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An Introduction to System Dynamics 
Everything we do as individuals, as an industry, or as a society is done in the context of 

an information-feedback system. 
Jay W. Forrester, Industrial Dynamics (1961), p.15. 

Abstract  This chapter presents the important concepts underlying the system dy-
namics modeling method. Following an initial definition of the term model, a 
summary of a successful system dynamics intervention is described. The key con-
cepts of system dynamics – stocks and flows – are explained. The process for sim-
ulating stock and flow models – integral calculus – is described, with an example 
of a company’s customer base used to illustrate how stocks change, through their 
flows, over time. A summary of dimensional analysis for stock and flow equations 
is provided before the second feature of system dynamics modeling – feedback – 
is presented. The chapter concludes by summarizing the system dynamics meth-
odology, which is a five-stage iterative process that guides model design, devel-
opment, test and policy design. 

Keywords: Models - Stocks – Flows – Feedback – Integration 

Models 

Pidd (1996, p.15) defines a model as: 
an external and explicit representation of part of reality as seen by the people who wish to 
use that model to understand, to change, to manage and to control that part of reality.  

This is an insightful definition that also applies to system dynamics. The model 
building process focuses on a part of reality that needs to be understood and man-
aged, and creates an external and explicit representation, in the form of a model, 
of this reality. This reality could be an organization faced with declining market 
share, a public health agency confronted by an infectious disease outbreak, or 
governments challenged by increased levels of carbon in the atmosphere, with the 
resulting rise in mean global temperatures. In these scenarios, decision makers are 
faced with a complex, and highly interacting, social system. Models provide a ba-
sis for decision makers to understand their world as an interconnected system, and 
to test out the impact of policy interventions in silico. Understanding leads to in-
sight, and an opportunity to change, manage and control the system of interest.  
 
In order for a model to be useful to decision makers, it must provide some view on 
future behavior, and Meadows et al. (1974) provide a valuable classification of the 
types of outputs models can provide: 



2  

• Absolute, precise predictions, for example, when and where will the next solar 
eclipse be observable? 

• Conditional, precise predictions, for example, if a cooling systems fails in a 
nuclear power plant, what will be the maximum pressure exerted on the reac-
tor’s containment vessel? 

• Conditional, imprecise projections of dynamic behavior, for example, if an in-
fectious disease spreads through a population, what is the likely future burden 
of demand on intensive care facilities one month from the outbreak date? 

 
Because system dynamics is primarily a technique for business and policy simula-
tion modeling (Homer 2012), its primary focus is on the third class of model: 
those simulation models that provide conditional, imprecise projections of dynam-
ic behavior. This is because social and business systems are by their nature unpre-
dictable in the absolute sense (Meadows et al. 1974). So while all models are 
wrong (Box 1976), as they cannot generate precise point-predictions of future 
events in social systems, the challenge is to create models that are useful through 
extensive testing, benchmarking against available data, and continual iteration be-
tween experiments with the virtual world of simulation and the real world (Ster-
man 2002). System dynamics has a rich tradition of creating useful models across 
many disciplines, and, to illustrate this, an application of system dynamics to pub-
lic health policy is presented. 

System Dynamics in Action: Population Health Policy  

In their paper - Using system dynamics to develop policies that matter: global 
management of poliomyelitis and beyond – Thompson and Tebbens (2008) docu-
ment their award-winning research which demonstrates how system dynamics im-
pacted global health policy analysis. This supported the Global Polio Eradication 
Initiative (GPEI) to eradicate wild polioviruses, which aimed to replicate the suc-
cess of the eradication of smallpox in 1979 (Breman & Arita 1980). Initial results 
of this initiative, based on an intensive vaccination campaign, led to a reduction 
from 350,000 global annual cases to 1,000 cases per year.  
 
However, the eradication project faced funding shortfalls during 2002-3, and the 
allocation of vaccination resources prioritized endemic countries where the virus 
circulated, leaving other countries vulnerable. This containment policy inevitably 
led to further outbreaks. While additional investment was made to regain lost 
ground, a new policy debate started that questioned the feasibility of eradication, 
and suggested that the guiding policy should switch to one of control, as this could 
save resources while maintaining outbreak cases at manageable low levels. 
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The authors proceeeded to evaluate the impact of this proposed policy change, and 
assess the economic impact, and potential disease burden, of these two distinct 
policy options. Core to the analysis was a system dynamics disease outbreak mod-
el. This model represented the population as a set of stocks and flows, where peo-
ple were classified as being susceptible to, infected with or recovered from the 
wild poliovirus. The stock and flow model distinguished between 25 different age 
groups. This model was also informed by their prior studies related to risk man-
agement, including a cost-based analyses of tradeoffs associated with outbreak re-
sponse.  
 
As a result of the model building process, the authors highlighted the impact of 
wavering. This describes a scenario whereby in the context of successful vaccina-
tions comes the perception that a high level of continued investment in vaccine 
administration is not required. This view was represented in the system dynamics 
model. Focusing on two Northern Indian states, two policy options were evaluat-
ed. The first was to vaccinate extensively until disease eradication, the second was 
to vaccinate only if the costs per incidence remained outside an acceptable level. 
The simulation demonstrated the impact of these two policies, and showed that the 
containment option leads to more cases, and costs, over a 20-year time horizon. 
Therefore, the model provided evidence to support the policy of eradication. 

 
The next stage of the process involved the authors presenting their model and re-
sults at a stakeholder consultation, convened by the WHO Director-General Dr. 
Margaret Chan. The goal of this meeting was to consider the option of switching 
from eradication to control. Their author’s system dynamics model, with its quan-
titative approach, long time horizon, and its analysis of the impact of wavering 
commitment, supported the case to continue the eradication policy, and this sub-
sequently led to further resources to implement the eradication policy. 

