(OLLSCOILNAGAILLIMHE

[JNIVERSITY oF GALWAY

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the
published version when available.

Performance of leading artifact removal algorithms assessed

e across microwave breast imaging prototype scan configurations
Author(s) Elahi, Muhammad Adnan; Curtis, C.; Lavoie, B.R.; Glavin,
Martin; Jones, Edward; Fear, E.; O’ Halloran, Martin
Publication
Date 2017-03-02

Elahi, M. A,, Curtis, C., Lavoie, B. R., Glavin, M., Jones, E.,
Fear, E., & O’ Halloran, M. (2017). Performance of |leading
Publication | artifact removal algorithms assessed across microwave breast
Information | imaging prototype scan configurations. Computerized Medical
Imaging and Graphics, 58(Supplement C), 33-44. doi:
https://doi.org/10.1016/j.compmedimag.2017.02.003

Publisher Elsevier

Link to
publisher's | https://doi.org/10.1016/j.compmedimag.2017.02.003
version

Item record | http://hdl.handle.net/10379/7032

DOl http://dx.doi.org/10.1016/j.compmedimag.2017.02.003

Downloaded 2024-04-27T14:29:00Z

Some rights reserved. For more information, please see the item record link above.



https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Accepted Manuscript

Computerized
Medical Imaging

Title: Performance of Leading Artifact Removal Algorithms and Graphics
Assessed Across Microwave Breast Imaging Prototype Scan
Configurations

Author: M.A. Elahi C. Curtis B. Lavoie M. Glavin E. Jones E.
Fear M. O’Halloran

PII: S0895-6111(17)30010-1

DOI: http://dx.doi.org/doi:10.1016/j.compmedimag.2017.02.003
Reference: CMIG 1497

To appear in: Computerized Medical Imaging and Graphics

Received date: 5-7-2016

Revised date: 1-2-2017

Accepted date: 27-2-2017

Please cite this article as: M.A. Elahi, C. Curtis, B. Lavoie, M. Glavin, E.
Jones, E. Fear, M. O’Halloran, Performance of Leading Artifact Removal
Algorithms Assessed Across Microwave Breast Imaging Prototype Scan
Configurations, </[CDATA[Computerized Medical Imaging and Graphics]]>
(2017), http://dx.doi.org/10.1016/j.compmedimag.2017.02.003

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.


http://dx.doi.org/doi:10.1016/j.compmedimag.2017.02.003
http://dx.doi.org/10.1016/j.compmedimag.2017.02.003

Performance of Leading Artifact Removal Algorithms
Assessed Across Microwave Breast Imaging Prototype
Scan Configurations

M. A. Elahi**, C. Curtis®, B. Lavoie®, M. Glavin®, E. Jones?, E. Fear®,
M. O’Halloran®

@ Flectrical and Electronic,National University of Ireland Galway
bDept. of Electrical and Computer Engineering, University of Calgary, AB, Canada

Abstract

Microwave imaging is a promising imaging modality for the detection of early-
stage breast cancer. One of the most important signal processing components
of microwave radar-based breast imaging is early-stage artifact removal. Several
artifact removal algorithms have been reported in the literature. However, the
neighbourhood-based skin subtraction and hybrid artifact removal algorithms
have shown particularly promising results in different realistic 3D breast phan-
toms. For the first time in this paper, both algorithms have been evaluated
and compared using the scan approaches of the most common microwave breast
imaging prototype systems. The tests include 3D numerical as well as experi-
mental breast phantoms scanned with hemispherical, cylindrical and adaptive
scanning patterns. The efficacy of both algorithms has been evaluated across a
range of appropriate performance metrics.

Keywords: Microwave Imaging, Ultra Wideband Radar, Breast Cancer,
Artifact Removal, Skin Subtraction, Skin-Artifact Removal

1. Introduction

Most UWB radar-based systems for breast cancer detection include early-
stage artifact removal and image reconstruction algorithms [1]. The early-stage
artifact typically consists of the input signal, the reflection from the skin sur-
face, skin-fat interface and any antenna reverberation present. This artifact
is typically several orders of magnitude greater than the reflections from any
tumours present within the breast. If the artifact is not removed effectively it
could easily mask tumours at the image reconstruction stage.

A large number of early-stage artifact removal algorithms for microwave
imaging of the breast have been reported in the literature 2, 3, 4, 5, 6, 7, 8].

*Corresponding author
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A comprehensive comparison of various artifact removal algorithms has been
presented in [9]. The study has shown that the average [3] and the rotation sub-
traction methods [5] do not work well due to normal variation between channel
artifacts. Conversely, filter-based methods [4, 6] are more robust to the variation
in between-channel artifacts, but the temporal window containing the artifact
must be known a-priori. Estimation of the artifact-dominant time-window and
the selection of appropriate channels to estimate the artifact is critical to the
performance of filter-based algorithms. The entropy-based method [7] often fails
to accurately estimate the time-window. It can also introduce distortion into
the tumour response. This could produce false positives or mask the tumour in
the image. The frequency domain method [8] also tends to distort the tumour
response while removing the skin-artifact.

Two algorithms in particular have shown promising results: the Neighbourhood-

based Skin Subtraction (NSS) [10]; and the Hybrid Artifact Removal (HAR) [11].
The NSS algorithm improves the filter-based method proposed in [6]. The
NSS algorithm introduces a method to select a cluster of neighboring chan-
nels, around the target channel, to estimate the artifact in the target channel.
Appropriate selection of the neighborhood improves the artifact estimation by
using signals which are similar to the target signal. The NSS also introduces an
automatic method to select the artifact-dominant portion of the signal for filter
weight computation. The improvement in results has been demonstrated by ap-
plying the NSS algorithm to 3D numerical as well as to a simple experimental
breast phantom and to patient data [10].

