
 
Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-05-09T15:18:41Z

 

Some rights reserved. For more information, please see the item record link above.
 

Title Optimized reaction mechanism rate rules for ignition of normal
alkanes

Author(s) Cai, Liming; Pitsch, Heinz; Mohamed, Samah Y.; Raman,
Venkat; Bugler, John; Curran, Henry J.; Sarathy, S.Mani

Publication
Date 2016-08-10

Publication
Information

Cai, Liming, Pitsch, Heinz, Mohamed, Samah Y., Raman,
Venkat, Bugler, John, Curran, Henry, & Sarathy, S. Mani.
(2016). Optimized reaction mechanism rate rules for ignition of
normal alkanes. Combustion and Flame, 173, 468-482. doi:
http://dx.doi.org/10.1016/j.combustflame.2016.04.022

Publisher Elsevier

Link to
publisher's

version
http://dx.doi.org/10.1016/j.combustflame.2016.04.022

Item record http://hdl.handle.net/10379/6261

DOI http://dx.doi.org/10.1016/j.combustflame.2016.04.022

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Optimized reaction mechanism rate rules for ignition of

normal alkanes

Liming Caia,∗, Heinz Pitscha, Samah Y. Mohamedb, Venkat Ramanc, John
Buglerd, Henry Currand, S. Mani Sarathyb

aInstitute for Combustion Technology, RWTH Aachen University, 52062 Aachen,
Germany

bClean Combustion Research Center, King Abdullah University of Science and
Technology, Thuwal 23955-6900, Saudi Arabia

cDepartment of Aerospace Engineering, University of Michigan, Ann Arbor 48109, USA
dCombustion Chemistry Centre, National University of Ireland, Galway, Ireland

Abstract

The increasing demand for cleaner combustion and reduced greenhouse

gas emissions motivates research on the combustion of hydrocarbon fuels and

their surrogates. Accurate detailed chemical kinetic models are an important

prerequisite for high fidelity reacting flow simulations capable of improving

combustor design and operation. The development of such models for many

new fuel components and/or surrogate molecules is greatly facilitated by the

application of reaction classes and rate rules. Accurate and versatile rate

rules are desirable to improve the predictive accuracy of kinetic models. A

major contribution in the literature is the recent work by Bugler et al. (Bu-

gler et al., J. Phys. Chem. A 119 (2015) 7510-7527), which has significantly

improved rate rules and thermochemical parameters used in kinetic modeling

of alkanes. In the present study, it is demonstrated that rate rules can be used
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and consistently optimized for a set of normal alkanes including n-heptane,

n-octane, n-nonane, n-decane, and n-undecane, thereby improving the pre-

dictive accuracy for all the considered fuels. A Bayesian framework is applied

in the calibration of the rate rules. The optimized rate rules are subsequently

applied to generate a mechanism for n-dodecane, which was not part of the

training set for the optimized rate rules. The developed mechanism shows

accurate predictions compared with published well-validated mechanisms for

a wide range of conditions.

Keywords:

n-Alkanes, Rate Rules, Mechanism Development, Optimization and

Uncertainty Quantification

1. Introduction

Computational fluid dynamic (CFD) calculations of reactive flows have

become an important part in the design of combustion devices. A critical fac-

tor in performing successful CFD simulations is an adequate representation

of fuel chemistry, especially when more complex phenomena are studied, such

as auto-ignition, flame stabilization, or pollutant formation. While chemical

mechanisms of several species, e. g. methane, ethanol, and n-heptane, have

been extensively studied in the last few years, the accuracy of the mecha-

nisms for most species requires improvement. Furthermore, there is a grow-

ing demand for accurate mechanisms of fuel species that have never been

studied. Recently, various new surrogate components, such as n-decane [1],

n-dodecane [2, 3], and 2,5-dimethylhexane [4] have been proposed to improve

the performance of surrogate mixtures for petroleum fuels. Moreover, lim-
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ited fossil fuel reserves and a need for renewable energy raise the interest

in alternative biofuels. For both kinds of species, mechanisms are generally

missing in the literature, which impedes CFD simulations for technical de-

vices burning these fuels. Therefore, the development of accurate chemical

reaction schemes becomes even more important, especially for species which

have not yet been well studied.

Most chemical mechanisms are still compiled manually [5–11], while sev-

eral automatic mechanism generation tools have been presented in the lit-

erature [12, 13]. The approaches employed in both manual and automatic

developments generally rely on the concept of reaction classes and rate rules.

In this concept, the fuel specific oxidation steps are described by classes

of reactions with the assigned rate constants. Reaction rate constants can

be determined from quantum chemistry calculations [14–18] or experimen-

tal measurements [19–21]. However, while this is practical and desirable for

several very important reactions, it is experimentally and computationally

difficult to determine the rate constants of all involved reactions due to their

large number. Therefore, for the chemical reactions without rate data from

theory or experiment, rate rules are used to specify their rate constant ex-

pressions.

Several studies have focused on the development of accurate rate rules.

The addition of molecular oxygen to the fuel radicals, which initializes the

low temperature oxidation pathway, was studied by Miyoshi [22]. Villano et

al. [23, 24] investigated the isomerization rates of alkyl peroxy (RO2) and per-

oxy alkylhydroperoxide (O2QOOH) radicals for C2–C5 alkanes and suggested

to use the obtained data also as rate rules for larger hydrocarbon fuels. Due

3
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to their importance, the H-atom migration reactions of RO2 and O2QOOH

radicals were investigated by Miyoshi [25] and Sharma et al. [26] as well.

Also for the decomposition channels of RO2 and hydroperoxy alkyl (QOOH)

radicals, rate rules were determined by Villano et al. [24] and Miyoshi [25].

Recently, Bugler et al. [27] evaluated the results [22–26, 28–34] obtained from

various levels of quantum theory and then suggested rate rules for the low-

temperature oxidation of alkanes. More importantly, the recommended rate

rules were provided with their estimated uncertainties [27].

The knowledge of reaction rate coefficient uncertainties is important, as

it can certainly have an impact on prediction accuracy. Uncertainties may

come from different sources, for example due to approximations in quantum

chemistry calculations or inherent uncertainties in the experimental determi-

nation of rate coefficients. While the application of higher levels of quantum

theory and the upgrade of measurement facilities may improve the accuracy

of rate coefficients, uncertainties still exist. Also the process of parameter

optimization depends critically on quantified uncertainties, since modifica-

tions to rate coefficients should be made in such a process only within the

uncertainty limits.

Rate coefficients are often tuned during model development. For this,

the important reactions are typically first identified by sensitivity analyses

at conditions of interest. Then, the rate parameters for these reactions are

modified manually and iteratively within their uncertainty limits to achieve

good agreement between model and experiment. In recent years, automatic

optimization and uncertainty quantification (UQ) techniques have been suc-

cessfully established for improving predictive accuracy of chemical mecha-

4
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nisms [35–39]. In cases of rate parameter optimizations found in the litera-

ture, rate coefficients of elementary reactions are systematically calibrated.

However, the rate parameters of most reactions in chemical mechanisms of

larger fuels are adapted using rate rules. A large number of reactions could

have identical rate parameters, as they are kinetically similar and therefore

follow the same rate rule. Obviously, it is not chemically reasonable to tune

rate parameters of individual elementary reactions, as this will violate consis-

tency of kinetically similar reactions. Recently, Cai and Pitsch [40] proposed

an automatic mechanism optimization method based on rate rules. This kind

of optimization based on group analysis becomes especially important where

the concept of analogy in terms of reaction classes and rate rules is used, e. g.

also for the development of polycyclic aromatic hydrocarbon formation and

growth chemistry [41].

