

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-04-26T16:09:26Z

Some rights reserved. For more information, please see the item record link above.

Title Facilitating prediction of adverse drug reactions by using
knowledge graphs and multi-label learning models

Author(s) Muñoz, Emir; Nováek, Vít; Vandenbussche, Pierre-Yves

Publication
Date 2017-08-18

Publication
Information

Emir Muñoz, Vít Nováek, Pierre-Yves Vandenbussche;
Facilitating prediction of adverse drug reactions by using
knowledge graphs and multi-label learning models, Briefings in
Bioinformatics, , bbx099, https://doi.org/10.1093/bib/bbx099

Publisher Oxford University Press (OUP)

Link to
publisher's

version
https://doi.org/10.1093/bib/bbx099

Item record http://hdl.handle.net/10379/6749

DOI http://dx.doi.org/10.1093/bib/bbx099

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

i
i

“main” — 2017/7/13 — 17:46 — page 1 — #1 i
i

i
i

i
i

Briefings in Bioinformatics
doi.10.1093/bib/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

Facilitating Prediction of Adverse Drug Reactions
by Using Knowledge Graphs and Multi-Label
Learning Models
Emir Muñoz 1,2,∗, Vít Nováček 2, Pierre-Yves Vandenbussche1

1Fujitsu Ireland Ltd., Co. Dublin, Ireland and
2Insight Centre for Data Analytics at NUI Galway, Co. Galway, Ireland.

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Timely identification of adverse drug reactions (ADRs) is highly important in the domains of public health
and pharmacology. Early discovery of potential ADRs can limit their effect on patient lives and also make
drug development pipelines more robust and efficient. Reliable in-silico prediction of ADRs can be very
helpful in this context and thus it has been intensely studied. Recent works achieved promising results using
machine learning. The presented work focuses on machine learning methods that use drug profiles for
making predictions and utilise features from multiple data sources. We argue that despite promising results,
existing works have limitations, especially regarding flexibility in experimenting with different data sets
and/or predictive models. We suggest to address these limitations by generalisation of the key principles
employed by the state-of-the-art. Namely, we explore effects of: (1) using knowledge graphs—machine-
readable interlinked representations of biomedical knowledge—as a convenient uniform representation
of heterogeneous data; and (2) casting ADR prediction as a multi-label ranking problem. We present a
specific way of using knowledge graphs to generate different feature sets and demonstrate favourable
performance of selected off-the-shelf multi-label learning models in comparison to existing works. Our
experiments suggest better suitability of certain multi-label learning methods for applications where ranking
is preferred. The presented approach can be easily extended to other feature sources or machine learning
methods, making it flexible for experiments tuned towards specific requirements of end users. Our work
also provides a clearly defined and reproducible baseline for any future related experiments.
Key words: Adverse Drug Reactions (ADR); Drug Similarity; Knowledge Graphs; Multi-Label Learning

1 Introduction
Adverse Drug Reactions (ADRs) can cause significant clinical problems
and represent a major challenge for public health and the pharmaceuti-
cal industry. During a drug development process, pharmacology profiling
leads to the identification of potential drug-induced biological system per-
turbations including primary effects (intended drug target interactions) as
well as secondary effects (off-targets drug interactions) mainly responsible
for ADRs [1]. Many ADRs are discovered during pre-clinical and clini-
cal trials before a drug is released on the market. However, the use of a
registered drug within a large population (demonstrating a wider range of
clinical genotypes and phenotypes than considered in the clinical trials)
can result in serious ADRs that have not been identified before. This has a

large impact on patient safety and quality of life, and also has significant
financial consequences for the pharmaceutical industry [2].

The result of a recent review of epidemiological studies in Europe sta-
tes that 3.5% of hospital admissions are due to ADRs and 10% of patients
experience an ADR during their hospitalisation [3]. ADRs are a major
cause of morbidity (and associated reduction of quality of life) and morta-
lity [2, 4]. Recent estimates set the number of yearly drug-induced fatalities
to 100,000 in the USA and almost 200,000 in Europe, making it the fourth
cause of death before pulmonary diseases or diabetes [3, 5]. In addition
to the significance for the public health, ADRs are associated with an
important economic burden imposed for public health systems and phar-
maceutical industry. The extra costs are caused mainly by the withdrawal
of dangerous drugs from the market, litigations and further hospitalisati-
ons to treat the adverse effects. The annual cost of ADRs in the USA is
estimated at $136 billion [6].

© The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

i
i

“main” — 2017/7/13 — 17:46 — page 2 — #2 i
i

i
i

i
i

2 Muñoz et al.

Any improvements in the early identification of Adverse Drug Rea-
ctions can decrease the high attrition rate in the drug discovery and
development process. After the drug registration, better prediction of
ADRs can alleviate associated clinical problems and decrease the adverse
effect-induced extra costs. In silico approaches to predict ADRs of can-
didate drugs are now commonly used to complement costly and time
consuming in vitro methods [7]. Computational methods differ by the drug
development/deployment stage they are applied at, and by the features
used for the prediction of ADRs. Pharmacovigilance systems (monitoring
the effects of drugs after they have been licensed for use) mine statistical
evidence of ADRs from spontaneous reports by physicians such as the
FDA’s Adverse Event Reporting System (FAERS) [8–10]; from patient
records [11]; or more recently from non-traditional sources such as logs of
search engine activity or social media [12, 13]. While these methods limit
the risk of serious public health issues by identifying early occurrences
of ADRs, they assume that such adverse effects are already demonstrated
within a population.

Computational prediction of ADRs during the development cycle of a
drug (before the drug is licensed for use) can reduce the cost of drug deve-
lopment and provide a safer therapy for patients [14]. Most state-of-the-art
techniques adopt a drug-centric approach and rely on the assumption that
similar drugs share the same properties, mechanism of action and therefore
also ADRs [15, 16].1 Predictions of new adverse drug reactions are then
based on a drug-drug similarity network. In most of the early works, this
network was based on the similarity of the substructures within the active
ingredients of drugs [17–20]. More recent approaches combine data cove-
ring both chemical space of drugs and biological interaction-based features
such as drug target, pathways, enzymes, transporters or protein-protein
interactions [21–23]. Lately, integrative methods take into account also
phenotypic observation-based features such as drug indications [24–27].
The availability of multi-source structured data has allowed for integration
of complementary aspects of drugs and their links to side effects leading
to higher accuracy [28].

The scope of this review is given by recent state-of-the-art methods
(from 2011 on) that satisfy two key requirements. First, we consider meth-
ods that take advantage of multi-source structured data. Second, we focus
on techniques that use machine learning to predict the likelihood of a side
effect being caused by a given drug (drug-centric approach). Table 1 lists
the reviewed approaches along with the features they use.

While many of the state-of-the-art approaches produce results that have
great potential for being used in drug development pipelines, there are still
things to improve. A limitation that is most relevant as a motivation for
the presented review is the lack of flexibility that prevents users who are
not proficient in machine learning from easily using the predictive models.
This makes it difficult for people like biologists, pharmacologists or clini-
cians to experiment with data and models fine-tuned towards their specific
requirements on the ADR prediction (such as increasing the sensitivity or
specificity of the model). The main issue of existing models is that they
typically work with data sets that have been manually pre-processed, and
the particular prediction methods are adapted to the experimental data in
a very focused manner.

We review the key points and limitations of existing approaches and
introduce their generalisation based on: 1) Tapping into many diverse
interlinked knowledge bases (i.e., knowledge graphs) related to drugs
and adverse effects that substantially limits the manual effort required
for data integration and feature engineering. 2) Rigorous formulation of

1 There are also methods that focus on the ADR information to overcome
certain specific problems like drugs with little or no features at all, or ADRs
with low number of related drugs [9, 15]. The methods are, however, less
numerous and also harder to evaluate in a comparative manner.

Table 1. Multi-source feature sets used by state-of-the-art methods.

A
tia

s
an

d
Sh

ar
an

(2
01

1)
[1

7]

Pa
uw

el
s

et
al

.(
20

11
)[

18
]

M
iz

ut
an

ie
ta

l.
(2

01
2)

[2
1]

Y
am

an
is

hi
et

al
.(

20
12

)[
22

]

L
iu

et
al

.(
20

12
)[

24
]

B
re

ss
o

et
al

.(
20

13
)[

19
]

H
ua

ng
et

al
.(

20
13

)[
23

]

Ja
hi

d
an

d
R

ua
n

(2
01

3)
[2

0]

Z
ha

ng
et

al
.(

20
15

)[
25

,2
6,

28
]

R
ah

m
an

ie
ta

l.
(2

01
6)

[2
9]

M
uñ

oz
et

al
.(

20
16

)[
27

]

Chemical space
Drug compound sub-
structure

3 3 3 3 3 3 3 3 3

Biological space
Drug target 3 3 3 3 3 3

Pathway 3 3 3 3

Enzymes 3 3 3

Transporters 3 3 3

PPi 3 3

Phenotypic space
Indication 3 3 3

Cell line response 3

the adverse drug reaction prediction problem as a multi-label learning-to-
rank problem that allows for easy experimentation with many off-the-shelf
machine learning models.

We show that specific applications of these two principles can lead
to performance comparable to existing methods. Moreover, the propo-
sed approach produces ranked predictions by default, with many relevant
predictions present at the top of the ranked result lists. This is potentially
very useful in scenarios where experts (e.g., pharmaceutical researchers or
public health officials) have limited time and/or resources, and thus they
can only process a few prediction candidates out of many possibilities
(there can often be hundreds of predictions for a single drug).

The main contributions of this work are as follows. We propose a
specific way of using knowledge graphs to generate different feature sets
for ADR prediction and demonstrate the favourable performance of sele-
cted off-the-shelf multi-label learning models in comparison to existing
works. In addition to that, we show how the approach can be easily exten-
ded to other feature sources or machine learning methods. This makes the
method flexible for experiments tuned towards specific requirements of end
users. Our results and data also provide a clearly defined and reproducible
baseline for any future related experiments.

2 Materials
Various publicly available data sources can be used to define simila-
rity between drugs [14]. Each data source describes a specific aspect
of the pharmacological space of a drug such as its chemical, biologi-
cal or phenotypic properties. For instance, SIDER database [30] presents
information of side effects and indication for marketed drugs. PubChem
Compound data [31] contains chemical structure description of drugs.
DrugBank [32] provides detailed information about drugs such as their
binding proteins and targets, enzymes or transporters, thus informing
on drugs’ mechanism of action and metabolism. KEGG Genes, Drug,
Compound and Disease databases [33] describe further information about
molecular interaction of drugs and their signalling pathways.

i
i

“main” — 2017/7/13 — 17:46 — page 3 — #3 i
i

i
i

i
i

Facilitating Prediction of Adverse Drug Reactions 3

Table 2. The data sets characteristics.

Data set # Drugs # Side effects

Liu’s data set 832 1,385
Bio2RDF data set 1,824 5,880
SIDER 4 data set 1,080 5,579
Aeolus data set 750 181

In the following we review the materials—results of data integration
using multiple data sources, provided by the authors of the state-of-the-
art methods. Because previous data integration activities were expensive
and mostly carried out manually, here, we propose a different data source
and representation which can be considered a superset of all previous data
sets used. This data source is represented using a graph database, a model
in which it is simpler to integrate different data sources such as the ones
already mentioned. We also provide an algorithm to generate the required
drugs’ profile, similarly to the ones provided by the reviewed methods
(supplemental material Section D). For comparisons, we use Liu’s data
set [24] and Zhang et al. data set termed “SIDER 4” [25] as benchmarks. As
presented in Table 1, Liu’s data set contains six types of features covering
the chemical, biological and phenotypic spaces of drugs combined with
information on their associated ADRs (cf. Table 2). We use this data set
as primary means to compare the reviewed methods. SIDER 4 data set
introduced by Zhang et al. [25] is an update of Liu’s data set integrating the
fourth version of SIDER. This data set is interesting as it introduces newly
approved drugs for which fewer post-market ADR have been detected. We
use the SIDER 4 data set as secondary means to compare the methods.

