
 
Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-03-13T10:52:42Z

 

Some rights reserved. For more information, please see the item record link above.
 

Title A Context Lifecycle For Web-Based Context Management
Services

Author(s) Hynes, Gearoid; Reynolds, Vinny; Hauswirth, Manfred

Publication
Date 2009

Publication
Information

Gearoid Hynes, Vinny Reynolds, Manfred Hauswirth "A
Context Lifecycle For Web-Based Context Management
Services", Proceedings of the 4th European Conference on
Smart Sensing and Context (EuroSSC), 2009.

Item record http://hdl.handle.net/10379/1112

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/


A Context Lifecycle for Web-Based Context

Management Services

Gearoid Hynes, Vinny Reynolds, and Manfred Hauswirth

Digital Enterprise Research Institute,
National University of Ireland, Galway

firstname.lastname@deri.org

Abstract. During the development of context aware applications a con-
text management component must traditionally be created. This task re-
quires specialist context lifecycle management expertise and hence can be
a significant deterrent to application development. It also removes the de-
velopers focus from differentiation of their application to an oft repeated
development task. This issue can be addressed by encapsulating the con-
text management lifecycle within a web-service, thus providing applica-
tions with a low-overhead alternative to managing their context data. The
adoption of a web-based approach maximizes the potential number of in-
teracting applications, including smart spaces, web and mobile applica-
tions, due to ease of access and widespread support of web technologies.
The contribution of this paper is the development of a lifecycle, based on
existing work on enterprise data and context aware lifecycles, which is op-
timized for web-based context management services (WCXMS) and the
provision of a web-service implementation of the lifecycle.

Keywords: context data, lifecycle, webtechnologies, context manage-
ment.

1 Introduction

Development of context-aware applications is no longer limited to the domain
of ubiquitous computing, mobile and web-based context-aware applications are
also being developed. Recently several location broker applications, including
FireEagle by Yahoo![3] and Google Latitude [1], have been launched and their
growing popularity illustrates the demand for real world location data within
the virtual world. However, location alone is only a small portion of a user’s
context, the remainder of which has thus far been ignored. In order to provide
truly context-aware applications we must move beyond serving location data
alone by providing a service capable of managing multiple types of context in
a time-sensitive manner. By providing context as a service (CXaaS) we can
provide application developers with a foundation upon which they can build their
context-aware applications. This enables developers to focus on their application
functionality rather than the development of context management components.

The use of a web-based approach facilitates interaction with many different
types of applications, including traditional context consumers such as smart-spaces

P. Barnaghi et al. (Eds.): EuroSSC 2009, LNCS 5741, pp. 51–65, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



52 G. Hynes, V. Reynolds, and M. Hauswirth

and the more recent consumers of context data such as web-applications and mo-
bile applications. Additionally, the use of a centralized approach facilitates the
sharing of context data between applications. This means applications can access
context data from sources which they would not ordinarily have access to.

The realization of CXaaS requires as much of the context lifecycle as possible
to be encapsulated within the web-service. In order for this to occur a formal
model for the lifecycle of context data within a WCXMS must be developed.
Current web-based location management services do not provide a reference
lifecycle which can be extended to include other types of context data, therefore
the lifecycle presented in this paper is based upon related lifecycle work from
other domains, in particular enterprise data lifecycles and ubiquitous system
context lifecycles. In this paper we will present a lifecycle for web-based context
management services, we begin with the requirements on the lifecycle, followed
by development of the lifecycle itself and how it was influenced by existing lifecy-
cles. The paper continues by introducing ConServ, which is an implementation
of the lifecycle, and then describing two applications which have been developed
using ConServ. The paper finishes with some related work and conclusions.

2 Lifecycle Requirements

In order to provide CXaaS there are several requirements which the lifecycle
must fulfill in addition to the standard lifecycle requirements such as acquiring,
storing and delivering the context data. As outlined in the introduction, CxaaS
has two primary goals, firstly to enable the rapid development of context aware
applications and secondly to facilitate the sharing of context data in a controlled
manner between context applications. Stemming from these two key requirements
are some additional criteria without which the service would not succeed, of
which the main ones are described below.

