analysis of the optimisation results.   
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A. Appendix 1: Beer Game Optimisation Characterisation 

 
<network_optimiser> 
 
<network_model>BeerGameNetworkOPT.xml</network_model> 
<number_strategies>6</number_strategies> 
<number_nodes>4</number_nodes> 
<number_objectives>1</number_objectives> 
<optimisation_task>MIN</optimisation_task> 
<crossover_rate>0.70</crossover_rate> 
<mutation_rate>0.15</mutation_rate> 
<number_generations>100</number_generations> 
<population_size>100</population_size> 
 
<objectives> 
 
 <objective> 
  <id>Objective 1</id> 
  <payoff>Global.TotalCosts</payoff> 
 </objective> 
  
</objectives> 
 
<strategies> 
 <strategy> 
  <id>0</id> 
  <name>BG_Heuristic_00</name> 
  <description>Beer Game Agent - Uses the Supply Line</description> 
  <directory>C:\Program Files\SDPrototype\Models\NETOPT\</directory> 
  <file>BG_00_TemplateSupplyLine.xml</file> 
 </strategy> 
 
 <strategy> 
  <id>1</id> 
  <name>BG_Heuristic_01</name> 
  <description>Beer Game Agent - Does not use the Supply Line</description> 
  <directory>C:\Program Files\SDPrototype\Models\NETOPT\</directory> 
  <file>BG_01_TemplateNoSupplyLine.xml</file> 
 </strategy> 
 
 <strategy> 
  <id>2</id> 
  <name>BG_Heuristic_02</name> 
  <description>Beer Game Agent - Only uses Stock Adjustment</description> 
  <directory>C:\Program Files\SDPrototype\Models\NETOPT\</directory> 
  <file>BG_02_TemplateASOnly.xml</file> 
 </strategy> 
 
 <strategy> 
  <id>3</id> 
  <name>BG_Heuristic_03</name> 
  <description>Beer Game Agent - Only uses expected orders</description> 
  <directory>C:\Program Files\SDPrototype\Models\NETOPT\</directory> 
  <file>BG_03_TemplateEOOnly.xml</file> 
 </strategy> 
 
 <strategy> 
  <id>4</id> 
  <name>BG_Heuristic_04</name> 
  <description>Beer Game Agent - USes SL and Eexpected Orders</description> 
  <directory>C:\Program Files\SDPrototype\Models\NETOPT\</directory> 
  <file>BG_04_TemplateSLEO.xml</file> 
 </strategy> 
 
 <strategy> 
  <id>5</id> 
  <name>BG_Heuristic_05</name> 
  <description>Beer Game Agent - Only uses the Supply Line</description> 
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  <directory>C:\Program Files\SDPrototype\Models\NETOPT\</directory> 
  <file>BG_05_TemplateSLOnly.xml</file> 
 </strategy> 
 
</strategies> 
 
   
<parameters> 
 
<!-- #################### RETAILER #################### --> 
<parameter> 
<variable>Retailer.SAT</variable> 
<min_value>1.0</min_value> 
<max_value>15.0</max_value> 
</parameter> 
 
<parameter> 
<variable>Retailer.SLAT</variable> 
<min_value>1.0</min_value> 
<max_value>15.0</max_value> 
</parameter> 
 
<parameter> 
<variable>Retailer.EOAT</variable> 
<min_value>1.0</min_value> 
<max_value>15.0</max_value> 
</parameter> 
 
<parameter> 
 <strategy>TRUE</strategy> 
 <variable>RetailerStrategyID</variable> 
 <min_value>0</min_value> 
 <max_value>5</max_value> 
</parameter>  
 
 
<!-- #################### WHOLESALER #################### --> 
<parameter> 
<variable>Wholesaler.SAT</variable> 
<min_value>1.0</min_value> 
<max_value>15.0</max_value> 
</parameter> 
 
<parameter> 
<variable>Wholesaler.SLAT</variable> 
<min_value>1.0</min_value> 
<max_value>15.0</max_value> 
</parameter> 
 
