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Abstract 

A technique is presented where actual experimental distributions, measured 

from a high strength carbon fibre composite, are considered in the development of a 

novel method to generate statistically equivalent fibre distributions for high volume 

fraction composites.  The approach uses an adjusted measure of nearest neighbour 

distribution functions to define inter-fibre distances. The statistical distributions, 

characterising the resulting fibre arrangements, were found to be equivalent to those in 

the actual microstructure. Finite element models were generated and used to determine 

the effective elastic properties of the composite and excellent agreement was obtained. 

The algorithm developed is simple, robust, highly efficient and capable of reproducing 

actual fibre distributions for high strength laminated composite materials.  It does not 

require further heuristic steps, such as those seen in fibre stirring\shaking algorithms, 

in order to achieve high volume fraction microstructures and provides a useful 

alternative to both microstructure reproduction and random numerical models.  

Keywords: A. Polymer Matrix Composites; C. Statistics; C. Finite Element Analysis; 

D. Optical Microscopy; Representative Volume Element 

 

1.0 Introduction 

The increasing use of composite materials in the aerospace industry has 

heightened the need for more accurate computational methods to predict material 

behaviour.  Composites fail due to various damage mechanisms occurring at the 
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microscopic scale, including fibre fracture, fibre/matrix debonding and/or matrix 

micro-cracking. Multi-scale modelling is emerging as an effective technique to 

address these issues [1] whereby a micromechanical model in the form of a 

Representative Volume Element (RVE) is coupled to a macro-mechanical model in 

order to predict behaviour.  Micromechanical analysis of composite materials has 

conventionally been based on the assumption that the spatial arrangement of fibres in a 

composite microstructure is periodic.  This approach leads to computationally efficient 

models, where effective properties can be accurately predicted. However, when 

applied to failure/damage related predictions, these simple models generally do not 

perform well [2] since damage is generally not periodic.   

The spatial arrangement of fibres in a composite microstructure is in fact non-

uniform and this can have a significant effect on the failure/damage properties under 

certain loading conditions. Trias et al. [3] compared the stress and strain distributions 

resulting from a transverse tensile load applied to both a random model and a periodic 

model of a carbon fibre composite.  It was concluded that the use of periodic models 

could lead to an underestimation of matrix cracking and damage initiation and so the 

use of random models are needed when modelling failure and damage.   Hojo et al. [4] 

investigated the effect of local fibre distributions on the microscopic interfacial normal 

stress states for unidirectional carbon fibre epoxy laminates loaded in transverse 

tension.  It was found that for an irregular fibre array the absolute value of the 

interfacial normal stresses rapidly increased when the distance between fibres was less 

than 0.5µm.  It was also concluded that a periodic hexagonal model under the same 

loading conditions could not represent the microscopic stress state.  Pyrz [5] found that 

in a polymer matrix composite, the overall failure stress is significantly influenced by 

the type of spatial pattern present.  It is also shown that the nearest neighbour distances 
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between fibres has a considerable effect on stress in the microstructure, with peak 

stresses occurring in regions where fibres lie in close proximity to one another.   

The general approach taken to capture the non-uniform spatial arrangement of 

fibres within a composite microstructure is to develop a Statistically Equivalent RVE 

(SERVE).  A SERVE is the smallest region of a generated microstructure which 

exhibits the same effective stress-strain behaviour as the overall composite. The 

distribution functions, reflecting the local morphology, should be equivalent to the 

actual microstructure and should be independent of location [2].   

To generate a SERVE, the hard core model (also known as the random 

sequential adsorption model) has been widely used [6, 7]. This model represents the 

fibres as a set of non-overlapping disks, whose centres have been randomly distributed 

inside a square region.  Yang et al. [7] used the hard core model effectively to generate 

the non-uniform spatial arrangement of fibres in a ceramic matrix composite.  

