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Abstract 

Soils and the vital ecosystem services performed by their indigenous microbiota are 

under increasing pressure from anthropogenic stresses and climate change. In an effort 

to understand how the provision of soil ecosystem services will evolve with such 

pressures, significant research has been undertaken into the stability of microbial 

community functioning and composition, in terms of resistance and resilience. The 

overall aim of this thesis was to contribute to such knowledge through investigation of 

the responses of soil microbial communities subjected to a variety of perturbations 

relevant in the context of agriculture and climate change.  These include lime addition, 

slurry application and flooding, which were chosen to include representative 

disturbances commonly encountered by agrarian soil ecosystems. As metaproteomics 

represents a valuable tool for linking microbial phylogeny and function, the first step 

was to develop a method allowing for the co-extraction of DNA, RNA and proteins 

from soil samples. We then employed culture-independent techniques to investigate 

the microbial community composition in the face of the three perturbations. In 

addition, we assessed the functioning of the microbial communities by assessing rates 

of litter decomposition, potential nitrification and potential denitrification. While the 

lime product did not perform as hoped in terms of pH alteration, microbial 

communities responded strongly to the development of the barley plants with which 

they were associated. Slurry induced significant functional and compositional 

alterations in the microbial assemblage; while some functions were transiently 

affected, others remained altered 140 days post-application.  While the soil 

microbiome was sensitive to flooding, it appeared remarkably resilient in terms of 

functioning. When the flooding perturbation was compounded by a preceding slurry 
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application, improvements in resistance were seen in functional assays. In closing, a 

co-extraction method was developed which is easily employed for a number of sample 

types including soil. Additionally, we addressed certain hypotheses regarding 

microbial community stability while contributing to advancing knowledge in the field.   
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Introduction 
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1.1 Soil microbial communities and ecosystem services 

Soils are home to a diverse range of microorganisms, with estimates of species richness 

ranging from 4 • 103 (Schloss & Handelsman 2006) to 2 • 105 (Roesch et al. 2007) per 

gram of soil. These complex microbial communities play a central role in global soil 

ecosystems and thus contribute to the sustained functioning of our planet (Barrios 

2007; Wall et al. 2012). Due to the benefits humanity derives from the provision of 

such ecosystems functions, they are collectively referred to as ecosystems services 

(Daily 1997). A primary soil ecosystem service is geochemical cycling, of which the 

microbial consortia of the soil are major drivers, due to their role in the decomposition 

of organic matter, in addition to the elemental transformations they perform (Coleman 

et al. 2004). Indeed, biological transformations of the major elements, including 

carbon, nitrogen, sulphur, oxygen and hydrogen are principally mediated by microbes 

(Falkowski et al. 2008). As well as the production of extracellular enzymes for the 

decomposition of larger organic molecules (Sinsabaugh 1994), soil microbes also 

secrete extracellular polysaccharides which can promote the formation of soil 

aggregates (Holden 2011) whose stability is further enhanced by fungal hyphae 

(Tisdall & Oades 1982). This serves to improve soil structure thereby enhancing 

moisture retention (Augé et al. 2001; Hamblin 1986) in addition to contributing to 

carbon sequestration (Trivedi et al. 2017). These processes, among a plethora of 

others, are then linked to the productivity of the crops we rely on for food, energy and 

fuel, thereby providing yet another ecosystems service (van der Heijden et al. 2008). 

Such processes include the symbiotic relationships of mycorrhizal fungi, which can 

form associations with a diverse range of terrestrial plants including, for example, 

around 80 % of angiosperms (Harrison 2005), where they aid in water and nutrient 

acquisition (Dighton 2016). Also well-characterised are the symbiotic interactions 
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between rhizobia, who fix atmospheric nitrogen into plant available forms for their 

leguminous hosts, in return for photosynthetically derived carbon sources (Spaink 

2000). Non-symbiotic microbes also aid in plant nutrient acquisition through many of 

the paths associated with biogeochemical cycling. For example, complex, organic 

forms of nitrogen which are unavailable for direct plant uptake are converted by the 

process of mineralization to inorganic forms of ammonium, which in turn are 

converted to plant available nitrates via the process of nitrification (Hart et al. 1994; 

Schmidt 1982). Additionally, plants have been shown capable of recruiting specific 

microbial groups from the bulk soil in order to enhance defence from pathogens, as 

reviewed by Berendsen et al. (2012). These processes of symbiosis and defence from 

pathogens both involve complex modulations of plant immunity by the soil 

microbiota, thus creating a delicate balance between the plant hosts and their 

associated microflora (Zamioudis & Pieterse 2012). Indeed, the relationship between 

plants and their microbiota is frequently paralleled with that of humans and their 

microbiome (Hacquard & Schadt 2015; Herrera Paredes & Lebeis 2016; Zamioudis & 

Pieterse 2012) which has led to the emergence of a tenet whereby plants and their 

associated microbes can be considered collectively, as a holobiont 

(Vandenkoornhuyse et al. 2015; Sánchez-Cañizares et al. 2017).  

All global ecosystems are under increasing pressure from the continued expansion of 

the human population (Richardson & Poloczanska 2008), with soil ecosystems 

impacted by intensification of agriculture (Giller et al. 1997; Trivedi et al. 2016), 

which exacerbates soil erosion (Pimentel 2006), and pollution-associated deposition 

of nitrogen (Adams 2003), among others (Turbé et al. 2010). Soil ecosystems are also 

subject to current and continuing climatic shifts such as changing moisture regimes, 

temperatures and atmospheric CO2 levels (Classen et al. 2015; Walther et al. 2002). 
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Pressure from anthropogenic activity, resulting in loss of biodiversity, and the potential 

impacts this has on ecosystem functioning have been well characterised in the plant 

and animal context, as reviewed by Hooper et al. (2005) and Cardinale et al. (2012). 

However, despite comprising a significant proportion of the Earth’s biomass 

(Whitman et al. 1998) and contributing significantly to ecosystems services (Barrios 

2007), the implication of such stresses on prokaryotic communities is less well 

characterised. This, however, is no mean feat.  

The functioning of soil, and indeed other microbial communities is the consequence 

of a multitude of interactions which collectively contribute to ecosystems functioning 

(Prosser 2012). Investigating and interpreting these interactions is a complex 

undertaking, partly as a result of insufficient techniques or approaches (Abreu & Taga 

2016), but also due to the remarkable diversity of the microbes inhabiting the soil 

(Allison & Martiny 2008). The activity and community composition of this microbial 

consortium is in turn inextricably linked to environmental variables (Graham et al. 

2016), most of which alter seasonally (Lv et al. 2016). As well as such quantifiable, 

deterministic variables, microbial communities are also subject to stochastic change 

(Graham & Stegen 2017; Stegen et al. 2012). Together these serve to complicate 

modelling these microbial communities for their inclusion in global ecosystems 

models, the overall aim of which is to assess their vulnerability in the face of 

anthropogenically exacerbated climate change (Allison & Martiny 2008). Exploring 

microbial community stability, in terms of resistance (whether they can withstand a 

disturbance) and resilience (their recovery from a disturbance), is a frame-work by 

which to investigate how communities are affected by a range of perturbations 

(Griffiths & Philippot 2013). 

 



5 

 

1.2 Soil microbiome responses to disturbances 

Diverse research has been undertaken into the stability of soil microbial communities 

in the face of a range of disturbances including, but not limited to, drought (de Vries 

et al. 2012), drying and re-wetting (Barnard et al. 2013), chemical contaminants 

(Girvan et al. 2005), heat (Kuan et al. 2007), salinity (Berga et al. 2012), fire (Lee et 

al. 2017) and flooding (González Macé et al. 2016). Comparing a ‘perturbed’ sample 

to a ‘control’ (unperturbed) sample allows for the impact of a disturbance to be 

assessed in terms of the resistance and/or resilience of functional traits and microbial 

community structure (Wallenstein & Hall 2012). In other words, we can begin to try 

and unpick how disturbance-related changes in soil processes might be related to 

changes in microbial community composition or richness, if at all (Nemergut et al. 

2014; Prosser 2012). Given the large diversity of the soil microbial assemblage, 

investigating such compositional changes can be somewhat streamlined by classifying 

microorganisms into ‘ecologically meaningful’ phylotypes (Fierer 2017). For 

example, Fierer et al. (2007) demonstrated that certain bacterial phylotypes responded 

in a consistent manner to increasing labile carbon inputs. Some phylotypes responded 

positively and others negatively, thus allowing for their classification into the K- and 

r-strategist nomenclature introduced by MacArthur & Wilson (1967) or, perhaps more 

appropriately for microorganisms, as oligotrophs or copiotrophs (Koch 2001). This 

approach was further supported by Ramirez et al. (2012) who demonstrated that 

certain bacterial phylotypes responded to the addition of inorganic forms of nitrogen 

in a consistent manner, across a range of 28 different soils. Similar trends were seen 

in further experiments based at 25 field sites distributed throughout the African, 

Australian, European and North American continents, allowing the binning of further 

bacterial groups into the oligotroph or copiotroph categories. Among the phenotypic 
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traits associated with oligotrophy are slower growth rates (Schut et al. 1997), which 

have frequently been associated with reduced copy numbers of ribosomal RNAs 

(Klappenbach et al. 2000; Vieira-Silva & Rocha 2010). Thus, information such as the 

mean rRNA copy number of a particular taxonomic group, as provided by curated 

databases such as the rrnaDB (Stoddard et al. 2015), can be used as a further tool to 

investigate microbial phylotypes as classified in terms of their growth rates and 

efficiencies (Roller et al. 2016). As well as these rRNA ‘related’ traits, there are a 

diverse range of functional traits by which microbial ecosystems can be investigated 

(Green et al. 2008). Such traits can include the activity of specific enzymes associated 

with nutrient cycling, for example phosphatases (Margalef et al. 2017), cellulases 

(Chaer et al. 2009), xylanases and proteases (Kandeler et al. 1999). Or they can include 

assessing a range of enzymes which collectively facilitate conversion of one product 

to another, for example the conversion of organic, nitrogen containing compounds to 

inorganic nitrogen forms via mineralisation (Griffiths et al. 2000) or the conversion of 

ammonium to more plant-available forms via ammonia oxidation (Pett-Ridge et al. 

2013) and nitrite oxidation (Le Roux et al. 2016). While the aforementioned traits have 

direct impacts upon ecosystems processes, there are also characteristics that are likely 

equally important in a more indirect manner, as they confer a competitive advantage 

under certain conditions. For example, traits that provide advantages in the highly 

competitive rhizosphere, such as antibiotic production (Wiener 1996), or those 

conferring improved survival or nutrient acquisition under varying moisture conditions 

such as motility (Hibbing et al. 2010) and biofilm formation (Lennon & Lehmkuhl 

2016). While many of these traits can be assessed experimentally (as detailed within 

each of the referenced articles), the introduction of ‘trait’ databases is allowing for the 

assessment of genomic (Weimann et al. 2016) and metagenomic, or even 16S rRNA 
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survey, datasets (Barberán et al. 2017) in terms of phylogenetically conserved traits 

(Goberna & Verdú 2016; Martiny et al. 2015). Although of course such tools only 

assess the potential, not the actuated trait.  

Wallenstein and Hall (2012) proposed that it is through the investigation of traits in 

response to perturbations that we can begin to understand how changes in climate 

might alter microbially-driven processes of geochemical cycling. The article of de 

Vries and Shade (2013) further consolidates these ideas into hypotheses regarding the 

stability of microbial communities in the face of perturbations associated with climate 

change. First, the authors hypothesise that microbial community stability will be 

affected by the proportion of K- to r-strategists, with improved resistance associated 

with increased ratios of resource-efficient, oligotrophs to more inefficient copiotrophs, 

while the inverse ratio would allow for more effective resilience, thank to enhanced 

growth rates of copiotrophs (de Vries & Shade 2013). An additional hypothesis from 

their article mirrors that of Griffiths and Philippot (2013) and Wallenstein and Hall 

(2012), where it is proposed that the resilience of a microbial community after a 

perturbation will be affected by resource availability, with resilience being constrained 

in ecosystems were labile resources are rare. This has been demonstrated in the context 

of plants, whereby improved resilience following a disturbance was seen in soils with 

plant cover versus those without, likely a consequence of plant exudates improving 

resources availability (de Vries et al. 2012). Orwin & Wardle (2005) observed a 

similar trend of increased resilience in planted systems, however they also noted that 

different microbial functions responded in varying ways to their treatments. This has 

been observed in a number of experiments, and is likely partly a consequence of the 

variety of microbes performing a particular function, and thus of microbial diversity 

(Loreau et al. 2002). Litter decomposition is often regarded as a ‘broad scale’ function 
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as it is a process performed by a diverse range of microbiota (Andrén et al. 1995). It 

has been proposed that more specialised microbial functions (less redundant across 

taxa) are impacted to a greater degree than ‘broad scale’ functions (more redundant 

across taxa) by disturbances (Griffiths et al. 2000), and that biodiversity is therefore 

important for ecosystem function and stability. This has been tested in a number of 

experiments where soil microbial diversity was manipulated for example by 

fumigation (Griffiths et al. 2000) or using the dilution to extinction approach (Wertz 

et al. 2006) and mostly demonstrated that indeed specialised functions were impacted 

to a greater extent than broad scale functions. Examples include reduced rates of nitrite 

oxidation versus stable rates of denitrification (Wertz et al. 2007) and compromised 

rates of xenobiotic degradation versus stable rates of litter decomposition (Girvan et 

al. 2005). In fact, Delgado-Baquerizo et al. (2016), in an effort to determine the 

relationship between microbial diversity and ecosystem functioning, observed 

reductions in both broad and fine scale functions in seven different freshwater 

ecosystems after reducing microbial species richness (but accounting for different 

population sizes), thereby calling into question the role of functional redundancy in 

these systems. In soil microcosms there have also been contrasting results, where 

Philippot et al. (2013) demonstrated that reduced diversity resulted in significantly 

lower rates of denitrification, which was somewhat ameliorated by the incorporation 

of litter. Therein the authors note that responses to diversity loss are likely affected by 

microbial community evenness as well as composition (Wittebolle et al. 2009), and 

that the responses further be modified by resource availability (Philippot et al. 2013). 

 

 



9 

 

1.3 Soil microbiome responses to disturbances: soil 

management practices 

As noted by many of the referenced articles, agrarian soils in particular are under 

increasing pressure from intensified agricultural practices (Trivedi et al. 2016) as well 

as climatic changes (Classen et al. 2015). The detrimental effects of conventional 

agriculture upon soil biological quality can be a result of any number of practices 

including but not limited to tillage, inorganic fertilizer and pesticide application (Dick 

1992). Roesch et al. (2007) demonstrated that despite harbouring more cells, 

agricultural soils had reduced number of bacterial phyla present, compared to a forest 

soil, and the consequences of these in terms of ecosystems services warrants further 

investigation.  

Much of the soil throughout Ireland, due to its acidic nature, requires amendment with 

lime or other alkali products in order to provide soil at an optimum pH for crops. Sub-

optimal pH has severe implications for crops including slow growth, limited 

productivity and increased susceptibility to disease (Moore et al. 1998). Much of this 

is a consequence of limited plant availability of essential nutrients such nitrogen, 

phosphorous, potassium and sulphur whose availability is typically optimal at neutral 

pH (Truog 1947). Additionally, acidic soils allow for the solubilisation of certain 

elements, in particular aluminium, which then poses toxicity problems for plants 

growing in these soils (Sumner et al. 1991). Plants range in their sensitivities to pH, 

which equates to an optimum pH range within which the maximum crop yields can be 

achieved (Fageria et al. 1990; Goulding 2016).  

As in the plant kingdom, soil pH has significant effects on the soil microbiota, and thus 

on ecosystems processes. For example, acidic soils often limit biological processes 

such as nitrogen fixation, with root nodulation significantly hampered in soils with a 
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pH below 5.5 (Bordeleau & Prévost 1994). Booth et al. (2005) demonstrated that 

nitrification rates on the other hand, do not appear to correlate with soil pH. Despite 

this, ammonia oxidisers, even those isolated from acidic soils, were for some time 

unculturable in media with a pH lower than 6.5 (Prosser 1990). Using culture-

independent techniques, Nicol et al. (2008) revealed that archaeal and bacterial groups 

driving ammonia oxidation respond contrastingly to soil pH, with ammonia oxidising 

bacteria (AOB) being more suited to neutral or alkali pH, while their archaeal 

counterparts appear more adapted to performing ammonia oxidation in acidic soils. 

The isolation of an acidophilic ammonia oxidising archaea (AOA) that was culturable 

at pH 4, seemed to support this finding and represented the first ammonia oxidiser 

cultivable at acidic pH (Lehtovirta-Morley et al. 2011). Further work into the niche 

specialisation of AOA and AOB suggests that in soils with a pH below 5.5, AOA do 

indeed seem to drive nitrification, however, aside from this, ratios of AOA to AOB 

cannot be explained simply by pH alone (Prosser & Nicol 2012) as they are a product 

of interacting factors including ammonium concentration (Verhamme et al. 2011), 

temperature (Tourna et al. 2008) and soil type (Chen et al. 2010). As well as microbial 

species performing specialised functions, broader taxonomic guilds are also influenced 

by pH, for example, the ratio of fungi to bacteria has been shown to increase with 

decreasing pH (Bååth & Anderson 2003). In addition, bacterial diversity and 

abundance have been shown to increase with increasing pH (Rousk & Jones 2010). 

Large scale biogeographical surveys have also identified pH as having a strong 

influence on the total microbial community composition across different soils 

(Griffiths et al. 2011; Lauber et al. 2009). These studies both found increased relative 

abundances of Acidobacteria at lower pH, where this phylotype constituted as much 

as 80 % of the communities in certain soils at pH 4 (Lauber et al. 2009). The 
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Acidobacteria are resource-efficient (Fierer et al. 2007) and slow growing, with a mean 

rRNA copy number of 1.3 (Stoddard et al. 2015). Thus, when we consider the 

hypotheses regarding increased resistance associated with higher oligotrophs to 

copiotrophs ratio (de Vries & Shade 2013), the prevalence of Acidobacteria at low pH, 

has potential consequences for the stability of ecosystems processes following a 

disturbance in highly acidic soils.  

In order to alter soil pH to be within the optimum range of the crop of interest, liming 

is performed, and this is traditionally achieved through the application of milled, mined 

rock rich in calcium carbonate, principally limestone (Truog 1947). With time, the 

milled granules weather and release calcium carbonate which helps to increase the pH 

of soils (Peters et al. 1996). In terms of lime application and its effects upon soil 

microbial communities, previous studies have demonstrated the resulting rise in pH 

caused increased soil bacterial biomass and activity (using respiration rates as proxy) 

(Fuentes et al. 2006; Kennedy et al. 2004; Neale et al. 1997). Additionally, lime 

application appeared to decrease species richness, when assessed using fingerprinting 

methods (TRFLP) (Kennedy et al. 2004). When the same experimental procedure was 

employed to investigate effects upon the fungal community however, there were no 

significant effects (Kennedy et al. 2005), and this corroborated other research where 

lime addition altered bacterial but not fungal communities when investigated using 

PLFA (Treonis et al. 2004). Change in pH as a result of liming has also been shown 

to affect ecosystems processes. For example, after increasing soil pH from 3.5 to 6.5 

using lime, Neale et al. (1997) observed an immediate positive effect on nitrogen 

mineralization rates, which persisted for roughly 30 days, at which stage nitrification 

rates increased. When smaller alterations in pH are investigated, the effects appear to 

be less defined, for example Rooney et al. (2010) observed no change in the 
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community structure of ammonia oxidising bacteria after lime application, perhaps as 

a consequence of the relatively small increase in pH from 4.2 to 4.9. Thus, it would 

appear that liming indeed effects microbial community structure, however a deeper 

characterisation of these compositional changes, using culture-independent 

techniques, are required to investigate how such changes might relate to plant 

productivity and ecosystems processes.  

In addition to amendments for improving soil pH, agricultural soils are also frequently 

subject to inputs including inorganic forms of nitrogen, phosphorous and potassium, 

used to increase crop productivity. Organic amendments such as animal and plant 

wastes have been identified as more sustainable means of enhancing soil nutrient 

status, as reviewed by Diacono & Montemurro (2010). Such wastes typically increase 

soil organic matter content which in turn has a positive influence on water holding 

capacity and infiltration (Haynes & Naidu 1998). This is especially important for 

improving sustainability as conventionally farmed soils often have severely reduced 

soil organic matter content, typically resulting from the removal of crop residues 

(Komatsuzaki & Ohta 2007). The use of wastes, in particular animal faecal waste, on 

agricultural soil also represents a way of recovering valuable products, such as 

nitrogen and phosphorous, which would otherwise be lost from the value chain (Scholz 

et al. 2014). Therefore, land spreading represents a solution for the disposal of at least 

a portion of such wastes (Polprasert & Koottatep 2017), which are produced in huge 

quantities, for example, in Ireland approximately 30 million tons of cattle slurry are 

produced annually (Singh et al. 2010). Such amendments are not without their issues 

and care should be taken to categorise waste prior to soil application in order to avoid 

over-supply of nutrients and/or introduce pathogenic microbes to the soil (Cameron et 

al. 1997). Organic amendments also affect the soil microbiota, either through direct 
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effects, such inputs of labile carbon forms, or indirect effects upon soil physico-

chemical parameters (Drinkwater et al. 1995). Much research has demonstrated an 

overall improvement in the biological quality of soils that have been organically 

amended (Thiele-Bruhn et al. 2012; van Eekeren et al. 2009). For example, the 

addition of organic amendments has been shown to more than double microbial 

biomass carbon (Bastida et al. 2008) and biomass nitrogen (Marschner et al. 2003) 

relative to the un-amended control. These studies also both demonstrated increased 

enzyme activity in the organically amended soils. In addition to these assays, Bastida 

et al. (2008) and Marschner et al. (2003) also investigated the effects upon the 

microbial community structure using PLFA and observed increased ratios of Gram-

positive to negative bacteria. In a similar study, when soils were amended with pig 

slurry, (Hammesfahr et al. 2008) observed the opposite trend, whereby Gram-negative 

bacteria were more abundant. As such amendments affect not only microbial 

community composition but also nutrient availability, which is proposed to affect 

resilience. Thus, amendments can then be considered for their effects upon microbial 

community stability when exposed to additional stress (de Vries & Shade 2013; 

Griffiths & Philippot 2013). The effect of organic amendments on microbial stability 

in the face of a drought event was investigated by Bastida et al. (2017), who concluded 

that, relative to the untreated control, the application of sludge or composted sludge 

increased the resistance of the microbial community. More specifically, increased 

microbial biomass and enzyme activities were seen despite 45 days of drought, at 20 

% WHC, compared to un-amended controls at both 20 % and 60 % WHC, suggesting 

improved resistance as a result of the amendment (Bastida et al. 2017). A similar 

experiment by Hueso et al. (2012) revealed that manure amendment conferred larger 

microbial biomass during a subsequent drought stress. Additionally, the changes in 
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microbial community composition were more pronounced in un-amended than manure 

amended soils (Hueso et al. 2012). With regards to increased precipitation, resource 

availability resulting from amendment with urea, potash and sulphur, also appeared to 

confer some resistance, in terms of enzyme activities and potential nitrification rates 

(Mentzer et al. 2006). 

 

1.4 Soil microbiome responses to disturbances: climate 

change  

One of the primary consequences of climate change in North Western Europe is 

increased incidences of heavy precipitation (European Environmental Agency 2017) 

and the Environmental Protection Agency has identified flooding as having an 

increasingly significant impact on Ireland (Desmond et al. 2017). When soils are 

subjected to waterlogged conditions, significant alterations in physico-chemical 

parameters result due to increasingly reducing conditions (in terms of redox potential) 

(de Campos et al. 2009; Patrick & Reddy 1976). Upon waterlogging, the first in a 

series of events leading to the lower redox state is the rapid consumption of the 

available oxygen by the resident aerobic, microflora (Reddy et al. 1984). Other 

compounds must then be used as electron acceptors and the first of these are typically 

nitrates, followed in order, by iron, manganese, sulphur and organic substances 

resulting in the depletion of dissolved oxygen within 2 to 36 hours (de Campos et al. 

2009; Ponnamperuma 1972). The resulting redox conditions typically lead to changes 

in pH, where a trend toward neutrality is seen, and also to changes in cation exchange 

capacity (Kirk 2004; Ponnamperuma 1972) which has implications for nutrient 

availability within the soil (Hazelton & Murphy 2007). In the absence of oxygen, 

organic matter decomposition, including nitrogen mineralisation (Drury et al. 2003), 
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proceeds at a much slower rate (Meurant 1984). While this may result in slower release 

of CO2 via decomposition, methane production on the other hand is significantly 

increased in flooded soils (Davidson et al 2006; Frank et al. 2015). Additionally, rates 

of nitrification are constrained by the low oxygen availability, typically resulting in an 

accumulation of ammonium in flooded soils (Patrick & Reddy 1976). This process can 

still however proceed at a much-reduced rate thanks to oxygen diffusing from the 

water surface (Reddy et al. 1976), and indeed many nitrifying bacteria being capable 

of surviving in low oxygen conditions (Ward 2013). The anoxic conditions of flooded 

soils are typically associated with increased rates of denitrification, where nitrates are 

used as electron acceptors, resulting in the production of dinitrogen gas, or if the 

reaction is incomplete then to nitrous oxide (Knowles 1982) (Knowles 1982). These 

oxygen limited conditions also favour the pathway of dissimilatory nitrate reduction 

to ammonium (DNRA), resulting in competition for nitrates (Rubol et al. 2013; 

Sgouridis et al. 2011; Tiedje 1988). 

As expected due the physico-chemical chemical alterations, and the favouring of 

different metabolic strategies, flooding has frequently been shown to be accompanied 

by changes in the soil microbial community. Using PLFA, Mentzer et al. (2006) 

observed improved survival of Gram-positive versus Gram-negative bacteria during 

flooding. Unger et al. (2009) also employed PLFA to investigate soil microbial 

community response to flooding and observed a similar trend of Gram-positive 

bacteria however only in soils exposed to moving floodwaters, not in static 

floodwaters. As Gram-positive bacteria have been proposed as typically more K-

strategic due to their slower growth (de Vries & Shade 2013), this could have 

implications for the resilience of these soil microbiota after flood waters have abated. 

In other words, resilience will be slower in these systems due to the predominance of 
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slower growing phylotypes (de Vries & Shade 2013). Most other research in the vein 

of altered precipitation regimes on the soil microbiota typically focuses on shorter 

fluxes for example in terms of carbon dioxide fluxes (Barnard et al. 2013) and methane 

fluxes (Ferré et al. 2012) from rice paddies. A significant amount of research has also 

been performed to investigate responses of the soil microbiota to drying-rewetting 

cycles, for example by Barnard et al. (2013); Placella et al. (2012) and Evans & 

Wallenstein (2014). While these works may not be directly relevant to the effects of 

long term flooding, many suggest a strong role for the precipitation history upon the 

microbial response (Evans & Wallenstein 2012). Meanwhile, characterisation of 

microbial communities along a moisture gradient, by Lennon et al. (2012) suggests a 

strong influence of phylogeny and that the trait of moisture adaptation is typically 

conserved at a relatively high phylogenetic order, namely phylum. To date, however, 

this has not been investigated in the context of flooding and finer taxonomic resolution 

of the responses of microbial communities to extended waterlogging is needed in order 

to test existing hypotheses. These include hypotheses relating to i) improved resilience 

when resource availability is non-limiting (Griffiths & Philippot 2013; Wallenstein & 

Hall 2012) ii) alterations in resistance and resilience as a function of the ratio of 

copiotrophs to oligotrophs (de Vries & Shade 2013) and iii) the response of microbial 

communities to alterations in soil moisture status is phylogenetically conserved at a 

high order (Lennon et al. 2012). In order to thoroughly investigate microbiome 

stability, many of the recent studies mentioned herein employed cutting-edge 

technologies, presented briefly below, to allow for in situ assessments of microbial 

community composition and functioning.  
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1.5 Molecular toolbox for investigating soil microbiome 

responses to changes in environmental conditions 

Initially, the field of microbial ecology relied heavily on culture-based techniques for 

assessing the soil microbiota, a process hampered by difficulties in culturing the vast 

majority of soil microflora (Staley & Konopka 1985). While there have been a number 

of innovations for increasing the ‘culturability’ of soil microbes, as detailed by Epstein 

(2013), it has been the introduction of culture-independent techniques which has truly 

revolutionised soil microbial ecology (Cardenas & Tiedje 2008; Metzker 2010). 

Typically, this involves the use of one or more biomolecules, DNA, RNA, proteins 

and/or metabolites, extracted from a mixed microbial community. A suite of meta-

omics tools can then be employed using the biomolecules, as reviewed by Abram 

(2015), allowing for a systems biology based experimental approach. These include 

metagenomics using DNA (Thomas et al. 2012), which provides insights into 

microbial potential, metatranscriptomics with RNA (Moran et al.  2013) and 

metaproteomics with proteins (Siggins et al. 2012) inferring microbial function, and 

metabolomics (Patti et al. 2012) informing on microbial activity, as reviewed in the 

relevant citations. DNA and/or RNA can also be used for taxonomic surveys using 16S 

or 18S rRNA gene profiling of prokaryotes and eukaryotes respectively (Huse et al. 

2008). Metaproteomics holds enormous potential for answering questions regarding 

the role of different microbial groups in ecosystems processes through its ability to 

inform on phylogeny and function (Maron et al. 2006).  

Recent advances in high throughput sequencing (HTS) technology accompanied by 

increasingly competitive prices have vastly improved accessibility to this suite of 

omics tools, which can now be used in conjunction. When resulting data are then 

integrated, it provides a more holistic view of microbial structure and function in the 
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system (Franzosa et al.  2015). Indeed, the findings from omics-centric studies have 

allowed for unique insights into the physiology of previously uncharacterised 

microbes, which has in turn informed on optimal growth conditions and so permitted 

their cultivation, as reviewed by Gutleben et al. (2017). For example, efforts to culture 

the obligate, intracellular pathogen Coxiella burneti typically have not been 

successful, primarily as a result of insufficient protein synthesis to permit replication 

(Omsland et al. 2009). However, using genomic and metabolic information, Omsland 

et al. (2009) were able to identify a number of amino acid auxotrophies, and thus 

supplement the media accordingly, which, in conjunction with microaerophilic 

conditions allowed for host-free cultivation of C. burneti for the first time.  

From a data analysis point of view, data integration is also of benefit as it provides 

more robust biological interpretation; for example, metagenomics data can inform on 

more accurate assembly of metatranscriptomes (Gilbert et al.  2008; Ju & Zhang, 2015) 

and improved identification rate of metaproteomes (Cantarel et al.  2011). As such, it 

is desired that two or more of these tools are employed simultaneously, using 

biomolecules extracted from any range of environmental sample. With regards to the 

extraction of one type of biomolecules including DNA, RNA or protein, protocols and 

commercial kits abound for all sample types. However, an inherent feature of mixed 

microbial communities is their heterogeneity, which can impose problems when 

obtaining biomolecules from separate samples. This is exemplified to the extreme in 

the case of soil, where spatial heterogeneity occurs at sub-millimetre distances 

(Raynaud & Nunan 2014). Thus, as already well detailed by Roume et al. (2013), if 

different meta-omics tools are to be integrated to provide meaningful data, DNA, 

RNA, proteins and/or metabolites must be co-extracted from the same sample. In order 

to achieve this, a robust co-extraction method must be employed allowing 
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biomolecules of interest to be sequentially removed from the same sample. 

Additionally, the sample should be handled in such a way that each isolation step does 

not introduce further bias. As yet, we unaware of such a method for soil and as such 

believe that this represents a significant research gap and tackling it will allow for the 

integrated use of -omics tools. This, in conjunction with well researched hypotheses 

will help to further field of soil microbial ecology (Jansson & Prosser 2013). 