<parameter> 
<variable>Wholesaler.EOAT</variable> 
<min_value>1.0</min_value> 
<max_value>15.0</max_value> 
</parameter> 
 
 
<parameter> 
 <strategy>TRUE</strategy> 
 <variable>WholesalerStrategyID</variable> 
 <min_value>0</min_value> 
 <max_value>5</max_value> 
</parameter>  
 
<!-- #################### DISTRIBUTOR #################### --> 
<parameter> 
<variable>Distributor.SAT</variable> 
<min_value>1.0</min_value> 
<max_value>15.0</max_value> 
</parameter> 
 
<parameter> 
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<variable>Distributor.SLAT</variable> 
<min_value>1.0</min_value> 
<max_value>15.0</max_value> 
</parameter> 
 
<parameter> 
<variable>Distributor.EOAT</variable> 
<min_value>1.0</min_value> 
<max_value>15.0</max_value> 
</parameter> 
 
<parameter> 
 <strategy>TRUE</strategy> 
 <variable>DistributorStrategyID</variable> 
 <min_value>0</min_value> 
 <max_value>5</max_value> 
</parameter>  
 
<!-- #################### FACTORY #################### --> 
<parameter> 
<variable>Factory.SAT</variable> 
<min_value>1.0</min_value> 
<max_value>15.0</max_value> 
</parameter> 
 
<parameter> 
<variable>Factory.SLAT</variable> 
<min_value>1.0</min_value> 
<max_value>15.0</max_value> 
</parameter> 
 
<parameter> 
<variable>Factory.EOAT</variable> 
<min_value>1.0</min_value> 
<max_value>15.0</max_value> 
</parameter> 
 
<parameter> 
 <strategy>TRUE</strategy> 
 <variable>FactoryStrategyID</variable> 
 <min_value>0</min_value> 
 <max_value>5</max_value> 
</parameter>  
  
  
</parameters> 
 
</network_optimiser> 
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B. Appendix 2: Beer Game Network Model 

 
<network> 
 <start_time>0</start_time> 
 <finish_time>50</finish_time> 
 <time_step>0.25</time_step> 
  
 <nodes> 
 
  <!-- #################### NODE 1 #################### --> 
  <node> 
   <identifier>Retailer</identifier> 
   <number>1</number> 
   <template>$STRATEGY_REF_0$</template> 
 
   <number_inputs>1</number_inputs> 
   <number_outputs>1</number_outputs> 
 
   <closed_list> 
    <variable>$ID$.CustomerDemand</variable> 
   </closed_list> 
 
   <candidates> 
    <variable>$ID$.UpstreamShipments</variable> 
    <candidate> 
     <node_id>Wholesaler</node_id> 
     <variable_id>$ID$.DownstreamShipments</variable_id> 
    </candidate> 
   </candidates> 
 
   <inputs> 
    <input>Wholesaler</input> 
   </inputs> 
 
   <outputs> 
    <output>Wholesaler</output> 
   </outputs> 
  </node> 
 
  <!-- #################### NODE 2 #################### --> 
  <node> 
   <identifier>Wholesaler</identifier> 
   <number>2</number> 
   <template>$STRATEGY_REF_1$</template> 
 
   <number_inputs>1</number_inputs> 
   <number_outputs>1</number_outputs>    
    
   <inputs> 
    <input>Retailer</input> 
    <input>Distributor</input> 
   </inputs> 
 
   <candidates> 
    <variable>$ID$.CustomerDemand</variable> 
    <candidate> 
     <node_id>Retailer</node_id> 
     <variable_id>$ID$.OutgoingOrders</variable_id> 
    </candidate> 
   </candidates> 
 
   <candidates> 
    <variable>$ID$.UpstreamShipments</variable> 
    <candidate> 
     <node_id>Distributor</node_id> 
     <variable_id>$ID$.DownstreamShipments</variable_id> 
    </candidate> 
   </candidates>    
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   <outputs> 
    <output>Retailer</output> 
    <output>Distributor</output> 
   </outputs> 
  </node> 
 