 
There are three modeling insights from this case study. First, it shows how system 
dynamics can be successfully applied to real-world problems, and achieve an im-
pact in terms of policy analysis and implementation. Second, it demonstrates the 
importance of model purpose, where the modeling activity was focused on the 
core issue of whether to eradicate or control a disease. Third, the paper provides 
an excellent sense of the interdisciplinary skills required to build system dynamics 
models. The authors invested considerable time to understand the specific prob-
lem, and were well-positioned to defend their work to national and international 
policymakers, financial donors, fellow modelers, economists and epidemiologists. 
Furthermore, reflecting on Pidd’s (1996) earlier definition of a model, it is evident 
that this work has the following characteristics: 

 

• It was an external and explicit representation of a problem, in that the model 
was a system dynamics representation of infectious disease transmission, based 
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on the classic Susceptible-Infected-Recovered (SIR) model, which is covered 
in detail in chapter 5. 

• It focused on the part of reality that was important to the people who wished to 
use the model (key stakeholders), namely how best to improve overall popula-
tion health in vulnerable countries through implementing the most appropriate 
disease containment policy. 

• It provided a basis to understand, change, manage and control that part of real-
ity by demonstrating the detrimental impact of wavering on future outbreaks, 
and so provided evidence to support the continuation of the eradication policy. 

 
In summary, this highlights the potential of system dynamics modeling to make a 
difference to society. Within the field there are many documented examples of 
how this simulation method has been successfully applied across a range of disci-
plines, including business systems, project management, energy policy and health 
care. A further advantage of the system dynamics method is that it is grounded in 
the theory of dynamic systems, and in particular, it uses calculus – and the ideas of 
stocks and flows - to generate quantitative projections of a system’s behavior over 
time.  

Stocks and Flows 

A stock is the foundation of any system (Meadows 2008), and stocks and flows 
are the building blocks of system dynamics models. They characterize the state of 
the system under study, as well as providing the information upon which decisions 
and actions are based (Sterman 2000). Stocks can only change through their flows, 
which are the quantities added to (inflow), or subtracted from (outflow), a stock 
over time. Stocks are present in many business and social systems, and examples 
include: 

• Warehouse inventory (stock keeping units), which is the amount of stock with-
in the four walls of a warehouse at a given point in time. Inflows include inven-
tory arriving from suppliers (stock keeping units/week), and returns sent back 
by customers (stock keeping units/week). Outflows are goods shipped to cus-
tomers (stock keeping units/week). 

• Employees in an organization (people) across all processes and functions. In-
flows include new hires (employees/month). Examples of outflows from this 
stock include employee retirements (people/month), employee attrition (peo-
ple/month) and employee redundancies (people/month).  

• The number of people suffering from an illness in the population. Inflows are 
the number of people becoming ill during a time period (people/week). Out-
flows are the number of people that recover over each time period (peo-
ple/week). 
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Note that in all cases the units of the flows are the units of the stock divided by the 
time period. This time period is determined by the system under study, and can 
vary from seconds to years, depending on the problem’s time horizon. In order to 
explore the stock and flow concept, an example from public health is presented, 
where the focus on the presence of illness in a population. The stock and flow 
model for this is shown in figure 1.1. 

 

 

Figure 1.1: A stock and flow model of illness in a population 

The model visualization shows the stocks as containers, and the flows as pipes 
filling and draining containers, where the flow rates are controlled by valves. The 
variable names used for this initial model is informed by public health profession-
als, and it is usually good practice to build a model that practitioners can identify 
with. Therefore the following definitions are used (Giesecke 2002). 

 

• Prevalence is defined as the number of people who have that disease at a spe-
cific time, and this is a stock. For example if the model captured the dynamics 
of seasonal influenza, this would be the number of people infected with influ-
enza.  

• Incidence is defined as the number of people who become ill with a certain dis-
ease during a defined time period.  For seasonal influenza, this is usually meas-
ured each week, and the units are therefore (people/week). Incidence is a flow. 

• Recovery is the number of people removed from the ill population per time pe-
riod. Recovery is a flow, and its units are (people/week). 

 

A feature of this one-stock model is that it can be used to highlight three principles 
of stock and flow systems. These ideas relate the behavior of the stock to the val-
ues of the net flow, where the net flow is the difference between all inflows and all 
outflows. For example, in a given week, if 1000 people contact influenza and 800 
people recover from their bout of the virus, the net flow for the week is +200, 
which is the difference of the two flows. Because the difference is greater than ze-
ro, the prevalence will rise over this time period.  Therefore, in the general case of 
any stock and flow system, the following conditions hold true: 

Prevalence
Incidence Recovery
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• When the total sum of all inflows to a stock is greater than the total sum of all 
outflows, the stock will rise.  

• When the total sum of all inflows to a stock is less than the total sum of all out-
flows, the stock will fall. 

• When the total sum of inflows to a stock equals the total sum of outflows, the 
stock will remain unchanged. This is an interesting and often desired state of 
many systems, and is known as dynamic equilibrium. 

These three principles can be applied to any system that changes over time, in-
cluding challenges related to global warming, economics, and population plan-
ning. For example, figure 1.2 shows a model of carbon in the earth’s atmosphere 
(a stock). This stock is increased by emissions, and reduced by absorptions. As the 
earth’s carbon absorption rate is currently less than the carbon emissions rate, the 
amount of carbon in the atmosphere is increasing, and this is now shown to impact 
global temperatures.  The second model describes, at a highest level of aggrega-
tion, the population of a country, with inflows of births and immigration, and out-
flows of deaths and emigration.   

