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Prediction of Pile Settlement Using Artificial Neural Networks Based 

on Standard Penetration Test Data 

 

F. Pooya Nejad1; Mark B. Jaksa2; M. Kakhi3; and Bryan A. McCabe4 

 

Abstract: In recent years artificial neural networks (ANNs) have been applied to many 

geotechnical engineering problems with some degree of success.  With respect to the design of pile 

foundations, accurate prediction of pile settlement is necessary to ensure appropriate structural and 

serviceability performance.  In this paper, an ANN model is developed for predicting pile settlement 

based on standard penetration test (SPT) data.  Approximately 1,000 data sets, obtained from the 

published literature, are used to develop the ANN model.  In addition, the paper discusses the 

choice of input and internal network parameters which were examined to obtain the optimum 

model.  Finally, the paper compares the predictions obtained by the ANN with those given by a 

number of traditional methods.  It is demonstrated that the ANN model outperforms the traditional 

methods and provides accurate pile settlement predictions. 
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Introduction 

 

In deep foundation systems, piles are part of the sub-structure which are intended to transfer the 

structural loads through a soft or otherwise unsuitable stratum onto one which is firmer at depth.  

The design of pile foundations must consider constructability, and must meet strength and 

serviceability criteria like most civil engineering systems.  In order to satisfy serviceability, it is 

essential that reliable predictions of pile settlement are available. 

Settlement occurs as a consequence of an increase in effective stress causing a volume reduction 

of the subsoil.  It is the sum of (i) elastic compression of the soil skeleton, which occurs quickly and 

is normally small, and (ii) consolidation or volume change due to the expulsion of water, which 

occurs quickly in coarse-grained soils but slowly in fine-grained soils. 

Soil materials typically do not show a linear relationship between stress and strain and settlement is 

a function of the relative vertical stress increase.  In conventional approaches, the settlement is 

calculated by dividing the soil profile into layers and calculating for each layer the compression 

caused by the stress increase.  The settlement is then equal to the sum of the compression of the 

individual layers (Fang 2001). 

The problem of estimating pile settlement is very complex and not yet entirely understood.  This 

can be attributed, at least in part, to the uncertainty associated with the factors that affect the 

magnitude of this settlement.  These factors include the distribution of applied stress, stress-strain 

history of the soil, soil compressibility, and difficulty in obtaining undistributed samples of soil 

(Shahin et al. 2002).  There are many methods in the geotechnical literature, both theoretical and 

experimental, for predicting the settlement of piles.  Due to the difficulty of obtaining undisturbed 

samples, many settlement prediction methods have focused on correlations with in situ tests, such as 

the cone penetration test (CPT), standard penetration test (SPT), and dilatometer test. 

However, most of the available methods simplify the problem by incorporating several 

assumptions associated with the aforementioned factors that affect the settlement of piles.  
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Consequently, most of the existing methods fail to achieve consistent success in relation to accurate 

settlement prediction (Poulos 1999).  As a result, alternative methods are needed, which provide 

more accurate settlement prediction. 

In recent times, artificial neural networks (ANNs) have been applied to many geotechnical 

engineering problems and have demonstrated some degree of success.  ANNs are a form of artificial 

intelligence, which, by means of their architecture, attempt to simulate the biological structure of 

the human brain and nervous system.  Although the concept of artificial neurons was first 

introduced in 1943, research into applications of ANNs has blossomed since the introduction of the 

back propagation training algorithm for feed forward ANNs in 1986 (Rumelhart et al. 1986).  

ANNs may thus be considered a relatively new tool in the field of prediction and forecasting. 

In this paper, ANNs are used to predict the settlement of piles base on standard penetration test 

(SPT) data.  The aims of the paper are: 

• To develop an ANN model for accurately predicting the settlement of single, axially-loaded 

piles; 

• To study the effect of ANN geometry and some internal parameters on the performance of ANN 

models; 

• To explore the relative importance of the factors affecting settlement prediction by carrying out 

sensitivity analysis; and 

• To compare the performance of the ANN model with four of the most commonly used 

traditional methods. 

 

Development of Neural Network Model 

 

The development of ANN models requires the determination of model inputs and outputs, division 

and pre-processing of the available data, the determination of appropriate network architecture, 

stopping criteria, and model validation (Shahin et al. 2002).  The personal computer-based software 
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NEUFRAME version 4.0 (Neurosciences Corp. 2000) is used to simulate ANN operation in this 

work. 

The data used to calibrate and validate the neural network model were obtained from both 

published literature and the authors own files.  Suitable case studies were those having pile load 

tests that include field measurements of full-scale pile settlements, as well as the corresponding 

information regarding the piles and soil.  The database contains a total of 1,013 cases from 76 

individual pile load tests. The references used to compile the database are given in Table 1. 