Cai and Pitsch [40] demonstrated the mechanism optimization method

based on rate rules by optimizing the model performance of an n-pentane

mechanism. The method was later applied to calibrate a chemical mechanism

for Primary Reference Fuel (PRF) combustion, in which common rate rules

were incorporated for n-heptane and iso-octane [42]. It was shown that, once

the common rate rules were automatically calibrated, both reaction schemes

were improved. This indicated the possibility to develop optimized universal

rate rules, with which accurate chemical mechanisms can be derived for a set

of fuels rather than for only one particular fuel.

An additional aspect of optimization and uncertainty quantification is to

extract useful information from available data. Typically, experimental data

sets are required for model validation. However, despite the increasing inter-

5
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est in long chain fuel species, limited measurements have been performed for

them in the literature. The lack of information makes it difficult to derive ac-

curate mechanisms for these fuels of interest. An uncertainty quantification

framework gains information from the available measurements for shorter fu-

els to update the knowledge about rate rules. Once these constrained rate

rules are used to construct chemical models of longer chain fuels, the derived

models inherit the information from the shorter ones. This creates confi-

dence in the prediction accuracy of mechanisms that cannot be extensively

validated due to the lack of experimental measurements.

In this study, it is demonstrated that rate rules calibrated automatically

for a number of smaller fuels can be applied in the model development of

similar but larger hydrocarbons, yielding predictions that are improved com-

pared to published mechanisms for the same fuel. For this purpose, the rate

rules for normal alkanes are studied here. A training of the rate rules is

first performed, where the rate rules for n-alkanes are optimized against a

large experimental database for n-heptane, n-octane, n-nonane, n-decane,

and n-undecane using a Bayesian framework. As a test case, the optimized

rate rules are subsequently employed to derive a chemical mechanism for

n-dodecane. The derived n-dodecane mechanism is then compared with ex-

perimental measurements, a published well-validated mechanism [43], and

a mechanism developed with rate rules previously provided in the litera-

ture [8, 27]. The validity of the optimized rate rules is thus examined, and

the predictive quality of the application of the optimized rate rules in the

development of chemical mechanisms for different fuels is demonstrated.

The presentation of this paper is organized as follows. First, the op-

6
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timization methodology based on rate rules is briefly introduced. Next, a

mechanism for C7-C11 normal alkanes is developed with the up-to-date ki-

netic knowledge. Following this, the automatic calibration of the applied rate

rules is performed. The article closes with the validation of the n-dodecane

mechanism developed based on the optimized rate rules.

2. Methodology

Recently, Cai and Pitsch [40] extended the methods by Sheen and Wang [37]

and Frenklach [35] for automatic calibration of chemical kinetic models by

performing optimization of reaction rate rules. The methodology leads to a

chemically more consistent model calibration and improves the model pre-

diction accuracy significantly. As it categorizes chemically similar reactions

into one calibration objective, the number of uncertain parameters decreases.

This strongly reduces the computational effort of the optimization process

and therefore enables optimization of low temperature auto-ignition, where

many chemical reactions appear as important. The method was first applied

to calibrate an n-pentane mechanism [40] and afterwards employed to im-

prove a chemical mechanism for n-heptane and iso-octane mixtures, in which

common rate rules are incorporated for both fuels [42]. Once the common

rate rules are calibrated, both reaction schemes for n-heptane and iso-octane

are optimized. As the number of rate rules does not increase with the number

of fuels in the mechanism, the computational advantage is further advanced.

The methodology is described briefly in this section.

7
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2.1. Reaction classes and rate rules

In the present model development process, the fuel specific chemistry of

large hydrocarbon fuels is developed based on the approach of using reaction

classes and rate rules. Many reaction mechanisms have been built recently in

this manner for fuels of interest [5–11]. For these developments, 30 reaction

classes, listed in the Supplementary material, were used to derive the chemical

mechanisms [8].

Rate rules are employed in this approach to specify the rate constant

expressions for the individual elementary reactions provided by the reaction

classes. The rate rules for the individual classes were determined based on

available chemical kinetic knowledge [5, 8]. If the reactions in a class are

carbon site specific or their strain energy barriers are sensitive to the size of

transition state rings, several rate rules can be found within this class (e. g.

Class 15: RO2 = QOOH). For reaction classes with limited information of

similar reaction types (e. g. Class 16: RO2 = alkene + HO2), only one

rate rule is employed. In the optimization method proposed by Cai and

Pitsch [40], each rate rule is supposed to be a potential active parameter of

the model calibration. Once a rate rule is calibrated, the rate constants of

all reactions using this rule are consistently modified.

2.2. Optimization algorithm

In previous studies [40, 42], the method of uncertainty minimization using

polynomial chaos expansion (MUM-PCE) proposed by Sheen and Wang [37]

has been successfully used to calibrate the rate rules and to estimate their

uncertainties. MUM-PCE estimates posterior probability density functions

(PDFs) of parameters by assuming that these PDFs are either normally or

8
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uniformly distributed [37]. The means of the optimized parameters are de-

termined based on the optimization approach developed originally by Fren-

klach [35], and the covariance matrix is then estimated analytically. MUM-

PCE can be seen as a simplified form of the Bayesian approach for uncertainty

quantification, which is exempted from the assumption of a particular form

for posterior PDFs. In this study, instead of MUM-PCE, the Bayesian ap-

proach is applied to optimize the rate rules, to quantify their uncertainties,

and to minimize the model uncertainties.

2.2.1. Bayesian approach

The Bayes’ theorem provides a probabilistic approach to gain information

about model parameters from given experimental data. In many cases, the

exact values of model quantities are unknown, but some information about

these parameters has been gained already. Within the Bayesian interpreta-

tion, model parameters are treated as random variables and therefore, the

state of knowledge about the parameter values can be represented by the PDF

of the random variables. The knowledge of these parameters in terms of joint

PDFs can be updated with new data according to Bayes’ theorem [44, 45].

In probability theory and statistics, the Bayes’ theorem [44, 45] states for

the given quantities a and b that

p(a|b) =
p(a)p(b|a)

p(b)
, (1)

where p(a) and p(b) are the probability distributions of a and b, respectively.

p(a|b) is the probability distribution of a conditioned on a specific value of b.

Let ηobs denote a set of experimental measurements and x be a set of model

parameters, then with the notations introduced below, the Bayes’ theorem

9
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implies that

ppost(x|ηobs) =
pprior(x)π(x; ηobs)∫
pprior(x)π(x; ηobs)dx

. (2)

Here, pprior is the prior PDF, which quantifies available information about

the parameters x. While this information may incorporate knowledge from

previously performed experiments, it is independent of the current experi-

mental data set ηobs. In the literature, uniform and Gaussian-shaped PDF

forms are most commonly used as priors [46]. A uniform prior assigns a con-

stant probability density to the parameter values within given boundaries,

while a Gaussian prior assigns higher density near the mean. ppost denotes

the posterior PDF, which quantifies the parameter knowledge after incor-

porating the information from the experimental data ηobs. The likelihood

function π(x; ηobs) quantifies the agreement between the model and the data

for specific values of the parameters:

π(x; ηobs) = plike(η|x)|η=ηobs . (3)

In Eq. (3), η is the model prediction. Due to inadequacies in the model

(model error) and due to inadequacies in the measurement process (exper-

imental error), the model predictions differ from the observed values. The

PDF plike represents the state of knowledge regarding these errors. When

plike is evaluated at the observed values ηobs and considered as a function of

the model parameters x, it becomes the likelihood function π(x; ηobs) [46].

