
 
Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-04-25T02:02:43Z

 

Some rights reserved. For more information, please see the item record link above.
 

Title An optimal day-ahead load scheduling approach based on the
flexibility of aggregate demands

Author(s) Ayón, X.; Gruber, Jorn K.; Hayes, Barry P.; Usaola, J.;
Prodanovi, M.

Publication
Date 2017-04-26

Publication
Information

Ayón, X., Gruber, J. K., Hayes, B. P., Usaola, J., & Prodanovi,
M. (2017). An optimal day-ahead load scheduling approach
based on the flexibility of aggregate demands. Applied Energy,
198, 1-11. doi: https://doi.org/10.1016/j.apenergy.2017.04.038

Publisher Elsevier

Link to
publisher's

version
https://doi.org/10.1016/j.apenergy.2017.04.038

Item record http://hdl.handle.net/10379/6529

DOI http://dx.doi.org/10.1016/j.apenergy.2017.04.038

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/


An optimal day-ahead load scheduling approach based on the flexibility of

aggregate demands
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Abstract

The increasing trends of energy demand and renewable integration call for new and advanced approaches to energy

management and energy balancing in power networks. Utilities and network system operators require more assist-

ance and flexibility shown from consumers in order to manage their power plants and network resources. Demand

response techniques allow customers to participate and contribute to the system balancing and improve power qual-

ity. Traditionally, only energy-intensive industrial users and large customers actively participated in demand response

programs by intentionally modifying their consumption patterns. In contrast, small consumers were not considered in

these programs due to their low individual impact on power networks, grid infrastructure and energy balancing. This

paper studies the flexibility of aggregated demands of buildings with different characteristics such as shopping malls,

offices, hotels and dwellings. By using the aggregated demand profile and the market price predictions, an aggregator

participates directly in the day-ahead market to determine the load scheduling that maximizes its economic benefits.

The optimization problem takes into account constraints on the demand imposed by the individual customers related to

the building occupant comfort. A case study representing a small geographic area was used to assess the performance

of the proposed method. The obtained results emphasise the potential of demand aggregation of different customers

in order to increase flexibility and, consequently, aggregator profits in the day-ahead market.

Keywords: demand flexibility, demand response, load scheduling, electricity market

1. Introduction

Demand side flexibility is gaining importance due to

the rise in distributed renewable generation, increasing

energy demand, and lower predictability in the electri-

city markets. A high level of demand flexibility is cru-

cial in order to cope with less predictable energy flows,

and mitigate against price volatility. It is also required to

create a level playing field for emergent market services

and to maintain a secure network and a high-quality sup-

ply of electricity [1]. The economic benefit of DR is

based on its ability to substitute peak power generation

capacity and on its competitiveness compared with short
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to medium-term storage technologies [2]. Moreover,

temporal variations in DR application highlight the par-

ticular importance of load profiles in the assessment of

DR potential.

Traditionally, only large industrial customers had ac-

cess to Demand Response (DR) schemes, selling their

flexibility and participating in the electricity market on

an individual basis. In contrast, smaller residential and

commercial customers generally have not participated

in the markets to date, as their individual demands were

considered too low to have an effect at the system level.

However, the demand flexibility offered to the electrical

system can be greatly increased by aggregating these

smaller loads. In this way, an aggregator may act as

a market intermediary [3] that encourages smaller cus-

tomers to increase their DR contributions (or to directly

control their flexible loads) and trades their flexibility

(as portfolio optimization) in electricity markets.

A good overview on the most common DR method-

ologies can be found in [4, 5, 6]. Demand flexibility
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Nomenclature

Indices

k time interval to compensate flexible load, h

t time interval, h

Variables

P
pback

k,t
payback power at k from non-residential flex-

ible energy taken at t, kW

P
f lex
t non-residential flexible demand taken at t,

kW

Pload
t total demand bid in the market at t, kW

Pnresi
t net flexible non-residential demand from

heating and cooling loads at t, kW

Presi
t shiftable demand from residential electrical

devices at t, kW

Constants and data

πt electricity market price at t, AC/kWh

d duration of the market time period, h

Eresi daily shiftable residential energy, kWh

Nh optimization horizon

Nk maximum time for flexible load payback

Ns number of periods for residential load shift-

ing

P
com f
t Non-residential demand from the use of the

comfort temperature in period t, kW

P
agnr
t , P

agnr
t upper and lower limits of the aggregate

non-residential demand at t, kW

P
agr
t , P

agr
t upper and lower limits of the aggregate

residential demand at t, kW

P
tag
t , P

tag
t upper and lower limits of the total aggreg-

ate demand at t, kW

in the residential sector can be achieved by using com-

mon household appliances (e.g. washing machines, dry-

ers, dishwashers, etc.), electric vehicles or heating sys-

tems [7]. Previous research has examined the provision

of demand flexibility through scheduling of home ap-

pliances [8, 9], or through user responses to time-of-

use electricity pricing [10, 11]. Domestic thermal loads

such as electric water heaters have also been applied

as flexible demand resources, particularly in colder cli-

mates [12, 13].