 

Model Inputs and Outputs 

 

In order to obtain accurate settlement predictions, a thorough understanding of the factors affecting 

settlement is needed (Shahin et al. 2002).  Most traditional pile settlement methods include the 

following fundamental parameters: pile geometry, pile material properties, applied load and soil 

properties.  There are some additional factors, such as the pile installation type, load test method, 

whether the pile tip is closed or open, and the depth to the water table.  The depth of water table is 

not included in this study, as it is believed that its effect is already accounted for in the measured 

SPT blow count (Meyerhof 1965).  

Since settlement depends on the soil compressibility and the SPT is one of the most commonly 

used tests in practice for indicating the in situ compressibility of soils; the SPT blow count/300 mm 

(N) along the embedded length of the pile is used as a measure of soil compressibility for the 

purpose of this study.  To account more accurately for the variability of soil properties along the 

shaft of the pile, the embedded length of the pile is divided into five segments of equal thickness, 

with each being an average of N over that segment.  The average N count, Navej, for each 

subdivision, j, is calculated as below (Bowles 1982): 

∑
∑=

i
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ave Z

ZN
N
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where:  Zi is the soil layer thickness in that segment with Ni over that layer. 

In addition, as suggested by Liao and Whitman (1986), for sand the value of Navej for each 

subdivision is corrected for overburden pressure, as given below.  This correction is not used for 

clays. 

jj aveNcorrect NCN ×=  

v
NC

'
76.95

σ
=  

where:  CN is the adjustment for effective overburden pressure; and 

v'σ  is the effective overburden pressure (kPa). 

Hence, the factors that are presented to the ANN as model input variables are the: (i) type of 

pile load test (maintained load or constant rate of penetration); (ii) pile material (concrete, steel, 

composite and plastic); (iii) method of installation (replacement or displacement); (iv) pile tip 

(closed or open); (v) axial rigidity of the pile (EA); (vi) cross sectional area of the pile tip (Atip); (vii) 

perimeter of the pile in contact with the soil (O); (viii) length of the pile (L); (ix) embedded length 

of the pile (Lembed); (x) the averaged and corrected SPT blow count/300 mm  along the embedded 

length of the pile (N1, N2, N3, N4, N5); (xi) the corrected SPT blow count/300 mm at the tip of the 

pile (Ntip); and (xii) applied load (P).  Pile settlement is the single output variable. 

When a constant rate of penetration load test is performed, the measured pile settlement is an 

immediate settlement.  However, in the case of a maintained load (ML) test, the measured 

settlement of the pile is a combination of immediate and consolidation settlement.  In a typical ML 

test, the maximum time that the load is maintained is 72 hours.  However, the ML test data included 

in the database incorporates 140 (14%) measurements in clayey soil and 253 (25%) in sand, and 

only the clayey data are expected to include some proportion of consolidation settlement.  Of the 

measured ML test settlement data in clayey soil, the database includes no measurements where the 

maximum time of load application was 72 hours.  In fact, the maximum load application time 

incorporated in the database is 20 hours, and there are a total of 44 (4%) such data, and 45 (4%) 
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where the load was maintained for less than one hour.  Consequently, the amount of consolidation 

settlement included in the database is expected to be small and hence, the two pile load test types 

essentially measure immediate settlement. 

To identify which of the input variables has the most significant impact on settlement 

predictions, a sensitivity analysis is carried out on the trained network.  A simple and innovative 

technique proposed by Garson (1991) is used to define the relative importance of the input variables 

by examining the connection weights of the trained network.  Shahin et al. (2002) illustrated the 

method for a neural network model with five inputs, two hidden layer nodes, and one output.  In 

this paper, the method for the sensitivity analysis is carried out for a neural network model with 22 

inputs (included the text variables), 7 hidden layer nodes, and one output.  The sensitivity analysis 

is repeated for networks trained with different initial random weights in order to test the robustness 

of the model in relation to its ability to provide information about the relative importance of the 

physical factors affecting pile settlement (Shahin et al. 2002).  The results of the sensitivity analysis 

are discussed later. 

 

Data Division and Pre-processing 

 

It is common practice to divide the available data into two subsets; a training set, to construct the 

neural network model, and an independent validation set to estimate model performance in the 

deployed environment (Twomey and Smith 1997).  A modification of the above data division 

method is cross-validation (Stone 1974) in which the data are be divided into three sets; training, 

testing and validation.  The training set is used to adjust the connection weights, whereas the testing 

set is used to check the performance of the model at various stages of training and to determine 

when to stop training to avoid over-fitting.  The validation set is used to estimate the performance of 

the trained network in the deployed environment.  Consequently, the database is divided into three 

sets; training, testing and validation.  In total, 85.6% of the data (867 cases) are used for training 
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and 14.4% (146 cases) are used for validation.  The training data are further divided into 81% (701 

cases) for the training set and 19% (166 cases) for the testing set.  