 

1.6 Thesis overview 

In an effort to further knowledge in the field of microbial community stability in the 

face of perturbations, while answering some recent hypotheses in this area (de Vries 

& Shade 2013), we aimed to tackle the following knowledge gaps: 

1. Appropriate biomolecule (DNA, RNA and proteins) co-extraction method 

for soil samples 

2. Effect of liming on microbial community composition and transcriptionally 

active taxa using 16S rRNA sequencing 

3. Effect of slurry amendment on the soil microbiome stability upon flooding 

deploying a rigorous experimental set-up to investigate ecosystem functioning 

and microbial community composition 

 

The stresses investigated in this work, i.e., lime and slurry amendments and flooding, 

were chosen as they not only represent some of the more relevant disturbances for our 

geographic region, but are also relevant for many global agricultural systems. 
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2.1 Introduction 

 

The growing field of microbial community analysis involves the study of microbial 

populations using culture independent techniques, which necessitates the investigation 

of DNA, RNA and/or proteins from a variety of environments, subsequent to their 

extraction. In highly heterogenous samples including soil, such biomolecules should 

ideally be co-extracted from the same biological sample. Moreover, as good 

experimental design involves the use of replicated sampling regimes the use of 

commercial kits can become prohibitive. DNA/RNA and protein co-extraction kits are 

available for a variety of sample types but at present no kit or appropriate method are 

available for soil. Thus, we aimed to develop a simple method for the co-extraction of 

DNA, RNA and proteins from soil samples. The proposed protocol is based on the 

phenol-chloroform method of Griffiths et al. (2000), but is scaled up and modified to 

allow for the co-extraction of DNA, RNA and proteins from soil in sufficient yields to 

allow downstream analyses using meta-omics tools. A similar adaptation has been 

published by Gunnigle et al. (2014) using different bead-beating times to isolate 

nucleic acid and protein fractions. Feinstein et al. (2009), demonstrated that DNA 

continues to be isolated from consecutive bead beating regimes, due to lysis of more 

resilient microbial cells. Thus, if we are to use metagenomic information to guide 

protein annotations, this bias must be reduced by preventing sample interference 

between biomolecule isolation steps.  

 

We therefore propose a phenol-chloroform based method for DNA, RNA and protein 

extraction from soil summarised in Figure 2.1, with adaptations for cattle slurry, 

anaerobic sludge granules and bacterial isolate culture samples. As a proof of 
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applicability, biomolecules co-extracted from soil samples were analysed using 16S 

rRNA sequencing of DNA and cDNA, as well as metaproteomics.  

 

 

Figure 2.1. Schematic of DNA, RNA and protein co-extraction. Briefly, samples first 

undergo bead beating in extraction buffer (CTAB in potassium phosphate) and P:C:I 

(as per Griffiths et al. (2000). Phases are separated for isolation of nucleic acids from 

proteins. Each fraction is purified using washing steps and a spin-column for nucleic 

acids, and combined precipitation and washing steps (Heyer et al. 2013), for proteins. 

Residual chloroform was only retained for soil samples (represented by dashed line). 

 

2.2 Materials and Methods 

 

2.2.1 Sample preparation 

 

2.2.1.1 Soil  

Eight soils were used in the present study to develop and validate the co-extraction 

method. These were selected from a collection of thirty-five Irish soils, compiled by 
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McDonald et al. (2014). Each consisted of a composite sample taken from up to 10 cm 

depth, which was homogenised and sieved at 6.3 mm. An aliquot of each soil type was 

stored at 4 °C while the remainder was used for in depth soil characterisation, as 

described in detail by McDonald and colleagues (2014) and summarised in Table 2.1. 

Two days prior to extraction, soil samples were placed at room temperature to increase 

microbial activity. Aliquots of 2 g dry weight equivalent of soil were placed in 5 ml 

tubes for co-extraction. 

 

Table 2.1. Texture & chemistry of the eight soil types used in this study. The first 

column details the soil identification number used throughout this text while the 

second column details the original soil identification numbers used in the work of 

McDonald et al. (2014) for the purposes for cross referencing. 

Soil ID 
Original 

soil ID 

Clay 

(%) 

Silt 

(%) 

Sand 

(%) 
pH 

SOM 1 

(g/kg) 

TC 2 

(g/kg) 

TN 3 

(g/kg) 

1 2 28.1 45.3 26.6 5.2 201 100 7.8 

2 8 11.1 20.6 68.2 5.1 93.5 43.6 4.3 

3 14 30.7 37.4 31.9 6.2 136.5 57.2 5.1 

4 16 16.7 38.7 44.6 6 83 40.5 3.9 

5 21 9.5 15.3 75.2 5.2 61 24.5 2.4 

6 28 19.4 33.5 47.2 6.6 94.5 40.4 3.9 

7 29 35.1 42.3 22.7 5.2 175 80.8 6.7 

8 34 32.8 46.9 20.3 5.7 107.5 47.9 5.1 

1 SOM = soil organic matter; 2 TC = total carbon; 3 TN = total nitrogen. 

 

Due to the charged nature of many particles within soil samples, pre-treatments are 

often required to improve yields via desorption. After trialling three pre-treatments 

mentioned in the literature, casein (Wang et al.  2012), salmon sperm DNA (Paulin et 

al.  2013) and an amino acid mix (Nicora et al.  2013), the amino acid mix was 

identified as the most successful (data not shown). Each of the eight soil types was 
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tested to determine if the pre-treatment could improve yields of DNA, RNA and/or 

protein. The amino acid desorption pre-treatment was prepared from a solution of three 

polar positive amino acids, namely arginine, histidine and lysine. The three amino 

acids were added to MilliQ water in a 1:1:1 ratio at 7 % w/v for each (Nicora et al.  

2013), and the pH was adjusted to that of co-extraction buffer (pH 8.0) before 

autoclaving. Efforts to use amino acids directly in the co-extraction buffer were not 

successful, thus on the day of extraction, the amino acid solution was mixed with 

extraction buffer (1:2) to form an amino acid modified version of the co-extraction 

buffer of Griffiths et al. (2000). Tests were conducted to ensure improvements in yield 

were due to amino acid addition and not dilution of the extraction buffer by addition 

of MilliQ water (data not shown). To determine suitability of this pre-treatment for 

each soil type, biomolecule co-extraction was performed in triplicate for the following 

two treatments: 1) unmodified co-extraction buffer - here on referred to as ‘untreated’; 

2) co-extraction buffer + amino acid solution (‘aa treated’). 

 

2.2.1.2 Granular Sludge.  

Granular sludge samples were collected from a full-scale, mesophilic anaerobic 

digester treating wastewater at Carbery bioethanol production facility (Cork, Ireland). 

Granules were cryogenically ground using a pestle and mortar in the presence of liquid 

nitrogen. Aliquots of 0.25 g were placed in 2 ml screw cap tubes for bio-molecule co-

extraction.  

 

2.2.1.3 Cattle slurry 

A sample of cattle slurry (7.5 % dry matter) from a local dairy farm was collected and 

stored at 15 °C for one week. On the day of extraction, replicate 0.5 g subsamples were 

removed and placed in 2 ml screw-cap tubes. 
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2.2.1.4 Pure culture 

An environmental isolate of Escherichia coli (isolate 3; Brennan et al.  2010) was 

grown anaerobically, shaking at 37 °C, in 20 ml of Luria-Bertani broth. Cells were 

grown to mid-exponential phase (OD 0.6) and collected by centrifugation at 3 000 g 

for 8 minutes. The resulting cell pellets were re-suspended in 500 µl of co-extraction 

buffer and transferred to a 2 ml screw cap tube for bio-molecule co-extraction.  

2.2.2 DNA, RNA and protein co-extraction 

 

For preparation of solutions, nuclease-free water and tubes were used, and all 

glassware was baked overnight at 180 °C. Additionally, samples were kept on ice 

during all intermediary steps to maintain RNA integrity. Unless otherwise stated, all 

centrifugation steps were performed at 16 000 g and 4 °C.  

 

2.2.2.1 Soil co-extraction method 

A 5 % hexadecyltrimethyl-ammonium bromide (CTAB) co-extraction buffer was 

prepared by mixing an equal volume of 10 % CTAB solution prepared in 0.7 M NaCl, 

with 0.24 M potassium phosphate buffer at pH 8 (Griffiths et al. 2000). Equal volumes 

(1.25 ml) of co-extraction buffer (+/- pre-treatment) and phenol:chloroform:isoamyl 

alcohol (P:C:I, 25:24:1) (pH 8) were added to 5 ml tubes containing 2 g (dry weight) 

soil and a 2 g mix of 0.1 mm and 0.5 mm zirconia beads. Cell lysis was achieved by 

vortexing at high speed for 2.5 minutes. Centrifugation for 10 minutes was employed 

for phase separation. The upper aqueous phase was transferred to a clean tube prior to 

nucleic acid purification, while the lower phase and remaining tube contents were set 

aside, on ice, for subsequent protein isolation from the phenol phase. 

Nucleic acid isolation: Two volumes of chloroform:isoamyl alcohol (24:1) (Amresco) 

were added to the upper aqueous phase and mixed. This serves to remove any residual 
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phenol and/or proteins from the aqueous phase. After 5 minutes centrifugation, the 

upper phase was transferred to a fresh tube, combined with two volumes of a 30 % 

polyethylene glycol (PEG 6000) solution in 1.6 M NaCl, and placed on ice for two 

hours for nucleic acid precipitation. In an effort to maximise protein recovery, the 

remaining, lower chloroform phase from each sample was kept aside to be added to 

the phenol phase during the protein isolation steps. Precipitated nucleic acids were 

collected via centrifugation for 20 minutes and the resulting supernatant was gently 

removed. The pellets were washed in a 70 % ethanol solution and samples were 

centrifuged for 25 minutes. Ethanol was poured off and tubes left open near a flame 

for 10 minutes to remove any residual ethanol. Nucleic acid pellets were re-suspended 

in 100 µl nuclease-free water from which 5 µl was run on a 1 % agarose gel to check 

DNA and RNA integrity. Nanodrop ratios were used to assess contamination of 

nucleic acids with protein (260/280 ratio) or aromatic moieties such as phenol 

(260/230 ratio) (Gallagher et al. 2008). Typically, a 280/260 ratio of 1.8 to 2 indicates 

nucleic acids free of proteins, while a 260/230 of the same or higher indicates a pure, 

contaminant free sample (Desjardins & Conklin 2010). Nucleic acid concentrations 

were determined using the broad range Qubit® dsDNA or RNA assay kit, as 

appropriate, with the Qubit™ 2.0 Fluorometer (Life Technologies) as per the 

manufacturer’s instructions.  

Protein isolation: To improve protein retrieval from soil samples, chloroform:isoamyl 

alcohol (24:1) remaining from the nucleic acid washing step (as described above), was 

added to the corresponding phenol phase containing tube, along with 500 µl extra P:C:I 

(25:24:1) and contents were gently mixed with a sterile pipette tip. Samples were 

briefly re-centrifuged (2 minutes) to separate the phenol/chloroform phase which was 

then removed to a sterile 15 ml tube. This step was not required for other sample types, 
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which proceeded directly to phenol phase removal after phase separation. For all 

sample types, following phenol removal, an equal volume of 1 M sucrose solution, in 

MilliQ water, was added and samples were mixed and centrifuged for 10 minutes at 

12 000 g for phase separation. The lower phase was removed (avoiding remaining soil 

debris and beads), placed into a fresh 15 ml tube along with 4 volumes of ice cold 0.1 

M ammonium acetate in methanol and incubated overnight at -20 °C for protein 

precipitation (Heyer et al. 2013). Following the overnight incubation, precipitated 

proteins were collected by centrifugation at 12 000 g for 10 minutes at 4 °C, the 

supernatants removed and four volumes of 0.1 M ice cold ammonium acetate were 

added. Samples were then left for 2 to 18 hours at -20 °C to re-precipitate. Protein 

samples were then successively washed, following the method of Heyer et al. (2013) 

where all centrifugation steps were performed at 12 000 g for 10 minutes at 4 °C. 

Briefly, precipitated proteins collected by centrifugation, were washed successively in 

80 % freezer-chilled acetone and 70 % freezer-chilled ethanol with 15 minute 

incubations at -20 °C after addition of each solution. The samples were then 

centrifuged, and the supernatants removed. This was repeated a second time to give a 

total of four washes. Finally, the resulting protein pellets were dried in a laminar flow 

hood, ensuring they did not become too dry thereby impeding re-suspension. Protein 

pellets were solubilised in 30 µl urea buffer (7 M urea, 2 M thiourea and 0.01 g/mL 

dithiothreitol). For protein quantification, duplicate 1 in 10 dilutions of each sample 

were analysed using the Amido black assay (Schaffner & Weissmann 1973). The 

remaining 25 µl of neat sample were combined with 10 µl of 2 x Laemmli sample 

buffer and separated using 1D SDS-PAGE (12 % bis-acrylamide) as detailed by 

Laemmli (1970).  
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In order to extract from different samples types, slight modifications were applied, 

namely to initial sample weight or volume and extraction buffer formulation. These 

changes are summarised in Table 2.2 and detailed below, in sections 2.2.2.2, 2.2.2.3 

and 2.2.2.4. 

 

Table 2.2. Summary of modifications to DNA, RNA and protein co-extraction protocol 

for different sample types. 

OD = optical density; dw = dry weight; vol = volume before centrifuging 

 

2.2.2.2 Granular sludge modifications  

Co-extractions were performed in 2 ml screw cap tubes containing 1 g of the zirconia 

bead mix and 0.25 g of the cryogenically pulverised granular sludge, to which 400 µl 

of 1 % CTAB co-extraction buffer (equal volumes of 2 % CTAB in 0.7 M NaCl and 

combined on the day of extraction with an equal volume of freshly prepared 0.24 M 

potassium phosphate buffer at pH 8) were added along with 800 µl of P:C:I (25:24:1). 

Bead beating, phase separation and chloroform washing were undertaken as for soil, 

with volumes altered accordingly, with respect to ratio. Nucleic acids were precipitated 

and washed as above, then re-suspended in 100 µl of nuclease-free water. The phenol 

phase was removed to a fresh 2 ml tube and underwent protein precipitation and 

washing steps as detailed above, with volumes of washing solutions changed to 

Sample type Sample vol / weight Co-extraction buffer 

Soil 2 g (dw) 5 % CTAB buffer/PO4 

Cattle slurry 0.5 g 5 % CTAB buffer/PO4 

Granular Sludge 0.25 g 1 % CTAB buffer/PO4 

Pure Culture (OD 0.6) 20 ml 2 % CTAB buffer/PO4 

 



41 

 

maintain ratios used in soil method. Protein pellets were re-suspended in 30 µl urea 

buffer and stored at 4 °C until further analysis.  

 

2.2.2.3 Cattle slurry modifications 

A 5 % CTAB buffer solution was added to the slurry, which then underwent all steps 

as for granular sludge. The resulting nucleic acid pellet required purification 

immediately following elution in 60 µl nuclease-free water, using the OneStep PCR 

inhibitor removal kit from Zymo. Protein pellets were re-suspended in 30 µl urea 

buffer and stored at 4 °C until quantification and other downstream analyses. 

 

2.2.2.4 Single bacterial isolate modifications  

Cell pellets were re-suspended in 500 µl of 2 % CTAB co-extraction buffer (4 % 

CTAB in a 0.7 M NaCl solution, combined with an equal volume of fresh 0.24 M 

potassium phosphate buffer at pH 8). The same modifications as for granular sludge 

were then applied. 

 

2.2.3 Downstream analysis of DNA and RNA 

 

2.2.3.1 Sample purification and cDNA generation 

Any samples containing evidence of humic acid contamination (as indicated by a 

yellow-tinted nucleic acid pellet) were run through a OneStep™ PCR Inhibitor 

Removal column (Zymo) before downstream analyses. Aliquots of DNA and RNA 

were split into two fractions of equal volumes. RNA was DNase treated with Turbo 

DNase (Ambion) following the manufacturer’s instructions. Complete removal of 

genomic DNA was verified by performing PCR with universal bacterial primers 
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515F/806R (Caporaso et al.  2011) and DNase-treated RNA as template, where the 

absence of product (at a series of dilutions) indicated complete DNA removal. RNA 

concentrations were normalised, and generation of cDNA was performed using 

SuperScript® III Reverse Transcriptase (Invitrogen), following the manufacturer’s 

recommended guidelines.  

 

2.2.3.2 Amplification of 16S rRNA genes from all soil types 

The universal bacterial/archaeal primers 515F/806R (Caporaso et al.  2011) were used 

to amplify the V4 region of the 16S rRNA from both DNA and cDNA samples in order 

to verify their suitability for downstream analyses. Each PCR amplification contained 

2 U of BioTaq (BioLine); 1 x NH4 Reaction Buffer (NEB); 200 µM of dNTPs 

(BioLine); 10 µg BSA (NEB); 2 mM MgCl2; 0.4 µM of each 515f and 806r with 11 

µg of genomic DNA or cDNA as appropriate. Negative and positive controls were 

included as standard and cycle conditions consisted of an initial denaturation of 1 

minute at 95 °C followed by 30 cycles of 95 °C for 15 seconds, 55 °C for 15 seconds 

and 72 °C for 20 seconds. After a final annealing step of 72 °C for five minutes, 8 µl 

of each PCR product was visualised on a 1 % agarose gel stained with SybrSafe DNA 

stain (Invitrogen).  

To demonstrate that biomolecules obtained using this method are compatible with 

downstream analyses, one soil type was chosen for 16S rRNA profiling (from DNA 

and cDNA samples) and metaproteomics. As PCR amplification of Soil 2 proved 

somewhat problematic and as such required some optimisation (addition of BSA and 

increased MgCl2 concentration), molecular extracts from this soil were selected for 

further analysis in order to provide a robust validation of our co-extraction method.  

 

2.2.3.3 16S rRNA amplicon library preparation 
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Barcoded, universal bacterial archaeal primers 515F/806R (Caporaso et al.  2011) 

were used to amplify the V4 region of 16S rRNA genes from DNA and corresponding 

transcripts from cDNA from triplicate biomolecule extractions from Soil 2. Each PCR 

amplification contained 1 x Q5 Reaction Buffer (NEB); 0.4 U Q5 High-Fidelity DNA 

Polymerase; 200 µM of dNTPs; 0.4 µM of each primer and 11 µg of genomic DNA 

or cDNA as appropriate. Negative and positive controls were systematically included, 

and samples amplified in triplicate, to reduce PCR based bias (Goodrich et al. 2014). 

PCR conditions were as follows: 30 seconds hot start at 98 °C followed by 25 cycles 

of 10 seconds denaturation at 96 °C; 30 seconds annealing at 50 °C and 30 seconds 

elongation at 72 °C, followed by a final extension of 2 minutes at 72 °C. Triplicate 

amplicons per sample were pooled and run on a 1.5 % agarose gel. The correct size 

amplicons (~300 bp) were excised and purified (Promega SV Gel Wizard) following 

the recommended guidelines for gel extraction. Purified amplicons were eluted in 

nuclease-free water before quantification using the High Sensitivity dsDNA 

quantification kit (Qubit). Amplicons from each sample were normalised to equimolar 

concentrations and pooled before analysis on the Illumina MiSeq platform (Research 

& Testing Laboratory, Texas, USA).  

2.2.4 Downstream analysis of proteins for metaproteomic analysis 

 

SDS gel chunks corresponding to the three soil replicates analysed for 16S rRNA 

profiling (two chunks per lane) were subjected to in-gel tryptic digestion. Nanoflow 

liquid chromatography-electrospray ionization tandem mass spectrometry (nLC-ESI-

MS/MS) was performed by BSRC Mass Spectrometry and Proteomics Facility 

(University of Saint Andrews, UK), using a Q-Star XL tandem mass spectrometer 

(Applied Biosystems) as described in detail by Abram et al. (2011).  
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2.2.5 Analysis of 16S rRNA and metaproteomic datasets 

 

2.2.5.1 Processing of 16S rRNA data from DNA and cDNA fractions 

Processing of paired-end 16S rRNA amplicon reads was undertaken using Mothur 

software version 1.36.1 (Schloss et al.  2009) and by following the MiSeq 16S rRNA 

amplicon analysis procedure detailed by Kozich et al. (2013). Briefly, sequences were 

filtered to remove those containing ambiguous bases, homo-polymers exceeding 8 

base pairs or erroneous sequence lengths (min 75 – max 275 bp). The SILVA database 

(v119) was used for alignment of sequences to the V4 region corresponding to primers 

515F/806R. Sequencing errors were further reduced by pre-clustering and chimeras 

removed using the UCHIME algorithm integrated in Mothur (Edgar et al. 2011). 

Sequences were classified using Bayesian analysis of k-mers at an 80 % bootstrap cut-

off (Wang et al. 2007) against the Ribosomal Database Project’s v.9 reference file and 

sequences from non-target lineages were removed. Finally, sequences were clustered 

into operational taxonomic units (OTUs) by grouping them according to their 

taxonomy at a 3 % dissimilarity level.  

 

2.2.5.2 OTU based analysis of DNA and cDNA fractions 

Alpha and beta diversity metrics were calculated using Mothur (Schloss et al. 2009) 

and the statistical programme R (R Core Team 2017). Sample coverage, using Good's 

estimator of coverage was estimated for each sample, using the formula:  

 

1 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 1 − (
𝑛

𝑁
) 

Where: 
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𝑛 = the number of OTUS represented by one sequence (singleton) and  

𝑁 = the total number of OTUs in that sample (Good, 1953).  

 

Rarefaction curves were constructed using Mothur’s randomisation procedure in 

conjunction with a ‘re-sampling without replacement’ approach. Species richness (S), 

was determined for each sample, based on the number of observed OTUs. Alpha 

diversity was calculated using the reciprocal of Simpson’s diversity estimator (D), 

which calculates the probability of sampling the sample OTU twice when randomly 

choosing two sequences from a sample (Simpson 1949). The following equation was 

used: 

2 

𝐷 = ∑
𝑛𝑖(𝑛𝑖 − 1)

𝑁(𝑁 − 1)

𝑆

𝑖=1

 

Where:  

𝐷 = Simpson’s diversity indexs 

𝑆 = the number of observed OTUs 

𝑛𝑖= the number of individuals in the i th OTU (i.e. the OTU of interest) 

𝑁= the total number of individuals in the community 

 

The Inverse Simpson’s index (D-1) was therefore:  

3 

𝐷−1 =
1

𝐷
 

Simpson’s community evenness (E), to determine numerical equitability of the OTUs 

within each sample, was calculated using the following formula:  

4 

𝐸 =
𝐷−1

𝑆
 

Where:  
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𝐸 = community evenness 

𝐷−1 = inverse Simpson’s diversity index 

𝑆 = the number of observed OTUs 

 

2.2.5.3 Protein identification  

The MetaProteomeAnalyser (MPA) software, developed by Muth et al. (2015) was 

used for both identification of mass spectra and protein assignment. Database searches 

were run using the X!Tandem (version ALANINE (2017.02.01) and OMSSA (version 

2.1.8) algorithms integrated in MPA, and spectra were identified against the 

UniProt/SwissProt (release 2016_10) database. Search parameters included: trypsin as 

the default cleavage enzyme; maximum allowed number of missed cleavages set to 

one; a parent-ion mass tolerance of 10 ppm and a fragment-ion mass tolerance of 0.5 

Da. Target decoy searching was performed as standard. Protein hits were grouped into 

meta-proteins using the peptide rule (at least one peptide in common) in order to reduce 

data redundancy (false-discovery rate of < 1 %). Annotation was achieved via a 

number of external sources, including NCBI, UniProt and KEGG as detailed by Muth 

et al. (2015). Through taxonomic assignment of peptides, those belonging to 

contaminants were removed (e.g. keratin and trypsin) and UniProt ontologies, 

integrated in MPA, were used to group meta-proteins into molecular functions and 

cellular components.  

 

 

 

2.2.6 Data representation and statistical analysis 
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Correlation matrices of biomolecule yield and purity vs soil physicochemical 

properties were constructed using the Hmisc package (Harrel & Dupont 2017) in the 

statistical program R (R Core Team 2017). For comparisons of mean biomolecule 

yields, data were first tested for equality of variance, using an F test for two-sample 

variances, before performing the appropriate two tailed t-test. The resulting p values 

were collated and adjusted for multiple comparisons using the false discovery rate 

(FDR) method of Benjamini and Hochberg (1995) as implemented in the p.adjust 

function of R. Bar plots of yield improvements were constructed in the open access 

plotting package SciDavis (Standish et al. 2007). Bar plots of 16S rRNA relative 

abundances and meta-protein ontologies were graphically represented in R using the 

packages ggplot2 (Wickham 2009) and phyloseq (McMurdie & Holmes 2013). 

Taxonomic assignment and KEGG orthologies of meta-proteins, as well as 16S rRNA 

composition were plotted using Krona plots via the Excel template provided by Ondov 

et al. (2011).  

 

2.3 Results 

 

2.3.1 DNA, RNA and protein yields from diverse soil types 

 

DNA, RNA and proteins were co-extracted from eight soils with a range of clay 

contents, pH and other physicochemical characteristics known to affect extraction 

yields (Table 2.1). DNA, RNA and proteins were co-extracted from eight soils with a 

range of clay contents, pH and other physicochemical characteristics known to affect 

extraction yields.  

To determine which desorption pre-treatment, if any, was appropriate for each of the 

eight soils, extractions were performed in triplicate on a) untreated samples (no 
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desorption pre-treatment applied) b) amino acid pre-treated samples c) casein pre-

treated samples (Figure 2.2). While the casein pre-treatment was shown to be very 

effective in improving nucleic acid yields from a number of problematic soils (data 

not shown), in these soils, it only served to improve the RNA yield in soil 5 (Figure 

2.2). With regards to protein extraction however, it proved an unfeasible pre-treatment, 

firstly because any increases in protein yield could not accurately be determined due 

to the co-quantification of casein within the extracted soil proteins. Secondly, while 

proteins identified by mass spectrometry as casein / casein derived, could have been 

removed from the results database prior to further analyses, there existed the potential 

that the soil-derived proteins, typically present in very low abundances, would have 

their signal supressed by the highly abundant casein during mass spectrometry 

(Guerrier et al. 2008). Thus, only untreated and amino acid pre-treated samples were 

further analysed.  
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Figure 2.2. Nucleic acid and protein extracts obtained from the eight soils with and 

without pre-treatments. For each soil, extractions were performed in triplicate for a) 

no pre-treatment b) amino acid pre-treatment c) casein pre-treatment. DNA and RNA 

run on 1 % agarose gels are presented in the top panel for each soil, and proteins run 

on 12 % bis-acrylamide SDS page gels are presented below. M= marker, where 

Hyperladder I was used for nucleic acid gels and Promega’s Broad Range protein 

marker for protein gels. 
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The use of an amino acid desorption pre-treatment increased the yield of at least one 

biomolecule of interest in six of the eight soils (Figure 2.3). Although this modification 

was originally employed by Nicora et al.  (2013) to improve protein yields, in the soils 

we tested, it principally served to increase nucleic acid yields. However, in soil 5, the 

buffer had the opposite effect, whereby it significantly reduced the RNA yields. This 

could have been a result of the low clay content (just 9.5 %) of this soil. Indeed, the 

desorption buffer is proposed to bind principally to charged clay particles, as such, 

perhaps the amino acids were in excess and interfered with RNA extraction in some 

way.  

 
Figure 2.3: Comparison of DNA, RNA and protein yields, in total µg per extraction, 

from all 8 soils, with (black) and without (grey) pre-treatment desorption buffer. Error 

bars show standard deviation (n=3). Statistically significant differences in mean yield 

between pre- and untreated samples are represented by asterisks denoting FDR-

adjusted p values < 0.05 (determined by two tailed t-tests, subsequent to testing for 

equality of variance).  
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Both yields and quality scores for nucleic acids, showed significant variation between 

soils, with technical replicates showing minor variation (Table 2.3). Nucleic acid 

yields were highest in Soil 4, with DNA concentration yields of 28.6 µg (± 0.20) and 

RNA yields of 7.1 µg (± 1.68) per extraction, being at least a factor of two higher than 

any other soil. The yield of proteins however was not highest for this soil. Indeed, 

protein yields did not follow the same trends seen for nucleic acid yields, implying the 

extraction of nucleic acid and protein fractions are perhaps differentially affected by 

soil physiochemical properties. Although nucleic acids were generally of suitable 

purity to carry out downstream analyses, as shown by the nanodrop ratios (Table 2.3), 

Soil 2 required purification. Therefore, for the purposes of consistency, nucleic acids 

from all soils were run through a OneStep PCR inhibitor remover (Zymo) prior to 

downstream analyses. In general, this served to improve the 280/260 ratios to ~1.8 and 

260/230 ratios to ~1.6 (data not shown).  

 

Table 2.3. Yields per extraction of DNA, RNA and protein, as well as quality ratios, 

from the eight soils tested, as assessed prior to purification.  

Soil 
DNA yield 

µg 1 

RNA yield 

µg 2 
A260/A280 3 A260/A230 3 

Protein yield 

µg 4 

Soil 1 7.99 ± 1.21 4.27 ± 0.75 1.69 ± 0.02 0.82 ± 0.06 96.63 ± 4.33 

Soil 2 13.80 ± 3.70 3.56 ± 1.10 1.58 ± 0.02 0.79 ± 0.01 54.68 ± 6.76 

Soil 3 11.37 ± 1.85 2.85 ± 0.48 1.74 ± 0.05 1.11 ± 0.11 96.00 ± 8.90 

Soil 4 28.60 ± 0.20 7.07 ± 1.68 1.68 ± 0.07 0.98 ± 0.03 82.36 ± 11.08 

Soil 5 5.27 ± 1.36 2.56 ± 0.38 1.87 ± 0.17 1.32 ± 0.35 67.01 ± 12.56 

Soil 6 14.17 ± 4.80 3.47 ± 1.30 1.79 ± 0.03 1.23 ± 0.10 51.54 ± 18.07 

Soil 7 11.40 ± 3.18 3.40 ± 0.70 1.71 ± 0.05 1.06 ± 0.06 68.76 ± 20.34 

Soil 8 12.13 ± 0.50 3.43 ± 0.18 1.78 ± 0.03 1.07 ± 0.09 87.64 ± 15.85 

1 DNA yields were determined using the broad range, ds DNA Qubit (Invitrogen); 2 RNA 

yields were established using the broad range, RNA Qubit (Invitrogen); 3 Nucleic acid 

absorbance ratios, for assessing nucleic acid purity, were determined using a NanoDrop 

spectrophotometer. 4 The Amido Black assay was employed for protein quantification 

(Standard deviation of mean; n = 3). 
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A Pearson’s correlation matrix was used to determine if extract yields, or nucleic acid 

purity, varied consistently as a function of any of the soil physiochemical properties 

(Table 2.4). This analysis revealed no significant correlations between extract 

properties and soil properties, implying that perhaps it is an interaction of soil 

properties (for example clay content and pH) that affects extraction success.  Some 

statistically significant intra-group correlations were detected, as expected, in 

particular within the group of soil physicochemical properties (Table 2.4). As 

expected, DNA yields were correlated with RNA yields (R2 = 0.88), however no 

statistically significant correlation existed between nucleic acid yields and protein 

yields. This further demonstrates how the physicochemical properties of these eight 

soils influenced the extraction of these two fractions in different ways.  

 

Table 2.4. Pearson’s correlation matrix of DNA, RNA and protein yields and nucleic 

purity (280/260 and 260/230 Nanodrop ratios) with soil physiochemical 

characteristics. Statistically significant correlations are represented in bold. 