A new alternative multi-source graph data has recently become via the
Bio2RDF project [34]. Bio2RDF publishes the pharmacological databases
used in many ADR prediction experiments in the form of a knowledge
graph—a standardised, interlinked knowledge representation based on
labelled relationships between entities of interest. Bio2RDF data was first
used for the prediction of ADRs by Muñoz et al. [27], where drug simila-
rities were computed by measuring the shared connections between drugs
in the graph. Here, we build on top of that and evaluate the use of the
BioRDF knowledge graph as a means to facilitate the generation of more
expressive features for computing similarity between drugs. Such automa-
tically generated data can be used to replace or enrich existing manually
integrated feature sets, and be used to evaluate prediction methods as per
normal machine learning pipelines.

Finally, to get another perspective for interpreting the evaluation
results, we use the Food and Drug Administration (FDA) Adverse Event
Reporting System (FAERS) [8, 10]. FAERS publishes recent ADR reports
coming from population-wide post-marketing drug effect surveillance acti-
vities. Extracting the most recent ADRs for newly marketed drugs helps
us to evaluate the ability of various methods to predict ADRs of drugs after
their release on the market. We extract this information from the Aeolus
data set [35], which is a curated and annotated, machine-readable version
of the FAERS database. We use Aeolus to generate an updated version of
the SIDER 4 data set that includes also the latest ADRs as observed in the
population.

For details on the generation of Liu’s data set [24] and the SIDER 4
data set [25], we refer the readers to the original articles. We will now
detail the construction of the “Bio2RDF data set” and the “Aeolus data
set”.

2.1 Bio2RDF data set

The Bio2RDF project (http://bio2rdf.org/) aims at simplifying
the use of publicly available biomedical databases by representing them
in a form of an interconnected multi-graph [34, 36]. The project provides

Table 3. Number of 〈s, p, o〉 triples in the Bio2RDF data set used in our
experiments.

Data set Type of information # Triples

DrugBank Drug types, chemical information 5,151,999
SIDER Side effects of drugs 5,578,286
KEGG Drugs, genes and pathway maps 4,387,541

a set of scripts (https://github.com/bio2rdf) to convert from
the typically relational or tabular databases (e.g., DrugBank, SIDER) to
a more flexible triple-based RDF (Resource Description Framework) for-
mat. The project also makes available the output of their conversions,
and in its version 4, published in December 2015, Bio2RDF represented
30 databases including PubChem, DrugBank, SIDER and KEGG, among
others with valuable drug related information. Each information such as
drug, protein or side effect is represented as a node entity with a unique
identifier, and each relation between them as an edge with a qualified label,
generating a network of great value for bioinformatics [37]. Here, we use
the release 4 of Bio2RDF and represent its data using a knowledge graph
G = {〈s, p, o〉} ⊆ E × R × E , which is a set of 〈s, p, o〉 triples each
consisting of a subject s, a predicate p, and an object o, and encoding the
statement “s has a relationship p with o”. The subject and object s, o ∈ E
are entities, p ∈ R is a relation type, and E , R denote the sets of all
entities and relation types in the knowledge graph, respectively. Fig. 1
shows a fragment of the Bio2RDF knowledge graph that integrates three
colour-coded databases, namely, DrugBank (yellow), SIDER (green), and
KEGG (blue). Usually, connections between databases are made using
identifiers such as PubChem compound or Chemical Abstracts Service
(CAS) number. Notice that a knowledge graph can also be built from the
original databases using different methods or scripts, and here we select
Bio2RDF because it already contains mappings for most of the relevant
databases.

A knowledge graph G can contain biomedical facts2 such as:
〈 http://bio2rdf.org/drugbank:DB00531,
label, “Cyclophosphamide”〉

or
〈http://bio2rdf.org/drugbank:DB00531,
enzyme, http://bio2rdf.org/kegg:1.14.13.-〉.

This format allows for easy representation of equivalences or external
links between data sources as an additional relation/edge. For instance, a
relationship between a DrugBank drug and a PubChem compound can be
expressed as:
〈http://bio2rdf.org/drugbank:DB00531,
x-pubchemcompound,
http://bio2rdf.org/pubchem.compound:2907〉.

By simply merging multiple data sources from Bio2RDF, we are able
to build an integrated knowledge graph with links between databases mate-
rialised. During the integration, the PubChem compound of a drug is used
to link DrugBank and SIDER, while the CAS number is used to link Drug-
Bank and KEGG. This flexibility for generating training and testing data
is currently impossible with the manual integration pipelines used by the
reviewed methods. In our experiments we shall use a knowledge graph
integrating the DrugBank, SIDER and KEGG databases (cf. Table 3).

2.2 Aeolus data set

Aeolus [35] is a curated and standardised adverse drug events resource
meant to facilitate research in drug safety. The data in Aeolus comes from

2 Note that the URIs in the examples are used as unique identifiers; the
availability of corresponding records through an HTTP request (such as in
a browser) depends on a third-party service (Bio2RDF.org).

i
i

“main” — 2017/7/13 — 17:46 — page 4 — #4 i
i

i
i

i
i

4 Muñoz et al.

Drug

Small-molecule

DrugBank entity

SIDER entity

KEGG entity

Resource

x-chemspider

rdf:type

Bio2RDF entity

chemspider:2804

pubchem.compound:2907

x-pubchemcompound

Cyclophosphamide

[drugbank:DB00531]

rdfs:label

Literal

pubchem.substance:46505441

absorption

:node-a

After oral administration,

peak concentrations occur

at one hour.

brand

e78186eb12eeaebda8a530a67513beea

rdf:type

rdfs:label

rdfs:label

International-brand

Aspartame

brand

:node-c rdfs:label

Humans and

other mammals

affected

organism

:node-b

affected

organism

Antirheumatic Agents

Mutagens

…category

Drug

…

dosage

:node-f

:node-g

dcterms:title

25 mg Capsule form

with oral route
dcterms:title

500 mg/25mL Injection,

powder, for solution form

with intravenous; oral route

Topiramate
dosage

x-pubchem.compound

stitch:CID100002907

drug

effect

Drug-Effect-Association

umls:C0001339

:node-h

effect

umls:C0002871

:node-i

effect

umls:C0002792

:node-j

Acute pancreatitis
skos:exactMatch

Anaphylaxis
skos:exactMatch

Anemiaskos:exactMatch

rdf:type

rdf:type

rdf:typedrug

drug

Side Effect
group

Approved

x-cas

cas:50-18-0

x-pubchemsubstance

kegg:C07888
Cyclophosphamide

[kegg:C07888] rdfs:label

C7H15Cl2N2O2P

formula

enzyme
kegg:1.14.13.-

pathway

Drug metabolism - cytochrome P450

disease

Poor drug

metabolism (PM)

Coumarin resistance;

Warfarin resistance

Trimethylaminuria (TMAU);

Fish-odor syndrome

Cyclophosphamide

Resource

DrugBank

KEGG

SIDER

Fig. 1. A Bio2RDF fragment around the Cyclophosphamide drug, showing the connections between three main databases: DrugBank, SIDER, and KEGG.

the publicly available US Food and Drug Administration (FDA) Adverse
Event Reporting System (FAERS), but is extensively processed in order
to allow for easy use in experiments. In particular, the cases (i.e., adverse
drug reaction events) in the FAERS reports are deduplicated and the drug
and outcome (i.e., effect) concepts are mapped to standard vocabulary
identifiers (RxNorm and SNOMED-CT, respectively). A similar approach
for extracting ADR terms from FDA approved drug labels was applied
in [38] to group similar drugs by topics. However, Aeolus is preferred due
to its curated status.

The Aeolus data set is presented in a convenient comma separated
values (CSV) format, from which we can easily extract pairs of drugs and
their adverse effects ranked by the statistical significance of their occur-
rences within the FAERS reports. We map the identifiers for drugs and
for adverse effects in Aeolus to the ones in DrugBank which are used in
our experiments. This means that we are able to use the FDA FAERS
data as an additional manually curated resource for validating any adverse
effect prediction method, as detailed later on in the description of our
experiments.

3 Methods
In this section, we present details of the reviewed approaches for adverse
drug reaction prediction, on the basis of a multi-label learning setting.

3.1 Multi-label Learning Framework

As a drug can generally have multiple adverse reactions, the ADR
prediction can be very naturally formulated as a multi-label learning
problem [39]. Multi-label learning addresses a special variant of the clas-
sification problem in machine learning where multiple labels (i.e., ADRs)
are assigned to each example (i.e., drug). The problem can be solved either
by transforming the multi-label problem into a set of binary classification

problems, or by adapting existing machine learning techniques to the full
multi-label problem3.

Most of the current ADR prediction methods, however, do not fully
exploit the convenient multi-label formulation, as they simply convert the
main problem into a set of binary classification problems [40]. This is
problematic for two main reasons. Firstly, transforming the multi-label
problem into a set of binary classification problems is typically very com-
putationally expensive for large numbers of labels (which is the case in
predicting thousands of ADRs). Secondly, using binary classifiers does not
accurately model the inherently multi-label nature of the main problem.
We validate these two points empirically in Section 4. Here, we follow the
philosophy of algorithm adaptation: fit algorithms to data [40].

Yet there are exceptions, such as the work in [25], presenting the multi-
label learning method FS-MLKNN that integrates feature selection and
k-nearest neighbours (kNN). Unlike most previous works, Zhang et al. [25]
proposes a method which does not generate binary classifiers per label, but
uses an ensemble learning instead. (We shall provide more details of this
and other methods in Section 3.2.) Also Muñoz et al. [27] proposed a multi-
label solution for the prediction problem using a constrained propagation
of ADRs between neighbouring drugs, making clear the benefits of a graph
structure of data (cf. supplemental material Section F).

In the following, we formalise the learning framework with Q-labels
as in [41, 42]. Let X = {x1,x2, . . . ,xN} be the instance space of N
different data points (i.e., drugs) in Rd, and let Y = {y1, y2, . . . , yQ} be
the finite set of labels (i.e., ADRs). Given a training set D = {(xi, Yi) |
1 ≤ i ≤ N}, where xi ∈ X is a d-dimensional drug feature vector
[xi1, xi2, . . . , xid]> and Yi ∈ 2Y is a vector of labels associated with
xi, the goal of the learning system is to output a multi-label classifier
h : X → 2Y which optimises some specific evaluation metric. In most

3 See https://en.wikipedia.org/wiki/Multi-label_
classification for more details and a list of examples.

i
i

“main” — 2017/7/13 — 17:46 — page 5 — #5 i
i

i
i

i
i

Facilitating Prediction of Adverse Drug Reactions 5

cases however, the learning system will not output a multi-label classifier,
but instead will produce a real-valued function (aka. regressor) of the form
f : X × Y → R, where f(x, y) can be regarded as the confidence of
y ∈ Y being a proper label of x. It is expected that for a given instance
x and its associated label set Y , a successful learning system will tend to
output larger values for labels in Y than those not in Y , i.e., f(x, y1) >

f(x, y2) for any y1 ∈ Y and y2 /∈ Y . In other words, the model should
consistently be more “confident” about true positives (actual ADRs) than
about false positives. Intuitively, the regressor f(·, ·) can be transformed
into a ranking function rankf (·, ·), which maps the outputs of f(x, y) for
any y ∈ Y to {y1, y2, . . . , yQ} such that if f(x, y1) > f(x, y2) then
rankf (x, y1) < rankf (x, y2). The ranking function can naturally be
used for instance for selecting top-k predictions for any given drug, which
can be very useful in cases where only limited numbers of prediction
candidates can be further analysed by the experts.

Our learning problem can now be formally stated as: Given a drug
x and a finite-size vector Y with its initially known adverse reacti-
ons (i.e., labels), seek to find a discriminant function f(x, Y) = Ŷ ,
where Ŷ is a finite-size vector representation of the labelling function
Ŷ = [f(x, y1), . . . , f(x, yQ)]> for yi ∈ Y . For instance, headache
(C0018681) and vomiting (C0042963) are very common adverse reacti-
ons of Atomoxetine (DB00289), a drug used for the treatment of attention
deficit hyperactivity disorder (ADHD), and they should be ranked higher
than conjunctivitis (C0009763) or colitis (C0009319), which are rare or
unregistered ADRs for Atomoxetine (cf. supplemental material Section E
for features manipulation guidelines).

