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solid-state mixtures using Raman mapping spectroscopy.  
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  Amandine Calvet,

a
  and Alan G. Ryder

a
*

 

Abstract The low-content quantification (LCQ) of active pharmaceutical ingredients or impurities in solid mixtures is 

important in pharmaceutical manufacturing and analysis.  We previously demonstrated the feasibility of using Raman 

mapping of micro-scale heterogeneity of solid-state samples combined with partial least squares (PLS) regression for LCQ 

in a binary system.
1
  However, PLS is limited by the need for relatively high calibration sample numbers to attain high 

accuracy, and a rather significant computational time requirement for the large Raman maps.  Here we evaluated 

alternative chemometric methods which might overcome these issues.  The methods were: net analyte signal coupled 

with classical least squares (NAS-CLS), multivariate curve resolution (MCR), principal component analysis with CLS (PCA-

CLS), and the ratio of characteristic analyte/matrix bands combined with shape-preserving piecewise cubic polynomial 

interpolation curve fitting (BR-PCHIP).  For high (>1.0%) piracetam analyte content, all methods were accurate with 

relative errors of prediction (REP) of: <1.1%.  For LCQ (0.05−1.0% w/w), three methods  were able to predict piracetam 

content with reasonable levels of accuracy:  6.97% (PCA-CLS), 9.13% (MCR), and 12.8% (NAS-CLS).  MCR offered the best 

potential as a semi-quantitative screening method as it was ~40% quicker than PLS, but was less accurate due to being 

more sensitive to spectral noise factors.  

Introduction 

Chemical imaging by Raman spectroscopy has great potential 

for measuring the chemical composition of solid-state materials 

providing high spatial resolution and molecular specificity, and thus 

in recent years has gained ever-increasing attention for both 

academic and industrial applications.
2-7

  Chemical images, 

particularly those based on vibrational spectroscopies, contain 

information concerning the sample composition, which is essential 

for microscopic identification, location, distribution of chemical 

species.  This spatial and composition knowledge can help monitor 

manufacturing processes, for instance, in the mass production of 

solid-state pharmaceutical formulations such as tablets.
5-12

   

Raman spectroscopy is advantageous in terms of being fast, 

non-contact, non-destructive, inexpensive, and often requires 

minimal sample preparation.  Moreover, the often sharp, well-

defined Raman spectra and high spatial resolution frequently 

enable easier chemical discrimination of distinct sub-micro-sized 

zones or layers within samples.
2, 6, 7, 13

  As a result, Raman 

spectroscopy has been widely applied to the detection of low-

content polymorphs, impurities, and contaminants, and the 

characterization of active pharmaceutical ingredients (APIs), 

excipient distribution in solid materials.
6, 8, 11, 14-16

  This is in contrast 

with conventional methods such as high performance liquid 

chromatography (HPLC) for impurity analysis which requires 

extensive sample preparation, or powder X-ray diffraction (PXRD) 

used for polymorph analysis which has poor low-content 

quantification (LCQ) and spatial resolution.  The combination of 

spectroscopic imaging with multivariate statistical analysis can 

further dramatically enhance the information outcome from Raman 

imaging.
7, 17, 18

  Multivariate exploratory analysis like principal 

component analysis (PCA) can be used to determine the specific 

sources of subtle and gross sample variance and curve resolution 

methods have been used frequently to show component 

distributions.
4, 7, 8, 19, 20

  

We previously demonstrated that Raman mapping of 

micro-scale heterogeneity in a solid sample mixture, combined 

with chemometric and statistical analysis can be used for 

accurate LCQ.
1
  This first attempt used partial least squares 

(PLS) regression which is problematic in terms of the 

requirement for large numbers of calibration samples in order 

to achieve high accuracy.  Furthermore, in many cases a 

sufficiently large calibration sample set may not be always 

available because of sample availability and/or complexity, or 

the costs associated with preparation of calibration samples.  

Here we report the competitive assessment of four different 

chemometric techniques for LCQ of binary solid-state mixtures 

by Raman mapping spectroscopy.  The methods were 

compared to determine which offered the optimal 

quantitative performance, LCQ accuracy, and potential for 

smaller numbers of calibration samples.  The methods were: 

net analyte signal coupled with classical least squares (NAS-
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CLS), multivariate curve resolution (MCR), PCA with CLS (PCA-

CLS), and analyte/matrix band ratio combined with shape-

preserving piecewise cubic polynomial interpolation curve 

fitting (BR-PCHIP). 

Experimental 

Materials and Methods  

Solid mixtures of piracetam (2-oxo-1-pyrrolidineacetamide, 

polymorphic form III) and L-proline (≥99%) were prepared in 

triplicate and Raman data collected as described previously.
1
  

However, here we only used data from 50 of the 61 samples (20 

mixtures between 0.05% and 0.95% and 30 mixtures between 1.0% 

and 100%), and the data set thus comprised of 150 Raman maps (50 

samples × 3 replicates).  This was done to see if we could reduce the 

overall sample number and still obtain acceptable accuracy.  