 DNA RNA 
280/ 

260 

260/ 

230 
Protein Clay Silt Sand pH SOM TC 

RNA 0.88 a           

280/ 

260 
-0.41 -0.42          

260/ 

230 
-0.24 -0.41 0.91 a         

Protein -0.01 0.20 0.02 -0.23        

Clay -0.15 -0.13 0.02 -0.09 0.57       

Silt 0.21 0.32 -0.12 -0.27 0.63 0.86 a      

Sand -0.05 -0.11 0.06 0.20 -0.62 -0.96 a -0.97a     

pH 0.42 0.17 0.27 0.42 0.00 0.10 0.23 -0.18    

SOM -0.29 -0.06 -0.30 -0.46 0.49 0.75 b 0.67 -0.73b -0.26   

TC -0.24 0.04 -0.36 -0.54 0.49 0.68 0.66 -0.70b -0.31 0.99 a  

TN -0.19 0.04 -0.40 -0.58 0.50 0.76 b 0.74 b -0.78b -0.27 0.98 a 0.98 a 

a = statistically significant correlation of p < 0.01; b = statistically significant correlation of p < 0.05 
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2.3.2 Biomolecule yields from granular sludge, cattle slurry and pure 

culture 

 

With the implementation of small adaptations, biomolecules were also co-extracted 

from a diverse range of complex, mixed microbial communities as well as from pure 

culture (Figure 2.4). Assessment of nucleic acid integrity via visualisation on agarose 

gels revealed intact genomic DNA and RNA for all samples (Figure 2.4).  

 

Figure 2.4. Representative agarose gels and their corresponding SDS-page gel images 

from the three biomolecules recovered from a diverse range of sample types. Technical 

duplicates samples are shown for each sample type. For all samples, excluding cattle 

slurry, raw nucleic acid extracts are shown. Purification using the OneStep kit (Zymo) 

was necessary for cattle slurry samples prior to imaging. The soil sample shown is Soil 

2. 

 

Nucleic acid purity of extracts from granular sludge and pure culture was high (Table 

2.5). However, the nucleic pellet acquired from slurry samples was dark in colour, 

therefore the corresponding DNA and RNA fractions required purification (Zymo 

OneStep PCR inhibitor removal column), after which the extracts’ quality and quantity 
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were sufficient for downstream analyses (Table 2.5). It should also be noted that this 

co-extraction method was successfully employed by other members of the research 

group to obtain nucleic acids and proteins from biomass obtained from both digestate 

and leachate fractions of a bioreactor treating food waste, as well as from a Gram 

positive culture of Streptococcus pyogenes. This data, taken from the manuscript 

version of this work, can be seen in Appendix I. 

 

Table 2.5. Yields per extraction of DNA, RNA and protein from all sample types 

tested, as well as quality ratios. Data shown are prior to any purification.  

Sample 

type 

DNA yield 

µg 1 

RNA yield 

µg 2 
A260/A280 3 A260/A230 3 

Protein yield 

µg 4 

Anaerobic 

granules 
18.03 ± 5.05 11.31 ± 2.10 1.93 ± 0.01 1.97 ± 0.03 142.53 ± 13.42 

Cattle slurry 9.93 ± 0.72 3.99 ± 0.23 1.81 ± 0.01 1.22 ± 0.10 140.70 ± 2.52 

Pure culture 3.14 ± 0.57 31.12 ± 0.57 1.95 ± 0.10 1.98 ± 0.05 113.95 ± 25.01 

1 DNA yields were determined using the broad range, ds DNA Qubit (Invitrogen); 2 RNA 

yields were established using the broad range, RNA Qubit (Invitrogen); 3 Nucleic acid 

absorbance ratios, for assessment of nucleic acid purity were determined using a NanoDrop 

spectrophotometer. 4 The Amido Black assay was employed for protein quantification 

(Standard deviation of mean; n = 3). 

 

When considering the recommended concentrations for commonly used library 

preparation kits, yields of nucleic acids from all sample types (Figure 2.5) were shown 

to be sufficient to allow for metagenomics (amplification free, at > 250 ng DNA per 

sample for Illumina Nextera™ kit) and metatranscriptomics (between 2 µg and 10 µg 

for MICROBExpress™ Kit for mRNA enrichment) (Figure 2.5). In addition, protein 

yields were comparable to recent published metaproteomics studies for complex 

systems such as sediments (Moore et al. 2014) and soil (Bastida et al. 2014), where 

co-extraction was not performed.  



55 

 

 
Figure 2.5: Total yields of DNA (black), RNA (grey) and proteins (shaded) per 

extraction, from all sample types tested. ‘Aa treated’ = amino acid pre-treatment 

applied; ‘untreated’ = no pre-treatment applied. Error bars show standard deviation of 

the mean where n = 3. 

 

2.3.3 Downstream analyses of soil-extracted bio-molecules for 

microbial community analysis 

 

To validate the suitability of soil nucleic acid fractions for downstream analyses, 16S 

rRNA genes from all eight soils were successfully PCR amplified using the universal 

primers 515F/806R (Caporaso et al.  2011) from both DNA and cDNA (Figure 2.6). 

As a proof of concept, three biological replicates from one soil type (Soil 2) underwent 

in-depth microbial community analysis. This soil was chosen as it was more 

problematic that other soil samples during PCR amplification, thus presenting a more 

robust test of the success of downstream analyses.  
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Figure 2.6. PCR products from amplification of 16S rRNA from DNA and cDNA 

fractions of the eight soils tested. M = marker (Hyperladder I); -C = negative control 

(no template); + C = positive control (E. coli genomic DNA as template) 

 

2.3.3.1 16S rRNA gene sequencing 

Sequences of 16S rRNA genes obtained from the six resulting samples (3 technical 

replicates for DNA and 3 for cDNA) consisted of a total number of 178798 raw reads, 

of which 93727 and 85071 corresponded to DNA and cDNA samples respectively. 

After quality filtering, sequences were clustered into OTUs and using subsampled 

datasets, 12 % of OTUs were shared between triplicate DNA samples and 16 % 

between triplicate cDNA samples (Table 2.6), demonstrating sample heterogeneity 

and the importance of replicates when assessing community composition in this 

manner.  
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Table 2.6: Total number of raw and filtered reads for the three replicate DNA & three 

replicate cDNA samples respectively. Sum of all OTUs identified for all three 

replicates (Total OTUs) and OTUs shared by all three replicates are shown.  

Nucleic acid Total reads QC’d 1 Total OTUs 2 Shared OTUs 3 

DNA 109683 66868 3479 957 

cDNA 91235 63515 2495 934 

1 Read number after quality trimming and chimera removal. 2 OTU – Operational Taxonomic 

Units as clustered at 97 % similarity. 3 OTUs shared between three replicate samples. 

 

Rarefaction curves, were constructed to determine species richness as a function of 

sampling effort, where curves that plateau signify adequate sampling depth (Gotelli & 

Colwell 2001). From this analysis (Figure 2.7) we can see that we did not access all of 

the species present in our sample, however this is a frequently observed occurrence in 

the context of highly diverse microbial communities such as those found in soils. A 

selection of similar results can be seen in Lauber et al. (2009), Nacke et al. (2011) and 

Meng et al. (2016). 

 
Figure 2.7. Rarefaction curves for 3 replicate DNA and cDNA samples. The number 

of OTUs detected as a function of sequences allows for the comparison of richness of 

each sample as a measure of the sampling intensity.  
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Sample coverage for DNA (92 %) and cDNA (95 %) datasets was above the limit of 

90 % typically regarded as sufficient resolution to allow for OTU-based analyses 

(Lemos et al. 2011) (Table 2.7). cDNA samples had reduced richness (1407 OTUs) 

but were more even (0.05) than DNA samples, with a richness of 1771 OTUs and an 

evenness of 0.02. This increased evenness in the cDNA samples resulted in a higher 

measure of alpha diversity than in the DNA samples, as calculated with the inverse of 

the Simpson’s index.  

 

Table 2.7. Alpha diversity metrics for the DNA and cDNA fractions of Soil 2. Included 

are the 16S rRNA library coverage; species richness, assessed by OTU count per 

sample; species evenness (using Simpson’s evenness index) and the inverse of the 
alpha diversity estimator detailed by Simpson (1949). Values show the mean and 

standard deviation of replicates (n=3). 

Fraction 
Coverage 

(%) 

Richness (OTUs 

observed) 

Simpson's 

evenness 

Simpson’s 

diversity 

DNA 92 ± 1.0 1771.12 ± 79.69 0.02 ± 0.00 31.30 ± 7.06 

cDNA 95 ± 1.0 1407.89 ± 45.34 0.05 ± 0.01 64.75 ± 9.46 

 

 

Considering community composition, the dominant phyla of Proteobacteria, 

Verrumicrobia, Acidobacteria and Bacteroidetes were present in both the DNA and 

cDNA samples, but their relative abundances varied between the two nucleic acid 

fractions (Figure 2.8). Members of the Proteobacteria were detected at higher relative 

abundances in cDNA samples (50 %) compared to 20 % in the DNA samples. 
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Figure 2.8. Prokaryotic community composition from the DNA and cDNA fractions. 

Relative abundances are shown at the phylum level, for the three replicates extracted 

from Soil 2 (DNA1, DNA2, DNA3 and cDNA1, cDNA2, cDNA3).  

 

Meanwhile Verrumicrobia showed the opposite trend and were in higher relative 

abundances in the DNA fractions that the cDNA fractions. Thus, we can conclude that 

sequencing depth was sufficient to observe differences between relative abundance of 

species present (DNA) compared to those active at the time of sampling (cDNA), even 

when observed at the phylum level (Figure 2.8). To investigate difference between the 

fractions at a finer taxonomic scale, one replicate (replicate b) from Soil 2 was chosen 

for further analyses. This sample was chosen to mirror protein data presented later in 

the chapter, where it was selected as it had the median number of meta-proteins 

identified (Table 2.8).  

Krona plots were used for this analysis and depict the relative abundances of OTUs 

from Soil 2 replicate b at the levels of domain, phylum and class (Figure 2.9). Marked 
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differences were seen at the level of class, with Spartobacteria being the most 

dominant in the DNA fraction, making up 22 % of the samples relative abundance 

(Figure 2.9a). Meanwhile, in the cDNA sample, Alphaproteobacteria was the most 

abundant class, at 23 % (Figure 2.9b). Each Krona plot is coloured according to 

relative abundances of individual OTUs within the phylotypes presented; the most 

abundant OTU in the DNA sample, at 18.4 %, was a member of the Spartobacteria, 

while in the cDNA sample, it was a member of the Gammaproteobacteria, with a 

relative abundance of 7.3 %. 
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Figure 2.9. Relative abundances of prokaryotic communities from Soil 2 (replicate b) 

from a) the DNA fraction and b) the cDNA fraction. Abundances are depicted at the 

levels of phylum (inner ring), order (central ring) and class (outer ring). Plots are 
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coloured by relative abundance at the OTU level, with the scale depicted in each of the 

relevant panels. For the purposes of clarity, data from only one replicate sample are 

plotted (replicate b). This sample was chosen based on protein data, as it had the 

median number of metaproteins identified (after removing contaminants; Table 2.8).  

 

2.3.3.2 Metaproteomics 

Metaproteomic analysis of protein fractions from the triplicate Soil 2 samples revealed 

that while high total numbers of spectra were observed, roughly only 1 to 2 % were 

identified (Table 2.8), which is in line with other soil studies (Keiblinger et al. 2012).  

 

Table 2.8: Total number of spectra, those assigned to peptides and the number of 

distinct and unique peptides identified using the MPA, for each of the 3 replicate 

protein extracts obtained from Soil 2. 

ID 
Total 

spectra 

Identified 

spectra 

Distinct 

peptides 

Unique 

peptides 

Meta-

proteins 

Replicate a 132028 840 516 397 327 

Replicate b 127914 907 513 338 282 

Replicate c 124790 900 445 304 252 

 

 

This low identification rate is most likely due to insufficient availability of soil-

relevant proteomic databases, but also to the well documented interference of humic 

substances with soil-extracted proteins (Bastida et al. 2009). The use of a matched 

metagenome, allowing for the ‘meta-peptide’ approach detailed by May et al. (2016) 

would surely have improved the identification rate (Tang et al. 2016), however was 

beyond the scope of this work. A concerted effort was made to run the peptide searches 

against an unmatched metagenome, originating from a grassland at Rothamstead 

research station (Delmont et al. 2012). However, as this metagenome feature of the 

MetaProteomeAnalyser was recently implemented, we were unable, at the time of 

analysis, to perform the searches adequately in the time available. To reduce data 

redundancy, protein hits were binned into meta-proteins using MPA (with the peptide 
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rule of at least on peptide in common), and between 252 and 327 meta-proteins were 

identified per sample (Appendix II).  

 

To determine protein fractions accessed by this co-extraction method, an aspect known 

to vary according to extraction protocols (Maron et al. 2007), meta-proteins were 

grouped according to their cellular component ontology (Figure 2.10).  

 

 
Figure 2.10. Cellular component ontology per replicate sample, showing the cellular 

location of the meta-proteins identified. Components not present at more than 2 % in 

any sample are grouped into ‘Others’ while meta-proteins where no cellular 

component ontology information was available are grouped into ‘Unknown’ 

 

The most represented component, across all replicates, was the cytoplasm, followed 

by the membrane and cell membrane. Many meta-proteins could not be classified as a 

function of their cellular location, likely a consequence of insufficient database 

information exacerbated by the fact that many are expected to be extra-cellular proteins 

(Bastida et al. 2009).  
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For the purpose of investigating protein function, meta-proteins were grouped 

according to their molecular function ontology (Figure 2.11). While a diverse range of 

ontologies were seen, meta-proteins assigned to the ontologies of transferases and 

hydrolases were the most frequently observed in all samples. Highly represented 

functions were consistently observed in all three replicates however, differences can 

be seen in less represented functions. This highlights sample heterogeneity and the 

need for co-extraction.  

 

Figure 2.11. Grouping of meta-proteins by molecular function ontology, per replicate 

sample extracted from Soil 2. Functions represented at less than 2 % in any sample are 

grouped into ‘Others’ and meta-proteins where no molecular function ontology 

information was available are grouped into ‘Unknown’. 

 

Metaproteomics is a powerful tool for linking phylogeny with function, and adequate 

data visualisation needs to be applied to capitalise on this valuable information. For 

this purpose, Krona plots were used in order to efficiently represent these two facets 

of the metaproteomics data. For clarity only one replicate sample was used for the 
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Krona plot analysis, replicate 2 was chosen for this purpose as it had the median 

number of protein identified (Table 2.8). The KO functional categories of 

‘Metabolism’ and ‘Genetic Information Processing’ were the most represented within 

the taxa detected (Figure 2.12).  

 

Figure 2.12. Krona plot showing taxonomic classification of metaproteins detected at 

the phylum level, (in the interior segments), with their associated KEGG ontologies 

(in the outer segments). Any phylum present at < 3 % relative abundance of this sample 

(Soil 2; replicate b) were grouped into ‘Others’. Abbreviated KEGG ontologies are 

depicted as follows: G.I.P = Genetic information processing; E.I.P = Environmental 

information processing; Folding etc = Folding, sorting and degradation; Repli & rep = 

Replication and repair; Cofactors & vit = cofactor and vitamin metabolism; Aa 

biosynthesis = Biosynthesis of amino acids; Signal transdtn = signal transduction; 

Terps & polyks = Metabolism of terpenoids and polyketides. For an interactive version 

of the Krona plot see Data Accessibility section. 

 



66 

 

Within the ‘Metabolism’ category, ‘Energy metabolism’ is the most frequently 

observed across all taxa, although not the most abundant. Regarding ‘Genetic 

Information Processing’, across all proteins and phyla, the sub-categories ‘Translation’ 

and ‘Folding, sorting and degradation’ (in particular chaperones) were the most highly 

represented. Looking at function and taxonomy together, it appears that across the 

phyla, the categories of ‘Genetic information processing’ and ‘metabolism’ are the 

most represented (Figure 2.12). In this sample, the majority of the proteins identified 

were assigned to Proteobacteria (41 %). The dominance of this phylum is also 

observed within the 16S rRNA dataset, but of note is the increased relative abundance 

of Proteobacteria at the cDNA level (52 %) compared to the DNA level (21 %) (Figure 

2.9). Taken together these observations highlight that caution must be applied when 

inferring functional contribution of specific taxa to ecosystem functioning based on 

DNA relative abundance data alone. It is worth noting that proteins assigned to viruses, 

protists, fungi and plants could also be detected as metaproteomics is by nature 

untargeted (Figure 2.12; Appendix II). 

 

2.4 Discussion 

 

Systems biology based investigations of complex, mixed microbial communities are 

now within reach thanks to the multi-omics revolution. These omics tools have 

allowed for increasingly in-depth explorations of previously uncharacterised complex 

microbial communities, however despite this, significant hurdles are still to be 

overcome. A frequently occurring theme in recent years has been the need for 

extensive culture-dependent work to corroborate molecular based assumptions, and 

considerable advances in this field have been achieved, as reviewed by Lagier et al. 
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(2015). Additionally, logistical issues exist, relating to computational efficiency and 

data storage when analysing the mega-data produced by such techniques (Hahn et al. 

2016). We must also consider the appropriate use of sequencing-based tools if we are 

to answer ecologically relevant hypotheses (Prosser 2012). As detailed by Muller et 

al. (2013), sound experimental design and the use of suitable analytical tools and 

methods to interpret -omics data will help to progress the field. This includes taking a 

holistic approach where data are integrated for more meaningful inferences of systems 

processes. Due to the inherently complex and heterogenous nature of mixed microbial 

communities, the biomolecules required to produce these integrable data sets should 

be isolated from the same biological sample. This point of view, as well as a co-

extraction method appropriate for their samples of interest (wastewater sludge, water 

and faeces), has been detailed by Roume et al. (2013). Due to the paucity of databases 

with regards to soil microbiome representatives, as well as the minute spatial 

heterogeneity, it seems especially pertinent that biomolecules used for culture 

independent techniques originate from the same biological sample. Additionally, the 

sample should be handled in such a way that each isolation step does not introduce 

further bias. The method presented herein was developed to provide a robust soil co-

extraction method that fulfilled these requirements. The method developed here 

allowed for a cost-effective, robust means of obtaining sufficient yields of DNA, RNA 

and proteins from all sample types tested and its applicability was proven through the 

investigation of community composition (DNA and RNA 16S rRNA analysis) and 

function (metaproteomics) of a complex soil microbial community. The sample to 

sample variation between the biological replicates used for these analyses was clearly 

demonstrated and further emphasizes the importance of extracting from the same 

biological sample when integrating data sets for either improved annotation and/or 
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biological interpretation. We hope that the accessibility of this method, both in terms 

of cost-effectiveness and ease of implementation, together with its adaptability will 

allow for its use with a diverse range of environmental samples in order to expand 

knowledge of microbial community assemblages and microbial ecology. 

 

 

2.5 Data Accessibility  

 

16SrRNA sequence data were deposited on NCBI’s Sequence Read Archive under the 

accession number SRP111658, which can be accessed through the following link to 

the Biosample: http://www.ncbi.nlm.nih.gov/biosample/7345359.  

 

Data associated with metaproteomics was deposited to the ProteomeXchange 

Consortium via the PRIDE partner repository: 

http://www.ebi.ac.uk/pride/; with the dataset identifier PXD007077 

Reviewer account details for PRIDE: 

Username: reviewer93755@ebi.ac.uk 

Password: ViPdTa0l 

 

Commands used in Mothur as well as Krona plots are available at the research group’s 

GitHub page: 

https://github.com/FEMLab/DNA-RNA-Protein-Coextraction-Method-Soil 

 

 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/biosample/7345359
http://www.ebi.ac.uk/pride/
https://github.com/FEMLab/DNA-RNA-Protein-Coextraction-Method-Soil
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3.1 Introduction 

 

Soils classed as acidic, with a mean annual pH of less than 5.5, cover approximately 

30 % of the globe, with increased coverage in high rainfall areas such as North Western 

Europe (Merry 2009). To improve plant productivity many of these soils are amended 

with lime, typically crushed rock rich in carbonates, to increase the pH (Truog 1947). 

However, the process of weathering such rock chips in order to release the carbonate 

which alters pH, is not quick and typically the effects of liming are only seen one to 

two years post-application (Lukin & Epplin 2003). As many farmers in Ireland lease 

land on a year-to-year basis, known as the ‘conacre’ scheme, incentive to invest in a 

treatment with benefit only seen after the lease has ended is understandably low 

(Donnellan et al. 2015). Hence, ‘quick lime’ products (calcium oxide), which typically 

have a faster effect on soil pH, mostly due to their much finer particle size (Peters et 

al. 1996), represent a more cost-effective solution.  

The work presented in this chapter was part of a collaboration involving the testing of 

such a product (Growmax), new to the Irish market, on spring barley (Hordeum 

vulgare) in terms of both plant productivity and changes in the soil microbial 

community. This is the largest spring crop grown in Ireland, with an average of 

150,000 hectares sown annually (Boyle 2015) thus representing significant economic 

value for the country. Barley has an optimum pH of 6.5 (Fageria et al. 1990) and thus 

often cultivation of this crop in Ireland is associated with lime application.  

We believe there existed a research gap in this field, whereby deeper characterisation 

of the microbial community changes associated with lime-induced pH shifts was 

needed. To tackle this, we employed culture-independent techniques, namely 16S 

rRNA profiling, for microbial community analysis. The use of DNA as a template for 
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investigating complex microbial community membership via 16S rRNA analysis is 

widespread, however there are some caveats to consider. This includes the fact that the 

presence of DNA does not necessarily infer that the corresponding organism is active 

and contributing to any phenotype seen. Secondly, DNA has been shown to be 

relatively stable in the soil environment, resulting in ‘relic’ DNA that can inflate 

estimates of bacterial abundance and diversity (Carini et al. 2016). Looking at 

microbial community structure based on the 16S rRNA transcripts, in conjunction with 

16S rRNA genes can help to overcome these caveats and thus DNA and RNA were 

co-extracted from the same soil samples prior to 16S rRNA sequencing. One of the 

benefits of RNA in the context of microbial community analysis is its more rapid 

turnover in contrast to that of DNA; for example Ostle et al. (2003) estimated, using 

isotope analysis, that microbial RNA turnover was around 20 % per day in their soil 

microcosms which equated to a total RNA pool replacement roughly every five days. 

They also demonstrated how rapidly photosynthetically derived carbon is transferred 

and respired at the root-soil interface (within 5 hours to 2 days) and then incorporated 

into rhizospheric bacterial RNA (4 to 8 days) thus illustrating the strong effect of the 

plant over soil dwelling microbiota in their vicinity. Indeed, soil surrounding plant 

roots represents a hotspot for microbial activity, with increases in microbial biomass 

between bulk soil and the rhizosphere shown to be around 200 %, where plant derived 

carbon accounted for 68 % of this increase (Helal & Sauerbeck 1986). The rhizosphere 

therefore represents the most suitable environment to sample from when investigating 

the effects of agricultural amendments such as lime upon the soil microbiota. 

Additionally, due to variations in root exudates as a function of the developmental 

stage of plants (Chaparro et al. 2013) and the strong influence this has on the root-
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associated microbiota (Chaparro et al. 2014), it is prudent to follow such communities 

on a temporal basis.  

A field trial of Spring Barley grown on acidic soil, in the presence and absence of 

quick lime amendment, was set up and the overall aims of the study were to evidence 

the rapid action of Growmax, in terms of i) improvement in plant productivity and ii) 

the corresponding rhizosphere-associated soil microbial communities, assessed by 16S 

rRNA profiling, at three distinct growth stages of the barley, namely stem elongation, 

heading and ripening. 

 

3.2 Materials and methods 

 

3.2.1 Experimental design and sample collection 

 

The field trial was undertaken in Kilavullen, Co. Cork on a site where Spring Barley 

had been grown for the two prior years (2011 and 2012). The soil at this site is a loamy 

brown-earth soil. The trial was set out as follows, plots measuring 1.8 by 21.5 metres 

were treated with a commercial agricultural lime (CaO) product (Growmax). Among 

the application rates tested were: negative control (0 kg/hectare) and high lime (950 

kg/hectare). Each treatment was repeated over four plots making a total of 8 plots set 

out in a random block design (Figure 3.1).. 
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Figure 3.1. Field trial plots immediately following lime application. The photograph 

is taken during lime application and different loading rates can be seen.  

 

The drill planting method was then used to sow all plots with Spring barley (Hordeum 

vulgare cv. Propino) at a density of 155 kg ha-1. All plots were then subject to the same 

treatments of fertiliser and herbicide throughout the trial, the last of which was on week 

10 of the trial (details in Appendix III). The plots were established in mid-April 2014, 

and throughout the field trial, pH was monitored fortnightly and crop productivity 

measured as function of the plant weight of 10 randomly selected plants/plot. Three 

time points were chosen for taking soil samples for microbial community analysis 

week 12, week 15 and week 19. These corresponded to following growth stages of 

barley; stem elongation, heading and ripening, respectively. On the day of microbial 

sampling, ten plants were randomly selected from each plot and the closely attached 

soil was gently removed from the root mass and immediately sieved through a 0.5 mm 

sieve to remove rocks and large roots. For each plot, duplicate aliquots of 0.5 g soil 

were placed in 2 ml screw top micro centrifuges tubes and flash frozen in liquid 

nitrogen. These duplicates will here-in be referred to as ‘technical’ replicates while 

‘biological’ replicates will refer to samples from the 4 × replicated plots. All samples 
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remained immersed and stored in liquid nitrogen until returning to the laboratory 

where they were placed at -80 °C until nucleic acid extractions were performed.  

3.2.2 Soil pH  

 

Soil pH was measured following the guidelines of AOAC Official Method 994.16. 

Due to limited sample amount, roughly 3 g of soil was removed from storage at -80 

°C and dried for 48 °C hours at 40 °C. From this, 2 g of dry soil was weighed into a 

15 ml centrifuge tube and 2 ml of dH20 was added. The tubes were then shaken at 25 

°C and 90 rpm for one hour (New Brunswick™ Innova® 2300), after which they were 

left to settle for 10 minutes. After calibration, pH was measured using a Hanna HI 

2210 pH meter and data recorded. 

3.2.3 Sample preparation for downstream analyses 

 

In order to reduce any bias associated with nucleic acid extractions, these and other 

handling steps including DNase treatment and cDNA generation were performed on 

samples chosen in a randomised manner. 

 

3.2.3.1 Nucleic acid extraction 

DNA and RNA were extracted following a protocol based on that of Griffiths et al. 

(2000) as detailed in section 2.2.2.1. A modified 5 % hexadecyltrimethylammonium 

bromide (CTAB) extraction buffer was used, consisting of 0.2 mM casein added to the 

buffer of Griffiths et al. (2000) prior to autoclaving (Wang et al. 2012). Soil samples 

were removed from -80 °C and placed on dry ice while 500 µl of extraction buffer was 

added and very briefly vortexed to ensure an even contact of the pre-treatment solution 

with soil while ensuring minimal cell disruption. Zirconia beads (0.5 g of a mix of 

0.1mm and 0.5mm zirconia beads) were inserted into each tube with 500 µl of Phenol: 
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Chloroform: Isoamyl Alcohol (P:C:I; 25:24:1). In order to improve RNA yields, P:C:I 

at a slightly acidic pH of 6.1 was used. Tubes were vortexed at high speed for 2 minutes 

45 seconds, followed by centrifugation at 16 000 g for 10 minutes at 4 °C. The resulting 

top aqueous phase was removed and placed in a sterile, pre-cooled, 1.5 ml micro-

centrifuge tube with 500 µl of Chloroform: Isoamyl Alcohol (24:1). Samples were 

briefly vortexed then centrifuged at 4 °C and 16 000 g for 5 minutes after which the 

top aqueous phase was again removed and placed in a sterile 2 ml centrifuge tube. 

Nucleic acids were precipitated via the addition of two volumes of a polyethylene 

glycol (PEG) 6000 solution (30 % PEG; 1.6 M NaCl) and samples were refrigerated 

for two hours. Nucleic acids were collected by centrifugation at 16 000 g and 4 °C for 

20 minutes and the resulting pellet was washed in 1 ml of ethanol. Samples were mixed 

by inverting the tubes several times, and DNA and RNA were then pelleted via 

centrifugation at 16 000 g and 4 °C for 25 minutes. Ethanol was poured off and the 

tubes briefly centrifuged to allow removal of any residual ethanol by pipette, followed 

by a brief air dry under a flame. The pellet was re-suspended in 35 µl of nuclease free 

water and 4 µl was run on a 1 % agarose gel to check for DNA and RNA integrity. 

Nucleic acid concentrations were quantified using Qubit assays and quality was 

assessed using NanoDrop ratios (260:230 and 260:280). Samples either proceeded 

directly to the DNase treatment or were snap frozen in liquid nitrogen and stored in 

aliquots at -80 °C. 

 

3.2.3.2 DNase treatment and cDNA synthesis 

RNA was rendered DNase treated to remove genomic DNA, where complete removal 

of DNA was verified via PCR, followed by normalisation and cDNA generation 

following the methods in section 2.2.3.1. 
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3.2.3.3 Amplification of 16S rRNA gene with Golay Barcoded primers 

A pool of purified, barcoded, 250 bp amplicons of the 16S rRNA V4, from both the 

DNA and cDNA fractions were prepared as detailed in section 2.2.3.3. Samples were 

pooled in equimolar amounts of 2.1 ng resulting in a final pool of 100 ng of purified 

amplicons. DNA and cDNA pools were shipped on ice to the Centre of Genomic 

Research (Liverpool) to undergo paired-end sequencing on the Illumina MiSeq 

platform. Due to the large number of samples, 48 for each fraction, the DNA and 

cDNA samples were run on two separate MiSeq runs. We believe that running all 96 

samples on one run could have significantly compromised the sequencing depth.  

 

3.2.4 Quantitative PCR analysis 

 

Changes in abundance of 16S rRNA gene copy numbers, at the DNA and cDNA level, 

were determined using quantitative PCR (qPCR). Standard curves were generated 

using serial dilutions of purified, 16S rRNA gene amplicons constructed using the 

primers 27F and 1087R according to the method and cycle conditions in section 

2.2.3.2. Aliquots of purified amplicons were stored neat, at -80 °C, with each aliquot 

undergoing a single freeze-thaw cycle to minimise the risk of degradation 

(Dhanasekaran et al. 2010). Serial dilutions were made using PCR-grade water on the 

day of PCR quantitation and then discarded. All soil DNA / cDNA samples were 

normalised to a concentration of 2 ng/µl prior to amplification. Each 20 µl reaction 

contained 10 µl of 2 Takyon™ SYBR® MasterMix (Eurogentec), 0.6 µl of each 10 

µM primer (515F/806R), 6.8 µl of PCR-grade water and 2 µl of template. Standards 

were amplified in triplicate and samples in duplicate. Amplification was performed on 

a Roche LightCycler 480, where initial denaturation / activation was performed at 95 

°C for 3 minutes followed by 40 cycles of 95 °C for 10 seconds and 60 °C for 45 



81 

 

seconds, with light acquisition performed at 77 °C for 1 second at the end of each 

cycle. Melt curve analysis was performed for all samples, and amplicons were run on 

a 1 % agarose gel to verify correct amplicon size. A regression equation was acquired 

from standard curves and used to calculate gene copy numbers from the Cp values. 

Samples were tested for inhibition by spiking a known concentration of standard with 

2 µl of sample and checking for any reduction in the expected Cp value (based on a 

non-spiked sample).  

 

3.2.5 Bioinformatic analysis of 16S rRNA gene sequence data. 

 

De-multiplexed files were received from the sequencing facility, and sequences were 

quality trimmed, de-noised and clustered into OTUs at a 97 % threshold, using the 

same databases and protocol detailed in section 2.2.5.1. 

3.2.6 OTU based analyses 

 

Alpha and beta diversity metrics were calculated using Mothur (Schloss et al. 2009) 

and the statistical programme R (R Core Team 2017), as detailed in section 1.2.5.2.  

 

3.2.6.1 Alpha diversity of soil microbial communities 

Rarefaction curves were constructed and percentage coverage, observed richness, 

species diversity and evenness were calculated as implemented in Mothur. To check 

for statistically significant differences in means of alpha diversity indices between 

treatments, samples were first tested for normality using a Shapiro–Wilk test as 

implemented in R. If data was normal (Shapiro p > 0.05), a one-way ANOVA followed 

by a Tukey’s post-hoc test was performed. For non-normal data (Shapiro p < 0.05) a 
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Kruskal-Wallis followed by a post-hoc Dunn test was performed. Resulting p values 

were collated and appropriately adjust for multiple testing (FDR approach).  