 
Figure 1.2 Further examples of stock and flow systems 

These two models are high-level, and represent the system of interest by a single 
stock. However, stock models can also be disaggregated to reveal finer-grained 
dynamics. Disaggregation is an important part of system dynamics modeling, and 
it is necessary when there are sufficient differences in subsets of a variable, for 
example, cohorts in a population. This is shown in figure 1.3, where a country’s 
population is broken down into age cohorts, and the stocks are cascaded in order 
to capture the dynamics of aging. Disaggregated population model structures such 
as this are particularly useful when exploring long-term dynamics of health sys-
tems, where age is an important determinant of health. To simplify the model, mi-
grations are excluded, with the main focus on how the age profile of the popula-
tion changes over time.  

Carbon in the
Atmosphere

Emissions
(tonnes/year)

Absorptions
(tonnes/year)

Population

Births (people/year)

Deaths (people/year)

Immigration
(people/year)

Emigration
(people/year)
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Figure 1.3 A disaggregated model of a population, excluding migration. 

While these stock and flow models may appear straightforward – which is benefi-
cial from a model building viewpoint – an important challenge is to formulate the 
inflows and outflows. For example the following questions must be addressed: 

• How are delays in a system modeled, where items stay in a stock for a period of 
time and then progress? 

• How are rate variables such as the number of births modeled, particularly when 
variables may depend on other system stocks? 

• How are decisions in a system modeled, where a manager decides, for example, 
how many new hires to take on in order to replenish the employee stock, and so 
maintain a company’s resource base, and capacity to deliver services to cus-
tomers? 

Flows structures such as fractional increase and fractional decrease are explored 
later in this chapter (Duggan 2016b), and chapter 4 (Duggan 2016e) will describe 
formulating delays, and how to model management decisions such as stock replen-
ishment. In summary, stocks are present in many social systems. They represent 
accumulations, and can only change through their inflows and outflows. Stocks 
are solved using the mathematical process known as integration, and this is how 
system dynamics models are simulated. 

Population
Aged 0-14

Population
Aged 15-44

Population
Aged 45-65

Population
Aged 65+

Births Exit Rate 1

Death Rate 65+

Exit Rate 2

Exit Rate 3

Death Rate 0-14 Death Rate 15-44

Death Rate 45-65
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Integration 

Integration is the mathematical process of calculating the area under the net flow 
curve, between initial and final times. There are two main methods for integrating. 
The first method is analytical, where an integral is expressed as an equation that 
can be used to determine the stock’s value at any future point in time. The second 
approach is numerical, which is commonly used for more complex higher-order 
(i.e. many stocks) systems, and is the method that will be used throughout this 
text.  
 
The two methods are now explored, using a linear net flow equation where f(t) = 
2t. Therefore the net flow starts at 0, and climbs to 20 after 10 time units. A quick 
visual inspection, using the formula for calculating the area of a triangle, will 
show that the integral after 20 time units is 0.5 * 20 * 10 = 100. 
 

 
Figure 1.4: Representation of an integration problem 

 
In order to solve this analytically, the standard integration method can be used (1-
1). To achieve this, the net flow is represented as a derivative (1-2), with a corre-
sponding indefinite integral solution (1-3) is found through applying (1-1). How-
ever, in this case the time interval is known, and therefore the area between two 
specific points can be evaluated as the difference in the indefinite integral solution 
over the time interval, and this is shown to be 100 in (1-4). 

 
𝑡!  𝑑𝑡 =  

1
𝑛 + 1

 𝑡!!! + 𝑐 (1-1) 
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dy
dt
= 2t (1-2) 

𝑦 =  2𝑡 𝑑𝑡 =  𝑡! + 𝑐 (1-3) 

𝑦!!!" =  |!!" 𝑡! =  10! −  0! = 100  (1-4) 
The analytical solution shown in (1-4) can be used to calculate the stock’s value at 
any future time interval. However, as already discussed, exact analytical solutions 
may not be feasible for higher-order, non-linear stock and flow systems. Approx-
imate solutions can be calculated, and a widely-used numerical algorithm is 
known as Euler’s method.  
 
Euler’s approach involves estimating the area under the net flow curve through a 
sequence of rectangles of identical width. The rectangle height is the opening val-
ue of the net flow applied over the interval DT, where DT is also known as the 
time step. As the time step gets smaller, the overall numerical solution becomes 
more accurate. Euler’s equation accumulates the successive areas of these rectan-
gles (1-5) by assuming that the net flow is constant over each time interval (the 
opening value of the net flow is taken). 
 
𝑆𝑡𝑜𝑐𝑘! =  𝑆𝑡𝑜𝑐𝑘!!!" + (𝐼𝑛𝑓𝑙𝑜𝑤!!!" −  𝑂𝑢𝑡𝑓𝑙𝑜𝑤!!!") ∗ 𝐷𝑇 (1-5) 
 

Figure 1.4 uses a time step of 1 (normally this would be too large a value to use 
for an accurate simulation). From the time series plot, the sequence of successive 
rectangles is shown, and the stock’s value is simply the summation of these rec-
tangle areas, based on (1-5). The solution process is summarized in table 1.1, 
which also shows the error term (the difference between the approximate integra-
tion and the true integration). In this example, the error term is the sum of the 
small triangle areas between the blue and red lines.  This error term can be re-
duced by selecting a smaller time step, usually for social simulations a time step 
value of 1/8 or 1/16 is used. 
  
Time Stockt Net Flow StockA = t2 Error 

0 0 0 0 0 
1 0+0=0 2 1 1 
2 0+2=2 4 4 2 
3 2+4=6 6 9 3 
4 6+6=12 8 16 4 
5 12+8=20 10 25 5 
6 20+10=30 12 36 6 
7 30+12=42 14 49 7 
8 42+14=56 16 64 8 
9 56+16=72 18 81 9 

10 72+18=90 20 100 10 
Table 1.1 Approximate values of the integral of dy/dt = 2t, dt =1, Euler’s method 
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In summary, integration is the basis for all system dynamics simulation runs. Once 
a model is expressed in terms of stocks and flows, the integration process is ap-
plied to every stock, for each time step. Therefore when all the initial stock values 
are known, and each flow has a defined equation, the integration process will sim-
ulate the behavior of all model variables.   