In commercial buildings heating, ventilation and air-

conditioning (HVAC) demands represent suitable can-

didates for DR [14, 15]. Building thermal dynamics al-

lows demand flexibility to be introduced by temporarily

changing indoor temperature conditions without redu-

cing occupant comfort. A number of papers focus on

demand flexibility from HVAC systems in both residen-

tial and non-residential buildings. In [16], the electri-

city consumption during specific hours of a day is either

maximized or minimized by adjusting the HVAC load,

while maintaining thermal user comfort. In [17], the po-

tential impacts of the individual responsive appliances

were studied and the results revealed that almost all the

benefits could be achieved by harnessing the flexibility

of heating and ventilation systems, although this study

was conducted in a Nordic country.

A key consideration in such studies is the impact of

adjustments in HVAC control setpoints on user comfort.

The international standards ISO 7730:2005 [18] and

ASHRAE 55:2013 [19] deal with indoor climate and

the range of factors which influence user comfort levels.

These standards provide guidelines on acceptable build-

ing temperature levels, and also provide information on

what temporary excursions from the standard temperat-

ure ranges are can be allowed without adversely impact-

ing user comfort.

Many works quantify flexibility from commercial

buildings (e.g. offices), but few of them use it in the

electricity market. In [20], a methodology for comput-

ing the flexibility of buildings and its cost is proposed

and a case study on an office building reveals a large

variation in both flexibility and cost depending on time,

weather, utility rates, building use and comfort require-

ments. In [21], a coordination framework for leveraging

demand flexibility from buildings is proposed, and the

demand flexibility of an office building is quantified,

finding difficulties in achieving tasks’ shift-ability and

lack of significant price differentiation between off-peak

and peak periods.

In [22], the aggregation of detached houses is car-

ried out to investigate the benefit of heating load flex-

ibility for the aggregator and the consumers in the Nor-

dic day-ahead market. Consumer participation is rewar-

ded with flexibility or comfort based bonuses. How-

ever, the results are optimistic because it assumes per-

fect forecasts for demand, spot prices, and residual sup-
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ply curves. Also, it shows that flexibility provides more

benefit when it is optimized with inflexible demand

and that massive building structures receive more bo-

nus, whereas efficient insulation tends to decrease the

amount of bonus.

In this work, the aggregator is assumed to be an en-

tity representing the role of a retailer, a flexibility man-

ager and a balance responsible party or market agent.

A more detailed explanation of these functions can be

found in [23, 24, 25]. This entity agrees with its cus-

tomers to directly control their electricity consumption

of their flexible loads (HVAC loads from commercial

customers and smart appliances from residential cus-

tomers) [26, 27]. These flexible demands can be shifted

along a given time period depending on the nature of

the process [28], but the amount of daily energy to be

consumed is known and previously agreed between the

aggregator and its customers. This type of agreement is

not considered in the work proposed here. At last, it is

assumed the non-residential customer thermal comfort

is ensured by the control of the indoor temperature that

depends on the building thermal inertia, time, weekday,

season and occupancy pattern.

To measure the demand flexibility of the aggregation

of different buildings, we use the demand flexibility ra-

tio that is the difference between the upper and lower

limits of the aggregated demand regarding the total flex-

ible demand at a certain time. The demand flexibility ra-

tio and the aggregator daily average profit from its par-

ticipation in the day-ahead market will be analysed by

using a case study based on the aggregation of different

building types. The optimal demand will be disaggreg-

ated to simulate the impact of the optimal load schedul-

ing on individual buildings. It will be shown the indoor

temperatures remain within the desired range even when

there is no linear relation between the energy demand

and the indoor temperature. The results will demon-

strate that an adequate aggregation of different building

types allows the aggregator to achieve significant eco-

nomic profits in the day-ahead market.

The main topics addressed in this work are listed

as follows: 1) flexibility modelling of aggregated de-

mands from buildings with different characteristics such

as shopping malls, offices, hotels, and dwellings. Al-

though the flexibility could be obtained from real data,

the aggregator needs to forecast the possible hourly

bounds of the flexible load types (HVAC and wash-

ing machines), since every building demand has differ-

ent consumption profiles and dynamics (consumer be-

haviour, weather, season, etc). In this case the min-

imum and maximum temperatures are used only to ob-

tain the estimation of the demand flexibility used for the

next day offer. However, once either positive or negat-

ive flexibility is used the energy must be compensated

during the following hours (as explained in the optimal

scheduling section). Obviously, during this interval the

demand flexibility does not coincide with the profile

generated for the purpose of providing the demand flex-

ibility offer. 2) An effective optimization model that

takes into account the constraints over demand related

to the building occupant comfort, and provides the op-

timal load scheduling for the aggregator into daily mar-

kets. The principal contribution of the paper is the com-

bination of points 1) and 2). At last, the performance of

the proposed method is assessed in a case study repres-

enting a small geographic area. The demand flexibility

ratio and the aggregator daily average profit from its par-

ticipation in the day-ahead market are analysed for 16

days during summer and winter periods, respectively.