 

3.2.6.2 Beta diversity of soil microbial communities 

Beta diversity was calculated via the generation of distance matrices determined using 

the occurrence based Jaccard index where J represents Jaccard similarity and is 

calculated as follows: 

5 

𝐽(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴| + |𝐵| − |𝐴 ∩ 𝐵|
 

Where:  

A ∩ B = the number of OTUs shared between communities A and B  

|A| and |B| = the number of OTUs in communities A and B respectively.  

 

Differences in community structure were calculated using the relative abundance 

based index of Yue and Clayton theta (θ) as follows:  

6 
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Where:  

AB = the number of shared OTUs between samples A and B;  

Xi, and Yi = the abundances of the ith shared OTU in samples A and B, respectively  

n total = the total numbers of sequences sampled in A and  

m total = the total numbers of sequences in sample B.  

 

Further details regarding these formulae can be found in Schloss & Handelsman 

(2006). 
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Hierarchal clustering using the UPGMA (Unweighted Pair Group Method using 

arithmetic Averages) algorithm (Sneath & Sokal 1973) was performed and visualised 

using dendrograms plotted in FigTree (Rambaut 2012). Non-metric multidimensional 

scaling (nMDS) was also used to visualise the dissimilarity of the samples, based on 

the Yue and Clayton theta distance matrix. To test if observed clustering of samples 

was statistically significant, a non-parametric analysis of similarities (ANOSIM) was 

performed (CLARKE 1993), in addition to a non-parametric calculation of analysis of 

variance, namely the analysis of molecular variance test (AMOVA) (Excoffier 1993). 

Homogeneity of variance (non-parametric) was calculated (HOMOVA) (Stewart and 

Excoffier 1996). To determine how the OTUs influenced the distribution of samples 

within the nMDS plot, Spearman’s correlation coefficient of the relative abundance of 

each OTU with the nMDS axes was calculated (Ramette 2007). This was done in order 

to determine which OTUs were contributing to positioning the corresponding samples 

along the nMDS axes. Linear discriminant analysis (LDA) as implemented in the 

LEfSe tool of Segata et al. (2011) was employed to identify differentially abundant 

OTUs between experimental groups. These were identified by a Wilcoxon rank-sum 

test (with alpha set to 0.05), where the effect size of each OTU detected was denoted 

by an LDA score (where a threshold score of 2 was used). For both alpha and beta 

diversity analysis, the R packages phyloseq (McMurdie & Holmes 2013) and ggplot2 

(Wickham 2009) were used for data handling and visualisation.  
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3.3 Results 

 

3.3.1 Effect of lime on soil pH and crop yields 

 

 Growmax application did not significantly affect the soil pH (Figure 3.2 and Table 

3.1) or the crop yields throughout the trial, where no statistically significant differences 

were seen in grain yield between the untreated control and the Growmax treated plots 

(data not shown). While the pH did slightly increase in the plots treated with Growmax 

(Figure 3.2), this increase was not statistically significant at any points of the trial 

(Table 3.1).  

 

Figure 3.2. Soil pH throughout the field trial. Each circular data point represents the 

pH measured from composite soil samples from each of the four replicate plots (one 

data point per plot) in the presence (black) and absence (green) of Growmax 

application. Triangular shapes represent pH values obtained from the same root-

associated soil from which nucleic acids were extracted.  
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Table 3.1: Mean soil pH from control and Growmax treated plots throughout field trial. 

Calculated using data from four replicate plots in the presence and absence of 

Growmax. Statistical significance is represented using FDR-adjusted p values 

determined by two tailed t-tests, subsequent to testing for equality of variance.  

 

 

 

 

 

 

 

 

 

 

 

3.3.2 Microbial community analysis  

 

3.3.2.1  Bacterial abundance based on 16S rRNA copy numbers. 

 Changes in mean 16S rRNA copy number as a result of lime treatment were 

determined for each nucleic acid fraction and at each barley growth stage (Figure 3.3), 

where the only statistically significant difference was observed in the DNA fraction in 

samples taken from during the elongation phase (Table 3.2). Comparison of 16S rRNA 

gene copy numbers, per gram of soil, demonstrated an approximate 10-fold increase 

between gene copy numbers (DNA) and transcript copy numbers (cDNA) (Figure 3.3), 

with numbers of transcript copies being higher at all three sample points. These 

differences were statistically significant for all time points (Table 3.2). 

Week of 

trial 

Mean pH 

Control 

Mean pH 

Growmax 

FDR adjusted 

p values 
    

0 5.70 5.63 0.50 

2 5.21 5.29 0.50 

4 4.86 5.17 0.13 

5 4.89 4.89 1.00 

6 4.91 5.14 0.12 

7 4.80 5.17 0.12 

8 4.91 5.19 0.12 

9 4.90 5.18 0.12 

10 5.07 5.28 0.24 

13 5.21 5.34 0.16 

15 5.19 5.35 0.12 

19 5.37 5.57 0.12 
    



86 

 

 

Figure 3.3: 16S rRNA gene and transcript copy numbers, in DNA and cDNA samples 

as a function of lime treatment at each barley growth stage. Copy numbers are 

calculated per gram (dry weight) of soil. Statistically significant difference in mean 

copy number are detailed in Table 2.2. 

 

Considering variation in each nucleic acid fraction as a function of time, there was 

more statistically significant variation in copy numbers in the DNA samples, with 

higher copy numbers present during heading compared to both elongation and ripening 

phases. The only significant change in the number of rRNA transcripts (cDNA) 

observed as a function of time / crop development, was between stem elongation and 

the ripening phase where higher copy numbers were seen in the latter. This difference 

however, showed borderline significance at p = 0.04.  
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Table 3.2: Statistical significance of changes in mean 16S rRNA gene or transcript 

copy numbers. Significance was tested both within and between treatments (i.e. crop 

development), where T1 = stem elongation; T2 = heading and T3 = ripening. FDR-

adjusted p values were determined by t-tests (two-tailed), subsequent to testing for 

equality of variance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.2.2 Alpha diversity of prokaryotic communities  

The rarefaction curves for DNA and cDNA samples (Figure 3.4 and Figure 3.5 

respectively) depict the number of new OTUs observed upon randomly selecting 100 

sequences from the dataset. When curves plateau, this implies that sampling effort was 

sufficient to acquire an adequate representation of the community of interest. In the 

present study, the sequencing depth appeared to be sufficient for DNA samples, as 

sample rarefaction curves begin to plateau (Figure 3.4), which was not the case for the 

Interaction FDR adjusted p value 

  

DNA 

Lime vs control 

Elongation 0.009 

Heading 0.38 

Ripening 0.39 
  

cDNA 

Lime vs control 

Elongation 0.39 

Heading 0.39 

Ripening 0.39 
  

DNA vs cDNA 

Elongation 0.001 

Heading 0.004 

Ripening < 0.0001 
  

DNA 

T1 vs T2 0.001 

T1 vs T3 0.16 

T2 vs T3 0.0001 
  

cDNA 
T1 vs T2 0.55 

T1 vs T3 0.04 

T2 vs T3 0.12 
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corresponding cDNA samples (Figure 3.5). This latter observation is in line with a 

number of other soil sequencing projects reporting rarefaction curves that do not 

plateau (see section 2.3.3.1). 

 

Figure 3.4: Rarefaction curves for all 48 DNA samples. The number of OTUs detected 

as a function of sequences allows for the comparison of richness of the un-subsampled 

DNA dataset, from all samples, as a measure of the sampling intensity. Each sample 

is represented by a single line, and no legend is included.  

 

 

Figure 3.5: Rarefaction curves for all 48 cDNA samples. Comparing richness of the 

un-subsampled cDNA dataset, from all samples, as a measure of the sampling 

intensity. Each sample is represented by a single line, and no legend is included.  
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This difference between DNA and cDNA sampling depth is reflected in sample 

coverage. (Figure 3.6A). For DNA samples, average coverage was ~ 94 %, meaning 

that 6 % of sequences are from OTUs that appear only once in the DNA samples. In 

turn, when looking at the cDNA data, the average sequence coverage was lower at 89 

%, suggesting that around 11 % of sequences were singletons. It should be noted that 

despite these differences, for both sequencing runs, the coverage provided was close 

to 90 % and therefore regarded as sufficient resolution to allow for OTU-based 

analyses (Lemos et al. 2011). The observed richness (Figure 3.6B) was significantly 

higher in the cDNA samples, with average of 8570 OTUs, compared to the 

corresponding DNA samples (average of 2555 OTUs). In each of the fractions (DNA 

and cDNA), there was no statistically significant difference in coverage or observed 

richness as a function of time. The fact that coverage within each nucleic acid fraction 

was consistent over the three time points (Figure 3.6A) suggests that any changes 

observed within the microbial communities are not due to artefacts related to 

sequencing depth discrepancies.  
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Figure 3.6. Alpha diversity metrics at the DNA and cDNA level for the three crop 

growth stages. Included is A)16S rRNA library coverage based on Good's estimator 

(with 0.9 or 90 % being acceptable) B) the OTU count per sample, when sequences 

are clustered to 97% similarity C) Simpson’s evenness for defining numerical equality 

of the community and D) the inverse of the alpha diversity estimator detailed by 

Simpson (1949). Any statistically significant differences occurring as function of time, 

per fraction, are denoted by different letters when p < 0.01 (a – c for cDNA samples 

and x – z for DNA samples). FDR-adjusted p values were determined using one-way 

ANOVA with Tukey’s post-hoc tests, subsequent to testing for data normality. 

 

 

Evenness of the communities was very similar between fractions, where the same 

temporal pattern was followed for DNA and cDNA samples (Figure 3.6C). While there 

was no difference in community evenness between elongation and heading, a 

statistically significant decrease in evenness was observed between the heading and 

ripening phases for both nucleic acid fractions. Alpha diversity was calculated using 

the inverse Simpson’s index, which takes into account species number and abundance. 

Thus, the higher OTU number observed at the cDNA level, implying increased 

richness, equated to a significantly larger measure of diversity, at the cDNA compared 
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to the DNA level (Figure 3.6D). As it is not biologically possible to have more species 

present at the cDNA level than the DNA level, we propose that this could be partly 

due to artefacts relating to problems during the DNA sequencing run (namely sub-

optimal formation of sequencing clusters, as reported by the sequencing facility). 

Additionally, it is worth noting that the majority of microbial species in soil are present 

in very low numbers within any given locale. As such, when DNA is extracted many 

of these rare taxa will remain undetected due to insufficient gene copy numbers present 

in the DNA pool compared to that from more abundant members of the community. 

Many bacterial species have multiple 16S rRNA gene copies within their genome, 

however, and as soon as favourable conditions are encountered, these ribosomal genes 

will be translated. If, for example, a bacterium is harbouring 3 x 16S rRNA copies, it 

would acquire 3 × n copies of rRNA transcripts (where n is the number of transcription 

events), thus increasing correspondingly its chance of being detected at the RNA level 

compared to the DNA level.  

 

3.3.2.3 Microbial community composition 

The major bacterial phyla present remained relatively similar between all three crop 

growth stages sampled, and there was no effect of lime treatment at either the DNA 

level (Figure 3.7) or the cDNA level (Figure 3.8). When considering changes within 

each nucleic acid fraction as a function of time, the only evident change was an 

increased relative abundance of Bacteroidetes at the ripening stage in cDNA samples 

(Figure 3.8), while no differences were observable for any phylum in DNA samples 

(Figure 3.7).  
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Figure 3.7: Microbial community composition of all DNA samples. Where the relative 

abundances for all biological and technical replicates for heading, stem elongation and 

ripening are displayed, at phylum level. Samples from the stem elongation, heading 

and ripening phase are represented in the first, second and third panel respectively, 

where each bar represents an individual sample. Samples taken from plots receiving 

no lime treatment are denoted by a green dot on the x axis, while those receiving 

Growmax are identified by a black dot.  

 

When comparing samples from the DNA and cDNA fractions however, a number of 

differences existed between the relative abundances of several phyla. This included a 

more significant representation of Proteobacteria and Planctomycetes in the cDNA 

(Figure 3.8) compared to the DNA samples (Figure 3.7), and conversely an increased 

relative abundance of Bacteroidetes and Verrucomicrobia in the DNA fraction 

compared to cDNA. OTUs belonging to the phylum of Fusobacteria were observed at 

low abundances in DNA samples (Figure 3.7), but were not detected in cDNA (Figure 

3.8) samples. Deinococcus thermus and Tenericutes were detected in very low 

abundances in the cDNA fraction and were absent from the DNA fraction.  
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Figure 3.8: Microbial community composition of all cDNA samples. Where the 

relative abundances for all biological and technical replicates for heading, stem 

elongation and ripening are displayed, at phylum level. Samples from the stem 

elongation, heading and ripening phase are represented in the first, second and third 

panel respectively, where each bar represents an individual sample. Samples taken 

from plots receiving no lime treatment are denoted by a green dot on the x axis, while 

those receiving Growmax are identified by a black dot.  

 

As no easily observable treatment effects were seen at this resolution, the next analyses 

involved detecting differences between the samples at an OTU level, thus providing a 

much finer resolution. It is worth noting that the sequencing strategy we employed was 

pair-end and targeting 250 bp of the 16S rRNA V4 region, which allows for fully 

overlapping paired-end reads, thus significantly reducing error rates and inflated 

numbers of erroneous OTUs (Kozich et al. 2013). Therefore, such a sequencing 

strategy permits some confidence when employing an OTU-centric analysis.  
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3.3.2.4 Differences in community composition: beta diversity  

As the number of sequences was different between samples, OTU tables of the DNA 

and cDNA samples were both rarefied by subsampling datasets to the lowest number 

of sequences observed in each. This serves to reduce the bias that differences in 

sequence depth may have when looking at sample dissimilarity (Weiss et al. 2017). 

Differences in microbial community structure between samples were represented with 

distance matrices constructed using a selection of dissimilarity indices. Hierarchal 

cluster analysis of DNA sample dissimilarity calculated with the Jaccard index of 

presence/absence was visualised in a dendrogram (Figure 3.9). This analysis revealed 

that DNA samples from the three time points varied little in the context of community 

membership as all the samples appear closely clustered under one branch of the tree 

(Figure 3.9).  
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Figure 3.9: Dendrogram of hierarchal clustering of DNA samples, as calculated with 

the Jaccard dissimilarity index (presence/absence). Clustering is performed with the 

UPGMA algorithm. Colours represent technical replicates from the same sample plot. 

The prefix ‘E’ identifies samples from the stem elongation phase, ‘H’ from the heading 

phase and ‘R’ from the ripening phase. ‘High and ‘Zero refer to plus and minus lime 

application; numbers indicate replicate plots and letters a and b denote technical 

replicates. 

 

To determine if there were differences between sample populations due to changes in 

relative abundance, sample distances calculated using the Theta Yue and Clayton 

index, which considers relative abundance (Yue & Clayton 2005), were then used to 

generate a dendrogram (Figure 3.10). There was more distinct clustering using this 

index, suggesting that differences between microbial communites of different samples 

were a result of changes in relative abundance, and not presence or absence of different 

OTUs. The same trend was seen when comparing the dendrograms of hierarchal 

clustering from the cDNA fraction.  
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Figure 3.10: Dendrogram of hierarchal clustering of DNA samples, as calculated with 

the theta Yue & Clayton index (relative abundance). Clustering is performed with the 

UPGMA algorithm. Colours represent technical replicates from the same sample plot. 

The prefix ‘E’ identifies samples from the stem elongation phase, ‘H’ from the heading 

phase and ‘R’ from the ripening phase. ‘Lime’ and ‘control’ refer to plus and minus 

lime application; numbers indicate replicate plots and letters a and b denote technical 

replicates. 

 

Within these dendrograms, there is no consistent clustering of samples as a function 

of lime treatment in either the occurrence based (Figure 3.9) or the abundance based 

(Figure 3.10) dissimilarity analyses. As the lime product did not have the desired effect 

upon soil pH, this result is not entirely unexpected. However, samples from the same 

crop growth phase do appear to cluster together, irrespective of lime treatment. 

Parsimony analyses, as implemented in Mothur, was performed on tree files 

constructed with the Yue and Clayton index, to determine if the observed grouping of 

samples was statistically significant (Table 3.3). To verify there was no significant 
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clustering as a function of lime treatment, this variable was also included in the 

Parsimony analyses, and for trees constructed from DNA and cDNA data, no p values 

were smaller than 0.05. For DNA fractions, the elongation and heading phase samples 

did not group separately from each other (p = 0.07), however samples from the heading 

and ripening phases (p < 0.001) as well as from the elongation and ripening phases (p 

< 0.001) did indeed form statistically significant clusters. For cDNA, samples from all 

three phases formed clusters that were statistically significant at p < 0.05 (Table 3.3).  

 

Table 3.3. Results of parsimony analysis to test significance of clusters observed for 

dendrograms constructed for DNA and cDNA datasets. Statistically significant results 

are denoted by an asterisk.  

Interaction 
DNA 

p value 

cDNA 

p value 
   

Elongation: Lime – No lime 0.966 0.978 

Heading: Lime – No lime 0.615 0.923 

Ripening: Lime – No lime 0.312 0.315 

Elongation - Heading 0.065    0.017 * 

Heading - Ripening < 0.001 * < 0.001 * 

Elongation - Ripening < 0.001 *    0.004 * 
   

 

Due to the highly dimensional nature of the data, non-metric multidimensional scaling 

(nMDS) was chosen to most effectively represent sample dissimilarity (Tzeng et al. 

2008). Distances calculated with the Yue and Clayton theta metric, from both the DNA 

samples (Figure 3.11) and the cDNA samples (Figure 3.12) were plotted. Coloured 

polygons were used to aid visualisation of samples as a function of barley 

developmental stage. In order to test if these clusters were statistically significant, 

samples underwent non-parametric analysis of similarity (ANOSIM), as implemented 

in Mothur (Table 3.4).  
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Figure 3.11: nMDS of DNA sample dissimilarity as calculated with the Yue & Clayton 

metric. Coloured polygons indicate the grouping of samples according to growth stage. 

Clustering of samples were tested for statistical significance by analysis of molecular 

variance (ANOSIM) and results are recorded in Table 3.4. Arrows represent 

Spearman’s rank correlations of ten discriminatory OTUs with the largest effect size 

(LDA score), as identified by LEfSe analysis. 

 

 

In agreement with the hierarchal clustering and parsimony analyses, the grouping of 

cDNA samples at all three growth phases was distinct at p < 0.01 (Table 3.4). DNA 

samples from the ripening and elongation phases clustered separately from each other 

(p < 0.01), as did those from the ripening and heading phases (p < 0.01). However, 

DNA samples from the elongation and heading phase did not form statistically 

significant clusters (p = 0.096). Thus, the outcome of this method of ordination of 

DNA samples, in conjunction with statistical testing, is in accordance with that 

provided by the hierarchal clustering and parsimony analyses. 
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Figure 3.12: nMDS of cDNA sample dissimilarity as calculated with the Yue & 

Clayton metric. Coloured polygons indicate the grouping of samples according to 

growth stage. Clustering of samples as a function of lime treatment and sample day 

were tested for statistical significance (ANOSIM) and results are recorded in Table 

3.4. Arrows represent Spearman’s rank correlations of ten discriminatory OTUs with 

the largest effect size (LDA score), as identified by LEfSe analysis. 

 

 

Table 3.4: ANOSIM results for all interactions tested. Statistically significant 

clustering is indicated by asterisks where p < 0.017 (adjusted Bonferroni) 

Interaction 
DNA  cDNA 

R value p value  R value p value 
      

Elongation - Heading - Ripening 0.28 <0.001*  0.49 <0.001* 

Elongation – Heading 0.10 0.039  0.32 <0.001* 

Heading - Ripening 0.38 <0.001*  0.63 <0.001* 

Elongation - Ripening 0.36 <0.001*  0.52 <0.001* 
  

 
 

 

In short, these two different methods of representing sample dissimilarity, namely 

hierarchal clustering (Figure 3.9 and Figure 3.10) and nMDS (Figure 3.11 and Figure 

3.12) each result in the same conclusions; they suggest that the drivers of community 
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shifts were not related to lime application, but instead to the barley developmental 

stage. In light of this, it was proposed to undertake a more in-depth analysis of 

community succession with time and crop development, looking at only the control 

samples which received no lime treatment.  

 

3.3.2.5 Differential abundance analysis between barley growth stages 

The linear discriminative analysis (LDA) effect size (LEfSe) method (Segata et al. 

2011) was used to identify OTUs that were differentially abundant between stem 

elongation, heading and ripening phases. This analysis returns an LDA score for the 

identified OTUs, thereby demonstrating the effect size of each OTU in discriminating 

between treatments. LDA scores are logarithmic, and the more abundant an OTU is in 

all samples of a particular treatment vs the other treatments, the higher its LDA score 

will be, where a score of > 2 is considered significantly discriminatory (Segata et al. 

2011). As there are more than 200 OTUs for each DNA and cDNA dataset that fit this 

criterion (LDA score > 2), a stricter LDA score threshold of 3 was set for the purposes 

of these analyses. A selection of differentially abundant OTUs are represented by 

arrows on each of the nMDS plots (Figure 3.11 and Figure 3.12), with only the ten 

highest scoring OTUs displayed for the purposes of clarity. The direction of the arrows 

represents the Spearman’s rank correlation of the relative abundance of each LEfSe 

discriminatory OTU with the nMDS axes. OTUs are labelled at class and order, or if 

no classification is available at these taxonomic ranks, then phylum is used. As only 

ten LEfSe discriminatory OTUs can be clearly represented on each nMDS plot, Figure 

3.13 and Figure 3.14 represent all OTUs which had an LDA > 3, for DNA samples 

and cDNA samples respectively. OTUs are labelled at the level of class and order, in 
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order to identify trends between certain phylotypes and barley growth stage, for DNA 

(Figure 3.13) and cDNA (Figure 3.14).  

Fewer OTUs with discriminatory power are identified during the heading phase, 

meaning fewer OTUs consistently experienced significant increases in their relative 

abundances, for all samples, during this growth phase. This trend is seen for both DNA 

samples (Figure 3.13), with 6 OTUs having an LDA > 3, and cDNA samples (Figure 

3.14) with 4 OTUs with LDA > 3. In the DNA fractions, OTUs assigned to 

Sphingobacteriales and Burkholderiales are the most frequently observed 

discriminative OTUs for the elongation phase (Figure 3.13), along with two OTUs 

from Pseudomonadales. The heading and ripening phases of DNA samples are each 

dominated by LEfSe discriminative OTUs from a particular phylotype, with the 

heading phase dominated by Acidobacteria and the ripening phase by Bacteroidetes, 

and more specifically Flavobacteria, Sphingobacteria and other Bacteroidetes that 

were unclassified at the level of class or order (Figure 3.13). 

 



102 

 

 

Figure 3.13. Linear discriminative analysis (LDA) effect size (LEfSe) analysis 

between the three growth stages, for DNA samples. OTUs with an LDA score of > 3 

are plotted and are coloured according to the growth stage for which they provide 

discriminatory power, due to markedly increased abundances. OTUs are labelled at 

the level of class and order, where only statistically significant discriminatory OTUs 

are represented (p < 0.01). 

 

When looking at cDNA samples (Figure 3.14), during the elongation and heading 

phases, there is no phylotype to which the majority of discriminatory OTUs are 

assigned. However, during the ripening phase discriminatory OTUs were mainly 

assigned to Myxococcales, representing more than 50 % of the discriminatory OTUs 

(Figure 3.14). While diverse members of the Bacteroidetes phyla were identified as 

discriminatory for the ripening phase in both DNA and cDNA samples, no 

Myxococcales were identified as discriminatory for ripening, or indeed any phase, in 

the DNA samples, representing a significant contrast to the cDNA samples where this 

group dominates.  
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Figure 3.14. Linear discriminative analysis (LDA) effect size (LEfSe) analysis 

between the three growth stages, for cDNA samples. OTUs with an LDA score of > 3 

are plotted and are coloured according to the growth stage for which they provide 

discriminatory power, due to markedly increased abundances. OTUs are labelled at 

the level of class and order, and only statistically significant discriminator OTUs are 

represented (p < 0.01). 

 

 

As the OTUs in Figure 3.13 and Figure 3.14 were identified as significantly 

differentially abundant between growth phases, we next investigated how exactly their 

abundance varied with time. This was in an effort to reveal any temporal trends, for 

example increases or decreases with time, or indeed if a particular OTU was absent at 

one sample point yet highly abundant in another. Changes in relative abundances of 
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the LEfSe discriminative OTUs were plotted as a function of crop development, for 

both DNA (Figure 3.15) and cDNA (Figure 3.16) samples.  

 

Figure 3.15. Changes in relative abundance of LEfSe discriminative OTUs from the 

DNA fractions, as detected in all phases, as opposed to only the phase where they 

provide discriminatory power. Box and whisker plots represent relative abundances of 

OTUs defined as being discriminatory for A) stem elongation B) heading and C) 

ripening phases as detected in all samples from each time point (as represented by the 

colour scale). The upper, middle and lower line of each box indicate the 75th 

percentile, median and 25th percentile respectively, while whiskers indicate the 

highest and lowest relative abundances for each OTU, and dots denote outliers. OTUs 

are labelled at the level of order, where ‘unclass’ stands for unclassified. 
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In the DNA samples, Sphingobacteriales assigned OTUs were discriminative for both 

the elongation Figure 3.15A and the ripening phase Figure 3.15C. It is evident, that 

despite belonging to the same phylotype, particular OTUs from the Sphingobacteriales 

respond very differently to plant growth phase. The Sphingobacteriales OTUs that 

discriminate for the elongation phase experience a stepwise decrease in relative 

abundance with time. Meanwhile, those identified for the ripening phase show exactly 

the opposite trend. The 6 OTUs identified as highly discriminatory (LDA > 3) for the 

heading phase in DNA samples, are indeed more abundant during this phase, however 

they remain at similar relative abundances for all growth phases (Figure 3.15B), a trend 

that is not generally seen for the other phase-discriminatory OTUs (Figure 3.15 A and 

C). In particular, all OTUs (except the Flavobacteriales) that discriminated for the 

ripening phase in DNA samples, were present in very low abundances until this final 

timepoint (Figure 3.15C). Indeed, this same pattern was shared by ripening-phase 

discriminatory OTUs from cDNA samples (Figure 3.16C): one OTU (in this case from 

Solirubrobacterales) was far more abundant than all others, at all time points. 

Meanwhile, most other OTUs were at very low abundances during the elongation and 

heading phases, before experiencing a notable increase in relative abundance in the 

final phase. All OTUs identified as discriminative in the heading phase of cDNA 

samples were present at very low abundances, even during the phase for which they 

were identified as differentially abundant (Figure 3.16B).  
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Figure 3.16. Changes in relative abundance of LEfSe discriminative OTUs from the 

DNA fractions, as detected in all phases, as opposed to only the phase where they 

provide discriminatory power. Box plots represent the relative abundances of OTUs 

defined as being discriminatory for A) stem elongation B) heading and C) ripening 

phases as detected in all samples from each time point (represented by the colour 

scale). The upper, middle and lower line of each box indicate the 75th percentile, 

median and 25th percentile respectively, while whiskers indicate the highest and 

lowest relative abundances for each OTU and dots show outliers. OTUs are labelled 

at the level of order.  
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All Myxococcales assigned OTUs identified as discriminatory for the ripening phase 

in cDNA samples followed the same trend with time, whereby a stepwise increase in 

relative abundance was observed at each growth phase sampled (Figure 3.16C). We 

then examined the temporal dynamics of all the OTUs assigned to Myxococcales (non-

LefSe and LefSe discriminative) in order to investigate this phylotypic pattern further. 

Additionally, we wished to investigate why no OTUs from the Myxococcales were 

identified as discriminative for any phase in the DNA samples. The relative abundance 

of the most abundant members of this order where identified and, in the interests of 

clarity, the 15 most abundant were analysed (Figure 3.17).  

It is evident that Myxococcales are present in the DNA fractions (Figure 3.17A) at 

much lower abundances than in the cDNA fractions (Figure 3.17B). This suggests that 

these microbial groups are potentially more active than the relative abundance of their 

16S rRNA gene implies. While the relative abundances of Myxococcales OTUs 

fluctuate significantly in the cDNA samples (Figure 3.17B), those identified in the 

DNA fractions remained relatively constant as a function of time (Figure 3.17A). This 

might suggest that these bacteria are present in similar numbers throughout the trial, 

but their activity changes significantly as a function of time/crop development. The 

notable exceptions to this trend of stable abundance in the DNA samples are OTU 646 

and more particularly OTU 607 which were present at extremely low abundance in the 

stem elongation phase, yet by the ripening phase were among the most abundant 

members of this order in the DNA fractions (Figure 3.17A). 
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Figure 3.17. OTUs with the highest relative abundance from the order of 

Myxococcales, from A) the DNA and B) the cDNA samples. The box plots represent 

the relative abundances of each OTU as observed in all samples per time point. The 

upper, middle and lower line of each box indicate the 75th percentile, median and 25th 

percentile respectively; whiskers indicate the highest and lowest relative abundances 

for each OTU and black dots show outliers. OTUs already identified as having high 

discriminatory power by LEfSe analysis (LDA > 3) are identified by dots below the x 

axes, coloured according to the phase for which they are discriminatory. 
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In the cDNA fractions, the majority of Myxococcales follow the same temporal pattern, 

where their relative abundances are highest during the ripening phase (Figure 3.17B). 

The most abundant member of this order, OTU 3, however shows the reverse trend, 

with a decreasing relative abundance as a function of time/plant growth. 

Unfortunately, all the Myxococcales presented in Figure 3.17 are unclassified at the 

genus level, as well as at family level. Thus, it is not possible to determine if these 

variable responses are attributable to differences in phylotype. 

 

3.4 Discussion 

 

Using root-associated soil taken from a field trial designed for testing a quicklime 

product, we aimed to investigate the effect of lime on the stability of microbial 

communities associated with a barley rhizosphere, in a time dependent manner. 

Unfortunately, the lime product did not have the desired effect upon soil pH, 

potentially a result of any number of reasons including soil type, and rainfall, meaning 

that perhaps at this field site, the Growmax application rate was not sufficient to alter 

pH. In weeks 6 to 10 of the trial there was an observable, albeit small, increase in pH 

in plot treated with Growmax, however, this increase was not statistically significant, 

when using the appropriately adjusted p values. This lack of effect was mirrored by 

the microbial community, where no significant grouping of samples according to lime 

treatment was observed. Clear temporal shifts in community structure were observed 

at the three distinct barley developmental stages of stem elongation, heading and 

ripening. In this study it is not possible to disentangle the stochastic, temporal changes 

in the soil microbial community from those resulting from barley growth stage, as no 

bulk soil samples were concomitantly analysed. It is widely accepted that the 
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rhizosphere supports a larger, and more active, community, both at the micro- and 

macro- scale, than the surrounding bulk soil (Brimecombe et al. 2007) and as such 

plant interaction is typically recognised as one of the principle drivers of community 

succession in root associated soil (Breidenbach et al. 2016; Shi et al. 2015). For the 

purposes of this conclusion therefore, changes potentially associated with plant 

association will be discussed. The change in microbial community with crop 

developmental stage has been observed in a number of plants including, but not limited 

to, Arabidopsis (Chaparro et al. 2014), soybean (Sugiyama et al. 2014), pea and sugar 

beet (Houlden et al. 2008). Similarly to the study of Chaparro et al. (2014), little 

change was observed in terms of richness, evenness and diversity, however beta 

diversity analysis revealed that communities at the three growth stages were distinct. 

In this study, statistically significant grouping of samples was seen between all three 

plant developmental stages at the cDNA level, and between two of the stages at the 

DNA level. Between the phases of elongation and heading (DNA) no significant 

grouping was seen, however at the cDNA level there was a clear separation of these 

samples. This could be a result of relic DNA obscuring temporal or treatment effects 

(Carini et al. 2016), again demonstrating the significance of looking at cDNA in 

conjunction with DNA.  