Since it is essential that the data used for training, testing, and validation represent the same 

population (Masters 1993), the statistical properties (e.g. mean, standard deviation and range) of the 

data subsets need to be similar (Shahin et al. 2004).  In addition, it is generally accepted that ANNs 

perform best when they do not extrapolate beyond the range of their training data (Flood and 

Kartam 1994; Tokar and Johnson 1999).  Consequently, in order to develop the best possible 

model, all patterns that are contained in the data need to be included in the training set.  Similarly, 

since the test set is used to determine when to stop training, it needs to be representative of the 

training set and should therefore also contain all of the patterns that are present in the available data 

(Shahin et al. 2002).  In this study in order to achieve this, several random combinations of the 

training, testing and validation sets are tried until three statistically consistent data sets are obtained.  

The statistical parameters considered include the mean, standard deviation, minimum, maximum 

and range, as suggested by Shahin et al. (2004).  Despite trying numerous random combinations of 

training, testing, and validation sets there are still some slight inconsistencies in the statistical 

parameters for each subset, as shown in Table 2.  However, on the whole, the statistics are in good 

agreement and all three data sets may be considered to represent the same population. 

After dividing the available data into their subsets, the variables are pre-processed by scaling 

them to a suitable form and to eliminate their dimension before they are applied to the ANN.  The 

output variables need to be scaled to be commensurate with the limits of the transfer functions used 

in output layers (Shahin 2003).  Scaling the input variables is not necessary, so in this study the 

output variables are scaled between 0.0 to 1.0, as the sigmoid transfer function is used in the output 

layer.  

 

Determination of Model Architecture 
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Determining the network architecture is one of the most important and difficult tasks in ANN model 

development (Maier and Dandy 2000).  It requires the selection of the optimum number of hidden 

layers and the number of nodes in each of these.  There is no unified theory for determination of an 

optimal ANN architecture (Shahin 2003).  The number of nodes in the input and output layers are 

restricted by the number of model inputs and outputs.  A total of 16 input variables are included in 

this study and, since the NEUFRAME software accepts text parameters, therefore instead of 

allocating a numeric value to these parameters, text parameters have been considered in the model 

development.  It is noted that NEUFRAME allocates an input node for every one of the text 

parameters.  For example, for the pile material, NEUFRAME allocates 4 nodes (one node each for 

Concrete, Steel, Composite, and Plastic).  Therefore, the input layer of the ANN model developed 

using the NEUFRAME software contains 22 nodes, (two for the type of test [ML, CRP], four for 

pile material [Concrete, Steel, Composite, Plastic], two for method of installation [Replacement, 

Displacement], two for the pile tip [Closed, Open], and one for each of the  input variables [EA, Atip, 

O, L, Lembed, N1, N2, N3, N4, N5, Ntip]), and P.  The output layer has a single node representing the 

measured value of settlement, sm. 

Although, it has been shown that a network with one hidden layer can approximate any 

continuous function (Hornik et al. 1989), in this research a single and multiple hidden layers are 

used.  In order to determine the optimum network geometry, first ANNs with a single hidden layer 

and 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 43, 44, and 45 nodes in the hidden layer are trained.  

It should be noted that 45 is the upper limit for the number of hidden layer nodes needed to map any 

continuous function for a network with 22 inputs, as discussed by Caudill (1988).  Then ANNs with 

two, three and four hidden layers with different numbers of nodes in the hidden layers are trained. 

Both models (single layer and multi-hidden layers) have been trained with a sigmoidal and a 

hyperbolic tangent (tanh) transfer function for the hidden layers.  In the single hidden layer model, a 

sigmoidal transfer function is adopted for the hidden and output layers, and for the multi-hidden 

layers models, a tanh transfer function is used for the hidden layers and a sigmoidal transfer 
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function is adopted for the output layer.  These were combinations of transfer functions were found 

to yield the most accurate predictions of pile settlement when compared to the measured values. 

 

Model optimization (Training) 

 

Training or learning is the process of optimizing the connection weights.  The aim is to find a global 

solution to what is typically a highly non-linear optimization problem (White 1989).  The method 

most commonly used for establishing the optimum weight combination of feed-forward neural 

networks is the back-propagation algorithm (Rumelhart et al. 1986), which is based on first-order 

gradient descent.  Feed-forward networks trained with the back-propagation algorithm have already 

been applied successfully to many geotechnical engineering problems (e.g. Goh 1994; Najjar and 

Basheer 1996).  Consequently, the back-propagation algorithm is used for optimizing the 

connection weights in this study.  Details of the back-propagation algorithm can be found in many 

publications (e.g. Fausett 1994).  In this work, the general strategy adopted for finding the optimal 

parameters that control the training process is as follows.  A number of trials are carried out using 

the default parameters of the software used (i.e. the momentum term of 0.8 and a learning rate of 

0.2).  The network that performs best is then retrained with the different combinations of 

momentum terms and learning rates in an attempt to improve model performance. Since the back-

propagation algorithm uses a first-order gradient descent technique to adjust the connection 

weights, it may get trapped in a local minimum if the initial starting point in the weight space is 

unfavourable (Shahin 2003).  Consequently, the model that has the optimum momentum term and 

learning rate is retrained a number of times with different initial weights until no further 

improvement occurs.  