Piracetam and proline were selected because they have 

approximately equal Raman scattering coefficients and ~50% 

overlap in the spectral region measured (see S-10, SI for more 

details).  Raman spectra (200–1896 cm
–1

) were collected using a 

RAMAN WORKSTATION™ Analyzer (Kaiser Optical Systems, Inc.), 

with 785 nm excitation.  Raman maps of 29×29 points were 

recorded with 1 mm spacing using 1 second exposure.  At each 

point, there were 10 probe channels (Raman map channel) which 

generated a total of 8410 spectra per map.  

MATLAB R2014b (MathWorks Inc., Natick, MA) was used to 

implement in-house-written routines for data processing and 

computation (Windows 7 desktop PC, Xeon 2.8 GHz CPU, 6 GB 

RAM).  MATLAB codes for ant colony optimization (ACO)
21, 22

 were 

generously provided by Prof. A.C. Olivieri (Universidad Nacional de 

Rosario, Argentina) while MCR-BANDS was downloaded from 

www.mcrals.info. 

The Raman data arrays were first unfolded into two-way 

matrices prior to spectral pre-processing and implementation of 

chemometric methods (see Supplemental Information).  

Appropriate data pre-processing was performed to maximize the 

extraction of chemical information from the Raman spectra to 

improve model accuracy.  The pre-processing methods were: (i) 

baseline correction using morphological weighted penalized least-

squares (MPLS)
23

 to mitigate baseline artefacts arising from particle 

size effects and sample surface roughness;  (ii) cosmic ray artefacts 

(CRAs) removal with kernel principal component analysis residual 

diagnosis (KPCARD);
24

  (iii) exclusion of abnormally weak Raman 

spectra (generally caused by map edge effects), threshold set at 

30% of the average total integrated spectral intensity for each 

Raman mapping measurement;  (iv) multiplicative scatter 

correction (MSC)
25-27

 and/or standard normal variate (SNV) 
25-27

 to 

reduce scattering variations between spectra or measurements for 

the PLS modelling procedure (SNV was found to be the best 

method);  (v) spectrum normalization to scale each individual 

spectrum in the predefined spectral region to unit area under the 

spectrum curve; and  (vi) variable selection by ACO using Olivieri’s 

method.
1, 22

   

Model quality and prediction performance was assessed 

using multiple parameters as previously described
1
: root mean 

square error: of calibration (RMSEC), of cross validation (RMSECV) 

and, of prediction (RMSEP), as well as the relative error of 

prediction (REP%=100×RMSEP/ȳpred, where ȳpred = mean value of 

measured piracetam content of prediction set), of calibration 

(REC%=100×RMSEC/ȳcal, where ȳcal = mean value of measured 

piracetam content of calibration set), of cross validation 

(RECV%=100×RMSECV/ȳcv, where ȳcv = mean value of measured 

piracetam content of cross validation set), and the square of the 

correlation coefficient (R
2
) between predicted and measured 

values.
28, 29

  For all calibration models reported, a leave-one-out 

(LOO) cross validation was used. 

Methodology  

The key study goal was to evaluate model efficacy in terms of 

accuracy, robustness, and computational efficiency for the various 

approaches.  The simplest BR-PCHIP method, used the ratio of 

bands at 1652 cm
−1

 (piracetam) and 448 cm
−1

 (proline).  However, 

in more complex samples, constituent-specific spectral bands free 

of interferences may not often be available and therefore, 

multivariate methods are required to better extract the 

quantitative information from Raman mapping data which can be 

either two-way matrix or three-way data arrays.
4, 7, 19, 30

  

Multivariate methods include CLS,
8, 17, 31, 32

 PCA,
8, 30

 MCR,
8, 32

 and 

PLS.
1, 33, 34

  Generally, each method yielded a score or parameter for 

each spectrum, and then these scores or parameters were mapped 

as a function of spatial coordinates so as to quantitate the 

molecular components at each pixel and assess their distribution on 

the measured sample surface.  Here, MCR-alternating least squares 

(MCR-ALS)
35

 was used to quantify piracetam content and MCR-

BANDS
36, 37

 was used to evaluate the degree of rotational 

ambiguities associated with the MCR solutions (SI).  Unlike PLS 

which requires a sufficiently large set of representative samples, 

MCR-ALS could potentially require fewer calibration samples for 

quantification (i.e. to scale the MCR scores in the estimated 

concentration profiles).  This is of practical importance in that it 

reduces the workload involved in producing quantitative models.   
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Figure 1:  (a) As acquired spectra from the 10 spectrometer 

channels at a specific pixel from one typical Raman map of a 

0.103% piracetam mixture.  The inset shows the integrated 

intensity Raman map and the colour bar indicates Raman 

intensity.  (b) Normalized spectra from plot (a).  Inset map was 

constructed using the 1652 cm
−1

 piracetam band intensity 

from the normalized spectra.  The grey open circle specifies 

the example pixel used in prediction (vide infra). 