The HAR algorithm is another extension of the filter-based method. In the
HAR algorithm, the artifact in a target signal is estimated as the filtered com-
bination of the artifact in all other signals. The filter weights are optimized
using an estimated artifact-dominant window. The HAR algorithm estimates
the artifact-dominant portion of the signal using the entropy-based method de-
scribed in [7]. The estimated time-window is then used as a-priori information
for the computation of filter weights to estimate the artifact. The HAR algo-
rithm uses the antennas exclusively located in the same z-plane as the target an-
tenna for inclusion in the artifact estimation, in contrast to the neighbourhood-
based approach used in NSS. The algorithm efficacy has been demonstrated
using 3D anatomically and dielectrically realistic numerical breast models [11].

Both the NSS and the HAR algorithm overcome the limitations of the filter-
based algorithm [6] by proposing methods to: estimate the artifact-dominant
time-window; and select appropriate neighbouring antennas for the artifact es-
timation.

Both algorithms have shown promising results in 3D scenarios. However,
they have been evaluated separately on different breast phantoms and different
scan configurations. For the first time, this study aims to evaluate the efficacy
of both algorithms using the same numerical as well as experimental breast
phantoms scanned with different scan patterns:

e cylindrical;

e hemispherical;
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e adaptive/patient-specific.

The cylindrical scan pattern is used in the Tissue Sensing Adaptive Radar
(TSAR) prototype [12] that has also been used in a patient study [13]. Some of
the other prototypes that use the cylindrical scan pattern are reported in [14, 15].
The hemispherical scan pattern is similar to the prototype system used in clin-
ical trials reported in [16]. Another example of a prototype system that houses
antennas in a hemispherical radome is described in [17]. The patient-specific
scan pattern is used in the second generation TSAR prototype [18]. These differ-
ent scan patterns facilitate the evaluation of the robustness of artifact removal
algorithms against various scan configurations.

The various scan configurations also allow the generalizability of results
across all microwave breast imaging prototype systems that use the monos-
tatic data acquisition approach. Even though different prototypes use different
hardware and in particular different antenna type, both algorithms can still be
applied to the acquired data. This is due to the fact that the performance of
both algorithms is effected by the placement of the antenna (scan pattern) and
not by the antenna type used for the measurement. Both algorithms can po-
tentially be adapted for the multistatic data which is more challenging than the
monostatic data due to the variation of the early-stage artifact in multistatic
signals.

The shape of two numerical breast phantoms has been constructed from laser
data acquired during a patient study [13]. This presents a challenging scenario
(i.e a realistic breast shape) for the artifact removal algorithms. The third
numerical breast phantom has been derived from an MRI of a real patient and
is representative of a realistic breast. The experimental breast phantoms have
also been used to evaluate the performance of both algorithms in the presence
of realistic noise. The experimental breast phantoms are created with dielectric
properties close to those of human tissues for both skin and internal structures
of the breast. The results have been compared using a range of appropriate
signal and image quality metrics. Preliminary results were reported in [19].

The remainder of the paper is organised as follows: Section 2 describes each
artifact removal algorithm in detail; Section 3 describes the imaging algorithm
used in this study; the various simulated breast phantoms, experimental breast
phantoms and the pre-processing steps applied to the data before imaging are
covered in Section 4; Section 5 describes the performance metrics used to eval-
uate the algorithms; Section 6 presents the results and discussion; and finally
the conclusions and suggestions for future work are discussed in Section 7.

2. Artifact Removal Algorithms

2.1. Hybrid Artifact Removal

2.1.1. Artifact Dominant Time-Window FEstimation

The first step in the hybrid artifact removal algorithm [11] is to estimate
the artifact-dominant portion of radar signals based on the entropy values. A
larger value of entropy is obtained from similar artifacts in the early portion
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of the radar signal and conversely the tumour reflections result in much lower
entropy values. Next, a window function estimated to contain the artifact can
be defined based on these entropy values.

The « — order Renyi entropy at time sample n is defined as:

1 Q
Haln] = ———log {Zm[nba} )

=1

where p;[n] is the probability density function obtained by normalizing each
radar signal b;[n], @ is the total number of channels, « is real-positive and the
entropy varies from zero (for certain events) to log @ for uniform distributions.
In this study a = 3 is used, as third-order entropy is typically defined for a broad
class of signals [7]. Next, the theoretical dimension of [by[n],ba[n],...,bg[n]] is
defined as:

D[n] = eHaln] (2)

where HZ[n] is the smoothed entropy.

In order to estimate the artifact-dominant time window, the maxima of the
function D[n] is computed (the first mazimum represents the point in time
where signals across all channels have highest similarity, and the adjacent local
minimum indicates the maximum variation). The highly similar part of the
signals is assumed to be the artifact. The artifact-dominant time window is
then defined from the start of the signal to the local minima on the theoretical
dimension curve.