The development of a generic context lifecycle which would be applicable to all
types of context data is not feasible, therefore, the lifecycle should be optimized
for personal context data as it is the most common category of context data used
by existing context aware applications. When dealing with personal context data
privacy is crucial. Users must have complete control over who has access to what
parts of their context data and at what level of granularity, at what time, from
what location etc. Therefore, expressive privacy policies are necessary to ensure
the safety of users’ context data.

Context data can come from a variety of sources such as GPS sensors, ac-
celerometers, calendars and online profile data. For some of this data it is ap-
propriate for it to be pushed to the service and for other data types it is more
appropriate for it to be pulled. As a result it is necessary that the lifecycle account
for context data being both pushed and pulled into the system.

The lifecycle must allow for interaction with third parties, both in the acqui-
sition and provision of context data. Additionally, An expressive, extensible and
commonly understood context data model is necessary in order to ease import-
ing/exporting of data from/to third parties. Extensibility allows developers to
model any concepts which have not been previously modeled within the system.



A Context Lifecycle for Web-Based Context Management Services 53

3 Lifecycles

A substantial amount of related lifecycle work exists which can be leveraged
in the development of the WCXMS lifecycle. This section analyses the related
work, which is divided into two classifications of lifecycles:

– Enterprise Lifecycle Approaches: Lifecycles which are developed for enter-
prise applications but which do not explicitly target context data. These
lifecycles are robust and well-established industry standard strategies for
data management.

– Context Lifecycle Approaches: Lifecycles for managing context data, how-
ever they have not undergone the same level of testing as the enterprise
approaches.

3.1 Enterprise Lifecycle Approaches

There are several well established data lifecycles approaches in use within en-
terprise which can influence the WCXMS lifecycle. Enterprise lifecycles are for-
mulated to control the lifecycle of sensitive data in enterprise applications. In
comparison to context data, the data stored within the enterprise applications
is relatively static. For instance an enterprise application which stores users’
contact details is not going to receive as many updates as a context aware appli-
cation which stores users’ location data. However, thanks to commercial support
from some of the large software vendors, such as Oracle and Microsoft, enterprise
lifecycle approaches are robust and well tested and for those reasons should be
analysed to identify any potential relevance to the WCXMS lifecycle. Two of
the more popular enterprise lifecycle approaches are Information Lifecycle Man-
agement (ILM) [17] and Enterprise Content Management (ECM) [4]. Both ILM
and ECM consist of more than just the lifecycle, but also the tools, practices
and methods which surround the lifecycle.

ILM is defined by the SNIA Information Lifecycle Management Initiative to
consist of “the policies, processes, practices, services and tools used to align the
business value of information with the most appropriate and cost-effective infras-
tructure from the time information is created through its final disposition”[17].
The five steps in the ILM are show on the left of Figure 1. ILM is primar-
ily focused on data lifecycles which occur within the same organization; while
data may initially be received from a third party, each of the ensuing steps oc-
cur within the same organization. As a result the lifecycle is not suitable for the
WCXMS application where interaction with third parties is of great importance.
However the steps following the data use are relevant as context data must also
be maintained and disposed of.

ECM is said to be “the strategies, methods and tools used to capture, man-
age, store, preserve, and deliver content and documents related to organizational
processes”[4]. The ECM lifecycle, seen in Figure 1, is not applicable to context
data as it is overly focused on the steps prior to data dissemination, whereas
ILM is more concerned with the steps after data distribution. The steps within



54 G. Hynes, V. Reynolds, and M. Hauswirth

Fig. 1. ILM and ECM Lifecycles

the ECM strategy are prepossessed towards data storage with two entire steps,
Store and Preserve, dedicated to it and a portion of the Manage step is also
storage related.

Hayden[11] provides an extensive data lifecycle management strategy contain-
ing ten steps. Haydens steps, shown in Figure 2, are focused on a distributed
enterprise setup which is subject to Federal data retention rules therefore not
all of the steps, such as Transmission & Transportation and Retention, are ap-
plicable to a WCXMS. Hayden’s lifecycle includes steps to mitigate the impact
of users altering data in an unauthorized manner during the lifecycle (Manip-
ulation, Conversion/Alteration) this is not an issue for a WCXMS as only the
data owner can alter their data. Hayden strikes a balance between ICM and
ECM by having a better distribution of steps before and after the Release of
the data. A Classification stage was not present in the previous strategies and
is of interest to the WCXMS lifecycle as classification of acquired context data
is important due to the variety of context types and the importance of knowing
the relationship between different pieces of context data.