Results and discussion 

Raman mapping data analysis:   

Figure 1 shows a single Raman integrated intensity map acquired 

from a piracetam-proline mixture (0.103% w/w piracetam).  At each 

map pixel the 10 probe channels produced different spectra and 

since each channel binned different numbers of detector rows, 

spectral intensities and channel signal-to-noise ratios (SNRs)
1
 varied 

significantly.  The integrated intensity was computed by: first 

averaging all 10 channel spectra, and then calculating the Frobenius 

norm value of this resultant spectrum.  The variation in map colour 

(Figure 1, inset) thus provided a simple visual representation of 

gross sample heterogeneity.  However, it does not provide specific 

information about the source of this variation which could be 

caused by either instrument derived spectral intensity variation, 

variations in sample physical properties, or variations in the 

chemical compositions across the measured sample surface, or a 

combination of all these factors.  The only identifiable outliers 

caused by mapping edge effect were the three corner pixels with 

very low intensity spectra.  Overall sample macro-homogeneity was 

very good, and this was substantiated by the small variation of the 

integrated intensity across the image: the mean and standard 

deviation of the integrated intensity values for the 841 pixels were 

(11.40±0.55)×10
3
 in arbitrary units (<5%).  Weak spectra were 

excluded from data analysis and modelling, if their integrated 

intensity was less than 30% of the average spectral intensity of the 

entire Raman map. 

After normalization, the spectra at each map pixel for all 

channels were virtually identical in terms of both intensity and band 

shape (Figure 1b), apart from differences in baseline and SNR.  The 

second map (Figure 1b inset) produced using the 1652 cm
−1

 

piracetam band intensity after normalization and averaging to a 

single spectrum per pixel showed a relatively weak mean intensity 

and relatively high standard deviation of (27.44±1.72)×10
−4

.  The 

relatively large ~6.3% deviation indicated that spectral 

normalization and the use of an analyte-specific spectral band more 

accurately represented the true chemical heterogeneity of the 

sample caused by the minor component.  Some of the other 

spectral variance such as changes in baseline, and unwanted 

scattering variation could also be related to compositional 

heterogeneity and thus contain useful information.  However, these 

effects can also be caused by physical changes in the bulk matrix 

(i.e. proline) and in general they degrade quantitative model 

accuracy.  Therefore, it was necessary to eliminate these effects 

and CRAs, prior to chemometric modelling.  This has been described 

in detail elsewhere.
1, 24

   

Since each spectral channel had a different SNR, this also 

necessitated calculation of separate, channel specific calibration 

models.  For all multivariate calibration modelling the averaged 

spectra (generated from each Raman map channel) for all samples 

were used to build the calibration models.  These were then 

deployed to predict the local concentrations at each pixel 
1
 (Figure 

S-1 in SI for scheme).   

 

BR-PCHIP quantification:   

This involved several steps: the pre-processed spectra from 

each Raman map channel were averaged into a single spectrum.  

Second, the 1652/448 cm
−1

 intensity ratios (Figure 2a) were 

calculated for the average spectra (SI).  Third, using these band 

ratios, univariate calibration models using leave-one-out cross-

validation
38

 were built for the 0−99.9%, 0–4.0%, and 4.0–99.9% 

piracetam concentration ranges (Figure 2b, Table 1).  The 100% 

piracetam content samples were excluded from modelling because 

no proline was present and thus any band ratios would be noise 

determined.  For BR-PCHIP all RMSEC and REC% values were equal 

to, or approached zero, due to the use of a spline (interpolation) 

curve fitting method.   

 

 

Figure 2:  (a) Raman spectra of pure piracetam (solid) and proline 

(dashed);  (b/c) The piracetam quantification BR-PCHIP models 

(spectrometer channel 5 data) with different piracetam content 

ranges, and only the cross-validation results shown.  

When piracetam content was high (4.0−99.9%), BR-PCHIP 

quantification was accurate, yielding the mean and standard 

deviation values of 0.62 ± 0.09% for all ten channels.  However, 

both full- (Model1) and low concentration (Model2) range 

models had average RECV values which were too large for LCQ 

(1.19% and 18.67% respectively).  Ultimately, BR-PCHIP failed 

because it was intrinsically a univariate method and did not 

make full use of the multivariate spectral information. 

 

Table 1:  RMSECV values (in w/w%) obtained for BR-PCHIP 

piracetam quantification models at each spectrometer channel.  

Model accuracy was assessed by RECV% for cross-validation.  The 

greyed-out rows show the mean and standard deviation calculated 

for all 10 channels.  

BR-PCHIP model Model1 Model2 Model3 
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Piracetam in % 0−99.9 0−4.0 4.0−99.9 

Channel 1 0.465 0.139 0.582 

Channel 2 0.541 0.249 0.673 

Channel 3 0.372 0.115 0.449 

Channel 4 0.461 0.147 0.602 

Channel 5 0.469 0.138 0.602 

Channel 6 0.448 0.165 0.583 

Channel 7 0.480 0.144 0.611 

Channel 8 0.573 0.108 0.735 

Channel 9 0.491 0.133 0.623 

Channel 10 0.555 0.224 0.777 

mean value 0.49 0.16 0.62 

standard dev. 0.06 0.05 0.09 

RECV% 1.19 18.67 0.94 

 

PLS quantification:   

PLS was implemented using similar methods to those described in 

an earlier publication and are details are included in the 

supplemental information.  One reason why PLS generated accurate 

LCQ was that there were a sufficiently large number of calibration 

samples available.  Since predictive error is directly dependent on 

calibration set size, more and more samples are required to reduce 

prediction error,
39

 particularly for LCQ and this is not always 

feasible.  There are also many practical difficulties with preparing 

calibration samples with precisely known low levels of analytes or 

contaminants.  Therefore, we needed to examine the feasibility of 

using NAS and MCR based approaches where smaller sized 

calibration sample sets might be employed, particularly for more 

complex mixtures with multiple low content components.   