When investigating the prokaryotic soil communities in terms of presence/absence, 

there was little difference, implying that changes in beta diversity were related to 

changes in relative abundance, and not changes in community composition. Indeed, 

the same core assemblage seems to be present at all growth stages studied. Therefore, 

it could be proposed that temporal changes in the relative abundances of particular 

microbial groups occur as a result of changing conditions that favour the metabolic 

strategy of particular microbes. The increase in microbial activity seen in the 
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rhizosphere compared to bulk soil is typically attributed to the continual supply of 

carbon provided by plant roots (Brimecombe et al. 2007). Root exudates vary with the 

growth stage of plants, whereby the amount of exudate has been previously shown to 

correlate with the growth rate of the plant (Aulakh et al. 2001; Lucas García et al. 

2001). It has further been demonstrated that this correlation depends on active root 

growth. For example, Přikryl and Vančura (1980) showed that only actively growing 

wheat roots produced detectable root exudates. In annual plants, root growth and 

production typically begin to decline after flowering (Rees et al. 2005). Swinnen et al. 

(1995) estimated that in a conventionally farmed crop of spring barley, such as the one 

used in the present study, by the end of the growing season, approximately 55 % of 

the root system has decayed. This represents a significant source of carbon deposition 

for the surrounding microbes. Indeed, some research suggests that the roots of 

graminaceous plant such as wheat, oats and barley, undergo a progressive form of 

senescence, whereby the cortical cells of more mature roots gradually die off, and this 

can occur in roots only 20 days old (Henry & Deacon 1981). It could then be assumed 

that a shift in available carbon sources would occur as the crop ages: from soluble, 

organic compounds such as amino acids, sugars, organic acids and vitamins during 

active root growth, to more recalcitrant carbon sources, namely decaying plant 

material such as cell wall components, lignin and cellulose as root growth slows and 

senescence begins. This would select for microbial community members more adept 

at decomposing insoluble organic materials. Members of the myxobacteria are one 

such group, known to decompose macromolecular substances through the production 

of a suite of extra-cellular enzymes (Mohr et al. 2016). Under nutrient limiting 

conditions, Myxococcales spp. undergo fruiting-body formation and sporulation. 

Groups of these species ‘clump’ together and achieve cooperative feeding (Shimkets 
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1990). As shown by the LEfSe analysis, the majority of the highly discriminatory 

cDNA OTUs for ripening, were Myxococcales spp. We could thus perhaps hypothesise 

that their ability to decompose complex organic matter, as well as their ‘social’ 

lifestyle, gave these species an advantage over their competitors and allowed for the 

observed increase in relative abundance at the cDNA level. It is worth noting that this 

phenomenon was not seen when looking at discriminatory OTUs identified from the 

DNA fraction, demonstrating the importance of looking at both nucleic acid fractions. 

OTUs belonging to the order Sphingobacteriales were shown to be discriminatory for 

the heading stage, at both the DNA and cDNA level. As flowering/heading has been 

shown to be when plants are most actively growing and thus producing root exudates, 

the rhizosphere represents an ideal niche for these chemoorganotrophic bacteria to 

survive during this growth phase. Using stable isotope probing in the presence of four 

different 13CO2-exposed plant types, Haichar et al. (2008) demonstrated that OTUs 

which incorporated plant root exudates consistently, independent of plant species were 

predominantly members of both the Myxococcales and the Sphingobacteriales. In our 

study, growth phase also seemed to control the abundance of these groups. In contrast 

to Myxococcales, the Sphingobacteriales do not exhibit the same ‘social’ response to 

nutrient limiting conditions and perhaps were therefore outcompeted when plants 

began entering the senescent phase and this could account for the decrease in their 

relative abundance at this time point. Within these two microbial groups, there were 

of course a number of OTUs that responded differently with respect to changes in 

relative abundances as a function of plant developmental stage. Additionally, the 

OTUs of interest were often unclassifiable at the finer resolutions of family and genus, 

preventing any phylotype-based conclusions being drawn. This variation in relative 

abundance of OTUs within the same taxonomic guild demonstrates the improved 
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resolution provided by OTU-based as opposed to phylotype-based investigations of 

microbial communities. Phylotype-based analysis are convenient when investigating 

the multitude of interactions occurring as microbial communities respond to an event 

(Fierer et al. 2007). However, it must be kept in mind the variety of genetic potential, 

acquired through horizontal gene transfer or otherwise, that exists within each 

phylotype can complicate these efforts (Schloss & Westcott 2011).  

Soil microbial community dynamics result from the interaction of a number of abiotic 

and biotic factors including soil type, climate, precipitation regime, soil organic matter 

content, plant type and agricultural practices to name but a few (Bossio et al. 1998; 

Lauber et al. 2013; Wieland et al. 2001). To determine if any of the observations seen 

in this study can be attributed specifically to barley growth stage, it would be of real 

interest to find 16S rRNA datasets from other studies investigating the soil microbial 

communities of barley and other crops. This could allow us to determine if any 

microbial groups consistently respond in the same manner with barley development. 

Indeed, a recently published tool was created with exactly this type of analyses in mind 

(Rodrigues et al. 2017). Ideally such datasets would include samples taken from the 

bulk soil, which unfortunately was not possible in this study, in order to unpick 

temporal from crop-associated responses.  

There has been much research into the use of inocula of plant growth promoting 

bacteria as a means of sustainably improving plant productivity. This plant growth 

promotion can be achieved in a number of ways, including disease suppression, root 

growth stimulation and mobilisation of recalcitrant forms of nitrogen and phosphorous 

(Lugtenberg & Kamilova 2009). However, a major limitation to this includes the fact 

that once inoculated, many bacteria do not remain in high enough numbers within the 

rhizosphere to have the desired effect (Bashan et al. 2014). As the authors therein 
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detail, this can be as a result of inappropriate ‘carrier’ of the inoculant but also due to 

the inability of the introduced population to find a niche in which they can persist. This 

can be a result of the highly competitive surroundings in which allochthonous bacteria 

find themselves. Resource availability in the bulk soil is often extremely low, indeed 

even some of the ecosystems services we frequently attribute to soil (such as nitrogen 

fixation) are often unable to occur at any meaningful rate in these root-free 

environments, due to lack of substrate (Postgate 1974). Thus, the rhizosphere is a 

highly competitive niche already occupied by a plethora of well adapted 

microorganisms. This poses complications for the survival and success of bacterial 

inoculants. However, perhaps observing the naturally occurring changes in relative 

abundance of a close relative (to the inoculant), might allow for more informed 

decisions when trialling plant growth promoting bacteria as biofertilizers or biocontrol 

agents. Understanding which plant developmental stages might be more opportune for 

the application of these inoculants could indeed enhance the likelihood of the inoculant 

persisting and resulting in the desired phenotype. Thus, through the investigation of 

the natural succession of microbial communities in response to crop growth, we can 

begin to gain some insights into rhizosphere-associated microbial dynamics and use 

this knowledge to guide the implementation of sustainable means of agricultural 

management 
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4.1 Introduction 

 

Upon an extensive literature review, we identified a number of research gaps within 

the field of microbial community stability, including the need for an in-depth 

characterisation of the effects of flooding upon the soil microbiota. Additionally, we 

hoped to investigate flooding in combination with a prior ecosystem disturbance to 

determine if this impacted the resistance and/or resilience of the microbial community. 

For the imposition of a compounded perturbation, the application of an organic 

amendment was chosen as Allison & Martiny (2008) identified it as a stress commonly 

experienced by agricultural soil ecosystems. Additionally, we believe the combination 

of slurry amendment followed by waterlogging represents a condition which Irish 

grassland soils may indeed be subjected to.  

Thus, the aim of this work was to test the following three hypotheses: 1) the application 

of cattle slurry will impose a stress on the soil microbial community. This will be as a 

result of an influx of i) microbiota which will alter soil microbial community 

composition and function and ii) nutrients, including labile forms of carbon, which 

will lead to alterations in trophic strategy of native soil microbiota (K- vs r- strategists). 

The effect of slurry amendment on the soil microbiota has been reported to be 

transient, with microbial community resilience observed within 10 (Stark et al. 2007) 

to 50 days (Suleiman et al. 2016). Thus, in order to impose a compounded disturbance, 

flooding must occur within this time frame. 2) The addition of a compounded 

disturbance of a heavy rainfall event three days post slurry application will result in 

further effects on microbial community composition and functional capacity and/or 

activity. Additionally, the extent to which the microbial community responds to the 

second disturbance, i.e. flooding, will be affected by the presence or absence of slurry, 
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due to changes in carbon availability and ratio of K to r strategists (Hammesfahr et al. 

2008; Wallenstein & Hall 2012). Flooding may affect the typically rapid die-off seen 

of slurry-associated microbes (Cools et al. 2001) and hence reduce the usually-

observed resilience of the community to slurry disturbances. Finally, 3) if the flooded 

soils return to the same moisture content as the controls, this will allow for resilience 

of the community, which may be improved by the increased resource availability in 

slurry amended soils (Griffiths & Philippot 2013). In order to test these three 

hypotheses, the community composition of bacteria and archaea was investigated 

using 16S rRNA profiling, while physiological profiles were assessed via substrate 

induced respiration using MicroResp (Campbell et al. 2003). Finally, rates of litter 

decomposition, potential nitrification and potential denitrification were assessed 

throughout the 140 day experiment, to allow interpretation of the results in terms of 

functions associated to the ecosystems services of nutrient cycling. 

 

4.2 Materials and methods 

 

4.2.1 Soil sampling and processing  

 

Soil used for this experiment was collected from the top 20 cm of a permanent pasture 

land situated at the Johnstown Castle Research Facility (Teagasc) in County Wexford, 

Ireland, with GPS coordinates of 52°17′32″N, 6°30′. Soil from this site has been used 

by Harty et al. (2016), during which full characterisation of the soil was performed, as 

described therein and summarised in Table 4.1. The soil was characterised as a 

moderately drained, sandy loam consisting of 52 % sand, 34 % silt and 14 % clay. 
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After collection, soil was transported and sieved to 2 mm for the removal of large roots 

and stones, and after sieving the soil was kept for two weeks at 10 °C.  

 

Table 4.1. Summary of soil physicochemical characteristics as determined by Harty et 

al. (2016). 

 

4.2.2 Moisture and organic content of soil and slurry 

 

Slurry was obtained from a cattle dairy farm. Moisture content of soil and slurry was 

performed following the European Standard ISO 11465 protocol for calculating 

gravimetric moisture content and dry matter on a wet weight basis. An aliquot of fresh 

soil was placed at 110 °C for 12 hours. Samples were cooled in a desiccator and 

weighed to the nearest mg on a fine balance scale. The moisture content was calculated 

using the following formula: 

7 

𝑆𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 (%) = [
𝑓𝑤 − 𝑑𝑤

𝑓𝑤
] × 100 

Where: 

fw = soil fresh weight  

dw = soil dry weight  

 

Organic matter content was calculated by loss on ignition, (European standard EN 

15935:2012) by incubating oven dried samples in a furnace at 550 °C for two hours. 

After cooling in a desiccator, samples were weighed to the neared mg and percentage 

organic matter content calculated as follows: 

Soil pH 
Total 

carbon % 

Total 

nitrogen % 

Loss on 

ignition % 

Sand : Silt : 

Clay % 

5.69 2.83 0.284 7.02 52 : 34 : 14 
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8 

𝑆𝑜𝑖𝑙 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑚𝑎𝑡𝑡𝑒𝑟 (%) = [
𝑑𝑤 − 𝑖𝑤

𝑑𝑤
] × 100 

Where: 

dw = soil dry weight minus dish weight 

iw = ignited dry weight minus dish weight  

  

4.2.3 Microcosm set up 

 

Microcosms were set up in 250 ml plastic containers, modified to each include 10 

regular sized drainage holes. In each container, 150 g fresh weight (fw) of soil was 

placed and gently packed to achieve a bulk density of 1.02 g / cm3 (Figure 4.1). Packing 

was performed in ‘thirds’ to achieve an even density throughout the pots. Microcosms 

were weighed for monitoring moisture content, covered with loosely fitting lids and 

placed at 15 °C in the dark for two weeks prior to the application of any experimental 

treatments.  

 
Figure 4.1. Microcosms constructed from plastic containers, filled with sieved soil at 

a bulk density of 0.77 g / cm 3 
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4.2.3.1 Slurry application 

Microcosms were numbered (1 – 200) and randomly assigned to each of the four 

treatments, with 6 surplus microcosms for each treatment. One litre of cattle slurry 

(7.53 % dry matter content) that had been stored at 10 °C for two weeks since 

collection, was homogenised in a blender for 45 seconds. A 25 ml pipette tip, with the 

end cut to 1 cm to remove the narrow tip, was used to apply slurry to half of the 

microcosms. The application rate equated to 33 m3 per hectare, within the suggested 

limits of slurry application to grasslands by Teagasc (Humphreys & Lawless 2006). In 

each microcosm, 10.1 ml of slurry was therefore applied to the soil surface area of 30.6 

cm2. To account for the increased moisture content of microcosms receiving slurry, 

those microcosms not amended with slurry received 7.6 ml of distilled water. In order 

to achieve saturated soil conditions later in the experiment, all microcosms were placed 

inside sterile, 500 ml Ravenhead Kilner® jars, with the lids removed. Parafilm was 

used to cover the jars, and pierced with a needle to allow gaseous exchange but reduce 

water loss. Jars containing microcosms were placed, in numerical order (thereby 

preventing storage in treatment ‘blocks’), inside loosely closed cardboard boxes, at a 

constant temperature of 15 °C in the dark. Weekly, throughout the experiment, any 

unflooded microcosms were weighed, and lost moisture was replaced by spraying with 

distilled water. Three sample points were performed during this phase, T0, T1 and T2 

(Table 4.2; section 4.2.4).  

 

4.2.3.2 Flooding of microcosms 

Three days after the slurry had been applied, 45 microcosms from each treatment, with 

and without slurry, were flooded. This resulted in four treatments, each with 45 

microcosms; i) untreated control ii) slurry iii) flood iv) slurry + flood.  
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Flooding was achieved by adding distilled water gently into the microcosms until 

water remained at a height of 5 mm above the soil horizon. Microcosms were again 

covered in parafilm, pierced with a needle (× 10) before being placed in boxes in the 

dark at 15 °C, in numerical order to prevent treatment blocks. The sampling regime 

continued, with sample points T3 to T7 (inclusive) occurring during the flooded phase 

(Table 4.2, section 4.2.4). 

 

4.2.3.3 Draining of microcosms  

After 26 days of water-logged conditions, excess water was removed from the jars and 

gently poured off the top of the microcosms. To remove pooled water from within the 

base of the plastic microcosm pots, these were placed on tissue paper and left to sit for 

10 minutes. Microcosm weights were recorded, and pots returned to the Kilner jars, 

sitting atop inverted weigh boats to allow drainage. To keep conditions the same as the 

non-flood treated controls, jars were once again covered in parafilm. Once a week, the 

inside of the jars was wiped to remove any drained water and pots left to sit on tissue 

paper for 10 minutes, again to allow any water pooled at the bottom of the pots to be 

drained. After 66 days of natural draining, the microcosms had reached a moisture 

content within 2 % that of the non-flood treated controls, and sampling continued, thus 

resulting in the final ‘recovery phase’ of sampling. This sampling phase consisted of 

timepoints T8 to T13 (inclusive) over 48 days (Table 4.2; section 4.2.4). 

4.2.4 Microcosm sampling 

 

Sampling was performed in a destructive manner, whereby at each sample point, three 

microcosms were removed per treatment. Soil from each microcosm was used to 

determine soil moisture content and soil organic matter content (section 4.2.2) as well 

as for microbial community analysis; community level physiological profiling; 
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potential nitrification and denitrification rate assays; litter decomposition assays; 

extractable inorganic nitrogen quantification and total carbon and nitrogen 

determination. The methods for each of these analyses are detailed below (section 

4.2.6 to 4.2.12). 

 

4.2.5 Summary of sampling regime 

 

In total, thirteen sample points were investigated, with the experiment divided into 

three phases: i) Disturbance 1: slurry ii) Disturbance 2: flooding and iii) Recovery 

phase, as summarised in Table 4.2. 

 

Table 4.2. Details of each of the 13 sample points, showing the experimental days on 

which they occurred and the phase to which they belonged.  

Time point 

ID 

Days post 

slurry 

Days post 

flood 

Days post 

drainage 
Phase 

T0 0 - - Disturbance 1 

T1 1 - - Disturbance 1 

T2 3 - - Disturbance 1 

T3 6 3 - Disturbance 2 

T4 9 6 - Disturbance 2 

T5 15 12 - Disturbance 2 

T6 22 19 - Disturbance 2 

T7 29 26 - Disturbance 2 

T8 92 - 66 Recovery 

T9 99 - 73 Recovery 

T10 107 - 81 Recovery 

T11 114 - 88 Recovery 

T12 120 - 94 Recovery 

T13 140 - 114 Recovery 
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4.2.6 Microbial community analysis 

 

Using a 15 ml tube, three soil cores were taken from each microcosm and mixed gently 

in a 50 ml tube, before placing three aliquots of 1 g (fw) subsamples into 2 ml screw 

cap tubes, which were immediately flash frozen in liquid nitrogen and placed at – 80 

°C until DNA extractions.  

 

4.2.6.1 DNA extraction and 16S rRNA amplicon library preparation 

DNA extractions were performed following the protocol of Griffiths et al. (2000). 

DNA was normalised to 50 ng / µl and 1 µl was amplified in a 25 µl  reaction using 

Golay barcoded 16S rRNA universal primers 515F/806R (Caporaso et al. 2011) as 

detailed in 2.2.3.3. Due to the large sample number, it was not possible to perform 16S 

rRNA profiling on all 14 time points, thus using phenotypic data to guide selection, 6 

time points were chosen. These included two sample points (T0 and T2) from the pre-

flood phase, three sample points (T3, T5 and T7) from the flooded phase and finally 

three sample points (T8, T11 and T13) from the recovery phase. This corresponded to 

the first and last sample point of each phase and a middle sample point for the flood 

and recovery phases. In addition, a negative control (no template DNA) and a mock 

community were also included in the MiSeq run in an effort to determine sequencing 

error rates. 

 

4.2.6.2 Mock community construction 

Using the phenol:chloroform method (Griffiths et al. 2000) described in 3.2.3.1, DNA 

was extracted from axenic, overnight cultures of Escherichia coli, Listeria 

monocytogenes, Halomonas titanicae, Vibrio parahaemolyticus, Streptococcus 

pyogenes, Pseudomonas aeruginosa and Micrococcus luteus. These were chosen as 
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representing a variety of cell wall structures, phylogenies, genome sizes and rRNA 

copy numbers (Table 4.3). 16S rRNA copy number and genome size details were 

obtained from the Ribosomal RNA Operon Copy Number Database (rrnDB) (Stoddard 

et al. 2015). DNA was quantified using the Qubit assay, and samples normalised to 

the lowest DNA concentration before pooling 1 µl of each. The resulting pool, 

consisting of equimolar amounts of DNA from each strain, was used as template for 

16S rRNA gene amplification, at 1 µl per 25 µl reaction, using the same primer set and 

conditions as the soil samples (section 4.2.6.1). 

 

Table 4.3: Details of 7 bacterial strains used to construct a mock community for 16S 

rRNA amplicon sequencing 

Bacterial strain Phylogeny 
16S rRNA 

copy no1 

Genome 

size bp2 
    

Escherichia coli Gammaproteobacteria 7 4641652 

Listeria monocytogenes Firmicutes 6 2944528 

Halomonas titanicae Gammaproteobacteria 3 5339792 

Vibrio parahaemolyticus Gammaproteobacteria 11 5165770 

Streptococcus pyogenes Firmicutes 6 1852433 

Pseudomonas aeruginosa Gammaproteobacteria 4 6264404 

Micrococcus luteus Actinobacteria 2 2501097 
    

 1 Estimated 16S rRNA copy number and 2 estimated genome size, as taken from rrnDB.  

 

Soil extracted and mock-sample extracted DNA for all samples was amplified in 

triplicate and pooled after amplification. Resulting PCR amplicons for each sample 

were size selectively purified using Promega’s Wizard® SV Gel PCR Clean-Up 

System (section 2.2.3.3). Purified amplicons were quantified using  pooled in 

equimolar amounts before shipping on ice to the Centre for Genomic Research 

(University of Liverpool) where they underwent paired-end sequencing on a single run 

of the Illumina MiSeq platform.  
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4.2.6.3 16S rRNA data analysis 

Paired-end sequencing reads were analysed using Mothur (Schloss et al. 2009), as 

detailed in section 2.2.5.1 and following the protocol of Kozich et al. (2013). Briefly, 

low quality sequences were removed, and remaining sequences aligned against the 

SILVA database release 128, trimmed to the V4 region of the 16S rRNA for improved 

alignment quality (Pruesse et al. 2007). VSEARCH, as integrated in Mothur, was used 

to remove chimeras (Rognes et al. 2016). Classification of sequences was performed 

using the method of Wang et al. (2007) (kmer size of 8) against the same V4 trimmed 

SILVA database used for sequence alignment. Sequences were clustered into OTUs in 

a two-step process; first datasets were split by classification, after which they were 

clustered at 97 % similarity using the OptiClust method (Westcott & Schloss 2017). A 

mock community was included in the sequencing run in an effort to determine 

sequencing error rates. OTUs represented by only one sequence (singletons) were 

removed prior to alpha diversity analysis using Mothur’s remove.rare() function and 

subsequent alpha and beta diversity metrics were calculated as detailed in section 3.2.6 

unless otherwise stated. In order to improve diversity estimates, the recommendation 

of Bokulich et al. (2013) was implemented, whereby any OTUs representing less than 

0.005 % of the total read abundance in the dataset were not included for beta diversity 

analyses. Within R (R Core Team 2017), the package vegan (Dixon 2003) was used to 

calculate sample dissimilarity using the Bray Curtis index. Nonmetric 

Multidimensional Scaling (nMDS) was then performed using the metaMDS function 

in vegan and output was plotted using ggplot2 package (Wickham 2009). To assess 

persistence of slurry-derived microbial groups within the soil microcosms, the tool 

SourceTracker was employed and run in R (Knights et al. 2011).  
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4.2.7 Community level physiological profiling using MicroResp. 

 

Changes in carbon utilization profiles were measured using the MicroResp™ Soil 

Respiration System developed by Campbell et al. (2003). In this system, CO2 

production rate from the soil microbiota is determined as a function of the substrate 

added, where a range of different substrates are used. Detection of evolved CO2 is 

colorimetric, whereby a pH indicator dye embedded in agarose changes colour as CO2 

reacts with bicarbonate. This consists of a detection solution of 12.5 µg ml-1 cresol red, 

150 mM potassium chloride and 2.5 mM sodium bicarbonate suspended in a 1% 

purified agar solution within a standard 96 well plate.  

 

4.2.7.1 MicroResp standard curve generation for CO2 quantification 

A standard curve was prepared in order to convert colour change of the detection 

solution to percentage CO2. A 96 well MicroStrip plate was prepared containing the 

cresol red indicator solution. The absorbance of the solution at time zero was measured 

at 570 nm. A strip of four wells were placed in a 40 ml universal tube which was then 

sealed with a turnover septum stopper. This was repeated for 17 tubes, from which air 

was removed (using a syringe and needle) and 20 % CO2 added in increments to create 

a series of CO2 concentrations from 0.039 % (ambient) up to 5 % CO2 (gel saturation), 

thereby creating a standard curve. Sealed tubes were incubated for 5 hours at 25 °C, 

after which the strips were placed in the microstrip rack and absorbance of the 

detection solution at 570 nm was recorded. Absorbance readings were normalised by 

averaging the absorbance at time zero per 96 well detection plate, and then applying 

the following formula to the post-incubation 5 hour data:  
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9 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 = (
𝐴𝑡5

𝐴𝑡0
) × 𝑚𝑒𝑎𝑛(𝐴𝑡0) 

 

 

Where: 

At0 = absorbance at time zero (570 nm) 

At5 = absorbance after 5 hours incubation (570 nm) 

 

Regression analysis was performed using the open-access ‘MyCurveFit’ software in 

order to curve fit percentage CO2 data against absorbance readings (software available 

at mycurvefit.com). The best fitting standard curve was a four parameter logistic model 

(4PL), where goodness of fit was represented by R2 = 0.99. The formula obtained is 

detailed below:  

10 

𝑦 = 0.1767 +
14221229 − 0.1767

1 + (
𝑥

0.0089)
4.7352  

Where: 

𝑥 = absorbance at 570nm  

𝑦 = percentage CO2.  

 

4.2.7.2 Preparation of carbon sources 

Nine carbon sources were chosen for analysing substrate induced respiration patterns; 

L-arginine, L-cysteine-HCl, D-(+)-glucose; γ-amino butyric acid; α-ketoglutaric acid; 

L-lysine-HCl; L-malic acid, N-acetyl glucosamine, oxalic acid and protocatechuic 

acid. These were chosen to represent carbon sources with a range of complexity 

including amino acids, carbohydrates, carboxylic acids and phenolic acids (Colombo 

et al. 2016). The final concentration of each carbon source, prepared per gram of soil 

water is presented in Table 4.4. While the recommended substrate concentration is 30 

mg / ml soil water, some substrates had to be used at lower concentrations. This was a 
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result of the high water content of flooded microcosms, and the fact that substrate 

concentrations are based on soil water content.  

 

Table 4.4: Carbon sources used in the MicroResp system. Substrates were prepared 

per gram of soil water. 

Carbon Source Concentration (mg/ml) 

L-arginine 15 

L-cysteine-HCl 30 

D-(+)-glucose 15 

γ-amino butyric acid 30 

α-ketoglutaric acid 30 

L-lysine-HCl 30 

L-malic acid 30 

N-acetyl glucosamine 30 

oxalic acid 15 

protocatechuic acid 2 

 

 

4.2.7.3 Substrate induced respiration of soil microbial communities  

Deep, 96-well plates were filled with fresh soil directly from microcosms, using the 

MicroResp filling device, and weighed. Substrates were added in triplicate (technical 

replicates), at 25 µl per well, along with three wells per microcosm that received 25 µl 

of water alone, as a control indicating basal respiration. A detection plate was inverted 

above the deep well plate. A specialised rubber seal was placed between the two 96-

well plates, allowing air exchange between one deep well and its corresponding 

detection well above, thus creating 96 separate, air-tight ‘chambers’ (Figure 4.2). 
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Figure 4.2: The assembled MicroResp system, consisting of a deep, 96-well plate 

containing fresh soil amended with a range of carbon substrates. A 96-well plate 

containing cresol red CO2 detection gel was inverted above, with a specialised seal 

between the plates. A MicroResp clamp applied around the entire system maintained 

the seal between each set of corresponding soil and detection wells during incubation.  

 

The plates, as shown in Figure 4.2, were placed in a MicroResp clamp to maintain the 

seal, and incubated at 25 °C for five hours. The unit was disassembled, and absorbance 

of the detection plate was recorded at 570 nm. Post incubation absorbance readings 

were normalised (Equation ) and converted to percentage CO2 using the 4PL model 

determined from the standard curve (Equation ). Production rate of CO2 (in µg CO2-

C/g/h) was then calculated by applying equation 11, and technical replicates were 

averaged to give one rate per substrate per microcosm. 

11 

𝐶𝑂2𝑟𝑎𝑡𝑒 = [
(
% 𝐶𝑂2

100 ) × 𝑉 × (
44

22.4) × (
12
44) × (

273
273 + 𝑇)

𝑆𝑜𝑖𝑙 𝑓𝑤 × (
% 𝑑𝑤
100 )

] ℎ𝑟⁄  

 

Where: 

V = well headspace volume (µl);  

44 is the molecular weight of CO2 and 22.4 is the volume, in litres, occupied by one 

mole of a gas at standard pressure and temperature (ideal gas law);  

12/44 accounts for the molecular weight of carbon (12) in CO2 (44);  

T = the incubation temperature in ° C which is then converted to Kelvin;  

soil fw = average soil fresh weight per well (g);  

% dw = percentage dry weight (gravimetric) of the soil and  

hr = incubation duration in hours. 
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4.2.7.4 Analysis of MicroResp datasets 

Mean and standard deviation of CO2 production rate were calculated from the three 

replicate microcosms per treatment at each time point. Samples to which only water 

was added were used to represent basal respiration rates. Within R (R Core Team 

2017), the package vegan (Dixon 2003) was used to calculate sample dissimilarity 

using the Bray Curtis index. Nonmetric Multidimensional Scaling (nMDS) was then 

performed using the metaMDS function in vegan and output was plotted using ggplot2 

package (Wickham 2009).  

 

4.2.8 Litter decomposition rate assays 

 

To assess the capacity of the soil systems to decompose complex plant material, 

changes in respiration rate were monitored upon mixing soil with litter, based on the 

litter decomposition assay detailed by Griffiths et al. (2000). Grass clippings from a 

pesticide-free garden were collected and dried overnight at 40 °C. Aliquots of 30 g 

(fresh weight) of soil were mixed with 30 mg of grass clippings and placed in 250 ml 

vessels. Tight fitting lids allowed for CO2 accumulation which was detected via the 

attachment of four micro-strip wells containing CO2 indicator solution (as used in the 

MicroResp 96 well plates; section 4.2.7.1) to the lid of each experimental unit as in 

García-Palacios et al. (2013). Vessels were placed at 25 °C for three hours and changes 

in absorbance of the microstrip wells were measured at 570 nm. Absorbance data were 

normalised (Equation 9), converted to percentage CO2 (Equation 10) and CO2 

production rate was calculated (Equation 11), adjusting the soil weight, headspace and 

incubation time parameters as appropriate. 
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4.2.9 Potential nitrification rate assays  

 

Potential nitrification rates (PNR) were assessed by incubating soil with an ammonium 

source (ammonium sulphate) and blocking the oxidation of nitrite to nitrate with 

chlorate, thereby preventing conversion to nitrogen gas and allowing for quantification 

of total nitrite produced from ammonium. A PNR buffer was prepared by the addition 

of ammonium sulphate (100 µM) and chlorate (2.5 mM) to a 1 mM phosphate buffer 

prepared to the same pH as the soil (pH 6) (Hart et al. 1994). Fresh soil from each 

microcosm (10 g) was mixed with 100 ml of PNR buffer in a 250 ml flask, and 

stoppered with a sponge. ‘Time zero’ flasks immediately underwent extraction of NO2
- 

via the addition of 30 ml of 2 M KCl to determine background nitrite concentrations. 

Remaining flasks were incubated for 24 hours at 90 rpm and 15 °C. After incubation, 

NO2
- was extracted with 30 ml of a 2 M KCl solution, shaking at 90 rpm for 1 hour at 

15 °C. Soil slurry was filtered through Whatman no. 1 filter paper and NO2
- quantified 

as described below in section 4.2.11.2. Aliquots of soil were kept for determination of 

soil moisture content in order to convert data to per gram soil dry weight.  

 

4.2.10  Potential denitrification rate assays 

 

Short term anaerobic incubations, based on Smith and Tiedje (1979) were used to 

determine potential denitrification rates, where soils are incubated with nitrate whilst 

blocking the conversion of nitrous oxide to dinitrogen gas, thus allowing for 

quantification of total nitrous oxide produced from nitrate. A 20 g aliquot of soil from 

each microcosm was incubated in a 150 ml vial with 20 ml of a 1 mM phosphate buffer 

(pH 6) containing a mix of two carbon sources, 10 mM glucose and 10 mM succinate 

(Morley et al. 2014), and nitrate in the form of 10 mM KNO3. Vials were stoppered 
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with rubber bungs, flushed with N2 and allowed to vent to atmospheric pressure via 

insertion of an empty, airtight syringe. Acetylene was added to a final volume of 10 % 

the headspace and vials were incubated at 15° C on a shaker at 90 rpm. Gas samples 

were removed at three time points (30, 60 and 90 minutes) during the short term 

incubation and injected into pre-evacuated, 7ml storage vials each fitted with a double-

wadded septum. Samples were stored until analysis for N2O concentrations. Gas 

chromatography for quantification of N2O was performed using an electron capture 

detector (ECD) at 300 °C, as detailed by Roche et al. 2016. N2O data were converted 

from parts per million (ppm) to µl N2O L-1 headspace using the ideal gas law as in the 

following formula: 

12 

𝐶𝑚 =
𝐶𝑣 × 𝑀 × 𝑃

𝑅 × 𝑇
 

Where: 

Cm = mass per volume concentration (µl N2O / L) and  

Cv = volume per volume concentration ppm.  