 

Stopping Criteria 
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Stopping criteria are those used to decide when to stop the training process (Shahin et al. 2002).  

They determine whether the model has been optimally or sub-optimally trained (Maier and Dandy 

2000).  Many approaches can be used to determine when to stop training, such as those described 

by Shahin et al. 2002).  As mentioned previously, the cross-validation technique (Stone 1994) is 

used in this work as it is considered that sufficient data are available to create training, testing and 

validation sets and it is the most valuable tool to ensure over fitting does not occur (Smith 1993). 

The training set is used to adjust the connection weights, whereas the testing set measures the 

ability of the model to generalise and, using this set, the performance of the model is checked at 

many stages during the training process and training is stopped when the error of the testing set 

starts to increase (Shahin et al. 2002). 

 

Model Validation 

 

Once training of the model has been successfully accomplished, the performance of the trained 

model should be validated using data sets that have not been used as part of the learning process.  

This data set is known as the validation set.  The purpose of the model validation phase is to ensure 

that the model has the ability to generalize within the limits set by the training data in a robust 

fashion, rather than simply having memorized the input-output relationships that are contained in 

the training data (Shahin et al. 2002). 

The coefficient of correlation, r, the root mean squared error, RMSE, and the mean absolute 

error, MAE, are the main criteria that are used to evaluate the prediction performance of ANN 

models.  The coefficient of correlation is a measure that is used to determine the relative correlation 

between the predicted and measured data and can be calculated as follows: 

jj

jj

dy

dyC
r

σσ
=  
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where:  yj is the model (predicted) output; 

dj is the desired (observed) output; 

jjdyC  is the covariance between the model output (yj) and the desired output (dj); 

jyσ  is the standard deviation of the model output yj; 

jdσ  is the standard deviation of the desired output dj; 

y  is the mean of the model output yj; 

d  is the mean of the desired output dj; and 

n  is the number of data. 

 

Smith (1993) suggested the following guide for values of |r| between 0.0 and 1.0: 

 

• |r| ≥ 0.8 strong correlation exists between two sets of variables; 

• 0.2 < |r| < 0.8 correlation exists between the two sets of variables; and 
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• |r| ≤ 0.2 weak correlation exists between the two sets of variables.  

 

The root mean square error, RMSE, is the most popular measure of error and it has the 

advantage that large errors receive much greater attention than small errors (Hecht-Nielsen, 1990).  

The root mean square error, RMSE, and mean absolute error, MAE, are desirable when the data 

evaluated are smooth or continuous (Twomey and Smith 1997). 

 

Results 

 

As mentioned previously, in this study two ANN models have been developed.  The first model 

incorporates a single hidden layer and the second model utilizes multiple hidden layers.  In order to 

determine the optimum network geometry, ANNs with a single hidden layer and 3, 4, 5, 6, 7, 8, 9, 

10, 15, 20, 25, 30, 35, 40, 43, 44, and 45 nodes in the hidden layer are trained, then ANNs with two, 

three and four hidden layers with different numbers of nodes in the hidden layers are trained.  

The results of the ANN with a single hidden layer and different numbers of nodes in the hidden 

layer are summarised in Table 3, assessed against the validation set.  It can be seen that the network 

with 7 hidden layer nodes has the lowest RMSE (12.42), whereas the model with 8 hidden layer 

nodes has the highest coefficient of correlation, r (0.721).  The results of these two models for the 

three data sets are shown in Tables 4 and 5.  The plots of the measured versus predicted settlement, 

for these two models, are shown in Figures 1 and 2, respectively for the validation and testing sets.  

The results indicate that the ANN model with a single hidden layer performs unsatisfactorily, 

because it predicts negative settlements in the low settlement region.  Furthermore, the single 

hidden layer model has low correlation coefficients and high root mean square errors for the 

validation set. 

The results of a sensitivity analysis for the model with a single hidden layer and 7 nodes are 

shown in Table 6.  As one would expect, it can be seen that the applied load (P), embedded length 
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of pile (Lembed), and the soil properties have the most significant effect on the predicted settlement 

when the network is trained with different initial weights. 

The results of the optimum networks for the multiple hidden layers are summarized in Table 7.  

It is observed that Model 14-6 is the optimum of the two hidden layer models, with 14 nodes in the 

first hidden layer and 6 nodes in the second, and Model 13-8-3 is the optimum of the three hidden 

layer models, with 13 nodes in the first, 8 in the second and 3 in the third hidden layer.  It can be 

seen that the best result is obtained by the four hidden layer model with 15-13-5-2 nodes in the four 

hidden layers. 

The effect of the internal parameters controlling the back-propagation algorithm (i.e. 

momentum term and learning rate) on model performance (model with 15-13-5-2 nodes in the four 

hidden layers) is shown in Table 8.  It can be seen that the best prediction was obtained with a 

momentum value of 0.6 and the optimum learning was found to be 0.4. 