 

NAS-CLS quantification:   

NAS-CLS models used three specific Raman spectral ranges 

(480−830 cm
−1

, 1040−1510 cm
−1

 and 1628−1740 cm
−1

, See S-9, SI) 

and a different set of segmented analyte concentration ranges 

(0−1.0%, 1.0−21.5%, 21.5−85.0%, 85.0−100%).  The resultant 

RMSECV and RMSEC values (Table 2) were low, and similar in 

magnitude, indicating reasonably fitted models.  This was due to 

the mutual correlation (0.95) between the NAS factor (Snas) and 

piracetam spectrum (Table 3 & Figure 3) where it was clear that Snas 

contained most of the piracetam bands in these three spectral 

ranges, even though the profile was not identical to the piracetam 

spectrum.  The low, negative correlation (−0.32) with the proline 

spectrum meant that the NAS-CLS method was nearly able to filter 

out the background matrix signal, without the requirement of any a 

priori knowledge/input.  Importantly, the higher correlation to the 

piracetam spectrum and lower correlation to the proline spectrum 

explained why the NAS-CLS Model1 had better accuracy (i.e., 

REC=3.03%, RECV=3.53%) than the PLS Model1 (REC=5.66%, 

RECV=6.47%).  However, in Model2 the use of low piracetam 

content (0−1.0%) and the fact that quite small variations between 

the sample spectra were present resulted in a second NAS factor 

(Snas_M2, Figure 3).  The correlation coefficients between Snas_M2 and 

Snas (0.92), piracetam (0.92), and proline (−0.18), indicated that 

there were certain differences between Model2 Snas_M2 and Model1 

Snas; Snas_M2 was not able to carry over some contribution from 

piracetam to which small spectral variations of the low-content 

samples should have been ascribed.  This negatively impacted the 

model accuracy (Table 2) compared to PLS, with NAS-CLS Model2 

having an REC=8.13% (RECV=9.26%). 

 

 

Figure 3:  NAS factor profiles from Model1 (Snas) and Model2 

(Snas_M2) for the 480−830, 1040−1510, and 1628−1740 cm
−1

 regions, 

overlaid with the spectra of pure piracetam and proline.  Both 

factors shown were obtained from the spectrometer channel 5 

spectra.  Similar results were obtained for all the other channels.  

 

Table 2:  RMSEC(RMSECV) values (in w/w%) obtained from the NAS-

CLS piracetam quantification models for each spectrometer 

channel.  Model accuracy was assessed by REC% and RECV% for 

calibration and cross-validation respectively.  The greyed-out rows 

show the mean and standard deviation calculated for all 10 

channels. 

NAS-CLS 

 Model1 Model2 Model3 Model4 Model5 

w/w % 0−100 0−1.0 1.0−21.5 21.5−85 85−100 

Chan. 1 0.90 

(1.05) 

0.031 

(0.034) 

0.097 

(0.12) 

0.51 

(0.63) 

0.34 

(0.41) 

Chan. 2 0.84 

(0.98) 

0.044 

(0.05) 

0.097 

(0.13) 

0.57 

(0.69) 

0.34 

(0.43) 

Chan. 3 0.81 

(0.95) 

0.042 

(0.047) 

0.08 

(0.10) 

0.44 

(0.53) 

0.31 

(0.38) 

Chan. 4 0.84 

(0.98) 

0.038 

(0.042) 

0.099 

(0.13) 

0.51 

(0.62) 

0.42 

(0.51) 

Chan. 5 0.86 

(1.00) 

0.034 

(0.04) 

0.11 

(0.14) 

0.54 

(0.65) 

0.41 

(0.50) 

Chan. 6 0.83 

(0.96) 

0.038 

(0.043) 

0.12 

(0.16) 

0.53 

(0.64) 

0.30 

(0.35) 

Chan. 7 0.83 

(0.97) 

0.041 

(0.046) 

0.10 

(0.13) 

0.54 

(0.65) 

0.43 

(0.52) 

Chan. 8 0.89 

(1.03) 

0.04 

(0.05) 

0.12 

(0.16) 

0.57 

(0.70) 

0.28 

(0.35) 

Chan. 9 0.86 

(1.00) 

0.04 

(0.05) 

0.11 

(0.15) 

0.56 

(0.69) 

0.25 

(0.31) 

Chan.  

10 

0.82 

(0.95) 

0.045 

(0.052) 

0.08 

(0.09) 

0.51 

(0.61) 

0.31 

(0.38) 

Mean 
0.85 

(0.99) 

0.040 

(0.045) 

0.10 

(0.13) 

0.53 

(0.64) 

0.34 

(0.41) 

Std. dev. 
0.028 

(0.033) 

0.005 

(0.005) 

0.015 

(0.023) 

0.038 

(0.05) 

0.06 

(0.08) 

REC% 3.03 8.13 1.12 1.11 0.36 

Page 4 of 9Analytical Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
tic

al
M

et
ho

ds
A

cc
ep

te
d

M
an

us
cr

ip
t

Pu
bl

is
he

d 
on

 3
0 

O
ct

ob
er

 2
01

7.
 D

ow
nl

oa
de

d 
by

 N
U

I 
G

al
w

ay
 o

n 
31

/1
0/

20
17

 0
8:

47
:4

7.
 