2.1.2. Artifact Filtering

In this step, the artifact is removed by applying the Wiener Filter [6] over
the artifact-dominant portion of the signal, at each channel, as computed in the
previous step. The artifact in each channel is estimated as a filtered combination
of the signals in all other channels. The estimated artifact signal for channel %
is then subtracted from the received signal at channel i as follows:

si[n] = bi[n] — ¢"bpyn] (3)

where b;[n] is the vector containing the signal received at channel 4, bpy([n] is a
vector calculated from all other channels located in same z-plane except ¢, and
q is the vector of filter weights. For example, in order to remove the artifact
from Channel 1, the filter weight vector is calculated as:

ne+m—1

q = argmin Z |b1[n] — ¢"ban[n]
a

n=n,

| 2

(4)

where n, represents the start of the signal and m is the length of the artifact-
dominant portion of the signal, estimated as described in the previous subsec-
tion. The minimization problem of Eq. 4 is solved in a similar way to [6].
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2.2. Neighbourhood-based Skin Subtraction Algorithm

2.2.1. Artifact-Dominant Window Selection

The NSS algorithm first processes backscattered radar signals collected at
each channel through an artifact-dominant window selection algorithm. The
undesired early-stage artifact tends to be several orders of magnitude larger
than responses from internal structures, and can be isolated by finding maxima
greater than a predetermined threshold value. The start of the artifact-dominant
window (w;) is set equal to the time step corresponding to the trough that
precedes the first significant peak. The end of the artifact-dominant window
(wq) is defined as the time step corresponding to the trough that follows the
last significant peak [10].

2.2.2. Neighbourhood Selection

The neighbouring channels of a target antenna are defined based on the an-
tenna proximity and the cross-correlation between the recorded signals [10]. The
reflections from each neighbouring antenna are then cross-correlated with the
reflection from the target antenna to validate the similarity of reflections. Next,
a pre-calculated threshold is used to validate the similarity of reflections from
antennas included in the neighbourhood to the target antenna. Any antenna
not meeting the similarity criteria is excluded. The similarity criteria ensures
that antennas selected in the neighbourhood have enough similarity to provide
an accurate estimate of the artifact in the target channel.

2.2.8. Artifact Filtering
The artifact filtering process is similar to the one described in Section 2.1.2.
Eq. 3 is used to remove the artifacts from each channel i and rewritten as:

St [TL} =br [n} - quneighbours,T[n] (5)

where 7 is the target antenna, bneigbows,T[n] is the combination of signals from
neighbourhood antennas selected for the target antenna 7, and g are the filter
weights. The filter weights are calculated as:
wo 9
q — arg min Z ’b‘r [TL] - quneighbours,‘r[nH (6)
q

n=wi

where wy and wsy are the start and end, respectively, of the artifact-dominant
window calculated as explained in the previous subsection. Eq. 6 can be solved
as described in [10].

3. Imaging

A Delay-And-Sum (DAS) imaging algorithm [13] is used to form the final
breast images. The artifact-free backscattered radar signals are time-aligned,
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summed and then squared for each synthetic focal point ¥ = (z,y, z) within the
breast. The 3D energy profile of the breast is created as follows:

I(r) = lz bz‘(Ti(F))] (7)

where M is the total number of channels, b; is the backscattered signal recorded
at channel 4, 7;(7) is the time required to travel the round trip distance between
focal point 7 and the channel i. 7;(7) is dependent on the propagation speed
of the electromagnetic wave. An average propagation speed is typically used
to estimate 7;(7). However, the propagation speed varies as the wave travels
through the immersion medium, breast skin and the interior of the breast. Laser
data collected during breast scanning is used to estimate the breast surface [20].
The outline of the breast is then used to estimate the distance travelled in
the immersion medium, skin and the interior of the breast. This allows a more
accurate estimation of 7;(7) by using different propagation speeds corresponding
to the distance travelled in each medium.

4. Breast Phantoms

4.1. Numerical Breast Phantoms
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Figure 1: Large breast phantom and scan patterns, (a) Cylindrical, (b) Hemispherical, (c)
Patient-specific, (d) Orientation of antenna corresponding to fourth position of hemispherical
scan pattern (from [21])

Three numerical breast phantoms have been considered in this study. The
laser data acquired in the patient study [13] (study E-22121 approved by the
Conjoint Health Research Ethics Board, University of Calgary) has been used to
reconstruct realistic skin surfaces for the first two breast phantoms. The mean
skin thickness is 2mm and the internal breast tissues have been modeled as
homogeneous fat. A 15mm diameter tumour is included in each breast phantom
at different locations as described in Table 1.

The internal tissue structure of the first two breasts is modeled simplisti-
cally as opposed to using more realistic heterogeneous tissue structure. This
is because this study aims to evaluate the performance of early-stage artifact
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Figure 2: Small breast phantom and scan patterns, (a) Cylindrical, (b) Hemispherical, (c)
Patient-specific (from [21])
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Figure 3: Heterogeneous breast phantom derived from an MR scan of a patient showing
distribution of different breast tissues with (a) and (b) side, (c) top and (d) bottom views.
Three different types of glandular tissues are shown in different colours (from [21]).

removal algorithms. The primary source of early-stage artifacts is the skin re-
sponse. However, the quantification of clutter due to the early-stage artifacts
in the images becomes ambiguous in the presence of heterogeneous breast tis-
sues. In the absence of heterogeneous tissues, the clutter in the images can be
attributed to the residual artifacts.

The challenge for artifact removal algorithms is the realistic variation in
skin shape, curvature and thickness. The tumour located close to the skin
also presents a challenge, as the tumour response may be embedded in the skin
response and could be distorted by the artifact removal algorithm. Another issue
is the various scan configurations. The breast phantoms used in this study have
been designed taking these challenges into consideration. The third numerical
breast phantom is derived from an MR scan of a patient and the interior is
composed of fat as well as three different types of glandular tissue as shown in
Fig. 3.