This paper is structured as follows. Section 2 presents

the methodology used in this work. Section 3 provides

a brief description of the Spanish day-ahead electricity

market and the participation rules. Section 4 describes

the simulation models used to determine the available

demand flexibility in residential and non-residential

buildings. Section 5 defines the mathematical optim-

ization problem to be solved by the aggregator for the

optimal demand scheduling. The considered case study

with different building types is presented in Section 6

and the obtained results are presented in Section 7. Fi-

nally, in Section 8 the most important conclusions are

drawn.

2. Methodology

In this paper, statistical data has been used to model

the residential energy consumption as well as architec-

tural characteristics, building usage, location, on-site fa-

cilities, occupancy and economic data to model the non-

residential energy consumption. In order to simulate

a real market environment, the forecasted prices used

in the paper were taken from Iberian day-ahead market

data.

In the proposed method, the aggregator firstly models

and aggregates the flexible consumption of certain pro-

cesses from their users to obtain the reference demand

profile with its upper and lower bounds in order to man-

age the flexibility according to its objectives. Then the

aggregator uses the flexibility and the wholesale mar-

ket price predictions as inputs in the optimization prob-

lem that derives an optimal load scheduling. Finally,

the aggregator submits the optimal load scheduling to

the day-ahead market in order to minimize the energy

cost or maximize its profit.
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3. Electricity market

Approximately two thirds of the energy consumed in

the Spanish peninsular system is managed in the day

ahead market by OMIE (OMI-Polo Español S.A., Span-

ish electricity market operator). This body is in charge

of collecting orders, clearing the markets and publish-

ing results. The Spanish market is a part of the EU’s

Internal Electricity Market, where electricity prices are

set on a daily basis (every day of the year) at 12 noon,

for the twenty-four hours of the following day. As de-

scribed in [29], “the price and volume of energy over

a specific hour are determined by the point at which

the supply and demand curves meet, according to the

marginal pricing model adopted by the EU, based on

the algorithm approved for all European markets (EU-

PHEMIA)”. Both results and rules can be found in

[30, 31, 32].

In the day ahead market, purchase and sale bids for

day D must be sent to OMIE before the gate closure at

12 a.m. of day D-1. After the daily market, six sessions

of an adjustment (intraday) market take place along the

day. The average interval between the gate-closure and

the physical delivery of energy is 4.5 hours for these

intraday markets.

According to the current rules, the agents that can

participate in these markets are producers, retailers, dir-

ect consumers and international traders. Consumers and

retailers can only buy energy in the daily market, al-

though they can sell or buy energy in the intraday mar-

ket to fit their actual consumption to the energy traded.

If there is a difference between the two an imbalance oc-

curs that must be paid at a higher price than the marginal

price.

Retailers must submit a bid for the energy they are

interested in buying with the price assigned. Most of

the demand is traded at the cap price from the Spanish

market, 180 AC/MWh, which means that it is inflexible

demand, not changing with price. Only a part of the

consumption is offered at a price close to that of the

market.

4. Flexibility modelling

Demand flexibility describes the customers’ ability to

modify their energy consumption in response to an ex-

ternal signal. Two simulation models have been used to

determine the demand flexibility offered by residential

and non-residential buildings.

Figure 1: Principal steps in the applied residential energy consump-

tion modelling.

4.1. Flexibility in the residential sector

Demand flexibility in the residential sector is con-

sidered as relevant because of significant daily and sea-

sonal variations of the observed loads. Nowadays, res-

idential demand depends directly on the customer habits

where comfort plays a decisive role in energy consump-

tion. Flexibility in the energy demand can be achieved

by incentivising changes in customer habits while re-

ducing negative impacts on comfort as much as pos-

sible. In the present paper the effects of a modified

user behaviour have been determined by using a res-

idential energy consumption model based on statistical

data [33, 34].

The model used estimates energy consumption of a

household in three phases (see Fig. 1): generation of the

household configuration, computation of the daily use

of each appliance and calculation of the exact energy

demand of each appliance. The different steps of the

consumer energy demand model are based on a prob-

abilistic approach by using basic appliance definitions

and statistical data for the generation of the consump-

tion data. The appliance definitions are not considered

part of the model and have to be supplied externally.

In the first step the consumer energy demand model

determines the configuration of one or several house-

holds. The number of devices of a certain appliance type

in a household is computed by using a binomial distribu-

tion in order to obtain certain variation around a desired

average value. In the second step the consumer energy

demand model computes the daily usage for each ap-

pliance in the household, i.e. if and how many times

a device is used on a particular day. The frequency of

use of some appliances is influenced by seasonal factors

and has been considered in the consumer energy de-

mand model. In the third step the model determines the

exact time-of-use for the appliances by exploiting the

statistical data. At this stage, the power curve of each

appliance and the overall consumer energy demand of

4



Figure 2: Energy consumption of a group of 1000 residential custom-

ers with average usage patterns (top) and modified usage patterns with

increased use of washing appliances at night hours (bottom).

a household are calculated with a sampling time of 15

minutes.