Fig. 2. Hayden’s Data Lifecycle

3.2 Context Lifecycle Approaches

Different approaches have been taken to the area of context lifecycle management
depending on the application requirements. Chantzara and Anagnostou [7] have
identified four separate stages in the lifecycle, shown on the left of Figure 3,
and the stages are distributed across three types of actors; Context Providers, a



A Context Lifecycle for Web-Based Context Management Services 55

Fig. 3. Chantzara and Ferscha’s Lifecycles

Context Broker and context aware Service Providers. This approach is of great
relevance to the WCXMS lifecycle as the interacting actors in both systems
are quite similar. However, the model is overly simplistic, only two stages are
handled by the context broker, and would require further elaboration in order
for its adoption within the WCXMS lifecycle.

Ferscha et. al. [9] provide details of their lifecycle for context information in
wireless networks. They begin with the Context Sensing stage, which can be a
time triggered or event triggered acquisition of low level context data, followed by
the Context Transformation stage which involves the aggregation and interpreta-
tion of the sensed information, the next stage is Context Representation, whereby
the transformed context is applied to an ontology to create high level contextual
information, Context Rules are then applied to the semantic context data which
then sends commands to the Actuation stage. This lifecycle has more stages than
the previous one and it makes use of both ontologies and rules which makes it
relevant to the WCXMS lifecycle. The functionality of the Transformation, Rep-
resentation and Rule Base stages are of particular interest. Unfortunately there is
no distinction between different actors within the lifecycle and therefore it is only
applicable for adoption within a controlled environment. Additionally, after the
Actuation stage the lifecycle restarts and as there are no stages for data storage
or controlled disposal of the data, as a result the strategy is incomplete.

As part of the MOSQUITO project Wrona et. al. [21] developed a simple
three stage context life cycle which was made up of “Context Information Dis-
covery”, “Context Information Acquisition”, “Context Information Reasoning”.
This scheme is incomplete as there is no mention of a stage which uses the con-
text data or a stage which disposes of the data. But the Context Information
Acquisition stage is applicable to the WCXMS lifecycle as it is more generic
than the Context Sensing stages used by the other lifecycles and hence applies
to pushing/pulling of context data from many different sources, not only sensors.

4 WCXMS Lifecycle

The WCXMS context lifecycle, shown in Figure 4, borrows aspects from many
of the above strategies. The lifecyle has been separated between three actors



56 G. Hynes, V. Reynolds, and M. Hauswirth

Fig. 4. The WCXMS Lifecycle

in a similar manner to Chantzara and Anagnostou. The Context Provider and
Context Consumer are third party applications, for example, web-applications,
smart-spaces, mobile applications which either provide and/or consume context
data. The Context Acquisition stage, which is inspired by MOSQUITO, provides
mechanisms for the pulling and pushing of context data. Two stages overlap with
stages in Hayden’s approach, Classification, which classifies the acquired data
using a set of context ontologies, and Handling, which expands on the classified
data to create associated data with different levels of granularity. Hayden’s Rel-
evance stage is also integrated into the Classification stage as the relevance of
WCXMS context data is decided once it once it has been classified.

Context is disseminated in accordance with user defined privacy policies. Users
have complete control over their data, i.e. who has access to that data, at what
level of granularity and under what conditions. Therefore, once a Context Con-
sumer makes a Context Request for a user’s data the user’s privacy policy is
examined in order to establish what permissions they have been given for that
data.The Maintenance and Disposition stages are borrowed from ILM. The re-
sult is a formal context management lifecycle optimized for deployment in a



A Context Lifecycle for Web-Based Context Management Services 57

Fig. 5. ConServ Component Diagram

web-based environment. The remainder of this section provides details of a
WCXMS lifecycle implementation called ConServ and describes the implemen-
tation details of each of the lifecycle steps.