A System Dynamics Model of Customers 

In order to demonstrate how a system dynamics model is constructed, a one-stock 
model of an organization’s customer base is modeled. Given that the customer 
base is an accumulation, it can be modeled as a stock. The inflow is recruits, and 
the outflow are losses, also known as the churn rate. The goal of organizations is 
to limit the losses and maximize the recruits, in order to maintain increasing cus-
tomers levels, and therefore support company growth. The steps for building this 
model are: 

 

• Identify the stock, provide an initial value, and decide on the flows that change 
the stock 

• Formulate equations for the flows 
• Decide on the time units, for example, is the simulation in days, months or 

years. 
• Decide on the time interval, which is the start and finish time of the simulation 

run. 

 

 
 

Figure 1.5: A stock and flow model of customers 
 
The stock and flow model is shown in figure 1.5, and the information dependen-
cies between equations are shown, along with the type of relationship. For exam-
ple, the “+” sign at the end of a link indicates that the variables move in the same 
direction. These type of causal links will be described shortly, and are important 
when considering the feedback structures of system dynamics models. The stock 
is expressed as an integral function, where the arguments are the inflows less the 

Customers
Recruits Losses

Growth
Fraction

++

+

Decline
Fraction

+
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outflows, followed by the initial value. In effect, the structure of (1-6) is the simi-
lar to that shown earlier in (1-5). Stock equations are usually the most straightfor-
ward to formulate, as they can only change via their flows. The initial value of the 
stock for the simulation run is required, otherwise the integration process could 
not proceed. 

 
𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 =  𝐼𝑁𝑇𝐸𝐺𝑅𝐴𝐿(𝑅𝑒𝑐𝑟𝑢𝑖𝑡𝑠 − 𝐿𝑜𝑠𝑠𝑒𝑠, 10000) (1-6) 

 
Following the stock definition, all that remains is to formulate the inflow and out-
flow, and any auxiliary variables that they may depend on. An auxiliary variable is 
one that is not a stock or a flow, and is generally used to simplify flow equations. 
For most modelers, the most challenging task in system dynamics is the composi-
tion of flow and auxiliary equations (Dangerfield 2014). Conveniently, there are a 
number of pre-defined flow equation structures that can be used. In this case, two 
ideas will be used to formulate the inflow and outflow (Sterman 2000). These are: 

• The fractional increase rate, where the inflow to a stock is proportional to the 
stock. 

• The fractional decrease rate, where the outflow of a stock is proportional to the 
stock. 

For the customer model, these are reasonable assumptions. For example, all com-
panies have annual expansion goals, where they seek to increase their customer 
base by a target growth fraction. On the other hand, companies are faced with the 
challenge of retaining customers, and therefore will seek to minimize the churn 
rate, or the fraction of customers that are lost each year. The flow equations can be 
formulated to reflect this real-world scenario. The inflow (1-7) is the product of 
the customers and the growth fraction, and this is a commonly used structure in 
system dynamics models. 

 
𝑅𝑒𝑐𝑟𝑢𝑖𝑡𝑠 =  𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 × 𝐺𝑟𝑜𝑤𝑡ℎ 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (1-7) 

 
The multiplier of the inflow is the growth fraction (1-8), and, for this example, this 
value varies over time, through the use of the STEP function. The STEP function, 
which is available in all system dynamics software, has the form: 
STEP(<amount>,<time>), and changes a variables value by <amount> at the 
specified simulation time <time>. In this case, the growth fraction starts at 0.07, 
drops to 0.03 at 2020, and drops by a further 1% to 0.02 in 2025. In a more com-
plex model, this growth fraction could depend on other system variables, for ex-
ample, the number of marketing resources, product quality, and the size of the po-
tential market. When an auxiliary does not directly depend on another model 
variable it is termed an exogenous variable. This type of variable will be discussed 
in greater detail later in this chapter (Duggan 2016a, 2016b). 

 
𝐺𝑟𝑜𝑤𝑡ℎ 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 0.07 − 𝑆𝑇𝐸𝑃 0.04,2020 −  𝑆𝑇𝐸𝑃(0.01,2025) (1-8) 
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The losses are formulated as a fixed proportion of the customer stock, and this is 
shown in (1-9). The decline fraction is fixed at 3%, and this is captured in (1-10). 

 
𝐿𝑜𝑠𝑠𝑒𝑠 =  𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 × 𝐷𝑒𝑐𝑙𝑖𝑛𝑒 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (1-9) 

𝐷𝑒𝑐𝑙𝑖𝑛𝑒  𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 0.03 (1-10) 
 
This finalizes the model formulation, with five equations for the simulation model. 
The equations are complete, as all the variables shown in figure 1.5 are specified. 
There are no gaps, no ambiguities, just concrete equations that will simulate the 
customer model. All that remains is to decide on the simulation run settings, 
which are the time interval (2015-2030), the time step DT (0.25), and the time 
units (years). The model can then be simulated using a number of approaches, and 
in this case R’s deSolve library was used. The simulation output is shown in fig-
ure 1.6. 

 

 
 

Figure 1.6: Simulation output from the customer model 
 

It is worth reflecting on the simulation output in terms of how the stock behaves 
over time, which can be classified into three different phases. 