Flexibility in the residential sector can be then mod-

elled as the difference between the demand of an ordin-

ary customer and the demand of a user which has been

incentivised to modify its energy consumption habits

(commonly by providing economic benefits through

time-of-use tariffs of dynamic pricing schemes). The

previously described energy consumption model can be

used to determine the possible demand variation result-

ing from such a change in user behaviour (see Fig. 2 for

an example based on modified usage patterns). The de-

mand consists of a fixed part – the minimum demand,

which does not depend on the considered changes in

user habits – and a variable part represented by the flex-

ibility as a consequence of changed customer consump-

tion patterns (see Fig. 3).

In the residential sector, demand flexibility is fre-

quently obtained by changing the operation time of en-

ergy intensive appliances such as washing appliances.

Other approaches include modifications in the duty

cycle of cold devices (e.g. freezers or refrigerators) or

variations in the power level of lighting and other appli-

ances.

Figure 3: Demand flexibility of a group of 1000 residential customers

obtained from modified usage patterns for washing appliances.

Figure 4: Structure of the building energy estimation tool [36] used to

determine the non-residential building energy consumption.

4.2. Flexibility in non-residential sector

Non-residential buildings contribute significantly to

the total energy demand and account for up to 20 %

of primary energy consumption [35]. Demand flexib-

ility in the non-residential sector is frequently achieved

by modifying the building operation conditions (such

as HVAC temperature setpoints) within a certain pre-

defined range. In this paper, the building energy es-

timation tool developed in [36] is used to provide de-

tailed demand profiles for commercial buildings (see

Fig. 4). This tool includes a physical model of the

building structure and a model of the behavioural pat-

terns of its users, considering architectural characterist-

ics, building usage, location, on-site facilities, presence

of people and economic data. This flexible configura-

tion allows modelling of a wide range of different build-

ing types such as shopping malls, office buildings and

hotels.

The building energy estimation tool outlined in [36]
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has been modified to include the building’s temperat-

ure dynamics and thermal capacity in the energy de-

mand estimation. Heating, ventilation and air condi-

tioning (HVAC) systems represent good candidates for

demand side management (DSM) strategies in the non-

residential sector because of their most significant im-

pact on energy consumption. Indoor temperature reg-

ulation takes advantage of thermal inertia of buildings

and can be used for prolonged load changes [37].

The simulation tool can be used to determine the

primary energy demands of a non-residential building

for different indoor temperature references (see Fig. 5

for an example). The applied indoor temperature refer-

ence has an important impact on the energy demand and

allows regulating the energy consumption of the build-

ing. The building manager is who chooses the indoor

temperature references to guarantee a high comfort level

taking into account the energy consumption and the as-

sociated costs, for instance, from 09:00 to 22:00 for a

commercial center, there is a more comfortable indoor

temperature but, the remaining hours of the day it al-

lows a higher indoor temperature for summer or lower

for winter, which reduces the consumption. The energy

demands achieved with the minimum and maximum in-

door temperature references represent the limits of the

available demand flexibility (see Fig. 6), i.e. the control-

lable range of the building energy demand. It should be

noted that the maximum building energy demand does

not necessarily correspond to the maximum indoor tem-

perature reference.

Building occupant comfort (as defined in [18]

and [19]) is the limiting factor for demand flexibility

in the non-residential sector when HVAC systems are

used. Any temporary modifications in heating, cool-

ing and air conditioning have to be later compensated

in order to preserve suitable indoor conditions. The re-

latively slow thermal dynamics of buildings can be ex-

ploited for peak load reduction or load shaping.

Once all the individual flexibilities of all residential

and non-residential loads are aggregated, the total de-

mand flexibility and its maximum and minimum lim-

its are known to the aggregator and can be used for the

optimal scheduling according to the predicted market

prices.

5. Optimal Scheduling of Aggregate Demand

This section introduces the mathematical formulation

of the optimal scheduling for the aggregate demand.

The optimization carried out by the local aggregator

maximizes the economic benefit taking into account the

available demand flexibility and the predicted market

Figure 5: Energy demand of an office building on a workday with

low indoor temperature reference (top) and high indoor temperature

reference (bottom).

Figure 6: Demand flexibility of an office building obtained from vari-

ations of the indoor temperature reference.
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prices. The aggregator participates directly in the daily

electricity market and orders the required energy ac-

cording to the obtained optimal scheduling.