Statistical functions were used to verify that the resulting distributions were equivalent 

to the real composite microstructure (which was experimentally characterised using 

digital image analysis). However, one of the constraints of the hard-core model is that 

it is subject to a jamming limit, which means it does not permit volume fractions 

greater than ~54% being generated [6].  Therefore, it cannot be used to represent the 

microstructure of high strength composite materials which generally have volume 

fractions in the region of 60%.  To overcome this, Melro et al. [8] used an initial 

configuration generated by the hard-core model and then subjected the fibres to small 

arbitrary displacements, which created matrix rich regions. The presence of these areas 

allowed further fibres to be placed in the domain, resulting in fibre volume fractions of 

65%. The resulting fibre arrangement was found to be described by a random 

distribution.  Wongsto and Li [9] used an initial periodic hexagonal fibre array of the 

desired volume fraction and created a non-uniform fibre distribution by shifting the 
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fibres through a random displacement.  Trias et al. [10] suggests an approach based on 

the random close packing of spheres. However, this method was found to be 

impractical due to the computational time needed to generate high volume fractions.   

The above numerical approaches assume that the microstructure of a composite 

exhibits a random distribution of fibres. However, Pyrz [11] showed that for three 

different curing conditions applied to a glass/epoxy composite, the resulting spatial 

patterns in each microstructure differed considerably.  It was concluded that the 

previous assumptions regarding complete randomness or perfect regularity in the 

microstructure may be in error and the patterns produced are highly dependant on the 

manufacturing process and conditions.  It was also shown for the materials analysed 

that their probability density functions of nearest neighbour distances do not follow the 

same form as those of a complete spatial random (CSR) pattern.  Trias et al. [10] 

analysed the microstructures from four carbon fibre composites and found that the 

fibre distribution for three of these materials departed from a CSR pattern, each 

showing distinctive statistical distributions. It was concluded that because of the 

possible variance of statistical distributions from one composite material to another, a 

microstructural reproduction approach is more appropriate for micromechanical 

modelling than the use specific algorithms which are only capable of reproducing fibre 

distributions conforming to a CSR pattern.   

This paper proposes a combined experimental-numerical approach for 

generating statistically equivalent representations of a high strength composite 

laminate. Because of the nature of high volume fraction composites, fibres are forced 

to arrange themselves in close proximity to one another, commonly at distances less 

than 0.5µm. As shown in [4], this can result in a significant increase in the interfacial 

normal stresses being developed which is a key factor in transverse failure.  Thus, the 

approach taken here uses experimentally measured nearest neighbour distribution 
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functions to define the distances between fibres. This allows the generated 

distributions to replicate exactly the short range interactions of fibres. The material 

under study is HTA/6376, a high strength carbon fibre reinforced plastic (CFRP) used 

extensively in the aerospace industry.  The microstructure has been analysed using 

digital image analysis, from which statistical data characterising the fibre arrangement 

has been found.  The newly developed algorithm uses the diameter distribution to 

assign fibre diameters.  The adjusted measure of both the 1
st
 and 2

nd
 nearest neighbour 

distribution functions are used to define the inter-fibre distances.  The resulting high 

volume fraction fibre arrangements are statistically characterised and compared to the 

experimental samples.  Finite Element (FE) models are then used to determine the 

effective properties of the generated microstructures. It is shown that these models 

exhibit the same mechanical behaviour as the CFRP material. 

2.0 Microstructure Characterisation 

Digital image analysis was carried out on a transverse cross-section of a 2mm 

thick 16-ply unidirectional composite laminate using Buehler Omnimet imaging 

software.  In order to characterise the microstructure of the composite material, 40 

images, like that shown in Fig. 1(a), were captured. Each measured 320µm × 240µm 

and contained approximately 1300 fibres. The software can automatically detect a 

colour ‘threshold’ level within each image and this allowed it to identify the fibres, as 

shown in Fig. 1(b). From the image, the software extracted information such as fibre 

diameter and x,y coordinate of each fibre centre (note: only fibres which lay entirely in 

the view field were considered).  