The breast phantoms are modelled as immersed in canola oil. The canola
oil has shown to be an effective coupling medium for the microwave imaging
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Table 1: Summary of numerical and experimental breast phantoms used in this study

Phantom | Phantom Scan Tumour Tumour
Label Type Configuration Location Size
C1 Homogeneous Small Cylindrical (-15, 0,- 12) | 15mm
C2 Homogeneous Large Cylindrical (24, 3, -17) 15mm
C3 MRI-based Heterogeneous | Cylindrical (-27, 11, -27) | 15mm
H1 Homogeneous Small Hemispherical (-15, 0, -12) | 15mm
H2 Homogeneous Large Hemispherical (24, 3, -17) 15mm
H3 MRI-based Heterogeneous | Hemispherical (-27, 11, -27) | 15mm
P1 Homogeneous Large Patient Specific | (24, 3, -17) 15mm
P2 Homogeneous Small Patient Specific | (-15, 0, -12) 15mm
P3 MRI-based Heterogeneous | Patient Specific | (-27, 11, -27) | 15mm
P4 Simulation of E1 Patient Specific | (25, 0, -17.3) | 16mm
E1 Experimental Patient Specific | (7, 13, -50.5) | 16mm
E2 Experimental with Patient Specific | (-28, 12, -31) | 16mm
glandular inclusion

of the breast using the TSAR system [22]. An ultra-wideband (UWB) antenna
is scanned around the breast to transmit and collect the reflection data [23].
All numerical breast phantoms are scanned with three different scan patterns:
a cylindrical scan pattern; a hemispherical scan pattern; and a patient-specific
scan pattern. The scan patterns are shown in Fig. 1-2 and described in detail
in [21].

The antenna is excited with a differentiated Gaussian pulse [23]. Reflection
data is recorded at 30 azimuth locations around the breast. For each azimuth
location, the antenna is moved vertically along the breast and reflections are
recorded at 10 equally spaced vertical positions, producing 300 signals. The
balanced antipodal Vivaldi antenna with a director in the aperture (BAVA-
D) [23] is used to illuminate the breast and record the corresponding reflec-
tions. The breast models are simulated using a Finite-difference Time-domain
(FDTD) solver. The dielectric properties of breast tissues and immersion liquid
are incorporated using Debye models. The Debye parameters are detailed in
Table. 2, where €, is the static permittivity, €., is the permittivity at the lim-
iting frequency, o, is the static conductivity and the 7 is the relaxation time.
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Table 2: Debye Parameters for Numerical Breast Phantoms [21]

Medium € | €s os (S/m) | 7 (ps)
Canola oil 2.41 | 2.52 | 0.0088 27.84
Skin 32.9 | 43.6 | 0.668 77.4
Fat 3.14 | 4.85 | 0.036 14.65
Gland (group 1 25th percentile) | 9.94 | 36.5 | 0.462 10.9
Gland (group 2 50th percentile) | 5.73 | 40.1 | 0.524 9.15
Gland (group 2 75th percentile) | 5.16 | 51.0 | 0.766 8.73
Tumour 6.75 | 56.8 | 0.794 10.5

Figure 4: An example of an internal structure configuration attached to a polycarbonate disk
(right) to be placed inside a skin layer (left). Two possible tumours attached to polycarbonate
rods are shown below(from [24]).

4.2. Experimental Breast Phantoms

4.2.1. Breast Phantom Development

The experimental breast phantoms used in this study have been described
in [24]. The breast phantoms include materials representing skin tissue, fatty
tissue, glandular tissue and a tumour tissue. A skin layer with 2mm thickness,
10 cm diameter and 9 cm depth (from chest wall to nipple) [13] is created
using a skin mould. The skin mould is created with a 3D printer (Replicator
2, MakerBot Industries, Brooklyn, NY) and then filled with a carbon/rubber
mixture to create the skin layer.

The internal structures, such as tumour and glandular structures, are also
created with a 3D printer and a carbon/urethane rubber mixture is used to
create the tumour and glandular structures. The carbon concentration in the
carbon/urethane rubber mixture is varied to mimic the dielectric properties of
glandular structures and of the tumour. The specific concentrations of car-
bon/rubber mixture for skin, glandular, tumour and fatty tissues and corre-
sponding dielectric properties are detailed in [24]. The tumour and glandular
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structures are glued to nylon threaded rods and bolted to a polycarbonate disk.
The polycarbonate disk is then placed inside the skin layer. Fig. 4 shows a skin
layer, glandular structures attached to the polycarbonate disk and tumours.
The skin layer is then filled with canola oil to mimic the fatty tissue.

Two experimental breast phantoms have been used in this study. The first
breast phantom has a skin layer, fatty tissue and a 16 mm diameter tumour
located at (7 mm, 13 mm, -50.5 mm) and the second breast phantom contains
a skin layer, a 4 cm diameter glandular structure, extending from the tip of the
breast to polycarbonate lid, and a 16 mm tumour located at (-28 mm, 12 mm,
-31 mm).

4.2.2. Data Acquisition

The measurement data is collected using the prototype system described
in [18]. In order to collect the measurement data, the breast phantoms are
placed in a tank filled with canola oil. The oil acts as an immersion/coupling
liquid. The prototype system has a single BAVA-D [23] antenna that can be
positioned around the breast at various azimuth and elevation angles. The pro-
totype has two additional degrees of freedom to control: the proximity and
orientation of the antenna relative to the breast skin. For each breast phantom,
the antenna is positioned at 7 elevations along the breast depth. For each el-
evation, measurements are collected at 20 equally spaced positions around the
breast. The antenna is positioned 1 cm from the skin and is oriented perpen-
dicular to the skin for each measurement.

A vector network analyzer (PNA-X N5242A or PNA-L N5232A, Agilent
Technologies, Santa Clara, CA) is used to collect the measurement data. Mea-
surements are acquired at 1200 frequencies between 10 MHz and 12 GHz with
1 kHz IF bandwidth. The average of 3 measurements is computed [24]. The
frequency domain data is then pre-processed before imaging as described in the
following subsection.