The optimization of the aggregate demand takes into

consideration the flexibility previously modelled and

calculated in Section 4 from residential and non-

residential customers with their upper and lower bounds

for each time period. Even though it is difficult to pre-

dict the flexibility beforehand, it must be known by the

aggregator in order to manage it in the day-ahead mar-

ket, minimize the energy cost or maximize its profit.

Although this flexibility can be calculated by different

methods, the optimization of the aggregate demand con-

siders the following two types of flexible demands:

• Flexible residential demand: some electrical appli-

ances can be connected and disconnected at dif-

ferent moments in a day depending on the market

prices forecast and the consumer behaviour fore-

cast (flexibility bounds). Some part of the demand

can be, therefore, shifted along a given period of

time, but the amount of the daily energy to be con-

sumed is known and previously agreed between the

aggregator and the residential consumers.

• Flexible non-residential demand: loads that admit

temporal variations within a certain range, mainly

heating and cooling demands. These loads have

a payback interval of a few hours [28], i.e. any

load reduction or increase has to be compensated

in the following hours. This type of demand has

an implicit relation with the comfort temperature

of several different non-residential buildings con-

trolled by a thermostat device. Thus, consumer

behaviour, building dynamics and weather condi-

tions considered in the forecast flexibility model

together with the forecast market prices must be

taken into account to minimize the energy cost in

the daily market.

The optimization process determines the most favour-

able purchase cost of the energy made by the aggregator

in the daily market. Throughout the paper, we assume

that 1) the aggregator is a price taker, because the en-

ergy purchased does not significantly affect the result-

ing market price; and 2) the aggregator buys and sells

energy at the same price, i.e., network access tariffs and

taxes have not been included. The used formulation is

linear:

min

Nh∑

t=1

πtP
load
t d (1)

subject to the following constraints for t = 1, . . . ,Nh and

k = 1, . . . ,Nk :

Ns∑

t=1

Presi
t d = Eresi (2)

Pnresi
t = P

com f
t − P

f lex
t +

Nk∑

k=1

P
pback

k,t
(3)

Pload
t = Presi

t + Pnresi
t , t = 1, . . . , Nh (4)

P
f lex
t =

Nk∑

k=1

P
pback

k,t+k
, ∀ k = 1, . . . , Nk (5)

Nh∑

t=1

P
f lex
t d =

Nk∑

k=1

Nh∑

t=1

P
pback

k,t
d (6)

P
tag
t ≤ Pload

t ≤ P
tag
t , t = 1, . . . ,Nh (7)

P
agr
t ≤ Presi

t ≤ P
agr
t , t = 1, . . . ,Nh (8)

P
com f
t − P

agnr
t ≤ P

f lex
t ≤ P

com f
t − P

agnr
t (9)

P
pback

k,t
= 0, ∀ k ≥ t (10)

P
f lex

Nh
= 0 (11)

The minimization problem (1) is based on the object-

ive function represented by the total energy costs over

the optimization horizon considering variable market

prices. The optimal scheduling allows the aggregator to

reduce the cost of the purchased energy in the electricity

market. Here, Pload
t includes flexible and non-flexible

components that are represented by the upper and lower

limits of the aggregate load.

It is followed by the constraints of the process. Equa-

tion (2) formulates the condition that the shiftable res-

idential demand should be provided in a given number

of hours, Ns, here Eresi is considered as a fixed amount

of energy per day that was agreed between the aggreg-

ator and their residential consumers through a previous

contract. Equation (3) defines the optimal net flexible

non-residential demand that comes from electrical heat-

ing and cooling loads. Here, P
com f
t is the hourly con-

sumption if the comfort temperature has been set for the

day, P
f lex
t is the non-residential flexible load that could

be positive or negative if a load reduction or a load in-

crease is required and is equivalent to delaying or ad-

vancing the operation of heating and cooling processes

and, the last term corresponds to the paid back power

that is divided in Nk variables at a certain period t, i.e.,

if Nk = 3 we have the variables P
pback

1,t
, P

pback

2,t
and P

pback

3,t
.

Equation (4) defines the optimal total load Pload
t ,

which is the result of the optimization process and is

formed by residential and non-residential demands.
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The condition that the non-residential flexible power

taken in a specific period t should be paid back in the

next t + k hours for the Nk variables is formulated in

equation (5); for example if t = 1 and Nk = 3, then we

have P
pback

1,2
, P

pback

2,3
and P

pback

3,4
. To ensure that the non-

residential flexible energy taken for the day is balanced

in the same day, the equation (6) is introduced. The rest

of the equations set the limits of the variables, except

the last two, which set the initial and final conditions.

One should note that Pnresi
t includes a non-flexible com-

ponent that is its lower limit and corresponds to the case

where there is no heating or cooling consumption. Al-

though the time slot has been one hour, according to the

Spanish market features, the formulation could be ap-

plied to any other time slot, d.