In order to construct a likelihood function, an error model should be defined

first. Here, the error model is defined as:

ηobs
i = ηi(x) + εi , (4)

10
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where εi refers to the experimental error of the measurement i, consequently

assuming an exact model. Unlike several studies in the past [46, 47], the use

of a hyper-parameter to identify model errorspast is not used here. Since

the focus here is on the development of a calibrated chemical mechanism for

use in a deterministic manner, such a model-error approach [46, 47] is not

suitable. If data can be obtained with zero errors, the assumption states that

the parameters could be fitted perfectly and the model could thus predict

experiment exactly. The errors in experiments are assumed to be indepen-

dent, normally distributed random variables with εi ∼ Ni(0, σ
2
i ). Thus, the

likelihood function with n experiments can be formulated as:

π(x; ηobs) =
1

n∏
i=1

(2πσ2
i )

1
2

exp

[
−1

2

n∑
i=1

1

σ2
i

(
ηobs
i − ηi(x)

)2]
. (5)

As mentioned by Braman et al. [46], the Bayesian approach provides a natu-

rally self-consistent process for learning based on available information. The

posteriors from one optimization can be further used as the priors for subse-

quent calibrations, once more experimental measurements become available.

2.2.2. Computational details

In the present study, the Bayesian approach is implemented with the

statistical QUESO library [48]. For each experimental condition included in

the optimization process, a sensitivity analysis of the rate rules is carried

out. The rate rules with the highest sensitivities (>2%) in the range of the

experimental conditions are selected automatically as active parameters. The

uncertainties of the rate rules are assumed to be temperature-independent

according to Ref. [27], and thus only the Arrhenius pre-exponential factors

11
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A are considered as calibration objectives. The current state of knowledge

about the rate rules is represented by uniformly distributed PDFs bounded

by the lower and upper limits of the pre-exponential factors. The prior

pre-exponential factors and their uncertainty limits used here are shown in

Table 2. Note that the prior selection affects the posterior distributions,

as quantified in Ref. [46]. While the bounds of the uniform prior limit the

posterior distribution, the Gaussian prior does not posit a bound on the

parameter [46], which is useful if this parameter information is not available

a priori. However, for an underconstrained calibration case, the application

of Gaussian priors can shift the posteriors to a domain, which is not covered

by the existing rate data.

The likelihood function is specified according to Eq. (5). The poste-

rior PDFs are estimated by solving Eq. (2) with the Markov Chain Monte

Carlo (MCMC) sampling algorithm [46, 49, 50]. In the present study, the

mean values of the posterior PDFs are defined as the pre-exponential fac-

tors of the optimized rate rules and further incorporated in chemical mech-

anisms. It is also found that the performance of the mechanism developed

with the mean values of the posterior PDFs is almost identical with the

one based on the peak values of PDFs. Due to the large number of sam-

ples, the model predictions are calculated through the response surface tech-

nique [35], which relates the model parameters to the prediction targets in

form of a second order polynomial. The coefficients in the response surface

are calculated by the sensitivity analysis based (SAB) method [51], and the

required simulations are performed using the appropriate reactor modules in

the FlameMaster [52] code, with the source code available at www.itv.rwth-

12
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aachen.de/downloads/flamemaster/.

3. Mechanism development

A newly developed kinetic mechanism for C7–C11 normal alkanes is pre-

sented in this section. The chemical mechanism for n-alkanes and 2-methylalkanes [8]

served as the starting point in the development procedure. This mecha-

nism [8] was updated according to the recent work by Bugler et al. [27].

Subsequently, the mechanism was reduced to a skeletal level in order to en-

able the optimization within a reasonable computational time.

3.1. Mechanism modification

Sarathy et al. [8] presented a detailed chemical kinetic mechanism (re-

ferred to as “LLNL” mechanism) for the oxidation of singly methylated iso-

alkanes (i.e., 2-methylalkanes) ranging from C7–C20, which also included an

updated version of the previously published model for C8–C16 n-alkanes [7].

While the model predicted the oxidation of normal alkanes with a moderate

accuracy, discrepancies were observed between experiments and simulations,

especially for ignition delay times [8]. Recently, Bugler et al. [27] investi-

gated the auto-ignition of three pentane isomers and improved the general

understanding of low temperature oxidation kinetics. They stated that errors

from both thermochemistry and rate constant assignments compensated each

other in past models [5–7]. Based on a thorough literature review, they re-

vised rate rules for important low temperature reaction classes. Species ther-

mochemical data were estimated with refined group additivity values from

Burke et al. [53]. Moreover, alternative isomerization pathways of O2QOOH

radicals were proposed. In contrast to the conventional isomerization, in
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which an H atom is abstracted from the carbon site bonded to the hydroper-

oxy group, the H atom can now also be released from a normal C-H bond

via 5, 6, 7, and 8-membered transition state rings. Due to the lower energy

barriers, the channels with six-membered transition state rings are dominant.

All these modifications [27] were incorporated into the LLNL mechanism in

this study.

The update was performed in three steps: (a) The thermochemical data

of species involved in the oxidation of C7–C11 alkanes were first recalculated

using the group additivity method [54] with the revised group values [53]

in the THERM code [55]. (b) Following this, the rate rules in the LLNL

mechanism were replaced by the rate rules recommended in Ref. [27]. For

H-atom abstractions from the fuel by OH radicals, Sivaramakrishnan and

Michael [56] reported different barrier heights at various carbon sites and

experimentally investigated the site specific rate rules for these reactions in a

rigorous manner. These accurate site specific rate rules [56] were also incor-

porated into the mechanism. (c) Finally, the alternative reaction pathways of

O2QOOH producing di-hydroperoxy alkyl radicals P(OOH)2 were included in

the mechanism. Only the channels with six-membered transition state rings

were taken into account due to their lower energy barriers and expected dom-

inance [27]. Two consumption channels were proposed for P(OOH)2 radicals.

The P(OOH)2 radical can either go through a β-scission to form an olefin

and a hydroperoxyl radical or decomposes to produce a cyclic ether and an

OH radical. The cyclization of P(OOH)2 radicals takes place at O2QOOH to

P(OOH)2 isomerization site. For the O2QOOH species having conventional

ketohydroperoxide formation pathways via 6-membered transition state ring,

14
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alternative pathways were not considered in the mechanism. The modified

mechanism consists of 1692 species among 11015 reactions (forward and back-

ward counted separately). The effects of these revisions are demonstrated in

the following example in terms of the ignition delay times of n-decane.

Figure 1 contains the ignition delay times of stoichiometric n-decane/air

mixtures at 12 atm. Over the entire temperature range, the LLNL model [8]

predicts the ignition delay times with decent accuracy. At intermediate tem-

peratures, it underpredicts the data with a factor of around 3. After the

revision of the thermochemistry, the computed ignition delays increase sig-

nificantly at intermediate temperatures. With the further update of the rate

rules, the numerical results decrease in the low to intermediate temperature

range. Compared with these two alterations, the impact of alternative path-

ways of O2QOOH radicals on ignition is smaller but not negligible. Normally,

an O2QOOH radical undergoes an internal H-atom migration to release an

OH radical and forms a ketohydroperoxide. The ketohydroperoxide decom-

poses to produce a second OH radical, which results in a chain branching

in the low temperature range. Alternatively, the O2QOOH radical can now

isomerize to form a di-hydroperoxy alkyl radical. While this isomerization

step does not directly release an OH radical, the consumption pathways of

P(OOH)2 can produce two OH radicals. Again, a chain branching path-

way is established at low temperatures. Compared with the conventional

isomerization via five- or eight-membered transition state rings, the alterna-

tive channel is based on a rapid six-membered ring H-atom migration and

thus becomes favorable. As shown in Fig. 1, this alternative isomerization

enhances the fuel ignition propensity at low to intermediate temperatures.
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Figure 1: Ignition delay times of n-decane/air mixtures. Symbols denote experimental

measurements [58]. Dashed line shows the results using the LLNL model [8]. Black, blue,

and red solid lines show the results for the model after revision steps (a), (b), and (c),

respectively.