View Article Online
DOI: 10.1039/C7AY01778B

http://dx.doi.org/10.1039/C7AY01778B


Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 20xx Analyst., 2017, 00, 1-3 | 5 

Please do not adjust margins 

Please do not adjust margins 

(RECV%) (3.53) (9.26) (1.46) (1.35) (0.44) 

 

MCR quantification:   

MCR with non-negativity constraints applied to both spectral and 

concentration values was used to resolve spectra into their 

contributing pure spectral constituents (i.e. loadings).  In addition, 

the spectral values were normalized (each MCR factor normalized 

to unit length).  Two MCR factors (Figure S-9, SI) and concentration 

scores (Figure 4a) were extracted from each channel spectral 

dataset in the 480−830, 1040−1510, 1628−1740 cm
−1

 regions.  The 

scores show a constant increase/decrease for piracetam/proline 

with sample number, with very similar values for the replicate 

measurements.  Overall these components explained >99.81% of 

the spectral variance for all the 10 channels (Table S-2, SI).  To 

evaluate the ambiguity of each MCR factor, all the obtained factors 

were analysed by MCR-BANDS and their relative signal 

contributions in the mixture spectra were calculated, according to 

equation (17) (SI).  For example, the two MCR factors in the channel 

5 data gave contribution values of 0.7284, and 0.6531.  Moreover, 

the differences between the maximum and minimum values 

(��,�
��� 		 	��,�

�
�) were all zero which demonstrated that the MCR 

loadings and concentration profiles obtained were unique, and they 

did not change during the optimization procedure using these 

applied constraints.  Similar, but different relative contribution 

values were obtained for all other channels (Table S-3, SI).   

 

Figure 4:  (a) MCR scores from channel 5 model (see Fig. S-9, SI for 

MCR factors); (b) Principal component profiles from PCA-CLS 

modelling, overlaid with Raman spectra of piracetam and proline.  

Data obtained from Model1 (channel 5).   

 

For channel 5, two MCR factors explained 99.82% of the 

spectral variance, and Figure 4a shows the MCR scores of the two 

factors (S1mcr and S2mcr respectively) obtained from 150 Raman maps 

(0−100% w/w piracetam).  When the MCR factors were compared 

with spectra of pure piracetam and proline it was clear that S1mcr 

was piracetam, and S2mcr was proline (Fig. S-9, SI).  The calculation 

of correlation coefficients furthermore confirmed their 

identification as all values were equal to one (Table 3).  The 

resulting MCR scores were scaled to the piracetam content by least 

squares, and 50 calibration models were built (Table 4).  These were 

all accurate except for the low-content Model2 (0−1.0% w/w) 

where large REC% (8.77%) and RECV% (12.95%) were obtained.  The 

model accuracy was comparable to the NAS-CLS models (Table 2).  

Particular attention must be paid to the MCR decomposition of all 

the 10 channel spectra (Table S-2, SI), and the %LOF values (that is 

the amount of spectral variance not explained by the MCR models) 

were between 0.1693% and 0.1913%.  According to the variance 

principle: ( ������� � ����� � ��
���� � ��

���� � 2������� ),
40

 the 

low-content piracetam (c1) in the binary mixture spectrum 

(�
 � ���� � ���� ) could generate at least ��
�  of the spectral 

variance.  For example, a piracetam content of 0.42% in a binary 

mixture could represent ~0.18% of the overall spectral variance, 

which was similar in magnitude to the %LOF values measured here 

for example in the channel 5 MCR models.  This can explain why 

MCR may not detect concentration changes when the piracetam 

content was very low, and thus LCQ became difficult.  Therefore, to 

improve MCR Model2 (0−1.0% piracetam content) accuracy, the 

model residual (E) in Equation (15) (SI) was considered as a pseudo-

component, and the corresponding scores were obtained and then 

used for compensating LCQ in MCR quantification models together 

with the MCR scores of piracetam (S1mcr) by least squares.  The use 

of a correlation constraint
41, 42

 to improve the MCR modelling here 

is probably not appropriate as we do not have any significant, 

extrinsic spectral interferences, and the test system is a simple 

binary mixture.  Furthermore, the accuracy of the high 

concentration range models, (Table 4) indicated that spectral noise 

(both dark & shot) was the primary factor affecting model error.  In 

the future however, the use of correlation constraints in more 

complex multi-component mixtures may be required for accurate 

LCQ.  

 

PCA-CLS quantification:   

PCA-CLS analysis on the same datasets required four PCs for data 

decomposition.  Figure 4b shows PC1 (83.20% of the variance 

explained) and PC2 (16.52%) used in Model1 (0−100% w/w 

piracetam) for the channel 5 data.  The PC3 (0.15%) and PC4 

(0.07%) plots were given in Figure S-5 (SI).  The correlation 

coefficients with pure piracetam and proline spectra (Table 3) 

indicated that PC1, PC2 and PC3 were all the composites of both 

species.  PC2 was more representative of piracetam, but still 

contained proline spectral features.  This is unsurprising because 

PCs have to be orthogonal to best explain data variance but this 

does not correspond to the PCs being identical to pure component 

spectra.  Therefore, the use of PCA scores of a single PC, to quantify 

a real chemical species may not always be valid, and this can lead to 

inaccuracies.  Finally, PC1, PC2, and PC4 scores were combined to 

develop the PCA-CLS piracetam content calibration models for five 

concentration ranges (Table 4).  All model errors were quite small, 

and PCA-CLS was the second best performing of the methods 

investigated.  This good performance was explicitly derived from 
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the use of the combination of scores of the three most significant 

components, rather than a single PC.   