6. Case study

The performance of the proposed flexibility schedul-

ing method (see Section 5) has been assessed in a case

study representing a small geographic area. The region

under consideration consists of 4000 residential custom-

ers, 12 hotels, 8 office buildings and 2 malls. The ag-

gregator combines the individual demands of the energy

users and participates directly in the Spanish electricity

market [38]. The regional energy demand is optimized

by the aggregator with respect to economic objectives

(see Section 5) taking into account the real-time energy

prices of the electricity market and the available aggreg-

ated flexibility of the customers.

The simulations were carried out in the Matlab en-

vironment by using realistic demand profiles obtained

from the models of the residential and non-residential

sector (see Section 4). In the case study, a maximum

payback of three hours (Nk = 3) was used, i.e. load vari-

ations induced by the optimization procedure had to be

compensated within 1 to 3 hours. This value of Nk is in

the range of other previous research [28, 39] and agrees

with our own conclusions.

Note that the flexibility model and the case study con-

siders different sampling times of 15 minutes and 1 h,

respectively. It is worth saying that for each house we

used the average power value of the household con-

sumption over one hour period and then aggregated a

large number of houses providing an excellent approx-

imation. Thus, the models are independent but not in-

compatible.

6.1. Demand Flexibility Considerations

The individual demands in the considered area ex-

hibit significant differences depending on the type of
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Figure 7: Demand flexibility in the residential sector (100 customers)

for one week in winter obtained from modified energy consumption

patterns.

consumer connected. The admissible maximum and

minimum loads define the flexibility that can be offered

by each energy user.

Residential customers usually have a moderate en-

ergy consumption during daytime hours with a minor

increase in the morning and a peak demand around din-

ner time. During weekends energy consumption of res-

idential customers is generally higher while the after-

noon peak is substantially lower. In the case study

demand flexibility in the residential sector has been

achieved by modifying energy consumption patterns

(see Fig. 7). It was assumed the users were incentiv-

ized to shift operation of energy intensive appliances

(i.e. washing machines, clothes dryers and dishwash-

ers) to low demand periods (off-peak hours). Domestic

thermal loads such as electric water heaters are import-

ant flexible resources, particularly used in colder cli-

mates [12, 13]. Nevertheless, our case study focuses

on Spain, where their use is not very widespread and

therefore they have been excluded from our analysis.

The geographic area contains several hotels that have

been modelled as typical medium-sized hotels focussed

on city tourism with a high occupation throughout the

year. Each hotel is located in a five storey building (15 m

high, 35 m long, 20 m wide) with a modest thermal in-

sulation. Each building is equipped with a heat pump,

an additional electric space heating, a chiller and a solar

water heating system. The indoor temperature is main-

tained every day of the year from 8 am to 9 pm between

20 oC and 24 oC. At other times, indoor temperature

limits are reduced by 2 oC in winter and increased by

2 oC in summer. Indoor temperature regulation within

the given intervals is employed to add demand flexibil-

ity (see Fig. 8) to the hotel’s energy system.

The office buildings in the simulated region are rep-

resented by seven storey buildings (21 m high, 43 m
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Figure 8: Demand flexibility of a medium-sized hotel for one week in

winter obtained by using indoor temperature variations.
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Figure 9: Demand flexibility of an office building for one week in

winter obtained by using indoor temperature variations.

long and 15 m wide) with two additional basement

levels used as a parking. On an ordinary workday ap-

proximately 300 people do their work in each office

building. Walls and roofs are well insulated and 60 %

of the façades are covered by solar control windows.

The installed HVAC systems include energy efficient

heat pumps and chillers. During working hours indoor

temperature is maintained between 20 oC and 24 oC.

Outside office hours the permitted indoor temperature

is reduced by 3 oC in winter and increased by 3 oC in

summer. Indoor temperature variations within the men-

tioned intervals convert part of the building load in a

flexible demand (see Fig. 9).

Large shopping malls are the third type of non-

residential buildings considered in the simulation of a

small geographic area. These buildings have only few

windows in the external walls and a good thermal insu-

lation to minimize the effect of variable ambient condi-

tions. Each mall opens seven days a week from 9 am

to 10 pm with a noticeable higher number of custom-

ers on holidays and weekends than on workdays. Heat-

ing, cooling and residential hot water is supplied by heat

Table 1: Non-residential building data

Hotel Office Mall

Storey Buildings 5 7 –

High x Long x Wide (m3 ) 15x35x20 21x43x15 –

Thermal Insulation Modest Medium High

Indoor Temperature in Opening Hours 20-24◦C 20-24◦C 18-22◦C

Indoor Temperature in Closing Hours (Winter) 18-22◦C 17-21◦C 15-19◦C

Indoor Temperature in Closing Hours (Summer) 22-26◦C 23-27◦C 21-25◦C
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Figure 10: Demand flexibility of a mall for one week in winter ob-

tained by using indoor temperature variations.

pumps, chillers and solar collectors on the building roof.