The effects of these three modifications on the auto-ignition of n-decane

are consistent with those reported for pentane isomers [27] and those observed

for the other normal alkanes studied in this work. The cases of n-octane and

n-nonane are shown in the Supplementary material. In comparison with the

previous LLNL mechanism, the modified mechanism predicts the ignition

delay times at low and intermediate temperatures with slightly improved

accuracy. The slope of the measured ignition delay times in the intermedi-

ate temperature range is well reproduced by the updated mechanism. The

developed kinetic knowledge from Bugler et al. [27] demonstrates here the

capability to improve the model prediction precision. Nevertheless, differ-

ences still exist between the updated mechanism and the experimental data,

which motivates the further calibration of rate rules.
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3.2. Mechanism reduction

While the application of the response surface technique [35, 51] con-

tributes to a significant reduction in the computational cost of Bayesian

analysis, a large amount of numerical calculations are still required to gen-

erate the response surface. In order to minimize this computational effort,

the updated mechanism was reduced to a skeletal level using a multi-stage

reduction strategy proposed by Pepiot-Desjardins and Pitsch [57]. The di-

rected relation graph method with error propagation (DRGEP) [57] selects

the important reaction channels based on the evaluation of species production

and consumption rates. The reduction procedure involved the elimination of

species and reactions. The lumping of chemical species presented in Ref. [57]

was excluded, as the isomerization of intermediates plays a major role in fuel

oxidation and thus the involved rate coefficients are of particular importance

for model predictions. The targets in the reduction include concentrations of

various major species for varying initial pressures, temperatures, and equiv-

alence ratios. Very small error tolerances were specified for the deviations

of targets between the skeletal and the detailed mechanisms. This reduction

process, and specifically the error propagation algorithm, ensure that only

those species and reactions are removed, which have a minimal impact on

the chemistry of the reduction targets. Ignition delay times are not direct

targets in the reduction, but are inherently preserved by correctly predicting

the chemistry of the target species. The reduced model is composed of 624

species with 2727 reactions (forward and backward counted separately). The

computed ignition delay times of n-decane using the detailed and the re-

duced mechanisms are compared in Fig. 2. For the experimental conditions
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studied, the differences between the detailed and the reduced mechanisms

are marginal. Good agreement between both mechanisms is also observed

for the auto-ignition of n-heptane, n-octane, n-nonane, and n-undecane.
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Figure 2: Ignition delay times of n-decane/air mixtures. Symbols denote experimental

measurements [58]. Solid lines show the results for the model developed in Section 3.1,

and dashed lines show the results for the reduced model.

4. Rate rule calibration

In this section, the training of the rate rules is described. A large number

of experimental data sets for n-heptane, n-octane, n-nonane, n-decane, and

n-undecane were taken into consideration. Using the Bayesian method de-

scribed in Section 2, the rate rules used in the reduced chemical mechanism

for C7–C11 n-alkanes were calibrated automatically for the given data sets

for different fuels.

4.1. Experimental database

An overview of the experimental data sets used in the Bayesian analy-

sis is shown in Table 1. Experimental ignition delay times were reported
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for n-heptane [59, 60], n-octane [8], and n-decane [58, 61] for a variety of

conditions covering the entire range of temperatures. For n-nonane and

n-undecane, measurements were solely performed for diluted mixtures at high

temperatures [62, 63]. Overall, 198 experimental data points were taken into

account in the optimization process.

Campbell et al. [59] stated an uncertainty of ±25% for their n-heptane

ignition data. The uncertainties in the ignition delay times were mainly at-

tributed to uncertainties in reflected shock pressures and temperatures, mix-

ture compositions, and signal determinations [59]. An uncertainty of ±10%

was estimated by Rotavera and Petersen [62] for the ignition delay times of

n-nonane and n-undecane. A pressure uncertainty of ±2 bar was reported in

Ref. [60] for the auto-ignition of n-heptane/air mixtures at a pressure of 40

bar. This pressure variation was related to a standard deviation of approxi-

mately 10% in ignition delays. These reported uncertainties [59, 60, 62] were

used in the calibration for the corresponding experiments. Uncertainty esti-

mates were missing in several studies [8, 58, 61]. For these measurements,

an uncertainty of ±10% was assumed. Pressure increase due to shock at-

tenuation was observed in the shock tube measurements by Rotavera and

Petersen [62] and Sarathy et al. [8]. It was found [8] that the effect of pres-

sure increase becomes important only at very low temperatures. Therefore,

the measurements for n-octane [8] at very low temperatures were excluded

from the optimization.

The database excludes the ignition delay times from rapid compression

machines (RCM), as common 0D RCM simulation approaches utilizing pres-

sure traces of non-reactive mixtures are associated with a maximum predic-
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tion deviation of 30% [68]. The experimental burning velocities of C7–C11

alkanes were included in the calibration process. However, these targets were

automatically exempted from the optimization after sensitivity analyses, as

their prediction are found to be negligibly influenced by the rate rules. The

prediction of flame speeds depends solely on the reactions involved in the base

mechanism [10]. Also, the prediction of small hydrocarbon species profiles

typically measured in flow and jet stirred reactors is highly sensitive to the re-

actions involving small species [43, 69]. Therefore, this study focuses on fuel

auto-ignition in shock tubes, which is mainly influenced by the fuel specific

reactions and can be accurately reproduced by common 0D simulations.

Note that two data sets were reported by Campbell et al. [59] for n-

heptane at identical conditions. The first data set was measured in a con-

ventional shock tube, where the auto-ignition takes place nominally at a

constant volume. The second set was measured with the novel Constrained

Reaction Volume (CRV) technique under constant pressure conditions. It

was found in this study that the experimental data set measured with the

novel CRV technique was inconsistent with other experimental data. There-

fore, this data set was excluded from the automatic calibration. A more

detailed discussion is presented in Section 4.4.

4.2. Model calibration and uncertainty quantification

The reduced mechanism for the oxidation of C7–C11 normal alkanes was

subjected to the automatic optimization. The sensitive rate rules were chosen

as active parameters. For the given experimental data sets, the joint posterior

PDFs of the rate rules were determined based on the Bayesian theorem. By

means of a Monte Carlo sampling algorithm, the uncertainties of the rate
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Fuel Pressure [bar] Equivalence Ratio [-] No. Data Ref.

n-Heptane

6.5 0.75 (diluted) 22 [59]

13.5 0.5, 1.0, 2.0 49 [60]

42.0 0.5, 1.0, 2.0 22 [60]

n-Octane 20.3 0.5, 1.0, 1.5 59 [8]

n-Nonane 1.5 1.0 (diluted) 10 [62, 63]

n-Decane

12.2 1.0 14 [58]

50.7 1.0 6 [58]

81.1 0.5, 1.0 10 [61]

n-Undecane 1.5 1.0 (diluted) 6 [62]

Table 1: Experimental database.

rules were propagated into the simulation results. In this way, the model

prediction uncertainties were quantified.