2.1 Statistical Characterisation of CFRP Microstructure 

The data extracted from the digital image analysis was used to generate 

statistical functions that characterise the CFRP microstructure. Figure 2(a) shows the 
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distribution of fibre diameters, which conformed to a lognormal distribution, as 

shown. The mean fibre diameter is 6.6µm and the fibre volume fraction (Vf) was 

computed as 59.2%. Many statistical descriptors exist  which characterise the spatial 

point patterns [12] and these can be applied to the microstructural arrangement in 

composite materials by considering the positions of all fibre centres as a spatial point 

pattern.   Three statistical descriptors are considered here which analyse both the short 

and long range interaction of inclusions and these are discussed below.  

2.1.1 Nearest Neighbour Distribution 

Nearest neighbour distribution functions detail the short range interaction between 

fibres by analysing the distance between each fibre and their n
th

 closest neighbour 

[12].  Shown respectively in Figs. 2(b) and (c) are the 1
st
 and 2

nd
 nearest neighbour 

distributions of fibres. These distributions exhibit narrow ranges and high peaks occur 

at distances of 7µm and 7.2µm, respectively.  From Fig. 2(a), the mean of the diameter 

distribution was found to be 6.6µm which implies that, for neighbouring fibres, the 

average inter-fibre spacing is in the region of 0.4µm-0.6µm.  This minimal spacing 

between fibres has been shown by Hojo et al. [4] to have a significant effect on the 

stresses developed at the fibre/matrix interface under certain loading conditions, which 

will affect the overall failure properties of the composite.  This further highlights the 

importance of reproducing these characteristics in a micromechanical model. 

2.1.2 Radial Distribution Function 

The radial distribution function, describes how the average fibre density varies 

as a function of distance from a given fibre centre.  It is found by determining the 

number of fibres lying within an annular region, as shown in Fig. 1(a), of inner radius, 

r, and outer radius, r+dr, and dividing this by the average number of fibres per unit 

area.  It can be mathematically defined as,  
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where, dK(r) is the average number of fibre centres lying within an annulus of 

inner radius, r, and outer radius, r+dr, and Na is the number of fibres per unit area [7].  

The radial distribution function, shown in Fig. 3(a), exhibits a large peak at a distance 

of 7 µm, which coincides with the peak seen in the 1st nearest neighbour distribution 

function (shown in Fig. 2(b)).  For the medium range (i.e. mrm  2510  ), the 

function exhibits some fluctuations, typical of a high volume fraction composite. At 

the long range (i.e. mr 25 ), the function approaches unity as the value of r 

becomes large enough to be representative of the overall region.   

2.1.3 Second Order Intensity Function 

 

The second order intensity function, also known as Ripley’s K-function, is 

widely used to distinguish between different types of point patterns [11, 12].  The 

function K(r) is defined as the number of further points expected to lie within a radial 

distance, r, of an arbitrary point, as shown in Fig. 1(a), divided by the number of 

points per unit area, Na.  The boundary of the domain has a significant effect when 

calculating this function and an estimator which accounts for edge-correction has been 

established by Ripley [13], 
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Where N is the total number of points in the area, A, Ik(r) is the number of 

points lying within radial distance r of a given fibre and wk is the ratio of the 

circumference lying within the area A to the whole circumference of the circle.  

Generally, point fields are compared against a pattern exhibiting complete spatial 
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randomness (CSR), for which the K-function of the domain can be analytically 

evaluated as [12], 

2)( rrK r     (3) 

Shown in Fig. 3(b) are the second order intensity functions for the CFRP 

composite and the CSR pattern.  It can be seen that the experimental curve is initially 

below the CSR curve and shows evidence of a slight stair-shape, which is indicative of 

a certain amount of regularity in the fibre arrangement at shorter distances 

(i.e. mr 15 ).  However, at larger distances (i.e. mr 15 ) the curve is above and 

diverging away from the CSR pattern which is a result of long range clustering.  It can 

be thus concluded that the distribution of fibres in CFRP microstructure does not 

conform to a CSR pattern. This then rules out the approaches outlined earlier which 

generated a random distribution of fibres and highlights the need to develop an 

approach that can recreate the spatial pattern of the actual experimental microstructure. 