3.2 Learning Models

To complement most previous works, we formulate ADR prediction as a
multi-label ranking problem, and train different machine learning models.
This allows for approaching the problem more naturally in many practical
use cases, such as when one prefers to explore only a few, i.e., the most
relevant adverse effect candidates out of many possible for a certain drug.
Multi-label learning models learn how to assign sets of ADRs/labels to
each drug/example. The main motivation for our model choices was to
have a representative sample of the different multi-label learning families
described in the machine learning literature (ranging from decision trees
through instance-based learning or regression to neural networks). Such
an approach demonstrates the broad range of possibilities when adopting
off-the-shelf models. We investigate state-of-the-art multi-label learning
models, namely, Decision Trees, Random Forests, Nearest Neighbours
(kNN), and Multi-Layer Perceptron. We also investigate the use of Logi-
stic Regression binary classifiers for multi-label following the one-vs-all
strategy in which the system builds as many binary classifiers as input
labels, where samples having label y are considered as positive, and nega-
tive otherwise (cf. supplemental material Section B for a description of
each model).

Among the methods for predicting ADRs that accept multi-source
data are: Liu’s method, FS-MLKNN (feature selection-based multi-
label k-nearest neighbour) [25], the linear neighbourhood similarity
methods (LNSM) with two different data integration approaches, simi-
larity matrix integration (LNSM-SMI) and cost minimisation integration
(LNSM-CMI) [28], and finally KG-SIM-PROP (knowledge graph simila-
rity propagation) [27]. Liu et al. [24] proposed a multi-source method using
chemical, biological and phenotypic information about drugs and built
an SVM classifier for each ADR. FS-MLKNN is a method that simul-
taneously determines critical feature dimensions and builds multi-label
prediction models. A FS-MLKNN model is composed of five MLKNN
models constructed from a selected subset of features selected using a
genetic algorithm. In the learning step, the LNSM-SMI method generates
K similarity matrices from K different data sources and combines them

using θi weights (for all 1 ≤ i ≤ K), while the LNSM-CMI learns
the LNSM independently on each data source. LNSM is itself a method
that can train models and make predictions based on single-source data,
and takes the assumption that a data point (i.e., drug) can be optimally
reconstructed by using a linear combination of its neighbours. Because
of this, LNSM methods usually require a large number of neighbours to
deliver better results. Both LNSM-SMI and LNSM-CMI are formulated
as convex optimisation problems using the similarity between drugs to
later make predictions. On the other hand, KG-SIM-PROP [27] proposes
to exploit a graph structure built from the similarity matrix of drugs to
propagate ADR labels from one drug to other drugs in its neighbourhood.
Later we will see that such propagation, unlike LNSM-based methods,
requires a smaller number of neighbours to deliver efficient predictions.
KG-SIM-PROP has been modified to not limit the number of predictions
as stated in [27], and adopt the evaluation protocol defined for this review,
ensuring a fair comparison with the other models.

A comparative review of existing multi-source machine learning
models and selected off-the-shelf multi-label learning models trained on
knowledge graphs allows for assessing not only the performance, but
also the flexibility of the various approaches. The performance of the
off-the-shelf methods can also be used as a baseline for more focused
experiments in ADR prediction, which is something that has been mis-
sing before. An additional contribution of this review is the analysis of the
model performance not only on the hand-crafted feature sets employed
by existing approaches, but also on drug features automatically extra-
cted from knowledge graphs (cf. supplemental material Section E). This
is to demonstrate the feasibility of this particular approach to increasing
practical applicability of automated ADR prediction pipelines.

We perform a comparison of the above models (Liu’s method, FS-
MLKNN, LNSM-SMI, LNSM-CMI, KG-SIM-PROP, Decision Trees,
Random Forests, Multi-Layer Perceptron, Linear Regression) in terms
of performance based on several multi-label ranking evaluation metrics.
All models are given a design matrix X with binary features as input,
where the row i of X represents drug-i using a vector xi (for 1 ≤ i ≤ N)
with a 1 or 0 in column j to indicate whether drug-i has feature j (for
1 ≤ j ≤ d) or not, respectively. In the same way, labels are represented
using a binary matrix Y, where row i contains either 1 or 0 in column
j indicating whether drug-i has ADR-j or not, respectively. For insta-
nce, considering the following three features: (j = 0) enzyme P05181,
(j = 1) indication abdominal cramp (C0000729), and (j = 2) pathway
hsa00010, we can have the vector x1 = [1, 0, 1] for the drug Fomepizole
(DB01213), meaning that Fomepizole interacts with enzyme P05181; is
not used to treat abdominal cramps; and is part of pathway hsa00010.

In Fig. 2 we show a typical flowchart for the processes of training,
testing, and evaluating machine learning models. For a given model, its out-
put is used to generate ADR predictions. These predictions are evaluated
using Liu’s, SIDER 4, and Aeolus data sets as gold standards.

Most of the reviewed models work directly with the drug feature matri-
ces. However, two models, namely, KG-SIM-PROP and kNN, require a
similarity graph as input, which in this case is generated from the similarity
between drugs using either the original data sets features or the Bio2RDF
knowledge graph. Such a similarity graph encodes the similarity relations
between drugs, where the value of the i-th row with the j-th column is
the similarity score between drug-i and drug-j. In supplemental material
Section A we describe a method to generate such similarity network of
drugs from a knowledge graph.

i
i

“main” — 2017/7/13 — 17:46 — page 6 — #6 i
i

i
i

i
i

6 Muñoz et al.

Fig. 2. Machine learning flowchart for training and testing of a model.

4 Results and Discussion

4.1 Experimental Configuration and Evaluation Metrics

All five multi-label learning models plus KG-SIM-PROP were imple-
mented using the Scikit-Learn Python package [43] (http://
scikit-learn.org/stable/), whereas, when available, we use
the implementations provided by the reviewed methods. (General details
on training and using the models are provided in the supplemental material
Section B.) In many cases, we used the default hyper-parameters values as
our main focus was to compare the performance of different models and
not to find the optimal hyper-parameter settings for each of them. Some
specific hyper-parameters, however, proved to have an obvious impact on
the model results, and therefore we changed some of the default values
and performed limited hyper-parameter optimisation via grid search. In
particular: (a) The KG-SIM-PROP model uses the 3w-Jaccard similarity
metric [44], with 10 up to 100 neighbours size; (b) The kNN model is
tested with 10 up to 100 neighbours, with uniform and distance based wei-
ghts using the Minkowski, Manhattan, Chebyshev, Jaccard, and Rogers
Tanimoto distance metrics [44]; (c) The decision trees and random forests
models use the mean squared error criterion (MSE), which is the only one
supporting multi-label learning; (d) The multi-layer perceptron model is
set with a unique hidden layer with 64, 128, 256, and 512 hidden units,
a batch size equals to the 20% of drugs (which was chosen from an inde-
pendent grid search), a logistic sigmoid activation, and the Adam solver;
(e) The logistic regression model uses a L2 penalty function, C = 1.0,
Stochastic Average Gradient as solver, and 200 maximum iterations.

To compare all the models we adopt common metrics for ranking
in multi-label learning [40]. We also compute example-based ranking
metrics [40] used in related works, namely, One-error, Coverage (Cov-
error), Ranking Loss (R-loss), and Average Precision (AP). Summary
and details of all metrics we use are given in the supplemental material
Section C. The performance of all models is evaluated using a 5-fold
cross-validation. First, all drugs are randomly split into five equal sized
subsets. Then, for each of the k folds, one part is held-out for testing and
the learning algorithm is trained on the remaining four parts. In this way,
all parts are used exactly once as validation data. The selection of the best
hyper-parameters for each model is performed in each fold on the training
set during the 5-fold cross-validation, and the best model is applied over
the test set for validation (cf. supplemental material Section G). The five
validation results are then averaged over all rounds. We also use common
evaluation metrics for ranking systems, the Area Under the Receive Ope-
rator Curve (AUC-ROC) and the Area Under the Precision-Recall Curve

(AUC-PR)4 to evaluate the models, because they can be used to evalu-
ate models regardless of any threshold. However, because of the existing
unbalance of the labels (i.e., an ADR is more commonly found as a nega-
tive value than as a positive one among drugs), the AUC-PR gives a more
informative picture of the model’s performance [45]. Thus, we set the
AUC-PR as our target metric (in the grid searches) for each of the rounds.
Additionally, we compute other example-based metrics [40, 46], namely,
Average Precision, One Error, Coverage Error, and Ranking Loss. The last
type of measures we use are the general ranking evaluation metrics Hits
at K (Hits@K), and Precision at K (P@K). Among the measures we used,
the Hits@K and P@K are arguably the most accurate scores in terms of
evaluating the benefit of ADR discovery for certain types of end-users like
clinical practitioners. As explained in [47], these scores are easily grasped
by non-informaticians and are therefore apt for explaining the reliability of
the system to them. Moreover, in settings where quick decisions are nee-
ded, like in clinical practice, users do not tend to perform comprehensive
search among many possible alternatives to find the relevant ones [47].
The Hits@K and P@K scores reflect the likelihood that such users will
find relevant results very quickly at the top of the list of possibly relevant
results.

4.2 Comparison on Liu’s data set

In this section, we present the evaluation of all methods using Liu’s data
set, which includes multi-source data with different types of features about
drugs. Specifically, we compare the methods considering the features
and labels in Liu’s data set, which was introduced in [24] and has been
considered as a benchmark in [25, 28].

We compare the results reported in [28] for four existing methods (Liu’s
method, FS-MLKNN, LNSM-SMI, and LNSM-CMI) with the KG-SIM-
PROP [27] and the five off-the-shelf multi-label learning models selected
by us. Table 4 shows the values of evaluation metrics for each model,
highlighting the best performing methods per metric in bold. We found
out that the methods FS-MLKNN, LNSM-SMI and LNSM-CMI propo-
sed by Zhang et al. very recently [25, 28] perform best on Liu’s data
set . The multi-layer perceptron, comes second by a rather small mar-
gin in all but one metric. The methods FS-MLKNN [25], LNSM-SMI and
LNSM-CMI [28] exploit the notion of drug-drug similarity for propagating
side effects from a drug to its neighbours. A similar approach is follo-
wed by the KG-SIM-PROP and kNN models, which can be considered a
simplified version of the ones presented in [28]. The difference between
the KG-SIM-PROP and kNN methods and the FS-MLKNN, LNSM-SMI
and LNSM-CMI methods is that the last three require large numbers of
neighbours to work properly (400 as reported in [25, 28]). while the KG-
SIM-PROP and kNN methods can work with as few as 30 neighbours.
This makes them more applicable to sparse data sets. As hypothesised by
the authors [28], the better results of LNSM-SMI and LNSM-CMI may
be attributed to their consideration of neighbourhood as an optimisation
problem via the linear neighbourhood similarity used. This is confirmed by
the observed results and leads to better accuracy in the similarity computa-
tion, but at the cost of efficiency because of the neighbourhoods generation.
The benefits of treating the similarity as an optimisation problem are also
shown in the competitive results of multi-layer perceptron, where a logistic
sigmoid function was used as kernel. On the other hand, KG-SIM-PROP
and kNN employ widely used off-the-shelf similarity metrics between
feature vectors to determine the neighbourhoods. Methods that do not
consider a similarity, namely, decision trees, random forests, and linear
regression, are among the worst-performing methods. In terms of efficie-
ncy, we report that FS-MLKNN was the slowest method with more than

4 As defined by Davis and Goadrich in [45], when dealing with highly
skewed data sets.

i
i

“main” — 2017/7/13 — 17:46 — page 7 — #7 i
i

i
i

i
i

Facilitating Prediction of Adverse Drug Reactions 7

two weeks running time on a single machine with commodity hardware.
This is mainly due to its multiple feature selection steps based on genetic
algorithms. From the multi-label ranking methods, the slowest was kNN
with 13 hours and 18 minutes, followed by linear regression with 9 hours
and 26 minutes. Both multi-layer perceptron and KG-SIM-PROP took ca.
2 hours and 16 minutes, while the decision trees were the fastest with only
16 minutes. We can see that even the slowest among multi-label learning
models we have tested is orders of magnitude faster than the best per-
forming previously published method. This is important information in
the context of applicability of different models that is not obvious from
previously published work. In cases where quick experimentation with
different data sets or model parameters is required, the multi-layer perce-
ptron may very well be the best choice as its results are very close to the
best performance of existing tools.