• Phase 1, from 2015-2020, where the stock increases, as the net growth fraction 
is 0.07-0.03 = 0.04. While this growth may look linear, it is in fact exponential, 
similar to how compound interest is calculated for a bank savings account. For 
example, it can be shown that solving the differential equation 𝑑𝑦 𝑑𝑥 = 𝑔𝑌, 
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where g is the fractional increase rate, yields the resulting integral equation so-
lution 𝑌! =  𝑌! 𝑒!", which confirms that in the stock growth is exponential. 

• Phase 2, from 2020-2025, where the stock remains constant (dynamic equilib-
rium), given that the growth and decline fractions are equal, and cancel one an-
other out. In this case the model is in dynamic equilibrium. 

• Phase 3, from 2025-2030, where the decline fraction exceeds the growth frac-
tion, and this results in a declining stock over time, as the net flow is negative. 
This decline in the stock is exponential, as it can be shown that solving the dif-
ferential equation 𝑑𝑦 𝑑𝑥 = −𝑟𝑌, where r is the fractional decrease rate, yields 
the resulting integral equation solution 𝑌! =  𝑌! 𝑒!!", where confirms that the 
stock decline follows an exponential decay pattern. 

What is noteworthy about the three phases is that they confirm the fundamentals 
of stock and flow systems. If the inflow exceeds the outflow (i.e. time interval 
2015-2020), the stock rises; if the inflow equals the outflow (i.e. time interval 
2020-2025), the stock remains in equilibrium; and, if the outflow exceeds the in-
flow (time interval 2025-2030), the stock falls. While this is a simple model, these 
concepts are relevant to any system dynamics model, and can be applied to more 
complex models to support policy analysis and design. For example, the compari-
son of inflows to outflows forms part of epidemic threshold calculations, and this 
will be presented in chapter 5 (Duggan 2016f). 

Dimensional Analysis for Stock and Flow Equations 

In the physical sciences and engineering, any equation representing a real-world 
process needs to have the units (i.e. dimensions) balanced on each side of the ‘=’ 
sign (Dangerfield 2014). This checking – also known as dimensional analysis – is 
also an important activity in system dynamics, as it provides an excellent valida-
tion mechanism for any simulation model. As a starting point, the units for system 
stocks are identified. For example, stock units from a range of modeling challeng-
es in business, health and the environment are shown in table 1.2. 

 
Application Area Stock Units 
Business Inventory Stock Keeping Unit (SKU) 
Financial Planning Cash €, $ 
Education Planning Students People 
Epidemiology Infected People 
Demographics Population People 
Climate Change Carbon in the Atmosphere Metric Tons 

Table 1.2 Sample stock variables along with indicative values for units 
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Stocks change through their flows, and therefore, in order to maintain dimensional 
consistency, a flow must have units of the stock it feeds, divided by the units in 
which time is measured (Coyle 1996). The selection of time unit depends on the 
problem being explored, for example, planning in a higher education context has 
annual student intake, therefore the most suitable time unit would be year. How-
ever, measuring the spread of an infectious disease such as influenza is typically 
performed on a weekly basis. Societal challenges such as global warming and ef-
forts to controlling the amount of carbon in the atmosphere can have a time hori-
zon measured in decades, and even centuries. An indication of flows, and their 
units is provided in table 1.3, covering a wide range of applications areas. 

 
Stock Inflow Outflow Flow Units 
Inventory Arrivals Shipments SKU/week 
Cash  Deposits Withdrawals €/day, $/day 
Student Registrations Graduations People/year 
Infected Incidence Recovery People/day 
Population Births Deaths People/year 
Carbon in the   
Atmosphere 

Emissions Absorptions Metric Tons/year 

Table 1.3 Sample flow variables along with indicative values for units 

Once the units for stocks and flows are identified, dimensional analysis can be 
performed, where both sides of an equation are simplified to their basic units. If 
the two sides of the dimensional equation are equal, then the equation is dimen-
sionally consistent. The customer model from figure 1.5 is used, and the integral 
equation, similar to the format shown in (1-5), is shown in (1-11).  

 
Customerst = Customerst-dt +  (Recruits - Losses) * DT (1-11) 

people = people           + (people/year - people/year ) * year  
 

This equation is dimensionally consistent, as the inflow and outflow denominator 
(year) cancels with the dimensions of DT (year) to arrive at the dimension (peo-
ple). This process also applies to flows in system dynamics models. Once the units 
of the flow multiplied by the time units equal the stock units, the stock equations 
will be dimensionally consistent. However, it is not sufficient just to have stock 
equations dimensionally accurate, all model variables should have their units 
checked and validated. For example, the equation for recruits (1-7) and losses (1-
9) also need to be checked for dimensional consistency. 
 

Recruits = Customers * Growth Fraction (1-12) 
people/year = people        * (people/year)/person  

Losses = Population * Decline Fraction (1-13) 
people/year = people        * (people/year)/person  
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In (1-12) and (1-13), recruits and losses are flows, and therefore their respective 
units are (people/year). The units of the growth and decline fractions are (1/year), 
as these values are based on the number of people added/removed each year, di-
vided by the number there to start with, which yields dimensions of (per-
son/year)/person, or (1/year) (Dangerfield 2014). Therefore, the two flow equa-
tions are dimensionally consistent, and the customer model passes its 
dimensionality test. Software packages for system dynamics support dimensional 
checking, so adding in units at an early stage can improve the model building pro-
cess. Later in chapter 6 (Duggan 2016g), additional methods for validating system 
dynamics models are explored, where the benefit is to improve the model quality, 
and enhance client confidence. Before that, the second foundational concept of 
system dynamics is presented. This idea provides valuable insight to guide deci-
sion making in complex systems, and is known as feedback. 

Feedback 

Feedback is a defining element of system dynamics (Lane 2006), and identifying 
feedback loops in social systems is an important part of modeling building. Mead-
ows (2008) describes a feedback loop as: 

A closed chain of causal connections from a stock, through a set of decisions or rules or 
physical laws or actions that are dependent on the level of the stock, and back again 
through a flow to change the stock. 