3.0 Algorithm Development 

 

Following this finding, an algorithm was developed in Matlab and its purpose 

was to generate a high volume fraction fibre distribution which is statistically 

equivalent to the actual CFRP microstructure. The importance of the short range 

interaction of fibres has already been highlighted and so to accurately reproduce this 

the algorithm uses a bottom-up approach by populating a region using an ‘adjusted’ 

measure of 1
st
 and 2

nd
 nearest neighbour distribution functions, shown in Figs. 2(b) 

and (c), to define the distances between neighbouring fibres. The adjusted measures of 

the nearest neighbour distributions account for the fact that some nearest neighbour 

distances can be shared by 2 fibres and are therefore counted twice in the original 

distributions, such as Fibre 1 and Fibre 2 shown in Fig. 4(c).  In order for the newly 

developed algorithm to reproduce equivalent distribution functions, the nearest 
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neighbour distances common to two fibres may only be counted once. For example, 

for Fibre 2, instead of using the distance to Fibre 1 (which has already been counted in 

the distribution as Fibre 2 is the nearest neighbour of Fibre 1), the distance between it 

and Fibre 3 is now counted in the adjusted nearest neighbour distribution.  This 

follows for all fibres under consideration.   

The resulting distributions exhibit very similar properties to the nearest 

neighbour distributions, shown in Figs. 2(b) and (c). The adjusted first and second 

nearest neighbour distribution functions could both be fit to a logistic distribution 

curve. The algorithm then uses these logistic distribution parameters to define the 

inter-fibre distances for the first and second nearest neighbours of a given fibre.  Fibre 

diameters are chosen directly from the experimentally measured fibre diameter 

distribution curve, shown in Fig. 2(a). The algorithm, titled the Nearest Neighbour 

Algorithm (NNA), follows the procedure below, which is also illustrated in Fig. 4.  

1. A random point is created having coordinates (x1, y1), lying in a sample square 

area, the size of which is defined by the user.  The diameter, d1, of the surrounding 

fibre is drawn from a lognormal distribution fitting the experimentally measured 

diameter distribution, as shown in Fig. 2(a).   

2. A second point is created (x2, y2), which is the centre of the first nearest neighbour 

of the previous fibre.  The distance from (x1, y1) to (x2, y2) is assigned from the 

adjusted first nearest neighbour distribution function.  The new point is oriented at 

a random angle θ1, where   1  (see Fig. 4(a)).  The fibre diameter is 

assigned from the same lognormal distribution as before.  

3. A third point is created (x3, y3), which is the centre of the second nearest 

neighbour of the first fibre.  The distance from (x1, y1) to (x3, y3) is assigned from 

the adjusted second nearest neighbour distribution function.  As before, the new 
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point is oriented at a random angle θ2, where   2  (see Fig. 4(b)) and the 

fibre diameter is assigned from the lognormal distribution. 

4. The algorithm then moves on to the second fibre and assigns its first and second 

nearest neighbours, for which the nearest neighbour distances are drawn from 

their respective distributions and fibre diameters are assigned as before (See Fig. 

4(c)). 

5. The algorithm then moves on to the third fibre and the same procedure is carried 

out.  This process is repeated for each fibre thereafter until the sample area is 

filled. 

6. The algorithm performs numerous checks at each iteration to ensure that none of 

the fibres overlap with one another and the fibres lie within the sample area 

chosen.  If overlaps occur or a fibre is placed outside the sample area, orientation 

angles or inter-fibre distances are reassigned until a suitable configuration is 

found.   

7. If no suitable configuration can be found (i.e. near a boundary or in a region 

saturated with fibres), the algorithm will move on to the next fibre and continue as 

before.  