In addition to the metrics reported in previous works, we report the ran-
king performance of the multi-label learning to rank methods in Table 5.
Results show that multi-layer perceptron gives the best rankings across all
metrics. This may indicate that non-linear methods (such as deep neural
nets) are better suited to the ADR prediction problem. Deep learning meth-
ods have shown to excel in applications where there is an abundance of
training data, and sources such as Bio2RDF could serve for this purpose.
The use of deep learning methods for the prediction of ADRs is still an
open problem. Further studies in this area may lead to significant perfor-
mance improvements as indicated by the preliminary results presented in
this review.

4.3 Comparison on the Bio2RDF data set

Several authors have found that combining information from different sou-
rces can lead to improved performance of computational approaches in
bioinformatics (see [48, 49] among others). In Section 2 we introduced the
Bio2RDF data set, which is a multi-source knowledge graph. An impor-
tant aspect of increasing the practicality of ADR prediction we suggest
in this review is automation of the feature extraction process. A possible
way of doing it is to use heterogeneous knowledge graphs to represent
entities such as drugs. This makes experimentation with different feature
sets easier than with the existing reviewed works. To show the benefits
of combining diverse data sources in terms of performance, we tested the
multi-label learning models against two versions of the Bio2RDF data set:
(v1) containing DrugBank and SIDER, and (v2) containing DrugBank,
SIDER and KEGG. Table 6 shows the performance of six multi-label lear-
ning methods5 using the set of 832 drugs and 1,385 side effects from Liu’s
data set, but replacing the feature vectors of drugs with those extracted
from the Bio2RDF v1 (resp. Bio2RDF v2) data set. Originally, Liu’s data
set contained a set of 2,892 manually integrated features coming from six
sources. These are replaced by 30,161 and 37,368 features in Bio2RDF
v1 and v2, respectively. Both sets are automatically generated using the
method described in supplemental material Section A, and represent a drug
according to its incoming and outgoing relations with other entities in the
knowledge graph.

Results show that in both cases (Bio2RDF v1 and v2) the methods
perform better with the Bio2RDF features than with Liu’s original data
set features, confirming our assumption that combination of various fea-
ture sources may increase the performance. This can be explained by the
fact that Bio2RDF provides a richer representation of drugs and their
relationships than the traditional feature sets. This is an important fin-
ding, as the Bio2RDF features can be constructed automatically, while
the features in the Liu’s and Zhang’s data sets require non-trivial manual

5 Unfortunately, there were no implementations available for LNSM-SMI,
LNSM-CMI [28] for comparison at the time of this writing. And FS-
MLKNN was discarded due to its intractability on larger feature sets.

efforts. Furthermore, our results also indicate that having extra informa-
tion about pathways provides better performance as shown in Table 7,
where Bio2RDF v2 is built by adding KEGG data set [33] to Bio2RDF
v1. To further explore the influence of possible feature set combinations
on the results, we integrated the original Liu’s data set [24] features with
Bio2RDF v2, leading to 40,260 features in total. Table 8 shows the per-
formance results obtained when combining feature sets from Liu’s and
Bio2RDF v2 data sets. This yields slightly better results in terms of the
Average Precision and AUC-PR metrics.

4.4 Comparison on the SIDER 4 data set

To further evaluate the practical applicability of the multi-label learning
models, we performed an experiment using SIDER 4 [25]. The intuition
behind this experiment is to test the predictive power of the models under
a simple train and test setup. SIDER 4 data set contains 771 drugs used
for training, which are also present in Liu’s data set, and 309 newly added
drugs used for testing. First, we run all methods on the original SIDER 4
data set features and labels, and compare them against the results provided
by Zhang et al. [28]. Table 9 shows the results of the different methods
over the SIDER 4 data set. The state-of-the-art method LNSM-SMI gives
the best Average Precision and AUC-PR while LNSM-CMI produces the
best Coverage Error. However, multi-layer perceptron is the best perfor-
ming model in the AUC-ROC, Ranking Loss, and One-Error metrics.
These results suggest better relative suitability of some multi-label lear-
ning methods for applications where a ranking function is preferred over
classification. Examples of such applications are use cases where experts
can only review a few prediction candidates and need the relevant ones to
appear at the top of the list. Such use cases are indeed quite realistic, as
there are often hundreds of predictions for every single drug. The results
of multi-layer perceptron show some improvements when using features
coming from the Bio2RDF v2 data set (cf. Table 10).

4.5 Comparison on the SIDER4 and Aeolus data sets

We further evaluate the models considering both the SIDER 4 and Aeolus
data sets [35]. Aeolus data set provides us with relations between drugs
and ADRs that were not previously known during the training or testing
steps. The reason for the experiments using the SIDER 4 and Aeolus
data sets is the evolving nature of the knowledge about drugs – generally,
new ADRs can always be discovered for a drug, either by new studies
or via pharmacovigilance in the post-market stage. The classic approach
for validating ADR predictions follows the Closed World Assumption
(i.e., missing predictions are false), but the actual problem follows the
Open World Assumption (i.e., missing predictions may be just unknown).
Therefore it is always possible that predictions that are currently deemed
false positives can be considered true positives if more knowledge beco-
mes available in the future. We hope to reflect this phenomenon by using
the complementary Aeolus data that is very frequently updated and con-
tains information based on manually validated reports. For these reasons,
we believe it will be beneficial to use this data set for complementary
validations also in future studies in this domain.

To test this point, we updated the SIDER 4 matrix Y of ADRs of
the test set using a version of Aeolus data set generated after the release
of the SIDER 4 data set. We found 142 drugs in the intersection of the
SIDER 4 test set and Aeolus. Whenever a new drug-ADR relationship is
reported in the Aeolus data set for any of the 309 drugs in the test set, this
is reflected by modifying the SIDER 4 data set. Aeolus introduces 615
new ADR relations in total with an average of 4.3 per drug. For example,
Aeolus provides two new ADRs for Triclosan (DB08604), an aromatic
ether widely used as a preservative and antimicrobial agent in personal care
products: odynophagia and paraesthesia oral. While these changes due to
the Aeolus data set are not crucial for drugs with many previously known

i
i

“main” — 2017/7/13 — 17:46 — page 8 — #8 i
i

i
i

i
i

8 Muñoz et al.

ADRs6, they can have high impact on drugs with very few known ADRs
(such as Triclosan or Mepyramine both with only 1 ADR). In total, Aeolus
provides at least one new ADR for 46% of drugs in the SIDER 4 test set.
Interestingly, most of the new ADRs added by Aeolus data set are related
to the digestive system (e.g., intestinal obstruction, gastric ulcer, etc.),
which we believe is due to the disproportionate FAERS reporting [8, 10]
frequency for this type of events.

We ran the models once more and evaluated them against the new
gold standard with the updates provided by the Aeolus data set. Table 11
shows the results of the updated data set using the Aeolus data for the four
best performing multi-label models, and when compared against values in
Table 9 results are marginally lower across all metrics. For instance, the
Average Precision of multi-layer perceptron drops by 0.92%, and AUC-
ROC by 1.85%. This observation is not consistent with our assumption that
new knowledge about relations between drugs and ADRs can increase the
true positive rate by confirming some of the previous false positives as
being actually true. We believe that this could be due to two reasons.
(A) The added ADRs are under-represented across drugs. We observed
this in SIDER 4 where 37.5% (2,093 out of 5,579) of ADRs are present
at most once in either the training or test set. This makes those ADRs
hard to predict. (B) There is a “weak” relation between the drugs and
the introduced ADRs. This weak relation comes from the original split
in training and test set provided in SIDER 4 data set; we found out that
50.15% (2,798 out of 5,579) ADRs are only present in the training set and
not in the test set, compared to a 7% (392 out of 5,579) of ADRs that are
only present in the test set.

Advantages of using Aeolus data set are illustrated for example by the
drug Eribulin (DB08871) that contains 123 ADRs in SIDER 4, most of
which have been discovered in the post-marketing stage. Aeolus introdu-
ced 7 new ADRs for Eribulin, where one of them, namely, Pharyngitis
(C0031350), was ranked number 36 among all 5,579 ADRs, which is a
high ranking considering the total of 123 ADRs. This means the models are
able to perform well for reactions that are true based on the recent data in
Aeolus, but not present among positives in the primary validation data like
SIDER (and thus they could only be interpreted as false positives during
the primary evaluation). Such encouraging results were observed on seve-
ral of the analysed drugs for which predictions previously considered as
false positives were indeed shown to be true by Aeolus.

All analysed methods consider a static view over the data, and do
not consider the changes in data, e.g., new ADRs discovered in a post-
marketing stage. Therefore, a future research direction could study the
effects of learning under evolving data sets (i.e., new drug-ADR relations),
which is known as incremental learning (see [50–52] among others).

4.6 Comments on the Behaviour of the Models

To illustrate the flexibility and robustness of the approach we suggest to
complement the existing predictive models, we enriched the Liu’s data
set using Bio2RDF data set features, which in general are numerous.
Intuitively, by having more features for a drug, we can achieve a better
representation of it, which should lead to better performance results. How-
ever, we observed mixed small positive and negative changes in the results
shown in Table 8 when compared to the performance previously reported
in Tables 6 and 7. This can be attributed to the famous curse of dimensi-
onality, where the performance degrades as a function of dimensionality.
This issue may have large impact on models like multi-layer perceptron
where the large number of inputs hampers the training performance if the
first hidden layer is too small. This is the case of our experiments, as
we limit the size of the first hidden layer for the multi-layer perceptron.

6 For instance, Nilotinib (DB04868) has 333 ADRs in SIDER 4 and Aeolus
only adds 3 new ADRs.

However, it is possible to cope with the curse of dimensionality, using
methods such as embeddings into low rank feature spaces. Embedding
models aim to find a dimensionality reduction, generating latent represen-
tations of the data that preserve structural details as much as possible [53].
This is something that represents a new research direction, by considering
learning of drug representations for tasks such as comparison. We believe
this could substantially improve the performance of some of the models
here reviewed.

We also observed that when merging Liu’s data set with Bio2RDF,
some features can be considered as duplicated features. Certain models
deal with this situation better, and others would apparently require a fil-
tering of duplicated features. During our experiments, we did not filter
features, and assumed that deduplication is performed by the models.

Regarding scalability, despite the substantial increase of the feature
space (up to almost 13-fold), we only noticed up to double execution times
of the multi-label learning methods. All running times are still far better
than the time required by the previously existing methods, which is another
argument for higher practical applicability of the suggested approach.

5 Conclusion
We have shown that using knowledge graphs for automated feature extra-
ction and casting the problem of ADR prediction as multi-label ranking
learning can be used for building models that are comparable to or bet-
ter than existing related methods. Moreover, the off-the-shelf models are
orders of magnitude faster than existing related ADR prediction systems.
We argue that due to the demonstrated speed-up and automation of most
of the steps in building the prediction pipelines, this review provides a
broad range of possibilities for biomedical experts to build their own
ADR prediction systems more easily than before. This is supported by
extensive documentation of all necessary steps provided in the article (cf.
supplemental material).

The applicability of some of the reviewed models is further supported
by very good results in ranking metrics. This can be useful in many practical
scenarios where experts cannot possibly explore all computed predictions,
but require ranked results and highly relevant candidates appearing at the
top of the list. Last but not least, the review presents results of the off-
the-shelf machine learning modules in a way that can be used as a well-
documented baseline for future experiments in this area.

In our future work, we want to investigate the influence of embed-
dings (i.e., latent feature models and feature extractors) on the performance
of multi-label learning models for the ADR prediction. We also want to
analyse the influence of various hyper-parameters on the prediction results
more thoroughly. This will bring more insight into the most promising dire-
ctions for further improvements of the performance of ADR prediction
models. Another area we want to target is development of more stratified
and comprehensive benchmark data sets that could increase the interpre-
tability of ADR prediction results in future studies. Last but not least, we
would like to perform not only quantitative validation, but also qualitative
trials with actual sample users. This will let us assess the real-world usa-
bility of the reviewed approaches and gain valuable feedback for further
developments in this field.

i
i

“main” — 2017/7/13 — 17:46 — page 9 — #9 i
i

i
i

i
i

Facilitating Prediction of Adverse Drug Reactions 9

Table 4. Predictive power of the models using Liu’s data set. For each metric, we report the standard deviation values (when available). The values for the first four
models were taken from [28]. The evaluation metrics are AP (Average Precision), AUC-PR (Area Under the Precision-Recall Curve), AUC-ROC (Area Under the
Receive Operator Curve), R-loss (Ranking Loss), One-Error (One Error), and Cov-Error (Coverage Error). ("↑" indicates that the higher the metric value the better,
and "↓" indicates that the lower the metric value the better.)