The ignition delay times computed with the optimized mechanism for

normal alkanes are presented in Figs. 3–7 in comparison with measurements.

It is shown that the model with the optimized common rate rules yields a very

good agreement with experiments. Compared with the mechanism developed

in Section 3, which incorporates the up-to-date kinetic knowledge, the opti-

mized model predicts the ignition delay times with improved accuracy over

a wide variety of initial conditions, especially at intermediate temperatures.

Note that ignition delay times are generally underpredicted by the un-

optimized model in the low and intermediate temperature ranges. A strong

deviation is seen for the case of n-heptane, which indicates that the unop-

timized set of rate rules is less suitable for this fuel, while relatively more
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appropriate for larger species. In addition, the prior set predicts lean auto-

ignition with higher accuracy than auto-ignition at rich conditions. These

observations lend further support to the proposed methodology, which cali-

brates rate rules across a family of fuels rather than for each fuel individually

and includes a large number of experimental data covering a wide range of

initial conditions.

The optimized model is validated in the Supplementary material against

the species concentration measurements for n-heptane in jet stirred reac-

tors [64, 65] and for n-octane [66] and n-decane [67] in flow reactors, which

were not part of the optimization. Nevertheless, the model again appears

satisfactory.
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Figure 3: Ignition delay times of n-heptane/air mixtures. Symbols denote experimental

measurements [60]. Solid lines show the numerical results for the present optimized model,

and dashed lines show the results for the unoptimized model.

4.3. Rate rules

57 important rate rules from 21 reaction classes were calibrated automat-

ically. The sensitive reaction classes at high temperatures contain the fuel

decomposition (C1), the H-abstraction from fuel (C2), the decomposition

(C3) and the isomerization (C4) of fuel radicals, and the decomposition of
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Figure 4: Ignition delay times of n-octane/air mixtures. Symbols denote experimental

measurements [8]. Solid lines show the numerical results for the present optimized model,

and dashed lines show the results for the unoptimized model.
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Figure 5: Ignition delay times of n-nonane/oxygen/argon mixtures. Symbols denote ex-

perimental measurements [62, 63]. Solid line shows the numerical results for the present

optimized model, and dashed line shows the results for the unoptimized model.
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Figure 6: Ignition delay times of n-decane/air mixtures. Symbols denote experimental

measurements [58, 61]. Solid lines show the numerical results for the present optimized

model, and dashed lines show the results for the unoptimized model.

23



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 0.01

 0.1

 1

 10

 0.55  0.6  0.65  0.7  0.75  0.8

τ ig
 [m

s]

1000/T [K-1]

1.5 atm, φ = 1.0, 99% Ar

Figure 7: Ignition delay times of n-undecane/oxygen/argon mixtures. Symbols denote

experimental measurements by Rotavera and Petersen [62]. Solid line shows the numer-

ical results for the present optimized model, and dashed line shows the results for the

unoptimized model.

alkenyl radicals (C8) as well as alkene species (C9). The reaction classes 11,

15, 26, 27, and 28 complete the low temperature chain branching pathway

and are dominant at low to intermediate temperatures. Several additional

reaction classes are also rate-controlling at low to intermediate temperatures.

In reaction class 13, alkyl radicals react with HO2 to yield an OH, leading

to chain propagation. The concerted elimination of RO2 radicals occurs via

5-membered transition state rings. Besides the oxidation pathway, three de-

composition channels of QOOH radicals (C23, C24, and C25) also play a

major role at relevant conditions. All these reaction steps compete with the

chain branching pathway and thus prolong auto-ignition. The alternative

isomerization of O2QOOH is found to be sensitive as well. The promoting

effect of this reaction class on ignition was shown in Section 3. Note that

only the rate rules for primary and secondary carbon sites are considered in

the present work, as n-alkanes do not contain tertiary carbon sites.

The calibrated rate rules are summarized in Table 2 along with the orig-
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inal values and their uncertainties. Uncertainty limits were reported for

several low temperature reaction classes (e. g. Class 23: QOOH = cyclic +

OH) by Bugler et al. [27] and were taken into account in this work. The

site specific rate rules for the H-abstraction from the fuel by OH radical pro-

posed by Sivaramakrishnan and Michael [56] predict the total rate constant

for n-heptane + OH within an uncertainty of 10%. This corresponds to an

uncertainty estimate of 41.9% for the rate rule at the P1 carbon site at a

temperature of 1000 K, if the error in the overall rate is caused exclusively

by this rate rule. Similarly, uncertainties of the rate rules at S01, S11, and

S11′ sites are deduced as 29.1%, 39.4%, and 60.8%, respectively. For the rate

rules without uncertainty estimates in the literature, an uncertainty factor

of four is defined, as large uncertainties can be expected [40].

It is found that most rate rules are altered strongly after the calibration.

One reason for this is the form of the prior PDF of the rate rule values. A

uniform distribution indicates a minor confidence of the prior rate estimation.

All values between the lower and upper uncertainty limits are equally likely.

In the applied Bayesian framework, the posterior joint and marginal PDFs

of parameters and model predictions can be constructed from the sampling

results. Standard deviations (σ) of marginal parameter PDFs are given in

Table 2 as the uncertainties of rate rules. A 95% confidence interval of

distributions is employed to indicate the model prediction uncertainties [46].

The large number of measurements and their small uncertainties strongly

constrain the uncertainties of rate rules and thus also the model prediction

uncertainties. For the most studied cases, the 95% confidence interval of

prediction distributions corresponds to an uncertainty in the range of 0.5–
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5%. The prediction uncertainties of ignition delay times for C7–C11 normal

alkanes are shown in the Supplementary material.

With the aid of the UQ framework, the knowledge about rate rules is

updated by extracting information from experimental data of n-heptane, n-

octane, n-nonane, n-decane, and n-undecane. As expected, these optimized

common rate rules demonstrate their capability to improve the model per-

formance for the fuels considered in the calibration.

4.4. Data consistency

While most experiments are well reproduced by the optimized model, the

constant pressure auto-ignition of n-heptane at a pressure of 6.5 atm [59]

appears as an outlier. In Fig. 8, the unoptimized model predicts the to-

tal ignition delay times measured with the novel CRV technique reasonably

well, but substantially underpredicts the first stage ignition data. After the

model optimization, the computed first stage ignition delay times appear

satisfactory for the conditions studied, while the entire ignition delays are

now overpredicted. To gain more insight into this, the prior 2D joint PDFs

of several prediction targets are presented in Fig. 9 in form of kernel density

estimation (KDE). Details of these targets are summarized in Table 3 as well

as in Figs. 8 and 10. A Monte Carlo sampling algorithm is used to determine

the error distribution of prediction targets. Random samples are generated

to represent the rate parameters according to their specified prior PDFs. For

each sample of the parameter set, targets are calculated for all conditions

of interest. This leads to an ensemble of prediction values that can be used

to estimate the joint distribution of prediction targets. The joint PDF ex-

plores how changing the value of a rate parameter requires other parameters
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Class Rate rules
Uncertainties A0 A∗ n E

σ∗
(lower, upper) [cm3,s,mol,K] [cm3,s,mol,K] [-] [cal/mol]

C1 Fuel decomposition → H and alkyl radical [4.0, 4.0] 1.000×1014 4.048×1013 0.00 0 0.0395