 
A feedback loop is a chain of circular causal links, where the level of a stock in-
fluences a flow, which in turn will change the stock. The stock can influence the 
flow directly, or that influence could be determined through a series of intermedi-
ate auxiliary variables. Feedback processes are present in many systems. Earlier, 
when discussing stocks and flows, a warehouse example was presented. This can 
be examined in more detail to uncover a feedback process in operation.  
 
In the warehouse, there is a quantity of products on shelves, and this accumulation 
is a stock. The company would have a target quantity of product to store, to ensure 
that stockouts would not happen, and to maintain high levels of customer satisfac-
tion. For example, this target value could be two weeks of expected demand. At 
regular intervals (perhaps once per week), the warehouse manager would note the 
current level of the stock, and compare this to the target value. If more stock was 
needed, orders would be made from suppliers. These orders would then arrive at 
the warehouse, and their arrival would be modeled as an inflow to the stock. This 
inflow increases the stock, and so completes the feedback process that connects 
the stock to the inflow.  
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Consider a home heating system, and how its feedback process operates (figure 
1.7). The occupant sets the desired room temperature. A heat sensor records the 
actual room temperature, and this is relayed to a controller. The controller logic 
determines if the temperature is lower that the desired. If it is the heater is activat-
ed, and the generated heat raises the room temperature. As the room temperature 
rises, the sensor detects monitors towards the desired value, and once this value is 
reached, the heater is switched off. 

 
Figure 1.7 Temperature control: an example of negative feedback 

This is a further example of feedback, where the level of a stock (heat in the room) 
determines the amount of heat added (the flow) which in turn changes the heat in 
the room (the stock). It is an example of a goal seeking system, in that once a tar-
get is established the system is continually moved towards that target. These are 
known as negative feedback loops, and are annotated using the balancing (B) icon 
on the stock and flow model. 
 
Loop polarity can be evaluated for any feedback loop, by examining the individual 
links contained in that loop. A link captures a cause and effect relationship be-
tween two variables (e.g. x and y), and an individual link can be either positive or 
negative. A positive link occurs when, all else being equal, the cause x increases, 
the effect y increases above what it would have been. A negative link means that 
as the cause x increases, then the effect y decreases below what it would have 
been (Sterman 2000).  In the room temperature model, the feedback loop contains 
positive and negative links. A positive link occurs when the cause and effect move 
in the same direction, for example, as the adjustment increases, so to does the 
amount of heat added. A negative link implies that the cause and effect move in 
opposite directions, for instance, as the temperature rises, the adjustment falls. 
 

 

 
Figure 1.8 Causal links and their polarity 
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Calculating loop polarity is a straightforward task. The loop is broken down into a 
set of the causal links, and the impact of a change in one variable is traced through 
the causal chain, and back to the original variable. In this example, the loop con-
tains three variables: Room Temperature, Adjustment, and Heat Added. 
 
Room Temperature ↓ Adjustment ↑ 
Adjustment ↑ Heat Added ↑ 
Heat Added ↑ Room Temperature ↑ 

Table 1.4  Tracing the changes of variables through the room temperature loop. 

Table 1.4 shows the impact of a change in room temperature, where a variable in 
the loop can either rise ↑  or fall (↓). Assuming that the room temperature is fall-
ing due to heat loss (due to the stock outflow), the impact of this change through 
the feedback loop is as follows: 

• As the room temperature decreases, the adjustment (which is the difference be-
tween desired and actual temperature) increases, as it is a negative link so the 
two values move in opposite directions. 

• With an increase in adjustment, the amount of heat added also increases, as this 
is a positive link where the cause and effect move in the same direction. 

• An increase in heat added then leads to an increase in room temperature, as 
this is also a positive link. 

The individual link polarities combine to determine the overall loop polarity. With 
one iteration through the loop, the direction of the original variable has been im-
pacted. In this case, at the outset the room temperature was falling, and following 
the sequence of circular causal links, the temperature rises. Room temperature has 
moved in the opposite direction after one iteration through the loop. This is an ex-
ample of a regulating system, or more generally, negative feedback. A negative 
feedback loop also has an odd number of negative links (in this case 1), and this 
heuristic can be used to quickly calculate loop polarity. 
 
The loop polarity calculation can be applied to a different model, involving the in-
terplay between capital and output, often termed the engine of economic growth 
(Meadows 2008).  

 
Figure 1.9 Capital growth: an example of positive feedback 
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The more machines and factories (capital) there are, the more goods and services 
(output) that can be produced. This model can be viewed as a set of circular causal 
links, as the loop contains three variables: Capital, Output, and Investment in Cap-
ital. 

 
Capital ↑ Output ↑ 
Output ↑ Investment in Capital ↑ 
Investment in Capital ↑ Capital ↑ 

Table 1.5 Tracing the changes of variables through the capital investment loop. 

Table 1.5 traces the behavior of the loop’s variables, from an initial starting point 
where we assume that the capital is increasing. The causal links are follows: 

• As the capital increases, so to does output, and this is a positive link, as the var-
iables move in the same direction. 

• With an increase in output, the inflow investment in capital will increase. 
Again, this is a positive link.  

• As investment in capital increases, the amount of capital (i.e. the stock) also in-
creases, and this final link in the feedback loop is also positive. 

In contrast to the room temperature example, the direction of change of capital has 
been reinforced or amplified as a consequence of the loop. Increased capital, 
through a cycle of reinvestment, leads to more capital. This is a classic example of 
positive feedback, which drives  exponential growth,and terms such as virtuous 
cycle and success to the successful are often used (where the effect is desirable). 
On the other hand, positive feedback can also have detrimental effects (e.g. a run 
on a bank), where a value spirals out of control, and in this case the term vicious 
cycle is used instead. A positive feedback loop will always have an even (includ-
ing zero) number of negative links, and this can be a useful shortcut taken in order 
to calculate loop polarity.  