Model
Evaluation Criterion

AP ↑ AUC-PR ↑ AUC-ROC ↑ R-Loss ↓ One-Error ↓ Cov-Error ↓

Liu’s method [24] 0.2610 0.2514 0.8850 0.0927 0.9291 837.4579
FS-MLKNN [28] 0.5134 0.4802 0.9034 0.0703 0.1202 795.9435
LNSM-SMI [28] 0.5476 0.5053 0.8986 0.0670 0.1154 789.8486
LNSM-CMI [28] 0.5329 0.4909 0.9091 0.0652 0.1250 776.3053
KG-SIM-PROP [27] 0.4895±0.0058 0.4295±0.0078 0.8860±0.0075 0.1120±0.0139 0.1610±0.0164 1100.9985±65.8834
kNN 0.5020±0.0078 0.4417±0.0081 0.8892±0.0085 0.1073±0.0053 0.1538±0.0181 1102.3548±41.4641
Decision Trees 0.2252±0.0137 0.1989±0.0181 0.6634±0.0316 0.6519±0.0242 0.5493±0.0374 1377.1316±8.3936
Random Forests 0.4626±0.0163 0.4331±0.0261 0.8342±0.0218 0.2525±0.0176 0.2007±0.0154 1284.3111±27.0454
Multi-Layer Perceptron 0.5196±0.0069 0.4967±0.0204 0.9003±0.0057 0.0874±0.0009 0.1454±0.0166 954.0372±22.2870
Linear Regression 0.2854±0.0088 0.2595±0.0196 0.6724±0.0232 0.6209±0.0137 0.4267±0.0103 1380.0763±4.0209

Table 5. Ranking performance of the models using Liu’s data set. The evaluation metrics are P@X (precision at 3, 5, and 10), and HITS@X (hits at 1, 3, 5, and 10).
(For all metrics, the higher the value of the metric the better.)

Model
Evaluation Criterion

P@3 P@5 P@10 HITS@1 HITS@3 HITS@5 HITS@10

KG-SIM-PROP [27] 0.9333±0.1333 0.8400±0.2332 0.9200±0.1166 0.8390±0.0164 2.4351±0.0240 3.8691±0.0671 7.0734±0.0746
kNN 0.9333±0.1333 0.9200±0.0980 0.9400±0.0800 0.8450±0.0173 2.4568±0.0316 3.9027±0.0452 7.1744±0.0581
Decision Trees 0.4667±0.2667 0.4400±0.2653 0.4800±0.1470 0.4171±0.0176 1.1971±0.0570 1.9651±0.0940 3.8076±0.1941
Random Forests 0.9333±0.1333 0.9200±0.0400 0.9200±0.0400 0.8101±0.0088 2.3353±0.0594 3.7451±0.0779 6.9434±0.0982
Multi-Layer Perceptron 1.0000±0.0000 0.9600±0.0800 0.9600±0.0490 0.8546±0.0166 2.4676±0.0295 3.9773±0.0544 7.3633±0.1451
Linear Regression 0.3333±0.2981 0.4000±0.1265 0.4400±0.1347 0.5745±0.0469 1.6262±0.0716 2.6394±0.0782 5.1851±0.0823

Table 6. Predictive power of the models using drugs in Liu’s data set with features from Bio2RDF v1 (DrugBank + SIDER). The evaluation metrics are AP (Average
Precision), AUC-PR (Area Under the Precision-Recall Curve), AUC-ROC (Area Under the Receive Operator Curve), R-loss (Ranking Loss), One-Error (One
Error), and Cov-Error (Coverage Error). ("↑" indicates that the higher the metric value the better, and "↓" indicates that the lower the metric value the better.)

Model
Evaluation Criterion

AP ↑ AUC-PR ↑ AUC-ROC ↑ R-Loss ↓ One-Error ↓ Cov-Error ↓

KG-SIM-PROP [27] 0.5011±0.0106 0.4485±0.0115 0.8935±0.0096 0.1058±0.0122 0.1586±0.0177 1095.3082±55.47904
kNN 0.4977±0.0107 0.4210±0.0228 0.8848±0.0062 0.1211±0.0113 0.1658±0.0206 1127.7254±45.6342
Decision Trees 0.1964±0.0116 0.1710±0.0138 0.6301±0.0250 0.7220±0.0194 0.5673±0.0144 1377.2001±6.9189
Random Forests 0.4317±0.0107 0.3843±0.0143 0.8097±0.0102 0.3037±0.0088 0.2212±0.0139 1314.5006±17.6714
Multi-Layer Perceptron 0.5099±0.0159 0.4546±0.0169 0.9010±0.0061 0.0791±0.0022 0.1430±0.0160 892.8340±20.4758
Linear Regression 0.2847±0.0083 0.2482±0.0137 0.6404±0.0248 0.6726±0.0141 0.3467±0.0238 1383.3808±3.2383

Table 7. Predictive power of the models using drugs in Liu’s data set with features from Bio2RDF v2 (DrugBank + SIDER + KEGG). The evaluation metrics are AP
(Average Precision), AUC-PR (Area Under the Precision-Recall Curve), AUC-ROC (Area Under the Receive Operator Curve), R-loss (Ranking Loss), One-Error
(One Error), and Cov-Error (Coverage Error). ("↑" indicates that the higher the metric value the better, and "↓" indicates that the lower the metric value the better.)

Model
Evaluation Criterion

AP ↑ AUC-PR ↑ AUC-ROC ↑ R-Loss ↓ One-Error ↓ Cov-Error ↓

KG-SIM-PROP [27] 0.5118±0.0101 0.4604±0.0097 0.8954±0.0054 0.1051±0.0109 0.1466±0.0214 1091.9749±51.4537
kNN 0.5083±0.0124 0.4341±0.0277 0.8835±0.0086 0.1281±0.0031 0.1478±0.0027 1155.2053±36.5165
Decision Trees 0.2069±0.0176 0.1742±0.0266 0.6258±0.0242 0.7140±0.0233 0.5469±0.0385 1370.7402±7.5913
Random Forests 0.4438±0.0162 0.3993±0.0256 0.8153±0.0171 0.2883±0.0225 0.2103±0.0169 1295.7516±20.2287
Multi-Layer Perceptron 0.5278±0.0106 0.4725±0.0284 0.9002±0.0074 0.0795±0.0028 0.1322±0.0298 909.7297±19.7920
Linear Regression 0.2919±0.0109 0.2587±0.0165 0.6441±0.0261 0.6665±0.0166 0.3557±0.0306 1383.3796±3.2407

Table 8. Predictive power of the models using a combination of features from both Liu’s data set and Bio2RDF v2 data set. The evaluation metrics are AP (Average
Precision), AUC-PR (Area Under the Precision-Recall Curve), AUC-ROC (Area Under the Receive Operator Curve), R-loss (Ranking Loss), One-Error (One
Error), and Cov-Error (Coverage Error). ("↑" indicates that the higher the metric value the better, and "↓" indicates that the lower the metric value the better.)

Model
Evaluation Criterion

AP ↑ AUC-PR ↑ AUC-ROC ↑ R-Loss ↓ One-Error ↓ Cov-Error ↓

KG-SIM-PROP [27] 0.5012±0.0079 0.4471±0.0097 0.8882±0.0089 0.1184±0.0139 0.1526±0.0177 1127.3234±51.2769
kNN 0.5020±0.0808 0.4482±0.0101 0.8883±0.0089 0.1184±0.0139 0.1502±0.0208 1127.1279±51.3701
Decision Trees 0.2080±0.0190 0.1728±0.0149 0.6306±0.0239 0.6944±0.0215 0.5444±0.0289 1372.1095±9.6089
Random Forests 0.4609±0.0174 0.4331±0.0127 0.8357±0.0117 0.2627±0.0134 0.1995±0.0241 1308.7285±24.9798
Multi-Layer Perceptron 0.5281±0.0088 0.4870±0.0269 0.8946±0.0067 0.0835±0.0034 0.1418±0.0158 937.8773±36.9387
Linear Regression 0.3031±0.0108 0.2681±0.0169 0.6578±0.02424 0.6431±0.0147 0.3617±0.0273 1381.7218±4.0156

i
i

“main” — 2017/7/13 — 17:46 — page 10 — #10 i
i

i
i

i
i

10 Muñoz et al.

Table 9. Predictive power of the models using SIDER 4 data set. The values for the first four models were taken from [28]. The evaluation metrics are AP (Average
Precision), AUC-PR (Area Under the Precision-Recall Curve), AUC-ROC (Area Under the Receive Operator Curve), R-loss (Ranking Loss), One-Error (One
Error), and Cov-Error (Coverage Error). ("↑" indicates that the higher the metric value the better, and "↓" indicates that the lower the metric value the better.)

Model
Evaluation Criterion

AP ↑ AUC-PR ↑ AUC-ROC ↑ R-Loss ↓ One-Error ↓ Cov-Error ↓

Liu’s method [24] 0.1816 0.1766 0.8772 0.1150 0.9870 1587.5663
FS-MLKNN [28] 0.3649 0.3109 0.8722 0.1038 0.1851 1535.9223
LNSM-SMI [28] 0.3906 0.3465 0.8786 0.0969 0.2013 1488.2977
LNSM-CMI [28] 0.3804 0.3332 0.8852 0.0952 0.1916 1452.7184
KG-SIM-PROP [27] 0.3375 0.2855 0.8892 0.1398 0.2233 4808.3689
kNN 0.3430 0.2898 0.8905 0.1392 0.2168 4086.0777
Random Forests 0.3004 0.2599 0.8235 0.3318 0.2848 5362.6117
Multi-Layer Perceptron 0.3546 0.2899 0.8943 0.0922 0.1309 4054.0356

Table 10. Predictive power of the models using drugs in SIDER 4 data set and Bio2RDF v2 data set features. The evaluation metrics are AP (Average Precision),
AUC-PR (Area Under the Precision-Recall Curve), AUC-ROC (Area Under the Receive Operator Curve), R-loss (Ranking Loss), One-Error (One Error), and
Cov-Error (Coverage Error). ("↑" indicates that the higher the metric value the better, and "↓" indicates that the lower the metric value the better.)

Model
Evaluation Criterion

AP ↑ AUC-PR ↑ AUC-ROC ↑ R-Loss ↓ One-Error ↓ Cov-Error ↓

KG-SIM-PROP [27] 0.3438 0.2876 0.8764 0.17460 0.2427 4969.0647
kNN 0.3416 0.2835 0.8728 0.1777 0.2395 5002.6084
Random Forests 0.2384 0.2061 0.7651 0.4567 0.4304 5440.0712
Multi-Layer Perceptron 0.3529 0.2857 0.9043 0.0852 0.1909 3896.3625

Table 11. Predictive power of the models using SIDER 4 data set, and updating the ADRs with Aeolus data set. The evaluation metrics are AP (Average Precision),
AUC-PR (Area Under the Precision-Recall Curve), AUC-ROC (Area Under the Receive Operator Curve), R-loss (Ranking Loss), One-Error (One Error), and
Cov-Error (Coverage Error). ("↑" indicates that the higher the metric value the better, and "↓" indicates that the lower the metric value the better.)

Model
Evaluation Criterion

AP ↑ AUC-PR ↑ AUC-ROC ↑ R-Loss ↓ One-Error ↓ Cov-Error ↓

KG-SIM-PROP [27] 0.3272 0.2791 0.8796 0.1619 0.2233 5040.06149
kNN 0.3324 0.2834 0.8808 0.1613 0.2168 5038.6570
Random Forests 0.2883 0.2447 0.8059 0.3717 0.3366 5478.8479
Multi-Layer Perceptron 0.3437 0.2836 0.8858 0.1050 0.1909 4339.7540

Key Points

• Knowledge graphs allow for easy, automated integration of
multiple diverse datasets in order to extract features for ADR
prediction.
• Approaching the ADR prediction as a multi-label learning problem

facilitates easy experimentation with a diverse range of off-the-
shelf algorithms. It also produces results that can be used as a well-
documented baseline for future, more sophisticated experiments.
• Applying these two principles (i.e., knowledge graphs and multi-

label learning) leads to results that are comparable to or better
than existing related approaches, while the training is orders of
magnitude faster on the same data. Also, the resulting models
provide ranked predictions by default, which further contributes
to their practical applicability.
• Interested stakeholders can straightforwardly use the review for

building their own ADR prediction pipelines and fine-tuning them
based on their specific requirements (such as increasing particular
classification or ranking performances).