ConServ Overview

ConServ is a REST [10] based web service developed using the model-view-
controller (MVC) architectural pattern. ConServ has a core set of ontologies
which are tightly coupled to the web-service implementation in order to provide
a fast and reliable service for managing popular context data types. The ability
to extend the types of context data managed is also provided. By allowing de-
velopers to upload additional ontologies to ConServ they can extend the core set
of ontologies with any additional concepts which have not been modeled. The
component diagram in Figure 5 shows the differentiation between the core and
the extensible components, along with the MVC structure of the web-service.

4.1 Context Acquisition

As per the WCXMS lifecycle requirements ConServ can receive context data
by pulling or by data sources pushing context data. The Controller component



58 G. Hynes, V. Reynolds, and M. Hauswirth

handles the Context Acquisition stage of the lifecycle. Pushed data can either
be manually entered via the web-interface or pushed to the RESTful interface.
Context data can also be acquired by pulling data from a context source. Ac-
quiring calendar data is a good example of this; the user provides the URL of
their iCalendar file, this XML file is then imported by ConServ and the data in
the iCal file is then provided to the classification stage of the lifecycle.

4.2 Context Classification

Context classification occurs in two different ways depending on whether the
context data was pulled or pushed. If the context data was pushed then the
URL which it was pushed to is decoded into a class and a property for a par-
ticular ontology and then the data is converted into RDF before being passed
to the Context Handling stage of the lifecycle. If the context data is pulled, it
is converted to RDF if necessary, then the individual classes are separated and
forwarded to the Context Handling stage.

Context Ontology Description. A set of core ontologies and related onto-
logical extensions are used to classify the context data acquired by ConServ.
The core ontologies model users, devices, policies, locations, events and services.
Based on the definition that ontologies are shared models of a domain that en-
code a view which is common to a set of different parties [5] we have opted to
use existing popular ontologies where possible in order to ease integration with
ConServ and to leverage existing context data rather than create a completely
new set of ontologies. The structure of the context ontology is illustrated in
Figure 6 and an overview of the key classes is provided below.

Location: The GeoNames location ontology [19] and web service is used as the
core of the ConServ location system. The GeoNames ontology is extended to
provide a method of modeling buildings, floors, rooms and more. This extension
is based on the MIBO [16] building ontology which has been adapted to inter-
operate with the GeoNames ontology which uses the SKOS [14] ontology.

Person: The FOAF ontology [6] is one of the most commonly used ontologies on
the web and therefore was an obvious choice for modeling users within ConServ.
FOAF provides many useful of properties for modeling such things as name, date
of birth, email address, acquaintances, publications and group memberships to
name but a few.

Events: Events are modeled by extending the icaltzd format [20]. Event data
can either be imported from an iCal file or manually created using the RESTful
interface or the web-interface.

Detection: The detection of a person results in the creation of a detection event.
A detection event is associated with a time, location and device; the device is



A Context Lifecycle for Web-Based Context Management Services 59

Fig. 6. Structure of the ConServ context ontology

in turn associated with a person. The time at which a detection occurs can
be instantaneous or it can be over a period of time, for instance if a person is
sitting at their desk for 2 hours, rather than create a new detection every time
the person is detected a single detection event can be created with a 2 hour
duration.

Devices: Due to the vast array of available personal mobile devices it is diffi-
cult to model each individual mobile device and their capabilities and keep the
model updated. We have taken the approach of modeling mobile devices based
on their connectivity options (Bluetooth, WiFi, RFID). The ACRONYM on-
tology [15] is used for modeling the devices and it has been extended with the
conserv#hasDetection property in order to connect devices to detection events.

4.3 Context Handling

The primary function of the context handling step, which occurs in the Model com-
ponent, is to facilitate ConServ’s total forward-chained reasoning. ConServ mate-
rializes all appropriate location and event data in order to provide access to those
concepts at different levels of granularity. Location has thirteen levels of granular-
ity which directly map to levels used in both the GeoNames and MIBO ontologies.



60 G. Hynes, V. Reynolds, and M. Hauswirth

For instance if ConServ is informed that a user, John Smith, is located in the DERI
building it then materializes that John Smith is located in Lower Dangan, Galway
City, Galway County and Ireland. This allows John Smith to specify at which level
he wishes particular context consumers to access his location data. The context
granularities are modeled using the SKOS Ontology [14] with the granularities be-
ing defined within a skos#OrderedCollection which contains a skos#Concept for
each level of granularity for a particular context type.