The plots of the measured versus predicted settlement for the validation and testing sets are 

shown in Figure 3.  The results indicate that the model performs well, with an r of 0.972, and a 

RMSE of 4.49 mm for the validation set, and 0.958 and 2.47 mm for the testing set.  Whilst not 

particularly parsimonious, this is not the first time that an optimal ANN model has incorporated 

more than two hidden layers.  For example, Karlik et al. (1998) identified an optimal ANN model 

with 3 hidden layers for the vibration of a beam-mass system, which performed better than a single 

hidden layer model. 

Comparisons between the results obtained from the optimal ANN model and four traditional 

methods commonly used to determine the settlement of piles are presented in the following section. 

 

Numerical Model 

 

In this section an actual pile load test of a concrete pile is analyzed using the optimal ANN model 

(i.e. with 4 hidden layers and 15-13-5-2 nodes in the hidden layers), and the ANN predictions are 
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compared with the measured settlement, as well as the results from four traditional methods: Poulos 

and Davis (1980), Vesic (1977), Das (1995), and the non-linear t-z method proposed by Reese et al. 

(2006).  The data for this pile were not included in the training set.  The properties of the pile and 

soil are as follows:  Type of test = Maintained Load (ML); Type of soil = Medium dense sand; Type 

of pile = Concrete; Type of installation = Bored; Diameter of pile = 966 mm; Length of pile = 

11.4 m; Embedded length of pile = 11.4 m; Modulus of elasticity for pile = 31 GPa; the five 

corrected SPT N values along the embedded length of pile are: N1=32.82, N2=18.95, N3=18.88, 

N4=16.24, and N5=17.43; and Ntip=17. 

 

Poulos and Davis (1980) method 

Poulos and Davis (1980) suggested that the settlement of a pile, s, be determined using the 

following approach: 

dE
PIs

s

=  

where: I ν= RRRI hK0  and is an influence factor for a rigid pile in a deep layer; 

I0 is the settlement-influence factor for an incompressible pile in a semi-

infinite mass, for ν = 0.5; 

RK is the correction factor for pile compressibility; 

Rh is the correction factor for finite depth, h, of layer on a rigid base; and 

Rν is the correction factor for Poisson’s ratio of the soil, ν. 

 

The parameters I0, RK, Rh and Rν are obtained from a series of charts provided by Poulos and 

Davis (1980).  

 

Vesic (1977) method 



 15

Vesic (1977) suggested that the settlement of a pile, s, under a vertical working load, Pw, is the 

summation of three components s1, s2, and s3.  Assuming the pile material to be elastic, the elastic 

compression of the pile itself, s1, is evaluated from: 

EA
LPP

s
tip

wswp )(
1

ζ+
=  

where: Pwp is the load carried at the pile tip under working load conditions; 

Pws is the load carried by skin resistance; and 

ζ  is a factor depending on the unit skin friction distribution. 

 

The settlement of a pile due to the load carried at the pile tip, s2, is expressed as: 

p

wp
p dq

P
Cs =2  

where: Cp is an empirical coefficient; and 

tip
tip

p N
d

LN
q 40040 ≤=   (kPa)      (Meyerhof 1976). 

 

And finally, the settlement of the pile caused by the load carried by the pile shaft, s3, is: 

p

ws
s Lq

PCs =3  

where:  ps C
d
LC ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= 16.093.0  

The parameter ζ is assumed to equal 0.5 and the coefficient Cp is assumed to be equal to 0.09, as 

recommended for a sandy soil. 

 

Das (1995) method 

The Das (1995) method is the same as that proposed by Vesic (1977), but with a slight difference to 

the evaluation of settlements s2 and s3, as follows: 
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The coefficient ρI  is assumed to equal 0.88 for a pile of circular cross-section. 

Figure 4 shows a plot of measured settlements (Briaud et al. 2000) as a function of the applied 

load for the example pile, along with the settlements predicted by the optimal ANN model and the 

Poulos and Davis (1980), Vesic (1977) and Das (1995) methods.  In addition, in order to consider a 

non-linear load-settlement relationship (large displacement), the numerical example is also 

examined using of the t-z method of Reese et al. (2006) by means of the TZPILE software, version 

2.0.  In addition, plots of measured versus predicted settlements for the example pile are shown in 

Figure 5 for the optimal ANN model and the Poulos and Davis (1980), Vesic (1977), Das (1995), 

and t-z  methods.  It can be seen that the ANN model satisfactorily predicts the measured data and 

significantly outperforms the traditional methods examined. 

 

Conclusions 

 

A back-propagation neural network was used to examine the feasibility of ANNs to predict the 

settlement of piles.  A database containing 1,013 case records of field measurements of pile 

settlements was used to develop and verify the model.  The results indicate that back-propagation 

neural networks have the ability to predict the settlement of pile with an acceptable degree of 

accuracy (r = 0.972, RMSE = 4.49 mm) for settlements up to 185 mm.  The ANN method has an 

additional advantage over conventional methods in that, once the model is trained, it can be used as 

an accurate and quick tool for estimating the settlement of piles.  