 
In summary, a complex system is an interlocking structure of feedback loops, and 
this loop structure is found many real-world processes (Forrester 1969). In particu-
lar: 

 

• A feedback loop is a closed chain of causal links from a stock, through a flow, 
and back to the original stock again. 

• There are two classes of feedback loops. Negative feedback counteracts the di-
rection of change, whereas positive feedback amplifies change and drives ex-
ponential growth. 

• Loop polarity is calculated by examining the individual link polarities in a cir-
cular causal chain. If there are an odd number of negative links, the loop polari-
ty in negative, otherwise the loop polarity is positive. 
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Modeling Feedback  

Creating feedback models in system dynamics is challenging. It requires domain 
knowledge, and the skill to see the interrelationships between different system el-
ements. The goal is to identify those feedbacks that influence overall system be-
havior. Forrester (1968) defines an important principle, centered on the idea of a 
system boundary: 

In concept a feedback system is a closed system. Its dynamic behavior arises within its 
internal structure. Any interaction which is essential to the behavior mode must be 
included inside the system boundary. 

This definition provides a valuable context for identifying feedback structures. 
The challenge is to build on an initial model, and map the additional stocks, flows 
and feedbacks that influence the systems behavior. This is done through collabo-
rating with multiple stakeholders, who provide different perspectives and 
knowledge on the problem being addressed. As part of this interaction, people 
share their understanding of what variables need to be included inside the model 
boundary. At some point in the model building process, there should be consensus 
that all the relevant stocks, flows and feedbacks have been included within the 
model boundary. This structure is then the closed system representation of the 
problem. 
 
Richardson (2011) builds on this idea, and emphasizes the importance of the sys-
tem boundary by discussing what is known as the endogenous point of view:  

The most salient aspect of the system dynamics approach are undoubtedly stocks and 
flows and feedback loops. These visible elements stand out and demand our attention. But 
it is worth noting that feedback loops are really a consequence of the endogenous point of 
view.  

Endogenous refers to the idea that actions are caused by factors from inside of the 
system. With the endogenous viewpoint behavior can be explained through the 
system’s feedback structure, and not through the actions of an external, uncontrol-
lable, exogenous source. Sterman (2002) writes that system dynamics practitioners 
are trained to be suspicious of exogenous variables, and they must challenge mod-
el constants in order to see whether they could be part of the feedback structure. 
This process of challenging the constants is central to the endogenous perspective, 
and can be used to discover important feedback loops. 

 
In order to provide an example of how the endogenous point of view can be used 
to identify feedback structures, a one-stock model is presented, as shown on the 
left in Figure 1.10. This stock increases based on the growth fraction, and is struc-
turally similar to the capital growth model shown earlier in figure 1.9. The growth 
fraction is a constant, and is exogenous, as the value has its source outside of the 
system. In other words, this exogenous variable is not influenced by any other 
model variable. With a constant growth rate, the system stock will grow exponen-
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tially, with no physical limits. However, growth without limits is unrealistic, as for 
any system, there are always factors that limit growth. Therefore, the flawed as-
sumption of this initial  model is that the growth fraction never changes. With the 
endogenous, this assumption can be challenged. 

 
Figure 1.10 Evolving an endogenous feedback perspective 

The model boundary is expanded to include other stocks that may impact the sys-
tems behavior. The target of enquiry now becomes the constant (exogenous) vari-
able growth fraction. In this case, the following  question can be asked: what is the 
growth fraction dependent on? In this generic model, it is assumed that the growth 
fraction depends on the availability of a non-renewable resource. There are well-
documented cases, such as the population growth and decline on Easter Island 
(Brandt and Merico 2015), where stocks have grown based on the availability of 
non-renewable resources, only to decline once those resources were consumed. 
From this we can extend the model in three ways: 

• The growth fraction depends on the resource availability, where resources are a 
stock. This is a positive link. More resources lead to a higher growth rate. 

• The resource depletion rate depends on the level of the stock. This is positive 
link. The higher the stock, the greater the depletion rate. 

• The resource is reduced by the depletion rate. This is a negative link, as a high-
er depletion rate leads to a reduction in stock. In this model, the resource is as-
sumed to be non-renewable, as there is no inflow to replenish lost resources. 

This is an example of extending the model boundary, has revealed a new, and sig-
nificant, feedback structure. What was previously an exogenous variable (growth 
fraction) is now endogenous. As a result, there is now a more realistic model that 
links, via feedback, two system stocks that are clearly interdependent. Based on 
this endogenous feedback model, we can also determine the polarity of the ne 
feedback loop by taking a variable of interest and tracing the impact of its increase 
through each feedback loop.  

Initial model (exogenous) Refined model (endogenous) 
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Stock ↑ Net Change ↑ 
Net Change ↑ Stock ↑ 

Table 1.6 Calculating the polarity for first feedback loop 

The first feedback loop in summarized in table 1.6. As the stock’s change is rein-
forced after a single iteration, it is a positive feedback loop, and so will exhibit ex-
ponential growth or decline. The second feedback loop, which emerged as a result 
of focusing on the exogenous variable growth fraction, is summarized in table 1.7. 
This shows that the direction of change for the variable of interest (Stock) is re-
versed following a cycle through the loop. Therefore, this is a negative feedback 
loop that acts as a limiting factor to the stocks growth.  