There are 3 levels of granularity in event context data. These levels are directly
related to the access levels given in online calendar applications. Level 0 does
not allow any access to the calendar data, Level 1 allows services to see when the
user is either free or busy but it does not provide any details about the events
in questions, the final level provides all the available details about the events.

4.4 Context Dissemination

The dissemination of context data to the context consumer is controlled by user
defined access policies. The ConServ Policy Ontology, shown in Figure 7, is
inspired by the SOUPA Policy Ontology [8] which is in turn based on the Rei
policy ontology[12]. Each user has one policy and this policy contains two types
of objects, conserv#AccessRule and conserv#AccessRequest.

Instantiations of conserv#AccessRequest are created by services and are used
to request access to a particular type of context data. These requests can then

Fig. 7. An overview of the structure of the ConServ Policy



A Context Lifecycle for Web-Based Context Management Services 61

be approved or deleted by the user if they do not wish to allow any access. If the
request is approved it is converted into a conserv#AccessRule where the user can
apply conditions, modeled as conserv#AccessRuleException, to when the service
can access the data. The conserv#AccessRuleException class has a granularity
property which sets the granularity at which the context data in question will
be accessible to the requesting service.

4.5 Context Maintenance

The context maintenance stage consists of archiving all context data which is more
than one month old at the end of each month. This archived data is still acces-
sible to context consumers, however queries on this data are not as fast as the
non-archived data which have priority. It is envisaged that a feedback mechanism
may also be included within the context maintenance stage in order for the user to
provide accuracy ratings for portions of the managed context data.

4.6 Context Disposition

Context disposition is entirely handled by the user. Within ConServ the user
is viewed as the owner of all context data which concerns them, therefore they
alone have the ability to delete context data. At the moment this is handled via
the web-interface, whereby the user selects individual or groups of context data
and manually deletes them. In future the users will be able to create rules which
would allow for the automatic disposal of their context data according to certain
conditions such as time elapsed, location, context source.

5 Proof of Concept

To illustrate how ConServ supports the management of context data throughout
the context lifecycle we developed two independent applications; DERI Blue-
tooth Location System (DBLS) is a Context Provider which pushes location
data to ConServ and Colleague Finder is a Context Consumer which uses the
location data provided by DBLS. These two applications illustrate some of the
lifecycle requirements implemented within ConServ, in particular the sharing of
context data between applications, the enabling of rapid context aware applica-
tion development, the ability to interact with third parties and the use of pri-
vacy policies to protect the user’s context data. The evaluation of the remaining
lifecycle requirements will be dealt as part of the future work.

The DBLS infrastructure consists of a bluetooth based location scanner de-
ployed in each floor of each wing of the DERI building, as illustrated in Figure 8.
The bluetooth scanners are bluetooth enabled Linksys NSLU2s running a mod-
ified version of Debian. DBLS monitors the movement of personal bluetooth
devices in the DERI building and informs ConServ of any updates. This system
enables the locating of a person carrying a bluetooth enabled device to a room
within the DERI Building.



62 G. Hynes, V. Reynolds, and M. Hauswirth

Fig. 8. Linksys NSLU2 Deployment on a Floor of the DERI Building

Fig. 9. User Mark Jones searches for a colleague using “Colleague Finder”

Colleague Finder is a Ruby on Rails web application which allows users to
locate a colleague within the DERI building. In the screenshot shown in Figure 9
the user, John Smith, has registered an account with Colleague Finder and added
the ConServ URI of his colleague, Mark Jones, to his list of friends. Provided
Mark Jones has given Colleague Finder permission to access his location data
then John Smith can use Colleague Finder to locate Mark Jones within the DERI
building. When Colleague Finder requests location data, ConServ first checks
Mark Jones’ policy to see what level of granularity was specified for Colleague



A Context Lifecycle for Web-Based Context Management Services 63

Finder. The granularity details are appended to the query, the query is executed
and any results are then returned to Colleague Finder. Colleague Finder simply
issues a HTTP GET request to ConServ in order to retrieve the context data
and the results are returned in XML. Only the HTTP GET request is required to
make Colleague Finder context aware as ConServ manages the context lifecycle
functionality. At the end of the following month the location data is archived as
part of the Context Maintenance step and at anytime Mark can dispose of his
location data within ConServ.