8. For any fibre crossing a boundary, a corresponding fibre is placed on the opposing 

boundary to maintain geometric periodicity.  A fibre already situated in this area 

will be removed if an overlap occurs with the newly mapped fibre. However, a 

new fibre is subsequently reassigned a position near the mapped fibre should it be 

available in order to try and maintain the correct fibre volume fraction locally. 

4.0 Statistical Characterisation 

In order to analyse the numerically generated microstructures, a SERVE size 

large enough to be representative of the bulk material must be used.  The size of an 
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SERVE can be represented by the variable δ, which relates length of the side of the 

SERVE  L, to the fibre radius fr , using the following simple relationship,  

         
fr

L
      (4) 

Trias et al. [14] determined that for a typical carbon fibre reinforced polymer, 

having a fibre volume fraction of 50%, the minimum required size of an SERVE 

is 50 .  The mechanical and statistical criteria considered for the analysis were the 

effective properties, the Hill condition, the mean and variance of stress and strain 

fields, probability density functions of the stress and strain components in the matrix 

and fibre distance distributions.   

Following this study, a value of δ=50 was used to generate 25 microstructures 

each measuring 165µm × 165µm and one of these is shown in Fig. 5 (a).  A 

microstructure exhibiting a periodic hexagonal array of fibres is also shown in Fig. 5 

(b).  This type of arrangement would have been the focus of many previous 

micromechanical investigations of composite materials [16]. The microstructure 

generated by the NNA is seen to reproduce short range regularity, matrix rich regions 

and ‘lines’ of fibres much the same as in the original micrograph, shown in Fig. 1(a). 

Four regions (A, B, C and D) have been identified in both images to highlight these 

similarities. The statistical descriptors (discussed in Section 2) characterising these 

models have been derived and the mean values for these arrangements are compared 

to the experimentally measured statistical functions.  Error bars have been included for 

each of the functions indicating the maximum and minimum values generated from the 

models for each data point and are discussed next. 

4.1 Nearest Neighbour Distributions 

Shown in Fig. 2(b) and (c) are the probability density functions for the 1
st
 and 

2
nd

 nearest neighbour distances, respectively.  As these formed some of the input 
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parameters for the NNA, a very good correlation is found between the experimentally 

measured distribution and the distributions generated by the NNA, thus showing that 

the short range interaction of fibres is being accurately reproduced.  This has important 

implications when modelling damage and failure in composites as the highest stresses 

tend to occur in regions where fibres are in closest proximity. 

4.2 Radial Distribution Function 

The radial distribution functions for both the numerically generated 

microstructures and the experimental microstructure are shown in Fig. 3(a). Again, 

excellent correlation is achieved, thus confirming that the NNA is reproducing the 

same short and long range inter-fibre distances. The graph shows an initial high peak 

caused by the physical area of the inclusions, followed by a number of oscillations 

until, finally, the value of the plot approaches a value of unity indicating the 

numerically generated microstructures are statistically homogenous. 

4.3 Second-order intensity function 

Fig. 3(b) shows the second order intensity function (Ripley’s K-function) for 

the experimental microstructure and the numerically generated microstructures.  Also 

shown is the K-function for a model which exhibits complete spatial randomness.  

Excellent agreement is seen in the type of pattern being generated by the NNA and the 

experimental microstructure.  The NNA is able to replicate the regularity between 

fibres in the real microstructure at short range distances, indicated by the slight stair 

shape seen in the plot at smaller values of r.  The CSR pattern does not replicate this 

initial stepwise increase.  At larger distances the curve diverges away from the CSR 

pattern, reproducing the long range clustering from the experimental sample.  Thus, 

the same spatial pattern is being produced by the NNA, for which the statistical 

distributions defining it are almost identical.   
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4.4 Volume Fraction 