M = molecular weight of trace gas (i.e., 28 to µg N2O -N/ µmol N2O);  

P = barometric pressure in atmospheres;  

T = air temperature in ° K and  

R = the universal gas constant (i.e., 0.0820575 L atm•°K•mole). 

 

The rate of denitrification (DR) was then calculated using the following formula as 

described in Groffman et al. (1999), as detailed below: 

13 

𝐷𝑅 =
(𝐶90 × 𝐻) − (𝐶30 × 𝐻)

(𝐷 × 𝑇)
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Where: 

C30 = µg N2O -N/ L headspace after 30 minutes of incubation  

C90 = µg N2O -N/ L headspace after 90 minutes of incubation;  

H =the flask headspace (L);  

D = the dry weight of soil used in the assay;  

T = the duration between the two timepoints analysed, expressed in hours.  

 

Rates were then expressed as the mean of three biological replicates. 

 

4.2.11  Colorimetric quantification of extractable, inorganic nitrogen  

 

Inorganic nitrogen was extracted by mixing aliquots of soil with 2 M KCl at a ratio of 

1:2, followed by shaking at 90 rpm for 1 hour at 15 °C. Soil slurry was filtered through 

Whatman no. 1 filter paper and stored for 24 hours at 4 °C. Extracted ammonium, 

nitrate and nitrite were quantified as in Bollmann et al. (2011) and detailed below. All 

assays were performed in 48 well plates, with standards and blanks quantified in 

triplicate and samples in duplicate. After each reagent was added, plates were gently 

shaken by hand to mix.  

 

4.2.11.1 Ammonium determination 

Ammonium quantification was determined based on a protocol introduced by 

Kandeler & Gerber (1988). A series of standards was prepared by serial dilution of 

(NH4)2SO4, to give a range of the following concentrations: 10, 20, 50, 100, and 200 

µM NH4
+. Blanks were included in every plate and consisted of the distilled water used 

to prepare all assay reagents. Standards, blanks and samples were dispensed in the 48 

wells in 500 µl aliquots. Samples potentially having higher NH4
+ concentrations 

(slurry and flood treated) were quantified neat as well as diluted with dH2O at 1 in 5 

or 1 in 10, as appropriate. Sodium hydroxide (0.3 M) and sodium nitroprusside solution 
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(0.5 M sodium salicylate and 2 mM sodium nitroprusside) were mixed in a 2:1 ratio 

of which 250 µl was added to the samples, followed by 100 µl of sodium 

dichloroisocyanurate (0.9 mM). Plates were placed in the dark and incubated for 30 

minutes before absorbance was read at 660 nm using a microplate spectrophotometer 

(BioTek PowerWave).  

  

4.2.11.2 Nitrite quantification 

Nitrite (NO2
¯ ) was quantified following the method introduced by Keeney & Nelson 

(1965). Standards were generated by the dilution of a stock solution of NaNO2 to give 

a series of concentrations of 5, 10, 25, 50, and 100 µM NO2
¯. The NO2

¯ determination 

reagent consisted of 60 mM sulfanilamide and 2 mM naphthylethylene diamine 

dichloride (NEDD) in 8.5 % H3PO4. Standards, blanks and samples were placed in the 

48 wells in 500 µl aliquots, to which 125 µl of determination reagent was added. Plates 

were incubated in the dark for 10 minutes and absorbance at 540 nm was recorded.  

 

4.2.11.3 Nitrate and nitrite quantification 

Quantification of nitrates and nitrites was performed using the method of Shand et al. 

(2008). Standards were generated by the dilution of a stock solution of KNO3 to give 

a series of concentrations of 12.5, 25, 50, 75, and 100 µM NO3
¯. Standards, blanks and 

samples were placed in the 48 wells in 500 µl aliquots, to which 75 µl of a catalyst 

solution was added, (0.14 mM CuSO4 and 5 mM ZnSO4·H2O) along with 75 µl of 

NaOH (1 M) and 75 µl hydrazine sulfate (13 mM). Plates were incubated in the dark 

before the addition of 250 µl sulphanilamide (60 mM) in HCl (3.5 M) and 75 µl of 

NEDD (4 mM). Plates were incubated for a further 10 minutes and absorbance was 

read at 540 nm.  
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4.2.11.4 Analysis of NH4
+, NO2

¯ and NO3
¯ absorbance readings 

For all plates analysed, background absorbance readings from blank samples (H2O) 

were subtracted from standards and samples, and standards were used to generate a 

calibration curve. The equation of the line was used to determine the NH4
+, NO2

¯ and 

NO3
¯ concentrations of samples, and a correction factor was applied for any that had 

been diluted. To determine NO3
¯ concentrations, the concentration of NO2

¯ was 

subtracted from the NO2
¯ + NO3

¯ data acquired in 4.2.11.3. Accounting for percentage 

dry weight of the soil assayed, and the molecular weight of ammonium, data were 

converted to mg of N per g dry weight of soil. Data were collated and changes with 

time were plotting using R.  

 

4.2.12  Total carbon and nitrogen 

 

Soil samples were dried overnight at 40 °C and stored until being ball milled (Retsch 

200) at 25 Hz and 90 seconds. Slurry samples that had been flash frozen and stored at 

-80 °C were freeze dried for 24 hours until all moisture was removed. Samples were 

transported to Teagasc’s Environment Research Centre (Wexford, Ireland) where total 

carbon and nitrogen was determined using LECO Truspec CN analyser (LECO 

Corporation, St. Joseph, MI, USA), using combustion at 950 °C.  
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4.2.13  Physicochemical data and functional assays: statistical analyses 

and data visualisation 

 

Statistical analysis was performed in R (R Core Team 2017) using the r-base statistics 

functions. Statistically significant differences in mean for soil functional assays and 

physicochemical properties were detected using two tailed t-tests, subsequent to 

performing an F-test for comparing sample variances. The variance-appropriate t-test 

(Student’s or Welch's) was then performed and any p values that were presented in the 

same figure or table were corrected for multiple t-tests using the false discovery rate 

(FDR) approach (Benjamini & Hochberg 1995). For comparing differences in alpha 

diversity, data were first checked for normality using the Shapiro -Wilk test (Shapiro 

& Wilk 1965). If data were normal, an Anova test was performed, followed by a 

Tukey’s post hoc test if p < 0.05 (Tukey 1949). For non-normal data, a Kruskal-Wallis 

analysis of variance test was performed (Kruskal & Wallis 1952), followed by a 

Dunn’s post-hoc test if p < 0.05 (Dunn 1961). 

For all box plots presented, the upper, middle and lower line of each box indicate the 

75th percentile, the median and the 25th percentile of the data respectively, while the 

whiskers indicate the highest and lowest values, and dots denote outliers (data points 

more than two standard deviations from the mean).  

Data representation was performed in R using the ggplot2 package (Wickham 2009) 

and in SciDavis (Standish et al. 2007). 
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4.3 Results 

 

4.3.1  Soil moisture content 

 

Untreated controls had a mean gravimetric soil moisture content of 24.8 %, similar to 

that of slurry amended samples with a mean of 25.6 % (Figure 4.3). During the 

flooding phase (T3 – T7 inclusive), mean gravimetric soil moisture content was 37.1 

% and 36.6 % in un-amended and slurry amended microcosms respectively.  

 

Figure 4.3. Gravimetric water content, on a wet weight basis, as a function of time. 

Each point represents the mean of biological replicates and error bars depict standard 

deviation (n=3).  

 

4.3.2 Soil basal respiration rates 

 

Immediately following slurry application (T0) there was roughly a three-fold increase 

in basal respiration rates, with the mean basal respiration rates in the control at 0.47 

µg C-CO2 g
-1 hr-1 versus 1.45 µg C-CO2 g

-1 hr-1 in the slurry amended microcosms 



142 

 

(Figure 4.4). This effect was relatively short lived, and after 6 days, no differences in 

mean basal respiration rates were observed between these two treatments.  

 

Figure 4.4. Changes in soil basal respiration rates for all four treatments, as a function 

of time. Each point represents the mean respiration of biological replicates, with 

standard deviation of the mean represented by horizontal whiskers (n=3). The left y 

axis shows the timepoint ID and for clarity, the right y axis shows the days since slurry 

amendement. The dotted line at 0.54 µg C-CO2 g
-1 hr-1 represents the mean respiration 

rate of the untreated controls, for T0 – T13. Points shaded with horizontal bars 

represent those in waterlogged conditions at the time of sampling, (i.e. ‘flood’ T3 – T7 

and ‘slurry+flood’ T3 – T7). 

 

Upon flooding, there was more than a two-fold decrease in basal respiration rates in 

the water-logged samples compared to the unflooded samples (Figure 4.4). This trend 

remained the same throughout the flooded period (T3 – T7). During this flooded phase, 

there was a trend whereby samples receiving slurry prior to the flooding event had 

slightly elevated basal respiration rates (0.3 ± 0.07 µg C-CO2 g
-1 hr-1) when compared 

to those not receiving slurry amendment (0.22 ± 0.01 µg C-CO2 g-1 hr-1). This 

difference in mean basal respiration rates was statistically significant at p < 0.01. Once 
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in the ‘recovery phase’ (T8 – T13), basal rates for all three treatments were similar to 

the untreated control, and no consistent legacy effects from any of the disturbances 

were seen.  

 

4.3.3 Litter decomposition rates 

 

As with the basal respiration rates, the influx of nutrients and microbiota from the 

slurry resulted in a marked increase in litter decomposition rates at T0 in the slurry 

amended (5.2 µg C-CO2 g
-1 hr-1) compared to control microcosms (1.5 µg C-CO2 g

-1 

hr-1), equating to more than a 3 fold increase (Figure 4.5).  

 

Figure 4.5. Changes in litter decomposition rates for all four treatments, as a function 

of time. Each point represents the mean respiration from biological replicates, with 

standard deviation of the mean represented by the horizontal whiskers (n=3). The left 

y axis shows the timepoint ID and for clarity, the right y axis shows the days since the 

first treatment was applied (slurry). The dotted line at 1.72 µg C-CO2 g
-1 hr-1 represents 

the mean litter decomposition rate of the untreated controls, for T0 – T13. Points 

shaded with horizontal bars represent those in waterlogged conditions at the time of 

sampling, (i.e. ‘flood’ T3 – T7 and ‘slurry+flood’ T3 – T7). 
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This higher rate of litter decomposition was seen in slurry treated samples until 9 days 

after amendment, except for T2 where no difference was seen between the control and 

the slurry treated samples (Figure 4.5). The impact of the flooding on litter 

decomposition rates appeared less immediate than on basal respiration rates, especially 

in microcosms receiving the compounded treatment of slurry and flooding. Litter 

decomposition rates were higher in the ‘slurry+flood’ microcosms, than the ‘flood’ 

microcosms. Indeed, the rates ‘slurry+flood’ soil were even higher than that seen in 

the untreated controls, for the first 12 days of the flood. After this, the litter 

decomposition rates appeared to converge (T6) and by the final flooded timepoint (T7) 

there was no evident legacy effect of the slurry amendment in either the flooded or 

unflooded samples. During the recovery phase (T8 – T13) no differences in mean 

decomposition rates occurred between the treatments, except for T8 where the control 

microcosms showed an uncharacteristic increase in decomposition rate.  

 

4.3.4 Potential nitrification rates 

 

Slurry amendment induced an evident increase in soil potential nitrification rates 

(PNR) and this trend was seen throughout the 140 days of the experiment, in both 

unflooded and flooded variants of the slurry treatment (Figure 4.6). During the 

flooding event (T3 – T8) there was no statistically significant reduction in the PNR of 

water logged soils with ‘flood’ treated samples having a similar PNR as the untreated 

controls throughout this period. Similarly, there was no effect of prolonged 

waterlogging on the PNR of flooded samples receiving the prior slurry amendment; 

these soils maintained similar PNR to those measured in soils with slurry and no flood 

(Figure 4.6).  
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Figure 4.6. Potential nitrification rates as a function of time, for all four treatments. 

Points shaded with horizontal bars represent those in waterlogged conditions at the 

time of sampling, (i.e. ‘flood’ T3 – T7 and ‘slurry+flood’ T3 – T7). The left y-axis 

shows the timepoint ID and for clarity, the right y-axis shows the days since the first 

treatment was applied (slurry). The dotted line at 0.47 µg N g-1 hr-1 represents the mean 

PNR of the untreated controls, for T0 – T13.  

 

 

Due to variation seen in PNR in the untreated control, changes in potential nitrification 

rates (PNR) were then expressed in terms of percentage change from the untreated 

control (Figure 4.7). This provides a clearer demonstration of any treatments effects. 

After 3 days of flooding (T3) a 30 % increase in PNR was seen in ‘flood’ treated 

samples. This was perhaps a result of improved mobilisation of carbon and nitrogen 

sources as a consequence of the increased water content. The PNR of these ‘flood’ 

treated soils then remained approximately the same as the untreated control, until the 

final two timepoints, T12 and T13, where there was a statistically significant increase 

(p < 0.01) in PNR, relative to the untreated control (Figure 4.7).  
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Figure 4.7. Percentage change in potential nitrification rates, compared to the untreated 

control. Each bar represents the mean PNR from biological replicates and the error 

bars depict standard deviation (n=3). The phases during which treatment 2 (flood) and 

treatment 3 (‘slurry+flood’) microcosms were waterlogged (T3 – T7) are shaded with 

black horizontal stripes.  

 

When considering percentage change from the untreated control, the increase in PNR 

as a result of slurry amendment was again clear (Figure 4.7). While the percentage 

increase appeared larger in soils subjected to the compounded slurry and flood 

disturbance, compared to slurry disturbance alone, this difference was not statistically 

significant. Throughout the 140 days of the experiment, rates remained more than 50 

% that seen in non-slurry amended soils (Figure 4.7). 

 

4.3.5 Potential denitrification rates 

 

Potential denitrification rates (PDR) of the untreated controls showed slight variation 

throughout the trial, where the mean PDR was 204 ± 28.9 µg N kg-1 soil h-1 (Figure 
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4.8). There was no change in PDR immediately following slurry amendment (T0), 

however after a further 24 hours (T1) the PDR rate was double that of the untreated 

control, and remained so until the end of the second phase of the experiment (29 days), 

by which stage the rate was the same as in the control. During the flooding phase (T3 

– T8), soils from the ‘flood’ and ‘slurry+flood’ treated microcosms were capable of 

increased rates of denitrification (Figure 4.8; waterlogged samples represented by 

horizontal shading).  

 

 

Figure 4.8. Changes in potential denitrification rates (PDR) as a function of time, for 

all four treatments. Points shaded with horizontal bars represent those in waterlogged 

conditions at the time of sampling, (ie ‘flood’ T3 – T7 and ‘slurry+flood’ T3 – T7). 

The left y-axis shows the timepoint ID and for clarity, the right y-axis shows the days 

since the first treatment was applied (slurry). The dotted line at 204 µg N kg-1 hr-1 

represents the mean PDR of the untreated controls, for T0 – T13. 

 

Amendment with slurry prior to the flooding event further increased PDR in the soils 

(Figure 4.8). Throughout the flooded phase (T3 – T8), this increase was statistically 

significant (p < 0.001) with the mean PDR of ‘flood’ treated soils at 387 ± 71 µg N 

kg-1 hr-1 versus a mean rate of 634 ± 170 µg N kg-1 hr-1 in ‘slurry+flood’ treated soils. 
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During the recovery phase (T8 – T13), the PDR returned to that of the untreated 

controls, except for the final timepoint (T13) where there was a statistically significant 

increase (p < 0.01) in the PDR from soils subjected to the compounded disturbance. 

Due to the fluctuation in PDR seen in the control samples, in particular during the 

flooded phase, rates were analysed as percentage change from the untreated control 

for timepoints T3 – T7 (Figure 4.9).  

 

Figure 4.9. Percentage change in potential denitrification rates, compared to the 

untreated controls. Each bar represents the mean PDR from biological replicates and 

the error bars depict standard deviation (n=3).  

 

Waterlogging induced significant increases in PDR relative to the controls during the 

flooded phase (Figure 4.9). The maximum increase in PDR was seen for the 

‘slurry+flood’ treatment at T3, where PDR in these soils was approximately 250 % in 

excess of that measured in the untreated controls. After T3, the PDR stabilised to 

around 120 % that of the control for the remainder of the flooded phase. In soils 

exposed to the flood (without slurry amendment), PDR rates were 50 % higher than 

those measured in the control at T3 and remained so throughout this flooded period 

(Figure 4.9).  



149 

 

To gain insights into the effects of the slurry and flooding stresses on in situ nitrogen 

cycling, extractable inorganic nitrogen concentrations were assessed.  

 

4.3.6 Soil ammonium concentrations as a function of time.  

 

The mean concentration of ammonium in the untreated soils was 2.8 ± 0.73 mg NH4
+ 

- N kg-1 soil (dw) throughout the experiment. As expected, immediately following 

slurry application the soil ammonium concentration increased, to 7.8 ± 0.75 mg NH4
+ 

- N kg-1 soil (Figure 4.10). While there was significant fluctuation in the ammonium 

concentration in slurry treated soils, they remained higher than that of the un-amended 

control (p < 0.001) until 9 days (T4) after the amendment was applied, when 

concentrations returned to that seen in the control. After 3 days of waterlogged 

conditions (T3) the ammonium in flooded, slurry amended soils was similar to that 

seen in their unflooded counterparts, suggesting some oxygen was remaining in the 

flooded soils after 3 days of water saturation, allowing for nitrification (Figure 4.10). 

However, after 6 days of waterlogging (T4) ammonium had started to accumulate 

(31.6 ± 10.37 mg NH4
+ - N kg-1) and three days later (T5) reached its maximum level 

of 93.3 ± 5.85 mg NH4
+ - N kg-1 soil. Ammonium levels in these ‘slurry+flood’ treated 

microcosms remained high for the remainder of the flooded phase, however there was 

a slight decrease seen at each subsequent sample point, with 79.4 mg NH4
+ - N kg-1 

measured at T6 and 69 mg NH4
+ - N kg-1 at T7 (Figure 4.10). 
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Figure 4.10. Extractable inorganic ammonium concentrations measured in control and 

stressed soils, in mg NH4
+ - N kg-1 soil (dw). Points shaded with horizontal bars 

represent those in waterlogged conditions at the time of sampling, (ie ‘flood’ T3 – T8 

and ‘slurry+flood’ T3 – T8). The dashed line represents the mean NH4
+ concentration 

measured in the control soils.  

 

In un-amended soils that underwent flooding, a step wise increase in ammonium 

concentration was seen in line with the duration of waterlogging (Figure 4.10). Again, 

3 days post-flooding (T3) ammonium concentration remained the same as the 

unflooded control, however after 6 days (T4) it had doubled to 3.5 ± 0.34 mg NH4
+  

kg-1 soil and after 26 days of waterlogging, ammonium had accumulated to 11.1 ± 2.62 

mg NH4
+ kg-1 soil. The anoxic conditions during T3 – T7 appeared therefore to 

significantly reduce in situ nitrification rates, thereby leading to an accumulation of 

ammonium in these systems. This was especially apparent in samples receiving the 

prior stress of slurry application, where pre-flood nutrient content would have been in 

excess of that in un-amended soils.  

After flooded microcosms were allowed to drain, ammonium levels in ‘slurry+flood’ 

treated soils fell to 21.7 ± 8.91 mg NH4
+ kg-1 soil at T8, and continued to decrease with 



151 

 

each sample point (Figure 4.10). By T11, ammonium concentrations had fallen to 7.5 

± 2.54 mg NH4
+ kg-1 soil, and remained at a similar concentration for the remainder of 

the experiment (T12 and T13). 

In microcosms subjected to flooding and no slurry amendment, there was a large 

increase in ammonium concentration between T7, the final flooded timepoint (11.1 ± 

2.62 mg NH4
+ kg-1 soil) and T8, the first recovery timepoint (18.0 ± 5.41 mg NH4

+  kg-

1 soil). This was likely a consequence of rates of nitrogen mineralisation being in 

excess of in situ nitrification rates at T7 and T8. Ammonium then steadily decreased 

in concentration at each subsequent sample point, and by the end of the experiment 

(T13) reached 7.1 ± 1.99 mg NH4
+ kg-1 (Figure 4.10). 

During the recovery phase, the lowest recorded ammonium concentration in ‘flood’ 

treated soils was seen at T13, while those receiving the ‘slurry+flood’ treatment, 

reached a similar ammonium concentration at T11; approximately three weeks earlier 

(Figure 4.10). Indeed, the rate at which ammonium falls during the recovery phase (T8 

– T13) appears more rapid in ‘slurry+flood’ soils than in ‘flood’ soils, despite the lower 

ammonium concentration seen in the latter. Between T8 and T11 there was a 65 % 

reduction in ammonium concentrations in ‘slurry+flood’ treated samples, whereas 

during this same period, ammonium reduction in ‘flood’ treated soils was just 32 %. 

This suggests improved nitrification rates in ‘slurry+flood’ soils and corroborates the 

potential nitrification rate data (Figure 4.7), whereby slurry amendment improved 

PNR throughout the experiment.  

To investigate the in situ reduction of nitrate via denitrification, changes in levels of 

inorganic extractable NO3
- were investigated for the four treatments.  

It should be noted that throughout the experiment, for most soils the level of nitrite 

remained below the detection limit of the assay employed for NO2
- quantification, 
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where the lowest standard had a concentration of 5 µM (section 4.2.11.2). The only 

exception was in slurry amended soils at T1 (24 hours post slurry application) where 

0.08 ± 0.027 mg NO2
- -N kg-1 soil was detected. These data are therefore not 

graphically presented.  

 

4.3.7 Soil nitrate concentrations as a function of time 

 

The mean concentration of soil nitrate in the untreated controls was 1.15 ± 0.07 mg 

NO3
− -N kg-1 soil from T0 to T13. Immediately following slurry application, the 

concentration of nitrate was 2.2 ± 0.08 mg NO3
− -N kg-1, approximately double that 

measured in the control (Figure 4.11). Due to errors made in the quantification process, 

T5 and T11 are missing from this dataset.  

Initially, during the flooded phase (T3 and T4) nitrate concentrations in the slurry 

amended and non-amended waterlogged samples remained similar to their respective 

unflooded counterparts; ‘slurry’ treated and control (Figure 4.11). However, despite 

the favourable conditions for denitrification, namely anoxic conditions and available 

nitrogen, nitrate accumulation was seen at T6 and T7 (19 and 26 days of flooding 

respectively). While this occurred faster in ‘slurry+flood’ treated soils, by the end of 

the flooding phase (T7) both flood treatments had accumulated nitrate to a 

concentration of ~ 6 mg NO3
− -N kg-1. This suggests perhaps that by T6 organic carbon 

sources, or access to these sources, was restricted in these microcosms and thus 

limiting the rates of denitrification seen in situ (Knowles 1982).  
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Figure 4.11. Extractable inorganic nitrate concentrations measured in control and 

stressed soils, in mg NO3
- - N / kg soil (dw). Points shaded with horizontal bars 

represent those in waterlogged conditions at the time of sampling, (ie ‘flood’ T3 – T8 

and ‘slurry+flood’ T3 – T8). The dashed line represents the mean NO3
- concentration 

measured in the control soils (1.15 mg / kg soil). It should be noted that T5 and T11 

are not presented due to errors during quantification.  

 

In soils from both ‘flood’ and ‘slurry+flood’ treated microcosms, a reduction in nitrate 

concentrations, to approximately 3 mg NO3
− -N kg-1, was seen by T8, the first sample 

point of the recovery phase (Figure 4.11). Nitrate then remained at a similar 

concentration until T12. By the final sample point, T13, nitrate levels had fallen within 

the range of that measured in the untreated controls (1.0 ± 0.15 mg NO3
− -N kg-1), with 

concentrations in ‘flood’ treated samples at 1.1 ± 0.53 mg NO3
− -N kg-1 and 

‘slurry+flood’ treated samples at 0.8 ± 0.04 mg mg NO3
− -N kg-1.  

While many of the functional assays indicated that the soil microbial community had 

somewhat recovered from the selection of stresses applied, we next wished to 

investigate the effects of the treatments on the physiological and taxonomic profiles of 

the soil microbiomes.  
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4.3.8 Physiological profiling using carbon utilisation profiles  

 

Microbial functional diversity was inferred from carbon utilisation profiles obtained 

using the MicroResp system. First, the cumulative substrate induced respiration (SIR) 

response was analysed. Upon slurry application, an increase in the total respiration 

response was seen, being double that of the un-amended control (Figure 4.12). While 

this elevated respiration response is still evident 9 days after slurry amendment (T4), 

it fell to the same as the untreated control by 15 days post slurry application (T5). This 

plot also demonstrates that slurry application increased the variance in the substrate 

induced respiration responses, where dots representing the three biological replicates 

per timepoint and treatments are generally more spread in ‘slurry’ and ‘slurry+flood’ 

treatments versus the control and ‘flood’ treatment (Figure 4.12). 
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Figure 4.12. Total substrate induced respiration response for the four treatments at 

each of the fourteen timepoints. The first three timepoints represent the pre-flood phase 

and thus only two treatments appear for T0, T1 and T2.  

 

During flooding, the total respiration response was significantly reduced in both 

‘flood’ and ‘slurry+flood’ treatments (Figure 4.12). After 3 days of waterlogged 

conditions (T3) the total SIR response was slightly elevated in samples amended with 

slurry prior to flooding, compared with the flooded, un-amended soils, but this trend 
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is no longer evident after 6 days of waterlogging (T4). During the recovery phase (T8 

– T13) there is variability between the total SIR responses in the different treatments, 

but as a general trend rates tend toward that measured in the unperturbed control, 

particularly by the final two sample points (T12 and 13; Figure 4.12).  

The patterns of SIR were analysed and in order to determine similarity between 

samples as a function of treatment and time, ordination was performed using non-

metric multidimensional scaling (nMDS). To allow for meaningful patterns to be 

revealed within this large data set, SIR profiles were analysed per phase: pre-flood 

phase, flooded phase and recovery phase. Additionally, in order to allow comparison 

of physiological data with community composition data, only those time points where 

16S rRNA profiling was performed are presented.  

During the pre-flood phase (Figure 4.13A), there was an evident change in the SIR 

profiles as a result of slurry application. The first sample point, T0 was undertaken 

approximately two hours after slurry application and a clear divergence of slurry 

treated samples from the un-amended controls can be seen. This difference is still 

evident 3 days after the slurry amendment (T2) and indeed until 6 days post-

amendment (T3 - Figure 4.13B). However, by 15 days post amendment (T5 - Figure 

4.13B) slurry treated samples have converged toward the untreated controls.  
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Figure 4.13. Non-metric multidimensional ordination of sample dissimilarity based on 

substrate induced respiration profiles, as calculated with the Bray Curtis index. 

Dissimilarities are represented for A) the pre-flood phase, B) the flooded phase and C) 

the recovery phase where soil moisture had returned to that of the unflooded control.  

 

During the flooded phase (Figure 4.13B) there is an evident effect of the waterlogged 

status of the soils on SIR patterns, with a clear split between samples that underwent 

flooding (‘flood’ and ‘slurry+flood’ treated soils) versus those that did not (‘control’ 

and ‘slurry’ treated soils). Similarly to the non-flooded samples from this phase, there 

was an evident initial effect of the slurry upon SIR responses in ‘slurry+flood’ samples 

when compared to ‘flood’ treated samples (T3 - Figure 4.13B). However, by 15 days 

post application (T5) this effect appears reduced as ‘slurry+flood’ and ‘flood’ treated 

samples begin to converge at this point. Despite this convergence, the two flooded 

treatments do remain distinct from each other at all flooded time points (T3, T5 and 
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T7). In the initial stages of the recovery phase (T8 - Figure 4.13C), soils that had been 

flooded remain divergently ordinated from their non-flood treated counterparts. Also, 

at the first recovery sample point (T8), ‘slurry+flood’ treated samples group distinctly 

from samples recovering from the ‘flood’ treatment. But, as time progresses, these 

groupings become less distinct and by the final time point (T13 - Figure 4.13C) there 

is a clear convergence of ‘slurry’, ‘slurry+flood’ and ‘flood’ treated samples. 

To determine how these changes in physiological profiles, as well as the functional 

data, compare with the microbial community structure, 16S rRNA profiling data was 

analysed.  

 

4.3.9 Microbial community analysis using 16S rRNA profiling 

 

To investigate changes in microbial community composition resulting from the 

different treatments, 16S rRNA profiling was employed on 8 of the 14 time points. 

These represented two sample points (T0 and T2) from the pre-flood phase, three 

sample points (T3, T5 and T7) from the flooded phase and finally three sample points 

(T8, T11 and T13) from the recovery phase. These correspond to the first and last 

sample point of each phase and a middle sample point for the flood and recovery 

phases.  

 

4.3.9.1 Alpha diversity analysis of soil microbial communities 

Rarefaction curves were used to visually assess the species richness per sample as a 

function of the number of sequences (Figure 4.14). The difference in sequencing depth 

between samples is evident from the rarefaction curves, and provides clear justification 

for subsampling the samples to even depth of sequences prior to undertaking beta 

diversity analyses (Figure 4.14). While the samples do not fully plateau (a 
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demonstration of ample sampling depth) they do begin to plateau and thus sampling 

depth was determined to be sufficient for downstream analyses. 

 

 

Figure 4.14. Rarefaction curves for all soil samples and the slurry sample. The number 

of OTUs detected as a function of sequences allows for the comparison of richness of 

the un-subsampled dataset, from all samples, as a measure of the sampling intensity. 

Each sample is represented by a single line labelled with ‘Slurry’ for the cattle slurry 

sample used to amend the soils, and all other soils microcosm samples are labelled 

with the prefix S-.  

 

It is also evident from the rarefaction curve of the slurry sample that the microbial 

community therein was likely not especially rich. This is evident when comparing the 

richness of soil samples, with an average number of 3800 OTUs observed (Figure 

4.15B), to the 1872 OTUs seen in the slurry sample (Table 4.5).  
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Table 4.5. Alpha diversity metrics of the microbial community isolated from slurry 

used to amend ‘slurry’ and ‘slurry+flood’ microcosms on day 0 of the experiment. The 

number of OTUs observed was used for observed richness while the chao1 estimator 

(Chao 1984) was used for estimated richness. 

 

 

While percentage sequence coverage was exceptionally high in the slurry samples (98 

%) it was deemed acceptable for all samples, as coverage was in excess of 90 % (Figure 

4.15A) (Lemos et al. 2011). As evenness is scaled between 0 and 1, with 1 being a 

community containing numerically equitable members, the low evenness 0.02 

calculated for the slurry sample suggests the OTUs were present in very different 

abundances. In order to account for the fact that most mixed microbial communities 

are not sampled to 100 % depth, we can use estimated richness to account for this 

(Hughes et al. 2001). In the slurry sample, the estimated richness was much closer to 

the observed richness (Table 4.5) than in the soil samples, where estimated richness 

was roughly 30 % more that the observed richness (Figure 4.15).  

 

Sequence 

coverage 

OTUs 

observed 

Estimated 

richness 

Simpson's 

evenness 

Simpson's 

diversity 

98 % 1872 2281 0.02 44.5 
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Figure 4.15. Alpha diversity metrics of microbial communities associated with the 

three disturbance treatments, and the untreated control. Included is A) Percentage 16S 

rRNA library coverage (with > 90 % being acceptable) B) the OTU count per sample 

C) The estimated richness of OTUs in the community using the chao1 estimator (Chao 

1984). Boxes consist of 3 biological replicate samples for all time points for control 

slurry amended samples (n=24) and flood and slurry+flood treated samples (n=18). 

Any statistically significant differences in mean (adjusted p < 0.01) within each of the 

three metrics, are denoted by asterisks coloured according to treatment for which the 

difference is observed.  