For each method, the combination of all the individual channel 

calibration models was used for prediction of the bulk sample 

concentrations.  Since the calibration models for each channel were 

built using the data averaged from all pixels in the Raman map 

(29×29), the prediction of the individual (n≈8410) spectra from each 

sample map could be considered as being quasi-independent.  The 

first step was to use Model1 (the wide concentration range) to 

provide an initial estimate of the local piracetam concentration at 

each pixel in the Raman map.  Next, the appropriate segmented 

concentration range model (Table 1, Table 2, and Table 4) was 

selected, and then piracetam content was re-estimated more 

accurately.  This was done for all 10 data channels, at each pixel, 

generating ~8400 piracetam concentration predictions per sample.  

The final predicted sample piracetam content was the mean value 

of all of these prediction scores.  A comparison of the output 

histograms for the different methods and a single sample prediction 

is provided in Figure 5a.  

The same procedure was applied to the five quantification 

methods and the method prediction performances were compared 

(Table 5).  For the high-content range (>1.0%) all methods were 

good, yielding good prediction accuracies with relatively low REP% 

values (Figure S-4, SI).  PCA-CLS was best at quantitating piracetam 

content, with a REP% value of 0.62.  The BR-PCHIP method was 

limited to <97.0% w/w piracetam content but was the fastest along 

with MCR requiring ~60% of the time required by PLS.  However, for 

the low-content (0.05−1.0%) range, BR-PCHIP was the worst 

(REP%=35.74), NAS-CLS was marginal, MCR and PCA-CLS gave 

acceptable accuracy (REP%<10).  PLS was however, the most 

accurate (REP%=2.81) with a limit of detection (LOD) spanning a 

range of 0.033−0.056%.
1
   

For NAS-CLS, MCR, and PCA-CLS (Figure 5b-d), there was 

considerably more scatter about the regression line compared to 

the PLS model (Figure 5e).  This was due to the fact that these 

methods are less well able to discriminate clearly the analyte signal 

from the noise contribution.  For NAS-CLS there were also two 

significant outliers present (0.197% and 0.357% samples) had 

overestimated piracetam content by 80% and 41% respectively 

(Figure 5d), which caused a large REP (12.80%).  When these two 

samples were excluded and the 0.05−1.0% range model 

recalculated, REP decreased to 7.06%. 

 

Figure 5:  (a) Overlaid histograms of predictions by five methods for 

the 0.103% piracetam powder mixture (inset shows log plot of the 

0.05 to 1% range).  Piracetam prediction models in the low-content 

range (0.05−1.0%) for:  (b) MCR;  (c) PCA-CLS;  (d) NAS-CLS;  and  (e) 

PLS.  Error bars represent standard error for n=3 replicate samples.   

 

As these methods, all tended to overestimate the minor 

analyte concentration, probably because spectral noise or proline 

interference was interpreted as analyte signal.  This was due to the 

fact that most pixels had no piracetam content but spectral noise 

and variance contributed to each local prediction mostly being 

returned as a greater value than reality and cumulatively all of the 

small over predictions led to high errors.  This can be seen in the 

results for the prediction of the overall 0.103% piracetam sample 

concentration and that at one specified pixel (Figure 5a, Table 5).  

PLS was the most accurate at 2% high, and MCR was next being 8% 

higher than the true value.  All the other methods overestimated 

the analyte concentration very significantly (>+10%).  Figure 5a 

shows the prediction histograms where it is clear that the 

distributions are very different.  The most accurate methods (PLS, 

MCR, and PCA-CLS) had prediction distributions close to or below 

the real concentration.  For BR-PCHIP it was evident that all 

predictions were overestimated with an almost symmetric 

distribution centred at ~0.34 w/w%, whereas for the NAS-CLS there 

was almost a bimodal distribution centred at 0% w/w and ~0.25% 

w/w respectively.   

To assess the effect on reducing sample numbers on the 

accuracy of the MCR, NAS-CLS and PLS prediction models (3 x 6), a 

series of models were constructed using the 0.05-1.0% w/w 
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samples (only for Channel 5 data).  The spectra were pre-treated as 

normal and ACO variable selection used with a simple LOO cross 

validation.  Varying sample numbers from 8 to 18 (supplemental 

information) were used and the results (Fig. S-8, SI) showed that 

acceptable accuracies (in terms of RMSECV) were obtained for all 

three methods with 12 samples.  However, it must be noted that 

PLS did outperform the other methods and that this was only a 

single set of models, implemented on a subset of the data.   

 

 

Table 3:  Correlation coefficients between the pure spectra of piracetam (Pir), proline (Pro), and NAS, MCR, PCA, and PLS factors in Model1 

(channel 5 data).  Snas_M2 is the Model2 NAS factor.  