Unlike other similar algorithms [8-9], the volume fraction of the numerically 

generated microstructures is not predefined. It is controlled by the experimental 

functions used as the input parameters, i.e. the adjusted nearest neighbour distributions 

and the diameter distribution of the fibres.  In order to test the effectiveness of the 

NNA, the volume fraction has been examined over a range of RVE sizes, as shown in 

Fig. 3(c).  Twenty microstructures were generated at each value of δ and it can be seen 

that there is a large variance between the volume fractions produced for the smallest 

models (i.e. 10 ).  This is due to the conditions the NNA uses when placing fibres 

near a boundary.  For smaller models, the influence of the boundary is relatively large 

compared to the overall area of the RVE.  The larger models, (i.e. 20 )  are seen to 

converge close to the experimental volume fraction of 59.2% showing very little 

variance in the volume fractions being produced. 

5.0 Prediction of mechanical properties 

 

A homogenisation procedure was used to evaluate the effective properties of 

the generated microstructures.  Finite element models were generated in ABAQUS 

[15] and used to impose periodic boundary conditions as described in [16, 17] to an 

RVE which enable the relevant modes of deformation of the composite to be 

simulated.  A two-dimensional generalised plane strain model was used to determine 

the longitudinal modulus E11 from the models, using three-noded generalised plane 

strain elements (CPEG3).  The in-plane properties were determined with a two-

dimensional plane strain model using three-noded plane strain elements (CPE3).  The 

effective elastic properties were evaluated based on the relevant stress-strain ratio for a 

given loading condition.  In order to evaluate the average stresses (
ij ) and strains 

(
ij ) over the RVE, the following equations were used [16, 17], 
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Where: V is the total volume of the RVE, k is the element number, Vk is the 

volume of element k in the finite element mesh, n is the total number of elements and 

kij and 
kij are the ij stresses and strains, in element k, respectively.  Elastic modulus 

in the relevant direction was then calculated by dividing the average stress (Eq. 5) by 

the average strain (Eq. 6).     

Effective properties were calculated for numerically generated microstructures 

of increasing size using the homogenisation procedure.  Twenty microstructures were 

generated using the NNA at each value of δ.  Figs. 6 (a) and (b) show the mean values 

of the homogenised elastic properties.  Error bars have been included indicating the 

maximum and minimum values calculated at each value of δ.  The results show similar 

trends to the volume fraction study carried out (Fig. 3(c)), with a large variance 

evident at low values of δ as a result of the wide range of volume fractions. It was 

determined that the in-plane elastic properties converge to a constant value when δ=20 

where it was found that the maximum and minimum values of all 20 generated 

microstructures fell within 10% of the mean values.  The mean homogenised effective 

properties of the largest models (i.e. δ=50) compare well with experimentally 

measured elastic properties [18] shown in Figs. 6 (a) and (b). At high values of δ, very 

little variance in elastic properties is seen for all generated models, with the maximum 

and minimum values falling within 3% of the mean values.  As a comparison, 

effective properties have also been determined for periodic hexagonal fibre arrays 

(with same Vf) at each value of δ, and these are also shown in Fig. 6.  As can be seen 

these hexagonal models predict the same effective properties for all values of δ, to 
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which the properties predicted by the NNA converge. However, the peak stresses in 

the NNA models were found to be 92% higher than those in the periodic models, 

suggesting that accurate predictions of both damage initiation and overall failure of the 

material is highly dependant on the type of fibre distribution used in a 

micromechanical model. Finally, Figure 6 (b) also shows that the numerically 

generated microstructures are transversely isotropic due to fact that E22 and E33 

converge to the same value for the largest models. 

6.0 Concluding Remarks 

A novel method has been developed in order to generate accurate 

representations of a composite material microstructure with a high volume fraction.  

The microstructure of a CFRP composite was experimentally characterised in terms of 

fibre volume fraction, fibre diameter and also statistical distributions describing the 

fibre arrangement. It was found from the experimental analysis that CFRP 

microstructure had a fibre distribution which was not characterised by a CSR pattern. 