C1 Fuel decomposition → CH3 and alkyl radical [4.0, 4.0] 1.000×1013 4.454×1012 0.00 0 0.0297

C1 Fuel decomposition → alkyl radicals [4.0, 4.0] 8.000×1012 1.774×1013 0.00 0 0.0783

C2 H-atom abstraction from the fuel by H (primary carbon sites) [4.0, 4.0] 2.220×1005 2.922×1005 2.54 6756 0.0675

C2 H-atom abstraction from the fuel by H (secondary carbon sites) [4.0, 4.0] 6.500×1005 1.635×1005 2.40 4471 0.0339

C2 H-atom abstraction from the fuel by OH (P1) [1.4, 1.4] 4.553×1006 6.422×1006 1.81 868 0.0129

C2 H-atom abstraction from the fuel by OH (S01) [1.3, 1.3] 3.528×1009 2.780×1009 0.94 505 0.0231

C2 H-atom abstraction from the fuel by OH (S11) [1.4, 1.4] 2.860×1006 3.950×1006 1.81 -1016 0.0125

C2 H-atom abstraction from the fuel by OH (S11′) [1.6, 1.6] 2.810×1011 1.761×1011 0.32 847 0.0202

C2 H-atom abstraction from the fuel by HO2 (primary carbon sites) [4.0, 4.0] 6.800×1000 6.627×1000 3.59 17160 0.0831

C2 H-atom abstraction from the fuel by HO2 (secondary carbon sites) [4.0, 4.0] 3.160×1001 1.258×1002 3.37 13720 0.0410

C2 H-atom abstraction from the fuel by CH3 (secondary carbon sites) [4.0, 4.0] 7.550×10−01 3.718×10−01 3.46 5481 0.0287

C2 H-atom abstraction from the fuel by O2 (primary carbon sites) [4.0, 4.0] 1.000×1013 5.942×1012 0.00 52290 0.0477

C2 H-atom abstraction from the fuel by O2 (secondary carbon sites) [4.0, 4.0] 1.000×1013 1.338×1013 0.00 49640 0.0585

C2 H-atom abstraction from the fuel by C2H5 (secondary carbon sites) [4.0, 4.0] 2.500×1010 1.279×1010 0.00 10400 0.0637

C2 H-atom abstraction from the fuel by CH3O2 (secondary carbon sites) [4.0, 4.0] 5.090×1000 2.442×1000 3.58 14810 0.0695

C3 Alkyl radical (R) decomposition → alkene and H (primary carbon sites) [4.0, 4.0] 4.240×1011 2.220×1011 0.51 1230 0.0474

C3 Alkyl radical (R) decomposition → alkene and H (secondary carbon sites) [4.0, 4.0] 2.500×1011 1.636×1011 0.51 2620 0.0550

C3 Alkyl radical (R) decomposition → CH3 and alkene [4.0, 4.0] 9.550×1009 2.651×1009 1.08 29388 0.1330

C3 Alkyl radical (R) decomposition → C2H4 and alkyl radical [4.0, 4.0] 9.120×1011 3.579×1012 0.31 27238 0.0120

C3 Alkyl radical (R) decomposition → alkyl radical and alkene [4.0, 4.0] 6.000×1011 1.029×1012 0.50 27650 0.0464

C4 Alkyl radical (R) isomerization (5 member ring, secondary to primary carbon sites) [4.0, 4.0] 3.460×1000 1.401×1000 3.20 16558 0.0190

C4 Alkyl radical (R) isomerization (5 member ring, secondary to secondary carbon sites) [4.0, 4.0] 7.100×10−01 1.734×1000 3.32 16140 0.0532

C4 Alkyl radical (R) isomerization (6 member ring, secondary to primary carbon sites) [4.0, 4.0] 9.100×1001 3.295×1002 2.55 10960 0.0217

C4 Alkyl radical (R) isomerization (6 member ring, secondary to secondary carbon sites) [4.0, 4.0] 9.310×10−01 1.457×1000 3.27 13200 0.0458

C4 Alkyl radical (R) isomerization (7 member ring, secondary to primary carbon sites) [4.0, 4.0] 1.480×1000 1.941×1000 3.08 11020 0.0401

C5 H-atom abstraction from alkene by H [4.0, 4.0] 1.040×1007 5.019×1006 2.400 4471 0.0245

C5 H-atom abstraction from alkene by OH [4.0, 4.0] 3.740×1008 2.406×1008 1.610 -35 0.0751

C5 H-atom abstraction from alkene by HO2 [4.0, 4.0] 5.060×1002 2.347×1002 3.370 13720 0.0573

C8 Alkenyl radical decomposition → alkene and allyl (C3H5) [4.0, 4.0] 2.500×1013 1.222×1013 0.00 25000 0.0226

C9 Alkene decomposition [4.0, 4.0] 2.500×1016 5.344×1016 0.00 71000 0.0309

C11 Addition of O2 to alkyl radicals (R) (primary carbon sites) [2.2, 1.7] 1.301×1011 8.898×1010 0.23 -1580 0.0252

C11 Addition of O2 to alkyl radicals (R) (secondary carbon sites) [1.7, 2.1] 1.507×1015 1.039×1015 -0.92 -130 0.0238

C13 R + HO2 → RO + OH [4.0, 4.0] 7.000×1012 1.227×1013 0.00 -1000 0.0442

C15 Alkyl peroxy radical isomerization (5 member ring, secondary carbon sites) [3.1, 4.2] 2.327×1007 1.506×1007 1.40 28660 0.0839

C15 Alkyl peroxy radical isomerization (6 member ring, primary carbon sites) [2.7, 2.5] 5.869×1008 5.680×1008 0.78 21850 0.0446

C15 Alkyl peroxy radical isomerization (6 member ring, secondary carbon sites) [2.3, 2.2] 8.204×1010 5.010×1010 0.13 19470 0.0352

C15 Alkyl peroxy radical isomerization (7 member ring, secondary carbon sites) [2.3, 1.6] 7.054×1008 3.079×1008 1.00 21070 0.0142

C15 Alkyl peroxy radical isomerization (8 member ring, secondar carbon sites) [3.6, 1.4] 1.143×1010 1.357×1010 0.04 19780 0.0540

C16 Concerted eliminations (RO2 → alkene + HO2) [2.2, 2.8] 2.885×1009 6.650×1009 0.93 29800 0.0201

C23 QOOH → cyclic ether + OH (3 member ring) [3.3, 3.4] 2.282×1008 1.389×1008 1.29 9890 0.0354

C23 QOOH → cyclic ether + OH (4 member ring) [11.1, 35.8] 4.579×1015 6.130×1015 -1.08 18440 0.0450

C23 QOOH → cyclic ether + OH (5 member ring) [6.2, 7.4] 3.502×1010 6.974×1009 0.10 9330 0.1120

C23 QOOH → cyclic ether + OH (6 member ring) [4.0, 4.3] 3.553×1007 9.621×1007 0.69 10970 0.0348

C24 QOOH → alkene + HO2 [3.3, 2.4] 1.829×1010 1.016×1010 0.79 15100 0.0539

C25 QOOH → β-Scission products [6.0, 8.5] 5.819×1005 1.319×1006 2.40 22790 0.0414

C26 Addition of O2 to QOOH (primary carbon sites) [4.0, 4.0] 6.505×1010 1.034×1011 0.23 -1580 0.0974

C26 Addition of O2 to QOOH (secondary carbon sites) [4.0, 4.0] 7.535×1014 4.449×1014 -0.92 -130 0.0083