Acknowledgements
The authors kindly acknowledge Pasquale Minervini for contributing to
the Python implementation in an early stage of this work. The authors
thank the three anonymous reviewers for their valuable comments and
suggestions that helped us improve the manuscript.

Funding
This work was supported by the TOMOE project funded by Fujitsu Labo-
ratories Ltd., Japan and Insight Centre for Data Analytics at National
University of Ireland Galway (supported by the Science Foundation Ireland
grant 12/RC/2289). The funders had no role in study design, data collection
and analysis, decision to publish or preparation of the manuscript.

Availability of Data and Material
We make available all design matrices with drug features and labels
(ADRs) as MATLAB files. All data files are available for download at
http://purl.com/bib-adr-prediction. Further details on the
feature extraction step and manipulation of data sets are provided in the
supplemental material.

References
1. Bowes J, Brown AJ, Hamon J, et al. Reducing safety-related drug

attrition: the use of in vitro pharmacological profiling. Nature Reviews
Drug discovery. 2012;11:909–922.

2. Sultana J, Cutroneo P, Trifiró G, et al. Clinical and economic
burden of adverse drug reactions. Journal of Pharmacology and
Pharmacotherapeutics. 2013;4:73–77.

3. Bouvy JC, De Bruin ML, Koopmanschap MA. Epidemiology of
adverse drug reactions in Europe: a review of recent observational
studies. Drug Safety. 2015;38:437–453.

i
i

“main” — 2017/7/13 — 17:46 — page 11 — #11 i
i

i
i

i
i

Facilitating Prediction of Adverse Drug Reactions 11

4. Edwards IR, Aronson JK. Adverse drug reactions: definitions,
diagnosis, and management. The Lancet. 2000;356:1255 – 1259.

5. Giacomini KM, Krauss RM, Roden DM, et al. When good drugs go
bad. Nature. 2007;446:975–977.

6. Johnson J, Booman L. Drug-related morbidity and mortality. Journal
of Managed Care Pharmacy. 1996;2:39–47.

7. Kola I, Landis J. Can the pharmaceutical industry reduce attrition
rates? Nature Reviews Drug discovery. 2004;3:711–716.

8. Szarfman A, Machado SG, O’Neill RT. Use of screening algorithms
and computer systems to efficiently signal higher-than-expected com-
binations of drugs and events in the US FDA’s spontaneous reports
database. Drug Safety. 2002;25:381–392.

9. Mammadov MA, Rubinov AM, Yearwood J. The Study of Drug-
reaction Relationships Using Global Optimization Techniques. Opti-
mization Methods and Software. 2007 Feb;22:99–126.

10. Harpaz R, Vilar S, DuMouchel W, et al. Combing signals from
spontaneous reports and electronic health records for detection of
adverse drug reactions. Journal of the American Medical Informatics
Association. 2013;20:413–419.

11. Karimi S, Wang C, Metke-Jimenez A, et al. Text and data mining tech-
niques in adverse drug reaction detection. ACM Computing Surveys.
2015 May;47:56:1–56:39.

12. Ginsberg J, Mohebbi MH, Patel RS, et al. Detecting influenza epide-
mics using search engine query data. Nature. 2009;457:1012–1014.

13. White RW, Wang S, Pant A, et al. Early identification of adverse drug
reactions from search log data. Journal of Biomedical Informatics.
2016;59:42–48.

14. Tan Y, Hu Y, Liu X, et al. Improving drug safety: From adverse drug
reaction knowledge discovery to clinical implementation. Methods.
2016;110:14 – 25. Protein-Protein Interactions Bioinformatics.

15. Campillos M, Kuhn M, Gavin AC, et al. Drug target identification
using side-effect similarity. Science. 2008;321:263–266.

16. Vilar S, Hripcsak G. The role of drug profiles as similarity metrics:
applications to repurposing, adverse effects detection and drug–drug
interactions. Briefings in Bioinformatics. 2016;p. bbw048.

17. Atias N, Sharan R. An algorithmic framework for predicting side
effects of drugs. Journal of Computational Biology. 2011;18:207–218.

18. Pauwels E, Stoven V, Yamanishi Y. Predicting drug side-effect pro-
files: a chemical fragment-based approach. BMC Bioinformatics.
2011;12:169.

19. Bresso E, Grisoni R, Marchetti G, et al. Integrative relational
machine-learning for understanding drug side-effect profiles. BMC
Bioinformatics. 2013;14:1.

20. Jahid MJ, Ruan J. An ensemble approach for drug side effect predi-
ction. In: 2013 IEEE International Conference on Bioinformatics and
Biomedicine. IEEE; 2013. p. 440–445.

21. Mizutani S, Pauwels E, Stoven V, et al. Relating drug–protein intera-
ction network with drug side effects. Bioinformatics. 2012;28:i522–
i528.

22. Yamanishi Y, Pauwels E, Kotera M. Drug side-effect prediction based
on the integration of chemical and biological spaces. Journal of
Chemical Information and Modeling. 2012;52:3284–3292.

23. Huang LC, Wu X, Chen JY. Predicting adverse drug reaction profi-
les by integrating protein interaction networks with drug structures.
Proteomics. 2013;13:313–324.

24. Liu M, Wu Y, Chen Y, et al. Large-scale prediction of adverse drug
reactions using chemical, biological, and phenotypic properties of
drugs. Journal of the American Medical Informatics Association.
2012;19:e28–e35.

25. Zhang W, Liu F, Luo L, et al. Predicting drug side effects by multi-label
learning and ensemble learning. BMC Bioinformatics. 2015;16:1.

26. Zhang W, Zou H, Luo L, et al. Predicting potential side effects of drugs
by recommender methods and ensemble learning. Neurocomputing.
2016;173:979–987.

27. Muñoz E, Novacek V, Vandenbussche PY. Using drug similarities
for discovery of possible adverse reactions. In: AMIA 2016, Ameri-
can Medical Informatics Association Annual Symposium. American
Medical Informatics Association; 2016. p. 924–933.

28. Zhang W, Chen Y, Tu S, et al. Drug side effect prediction through
linear neighborhoods and multiple data source integration. In: 2016
IEEE International Conference on Bioinformatics and Biomedicine
(BIBM); 2016. p. 427–434.

29. Rahmani H, Weiss G, Méndez-Lucio O, et al. ARWAR: A network
approach for predicting adverse drug reactions. Computers in Biology
and Medicine. 2016;68:101–108.

30. Kuhn M, Letunic I, Jensen LJ, et al. The SIDER database of drugs
and side effects. Nucleic Acids Research. 2016;44:D1075.

31. Kim S, Thiessen PA, Bolton EE, et al. PubChem substance and
compound databases. Nucleic Acids Research. 2016;44:D1202.

32. Law V, Knox C, Djoumbou Y, et al. DrugBank 4.0: shedding new
light on drug metabolism. Nucleic Acids Research. 2014;42:D1091–
D1097.

33. Kanehisa M, Furumichi M, Tanabe M, et al. KEGG: new perspectives
on genomes, pathways, diseases and drugs. Nucleic Acids Research.
2017;45:D353–D361.

34. Belleau F, Nolin MA, Tourigny N, et al. Bio2RDF: Towards a mashup
to build bioinformatics knowledge systems. Journal of Biomedical
Informatics. 2008 Oct;41:706–716.

35. Banda JM, Evans L, Vanguri RS, et al. A curated and standardi-
zed adverse drug event resource to accelerate drug safety research.
Scientific Data. 2016 May;3.

36. Dumontier M, Callahan A, Cruz-Toledo J, et al. Bio2RDF release 3: A
larger, more connected network of Linked Data for the Life Sciences.
In: International Semantic Web Conference (Posters & Demos). vol.
1272 of CEUR Workshop Proceedings. CEUR-WS.org; 2014. p. 401–
404.

37. Ritz A, Tegge AN, Kim H, et al. Signaling hypergraphs. Trends in
Biotechnology. 2014;32:356–362.

38. Bisgin H, Liu Z, Fang H, et al. Mining FDA drug labels using an unsu-
pervised learning technique - topic modeling. BMC Bioinformatics.
2011;12:S11.

39. Tsoumakas G, Katakis I. Multi-label classification: An overview.
International Journal of Data Warehousing and Mining. 2006;3.

40. Zhang ML, Zhou ZH. A review on multi-label learning algori-
thms. IEEE Transactions on Knowledge and Data Engineering. 2014
Aug;26:1819–1837.

41. Zhang ML, Zhou ZH. Multilabel neural networks with applications
to functional genomics and text categorization. IEEE Transactions on
Knowledge and Data Engineering. 2006 Oct;18:1338–1351.

42. Zha ZJ, Mei T, Wang J, et al. Graph-based semi-supervised learning
with multiple labels. Journal of Visual Communication and Image
Representation. 2009;20:97 – 103.

43. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine
learning in Python. The Journal of Machine Learning Research. 2011
Nov;12:2825–2830.

44. Choi Ss, Cha Sh, Tappert CC. A survey of binary similarity and dista-
nce measures. Journal on Systemics, Cybernetics and Informatics.
2010;0:43–48.

45. Davis J, Goadrich M. The relationship between Precision-Recall and
ROC curves. In: Proceedings of the 23rd International Conference on
Machine Learning. ICML ’06. New York, NY, USA: ACM; 2006. p.
233–240.

i
i

“main” — 2017/7/13 — 17:46 — page 12 — #12 i
i

i
i

i
i

12 Muñoz et al.

46. Tsoumakas G, Katakis I, Vlahavas I. In: Maimon O, Rokach L, editors.
Mining multi-label data. Boston, MA: Springer US; 2010. p. 667–685.

47. Manning CD, Raghavan P, Schütze H. 8. In: Chapter 8: Evaluation in
information retrieval. Cambridge University Press Cambridge; 2008.
p. 151–175.

48. Polikar R. Ensemble based systems in decision making. IEEE Circuits
and Systems Magazine. 2006 Third;6:21–45.

49. Yang R, Zhang C, Gao R, et al. An ensemble method with hybrid
features to identify extracellular matrix proteins. PLOS ONE. 2015
02;10:1–21.

50. Schlimmer JC, Granger RH. Incremental Learning from Noisy Data.
Machine Learning. 1986;1:317–354.

51. Rüping S. Incremental Learning with Support Vector Machines. In:
ICDM. IEEE Computer Society; 2001. p. 641–642.

52. Raway T, Schaffer DJ, Kurtz KJ, et al. Evolving data sets to highlight
the performance differences between machine learning classifiers. In:
GECCO (Companion). ACM; 2012. p. 657–658.

53. Dai G, Yeung DY. Tensor embedding methods. In: Proceedings of
the 21st National Conference on Artificial Intelligence - Volume 1.
AAAI’06. AAAI Press; 2006. p. 330–335.

54. Barabási AL. Network science. Cambridge University Press; 2016.
55. Liu TY. Learning to rank for information retrieval. Springer Science

& Business Media; 2011.

i
i

“main” — 2017/7/13 — 17:46 — page 13 — #13 i
i

i
i

i
i

Facilitating Prediction of Adverse Drug Reactions 13

Supplemental Material

A Similarity Graph Construction

Intuitively, there are different ways to obtain a similarity graph, and here
we explore a graph-based approach.