This highlighted the need for an experimental approach to be used to generate accurate 

fibre distributions. Using the experimentally measured data, an algorithm was 

developed which can generate fibre distributions with high volume fractions and the 

same geometric features as the experimental samples, as determined using statistical 

analysis.  The NNA uses an adjusted measure of the experimentally measured 1
st
 and 

2
nd

 nearest neighbour distribution functions to define inter-fibre distances. The key 

factor to avoid jamming of the microstructure (as seen in [6, 8]) was to assign both the 

1
st
 and 2

nd
 nearest neighbours at each step in the process. Assigning only the first 

nearest neighbour was found not to produce the desired fibre distribution as it was also 

subject to a jamming limit at ~55%.  Fibre diameters are assigned using the 

experimentally measured diameter distribution.  Upon statistical analysis, the NNA 

was found to produce distributions which were statistically equivalent to the real 
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microstructure, accurately reproducing both the short and long range interaction of 

fibres. 

Using Finite Element Analysis, effective properties of the generated 

microstructures were calculated through a homogenisation procedure.  The 

homogenised properties of the composite were found to show good agreement with the 

experimentally measured properties of [18].  A parametric study, in which the size of 

the generated microstructure was varied, was carried out and it was found that the 

elastic moduli converged for a microstructure window which has a side of length of 

approximately 20 times the fibre radius, which for this material is approximately half a 

ply thickness (i.e. 65µm). Based on the results of this study it has been found that 

hexagonal RVE models can accurately predict the effective elastic properties of the 

composite. However, it has been found that peak stresses in the NNA models were 

92% higher than those in the periodic models.  It is thus recommended that NNA 

models be used in strength prediction studies and this will be reported on in a future 

publication.   

The algorithm developed is simple, robust, highly efficient and reproduces 

actual fibre distributions for high strength laminated composite materials.  The 

distribution of fibres in a composite depends heavily on the manufacturing and 

processing conditions, and for this reason this newly developed method provides a 

useful alternative to purely numerical based models that rely on the theory of random 

close packing and also direct microstructure reproduction.  It does not require further 

heuristic steps, such as those seen fibre stirring\shaking algorithms, in order to achieve 

high volume fraction microstructures.  This method can easily be applied to other 

types of composite materials by characterising relevant experimental distributions.  
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Figure Captions 

 

Figure 1: Sample image chosen for analysis (320μm × 240μm), (a) actual micrograph, 

(b) computed microstructure based on a colour threshold algorithm 

Figure 2: (a) Size distribution of fibres (b) 1
st
 Nearest neighbour distribution function 

(c) 2
nd

 Nearest neighbour distribution function 

Figure 3: (a) Radial distribution function (b) Second order intensity function (c) 

Volume fraction size study 

Figure 4: (a) Assigning a fibre’s nearest neighbour (c) Assigning a fibre's second 

nearest neighbour (c) Nearest neighbour being assigned for a subsequent fibre 

Figure 5: (a) Generated distribution using Nearest Neighbour Algorithm (b) Periodic 

fibre distribution (hexagonal) 

Figure 6: (a) Elastic properties in longitudinal direction (b) In-plane elastic properties 

of numerically generated microstructures 
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Figure 1: Sample image chosen for analysis (320μm × 240μm), (a) actual micrograph, 

(b) computed microstructure based on a colour threshold algorithm 
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Figure 3: (a) Radial distribution function (b) Second order intensity function (c) 

Volume fraction size study 
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Figure 4: (a) Assigning a fibre’s nearest neighbour (b) Assigning a fibre's second 

nearest neighbour (c) Nearest neighbour being assigned for a subsequent fibre 

 
Figure 5: (a) Generated distribution using Nearest Neighbour Algorithm (b) Periodic 

fibre distribution (hexagonal) 
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Figure 6: (a) Elastic properties in longitudinal direction (b) In-plane elastic properties 

of numerically generated microstructures 

 

 

 

 

 