C27 Isomerization of O2QOOH (6 member ring, primary OOH and secondary OO sites) [4.0, 4.0] 5.489×1003 2.628×1003 2.40 19900 0.0494

C27 Isomerization of O2QOOH (6 member ring, secondary OOH and secondary OO sites) [4.0, 4.0] 1.754×1002 4.471×1002 3.10 17500 0.0326

C27 Isomerization of O2QOOH (7 member ring, secondary OOH and secondary OO sites) [4.0, 4.0] 2.536×1002 1.184×1002 2.60 16200 0.0493

C27 Isomerization of O2QOOH (8 member ring, secondary OOH and primary OO sites) [4.0, 4.0] 1.995×1003 7.775×1003 1.90 14900 0.0321

C28 Decomposition of carbonylhydroperoxide [4.0, 4.0] 1.000×1016 6.065×1015 0.00 3900 0.0359

C29 Cyclic ether reactions with OH [4.0, 4.0] 2.500×1012 1.045×1012 0.00 0 0.0492

C29 Cyclic ether reactions with HO2 [4.0, 4.0] 5.000×1012 1.988×1013 0.00 17700 0.0113

C30 H-atom abstraction from aldehyde by OH [4.0, 4.0] 2.690×1010 3.582×1010 0.76 -340 0.0491

C31 Alternative isomerization of O2QOOH (6 member ring, secondary carbon sites) [4.0, 4.0] 8.204×1010 1.233×1011 0.13 19470 0.0620

Table 2: Unoptimized and optimized rate rules; per H-atom basis. The lower and upper

limits are the prior uncertainty limits. σ∗ denote the standard deviation of optimized rate

rules.
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Figure 8: Ignition delay times of n-heptane/15%O2/5%CO2/Ar mixtures. Solid and open

symbols denote the experimental total and first stage ignition delay times, respectively [59].

Solid and dashed lines show the numerical results for the total and first stage ignition delay

times, respectively. Details on the circled points are provided in the main text.

to change in order to still yield acceptable predictions. If, for example, the

joint PDF covers a wide area (e. g. as shown in Fig. 9(a)), then both predicted

quantities can vary in their uncertainty limits independently. In other words,

within the specified or determined uncertainties of the rate coefficients, there

are probable combinations of rate parameters for independent variations of

predicted ignition delays. If, however, the domain of the joint PDF covers a

narrow region (e. g. in Fig. 9(b)), the change of rate parameters within the

uncertainties would always lead to joint change in both predicted ignition

delays.

It is interesting to observe in Fig. 9(a) that the first stage ignition delay

times (Case HepF LP) and the total ignition delay times (Case HepIT LP) for n-

heptane at 6.5 atm and 753 K are only weakly correlated. This allows for the

possibility of increasing the first stage ignition delay time and simultaneously

leaving the total ignition delay time unchanged in the model calibration.
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Case Fuel Condition Ignition delay

HepIT HP n-heptane 740 K, 13.5 bar, φ = 1.0 Total

HepLT HP n-heptane 667 K, 13.5 bar, φ = 1.0 Total

HepIT LP n-heptane 713 K, 6.5 atm, φ= 0.75 Total

HepF LP n-heptane 713 K, 6.5 atm, φ = 0.75 First stage

DecLT HP n-decane 734 K, 50.0 atm, φ = 1.0 Total

Table 3: Calibration cases.

However, this is not observed after the calibration. The reason here lies in the

strong correlation of Case HepIT LP with cases at intermediate temperatures,

e. g. Case HepIT HP, as demonstrated in Fig. 9(b). In Fig. 10, an increased

ignition delay time is observed for Case HepIT HP after the calibration. Due

to the strong correlation between these two cases, the total ignition delay

time of Case HepIT LP is inevitably increased.

Case HepLT HP describes the auto-ignition of n-heptane at 667 K and

13.5 bar. At this condition, a large temperature rise is observed after the first

stage auto-ignition, which enables a rapid consumption of ketohydroperoxide

and results in a very short second stage induction. The first stage ignition

delay time is thus almost identical to the total ignition delay time. As shown

in Fig. 9, this case is strongly correlated with Case HepF LP, as the ignition

delay times at both conditions are mainly affected by the low temperature

oxidation chemistry. Case DecLT HP is also connected with Case HepF LP,

even though Case DecLT HP presents the oxidation of n-decane at a very high

pressure of 50 atm. As the initial temperature of Case DecLT HP is relatively

low, the prediction of the ignition delay time is again only sensitive to low
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(a) (b)

(c) (d)

Figure 9: 2D prior joint PDFs of prediction targets. The log values of these prediction

targets are presented.

temperature pathways. Moreover, common rate rules are used here for both

n-heptane and n-decane. Due to these two facts, a strong correlation is

established between Case DecLT HP and Case HepF LP.

4.5. Base chemistry

In the current model development procedure, a well-studied C0–C4 ki-

netic mechanism is taken as the base mechanism to describe the oxidation of

intermediate species [8]. Its accuracy is of particular importance for the pre-

diction of species profiles and burning velocities. Therefore, the effect of the
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Figure 10: Ignition delay times of n-heptane/air and n-decane/air mixtures. Solid symbols

denote experimental measurements [58, 60]. Solid lines show the numerical results for the

present optimized model, and dashed lines show the results for the unoptimized model.

Details on the circled points are provided in the main text.

base chemistry on the application and calibration of rate rules is evaluated

in the following.

The base mechanism in the optimized model was replaced by the one from

Narayanaswamy et al. [43] without alterations in the fuel specific chemistry.

The numerical results of n-octane ignition delay times using that base mech-

anism (referred to as “Narayanaswamy”) are shown in Fig. 11, along with

those computed with the optimized mechanism. For all conditions numeri-

cally studied, both models yield almost identical results. The calibration of

rate rules is hence, at least in this example, independent of the base chemistry,

which has often been assumed in past studies [5–11]. Regardless of the cho-

sen base mechanism, identical reaction classes and rate rules have typically

been employed to derive the fuel specific chemistry in various mechanisms.

Nevertheless, it should be mentioned again that, even though the calibra-

tion and application of rate rules are not sensitive to the base chemistry, the
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choice of the base mechanism is still of great importance. For example, the

prediction of flame speeds depends solely on the reactions involved in the

base mechanism [10].
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Figure 11: Ignition delay times of n-octane/air mixtures. Symbols denote experi-

mental measurements [8]. Solid lines show numerical results for the base model from

Narayanaswamy et al. [43], and dashed lines show the results for the base model from

Sarathy et al. [8].

5. Mechanism development using optimized rate rules

This section explores how the optimized rate rules perform in the chem-

ical mechanisms for larger alkanes that were not a part of the training set.

n-Dodecane is chosen as the test case here, since data from various experi-

mental configurations are available for this fuel, which enables an extensive

validation of the developed model. In the following, an n-dodecane mecha-

nism was derived using the rate rules calibrated in the previous section. This

mechanism is compared with experimental measurements, a well-validated

mechanism from the published literature [43], and a mechanism developed

with the rate rules suggested in Refs. [8, 27, 56]. This allows for the assess-

ment of the reliability and predictive quality of the optimized rate rules.
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Two kinetic mechanisms were developed here for the combustion of n-dodecane.

Consistent with the model development process in Section 3, the n-dodecane

part in the LLNL mechanism [8] served as the starting point and was up-

dated according to Bugler et al. [27] and Sivaramakrishnan and Michael [56].