 17

Sensitivity analyses indicate that, as one would expect, the applied load (P), embedded length of 

pile (Lembed), and soil properties, in this case the SPT N value, have the most significant effect on the 

predicted settlement.  The results of this study indicate that ANNs yield more accurate pile 

settlement predictions than those obtained from the traditional methods examined; namely those of 

Poulos and Davis (1980), Vesic (1977), Das (1995), and the non-linear t-z method of Reese et al. 

(2006).  The interested reader is encouraged to contact the first author for a copy of the optimal 

ANN model. 
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NOTATION 

The following symbols are used in this paper: 

Atip = cross-sectional area of the pile tip; 

Cp, Cs = empirical coefficients; 

CN = adjustment for effective overburden pressure; 

jjdyC  = covariance between the model output (yj) and the desired output (dj); 

d = diameter, or width, of the pile; 

dj = desired (observed) output; 

d  = mean of the desired output dj; 

E = Young’s modulus of elasticity of the pile material; 

EA = axial rigidity of pile; 

Es = Young’s modulus of elasticity of the soil; 

I = influence factor for a rigid pile in a deep layer;  
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I0 =settlement influence factor for pile compressibility; 

ρI , sI ρ = empirical coefficients; 

L = length of pile; 

Lembed = embedded length of pile; 

N1, N2, …, N5 = average corrected standard penetration test blow count/300 mm along the first, 

second, third, fourth and fifth segments along the embedded length of the pile; 

Navej = average corrected standard penetration test blow count/300 mm along the embedded 

length of pile for layer j; 

Ntip = average corrected standard penetration test blow count/300 mm at the pile tip to the depth 

of influence; 

n  = number of data; 

O = perimeter of pile;  

P = applied load; 

Pw = working load applied to the pile; 

Pwp = load carried at the pile tip under working load conditions; 

Pws = the load carried by skin resistance; 

qp = ultimate tip resistance of the pile; 

Rh = correction factor for finite depth of a layer on a rigid base; 

Rk = correlation factor for pile compressibility; 

Rν = correlation factor for Poisson’s ratio of soil;  

s = calculated settlement; 

sm = measured settlement; 

s1 = pile settlement due to the pile shaft; 

s2 = pile settlement due to the tip load; 

s3 = pile settlement due to the skin friction load;  

yj  = model (predicted) output; 
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y  = mean of the model output yj; 

Zi = the soil layer thickness; 

ν = Poisson’s ratio of the soil; 

jdσ  = standard deviation of the desired output dj; 

v'σ  = effective overburden pressure; 

jyσ  = standard deviation of the model output yj; and 

ζ = factor dependent on the unit skin friction distribution. 
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Figure 1.  Measured versus predicted settlements for the ANN models with a single hidden 

layer with respect to the validation set: (a) ANN model with 7 hidden layer nodes; (b) ANN 

model with 8 hidden layer nodes. 
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Figure 2.  Measured versus predicted settlements for the ANN models with a single hidden 

layer with respect to the testing set: (a) ANN model with 7 hidden layer nodes; (b) ANN model 

with 8 hidden layer nodes. 
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Figure 3.  Measured versus predicted settlements for ANN models with 4 hidden layers with 

15-13-5-2 hidden layer nodes: (a) Validation set; and (b) Testing set. 
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Figure 4.  Applied load versus measured and predicted settlements from the optimal ANN 

model, Poulos and Davis (1980), Vesic (1977), Das (1995), and non-linear t-z methods. 
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Figure 5.  Measured versus predicted settlements for the example pile for optimal ANN 

model; Poulos and Davis (1980); Vesic (1977), Das (1995), and non-linear t-z methods. 
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Table 1.  Database references. 

Reference Location of test(s) No. of pile 
load tests 

Al-Homoud et al. (2004) 

Altaee et al. (1992) 

Balakrishnan et al. (1999) 

Briaud et al. (2000) 

Broms and Hellman (1968) 

Farquhar (1990) 

Florida Dept. of Transportation 

Hirayama (1990) 

Ismael (1999) 

Keller, unpublished 

Keller, unpublished 

Lin et al. (2004) 

Lo and Li (2003) 

Ng et al. (2000) 

Omer et al. (2003) 

Paik et al. (2003) 

US Dept. of Transportation 

Yang et al. (2006) 

Zhang et al. (2006) 

Sharje, UAE 

Baghdad, Iraq 

Kuala Lumpur, Malaysia 

Texas A&M University 

Sweden 

Auckland, New Zealand 

USA 

Japan 

Kuwait 

Ashford, UK 

Imperial Wharf, UK 

Taiwan 

Hong Kong 

Hong Kong 

Cardiff, UK 

Indiana, US 

Virginia, US 

Hong Kong 

Hong Kong 

1 

2 

11 

2 

1 

1 

27 

3 

3 

2 

3 

2 

2 

1 

5 

2 

4 

2 

2 
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Table 2.  Artificial neural network input and output statistics. 