4.3. Pre-processing

Frequency-domain data is calibrated prior to the application of the artifact
removal algorithms and final imaging. The calibration is performed by sub-
tracting measurements which were collected at the same antenna positions but
in the absence of the breast phantom. A phase-shift is introduced in the cal-
ibrated data to compensate for the antenna aperture location. The calibrated
frequency-domain data is then weighted with a differentiated Gaussian pulse
of center frequency 4GHz and an approximate bandwidth of 5GHz. Finally, an
inverse chirp-z transform [4] is used to convert the frequency-domain data to the
time-domain for processing through artifact removal and imaging algorithms.

5. Performance Metrics

In this section the performance metrics are described. The signal analysis
metrics are chosen to evaluate the ability of each algorithm to suppress the early-
stage skin artifacts and quantify its impact on late-time clutter and tumour

10
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reflections. The image quality metrics have been chosen to measure the quality
of images in terms of accuracy of tumour localisation, extent of tumour response
and intensity of tumour response.

5.1. Signal Analysis Metrics

5.1.1. Artifact Suppression Ratio

The Artifact Suppression Ratio (ASR) measures the efficacy of the artifact
removal algorithm to suppress the early-stage artifact.

The ASR is defined as the ratio of energy of the artifact following and prior to
the application of an artifact removal algorithm. The ASR quantifies the energy
of residual artifacts after the artifact removal process (that may contribute to the
clutter in the images). A high value of ASR indicates larger residual artifacts,
whereas lower ASR value indicates that residual artifacts are minimal. The

ASR is given as
Do Isln] |2>
e bl

where b[n] is the backscattered signal prior to artifact removal, s[n] is the signal
following artifact removal, and n, and m, are the start and end of the artifact-
dominant time-window respectively.

ASR =10log ( (8)

5.1.2. Tumour and Clutter Suppression Ratio

The Tumour and Clutter Suppression Ratio (TCSR) measures the impact of
the artifact removal process on the energy of the late-time signal which contains
tumour and clutter.

TCSR is the ratio of energy of the signal outside the artifact-dominant time-
window following, and prior to, the application of artifact removal. A high value
of TCSR indicates a minimal effect on the late-time signal whereas a lower value
indicates better late-time clutter suppression. TCSR is given as

Z:Xboﬂ 3[”]2>
S i1 [o[n][”

where m, is the end of the artifact-dominant time-window and NN is the total
length of the time-domain signal.

The late-time clutter is primarily related to the reflections from healthy
breast tissues and is often reduced by the artifact removal process. However, the
late-time signal also contains the tumour response that is also affected by late-
time clutter suppression. The effect on the actual tumour response is measured
with another signal metric described in the following subsection.

TCSR = 10log < (9)

5.1.3. Tumour Energy Preservation Ratio

The Tumour Energy Preservation Ratio (TEPR) measures the ability of an
artifact removal algorithm to preserve the tumour response while removing the
artifact.

11
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The TEPR is defined as the ratio of tumour energy obtained from the iso-
lated tumour response (t;soiated[n]) to the ideal tumour response (t;geqi[n2]). The
TEPR is given as

(10)

to 2
tisoae n
TEPR = 101og (Ztl lated[n]| )

>0 [tidear(n]|?

where, t; and t5 are the start and end of the time-window containing the ideal
tumour response.

The tumour response in artifact removed signals is isolated from late-time
clutter by subtracting the artifact removed signals from tumour-bearing and
tumour-free phantoms. The ideal tumour response is obtained by subtracting
the backscattered signals received from the tumour-bearing and tumour-free
breast phantoms.

Ideally, the artifact removal algorithm should not change the tumour re-
sponse and TEPR should be close to 0 dB. However, in practice, the tumour
response is almost always affected and the TEPR quantifies the change intro-
duced in tumour response by an artifact removal algorithm.

5.2. Image Quality Metrics

5.2.1. Full-Width at Half Maximum

The Full-Width at Half Maximum (FWHM) may be used to estimate the
extent of the tumour response in the image. The FWHM is defined as the
distance from peak tumour intensity to the point where tumour intensity drops
by half. The FWHM is computed by growing a region around the centroid of the
tumour region until the tumour intensity drops by half. The average Euclidean
distance from the centroid of the tumour to the end of the region is estimated
to be the FWHM.

5.2.2. Signal-to-Clutter Ratio

The Signal-to-Clutter Ratio (SCR) is used to estimate image quality. The
SCR is defined as the ratio of tumour intensity to clutter intensity in the 3D
image. The SCR is calculated from the beamformed image obtained following
artifact removal.

The overall 3D image is divided into connected regions of different intensity
levels present in the image. The highest intensity level region is considered to
be the tumour region and the region with the second highest intensity level is
considered to be clutter. The extent of both regions is defined by computing
the FWHM. The SCR is computed as the ratio of the average intensity in the
tumour region to the average intensity of the clutter.

5.2.3. Signal-to-Mean Ratio

The Signal-to-Mean Ratio (SMR) is another measure of the quality of the
beamformed image that provides a measure of separation between the tumour
intensity and the background clutter. It is defined as the ratio of the average

12

Page 12 of 25



-50

ASR (AB)

@

C1 C2 C3 H1 H2 H3 P1 P2 P3 P4 Fl1 E2
Breast Phantoms

-200

-250

Figure 5: The mean and the standard deviation of Artifact Supression Ratio (ASR) across
each breast phantom. The ASR is computed for each radar signal (after processing through
both HAR and NSS) of each breast phantom and averaged across each breast phantom. Lower
value indicates better artifact suppression.
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Figure 6: The mean and the standard deviation of Tumour and Clutter Suppression Ratio
(TCSR) across each breast phantom. The TCSR is computed for each radar signal (after
processing through both HAR and NSS) of each breast phantom and averaged across each
breast phantom. Lower values indicate better clutter suppression.

intensity of the tumour region to the average intensity of the overall 3D image.
The SMR is also calculated from the beamformed image obtained following
artifact removal.