 

There were statistically significant differences in observed species richness between 

the treatments (Figure 4.15). The number of OTUs observed was higher in the 

‘slurry+flood’ samples than what was seen in both the un-flooded treatments. 

Microbial community evenness, diversity and richness were investigated as a function 

of treatment, for each of the sample days (Figure 4.16).  
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Figure 4.16. Measures of alpha diversity of soil microbial communities for each of the 

sample days, from the pre-flood phase (T0 and T2), the flooded phase (T3 – 7) and the 

recovery phase (T8 – 13). Each point represents the average A) number of OTUs 

observed, B) diversity based on the inverse of the diversity estimator introduced by 

Simpson (1949) and C) Simpson’s evenness for defining numerical equality of the 

community, for 3 biological replicates. Standard deviation of the mean is represented 

by the whiskers.  

 

Slurry amendment appeared to increase the evenness of the community, an effect that 

was observed in ‘slurry’ treated samples until T7, and in ‘slurry+flood’ treated samples 

until T11 (Figure 4.16C). By the final timepoint, T13, community evenness was 

similar in all soils. As diversity is a measure of richness and evenness, the differences 

in evenness between treatments were mirrored in the diversity measures (Figure 

4.16B). In terms of microbial richness, there was an initial increase in observed 

richness immediately following slurry application, likely resulting from the influx of 
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slurry-associated microbiota (Figure 4.16A). However, 72 hours later (T2) there was 

a dramatic reduction in richness in slurry-amended samples. This effect was relatively 

short lived, and observed only at this timepoint (T2) for ‘slurry’ treated samples and 

slightly longer in ‘slurry+flood’ samples; until T3. By the end of the flooded phase 

(T7) richness had fallen in the ‘flood’ samples while rising in the ‘slurry+flood 

samples’, indeed by this timepoint, the richness, evenness and diversity was higher in 

the ‘slurry+flood’ samples compared to all the other treatments (Figure 4.16A, B and 

C). Once in the recovery phase, an increase in species richness was seen in both 

treatments that had been waterlogged, and this trend persisted for the remainder of the 

experiment. Microbial community composition, depicted as bar plots of relative 

abundance for each sample, can be seen in Appendix V. 

In order to further analyse these differences and compare microbial community 

structure between samples as a result of the treatments, beta diversity was analysed.  

 

4.3.9.2 Beta diversity analysis of soil microbial communities 

Sample dissimilarities calculated using the Bray Curtis index were ordinated using 

non-metric multidimensional scaling, as performed for each of the three phases; pre-

flood, flood and recovery. Clustering of samples as a function of treatments was tested 

for statistical significant using analysis of molecular variance as implemented in 

Mothur. Included in the dissimilarity matrix for the pre-flood phase was the microbial 

community isolated from the slurry applied as amendment, referred to as the 

‘inoculant’ (Figure 4.17A). 
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Figure 4.17. Non-metric multidimensional ordination of microbial community 

dissimilarity based on 16S rRNA profiles, as calculated with the Bray Curtis index. 

Dissimilarities are represented for A) the pre-flood phase, B) the flooded phase and C) 

the recovery phase where soil moisture had returned to that of the unflooded control. 

 

The untreated controls during the pre-flood phase group very closely together, and a 

clear time-dependent divergence of slurry treated samples from the controls is seen 

between T0 and T2 (Figure 4.17A), and this was deemed statistically significant (p < 

0.01). Biological replicates from slurry amended samples appear to ordinate further 

apart, notably at T2, suggesting increased sample heterogeneity as a result of the slurry 

amendment.  

 

In the flooded phase (Figure 4.17B) there is an evident divide in sample groupings, 

with non-slurry amended samples grouping closely together, while ‘slurry’ and 
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‘slurry+flood’ samples form distinct, treatment-specific clusters. While the 

physiological profiles of the microbial communities during the flooded phase resulted 

in clear grouping of samples according the water-status of the soils (Figure 4.13B), 

differences in the community composition during this phase however are driven more 

by the presence or absence of the prior slurry amendment (Figure 4.17B).  

Once in the recovery phase, the dissimilarity of samples as a function of the treatment 

to which they were subjected is still evident (Figure 4.17C). However, it should be 

noted that of the three ordination plots shown (Figure 4.17A, B and C), the axes scales 

during this phase are the smallest, therefore a smaller area was needed to accurately 

ordinate the samples based on their dissimilarity implying smaller differences were 

observed.  

 

To test the statistical significance of the observed clustering of samples as a function 

of treatment, ANOSIM analysis was performed (Table 4.6). Treatments were 

statistically dissimilar from each other at all phases, with the exception of control and 

flooded samples during the flooded phase.  
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Table 4.6. Results of ANOSIM analysis, for comparing the similarity of groups of 

samples based on their treatment.  

Phase Comparison R value p value 

    

Pre - flood Control vs Slurry 0.61 0.002 
    

 Control v Slurry v Flood v Slurry+Flood 0.50 <0.001* 

 Control vs Slurry 0.69 <0.001* 

 Control vs Flood -0.05 0.637 

Flooded Control vs Slurry+Flood 0.71 <0.001* 

 Slurry vs Flood 0.65 <0.001* 

 Slurry vs Slurry+ Flood 0.48 <0.001* 

 Flood vs Slurry+Flood 0.61 <0.001* 
   . 

 Control v Slurry v Flood v Slurry+Flood 0.53 <0.001* 

 Control vs Slurry 0.31 <0.001* 

 Control vs Flood 0.37 <0.001* 

Recovery Control vs Slurry+Flood 0.72  0.001* 

 Slurry vs Flood 0.63 <0.001* 

 Slurry vs Slurry+ Flood 0.82 <0.001* 

 Flood vs Slurry+Flood 0.53 <0.001* 
    

 

Ordination based analysis of sample dissimilarity, supported by ANOSIM analyses, 

revealed a strong effect of each treatment upon microbial community structure. We 

therefore aimed to elucidate which microbial taxa were contributing to the observed 

differences.  

 

4.3.9.3 Differential abundance analysis for each experimental phase 

The linear discriminative analysis (LDA) effect size (LEfSe) method (Segata et al. 

2011) was used to identify OTUs that were differentially abundant between the four 

treatments, at each phase; pre-flood (Figure 4.18A), flooded (Figure 4.18B) and 

recovery (Figure 4.18C). This analysis aims to determine which OTUs are responsible 
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for the distinct sample groupings. Only statistically significant differential abundances 

(p < 0.01) are shown and, due to a large number of discriminatory taxa, only those 

with an LDA score of larger than 3 are presented. OTUs are identified at the taxonomic 

level of order and class. OTUs assigned to the same taxonomic rank were grouped 

together, and their mean LDA score is presented with the number of OTUs included 

in the group shown in the corresponding data point.  

 

 

Figure 4.18. Linear discriminative analysis (LDA) effect size (LEfSe) analysis 

showing differentially abundant OTUs between the four treatments, ‘Control’ (black), 

‘Slurry’ (brown), ‘Flood’ (blue) and ‘Slurry+Flood’ (green). Included are 

differentially abundant OTUs from A) the pre-flood phase, B) the flooded phase and 

C) the recovery phase. OTUs with an LDA score of > 3 are plotted and are coloured 

according to the treatment for which they provide discriminatory power, due to 

markedly increased abundances. OTUs are labelled at the level of class and order, and 

only statistically significant discriminatory OTUs are represented (p < 0.01). OTUs 
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assigned to the same taxonomic order had their LDA score averaged and the number 

of OTUS in each taxonomic group is shown within the corresponding data points.  

 

In the pre-flood phase, a larger proportion of OTUs were identified as differentially 

abundant in the ‘slurry’ treated soils compared to the controls (Figure 4.18A).  Of the 

44 slurry-discriminative OTUs in this phase, 40 could be attributed to the slurry 

‘inoculum’ (i.e. were absent from the T0 soil-only samples). The significant proportion 

of the OTUs that were differentially abundant in pre-flood, slurry amended soils were 

of the phylum Bacteroidetes, (34 % of OTUs) and were from the orders 

Flavobacteriales and Bacteroidales (Figure 4.18A). The phylum Firmicutes was also 

well represented with 7 members of the order Clostridiales being discriminatory for 

slurry treated soils. Seven OTUs from this phylum were also discriminatory for the 

untreated controls, however, were members of a different order; the spore-forming 

Bacillales (De Vos et al. 2015) and represented a diverse range of families. OTUs from 

the orders Flavobacteriales and Bacteroidales (both of the Bacteroidetes phylum) and 

Clostridiales continued to be increased in their abundance in slurry amended soils 

during the flooding phase, and indeed into the recovery phase (Figure 4.18B and C). 

The influence of the anoxic conditions prevailing in the flooded, slurry amended soils 

is also evidenced by the increased abundance of members of the Methylophiliales, the 

typically-anaerobic Spirochaetales and the micro-aerophilic Campylobacterales. As 

in the pre-flood phase, un-amended soils (control and waterlogged) from this phase 

harboured increased relative abundances of Rhizobiales spp. This trend continued 

throughout the experiment, and some of the same Rhizobiales OTUs, (OTUs 4, 10 and 

15), were still discriminatory for the un-amended flood treated samples during the 

recovery phase (Figure 4.18C). 
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In the recovery phase, of the 22 OTUs (with LDA > 3) identified as discriminatory for 

either of the slurry-amended treatments, ‘slurry’ or ‘slurry+flood’, two were 

‘colonisers’ originating from the slurry applied on T0 (i.e. were absent from T0 soil). 

These were OTU 68 (discriminatory for ‘slurry’ samples) and OTU 201 

(discriminatory for ‘slurry+flood’) and both OTUs were members of the Clostridiales, 

with OTU 68 assigned to the family Peptostreptococcaceae and OTU 201 to 

Ruminococcus. 

To determine, in a more systematic manner, the contribution of slurry-derived 

microbiota to the assemblages extracted from slurry-amended microcosms, the 

software SourceTracker was employed.  

 

4.3.9.4 Tracking survival of slurry-derived taxa in the soil microcosms 

The tool SourceTracker (Knights et al. 2011) was used to determine what proportion 

of the OTUs detected in each sample could be attributed to the slurry applied at the 

start of the experiment. When running the software, samples are identified as either a 

‘source’ or a ‘sink’ of taxa. The ‘signature’ of each source, based on microbial 

community structure, is then detected in each of the sink samples chosen. For this 

analysis, the slurry ‘inoculum’ microbial community as well as the T0, untreated soil 

microbial community were included as sources (referred to as ‘slurry’ and ‘soil’ 

respectively for these analyses). Any OTUs not attributable to either of these sources 

were labelled as ‘unknown’, and this occurred as a result of that particular OTU being 

absent (i.e. a count of a 0) from all the source samples provided. Additionally, a 

fraction of OTUs could not be reliably assigned to a particular source as their relative 

abundance was similar in all the source samples provided. In an effort to account for 

this, SourceTracker analysis was also performed on non-slurry amended soils to obtain 
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a base line for the ‘unknown’ fraction above which differences could be investigated. 

The mean proportion of ‘unknown’ taxa in all non-amended samples was 20 ± 7 % 

and is represented by a dashed line on each of the graphical representations of the 

SourceTracker data. Data acquired was in proportion per sample. As proportions were 

similar between biological replicates, in the interests of concise presentation, data from 

biological replicates were averaged. Raw data output can be seen in Appendix VI. For 

ease of interpretation regarding persistence of slurry-derived microbiota as a function 

of the duration since slurry was applied, sample days are denoted not by the customary 

Tn format, but with ‘days post slurry-amendment’. 

 

In slurry amended samples (no flooding) the contribution of slurry-derived OTUs to 

those detected in the entire sample is approximately 25 % for the first three days post 

slurry application (Figure 4.19). This proportion falls rapidly, and 6 days post 

application has dropped to just 2.8 %. The fraction continues to gradually drop until 

the final sample days of the experiment, where slurry-derived OTUs constitute around 

0.2 % of the total. In the trimmed data set used for analyses, a total of 1717 OTUs 

remained, thus 0.2 % represents approximately 3 OTUs.  
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Figure 4.19. Relative contributions of slurry (green) and soil (brown) derived taxa to 

the microbial communities extracted from slurry amended soils. OTUs that cannot not 

definitively be tracked to either of these sources are labelled as ‘Unknown’ in source. 

The black dashed line represents a baseline of ‘unknown’ OTUs that were detected 

independent of slurry amendment. Labels at the end of each bar detail the percentage 

of taxa that are derived from the slurry ‘inoculum’ source as identified using 

SourceTracker (Knights et al. 2011). 

 

Of note is the significant increase in contribution of ‘unknown’ microbial taxa to the 

relative abundance of the slurry amended samples 3 days post application (Figure 

4.19). As seen when analysing the alpha diversity of this 16S rRNA dataset, (Figure 

4.14 and Figure 4.15), a fraction of the total microbial community present in each 

sample was not accessed and could partially account for why the source of these OTUs 

is not the slurry inoculum or the T0 soil. However, the marked increase seen in the 

proportion of ‘unknown’ source taxa appears to have some relation to slurry 

amendment, as there is a step wise decrease in these taxa with time since the 

amendment progresses. The slurry amended microcosms that underwent flooding were 
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then analysed to investigate this phenomenon, using SourceTracker (Figure 4.20). As 

flooding did not commence until after the sampling performed on day 3, data for this 

analysis does not include day 0 or 3. Days 6, 15 and 29 represent the flooded period 

while days 92, 114 and 140 are from the recovery period.  

 

Figure 4.20. Relative contributions of slurry (green) and soil (brown) derived taxa to 

the microbial communities extracted from slurry amended soils that underwent 

flooding, where days 6 - 29 represent the flooded phase and days 92 – 140 the recovery 

phase. OTUs that cannot not definitively be tracked to either of these sources are 

labelled as ‘Unknown’ in source. The black dashed line represents a baseline of 

‘unknown’ OTUs that were detected independent of slurry amendment. The labels at 

the end of each bar detail the percentage of taxa that are derived from the slurry 

‘inoculum’ source, as identified using SourceTracker. 

 

There appears to be increased survival of slurry-derived taxa in the flooded conditions, 

as at 6 days post slurry amendment 12.5 % of the OTUs could be attributed to the 

slurry inoculum (Figure 4.20), whereas at the same sample time in non-flooded 

systems, only 2.8 % of the taxa were slurry derived (Figure 4.19). Again, 15 days after 



173 

 

amendment there were approximately five times more OTUs attributed to the slurry in 

the flooded versus non-flooded microcosms. Once in the recovery phase, the 

proportion is similar to that observed in their non-flooded counterparts, at less than 1 

%. Again, the same trend is observed whereby a high proportion of OTUs ‘unknown’ 

in source are found in the initial time points, and while this does exhibit a decrease, it 

is less marked than in the non-flooded systems and remains around 35 % for the 

duration of the recovery phase (Figure 4.20). Taxa within the ‘unknown’ group that 

were absent from both the slurry inoculum and the T0 soil communities were extracted 

from the OTU table (Figure 4.21).  

 

 

Figure 4.21. Abundances of OTUs absent from the slurry ‘inoculum’ and the T0 soil 

microbial community profiles and therefore grouped into the ‘unknown’ category of 

source tracker. OTUs are grouped into the phylogenetic group of Class.  
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The largest proportion of these OTUs were assigned to the Gammaproteobacteria, the 

majority of which were unidentified at lower taxonomic levels. The two OTUs from 

which constituted the majority of the counts within this phylogenetic group were OTUs 

36 and 82. Using the SILVA database, the closest relative to both OTUs was identified 

as the heterotrophic Oceanospirillales, at approximately 92 % similarity. Members of 

the Betaproteobacteria and the Bacteroidetes also contributed significantly to these 

‘unknown’ source category (Figure 4.21). These two bacterial groups have been 

proposed to be typically copiotrophic in nature (Fierer et al. 2007). One of our initial 

hypotheses was that slurry addition would impact the ratio of copiotrophs to 

oligotrophs. Either as a result from the large input of rumen-associated biomass, likely 

copiotrophs by nature, or from the influx of slurry-associated nutrients. While there is 

some evidence from the differential abundance analysis that some of these groups (for 

example Bacteroidetes) were affected as a function of the treatment, further analysis 

on the full taxonomic dataset was required.  

 

4.3.9.5 Relative abundances of copiotrophic and oligotrophic bacterial 

groups 

The classifications proposed by Fierer et al. (2007) were followed, whereby the 

phylotypes Betaproteobacteria and Bacteroidetes were taken to represent copiotrophs, 

while the Acidobacteria represented the oligotrophs.  

When observing the changes in relative abundance of Betaproteobacteria as a function 

of time, a steady increase is observed from T2 until the final day of the flooded phase, 

T7, in both ‘slurry’ and ‘slurry+flood’ treatments (Figure 4.22). As it is evident that 

the slurry used for amendment harboured very few Betaproteobacteria (total relative 

abundance of 0.2 %) it is likely therefore that this increased abundance in the slurry 

treated samples is a consequence of this increased resource availability (Figure 4.22). 
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Of course, as is always the case with such data, a caveat exists whereby only relative 

abundances can be reported. 

 

 

Figure 4.22. Change in relative abundances of Betaproteobacteria throughout the 

experiment, as represented in each of the three phases.  

 

By the recovery phase, the relative abundances in slurry amended soils that had not 

undergone flooding have fallen, but remained elevated in corresponding microcosms 

that had been waterlogged. Also seen during this phase is a significant increase in the 

relative abundances of Betaproteobacteria in the control soils, principally attributed 

to two OTUs both from the family Oxalobacteraceae (Figure 4.22).  

The next group of proposed copiotrophs to be considered, the Bacteroidetes, were 

present in high relative abundances in the slurry ‘inoculum’ where they represented 

approximately 25 % of the total community composition, versus around 8 % in the 

non-amended soil (Figure 4.23). This therefore contributes to the marked increase in 

relative abundance seen in slurry amended soils at T0. The Bacteroidetes continue to 
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increase in abundance in the slurry amended samples and by T2 (3 days after slurry 

application) had more than doubled to approximately 35 %. After this time however, 

the relative abundance Bacteroidetes steadily decreased in ‘slurry’ treated samples 

(Figure 4.23). 

 

 

Figure 4.23. Change in relative abundances of Bacteroidetes throughout the 

experiment, as represented in each of the three phases. 

 

Bacteroidetes in the ‘slurry+flood’ samples initially persisted in higher abundances 

than in their un-flooded counterparts during the flooded phase T13 (Figure 4.23). In 

fact, this groups continued to be present in excess of the other treatments until the final 

sample point, T13 (Figure 4.23). In total, there appeared to be a strong relationship 

between slurry amendment and Bacteroidetes abundance.  

 

The Acidobacteria were a dominant phylum in the untreated soils, where they 

represented close to 10 % of the microbial consortia (Figure 4.24). Conversely, no 
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Acidobacteria were present in the slurry ‘inoculum’. During the pre-flood and flooded 

phase, this phylotype remained lower in samples from both slurry treatments compared 

to the control and ‘flood’ treatments, until T7.  

 

 

Figure 4.24. Change in relative abundances of Acidobacteria throughout the 

experiment, as represented in each of the three phases. 

 

Finally, we wished to examine microbial groups associated with nitrogen cycling. As 

a diverse consortium of soil dwelling microorganisms are capable of denitrification, 

those involved in nitrification, namely the ammonia oxidising archaea (AOA) and 

bacteria (AOB) were investigated. This was in an effort to elucidate possible microbial 

groups contributing to the increased rates of potential nitrification still observed 140 

days after slurry amendment (Figure 4.6).  
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4.3.9.6 Relative abundances of nitrifying archaea and bacteria 

The genera of nitrifying bacteria analysed included the ammonia oxidising 

Nitrosospira, within the phylum Betaproteobacteria and the nitrite oxidising 

Nitrospira within the phylum Nitrospirae. While Nitrosomonas, Nitrosococcus, and 

Nitrobacter are also among those also associated with nitrification, no OTUs assigned 

to these three phylotypes were detected in the dataset trimmed following the 

recommendation of Bokulich et al. (2013).  

The archaeal ammonia oxidisers of the class Thaumarchaeota (Stieglmeier et al. 2014) 

were the most abundant archaeal group observed, and together comprised 

approximately 3 % of the total assemblage of T0 control soils, while being absent from 

the slurry used to amend the soils (Figure 4.25). Their relative abundances remained 

lower in the soils exposed to flooding, both when these soils were waterlogged and 

during the recovery phase, perhaps as a result of the higher ammonia concentrations 

seen in these soils (Figure 4.10; Prosser & Nicol 2012).  

 

 
Figure 4.25. Total relative abundance, per treatment and time point, of AOA from the 

class Thaumarchaeota. 
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While the relative abundance of AOA remained relatively stable in the soils subjected 

to the flooding disturbance, there was some fluctuation in the control and ‘slurry’ 

treated soils, with a notable increase in their relative abundances from T8 to T13 

(Figure 4.25). It would therefore appear that, in the long term these ammonia oxidising 

archaea were impacted more by the flooding event than the slurry application. 

Conversely, when considering AOB, the relative abundances of both Nitrospira 

(Figure 4.26) and Nitrosospira (Figure 4.27) varied more as a function of slurry 

addition than soil water status. In slurry amended soils, Nitrospira abundances 

remained lower than non-amended soils throughout the experiment (Figure 4.26). The 

compounded disturbance of the flood introduced some fluctuation in Nitrospira 

abundances in ‘slurry+flood’ soils, and indeed by the final two sample points, T12 and 

T13, the same relative abundance was observed as in the non-amended soils (Figure 

4.26).  

 

 

Figure 4.26. Total relative abundance, per treatment and time point, of nitrifying 

bacteria from the genus Nitrospira. 

 



180 

 

In the case of the Nitrosospira, the opposite trend was seen, whereby slurry amended 

(without flooding) corresponded with increased relative abundances of this particular 

group of AOB (Figure 4.27).  

 

 

Figure 4.27. Total relative abundance, per treatment and time point, of AOB from the 

genus Nitrosospira. 

 

During the flooded phase, Nitrosospira abundances were notably decreased in soils 

experiencing the compounded disturbance. However, flooding in the absence of slurry 

did not appear to affect their abundance, perhaps indicating that the increased ammonia 

concentrations detected were not favourable. As already mentioned, a caveat in these 

analyses is that it is based on relative abundances alone and as such has the potential 

to be impacted by large changes in abundance of other, non-related genera. For 

example, the majority of bacterial groups investigated in this analysis and in section 

4.3.9.5 (oligotrophs versus copiotrophs) exhibited a large relative abundance decrease 

in slurry amended soils at T2. When observing the Bacteroidetes however (Figure 

4.23), their abundance increases to 35 %, and perhaps contributes significantly to the 
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reduction seen in other groups. Thus, if time were not a constraint, it would be 

beneficial to investigate these observations further using a quantitative PCR. 

 

4.4 Discussion 

 

While microbial community stability is a well-researched field, as detailed in the 

review by Shade et al. (2012), there exist a number of avenues within this field that 

warrant further investigation. Among the research gaps identified were pulse, 

biological disturbances and combined disturbances. The aim of this experiment was 

therefore to test a number of posited hypotheses regarding microbial community 

stability, while addressing these research gaps.  

 

Effect of slurry addition 

As we hypothesised, slurry addition indeed caused changes in the structure and 

functioning of the soil microbiota and so acted as a pulse, biological stress. Slurry 

amendment has previously been investigated in the context of its effect upon the soil 

microbiome, with the microbial community structure assessed using a variety of 

methods including phospholipid fatty analysis (PLFA) (Nyberg et al. 2006), 

fingerprinting methods such as denaturing gradient gel electrophoresis (DGGE) (Stark 

et al. 2007), and more recently 16S rRNA profiling (Suleiman et al. 2016).  As in the 

referenced studies, the largest influence of slurry upon the autochthonous microbiota 

in our study occurred within the first 3 days. While it is evident that the influx of slurry-

derived biomass contributed to some of these observed differences, many of the largest 

differences in community structure and functioning were observed not immediately 

following slurry application but 24 to 72 hours post amendment. This infers that certain 
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bacterial groups, either slurry- or soil-derived, responded positively to the increased 

nutrient availability resulting from the organic amendment. It has been shown that 

labile carbon associated with animal wastes is typically consumed by the soil microbial 

consortia within the first 24 to 48 hours post application, after which more recalcitrant 

forms of carbon begin to be incorporated into the soil (Bol et al. 2003; Sauheitl et al. 

2005). As we hypothesised that slurry addition selects for native microbiota with a 

particular trophic strategy, namely copiotrophs, it is likely this period would be the 

most favourable to such groups. Within this 48-hour time frame, the phylum 

Bacteroidetes exhibited the most notable increase in relative abundance in slurry 

treated soils. Significant increases in this phylum have also been seen following soil 

amendment with cattle slurry (Faissal et al. 2017; Suleiman et al. 2016) and with cattle 

urea (Samad et al. 2017). Additionally, environmental strains of Bacteroidetes have 

consistently been shown to exhibit large increases in abundance following influxes of 

organic matter (Thomas et al. 2011). These findings, in addition to our own, would 

seem to support the classification of members of the Bacteroidetes as copiotrophic in 

nature (Fierer et al. 2007). Therefore, as we hypothesised, it would appear that in our 

study, slurry amendment provided conditions ideal for copiotrophs, and thus lead to 

alterations in the relative abundances of copiotrophs to oligotrophs. The quantitative 

PCR assays developed by Fierer et al. (2007) would be useful for investigating this 

finding in a more quantitative manner. 

A shared finding from previously mentioned studies of Nyberg et al. (2006), Stark et 

al. (2007) and Suleiman et al. (2016) was the relatively short-lived effect of slurry 

amendment upon the soil microbial community, ranging from just 10 days (Stark et al. 

2007) to 50 days (Suleiman et al. 2016) after which no distinguishable differences 

remained between the community structure of slurry amended and control samples. In 
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accordance with these findings, we hypothesised the effect of slurry addition would be 

relatively short term, however distance-based analyses of microbial community 

structure suggest a distinct community remained in slurry treated soils 140 days post 

application. It is possible that the methods employed in the aforementioned studies did 

not allow for sufficient resolution to determine such changes 

 

Resistance and resilience as affected by alterations in nutrient availability 

Among the hypotheses we aimed to test, was whether increased nutrient availability, 

resulting from slurry addition, would increase the resistance and/or resilience of the 

soil microbial community when exposed to a disturbance.  This will be discussed first 

in terms of functional potential and then in terms of microbial community composition. 

Upon exposure to the compounded flood disturbance, we observed some evidence, 

based on the functional assays that the prior slurry amendment improved resistance. 

The duration of this effect varied depending on the function in question, as detailed in 

the appropriate sections below.  

 

i) Resistance as affected by nutrient availability: respiration rates and litter 

decomposition  

Slurry amendment alleviated the drop in basal respiration measured in the flooded 

soils. This effect was seen throughout the flooded period where basal respiration 

remained elevated in samples receiving slurry amendment versus those without. The 

litter decomposition rates in soils treated with slurry also demonstrated improved 

resistance to the flooding event. Indeed, despite being waterlogged these rates were in 

excess of those seen in the untreated control during initial weeks of the flooded period. 

Typically, increased soil water content has negative impacts on litter decomposition 

(Schuur 2001) thus it would appear that in our study increased resource availability 
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associated with slurry application conferred an initial benefit to the litter decomposing 

consortia upon flooding. Research into the effects of nitrogen deposition on organic 

carbon decomposition rates in soil has produced contrasting results, with evidence for 

all possible outcomes; no effect (Prescott 1995), reduced rates (Thirukkumaran & 

Parkinson 2000) and increased rates (Ågren et al. 2001; Fog 1988; Wang et al. 2011). 

The form of nitrogen introduced into the soil ecosystem may account for some of these 

differences. For example, Du et al. (2014) observed a decrease in soil carbon cycling 

in soils exposed to inorganic nitrogen amendments, while organic inputs (urea and 

glycine) induced the opposite trend. The decomposition of litter and other forms of 

organic matter is a multistep process involving the conversion of larger, recalcitrant 

forms of carbon by extracellular enzymes into labile monomers, which can then be 

hydrolysed intracellularly (Blagodatskaya et al. 2016). The production of such 

extracellular enzymes is resource intensive (Frankena et al. 1988) and often limited by 

available nitrogen (Treseder et al. 2011). However, the suite of extracellular enzymes 

present in soil are differentially affected by the addition of nitrogen, for example 

cellulases and phosphatases tend to exhibit a positive response to nitrogen amendment, 

meanwhile those involved in lignin degradation are often negatively affected (Allison 

et al. 2010; Keeler et al. 2009). Grass clippings such those employed in our 

decomposition assays are typically low in lignin and consist mostly of cellulose (30 

%) and hemicellulose (20 %) (Triolo et al. 2012). As such, the increase in litter 

decomposition rates following slurry amendment supports findings of improved 

activity of cellulolytic enzymes in response to increased nitrogen (Keeler et al. 2009).  
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ii) Resistance as affected by nutrient availability: nitrogen cycling 

In situ nitrification appeared to be rapidly impacted by the flooding event, with 

ammonium accumulation seen after 3 days of waterlogging. As nitrification is 

typically an oxygen dependent process (Hart et al. 1994), this was an expected 

outcome. Flooded soils consist of two zones; the upper zone is aerobic due to oxygen 

diffusion from the surface and the lower zone is anoxic (Reddy et al. 1984). In a 

biologically active soil such as the one employed in the present study, this aerobic 

layer is thought to be just a few millimetres thick (Reddy et al. 1984). Nitrification can 

therefore still occur in the oxic layer of flood waters, after which the resulting nitrate 

can diffuse down into anoxic soil layer where it is denitrified, resulting in coupled 

nitrification-denitrification (Nicolaisen et al. 2004; Reddy et al. 1984). Thus, it is 

likely that while some nitrification was still carried out in the oxic layer of our soil (as 

evidenced by the slow accumulation of nitrate in the system), it still represents a 

significant reduction when compared to the aerobic (un-flooded) soils. Despite the 

evident reduction of in situ nitrification, when potential nitrification rates (PNR) were 

assessed, there appeared to be little effect of flooding on the potential of the ammonia 

oxidising consortia, even after 26 days of waterlogging. The accumulation of relatively 

high ammonium concentrations was seen in the slurry amended, flooded microcosms 

yet it appeared not to reach a level inhibitory to the system as PNR remained stable. It 

would therefore appear that, despite extended exposure to unfavourable, anoxic 

conditions, the AOA and/or AOB retained the ability to oxidise ammonia to the same 

extent as unflooded controls in vitro. Similarly, Pett-Ridge et al. (2006) observed that 

nitrification was still taking place in a forest soil, despite 6 weeks incubation in micro-

aerobic conditions. Contrary to conditions typically associated with nitrification, high 

in situ, gross nitrification rates have been observed in a waterlogged, peat soil (Alves 
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et al. 2013), and the ability of the ammonia-oxidising consortia to adapt to alterations 

in the water-status of soils has been demonstrated elsewhere (Pett-Ridge et al. 2013). 

Together, this seems to demonstrate that nitrifiers perhaps have a few tricks up their 

sleeve when it comes to persisting, and even performing ammonia oxidation, in sub-

optimal redox conditions. 

The process of dissimilatory reduction of nitrate to ammonium (DNRA) is often 

overlooked in soils, with nitrate reduction in soils more typically attributed to just the 

denitrifiers (Cole 1990). However, Tiedje (1988) noted that while the process of 

denitrification may be more energy efficient, DNRA represents a more valuable sink 

for electrons. Therefore, under highly reductive conditions such as anoxic soils, where 

electron acceptors are lacking, DNRA may be favoured over denitrification (Tiedje 

1988; Matheson et al. (2002). As well as redox conditions, it is theorised that the 

partitioning of nitrate to either denitrification or DNRA is also determined by the ratio 

of electron donor (carbon sources) to elector acceptor (nitrate) (Tiedje 1988). When 

the C : NO3
− ratio is low, carbon as opposed to electron donors, will be limiting and 

thus denitrification is favoured, while when the ratio is high, electron donors are in 

excess while acceptors are limiting so DNRA is favoured (Tiedje 1988). While this 

seems to hold true in some systems, research has produced some contrasting results, 

as reviewed by Rutting et al. (2011). While it is not possible to ascertain from our 

experimental set-up, it is possible therefore that some of accumulated ammonium we 

observed was produced by DNRA, as well as through anaerobic nitrogen 

mineralisation.  