Model variables 
and data sets 

Statistical parameters 
Mean Std. Dev.a Maximum Minimum Range 

Axial rigidity of pile, EA (MN) 
Training set 22095.02 25178.04 247400.40 1692.04 245708.34 
Testing set 20976.07 13636.90 109955.70 1692.04 108263.66 
Validation set 20628.17 12016.72 58240.00 1692.04 56547.96 
Cross sectional area of pile tip, Atip (cm2) 
Training set 5080.32 7761.74 70685.83 229.30 70456.53 
Testing set 5141.46     4574.68 31415.93 229.30 31186.63 
Validation set 5211.19 4269.01 22400.00 229.30 22170.70 
Perimeter of pile, O (cm) 
Training set 563.27 273.59 1137.10 78.54 1058.56 
Testing set 574.65 268.07 1137.10 78.54 1058.56 
Validation set 540.98 268.75 1137.10 78.54 1058.56 
Length of pile, L (m) 
Training set 32.63 14.21 81.10 8.24 72.86 
Testing set 30.44 14.75 81.10 8.24 72.86 
Validation set 29.40 15.39 81.10 8.24 72.86 
Embedded length of pile, Lembed (m) 
Training set 25.99 13.20 81.10 6.45 74.65 
Testing set 23.01 14.23 81.10 6.45 74.65 
Validation set 22.49 14.66 81.10 6.45 74.65 
Average SPT blow, N1 (Corrected)   

Training set 14.61 23.38 161.00 0.00 161.00 
Testing set 21.73 33.35 161.00 0.00 161.00 
Validation set 24.20 33.88 161.00 0.00 161.00 
Average SPT blow, N2 (Corrected)   
Training set 18.60 22.32 161.00 0.00 161.00 
Testing set 24.40 31.66 161.00 3.40 157.60 
Validation set 25.62 32.10 161.00 0.00 161.00 
Average SPT blow, N3 (Corrected)   
Training set 26.83 26.17 161.00 0.00 161.00 
Testing set 30.25 34.63 161.00 0.00 161.00 
Validation set 31.87 34.97 161.00 0.00 161.00 
Average SPT blow, N4 (Corrected)   
Training set 31.71 27.56 195.00 2.69 192.31 
Testing set 35.93 36.22 195.00 2.69 192.31 
Validation set 37.06 37.18 195.00 2.69 192.31 
Average SPT blow, N5 (Corrected)   
Training set 39.17 34.43 250.00 4.13 245.87 

aStd. Dev. indicates standard deviation. 
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Table 2.  Artificial neural network input and output statistics (continued) 

Model Variables 
and data sets 

Statistical parameters 
Mean Std. Deva Maximum Minimum Range 

Testing set 41.81 42.05 250.00 4.13 245.87 
Validation set 43.63 43.71 250.00 4.13 245.87 
Average SPT blow, Ntip (Corrected)   
Training set 47.87 53.33 300.00 0.00 300.00 
Testing set 53.04 64.29 300.00 0.00 300.00 
Validation set 55.81 66.59 300.00 0.00 300.00 
Applied load, P (kN) 
Training set 6058.43 5804.45 40000.00 0.00 40000.00 
Testing set 4094.59 4593.53 29400.00 0.00 29400.00 
Validation set 4719.15 4480.86 25000.00 0.00 25000.00 
Measured settlement, sm (mm) 
Training set 12.36 17.89 185.00 0.00 185.00 
Testing set 6.23 8.56 47.32 0.00 47.32 
Validation set 10.36 17.96 137.50 0.00 137.50 

aStd. Dev. indicates standard deviation. 
 
 
 
Table 3.  Results for ANN model with a single hidden layer 
and different numbers of nodes for the validation set. 
 

Number of nodes in 
hidden layer 

Correlation 
coefficient, r RMSE(mm) 

3 0.622 14.20 
4 0.595 14.54 
5 0.715 12.53 
6 0.698 12.84 
7 0.720 12.42 
8 0.721 12.45 
9 0.620 14.15 
10 0.667 13.52 
15 0.660 13.53 
20 0.678 13.23 
25 0.698 12.84 
30 0.633 13.92 
35 0.675 13.26 
40 0.652 13.66 
43 0.659 13.51 
44 0.661 13.48 
45 0.640 13.92 
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Table 4.  Results of ANN model with a single hidden layer with 7 nodes. 
 

Data set Correlation 
coefficient, r RMSE (mm) 

Training set  0.922 6.95 
Testing set 0.818 6.55 
Validation set 0.720 12.42 

 
 
Table 5.  Results of ANN model with a single hidden layer with 8 nodes. 
 

Data set Correlation 
coefficient, r RMSE (mm) 

Training set  0.920 7.00 
Testing set 0.802 6.52 
Validation set 0.721 12.45 

 
 
Table 6.  Sensitivity analysis of the relative importance (%) of the ANN input variables. 
 