 
  <!-- #################### NODE 3 #################### --> 
  <node> 
   <identifier>Distributor</identifier> 
   <number>3</number> 
   <template>$STRATEGY_REF_2$</template> 
 
   <number_inputs>1</number_inputs> 
   <number_outputs>1</number_outputs> 
 
   <inputs> 
    <input>Factory</input> 
    <input>Wholesaler</input> 
   </inputs> 
 
   <candidates> 
    <variable>$ID$.CustomerDemand</variable> 
    <candidate> 
     <node_id>Wholesaler</node_id> 
     <variable_id>$ID$.OutgoingOrders</variable_id> 
    </candidate> 
   </candidates> 
 
   <candidates> 
    <variable>$ID$.UpstreamShipments</variable> 
    <candidate> 
     <node_id>Factory</node_id> 
     <variable_id>$ID$.DownstreamShipments</variable_id> 
    </candidate> 
   </candidates> 
 
   <outputs> 
    <output>Factory</output> 
    <output>Wholesaler</output> 
   </outputs> 
  </node>   
   
  <!-- #################### NODE 4 #################### --> 
  <node> 
   <identifier>Factory</identifier> 
   <number>4</number> 
   <template>$STRATEGY_REF_3$</template> 
 
   <number_inputs>1</number_inputs> 
   <number_outputs>1</number_outputs> 
 
   <closed_list> 
    <variable>$ID$.UpstreamShipments</variable> 
   </closed_list> 
 
   <candidates> 
    <variable>$ID$.CustomerDemand</variable> 
    <candidate> 
     <node_id>Distributor</node_id> 
     <variable_id>$ID$.OutgoingOrders</variable_id> 
    </candidate> 
   </candidates>    
    
   <inputs> 
    <input>Distributor</input> 
   </inputs> 
 
   <outputs> 
    <output>Distributor</output> 
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   </outputs> 
  </node> 
 
 </nodes> 
 
 
 <aggregates> 
  <aggregate> 
   <auxiliary> 
    <name>Global.TotalCosts</name> 
   
 <equation>Retailer.TotalCosts+Wholesaler.TotalCosts+Distributor.TotalCosts+Factory
.TotalCosts</equation> 
   </auxiliary> 
  </aggregate> 
 
  <aggregate> 
   <auxiliary> 
    <name>Global.InventoryCost</name> 
    <equation>0.5</equation> 
   </auxiliary> 
  </aggregate> 
 
  <aggregate> 
   <auxiliary> 
    <name>Global.StockoutCost</name> 
    <equation>2.0</equation> 
   </auxiliary> 
  </aggregate> 
   
 </aggregates> 
  
</network> 
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C. Appendix 3: Beer Game Sample Strategy File 

 
<template> 
 
 <interfaces>   
  <interface> 
   <var>$ID$.CustomerDemand</var> 
   <type>write</type> 
   <linked_to>$ID$.OutgoingOrders</linked_to> 
   <closed_value>100+STEP(100,5)</closed_value> 
  </interface> 
 
  <interface> 
   <var>$ID$.UpstreamShipments</var> 
   <type>write</type> 
   <linked_to>$ID$.DownstreamShipments</linked_to> 
   <closed_value>$ID$.OutgoingOrders</closed_value> 
  </interface> 
 
  <interface> 
   <var>$ID$.DownstreamShipments</var> 
   <type>read</type> 
  </interface> 
 
  <interface> 
   <var>$ID$.OutgoingOrders</var> 
   <type>read</type> 
  </interface> 
   
 </interfaces> 
  
<stocks> 
 <stock> 
  <name>$ID$.ExpectedOrders</name> 
  <init>100</init> 
  <inflow>$ID$.CEO</inflow> 
 </stock> 
 
 <stock> 
  <name>$ID$.OrderQueue</name> 
  <init>100</init> 
  <inflow>$ID$.CustomerDemand</inflow> 
  <outflow>$ID$.OrdersFulfilled</outflow> 
 </stock> 
 