Bio2RDF is a directed graph where each node (e.g. a drug) can be cha-
racterised by its incoming and outgoing edges. In network sciences [54],
the size of such sets determine the out-degree and in-degree of a node, that
is, the number of links that point from the focus node to others, and the
number of other nodes pointing to the focus node, respectively. In a kno-
wledge graph, the sets of incoming and outgoing edges for a node u can
be generated from the edges that match (?,?,u) and (u,?,?), respe-
ctively, where ? can take any value. Thus, the edge and source/target node
labels matching the ? spaces become the features of a given node. More
formally, we represent the set of features of a drug in a knowledge graph G
using two functions: Let Φ↓(G, u) = {(r, v, ‘in’) | ∃r, v(v, r, u) ∈ G}
be the function that extracts the finite set of incoming relations r from v to
u, and let Φ↑(G, u) = {(r, v, ‘out’) | ∃r, v(u, r, v) ∈ G} be the function
that extracts the finite set of outgoing relations r from u to v. Hence, the
function to extract features for nodes in the knowledge graph G is defined
as:

Φ(G, u) = Φ↓(G, u) ∪ Φ↑(G, u). (1)

Example 1. Consider the example knowledge graph in Fig. 3 with ten
resources and relations `i, for 1 ≤ i ≤ 5. Then resulting feature set for
a, i.e., Φ(a), consists of the following elements:

Φ(G, a) =
{

(`4, b, ‘out’), (`3, d, ‘out’), (`5, y, ‘out’), (`1, e, ‘in’),

(`2, z, ‘in’), (`3, x, ‘in’), (`2, c, ‘in’)
}
.

Similarly, we can extract the feature set for x:

Φ(G, x) =
{

(`2, z, ’in’), (`4, v, ’out’), (`3,w, ’out’), (`5, y, ’out’),

(`3, a, ’out’)
}
.

Intuitively, the more features two nodes have in common, the more
similar they are. Thus, we use the feature vectors of drugs to compute
similarities. We use 3w-Jaccard [44] similarity to compute similarities
between all drugs: assigning higher weight to common features, and lower
weight to discriminant features, i.e. those only present in one drug. The
3w-Jaccard between two drugs u and v is defined as:

S3W-JACCARD(u, v) =
3x

3x+ y + z
, (2)

where x = |Φ(u) ∩ Φ(v)|, y = |Φ(u)− Φ(v)|, and z =

|Φ(v) − Φ(u)|, with 0 ≤ S3W-JACCARD ≤ 1. The similarity
metric takes into account all features returned by the feature extra-
ction (see supplemental material Section D), including categorical
(e.g., “International-brand”/“Local-brand”, “Approved”/“Not Appro-
ved”/“Waiting for Approval”) and non-categorical (e.g., numerical, free-
text) values. (The method as it stands considers non-categorical values as
a sequence of characters. Future research areas can go in the direction
of studying another way to use non-categorical values.) In both cases,
each feature becomes a component in the feature vectors used to compute
similarity, where a feature takes value 1 or 0, indicating whether the drug
contains or not that feature. Feature selection in a multi-label setting may
ignore label dependencies, thus, we leave this decision up to each of the
multi-label learning model.

Finally, for KG-SIM-PROP and kNN we construct the W similarity
matrix using the 3w-Jaccard similarity between every pair of drugs: the
similarity graph is represented as an adjacency matrix W ∈ RN×N with
wij = wji = S3W-JACCARD(xi,xj), wii = 0. While for all the other
methods, we use the extracted features to build the design matrix.

a x

c

v

e

y

w

b

d

z

Fig. 3. Example knowledge graph, where labelled nodes aaa to ddd and vvv to zzz, correspond to
entities in the knowledge graph, and relationships are represented as edges between nodes
with labels `i , 1 ≤ i ≤ 5.

B Overview of the Reviewed Multi-Label Learning Models

In the following, we briefly describe the models studied in this article. All
models learn a function f(x, Y) as the one introduced in Section 3.1. The
only model that differs is Logistic Regression, in which we use binary
classifiers to emulate the function f(x, Y).

Decision trees are a non-parametric supervised learning method used
for classification and regression. In this paper, we use the regression
capabilities. In both cases, the goal is to create a model that predicts
the value of a target variable by learning simple decision rules inferred
from the data features. In the ADRs prediction scenario, we want them
to learn a drug’s ADRs based on the biological features of the drug.
Decision trees are interesting for their interpretability – the generated
decision rules are represented as a tree, which can be visualised and
can help understanding the decisions to assign ADRs to drugs. Another
interesting feature of decision trees is the low cost required for training
and prediction.
In our experiments, we used the implementation provided by Scikit-
learn sklearn.tree.DecisionTreeRegressor.

Random forests is a ensemble method that combines the predictors of
several base estimators built with decision trees algorithm. In random
forests, a multitude of decision trees are build at training time and the
output correspond to the mode of the classes (in the case of classification)
or the mean prediction (in the case of regression) of the individual trees.
In our experiments, we used the implementation provided by Scikit-
learn sklearn.ensemble.RandomForestRegressor.

Nearest Neighbours supports unsupervised and supervised learning
functionality. Nearest neighbour methods find a predefined number of
training samples closest in distance to the new point, and predict the
label(s) from these. In our case, we use a user-defined constant k to
select these neighbours, and the 3w-Jaccard distance metric measure.
Neighbours-based methods are known as non-generalising machine
learning methods, since they simply “remember” all training data.
For experimentation, we used the Scikit-learn implementation in
sklearn.neighbors.KNeighborsRegressor.

Multi-layer perceptron is a supervised learning algorithm that learns
a function by training on a data set. This function receives a num-
ber of dimensions for input, and returns a number of dimensions for
output. Multi-layer perceptron is able to learn a non-linear function
approximator for either classification or regression. It differs from logi-
stic regression, in that between the input and the output layer, there can
be one or more non-linear layers, called hidden-layers.
In our experiments, we used the Scikit-learn implementation in
sklearn.neural_network.MLPRegressor.

i
i

“main” — 2017/7/13 — 17:46 — page 14 — #14 i
i

i
i

i
i

14 Muñoz et al.

KG-SIM-PROP is a similarity-based method that performs a constrai-
ned propagation of labels, based on the closest in similarity to the point.
For one example, KG-SIM-PROP performs a truncated propagation of
labels from the closest neighbours.
For experiments, we implemented the algorithm described in [27].

Logistic regression finds a linear combination of the input features, to
perform a regression which divides the class space. In logistic regres-
sion, the probabilities describing the possible outcomes of a single
example are modelled using a logistic function. It implements an opti-
misation problem, which we set to be solve using Stochastic Average
Gradient descent.
In our experiments, we used the Scikit-learn implementation
in sklearn.linear_model.LogisticRegression, and the
strategy known as one-vs-all to generate one classifier per label, imple-
mented in sklearn.multiclass.OneVsRestClassifier.

C Evaluation Metric Formulas

To evaluate the performance of the models we use specific evaluation
metrics for multi-label learning, which are different from the ones used
in traditional supervised learning [40]. Adopting the same notations used
in Section 3.1, let D be our multi-label data set consisting of N multi-
label examples (i.e., drugs) (xi, Yi), 1 ≤ i ≤ p, (xi ∈ X , Yi ∈ Y =

{0, 1}Q), with a label setL, where |L| = Q, i.e., the total number of side
effects. Here, f(·, ·) represents the multi-label regressor and f(xi, Yi) =

{0, 1}Q is the set of label (i.e., ADRs) memberships predicted by f for
the example drug xi. We compute the following example-based ranking
metrics for evaluating the results of the predictions [40, 46]:

One-Error: Evaluates the fraction of examples whose top-ranked label
is not in the set of relevant labels of the instance.

One-Error(f) =
1

p

p∑
i=1

I(arg max
y∈Y

f(xi, y) /∈ Yi),

where, I is an indicator function and f(xi, y) is the score of label y for
an instance xi.

Coverage Error: Evaluates how far we need, on average, to move down
the ranked list of labels in order to cover all the relevant labels of the
instance.

Cov-Error(f) =
1

p

p∑
i=1

max
y∈Yi

rankf (xi, y)− 1.

Ranking Loss: Evaluates the fraction of reversely ordered label pairs,
i.e. an irrelevant label is ranked higher than a relevant label.

R-Loss(f) =
1

p

p∑
i=1

1

|Yi||Yi|

∣∣{(y′, y′′) : rankf (xi, y
′)

> rankf (xi, y
′′), (y′, y′′) ∈ Yi ×Yi

}∣∣,
whereYi is the complementary set of Yi in Y .

Average Precision: Evaluates the average fraction of relevant labels
ranked higher than a particular label y ∈ Yi which actually are in
Yi.

AP (f) =
1

p

p∑
i=1

1

|Yi|

∑
y∈Y i

∣∣{y′ : rankf (xi, y
′) ≤ rankf (xi, y), y′ ∈ Yi

}∣∣
rankf (xi, y)

For One-Error, Coverage and Ranking Loss, the smaller the metric
value the better the system’s performance, with optimal value of
1
m

∑m
i=1 |Yi| − 1 for Coverage and 0 for One-Error and Ranking Loss.

For Average Precision metric, the larger the metric value the better the
system’s performance, with optimal value of 1.

Additionally, we compute three scores originally used in information
retrieval (IR) systems [55] that reflect the prediction ranking and the extent
to which the methods produce not only good, but also highly-ranked good
results, namely:

Hits@K: Hits@K measures the number of elements retrieved among the
K elements with the highest score. Since this metric is per example, we
report its average dividing by the number of examples. We extract this
score for K ∈ {1, 3, 5, 10}.

P@K: P@K stands for the precision at K, i.e. precision computed only
among top K ranking side effects per drug. We extract this score for K
∈ {3, 5, 10}.

D Feature Extraction from a Knowledge Graph

In Section A, we described how to generate a feature set for an entity x in
the knowledge graph based on its incoming and outgoing edges. In pra-
ctice, this feature extraction method is implemented using an SPARQL
query, where SPARQL is a semantic query language for graphs, and
the standard for querying RDF graphs. A SPARQL query is submit-
ted to an Apache Jena Fuseki (downloaded from https://jena.

apache.org/documentation/fuseki2/) HTTP endpoint con-
taining the Bio2RDF data files for DrugBank, SIDER, and KEGG (downlo-
aded from http://download.openbiocloud.org/release/

4/). Listing 1 shows the SPARQL query that generates the feature set for
a given DRUG_URI (a URI identifying a drug in DrugBank). This query
has three main parts: (a) the query in the DrugBank database; (b) the
query in the KEGG database; and (c) the filtering of irrelevant relations.

First, in (a) all triples in the knowledge graph having the DRUG_URI
in a subject or object position are matched, and its direction is set as "in"
(resp. "out") if it is in a object (resp. subject) position. Second, in (b) a
similar process is repeated but over KEGG database. Since KEGG uses
a different URI from DrugBank to represent a drug, a matching triple is
added to the sub-queries. A drug in KEGG is connected to a unique drug
in DrugBank through the kegg:x-drugbank predicate. Thus, given
a DrugBank URI, we can find its equivalent in KEGG using the triple:
?drug kegg:x-drugbank DRUG_URI.

Finally, as shown in Fig. 1, a drug entity contains some functional relati-
onships, i.e., that only occur for that entity. Such relations have no influence
when comparing pairs of drugs (i.e., computing distance between them)
and therefore they can safely be removed at the feature extraction stage.
Examples of these relation include: identifiers, e.g., x-identifiers.org, cas
number, x-drugbank; not biological, chemical or phenotypic properties,
e.g., brand, packager, mixture, toxicity, clearance, patent; and meta-data
relations, among others. Therefore, in (c) a manually selected subset of
relations is filtered out from the final results of the SPARQL query.

The output of the SPARQL query in Listing 1 is a set of
(predicate, entity, direction) tuples, which are later used to generate
the feature vector of an entity. All tuples in the output are considered for
generating the feature set of a drug, and no further filtering is performed
on the features despite the one mentioned within the SPARQL query.

Note that this approach can be easily applied also to other data sets from
Bio2RDF, or even from other source, as long as they are represented using
the RDF format. The data sets only need to be loaded into the endpoint
and then the SPARQL query for generating features needs to be adapted
to these data sets, replacing or augmenting the current list (i.e. Drugbank,
SIDER and KEGG).

i
i

“main” — 2017/7/13 — 17:46 — page 15 — #15 i
i

i
i

i
i

Facilitating Prediction of Adverse Drug Reactions 15

Listing 1. SPARQL query to extract the feature set for an entity in the knowledge graph.