This proposed mechanism includes the up-to-date kinetic knowledge and the

rate rules [8, 27, 56] prior to the optimization. By replacing the unoptimized

rate rules with those optimized in Section 4, the second n-dodecane mech-

anism was generated. Figure 12 shows the numerical results for these two

mechanisms. The application of the optimized rate rules results in a signifi-

cant improvement of model performance for the entire range of temperatures.

The prediction uncertainties of the mechanism with the optimized rate rules

are shown in the Supplementary material. The uncertainties were calculated

based on the Monte Carlo method with the samplings generated during the

UQ process. Detailed information for this calculation can be found in the

Supplementary material.

In Fig. 13, the n-dodecane mechanism using the optimized rate rules is

compared with a well-validated mechanism recently published by Narayanaswamy

et al. [43]. The mechanism [43] was developed based on an extensive valida-

tion against measurements for various experimental configurations. However,

the new mechanism based on the optimized rate rules shows more accurate

predictions compared to the experimental data. More importantly, the mod-

ified mechanism reflects correctly the influence of equivalence ratio on the

ignition delays in the low temperature range. The strongly reduced ignition

delay times at low temperatures for n-dodecane are a major improvement and

where also expected as reported by Pei et al. [70], who stated that the models

33



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 0.01

 0.1

 1

 10

 100

 0.6  0.8  1  1.2  1.4  1.6

τ ig
 [m

s]

1000/T [K-1]

20 atm

φ = 0.5
φ = 1.0

Figure 12: Ignition delay times of n-dodecane/air mixtures. Symbols denote experimental

measurements [71]. Solid lines show the results for the model developed with the optimized

rate rules, and dashed lines show the results for the model with the unoptimized rate

rules [8, 27].

available in the literature ignite comparatively slowly in CFD simulations for

spray experiments.

Additional comparison cases between the two models are presented in

Figs. 14–19. Figures 14 and 15 show the concentrations of stable species

measured in pressurized flow reactor configurations for stoichiometric n-

dodecane/O2/N2 mixtures [72] and for lean n-dodecane/air mixtures [73],

respectively. The discrepancies between experiment and simulation shown

in Fig. 15 are mainly linked to the base chemistry, as analyzed in Ref. [43].

Malewicki and Brezinsky [74] measured the mole fractions of species for the

oxidation of n-dodecane in a high pressure shock tube. The profiles of the

reactants n-dodecane and O2 are presented in Fig. 16, along with the data for

some intermediate species, e. g. methane and acetylene. Figures 17 and 18

show the measurements for the pyrolysis of n-dodecane [74] and the oxida-

tion of diluted n-dodecane/O2/argon mixtures [75]. Discrepancies between
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Figure 13: Ignition delay times of n-dodecane/air mixtures. Symbols denote experimental

measurements [71]. Solid lines show the results for the model developed with the optimized

rate rules, and dashed lines show the results for the model from Narayanaswamy et al. [43].

the model and the highly diluted oxidation measurements obtained at low

pressures and high temperatures can be attributed to the fact that data under

similar conditions for other n-alkanes were not utilized in the optimization

process for rate rules. Data obtained under these conditions are primarily

sensitive to unimolecular fuel decomposition reactions [76], which were not

significantly optimized in the present work. The stable species concentration

profiles during the oxidation of n-dodecane were measured in a jet stirred

reactor by Ahmed et al. [69]. These data are shown in Fig. 19 in comparison

with the simulation results. While the rate rules are optimized against shock

tube measurements, data from various experimental configurations are taken

into account here. For the most cases, the model with the optimized rate

rules shows better agreement with experimental data.

The newly developed n-dodecane mechanism with the optimized rate

rules gives satisfactory results. This is because the rate rules optimized

based on experimental data of C7–C11 normal alkanes inherently capture the
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Figure 14: CO profiles of n-dodecane/O2/N2 (250/4625/995125 ppm) mixture combustion

in a pressurized flow reactor at 8 atm with a residence time of 1 s. Symbols denote exper-

imental measurements [72]. Solid lines show the results for the model developed with the

optimized rate rules, and dashed lines show the results for the model from Narayanaswamy

et al. [43].

analogous chemical kinetic features of n-dodecane. Therefore, the similarity

in global oxidation behavior n-alkanes can be utilized to extract knowledge

from shorter n-alkanes to benefit the development of kinetic models for longer

n-alkanes such as n-dodecane. It is clearly demonstrated here that optimized

rate rules improve the model performance when applied to derive models for

larger hydrocarbons.

6. Concluding remarks

In this study, optimized rate rules for model development of normal alka-

nes are proposed. A chemical mechanism for C7–C11 n-alkanes was first

developed by updating a published mechanism [8] according to the sugges-

tions of Bugler et al. [27]. The resulting mechanism uses consistent rate

rules for all of these fuels. It was then subjected to an automatic model
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Figure 15: Stable species profiles of lean (φ = 0.23) oxidation of n-dodecane/air mix-

tures in a pressurized flow reactor at 8 atm with a residence time of 0.12 s. Symbols

denote experimental measurements [73]. Solid lines show the results for the model devel-

oped with the optimized rate rules, and dashed lines show the results for the model from

Narayanaswamy et al. [43].
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Figure 16: Stable species profiles of lean (φ = 0.46) oxidation of n-dodecane/air mixtures

in a shock tube at a pressure of 50 atm. Symbols denote experimental measurements [74].

Solid lines show the results for the model developed with the optimized rate rules, and

dashed lines show the results for the model from Narayanaswamy et al. [43].
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Figure 17: Stable species profiles of n-dodecane pyrolysis in a shock tube at a pressure of

22 atm [74]. Solid lines show the results for the model developed with the optimized rate

rules, and dashed lines show the results for the model from Narayanaswamy et al. [43].
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Figure 18: Species mole fractions of stoichiometric oxidation of n-dodecane/O2/Ar mix-

tures in a shock tube at 2.25 atm. Symbols denote experimental measurements [75]. Solid

lines show the results for the model developed with the optimized rate rules, and dashed

lines show the results for the model from Narayanaswamy et al. [43].
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Figure 19: n-dodecane oxidation in a JSR at 10 bar, τ = 1.0 s, and φ = 1.0. The initial

fuel mole fraction is 1000 ppm. Symbols denote the experimental data [69]. Solid lines

show the results for the model developed with the optimized rate rules, and dashed lines

show the results for the model from Narayanaswamy et al. [43].
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optimization against a large number of experimental measurements, where

a Bayesian framework was applied to extract information from experiments

for different fuels to update the knowledge about rate rules. Excellent agree-

ment between simulations and experiments was achieved for the oxidation

of C7–C11 n-alkanes using the updated rate rules again consistently for all

fuels. After this successful training, the optimized rate rules were applied to

derive a chemical mechanism for n-dodecane, which was not used as part of

the training set. The proposed mechanism matches experimental data from

various experimental configurations over a variety of conditions well. Com-

pared with a mechanism using the unoptimized rate rules and a well-validated

mechanism from the published literature [43], the mechanism developed with

the calibrated rate rules shows substantially improved prediction accuracy.

Overall, it is demonstrated in the present study that the rate rules optimized

for a set of smaller hydrocarbon fuels are able to give satisfactory model

performance when applied in the model development for larger hydrocarbon

fuels.

This work presents a new approach for the development of chemical ki-

netic models, where models are first developed/updated using state-of-the-

art thermochemistry and reaction rate rules that draw from experiments and

theory-based computations. The combination of fundamental knowledge of

chemical kinetic modeling with information gained with the aid of uncertainty

quantification methods enables the development of more accurate chemical

kinetic models.
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