6. Results

6.1. Signal Analysis

6.1.1. Artifact Suppression Ratio

The ASR measures the ability of the artifact removal algorithm to reduce
artifacts. The backscattered radar signals from each breast phantom described
in Table I are processed through both NSS and HAR algorithms to remove the
early-stage artifacts. The ASR is computed for each radar signal and averaged
across each breast phantom. Fig. 5 shows the mean and the standard deviation
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of ASR computed from each breast phantom following each artifact removal
algorithm.

The NSS algorithm demonstrates better artifact suppression capability for all
phantoms, including the MRI-based heterogeneous phantom, with significantly
lower ASR values compared to the HAR algorithm. However, the average ASR
values of the HAR algorithm also remain significantly below 0 dB indicating
significant reduction in the artifacts.

Better artifact suppression by the NSS algorithm may largely be attributed
to the neighbourhood selection method, where only signals with highly similar
artifacts are used to estimate the artifact in a particular channel.

6.1.2. Tumour and Clutter Suppression Ratio

The TCSR evaluates the impact of artifact removal on the late-time signal
containing tumour response as well as the clutter due to healthy breast tissues.
Fig. 6 shows the mean TCSR of each breast phantom along with the standard
deviation computed following both NSS and HAR algorithms.

The relatively lower values of TCSR for the NSS algorithm indicate that
the NSS, not only effectively suppresses the artifact but also, reduces the late-
time response containing the tumour and clutter. In particular, a significant
reduction in the TCSR values by NSS can be observed for heterogeneous breast
phantoms (C3, H3, P3). This indicates a significant reduction in energy of the
late-time portion of the signals. The HAR algorithm also reduces the late-time
response; however on average its impact remains lesser than that of the NSS
algorithm.

The neighbourhood selection method of the NSS algorithm provides a group
of signals that contains, not only highly similar artifacts but also reflections from
interior breast tissues are quite similar. These similar reflections are reduced
during the artifact removal process, resulting in lower TCSR values for the NSS
algorithm.

The reduction of the late-time response, as indicated by TCSR values, may
also result in the reduction of the tumour response. This is due to the fact that
the tumour response is also embedded in the late-time response, and may also
be reduced by the algorithm, while the late-time clutter is being suppressed.

6.1.3. Tumour Energy Preservation Ratio

The TEPR quantifies the impact of an artifact removal algorithm on tumour
energy. The TEPR value is computed for each radar signal after processing
through both the NSS and the HAR algorithms and then averaged across the
corresponding breast phantom. Fig. 7 shows the mean TEPR computed from
each breast phantom along with the standard deviation.

On average, the NSS algorithm has lower values of TEPR. This indicates
that it significantly reduces the tumour response. The HAR algorithm also in-
troduces changes in tumour energy; however, the TEPR values for the HAR
algorithm, are on average, closer to 0 dB. This suggests minimal change in the
tumour response. The standard deviation of TEPR across each breast phantom
indicates significant variability. However, this is expected due to the variability
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Figure 7: The mean and the standard deviation of Tumour Energy Preservation Ratio (TEPR)
across each breast phantom. The TEPR is computed for each radar signal (after processing
through both HAR and NSS) of each breast phantom and averaged across each breast phan-
tom. The value closer to 0 dB indicates better tumour response preservation.

in tumour responses received at different antennas. The tumour response re-
ceived at each antenna is attenuated differently due to the different propagation
path. Therefore, the performance of each algorithm varies for each individual
signal resulting in variation of the TEPR. In most cases, the HAR algorithm
exhibits relatively lower variability compared to the NSS algorithm as shown by
the standard deviation.

It is also observed that the tumour energy in some of the signals appears to
be greater than the ideal tumour energy. This is due to the imperfect isolation
of the tumour response using tumour-bearing and tumour-free phantoms. It is
not possible to accurately isolate the tumour response from the response from
fibroglandular structures after applying artifact removal algorithms. The TEPR
for the heterogeneous phantoms is not calculated for this reason.

In summary, signal metrics such as ASR and TCSR indicate that both al-
gorithms significantly suppress artifacts as well as reduce the late-time clutter.
The reduction in the late-time signal also reduces similar reflections from glan-
dular structures within the breast.

However, the NSS algorithm has shown better artifact suppression capability
than the HAR algorithm . This is indicated by the lower values of ASR. A
better late-time clutter suppression capability of the NSS is indicated by the
lower values of TCSR. In contrast, the HAR algorithm has shown better tumour
response preservation, as indicated by the TEPR values. The difference between
the NSS and the HAR TEPR values may have a significant impact due to the
coherent addition of tumour responses at the imaging stage. Therefore, the
imaging results must also be analysed to further evaluate the performance of
both algorithms.

6.2. Imaging

The artifact free signals are processed through the imaging method described
in Section 3 to produce the final images. The following section describes the
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Figure 8: Beamformed image of C1 following artifact removal using the: (a) HAR algorithm,
(b) NSS algorithm.

imaging results and the corresponding imaging metrics computed for each of
the breast phantoms.

Table 3: Imaging performance metrics for phantoms scanned with cylindrical scan pattern

. SCR | SMR | Localization | FWHM

Phantom | Algorithm
(dB) | (dB) | Error (mm) | (mm)
c1 HAR 13.4 | 35.3 2.2 15.7
NSS 72 | 34.9 9.0 15.3
09 HAR 16.5 | 38.0 4.2 14.5
NSS 15.6 | 41.3 6.3 9.7
HAR 149 | 36.7 3.2 15.1

Average

NSS 114 | 38.1 7.7 12.5

6.2.1. Cylindrical Scan Pattern

Fig. 8 shows the beamformed images of C1 following artifact removal using
both HAR and NSS algorithm. The imaging performance metrics, computed
from C1 and C2, are presented in Table 3.