1 PREFIX rdf : <http : / /www.w3.org/1999/02/22−rdf−syntax−ns#>
2 PREFIX rdfs : <http : / /www.w3. org/2000/01/rdf−schema#>
3 PREFIX void : <http : / / rdfs . org /ns /void#>
4 PREFIX dcterms: <http : / / purl . org /dc/ terms/>
5 PREFIX owl: <http : / /www.w3. org/2002/07/owl#>
6 PREFIX bio2rdf : <http : / / bio2rdf . org/>
7 PREFIX drugbank: <http : / / bio2rdf . org /drugbank_vocabulary/>
8 PREFIX kegg: <http : / / bio2rdf . org /kegg_vocabulary/>
9

10 SELECT DISTINCT ?p ?o ?dir WHERE {
11

12 { GRAPH bio2rdf :drugbank_resource : bio2rdf . dataset .drugbank.R4 {
13 { ?o ?p < DRUG_URI > .
14 BIND ("in" as ?dir)
15 }
16 UNION
17 { < DRUG_URI > ?p ?o .
18 BIND ("out" as ?dir)
19 }
20 }}
21

22 UNION
23

24 { GRAPH bio2rdf :kegg_resource : bio2rdf . dataset .kegg.R4 {
25 { ?drug kegg:x−drugbank < DRUG_URI > .
26 ?o ?p ?drug .
27 BIND ("in" as ?dir)
28 }
29 UNION
30 { ?drug kegg:x−drugbank < DRUG_URI > .
31 ?drug ?p ?o .
32 BIND ("out" as ?dir)
33 }
34 }}
35

36 FILTER (?p != bio2rdf :bio2rdf_vocabulary : identifier >) .
37 FILTER (?p != bio2rdf :bio2rdf_vocabulary : uri) .
38 FILTER (?p != bio2rdf :bio2rdf_vocabulary :namespace) .
39 FILTER (?p != bio2rdf :bio2rdf_vocabulary :x−identifiers . org) .
40 FILTER (?p != drugbank:drugbank−id) .
41 FILTER (?p != drugbank:brand) .
42 FILTER (?p != drugbank: calculated−properties) .
43 FILTER (?p != drugbank:ddi−interactor−in) .
44 FILTER (?p != drugbank:packager) .
45 FILTER (?p != drugbank:mixture) .
46 FILTER (?p != drugbank: toxicity) .
47 FILTER (?p != drugbank: half−l i fe) .
48 FILTER (?p != drugbank:food−interaction) .
49 FILTER (?p != drugbank: half−l i fe) .
50 FILTER (?p != drugbank: route−of−elimination) .
51 FILTER (?p != drugbank:ddi−interactor−in) .
52 FILTER (?p != drugbank:product) .
53 FILTER (?p != drugbank: clearance) .
54 FILTER (?p != drugbank:experimental−properties) .
55 FILTER (?p != drugbank:manufacturer) .
56 FILTER (?p != drugbank: patent) .
57 FILTER (?p != drugbank:dosage) .
58 FILTER (?p != drugbank: absorption) .
59 FILTER (?p != drugbank: absorption) .
60 FILTER (?p != kegg: internal−id) .
61 FILTER (?p != kegg: formula) .
62 FILTER (?p != kegg:exact_mass) .
63 FILTER (?p != kegg:mol_weight) .
64 FILTER (?p != kegg:x−drugbank) .
65 FILTER (?p != kegg:x−atc) .
66 FILTER (?p != kegg:x−pubchem.compound) .

67 FILTER (?p != kegg:x−cas) .
68 FILTER (?p != kegg: type) .
69 FILTER (?p != kegg:x−dailymed) .
70 FILTER (?p != kegg:x−nikkaji) .
71 FILTER (?p != kegg:x−ligandbox) .
72 FILTER (?p != kegg:other_map) .
73 FILTER (?p != kegg: generic) .
74 FILTER (?p != kegg:x−ccd) .
75 FILTER (?p != kegg: other) .
76 FILTER (?p != kegg:product) .
77 FILTER (?p != kegg: bracket) .
78 FILTER (?p != kegg: original) .
79 FILTER (?p != kegg: repeat) .
80 FILTER (?p != kegg: source) .
81 FILTER (?p != kegg:component) .
82 FILTER (?p != rdf : type) .
83 FILTER (?p != void : inDataset) .
84 FILTER (?p != rdfs :seeAlso) .
85 FILTER (?p != rdfs : label) .
86 FILTER (?p != owl:sameAs) .
87 FILTER (?p != dcterms: identifier) .
88 FILTER (?p != dcterms: t i t l e) .
89 FILTER (?p != dcterms: description) .
90 }

E Feature Set Manipulation

After the feature set for every drug entity is extracted from the knowledge
graph Bio2RDF, the design matrix is build from them. Each feature set of
a drug only contains the features for that drug, and it is not aware of the
overall set of features. In order to build the design matrix, a vectorisation
must first collect the full set of unique features to assign the final feature
vectors. Listing 2 shows the Python 3 commands required to convert the
feature sets generated by querying the knowledge graph (cf. Listing 1) into
a NumPy (http://www.numpy.org/) 2D array using Scikit-Learn
(http://scikit-learn.org/stable/) APIs.

Listing 2. Generating feature vectors for drugs from the KG.

1 import numpy as np
2 from sklearn . feature_extraction import DictVectorizer
3

4 kb = . . . # instance of a knowledge graph
5 feature_vectorizer = DictVectorizer (sparse=False)
6 # Retrieving drugs’ features
7 drug_to_features_list = [{feature : 1 for feature in
8 kg. get_features (drug)}
9 for drug in drugs]

10 kg_features = feature_vectorizer . fit_transform(drug_to_features_list)

More specifically, the class DictVectorizer (see http://

scikit-learn.org/stable/modules/generated/sklearn.

feature_extraction.DictVectorizer.html for a full docu-
mentation) is used to convert the feature sets into a single design matrix
X (2D Numpy array). In this matrix, a drug’s features are represented by
a row vector Xi, and a single component Xi,j can take values 1 or 0
indicating whether drug i has feature j or not, respectively.

To load the Liu’s data set in MATLAB .mat format, one can make use
of the SciPy (https://www.scipy.org/) library, which provides an
IO package for this. Listing 3 shows an example of this. Because Liu’s
data set provides a different matrix for each feature (i.e., enzymes, pathw-
ays, targets, transporters, treatments, and substructures), the design matrix
can be build by concatenating all of them using Numpy concatenate
function. Similarly, if we want to use different data sets together, e.g., Liu’s
and Bio2RDF, we can use the same concatenate function to generate
a single design matrix.

i
i

“main” — 2017/7/13 — 17:46 — page 16 — #16 i
i

i
i

i
i

16 Muñoz et al.

Liu’s data set also provides the labels (ADRs) for all drugs in a separate
matrix termed side_effect, which is loaded into a y variable. (For the
case of SIDER 4, we provide the design and target matrices for training
and testing instead of by feature groups.)

We provide the different data sets for download and describe their cha-
racteristics in the Web pagehttp://purl.com/bib-adr-prediction
or access the GitHub mirror athttps://github.com/emir-munoz/
adr-prediction.

Listing 3. Loading Liu’s data set and merging it with Bio2RDF data set.

1 import scipy . io as sio
2 import numpy as np
3

4 # Collecting features from the Liu’s dataset
5 data = sio . loadmat(liu_dataset_path , struct_as_record=True)
6 X = np. concatenate ((data[’Enzymes’] , data[’Pathways’] ,
7 data[’Targets ’] , data[’Transporters ’] ,
8 data[’Treatment’] , data[’chemical’]) , axis=1)
9 y = data[’side_effect ’]

10 logging . info (’X: %s , y: %s ’ % (X.shape , y. shape))

F Algorithm for the KG-SIM-PROP Method

In this section we provide a pseudocode for the KG-SIM-PROP
method [27]. KG-SIM-PROP is a similarity-based method that propa-
gates the labels of the k nearest neighbours to a drug using the 3w-Jaccard
similarity metric (cf. Section A). For that the pairwise distance between
the feature vector of the input drug and the feature vectors of all other
drugs is computed (this can be done in parallel per pair using Scikit-Learn
APIs). For example, consider the k-fold cross-validation process where
(k − 1) folds are used to train a model which is then evaluated on the
remaining fold. Let train_X be the feature matrix for the k − 1 folds
and let test_X be the feature matrix for the remaining fold. Listing 4
shows the steps to obtain the similarity matrix between both sets of drugs.
It also illustrates how to obtain the prediction scores for each drug using a
weighted average of the labels coming from the nearest neighbours.

Listing 4. Pseudo code for KG-SIM-PROP model.

1 import numpy as np
2 from sklearn . metrics . pairwise import pairwise_distances
3

4 similarity_matrix = pairwise_distances(test_X , train_X ,
5 metric=similarity_fn , n_jobs=−1)
6

7 # Ini t ial ize the (#samples x #labels) result matrix
8 y_pred = np. zeros ((test_X .shape[0] , train_y . shape[1]))
9

10 for i in range(test_X .shape[0]):
11 # Obtain the nearest neighbours for each sample
12 neighbors = np. argsort (similarity_matrix [i , :] ,
13 kind=’mergesort ’)[::−1]
14 nearest_neighbors = neighbors [:nb_neighbors]
15

16 # Retrieve the similarities to the k nearest neighbors
17 s = similarity_matrix [i , nearest_neighbors]
18 # Retrieve the labels assigned to the neighbours
19 t = train_y [nearest_neighbors]
20 # Get a weighted average of the labels of the k nearest neighbors
21 norm = np.sum(s)
22 y_pred[i] = np. dot(s , t) / norm i f norm != 0.0 else 0.0
23

24 return y_pred

G Algorithm for the Evaluation Protocol

The evaluation protocol followed to evaluate all the models presented in
this manuscript is the same. This protocol considers the data, a model with
its hyper-parameters, and runs a grid search to evaluate the model. Listing 5
shows the steps followed in this protocol in a pseudocode (enriched version
with more details on the hyper parameters).

Listing 5. Algorithm of the evaluation pipeline for the multi-layer perceptron model.

1 # Import multi−label metrics
2 from sklearn import metrics
3

4 # Load data set
5 X, y = load_data ()
6

7 # Define evaluation metrics
8 metrics = [metrics . coverage_error , metrics . label_ranking_loss , . . .]
9

10 # Instantiate a multi−label learning model
11 pipeline = Pipeline ([(’MLP’ , MLPRegressor())])
12

13 # Define hyper−parameters space
14 parameter_space = {
15 ’MLP__hidden_layer_sizes’ : [(64 ,) , (128 ,) , (256 ,) , (512 ,)] ,
16 ’MLP__activation’ : [’ logistic ’] ,
17 ’MLP__solver’ : [’adam’] ,
18 ’MLP__beta_1’ : [0.9] ,
19 ’MLP__beta_2’ : [0.999] ,
20 ’MLP__epsilon’ : [1e−8],
21 ’MLP__early_stopping’ : [True] ,
22 ’MLP__validation_fraction’ : [0.1] ,
23 ’MLP__alpha’ : [0.01] ,
24 ’MLP__batch_size’ : [int (np. ceil (x. shape[0] ∗ .2))] ,
25 }
26

27 # Run grid search or train / test
28 run_grid_search(X, y, pipeline , parameter_space , metrics)

In Listing 5 one can use any of the metrics for multi-label lear-
ning available in Scikit-Learn (cf. http://scikit-learn.org/
stable/modules/model_evaluation.html for details) in the
metrics list parameter, and select one of them for tuning. The best
combination of parameters for a model if found by using a k-fold
cross-validation with grid search (cf. http://scikit-learn.org/
stable/modules/grid_search.html). Also, new metrics can be
defined by extending Scikit-Learn APIs. In Listing 6 we provide an exam-
ple of how to define the One-Error metric not available from Scikit-Learn
library.

Listing 6. Declare a new evaluation metric.

1 def one_error(y_true , y_pred , pos_label=1):
2 assert y_true . shape[0] == y_pred . shape[0]
3 assert y_true . shape[1] == y_pred . shape[1]
4

5 p = y_true . shape[0]
6 one_error = 0.0
7 for i in range(p) :
8 y_i , p_i = y_true[i , :] , y_pred[i , :]
9 idx = np.argmax(p_i)

10 one_error += (1.0 / p) i f y_i[idx] != pos_label else 0.0
11

12 return one_error