Training No. 
Input variables 1 2 3 4 Average 

Type of test 
ML 3.47 5.19 4.42 4.15  4.59 
CRP 3.28 2.96 3.9527 4.29 3.73 
Type of pile 
Concrete 4.78 4.42  4.90 3.85 4.49 
Steel 1.96 3.07  1.76 5.87  3.17 
Composite 3.88 3.05 2.87 3.59  3.35 
Plastic 2.93  2.57 3.35 1.88 2.68 
Type of installation 
Replacement 4.70  2.15 2.98 4.62 3.61 
Displacement 4.59  4.47  5.19  3.97  4.56 
End of pile 
Closed 3.73  3.77  3.64 2.97  3.53 
Open 3.30 3.41 4.19  3.20  3.53 
Numerical variables 
EA 5.74  6.23 4.56 4.03 5.14 
Atip 4.19  3.70 3.41 2.92  3.56 
O 4.07  4.80 3.27  4.89  4.26 
L 6.55  3.52  6.33  5.53  5.48 
Lembed 8.74  8.51 8.93  8.11 8.57 
N1 6.31  7.56 6.22 5.72  6.45 
N2 3.13 3.37 4.10 3.36  3.49 
N3 3.84  6.26  2.56 3.50  4.04 
N4 4.03  3.60 2.59 3.78 3.50 
N5 3.86 2.34 4.21 4.01 3.61 
Ntip 1.52 3.75 2.81 5.09 3.29 
P 11.38  11.32 13.79 10.66 11.79 
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Table 7.  Results of optimum multiple hidden layer networks. 
 

Optimum 
multiple hidden 

layer models 

Correlation 
coefficient, r RMSE(mm) 

14-6 
Training 0.993 2.12 
Testing 0.937 3.02 
Validation 0.950 10.34 
13-8-3 
Training 0.993 2.10 
Testing 0.949 2.74 
Validation 0.930 7.00 
15-13-5-2 

Training 0.991 2.42 
Testing 0.930 3.20 
Validation 0.961 5.12 
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Table 8.  Effect of varying momentum and learning rate on the optimum four hidden layer 
model with 15-13-5-2 nodes in the hidden layers. 
 
Learning 

rate 
Momentum 

term 
Performance measures 

Correlation coefficient, r RMSE (mm) 
T S V T S V 

0.2 0.05 0.987 0.932 0.902 2.86 3.10 17.40 
0.2 0.1 0.990 0.959 0.921 2.65 2.47 14.27 
0.2 0.2 0.991 0.956 0.917 2.46 2.54 13.53 
0.2 0.4 0.985 0.947 0.898 3.37 2.88 12.67 
0.2 0.5 0.992 0.963 0.930 2.24 2.43 7.87 
0.2 0.6 0.991 0.947 0.966 2.49 2.81 4.91 
0.2 0.7 0.989 0.961 0.942 2.93 2.59 6.39 
0.2 0.8 0.991 0.930 0.961 2.42 3.20 5.12 
0.2 0.9 0.989 0.938 0.955 2.63 2.97 5.31 
0.2 0.95 0.992 0.952 0.596 2.42 2.83 14.45 
0.05 0.6 0.992 0.959 0.955 2.40 2.44 7.30 
0.1 0.6 0.992 0.963 0.917 2.20 2.33 11.83 
0.3 0.6 0.987 0.966 0.930 2.94 2.28 6.78 
0.4 0.6 0.993 0.958 0.972 2.17 2.47 4.49 
0.5 0.6 0.990 0.962 0.968 2.63 2.44 5.63 
0.6 0.6 0.990 0.922 0.943 2.59 3.42 6.34 
0.8 0.6 0.984 0.870 0.887 3.58 4.77 8.42 
0.9 0.6 0.991 0.927 0.903 2.71 3.67 7.97 
0.95 0.6 0.990 0.925 0.934 2.61 3.45 6.56 
0.99 0.6 0.980 0.872 0.848 4.69 5.88 9.79 
0.05 0.8 0.992 0.960 0.915 2.30 2.42 12.12 
0.1 0.8 0.992 0.940 0.953 2.46 3.13 5.49 
0.3 0.8 0.988 0.930 0.945 2.98 3.31 6.15 
0.4 0.8 0.989 0.931 0.951 2.77 3.18 5.59 
0.5 0.8 0.981 0.896 0.880 4.04 4.89 8.98 
0.6 0.8 0.980 0.889 0.907 3.92 4.94 7.59 
0.8 0.8 0.992 0.941 0.881 2.23 3.01 8.81 
0.9 0.8 0.991 0.914 0.948 2.53 3.49 5.93 
0.95 0.8 0.990 0.924 0.962 2.53 3.28 4.87 
0.99 0.8 0.972 0.812 0.889 7.52 8.52 9.24 

T = training, S = testing, V = validation 