 <stock> 
  <name>$ID$.Stock</name> 
  <init>400</init> 
  <inflow>$ID$.Arrivals</inflow> 
  <outflow>$ID$.DownstreamShipments</outflow> 
 </stock> 
 
 <stock> 
  <name>$ID$.SupplyLine</name> 
  <init>300</init> 
  <inflow>$ID$.UpstreamShipments</inflow> 
  <outflow>$ID$.Arrivals</outflow> 
 </stock> 
 
 <stock> 
  <name>$ID$.TotalCosts</name> 
  <inflow>$ID$.ChangeTC</inflow> 
  <init>0.0</init> 
 </stock>  
 
</stocks> 
 
<flows> 
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 <flow> 
  <name>$ID$.CustomerDemand</name> 
  <equation>100</equation> 
 </flow> 
 
 <flow> 
  <name>$ID$.CEO</name> 
  <equation>$ID$.Error/$ID$.EOAT</equation> 
 </flow> 
 
 <flow> 
  <name>$ID$.OrdersFulfilled</name> 
  <equation>MIN($ID$.OrderQueue,$ID$.Stock)</equation> 
 </flow> 
 
 <flow> 
  <name>$ID$.Arrivals</name> 
  <equation>DELAYFIXED($ID$.UpstreamShipments,3,100)</equation> 
 </flow> 
 
 <flow> 
  <name>$ID$.DownstreamShipments</name> 
  <equation>$ID$.OrdersFulfilled</equation> 
 </flow> 
 
 <flow> 
  <name>$ID$.UpstreamShipments</name> 
  <equation>$ID$.OutgoingOrders</equation> 
 </flow> 
 
 <flow> 
  <name>$ID$.ChangeTC</name> 
  <equation>$ID$.Cost</equation> 
 </flow> 
 
</flows> 
 
<auxiliaries> 
 <auxiliary> 
  <name>$ID$.SupplyLineAdjustment</name> 
  <equation>($ID$.DesiredSupplyLine-$ID$.SupplyLine)/$ID$.SLAT</equation> 
 </auxiliary> 
 
 <auxiliary> 
  <name>$ID$.DesiredStock</name> 
  <equation>400</equation> 
 </auxiliary> 
 
 <auxiliary> 
  <name>$ID$.DesiredSupplyLine</name> 
  <equation>$ID$.ExpectedOrders*3</equation> 
 </auxiliary> 
 
 <auxiliary> 
  <name>$ID$.Error</name> 
  <equation>$ID$.CustomerDemand-$ID$.ExpectedOrders</equation> 
 </auxiliary> 
 
 <auxiliary> 
  <name>$ID$.EOAT</name> 
  <equation>3</equation> 
 </auxiliary> 
 
 <auxiliary> 
  <name>$ID$.NetStock</name> 
  <equation>$ID$.Stock-$ID$.OrderQueue</equation> 
 </auxiliary> 
 
 <auxiliary> 
  <name>$ID$.OutgoingOrders</name> 
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 <equation>MAX(0,$ID$.ExpectedOrders+$ID$.StockAdjustment+$ID$.SupplyLineAdjustment
)</equation> 
 </auxiliary> 
 
 <auxiliary> 
  <name>$ID$.SAT</name> 
  <equation>1</equation> 
 </auxiliary> 
 
 <auxiliary> 
  <name>$ID$.SLAT</name> 
  <equation>1</equation> 
 </auxiliary> 
 
 <auxiliary> 
  <name>$ID$.StockAdjustment</name> 
  <equation>($ID$.DesiredStock-$ID$.Stock)/$ID$.SAT</equation> 
 </auxiliary> 
 
 <auxiliary> 
  <name>$ID$.InventoryStatus</name> 
  <equation>IS_NEGATIVE($ID$.NetStock)</equation> 
 </auxiliary> 
 
 <auxiliary> 
  <name>$ID$.Cost</name> 
  <equation>ABS($ID$.NetStock) * (Global.InventoryCost+((Global.StockoutCost-
Global.InventoryCost)*$ID$.InventoryStatus))</equation> 
 </auxiliary>  
 
</auxiliaries> 
 
</template> 
 