In addition to the accumulation of ammonium during flooding, nitrate concentrations 

also increased as a function of flood duration. Through the process of denitrification, 

nitrate is typically converted under anoxic conditions to dinitrogen gas, or if the 
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reaction is incomplete, to nitrous oxide (Smith & Tiedje 1979). The conditions in the 

flooded soils, particularly those with slurry amendment, would appear to be ideal for 

denitrification, with limited oxygen and surplus nitrogen (Knowles 1982). However, 

the nitrate accumulation observed here suggests that it was being produced at a faster 

rate than it could be consumed, in other words; the rates of nitrification in the aerobic 

water layer exceeded the rates of denitrification in anoxic layer. Reddy et al. (1978) 

demonstrated that denitrification proceeded at a slower rate in flooded soils where a 

surface layer of water was present (as in the ‘flooded’ microcosm set up used herein), 

versus those without a surface layer of water. They proposed this to be a consequence 

of reduced diffusion of nitrate, which may also have contributed to the accumulation 

of nitrate in our flooded soils. Alternatively, as this accumulation is only seen after 19 

and 26 days of flooding, perhaps it was the availability of carbon that was limiting 

denitrification by the end of the flooded phase (Firestone & Davidson 1989; Weier et 

al. 1993). When considering potential denitrification, evidence of increased 

denitrifying enzyme activity was seen in un-amended, flooded soils. However, the 

rates were significantly higher in samples exposed to the compounded slurry and flood 

disturbance. In unflooded systems, slurry addition also allowed for increased rates of 

denitrification; while no effect was seen immediately after amendment, 24 hours later 

the potential denitrification rate had doubled. As soils were provided with excess 

nitrate for this assay, the increased carbon availability is likely accounting for this 

increase. The effect of slurry amendment on the potential denitrification rate of un-

flooded soils is seen until 22 days after amendment. This could also indicate that by 

this sample point there is no longer an effect of carbon from the slurry, and would 

concur with the accumulation of nitrate (i.e. reduced in situ denitrification) seen at this 

point of the flooded phase.  
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iii) Resilience as affected by nutrient availability 

As well as affecting resistance, resource availability has also been proposed to affect 

the resilience of soil microbial communities (Wallenstein & Hall 2012).  We observed 

that the recovery of in situ rates of nitrification were indeed improved in slurry 

amended soils that had undergone flooding versus the un-amended soils. However, no 

improved resilience as a result of the prior slurry amendment was seen in the other 

functional assays performed (PNR, PDR, litter decomposition and basal respiration). 

It should be noted however, that the soil used in this experiment would not be classed 

as nutrient poor, with organic carbon levels of approximately 4.5 % (where 2 - 6 % 

represents 'medium' SOC levels; Rusco et al. 2001), therefore if indeed resilience is 

limited by labile carbon availability as proposed by Wallenstein & Hall (2012), 

perhaps this soil did not allow for an accurate assessment of this hypothesis. 

Additionally, as detailed by Evans & Wallenstein (2012), the precipitation regime that 

soils are exposed to affects how their resident microbiota respond to moisture-related 

disturbances, such as drying-rewetting cycles. The soil chosen for this work is a 

moderately draining sandy loam, whose mean water filled pore space in the field, when 

assessed over two consecutive years was 51 % and 59 %, with some extended periods 

of circa 75 % WFPS (Harty et al. 2016). Thus, any resident microbiota with an 

adaptive response to increased soil moisture content likely had an advantage in this 

soil.  

 

iv) Resistance and resilience: microbial community composition and physiological 

profiles 

Most of the assays we performed to investigate microbial functioning suggested the 

microbial community was resilient as by the final time point the disturbed soils were 
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able to perform ecosystems service-related functions to the same capacity as the 

undisturbed controls. Meanwhile, in terms of substrate induced respiration profiles and 

microbial community composition, slurry amended samples and flood affected 

samples remained distinct from the untreated controls for the duration of the recovery 

phase. When investigating the taxa contributing to these differences using LEfSe 

analysis, it was revealed that no slurry-derived prokaryotes were persisting in 

sufficient abundances to still be affecting the microbial community structure during 

the recovery phase. Increased abundance of members of the spore-forming, typically 

anaerobic Clostridiales phylotype (Rainey et al. 2015) were seen in slurry amended 

soils, both with and without flooding at all three experimental phases. As already 

referred to, various members of the phylum Bacteroidetes, typically thought of as 

copiotrophs (Fierer et al. 2007) were observed in higher abundances in slurry treated 

samples throughout all three phases, including the classes of Sphingobacteria, 

Bacteroidia and Flavobacteria. A clear trend of increased abundance of numerous 

members of the Gammaproteobacteria was also observed in slurry treated soils. 

Approximately 40 % of the more abundant OTUs from ‘slurry+flood’ treatment in the 

recovery phase were from this phylum. Three days after amending soils with pig 

slurry, Suleiman et al. (2016) also noted an increased representation of members of 

the Gammaproteobacteria in amended vs un-amended soils, further supporting 

findings of the preference of this class for nutrient rich environs (Lladó & Baldrian 

2017; Ramirez et al. 2010).  

When considering the oligotrophs, namely the Acidobacteria, whose abundance 

typically falls with increasing nutrient availability (Fierer et al. 2007; Ramirez et al. 

2012), these were only detected as significantly differentially abundant in non-slurry 

amended samples, and most notably in flooded soils. During a soil re-wetting event, 
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Barnard et al. (2013) also observed an increased relative abundance of this phylotype 

with increasing soil moisture. Perhaps the ability of this phylotype to produce 

exopolysaccharides (Kielak et al. 2016) allows for improved survival of adverse 

osmotic conditions resulting from the flood. 

The relative abundances of known ammonia oxidisers were also investigated in an 

effort to explain changes in nitrogen cycling functions seen in response to our 

disturbances. The phylum Thaumarchaeota, known to be involved in ammonia 

oxidation (Stieglmeier et al. 2014), exhibited significant changes in abundance as a 

function of treatment. There was a clear increase in their abundance with time and this 

was seen only in unflooded soils (both with and without slurry amendment. Thus, it 

would appear these AOA were more differentially affected by the legacy of soil 

moisture status than by the organic nutrient amendment. The AOA have been shown 

to be more adapted to performing ammonia oxidation in acidic soils (pH < 5.5) than 

their bacterial counterparts (Prosser & Nicol 2012). Therefore, perhaps the acidic soil 

used to construct the soil microcosms (pH 5.69) was more selective for AOA than 

AOB. Waterlogged soils however, tend towards neutrality (Parent et al. 2007) 

suggesting those soils exposed to the flooding event would no longer have been 

selective for more acid tolerant species, as above pH 5.5, AOA and AOB are regarded 

as being equally adaptable (Prosser & Nicol 2012). This negative response of AOA to 

waterlogged soil conditions was also seen by Szukics et al. (2010) using quantitative 

measures of AOA and AOB abundance. The treatment-independent alterations in the 

relative abundance of Thaumarchaeota in the undisturbed controls could therefore 

imply that flooding interfered with the stochastic community succession of these AOA, 

perhaps through the change in pH or due to sensitivity to anaerobic conditions.  
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The ammonia oxidising bacteria (Nitrosospira) and the nitrate oxidising bacteria 

(NOB) Nitrospira responded differently to the treatments, based on changes in their 

relative abundances. Thus, we were unable to associate the increase in PN rates seen 

in slurry amended soils with differences in the relative abundances of either Nitrospira 

or Nitrosospira. Additionally, there appeared to be no consistent trend of flooding 

upon these bacteria, perhaps as a consequence of their ability to perform well in low 

oxygen environments (Le Roux et al. 2016). Their survival in anoxic conditions has 

been hypothesised to be a result either of slowing their metabolism dramatically or 

their ability to switch to denitrification (Geets et al. 2006; Kim et al. 2010), as 

evidenced by the presences of denitrification genes harboured within the genomes of 

several AOB of the Nitrosospira (Garbeva et al. 2007; Shaw et al. 2006). 

It would be of interest to determine if any significant changes in the copy numbers of 

genes such as the ammonia monooxygenase occurred with treatment. While it would 

appear ammonium and nitrate concentrations of amended soils were the same as the 

control, perhaps the recalcitrant forms of carbon in the slurry were steadily being 

broken down and made available for the nitrifiers, thus explaining the increased PN 

rates.  

 

Conclusions 

The aim of this work was to assess microbial community stability in the face of an 

ecologically relevant disturbance, with the intent of testing some proposed hypotheses 

on theme of community stability. In terms of ecosystems functions, the microbial 

community was resilient to extended waterlogging, with basal respiration, litter 

decomposition, potential denitrification and in-situ nitrogen cycling returning to that 

seen in the undisturbed control. The effect of the prior slurry amendment was most 
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evident on potential nitrification rates which remained significantly enhanced for the 

duration of the experiment. We hypothesised this organic amendment would increase 

resource availability in the system thereby improving resilience, yet we saw no 

evidence of this in terms of the assays of functional potential we performed. In contrast 

to the rapid resilience seen in functioning, the microbial community structure and 

physiological profiles were affected significantly by each of the treatments, and even 

by the end of the recovery phase, remained distinct from each other. This lack of 

resilience in terms of community composition suggests a potential regime shift 

resulting from our treatments. Additionally, these differences in community profiles, 

despite recovery of ecosystems functions suggests there was redundancy in these 

functional groups present in our soil and would be worthy of further research, for 

example by employing metaproteomics.  
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The aim of the work completed for this thesis was to investigate the stability of soil 

microbial communities subjected to a selection of perturbations relevant in the context 

of agriculture and climate change. The perturbations we investigated included the 

application of lime and soil amendment with cattle slurry in the presence and absence 

of a compounded flood event. These disturbances were chosen as particularly relevant 

in the Irish agricultural context. Additionally, with the global need to improve soil 

quality in order to increase crop yields, liming to optimise soil pH and slurry 

application as a sustainable means of improving soil nutrient status, are ever-increasing 

agricultural practices.  

The first phase of this project aimed to develop a method that would allow for the co-

extraction of DNA, RNA and proteins from the same soil sample. This was to enable 

the utilisation of cutting-edge molecular techniques for investigating the effects of lime 

application, slurry amendment and flooding on the autochthonous, soil microbial 

community. In particular we hoped to employ metaproteomics to elucidate the effects 

of such disturbances on the functioning of the microbial ecosystem, as it is valuable 

tool for investigating microbial community functioning through its ability to inform 

on both microbial diversity and functionality (Becher et al. 2013). For example, 

metaproteomics has been used to elucidate the succession of microbial groups during 

litter decomposition while also revealing the major pathways involved in this process 

and the taxa contributing therein (Schneider et al. 2012). Metaproteomics therefore 

has significant potential as a tool for investigating how soil processes associated with 

ecosystems services are impacted by perturbations while connecting phylogeny with 

function.  A significant drawback in the field of environmental metaproteomics and 

soil in particular, is the lack of sufficient databases for relevant microbial proteins. This 

significantly impairs the protein identification rate; as succinctly noted by Becher et 
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al. (2013), a metaproteomic dataset can only ever be as good as the database used. As 

the vast majority of soil microbial members are uncultured and/or lacking in annotated 

genomes, using a matched metagenome as a database, an experimental approach 

referred to as community proteogenomics (VerBerkmoes et al. 2009), is a valuable tool 

for increasing protein identification. For example, Delmotte et al. (2009) were able to 

increase the number of protein identifications of leaf-associated microbiota by as much 

as 87 % through the use of a matched metagenome. Thus, given the heterogeneity of 

soil, we believe that to maximise on the outputs of a combined omics approach, 

biomolecules should be co-extracted from the same biological sample. As an 

appropriate method to achieve this was not available for soil samples, the first aim of 

this PhD was to develop such a tool. We were successful in this objective, and the co-

extraction method was in fact highly adaptable to other sample types, including cattle 

slurry; anaerobic digester sludge, digestate and leachate; and pure culture. It has since 

been employed in a number of research projects both within and outside of our research 

group. It is our hope that this method, easily adoptable in most laboratory set-ups, will 

serve to be a valuable tool for microbial ecologists, allowing for more widespread use 

of metaproteomics, in conjunction with other omics tools, to address ecological 

hypotheses.  

 

A comprehensive survey of the literature revealed that liming of agricultural soils has 

significant effects on microbial community structure. However, we identified a 

research gap whereby deeper characterisation of these compositional changes, using 

culture-independent techniques is required. Such a characterisation needed to include 

how any resulting changes in microbial community structure might relate to plant 

productivity and ecosystems processes, thus presenting real-world applicability of 
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such research.  Assessing the impacts of this agricultural activities, such as liming, on 

the soil microbiota which modulate crop health and productivity becomes increasingly 

important as the need for more sustainable agricultural practices grows. In an effort to 

address the identified research gap, we investigated liming in the context of a field trial 

of Spring Barley, analysed at three distinct crop growth stages.  While DNA and RNA 

were used for profiling of the rhizosphere microbial community, it was our initial hope 

to employ our co-extraction method and thus perform metaproteomics to investigate 

the functional aspects associated with pH changes induced by lime application. As the 

quicklime product did not alter soil pH sufficiently to induce any phenotypic changes 

in the barley crop, in particular no yield improvement was seen, we did not employ 

metaproteomics. However, as sequencing data had already been acquired, these were 

analysed to determine if the small changes in pH (albeit statistically insignificant) had 

induced any change in the microbial community.  Through analysis of alpha and beta 

diversity, it was revealed that indeed there were no effects on the microbial community 

as a function of lime application, at any barley growth stage. However, the community 

showed temporal shifts, with distinct communities present during the stem elongation, 

heading and ripening phases of the barley development.  This finding is consistent with 

other temporal studies regarding microbial interactions with plants including grasses 

(Shi et al. 2015), rice (Breidenbach et al. 2016) and soybean (Sugiyama et al. 2014), 

a relationship strongly driven by alterations in root exudates as a function plant 

development (Aulakh et al. 2001; Chaparro et al. 2013). Indeed, while soil type is a 

significant factor explaining divergence between different soil microbial communities, 

Wieland et al. (2001) identified plant type as the ultimate driver. Furthermore, it has 

been shown that plants appear to select for assemblages of microbiota distinct not only 

from the bulk soil, but also from that seen in the rhizosphere of other plant types 
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(Beauregard 2015). This has led to the idea of the ‘core microbiome’, exemplified in 

the work of Lundberg et al. (2012) who, using data from the rhizosphere of 600 plants, 

described the core microbiome associated with Arabidopsis thaliana. Such endeavours 

to define the core microbiota of different crops will be vital as it becomes increasingly 

evident how plant health and productivity are inextricably linked to their associated 

microbiota, leading to their consideration as a ‘holobiont’ (Vandenkoornhuyse et al. 

2015). In practical terms, information on the core microbiome associated with a 

particular crop could be used to inform on microbial interactions and thus potential 

antagonisms that may result, particularly with regards to species introduced as bio-

fertilisers. Defining such interactions could be aided by investigating plant-associated 

core microbiomes in terms of networks.  

Network analysis has been used as a tool by microbial ecologists to infer interactions 

between species (OTUs) based on their co-occurrences, i.e. repeatedly observed 

occurrence of two OTUs, across a number or replicates, indicates their possible 

interaction, or at least a shared niche preference (Barberán et al. 2012). This tool has 

also been used in the context of rhizosphere microbial communities, as reviewed by 

van der Heijden & Hartmann (2016), in an effort to elucidate how microbial 

interactions affect plant health. For example, Agler et al. (2016) used network analysis 

to reveal ‘hubs’ of highly connected species associated with A. thaliana; they then 

manipulated abundance of these hub species and were able to demonstrate their role 

as keystone species determining the microbial network structure. Microbial networks 

can also be investigated to determine the effect of a species’ removal, for example after 

a perturbation (Faust & Raes 2012). As such they hold promise for modelling the 

persistence of non-native species, for example biofertilisers in the context of plant 

microbiomes. Such analysis should also consider temporal variation of these networks 



206 

 

as a function of plant developmental stage; Shi et al. (2015), demonstrated that 

rhizobacterial networks showed a clear increase in complexity with development of 

wild oats plants. It would therefore be of interest to determine how this relates to 

‘invasibility’ of allochthonous microbiota (van Elsas et al. 2012) such as biofertilisers.  

While several studies have investigated the root associated microbiota of barley 

(Bulgarelli et al. 2015; Garbeva et al. 2007), a conclusive study, using a large set of 

data from different soil types and plant grow stages, as in Lundberg et al. (2012), has 

yet to be done in the context of barley. Thus, we propose this would be a valuable 

advance in the field and our data would contribute significantly. The recent 

introduction of a tool for mining core microbiomes from 16S rRNA datasets, 

COREMIC (Rodrigues et al. 2017), will aid in this effort, and has the added benefit of 

including by default an ‘out group’ of samples (i.e. non-barley associated microbial 

communities) to isolate associations which are indeed specific to the crop of interest, 

a feature lacking from the approach of Lundberg et al. (2012). Using the described 

network analysis methods, such data could then be analysed in terms of potential 

interactions or antagonisms seen between microbial taxa at different stages of plant 

development. This could be used to inform on the most appropriate crop 

developmental stage at which to apply biofertilisers to maximise their chance of 

persisting long-term in their new environs and inducing phenotypic changes in the crop 

of interest.   

 

Subsequent to investigating the microbiome responses to alterations in soil pH bought 

about by the application of lime, we aimed to investigate the effect of amending soil 

with cattle slurry upon the native microbiota in the presence of a compounded flooding 

event. Inputs of nutrients represent yet another factor mediating soil microbial 
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community composition and function, demonstrated herein and in other work 

including that of Bol et al. (2003); Suleiman et al. (2016) and Stark et al. (2007). In 

terms of microbial community composition, while the aforementioned studies 

demonstrated a return of the microbial communities in amended soils to that of the un-

amended control by the end of the experiment, we did not observe this, despite 

sampling for a longer time post-amendment. We attribute this to differences in sample 

depth, for example Stark et al. (2007) analysed microbial community shifts using 

DGGE, which does not provide the same resolution as high-throughput sequencing 

techniques (Hamady & Knight 2009). While Suleiman et al. (2016) did employ 16S 

rRNA sequencing, they rarefied to a depth of 1836 sequences per sample, while our 

dataset was rarefied to 24540 sequences per sample which likely provided significantly 

higher resolution, especially of low abundance taxa (Hamady & Knight 2009). It 

should be noted that these previous works regarding the effect of slurry application 

upon the soil microbiota did not investigate the fate of the microbiota associated with 

the slurry itself. Using SourceTracker software we were able to determine how long 

the slurry-derived persisted for, and this allowed for the observation that a 

compounded flooding event extended the survival time of slurry OTUs within the soil 

microcosms. Whether this enhanced persistence was a result of the lower oxygen 

concentration in flooded soils or the increased resource availability (for example from 

accumulating ammonium or slower decomposition of labile carbon) or a combination 

of both remains uncertain and worthy of investigation. In conjunction with the findings 

of Cools et al. (2001) who observed improved faecal indicator bacteria survival under 

waterlogged soils, this further demonstrates that appropriate timing of slurry 

application, in relation to predicted heavy rainfall, is important not only for minimising 
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losses of nutrients into waterways (under the EU Nitrates directive), but also in terms 

of enhanced potential for pathogen survival. 

The most significant phenotypic effect of slurry amendment on our system was the 

marked, and prolonged, increase in potential nitrification rates that it induced. While 

initially this may have been a consequence of improved resource availability in slurry 

amended soils, notably labile carbon forms, we imagine that by the end of the 

experiment, 140 days post-slurry application, such resources would have been 

consumed by the resident microbiota. Analysis of changes in the relative abundances 

of ammonia oxidising consortia as a function of treatment also did not reveal any 

obvious explanation for the increased potential nitrification rates. As such, the use of 

quantitative tools, such as qPCR targeting the ammonia mono-oxygenase genes of 

archaea and bacteria would be of use to determine if these increases can be explained 

by increased abundance or activity of these groups.   

The compounded flooding disturbance we applied was intended to test whether the 

increase in resource availability resulting from slurry amendment affected the 

resistance and or resilience of the microbial community. Indeed, slurry application 

appeared to confer improved resistance to the flooding event in terms of functional 

capacity, including nitrification, litter decomposition and basal respiration rates. 

Resilience after the flooding event however, was not so obviously affected, perhaps as 

more of the resources had been consumed during the course of the experiment.  

As already noted, potential nitrification rates in slurry amended soils remained high 

throughout the experiment and this occurred regardless of the compounded flooding 

event. Processes such as nitrification are viewed as narrow-scale and therefore more 

vulnerable in the face of disturbances, due to less redundancy across taxa. The flooding 
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event we chose was perhaps not a particularly ‘stressful’ event for the nitrifying 

community as our results, in conjunction with other research, for example Pett-Ridge 

et al. (2006), suggests they may indeed be well adapted to fluctuations in redox 

conditions. It has been well demonstrated that across soil aggregates there exist 

gradients of oxygen, with the centre of aggregates being relatively anaerobic (Sexstone 

et al. 1985). These aggregates represent a relatively stable niche for soil microbial 

communities in terms of moisture status for example, with the added benefit of reduced 

chances of predation by larger organisms, as reviewed by Rillig et al. (2017). Thus, it 

is likely that the majority of soil microbiota are relatively frequently exposed to 

varying redox conditions and have likely developed a number of strategies for 

persisting in unfavourable redox conditions (DeAngelis et al. 2010; Pett-Ridge et al. 

2006). It would be of interest to determine if the same effect on potential nitrification 

rates we observed herein would be seen in different soil types, for example those with 

lower soil organic matter and/or soils that typically do not experience high moisture 

content for extended periods. The previous would help to further test hypotheses 

regarding resource availability and resilience (Griffiths & Philippot 2013; Wallenstein 

& Hall 2012), while the latter would be particularly relevant to test hypotheses 

regarding the role of historic precipitation regimes in modulating the response of soil 

microbiota to changes in moisture status, as in Evans & Wallenstein (2012). 

 

In closing, much of the current literature demonstrates an urgent need to marry up 

microbial taxonomy and functioning and go beyond simply cataloguing microbial 

communities present in various ecosystems (summarised in Jansson & Prosser (2013)) 

and we believe that, metaproteomics (more specifically proteogenomics) represents a 

valuable tool to achieve this. As such, the co-extraction method developed herein will 
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hopefully provide a useful platform from which to achieve this goal. This can then 

allow for the testing of hypotheses regarding microbial community stability in the face 

of perturbations. Additionally, we believe this work advances current knowledge in 

this field of microbial community stability after exposure to stresses that were carefully 

selected to be of relevant both within and outside of the field of microbial ecology. As 

well as testing hypotheses in this field, detailed by de Vries and Shade (2013), this 

research also revealed some potentially valuable research avenues to be investigated.  
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Appendix I: Extra data from co-extraction method 

Table S.I. Yields per extraction of DNA, RNA and protein from all sample types 

tested, as well as quality ratios, as assessed prior to purification.  

 

1 DNA yields were determined using the broad range, ds DNA Qubit (Invitrogen); 2  RNA 

yields were established using the broad range, RNA Qubit (Invitrogen); 3 Nucleic acid 

absorbance ratios were determined using a NanoDrop spectrophotometer. 4 The Amido Black 

assay was employed for protein quantification (Standard deviation of mean calculated from 

three replicate samples). 

 

 

 

Sample type 
DNA yield 

µg 1 

RNA yield 

µg 2 

A260/A280 
3 

A260/A230 

3 

Protein yield 

µg 4 

Soil 1 7.99 ± 1.21 4.27 ± 0.75 1.69 ± 0.02 0.82 ± 0.06 96.63 ± 4.33 

Soil 2 13.80 ± 3.70 3.56 ± 1.10 1.58 ± 0.02 0.79 ± 0.01 54.68 ± 6.76 

Soil 3 11.37 ± 1.85 2.85 ± 0.48 1.74 ± 0.05 1.11 ± 0.11 96.00 ± 8.90 

Soil 4 28.60 ± 0.20 7.07 ± 1.68 1.68 ± 0.07 0.98 ± 0.03 82.36 ± 11.08 

Soil 5 5.27 ± 1.36 2.56 ± 0.38 1.87 ± 0.17 1.32 ± 0.35 67.01 ± 12.56 

Soil 6 14.17 ± 4.80 3.47 ± 1.30 1.79 ± 0.03 1.23 ± 0.10 51.54 ± 18.07 

Soil 7 11.40 ± 3.18 3.40 ± 0.70 1.71 ± 0.05 1.06 ± 0.06 68.76 ± 20.34 

Soil 8 12.13 ± 0.50 3.43 ± 0.18 1.78 ± 0.03 1.07 ± 0.09 87.64 ± 15.85 

Anaerobic granules 18.03 ± 5.05 11.31 ± 2.10 1.93 ± 0.01 1.97 ± 0.03 142.53 ± 13.42 

Food waste 

(digestate) 
5.13 ± 0.15 8.70 ± 1.82 1.94 ± 0.05 1.83 ± 0.13 440.83 ± 10.10 

Food waste 

(leachate) 
4.74 ± 0.03 6.83 ± 2.64 1. 98 ± 0.01 2.06 ± 0.01 466.67 ± 57.52 

Cattle slurry 9.93 ± 0.72 3.99 ± 0.23 1.81 ± 0.01 1.22 ± 0.10 140.70 ± 2.52 

Gram positive cells 2.34 ± 0.57 4.15 ± 0.80 1.96 ± 0.05 2.00 ± 0.42 216.8 ± 56.60 

Gram negative cells 3.14 ± 0.57 31.12 ± 0.57 1.95 ± 0.10 1.98 ± 0.05 113.95 ± 25.01 
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Figure S.Ia: Yields of DNA (black) RNA (grey) and protein (shaded) from all samples 

tested. Soil (method 1) refers to Soil 2 with desorption pre-treatment applied while 

Soil (method 2) refers to Soil 2 without desorption pre-treatment. Error bars show 

standard variation (n = 3). 

 

 

Figure S.Ib. Representative agarose gels and their corresponding SDS-page gel images 

from the three biomolecules recovered from the diverse range of sample types, with 

duplicate samples shown for each.  For all samples, excluding cattle slurry, raw nucleic 

acid extracts are shown. Purification using the OneStep kit (Zymo) was necessary for 

cattle slurry samples prior imaging.  The soil sample shown is Soil 2. 
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Appendix II: Metaprotein list from Soil 2; co-extraction method 

In the interests of space and paper, please find the tables of complete Metaprotein data 

on the Github page of Dr Florence Abram’s research group, by following the link 

provided: 

https://github.com/FEMLab/DNA-RNA-Protein-Coextraction-Method-

Soil/blob/master/AllMetaproteinResultsData_ThesisAppendixII.xlsx 

 

Appendix III: Details of fertiliser and herbicide in Lime Trial.  

Table S.IIIa. N, P and K Fertiliser Programme 

Application Grower/Trials Grower/Trials 

 Fertiliser Type Rate (kg/ha product) 

 N N-P-K  

Seedbed (16th April 2014)  11-7-24 500 kg/ha 

Top-dress CAN  100 kg/ha 

Total CAN  100 kg/ha 

 

Table S.IIIb. Herbicide, Aphicide and Plant Growth Regulator Programme 

Date Growth Stage Herbicide & Rate 

09/05/14 Emergence IPU @ 1.5 l/ha  

Headland Nova @ 1.0 l/ha 

Date Growth Stage Aphicide & Rate 

09/05/14 Emergence Euro Lambda  @0.05 l/ha 

Date Growth Stage Herbicide & Rate 

09/05/14 Tillering Boudha @ 20 g/ha 

Flurox @ 0.75 l/ha 

Date Growth Stage Aphicide & Rate 

15/05/14 Tillering Cypersect @ 0.25 l/ha 

Date Growth Stage PGR & Rate 

15/05/14 Tillering CCC @ 0.50 l/ha 

Date Growth Stage Wild Oats & Rate 

11/06/2014 Flag Leaf Acute @ 0.25 l/ha 

Date Growth Stage Aphicide & Rate 

01/07/2014 Ear Emergence 0.25 l/ha 
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Appendix IV: Dendrograms representing microbial community 

dissimilarity from the cDNA fraction (Chapter 3) 

 

 
Figure S.IVa: Dendrogram of hierarchal clustering of cDNA samples, as calculated 

with the Jaccard dissimilarity index (presence/absence) 

 

Figure S.IVb: Dendrogram of hierarchal clustering of cDNA samples, as calculated 

with the theta Yue & Clayton index (relative abundance). 
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Appendix V: Microbial community composition of all samples 

from Chapter 4 (Compounded disturbance of slurry and flooding) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



221 

 

Appendix V: SourceTracker output: proportions per biological 

replicate 

 
For descriptor of sample IDs please see footnote.  

 

Table S.IV 

Sample ID 
Proportion of OTU from each source 

Slurry Soil Unknown 

T0_Tmt2_a 0.3277 0.5112 0.1611 

T0_Tmt2_b 0.2168 0.5933 0.1899 

T0_Tmt2_c 0.2615 0.5652 0.1733 

T2_Tmt2_a 0.2644 0.0898 0.6458 

T2_Tmt2_b 0.1795 0.1055 0.715 

T2_Tmt2_c 0.2861 0.1908 0.5231 

T3_Tmt2_a 0.0208 0.6691 0.3101 

T3_Tmt2_b 0.0307 0.5615 0.4078 

T3_Tmt2_c 0.0326 0.5206 0.4468 

T3_Tmt4_a 0.2774 0.1057 0.6169 

T3_Tmt4_b 0.0659 0.3537 0.5804 

T3_Tmt4_c 0.0341 0.4405 0.5254 

T5_Tmt2_a 0.0102 0.5553 0.4345 

T5_Tmt2_b 0.0134 0.6877 0.2989 

T5_Tmt2_c 0.006 0.7135 0.2805 

T5_Tmt4_a 0.0655 0.5127 0.4218 

T5_Tmt4_b 0.0316 0.5064 0.462 

T5_Tmt4_c 0.0648 0.3739 0.5613 

T7_Tmt2_a 0.0084 0.7593 0.2323 

T7_Tmt2_b 0.0059 0.5816 0.4125 

T7_Tmt2_c 0.0113 0.6314 0.3573 

T7_Tmt4_a 0.0201 0.5571 0.4228 

T7_Tmt4_b 0.0375 0.6577 0.3048 

T7_Tmt4_c 0.0133 0.666 0.3207 

T8_Tmt2_a 0.0007 0.7834 0.2159 

T8_Tmt2_b 0.0019 0.7692 0.2289 

T8_Tmt2_c 0.0058 0.6182 0.376 

T8_Tmt4_a 0.0042 0.6828 0.313 

T8_Tmt4_b 0.0071 0.6207 0.3722 

T8_Tmt4_c 0.006 0.5309 0.4631 

T11_Tmt2_a 0.0019 0.7358 0.2623 

T11_Tmt2_b 0.0017 0.8136 0.1847 

T11_Tmt2_c 0.0006 0.7417 0.2577 



222 

 

T11_Tmt4_a 0.0008 0.6781 0.3211 

T11_Tmt4_b 0.0028 0.6895 0.3077 

T11_Tmt4_c 0.0026 0.6759 0.3215 

T13_Tmt2_a 0.0029 0.7835 0.2136 

T13_Tmt2_b 0.0034 0.7482 0.2484 

T13_Tmt2_c 0.0005 0.8296 0.1699 

T13_Tmt4_a 0.0005 0.6289 0.3706 

T13_Tmt4_b 0.0085 0.6396 0.3519 

T13_Tmt4_c 0.0017 0.6971 0.3012 

 

Where T- prefix denotes timepoint; Tmt1 = control; Tmt2 = ‘slurry’; Tmt3 = ‘flood’ and Tmt4 

= ‘slurry+flood’; biological replicates per timepoint are denoted using a, b and c. 

 

 

 