6 Related Work

Recently there have been several efforts to provide web-based context man-
agement with the focus primarily being on location data, some examples are
FireEagle, Google Latitude, IYOUIT [2] and the applications associated with
the OSLO Alliance (Open Sharing of Location Objects) [18]. We will discuss
FireEagle due to its early entry into the field, Google Latitude because of its
potentially large user base and IYOUIT as a result of its focus on other types of
context data rather than just location. Unfortunately none of the three services
provide a formal lifecycle which we can directly compare with the WCXMS
lifecycle, therefore they will be compared based on the lifecycle requirements
outlined at the beginning of this paper.

FireEagle is a location broker which enables users to share information about
their location with applications or services in a controlled manner. FireEagle’s
functionality is limited due to its sole focus on user location data and hence does
not fulfill the extensibility requirement. It also does not have the ability to pull
location data from third party sources. However it does provide a strong reference
point against which new solutions must be compared and its popularity proves
that users have a demand for location aware applications and that users are
prepared to provide their location data to web services.

Google Latitude is another example of a location broker which, due to its
inclusion in Google’s Mobile Maps application, has a large potential user-base.
A basic API is provided which allows developers access to a JSON or XML
feed containing details of a user’s location. Unfortunately, it also suffers from
the extensibility and context acquisition deficiencies of FireEagle and its privacy
policies are extremely limited as users can only specify full public access or no
access at all to their location data.

IYOUIT, developed from the ContextWatcher project [13], is comprised of a
mobile phone application which captures as much context data as possible, both
automatically and manually, and a web-based context broker which aggregates
the data. IYOUIT supports a far greater number of context types than FireEagle
and Google Latitude and it represents a significant step towards the creation of
a comprehensive personal context data repository. However, IYOUIT currently
does not provide access to a developer API, therefore it is not possible to build
applications using their data and as a result there is no interaction with third
parties. An ontology is used to model the context data, however as this ontology



64 G. Hynes, V. Reynolds, and M. Hauswirth

had not been made available IYOUIT cannot be said to provide a commonly
understood data model and thus is not available for reuse or extension.

7 Conclusions and Future Work

In this paper we have presented a lifecycle for web-based context management
services (WCXMS) and provided details of an example implementation of that
lifecycle called ConServ. A set of requirements for a WCXMS were outlined and
existing lifecycles were analyzed to establish their applicability, based on this the
WCXMS lifecycle was developed. The details of each stage in the lifecycle were
then described by giving details of how they were implemented in ConServ.

The purpose of a WCXMS is to encapsulate the context management lifecycle
within a web-service which developers can access. This facilitates the rapid pro-
totyping of context-aware applications by removing the necessity for developers
to create a context management component for their applications. By providing
Context as a Service (CXaaS), WCXMS allows applications access to context
data from a wide variety of sources by enabling the sharing of context data be-
tween applications. This allows context-aware applications to move beyond the
current situation whereby each application is an island of information with little
or no interconnecting bridges.

WCXMS lifecycle implementations, such as ConServ, have the potential to
increase the number of context-aware applications available to users while still
providing the user with authority over their context data. There is a fine bal-
ance which must be maintained between supporting the rapid development of
context-aware applications and persevering user privacy. It is our belief that
the WCXMS lifecycle maintains this balance through the use of, amongst other
things, RESTful interfaces and an extensible context models to aid development
and the use of detailed privacy policies and providing complete data control from
a user’s perspective.

At present ConServ’s implementation of some of the lifecycle requirements has
not been demonstrated and the development of these proof of concept applica-
tions is a key part of the future work. The addition of event-driven functionality
is also a priority as at present applications must query ConServ frequently to
check for new data. Finally the scalability of the web-service must be evaluated.

Acknowledgment

The work presented in this paper has been co-funded by Science Foundation
Ireland under Grant No. SFI/08/CE/I1380 (Lion-2) and by the European FP7
project PECES (ICT-224342).