During opening hours the temperature in the malls is

maintained in the range from 18 oC to 22 oC. When the

malls are closed, i.e. from 10 pm to 9 am, the indoor

temperature limits are reduced by 3 oC in winter and in-

creased by 3 oC in summer. Flexibility in the mall’s en-

ergy demand is achieved by modifying indoor temper-

ature between permitted minimum and maximum tem-

perature (see Fig. 10).

A data summary is shown in Tab. 1. Note that open-

ing hours for a hotel corresponds from 8 am to 9 pm.

6.2. Aggregated energy demand

The optimization algorithm has been developed for

groups of buildings or local areas that include custom-

ers from various sectors. The aggregation of residen-

tial and commercial users with different energy con-

sumption patterns allows increasing demand flexibility1

throughout the day.

The overall demand considered in the case study is

obtained by aggregating the individual loads of the en-

ergy users (see Section 6.1 for the demands of the dif-

ferent building types) in the simulated geographic area.

1With the permitted maximum and minimum power at a certain

time the ratio of demand flexibility can be defined formally as:

F(t) =
max(P(t)) −min(P(t))

max(P(t)) +min(P(t))
(12)

which ranges from 0 (no flexibility) to 1 (high flexibility).

9



0 24 48 72 96 120 144 168
0

2000

4000

6000

8000

time [h]

de
m

an
d 

[k
W

]

0 24 48 72 96 120 144 168
0

0.1

0.2

0.3

time [h]

fle
xi

bi
lit

y 
[−

]

Figure 11: Aggregated demand with lower and upper limits (top) and

resulting ratio of demand flexibility (bottom) for one week in winter.

The aggregate demand and the resulting flexibility for

one week in winter is shown in Fig. 11. The lower and

upper limits of the demand present two large peaks in

the morning hours and in the late afternoon/early night

hours. The corresponding flexibility varies between 0.1

and 0.3 with maximum values during night.

The minimum and maximum values of the aggregate

demand for one week in summer are given in Fig. 12.

The demand shows large variations over the day with

low values at night and high values during the day, espe-

cially in the afternoon. In contrast, the obtained flexib-

ility is high at night (up to 0.4) and relatively low during

the day (approximately 0.12). For the considered area,

a generally higher demand flexibility can be observed in

summer than in winter.

6.3. Real-time pricing

The real-time prices used in this case study are the

wholesale market prices. In this case they are used as

the market price predictions by the aggregator a day be-

fore the actual time of energy delivery to the consumer.

Note that these prices differ to the final prices paid by

the end-users, which have not been addressed in this

work, since the objective of it is to minimize the en-

ergy procurement cost for the aggregator in the whole-

sale market. The final price should include access fees

and taxes, and the aggregator must take them into ac-

count for the contractual arrangement with the custom-

ers. The design of these conditions is out of the scope of

this paper. In response to changes to energy prices, the
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Figure 12: Aggregated demand with lower and upper limits (top) and

resulting ratio of demand flexibility (bottom) for one week in summer.

aggregator tries to adjust the aggregate consumption to

maximize its own welfare. The day-ahead energy prices

that correspond to the periods of the aggregate load on

typical winter and summer days (January 14-29 and July

1-16, 2013) are used from data of the Spanish wholesale

electricity market [40]. The average energy prices dur-

ing the 16 days analyzed in winter and summer were 5

cAC/kWh and 4.5 cAC/kWh, respectively.

7. Results

Given the aggregate flexible loads, the solution to

the optimization problem is the optimal scheduling that

minimizes the cost of the purchased energy in the daily

electricity market for the considered operation pro-

cesses.

The detailed results obtained with the proposed op-

timization procedure applied to the aggregate demand

of a small geographic area are given in Tab. 2. The eco-

nomic profit shown represents the daily energy cost dif-

ference between the non-optimized and the optimized

case. The daily average profit for the considered area,

achieved with the load scheduling based on flexibility,

adds up to 97.9 AC in winter and 36.4 AC in summer. In

addition to that, the ratio of demand flexibility determ-

ined with (12) is displayed for each building cluster. It

can be observed that the considered hotels, office build-

ings and malls have a higher demand flexibility dur-

ing summer. In contrast, residential customers exhibit

a slightly increased demand flexibility in winter.
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Table 2: Daily Average profit and rate of flexible consumption per

cluster of building

Winter Summer

Building Nro. Profit Flex. Profit Flex.

AC % 1 × 10−2
AC % 1 × 10−2

Hotels 12 10.7 11 1.9 4.8 13.1 3.1

Offices 8 10.4 10.6 2 4.4 12.2 2.8

Malls 2 31.4 32.1 5.7 13.4 36.9 8.8

Dwellings 4000 45.4 46.3 6.5 13.8 37.8 6.2

Total – 97.9 100 16.1 36.4 100 20.9

The electricity market price and its daily variations

play an important role in the energy cost reduction

based on optimal load scheduling. In the analyzed

case study the observed difference between minimum

and maximum prices is 2.4 cAC/kWh in summer and

5.56 cAC/kWh in winter. The larger market price vari-

ations during winter led directly to higher economic

profits for each building type and the entire area. The

higher demand flexibility of hotels, office buildings and

malls during summer did not compensate the lower mar-

ket price variations resulting in smaller benefits during

the summer season.