The tumour is successfully detected in the images obtained following either
artifact removal algorithm. However, localisation error and clutter can also be
observed in the images. The HAR algorithm has slightly higher average SCR
as well as smaller localisation error compared to the NSS algorithm. However,
the average SMR of the NSS algorithm is moderately higher compared to the
HAR algorithm.

The difference in performance of both algorithms is somewhat smaller for the
C2 phantom. However, the NSS algorithm has lower SCR and higher localisation
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error (9.0 mm) compared to the HAR algorithm in the case of the C1 phantom.
One contributing factor towards lower performance of the NSS algorithm in
the C1 case may be the size of the C1 phantom. The cylindrical scan surface
has a fixed radius regardless of the size of the breast. Therefore, the distance
between skin and antenna locations in the case of C1 is greater than that for C2
(larger breast phantom). The larger distance results in more attenuated tumour
responses from C2 and further attenuation introduced by the artifact removal
has a greater impact on the image.

The better SCR and localisation in images of phantoms scanned with cylin-
drical scan configuration following the HAR algorithm suggests better tumour
response preservation compared to the NSS algorithm. However the better
average SMR following the NSS algorithm indicates slightly better artifact sup-
pression.

6.2.2. Hemispherical Scan Pattern
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Figure 9: Beamformed image of H2 following artifact removal using the: (a) HAR algorithm,
(b) NSS algorithm.

The imaging metrics corresponding to the H1 and H2 phantoms are shown
in Table 4. Again, the tumour is detected in both phantom images with small
localisation errors using either artifact removal algorithms. The HAR algorithm
has, on average, slightly higher SCR and SMR than the NSS algorithm. The
average localisation error of the HAR algorithm is also smaller. However, the
differences are quite small.

The performance of the HAR algorithm drops in the case of H2. A higher
clutter intensity can be observed in the image produced following the HAR
algorithm [Fig. 9(a)] compared to the image produced following the NSS algo-
rithm [Fig. 9(b)]. The FWHM of the H2 phantom is also higher for the HAR
algorithm indicating smearing of the tumour response. The performance of the
HAR algorithm in the case of the H2 phantom may be attributed to the lower
artifact suppression. This is shown by the relatively lower ASR value by HAR
in the case of the H2 phantom leaving residual artifacts.
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Similarly, the performance of the NSS algorithm increases for the H2 phan-
tom. This is again because hemispherical scan configuration is designed to fit
H2, which is larger than H1. The neighbourhood-based selection in the NSS
algorithm provides a better estimate of the artifact when the hemispherical
scan surface fits the breast phantom. This improves the performance of artifact
removal.

Table 4: Imaging performance metrics for phantoms scanned with hemispherical scan pattern

. SCR | SMR | Localization | FWHM

Phantom | Algorithm
(dB) | (dB) | Error (mm) | (mm)
m HAR 17.1 | 38.7 6.1 6.7
NSS 9.8 33.4 6.1 6.1
Ho HAR 9.9 374 3.7 10.7
NSS 13.6 | 38.2 4.2 7.3
HAR 13.5 38.1 4.9 8.7

Average

NSS 11.7 | 35.9 5.2 6.7
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Figure 10: Beamformed image of P2 following artifact removal using: (a) HAR algorithm, (b)
NSS algorithm.

6.2.3. Patient-specific Scan Pattern

Both the HAR and the NSS algorithms, on average, perform similarly in
terms of all image quality metrics for the patient-specific scan pattern. This is
shown in Table 5.

Fig. 10 shows the image of P2 following application of the HAR and the NSS
algorithms. The tumour is quite accurately localised in both images. However,
the peak tumour intensity appears to be higher in the HAR image as can be
observed in Fig. 10(b).
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The higher tumour intensity for the HAR algorithm in this case is attributed
to the patient-specific scan pattern, where antennas are placed at approximately
constant distances from the skin. Therefore, all antennas located in the same z-
plane have highly similar artifacts. This facilitates the HAR algorithm to better
remove the artifact while also preserving tumour response.

The scan pattern also benefits the NSS algorithm. This is because the chosen
neighbourhood of antennas may provide a better estimate of the artifact due to
the higher similarity of skin response. However, it may also have similar response
from tumour and interior breast tissues. The response from interior breast
tissues may be reduced while subtracting the estimated artifact. Therefore, in
this case NSS has a similar SCR to the HAR algorithm even though tumour
intensity is lower.

Table 5: Imaging performance metrics for phantoms scanned with patient-specific scan pattern

. SCR | SMR | Localization | FWHM
Phantom | Algorithm
(dB) | (dB) | Error (mm) | (mm)
P1 HAR 11.5 | 37.1 2.8 9.9
NSS 12.2 | 35.3 2.2 9.0
P9 HAR 12.9 | 364 4.2 7.3
NSS 12.0 | 31.3 4.1 8.7
HAR 12.2 | 36.8 3.5 8.6
Average
NSS 12.1 | 33.3 3.2 8.9

20 20 0 —20 40 g 60 —40 20
Patient's right <~ x (mm) > Patient's leftNipple <- z (mm) -> Chest

(a) (b)

40 20 0 -20 -40 §  -60 -40 -20
Patient's right <~ x (mm) ~> Patients leftNipple <~ z (mm) -> Chest

Figure 11: Beamformed image of E2 following artifact removal using the: (a) HAR algorithm,
(b) NSS algorithm.
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6.2.4. Experimental Evaluation

For both experimental phantoms, the HAR algorithm performs better in
terms of all imaging metrics except for localisation error. This can be seen
in Table 6. The average localisation error is marginally higher for the HAR
algorithm compared to the NSS algorithm.