References

1. Google latitude, http://www.google.com/latitude/
2. Iyouit, http://www.iyouit.eu/

http://www.google.com/latitude/
http://www.iyouit.eu/


A Context Lifecycle for Web-Based Context Management Services 65

3. Yahoo! fireeagle, http://fireeagle.yahoo.net/
4. AIIM. What is ecm?

http://www.aiim.org/What-is-ECM-Enterprise-Content-Management.aspx

5. Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt, H.:
Contextualizing ontologies. Web Semantics: Science, Services and Agents on the
World Wide Web 10, 325–343 (2004)

6. Brickley, D., Miller, L.: Foaf vocabulary specification,
http://xmlns.com/foaf/spec/

7. Chantzara, M., Anagnostou, M.: Evaluation and selection of context information.
In: Second International Workshop on Modeling and Retrieval of Context, Edin-
burgh (July 2005)

8. Chen, H., Finin, T., Joshi, A. (eds.): The SOUPA Ontology for Pervasive Com-
puting, July 2005. Whitestein Series in Software Agent Technologies. Springer,
Heidelberg (2005)

9. Ferscha, A., Vogl, S., Beer, W.: Context sensing, aggregation, representation and
exploitation in wireless networks. In: Scalable Computing: Practice and Experience
(2005)

10. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture.
ACM Trans. Internet Technol. 2(2), 115–150 (2002)

11. Hayden, E.: Data lifecycle management model shows risks and integrated data
flow. Information Security Magazine (July 2008)

12. Kagal, L., Paoucci, M., Srinivasan, N., Denker, G., Finin, T., Sycara, K.: Autho-
rization and Privacy for Semantic Web Services. IEEE Intelligent Systems (Special
Issue on Semantic Web Services) 19(4), 50–56 (2004)

13. Koolwaaij, J., Tarlano, A., Luther, M., Nurmi, P., Mrohs, B., Battestini, A.,
Vaidya, R.: Context watcher: Sharing context information in everyday life. In:
Proceedings of the IASTED conference on Web Technologies, Applications and
Services (WTAS), pp. 12–21 (2006)

14. Miles, A., Matthews, B., Wilson, M., Brickley, D.: Skos core: simple knowledge
organisation for the web. In: DCMI 2005: Proceedings of the 2005 international
conference on Dublin Core and metadata applications. Dublin Core Metadata Ini-
tiative, pp. 1–9 (2005)

15. Monaghan, F., O’Sullivan, D.: Leveraging ontologies, context and social networks
to automate photo annotation. In: Falcidieno, B., Spagnuolo, M., Avrithis, Y.,
Kompatsiaris, I., Buitelaar, P. (eds.) SAMT 2007. LNCS, vol. 4816, pp. 252–255.
Springer, Heidelberg (2007)

16. Niu, W.T., Kay, J.: Location conflict resolution with an ontology. In: Indulska, J.,
Patterson, D.J., Rodden, T., Ott, M. (eds.) PERVASIVE 2008. LNCS, vol. 5013,
pp. 162–179. Springer, Heidelberg (2008)

17. Peterson, M., St. Pierre, E.: Snias vision for ilm. In: Computerworld: Storage Net-
working World (2004)

18. Siegler, M.: Oslo alliance wants to share location across networks (February 2009),
http://www.webcitation.org/5i7Kqzj6d

19. Vatant, B.: Geonames ontology, http://www.geonames.org/ontology/
20. W3C. ical schema, http://www.w3.org/2002/12/cal/icaltzd
21. Wrona, K., Gomez, L.: Context-aware security and secure context-awareness in

ubiquitous computing environments. In: XXI Autumn Meeting of Polish Informa-
tion Processing Society (2005)

http://fireeagle.yahoo.net/
http://www.aiim.org/What-is-ECM-Enterprise-Content-Management.aspx
http://xmlns.com/foaf/spec/
http://www.webcitation.org/5i7Kqzj6d
http://www.geonames.org/ontology/
http://www.w3.org/2002/12/cal/icaltzd

	A Context Lifecycle for Web-Based Context Management Services
	Introduction
	Lifecycle Requirements
	Lifecycles
	Enterprise Lifecycle Approaches
	Context Lifecycle Approaches

	WCXMS Lifecycle
	Context Acquisition
	Context Classification
	Context Handling
	Context Dissemination
	Context Maintenance
	Context Disposition

	Proof of Concept
	Related Work
	Conclusions and Future Work