 
Stock ↑ Depletion Rate ↑ 
Depletion Rate ↑ Resource ↓ 
Resource ↓ Growth Fraction ↓ 
Growth Fraction ↓ Net Change ↓ 
Net Change ↓ Stock ↓ 

Table 1.7 Calculating the polarity for second feedback loop 

This example highlights the process for identifying model boundaries, which can 
then ensure that important feedbacks are considered throughout the modeling pro-
cess. The limits to growth model is explored in further detail in chapter 3 (Duggan 
2016d), where a stock grows rapidly based on a resource, but as the resource di-
minishes, the stock enters a period of rapid decline.  Furthermore, a healthcare 
model is formulated in chapter 4 (Duggan 2016e), and feedbacks identified be-
tween the different model sectors. 
 
It is also worth reiterating that modeling feedback in system dynamics is challeng-
ing, and the interested reader is recommended to follow up with excellent exam-
ples of feedback thinking from the system dynamics literature. These include: 

• How system dynamics models can help the public policy process (Ghaffarza-
degan et al. 2011). 

• Identifying feedback structures in the project management process (Lyneis and 
Ford 2007), and,  

• System dynamics models applied to understand population health outcomes 
(Homer 1993).  
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The Model Building Process  

The starting point for system dynamics is that the model must be created for a 
specific purpose (Forrester 1969). For example, consider the following three sce-
narios:  

• In the food industry, a multinational company might wants to find ways to im-
prove its supply chain performance, and a system dynamics model could pro-
vide ways to evaluate different production and distribution strategies.  

• In the public health domain, stakeholders may wish to assess the impact of 
mass vaccination to protect citizens against an outbreak of a virulent influenza 
virus.  

• In the airline industry, a company could face a challenge of declining passenger 
numbers, and look for ways to assess the impact of further capacity investment.  

The common thread across these examples is that each model addresses a clear 
problem, and therefore each model has a definite purpose. With a clearly defined 
goal, a valuable strength of system dynamics is that it is supported by an iterative 
five-stage methodology. This can be used to structure projects and ensure a pro-
cess for engaging with clients and problem owners in order to address problems.  

 
 
 

 
Figure 1.11 The system dynamics modeling process 
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The model building process comprises five inter-related activities, shown in figure 
1.11, and based on Morecroft (2007). 

 

1. Articulate Problem. This involves identifying the specific problem with cli-
ents, and exploring the reasons why it is a problem worth addressing. Im-
portant variables are selected, and the appropriate time horizon identified. 
Historical data is gathered to support this initial analysis, and behavior over 
time graphs can provide valuable input into this problem definition stage.  

2. Propose Dynamic Hypothesis. Following on from this initial stage, a dynamic 
hypothesis is proposed where the aim is to identify the stock, flow and  feed-
back structures can best explain the problematic behavior. The problem is 
mapped using tools such as causal loop diagrams, stock and flow maps, and 
other appropriate facilitation tools.  

3. Build Simulation Model. With a mapping structure and feedbacks identified, 
the simulation model can be formulated, with the stock and flow structure and 
decision rules. Tasks such as parameter estimation - covered in chapter 7 
(Duggan 2016h) - and initial tests can be performed, and feedback gained 
from clients. 

4. Test Simulation Model. The fourth stage is testing, where the model behavior 
is compared to the known reference models, and its robustness is tested under 
extreme conditions. Chapter 6 (Duggan 2016g) shows how extreme condition 
tests can be designed and implemented. Sensitivity testing can also be used to 
evaluate the impact of uncertainly in model parameters on overall outcomes.  

5. Design and Evaluate Policy. The fifth stage is policy design and evaluation, 
which requires that the model is robust and has passed a suite of rigorous 
tests. In this activity, new decision rules, strategies and structures that could 
be implemented in the real-world are evaluated. The simulation model can be 
used to perform what-if analysis to observe the potential impact of policies. 
Following this, improvement actions can be agreed with clients, and the im-
plementation of system changes can follow. 

 
While the process flow would indicate a linear sequence from problem definition 
to policy design, the reality is that building system dynamics models is a highly it-
erative process. Smaller, high-level, models may be initially mapped and imple-
mented, and the revised based on feedback from stakeholders. The idea of having 
a final unchanging model is unrealistic, as models are always in a continuous state 
of evolution, were “each question, each reaction, each new input of information, 
and each difficulty in explaining the model leads to modification, clarification, 
and extension” (Forrester 1985). Further insights into the model building process 
is provided by Vennix (1996), who offers excellent guidance on how to perform 
group model building, and so manage a system dynamics intervention with multi-
ple stakeholders. 
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Summary 

This chapter provided an introduction to system dynamics. This simulation meth-
od is based on finding stocks, flows and feedbacks that are relevant to the problem 
of interest. The technical solution process used is integration, where stocks accu-
mulate their inflows, less any outflows. The process of finding feedback by ex-
ploring the system boundary was discussed, as was the overall five-stage problem 
solving process. System dynamics equations can be solved using special purpose 
simulation tools. In this text the R framework is used to solve equations, and an 
introduction to R is presented in chapter 2 (Duggan 2016c). 

 

Exercises 

1. The net flow for a population is given 𝑑𝑃 𝑑𝑡 = 𝑟𝑃, where 𝑟 is the fractional 
growth rate. From this, show that the integral is given by 𝑃! =  𝑃!𝑒!" where 
P0 is the initial value of the population. 
 

2. Create a two stock system for a University. One stock is models students, the 
other staff. Identify inflows and outflows for each stock. Add an additional 
variable to the model called student staff ratio. Higher values of this ratio 
make the University less attractive for students, and also result in the Univer-
sity hiring more staff. Show any feedback loops, and calculate the loop polari-
ties using two methods. 

 
3. Consider the net flow 𝑑𝑦 𝑑𝑡 = 4𝑡. Assuming the stock y is initially zero, 

solve analytically for the value of y after 10 time units. Use Euler’s equation, 
with DT=0.5, to solve for y. Calculate the error term, and plot both solutions 
using Excel. 
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