The imaging results for the experimental phantom E2 following both artifact
removal algorithms are shown in Fig. 11. The tumour is localised in both images.
However, the overall clutter, as well as peak clutter intensity, also appears to
be higher in the image produced using the NSS algorithm.

The overall imaging performance metrics indicate that the HAR performs
better in the case of experimental phantoms. This may be largely attributed to
the patient-specific scan pattern.

Table 6: Imaging performance metrics for experimental phantoms

) SCR | SMR | Localization | FWHM

Phantom | Algorithm
(dB) | (dB) | Error (mm) | (mm)
Bl HAR 12.1 28.5 17.0 19.0
NSS 6.3 25.9 11.2 15.5
2 HAR 6.9 27.5 6.5 15.1
NSS 2.3 27.5 8.1 19.7
HAR 9.5 28.0 11.8 17.0

Average

NSS 4.3 26.8 9.6 17.6

6.2.5. MRI-based Heterogeneous Phantoms
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Figure 12: Beamformed image of C3 following artifact removal using the: (a) HAR algorithm,
(b) NSS algorithm.
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Figure 13: Beamformed image of H3 following artifact removal using the: (a) HAR algorithm,

(b) NSS algorithm.
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Figure 14: Beamformed image of P3 following artifact removal using the: (a) HAR algorithm,
(b) NSS algorithm.

Fig. 12-14 show the images of MRI-based heterogeneous phantoms obtained
after the application of each artifact removal algorithm. The presence of the
tumour can be observed in the tumour slices in images of H3 and P3, along with
other responses from fibroglandular structures. However, the tumour intensity
is weak and clutter is dominant, especially in the images of C3. The cylindrical
scan configuration of C3 results in more attenuated tumour reflections due to
larger distances between the antennas and the breast. Therefore, the tumour
response in the image of C3 is much weaker compared to the clutter response.

The clutter due to fibroglandular tissues is significantly higher in images
produced with the HAR algorithm compared with NSS images. The lesser
amount of clutter in NSS images is consistent with the signal metric TCSR that
indicated a significant reduction in the energy of the late-time portion of the
signals for heterogeneous breast phantoms.
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The focus of this work is to evaluate the artifact removal algorithms by
exclusively quantifying the clutter due to residual artifacts. However, the clutter
in the images of the heterogeneous breast is not only associated with the residual
artifacts. It may also be attributed to reflections from fibroglandular structures,
propagation path inaccuracies and to the ability of the imaging algorithm to
suppress incoherent reflections. Therefore, due to ambiguities in identification
of the sources of clutter, imaging quality metrics, such as SCR and SMR, are
not calculated from the heterogeneous breast phantom. However, the imaging
results demonstrate the efficacy of the algorithms in reducing skin reflections
from heterogeneous breast phantoms. The results can be improved with more
advanced imaging algorithms that have better clutter suppression capabilities
such as those reported in [25, 26].

In summary, the HAR and the NSS algorithms have very close average SCR,
and SMR values for the phantoms scanned with the cylindrical and hemispher-
ical scan pattern. However, the HAR alogrithm has marginally higher average
SCR and lower localisation error. The NSS algorithm has an average locali-
sation error almost twice that of the HAR algorithm for the cylindrical scan
pattern. This error may be attributed to the distortion introduced by the NSS
in the tumour response. However, the NSS algorithm outperforms the HAR
algorithm for the hemispherical scan configuration when breast size is similar to
the size of the hemisphere used to design the hemispherical scan configuration.

Both algorithms have similar performance in terms of imaging metrics when
applied to simulated breast phantoms scanned with the patient-specific scan
pattern. However, the HAR algorithm has better performance for the experi-
mental phantoms.

Finally, in the case of the MRI-based phantom, both algorithms reduce the
skin-artifacts. However, the strong responses from healthy breast tissues are also
present along with the tumour response. The NSS images have less clutter from
interior tissues as the NSS algorithm reduces the responses from the interior of
the breast in contrast to the HAR algorithm which tends to preserve response
from the interior of the breast. Both algorithms are based on the Wiener filter,
and therefore the computational complexity of the both algorithms is same. The
computational time of the both algorithms is smaller than the overall 3D image
reconstruction time of the imaging algorithms [27].

7. Conclusions

In this paper, two promising artifact removal algorithms developed for the
radar-based microwave imaging of the breast have been evaluated in various
challenging test scenarios. Numerical, as well as experimental, breast phantoms
with different tumours included at challenging locations (e.g. close to the skin),
and different scan configurations have been used to compare the algorithms.
The scan configurations used in this study are the most common configurations
used in microwave breast imaging prototypes. Therefore, the results illustrate
the potential performance of the both artifact removal algorithms across various
prototype systems. Results indicate that both the NSS and the HAR algorithms
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effectively reduce the skin-artifacts across all breast phantoms and scan config-
urations. The responses from interior breast tissues that include healthy as well
as cancerous tissues are also reduced by both algorithms. However, the HAR
algorithm has been shown to preserve responses from interior breast tissues. In
terms of imaging quality metrics, both algorithms produce similar quality im-
ages across all scan configurations and simulated phantoms. However, the HAR
algorithm produces better quality images for experimental breast phantoms.

It should also be noted that the ability of the NSS algorithm to reduce the
responses from the interior breast tissues is particularly useful in heterogeneous
scenarios. This is because it facilitates the imaging algorithm to produce images
with less clutter due to fibroglandular responses.

Future work will focus on combining these algorithms with advanced imaging
algorithms to improve the imaging.
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