Factors Snas Snas_M2 S1mcr S2mcr  PC1 PC2 PC3 LVPLS Pir Pro 

Pir 0.95 0.92 1 −0.07 0.44 0.81 0.13 0.93 1 −0.08 

Pro −0.32 −0.18 −0.07 1 0.86 −0.64 0.12 −0.40 −0.08 1 

 

Spatial piracetam distribution:   

One of the most common uses of chemical imaging is to identify the 

presence of impurities or chemical heterogeneity on sample 

surface.  For solid powder mixtures when finely milled, the impurity 

or API should be homogeneously distributed on the macroscale 

(>mm size).  However, on the microscale there can be significant 

variability and it may be important to know the actual impurity or 

API concentration at each pixel.  For example, when examining 

homogeneity across the surface of a tablet or medical device. 

Prediction scores generated by various methods were used to 

represent piracetam distribution and Figure 6 shows the score maps 

for the 0.103% piracetam sample.  In the low-content samples, the 

vast majority of a Raman map will correspond to the matrix (proline 

here) and the analyte or impurity (piracetam) signal will be 

relatively weak.  The simple use of the integrated signal intensity to 

represent sample homogeneity (Figure 1a) does not provide any 

useful information since the evenness of sample surface was a 

significant factor affecting the signal intensity.  It is more common 

to use a ratio measurement similar to the BR-PCHIP map (Figure 

6a), however, the obtainment of a credible ratio is not easy, 

particularly when weak analyte signal is obscured by noise and/or 

matrix signal.  Overall the heterogeneity patterns of the local score 

maps of the PLS, PCA-CLS, NAS-CLS (Figure S-6, SI), and MCR 

predictions coincided reasonably well with each other (Table S-4, SI) 

with PCA-CLS being the closest match to the most accurate PLS 

result. 

 

Table 4:  RMSEC(RMSECV) values (in w/w%) obtained for the 

piracetam quantification models by MCR and PCA-CLS methods for 

each spectrometer channel.  Model accuracy was assessed by REC% 

and RECV% for calibration and cross-validation respectively.  The 

greyed-out rows show the mean and standard deviation calculated 

for all 10 channels. 

 

MCR 

 Model1 Model2 Model3 Model4 Model5 

Piracetam 

in % 

0−100 0−1.0 1.0−21.5 21.5−85 85−100 

Chan. 1 0.96 

(1.11) 

0.044 

(0.060) 

0.21 

(0.30) 

0.84 

(1.08) 

0.38 

(0.52) 

Chan. 2 0.90 

(1.03) 

0.041 

(0.060) 

0.21 

(0.31) 

0.84 

(1.08) 

0.40 

(0.63) 

Chan. 3 0.86 

(1.00) 

0.044 

(0.060) 

0.20 

(0.27) 

0.75 

(0.97) 

0.39 

(0.65) 

Chan. 4 0.89 

(1.03) 

0.04 

(0.07) 

0.22 

(0.30) 

0.79 

(1.02) 

0.43 

(0.66) 

Chan. 5 0.91 

(1.05) 

0.033 

(0.045) 

0.21 

(0.30) 

0.83 

(1.07) 

0.43 

(0.65) 

Chan. 6 0.90 

(1.03) 

0.05 

(0.07) 

0.22 

(0.30) 

0.81 

(1.04) 

0.40 

(0.62) 

Chan. 7 0.89 

(1.03) 

0.04 

(0.060) 

0.22 

(0.30) 

0.81 

(1.03) 

0.42 

(0.66) 

Chan. 8 0.93 

(1.06) 

0.05 

(0.07) 

0.23 

(0.34) 

0.86 

(1.11) 

0.41 

(0.63) 

Chan. 9 0.91 

(1.05) 

0.05 

(0.08) 

0.23 

(0.33) 

0.82 

(1.05) 

0.47 

(0.74) 

Chan. 10 0.90 

(1.03) 

0.044 

(0.063) 

0.22 

(0.32) 

0.82 

(1.07) 

0.44 

(0.71) 

mean  0.91 

(1.04) 

0.043 

(0.063) 

0.22 

(0.31) 

0.81 

(1.05) 

0.42 

(0.65) 

Std. dev. 0.03 

(0.03) 

0.005 

(0.009) 

0.010 

(0.02) 

0.03 

(0.04) 

0.03 

(0.06) 

REC%/ 

RECV% 

3.24 

(3.72) 

8.77 

(12.95) 

2.39 

(3.39) 

1.72 

(2.21) 

0.44 

(0.69) 

PCA-CLS 

 Model1 Model2 Model3 Model4 Model5 

Pira. w/w 

% 

0−100 0−1.0 1.0−21.5 21.5−85 85−100 

Chan. 1 0.55 

(0.79) 

0.04 

(0.05) 

0.08 

(0.15) 

0.51 

(0.66) 

0.46 

(0.64) 

Chan. 2 0.52 

(0.71) 

0.031 

(0.046) 

0.08 

(0.18) 

0.51 

(0.71) 

0.42 

(0.60) 

Chan. 3 0.47 

(0.68) 

0.026 

(0.041) 

0.04 

(0.08) 

0.42 

(0.64) 

0.38 

(0.53) 

Chan. 4 0.52 

(0.73) 

0.032 

(0.050) 