The aggregation of buildings is another factor to take

into account for increasing flexibility and profits. The

aggregation of 4000 dwellings results in a higher profit

than 2 malls for the considered operation processes

(electrical appliances for dwellings and heating and

cooling loads for malls) as the consumption of heating

and cooling of one mall is equivalent to the consumption

of electrical appliances of 1854 and 3595 dwellings in

winter and summer respectively. In the case of the ag-

gregation of non-residential buildings as malls, hotels

and offices (only heating and cooling loads), it can be

observed in Tab. 2 that flexibility and profit of 2 malls

are higher than flexibility and profit of 12 hotels and 8

offices together. Moreover, there are more hotels than

offices but the flexibility of one hotel is lower than the

flexibility of one office. This why the profit and flexib-

ility of the aggregation of these buildings do not differ

much. Then, we can say that profit is proportional to the

flexibility affected by the aggregation of buildings.

Finally, the profit is affected by the flexibility, the ag-

gregation of buildings and the market price. Addition-

ally, the type of building that contributes more to the re-

duction of the energy cost is the shopping mall followed

by the office, hotel, and dwellings. In Fig. 13 and 14 the

optimal scheduling for a sample day of winter and sum-

mer are shown, it can be seen that the optimal aggreg-

ated load follows the market price within its set limits.

Although, in reality, the disaggregation does not only

depend on the result of the optimization problem but

also on the contract between the aggregator and each
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Figure 13: Optimal aggregated flexible consumption and market price

for one workday in winter.
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Figure 14: Optimal aggregated flexible consumption and market price

for one workday in summer.
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Figure 15: Optimal demand (top) and indoor temperature (bottom) of

an office building for a workday in winter.

type of building. Here the optimal aggregated de-

mand for the small geographic area under consideration

was disaggregated and applied to the different building

types. A ratio between the gap of the optimal aggregated

demand and its lower bound regarding the gap of their

upper and lower bounds was taken for the disaggrega-

tion. This ratio is assumed constant for each aggreg-

ated building. Then, the disaggregated demands were

used to simulate the effect of the optimal load schedul-

ing on individual buildings. The obtained optimal de-

mand and corresponding indoor temperature of an office

building for workdays in winter and summer are given

in Fig. 15 and Fig. 16, respectively. It can be observed

that the optimal load scheduling induces indoor temper-

atures variations within the permitted range. It has to

be underlined that the energy demand and the indoor

temperature do not have a linear relationship, i.e. de-

pending on the time of day and season a higher demand

can lead to a temperature increase or temperature reduc-

tion. This phenomenon can be observed in the summer

results (see Fig. 16) where the permitted maximum de-

mand between 2 am and 5 am leads to a high temper-

ature (heating phase) while the high demand between

2 pm and 6 pm results in a relatively low temperature

(cooling phase).
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Figure 16: Optimal demand (top) and indoor temperature (bottom) of

an office building for a workday in summer.

8. Conclusions

This paper presents a method for optimal schedul-

ing of aggregated demands based on an economic cri-

terion. The optimization method uses the demand flex-

ibility to optimally distribute the energy consumption

of the customers. It was demonstrated the demand ag-

gregation of buildings with different usage and proper-

ties leads to a more equally distributed flexibility and

allows users with relatively small loads to participate in

the scheme. The aggregator participates directly in the

wholesale electricity market and determines the optimal

load scheduling to maximize its profits.

The proposed method was validated by using a case

study with different buildings located in the same small

geographic area. The shopping malls, hotels, offices and

dwellings were included with their specific consump-

tion patterns dependent on the time, weekday and sea-

son. In the residential sector demand flexibility was

achieved by shifting the operation of energy-intensive

appliances. In case of commercial buildings (malls, ho-

tels and offices) indoor temperature variations within a

given interval were used to obtain certain flexibility in

the demand. The flexibility with respect to the aggreg-

ated demand was between 10 % and 30 % in winter and

between 12 % and 40 % in summer. The results showed
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that the optimal scheduling shifts part of the aggregated

demand from peak to off-peak periods. The economic

benefit was considerably larger in winter than in sum-

mer due to the high intraday price variations during the

cold season of the year.

The obtained results underline the potential of com-

bining demand aggregation and optimal scheduling.

The aggregator provides the option to close the tradi-

tional gap between the day-ahead wholesale market and

the individual customer. The proposed method helps the

actual costs of power production to be passed on to the

consumers and ensures access to fair electricity tariffs

for all users.
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[39] M. López, S. De La Torre, S. Martı́n, J. Aguado, Demand-

side management in smart grid operation considering electric

vehicles load shifting and vehicle-to-grid support, International

Journal of Electrical Power & Energy Systems 64 (2015) 689 –

698.
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