0.07 

(0.13) 

0.46 

(0.68) 

0.37 

(0.51) 

Chan. 5 0.52 

(0.72) 

0.023 

(0.038) 

0.06 

(0.12) 

0.48 

(0.69) 

0.38 

(0.52) 

Chan. 6 0.52 

(0.70) 

0.030 

(0.058) 

0.05 

(0.10) 

0.46 

(0.65) 

0.35 

(0.49) 

Chan. 7 0.52 

(0.72) 

0.026 

(0.055) 

0.06 

(0.11) 

0.46 

(0.66) 

0.38 

(0.52) 

Chan. 8 0.54 

(0.75) 

0.037 

(0.054) 

0.07 

(0.16) 

0.47 

(0.73) 

0.39 

(0.55) 

Chan. 9 0.54 

(0.76) 

0.042 

(0.061) 

0.10 

(0.18) 

0.47 

(0.70) 

0.35 

(0.61) 

Chan. 10 0.47 

(0.65) 

0.040 

(0.062) 

0.08 

(0.20) 

0.32 

(0.53) 

0.37 

(0.54) 
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mean  0.52 

(0.72) 

0.032 

(0.052) 

0.07 

(0.14) 

0.46 

(0.66) 

0.39 

(0.55) 

Std. dev. 0.03 

(0.04) 

0.006 

(0.008) 

0.02 

(0.04) 

0.06 

(0.06) 

0.03 

(0.05) 

REC% 

RECV% 

1.85 

(2.57) 

6.66 

(10.64) 

0.74 

(1.55) 

0.96 

(1.40) 

0.41 

(0.58) 

 

Table 5:  Prediction of piracetam content in the full 0.103% 

piracetam sample and at a single specific pixel, obtained from all 

ten spectrometer channels by five quantification methods.  

Statistical prediction of piracetam content in all the powder mixture 

samples and comparison of computational time required to 

undertake prediction of 69 mapping experiments.  The 

computational process was fully automated from spectral pre-

processing to the production of the predicted values. 

 

 PLS NAS-CLS MCR PCA-CLS BR-PCHIP* 

1.0−100% piracetam 

RMSEP 0.58% 0.40% 0.65% 0.39% 0.37% 

REP% 0.93 0.65 1.04 0.62 0.81 

R
2
 1.00 1.00 1.00 1.00 1.00 

0−1.0% piracetam 

RMSEP 0.01% 0.06% 0.04% 0.03% 0.17% 

REP% 2.81 12.80 9.13 6.97 35.74 

R
2
 1.00 0.96 0.98 0.99 0.93 

0.103% piracetam sample 

map 0.105% 0.170% 0.113% 0.160% 0.352% 

pixel 0.011% 0.109% 0.146% 0.134% 0.213% 

Computational time 

Time (min) 23.5 18.6 14.4 15.3 14.2 

   * BR-PCHIP could quantify piracetam content in the 1.0−97.0% range. 

 

 

Figure 6:  Piracetam distribution maps (0.103% piracetam powder 

mixture) generated from the prediction scores from: (a) BR-PCHIP, 

(b) PLS, (c) PCA-CLS, and (d) MCR.  Colour bars represent piracetam 

content in w/w%.  Five hotspots clearly have higher local piracetam 

concentrations, while another 12−20 pixels were idenZfied as 

having slightly elevated concentrations.  Statistical analysis of the 

predictions at all 841 pixels indicated that no pixel contained pure 

piracetam (Figure 5a). 

 

Conclusions 

For high analyte concentrations (>1% w/w) all methods (PLS, 

NAS-CLS, MCR-ALS, PCA-CLS, BR-PCHIP) were able to quantify 

accurately piracetam in this simple binary mixture.  However, 

for LCQ only but both MCR and PCA-CLS showed significant 

accuracy (REP<10%).  However, neither was as good as PLS 

which had an REP<5%.  For practical LCQ implementation by 

Raman, MCR or NAS-CLS methods need to be used to minimize 

the requirement for large calibration sample set numbers, 

particularly for multi-component (n>4) materials which are 

more representative of pharmaceutical formulations.  Here 

with a simple binary mixture, reducing sample numbers in the 

models did not show any advantages for MCR/NAS-CLS over 

PLS methods.  Unfortunately, MCR and NAS-CLS accuracy, 

while sufficient for rapid semi-quantitative screening needs, 

were more sensitive to spectral/measurement noise than PLS.  

It was clear that for these methods to attain a similar level of 

accuracy then we would have to improve the Raman SNR and 

there are three approaches to achieving this: better spectral 

data, better hardware, and brute force.  To experimentally 

reduce the noise (shot & dark) and get better data the Raman 

spectra of low-content samples should be generated from 

averaged spectra (n=4 or more) collected at each pixel in the 

map.  For the Raman hardware increased throughput would 

enable shorter exposure time while the use of lower dark 

count, cooled detectors would reduce the dark count 

contribution.  The final approach, is to collect higher resolution 

maps and increase the number of counts in the prediction 

histograms.  However, advances in photonics technologies are 

generating various new approaches to Raman imaging  some 

of which can enable very large Raman map data to be acquired 

in minutes
43

 and this will enable these LCQ methodologies to 

be more efficiently and practically implemented.. 
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