
 
Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-04-19T21:23:13Z

 

Some rights reserved. For more information, please see the item record link above.
 

Title An updated experimental and kinetic modeling study of n-
heptane oxidation

Author(s)
Zhang, Kuiwen; Banyon, Colin; Bugler, John; Curran, Henry
J.; Rodriguez, Anne; Herbinet, Olivier; Battin-Leclerc,
Frédérique; B'Chir, Christine; Heufer, Karl Alexander

Publication
Date 2016-07-25

Publication
Information

Zhang, Kuiwen, Banyon, Colin, Bugler, John, Curran, Henry J,
Rodriguez, Anne,Herbinet, Olivier, Battin-Leclerc, Frédérique,
B'Chir, Christine, Heufer, Karl Alexander (2016) 'An updated
experimental and kinetic modeling study of n-heptane
oxidation'. Combustion And Flame, 172 :116-135. doi:
http://dx.doi.org/10.1016/j.combustflame.2016.06.028

Publisher Elsevier ScienceDirect

Link to
publisher's

version
http://dx.doi.org/10.1016/j.combustflame.2016.06.028

Item record http://hdl.handle.net/10379/6098

DOI http://dx.doi.org/10.1016/j.combustflame.2016.06.028

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/


1 
 

An updated experimental and kinetic modeling 1 

study of n-heptane oxidation 2 

Kuiwen Zhang1, Colin Banyon1, John Bugler1, Henry J. Curran1 3 
Anne Rodriguez,2 Olivier Herbinet,2 Frédérique Battin-Leclerc2 4 

Christine B’Chir3, Karl Alexander Heufer3 5 
 6 

1School of Chemistry, National University of Ireland Galway, Ireland 7 
2Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, ENSIC,  8 

1, rue Grandville, BP 20451, 54001 Nancy Cedex, France 9 
3Physico-Chemical Fundamentals of Combustion (PCFC), RWTH Aachen University, Schinkelstr. 8, 10 

52062 Aachen 11 
 12 
 13 

Abstract 14 

This work presents an updated experimental and kinetic modeling study of n-heptane oxidation. 15 

In the experiments, ignition delay times of stoichiometric n-heptane/air mixtures have been measured in 16 

two different high-pressure shock tubes in the temperature range of 726–1412K and at elevated 17 

pressures (15, 20 and 38 bar). Meanwhile, concentration versus time profiles of species have been 18 

measured in a jet-stirred reactor at atmospheric pressure, in the temperature range of 500–1100 K at φ = 19 

0.25, 2.0 and 4.0. These experimental results are consistent with those from the literature at similar 20 

conditions and extend the current data base describing n-heptane oxidation.  21 

Based on our experimental observations and previous modeling work, a detailed kinetic model 22 

has been developed to describe n-heptane oxidation. This kinetic model has adopted reaction rate rules 23 

consistent with those recently developed for the pentane isomers and for n-hexane. The model has been 24 

validated against data sets from both the current work and the literature using ignition delay times, 25 

speciation profiles measured in a jet-stirred reactor and laminar flame speeds over a wide range of 26 

conditions. Good agreement is observed between the model predictions and the experimental data. The 27 

model has also been compared with several recently published kinetic models of n-heptane and shows 28 

an overall better performance. This model may contribute to the development of kinetic mechanisms of 29 

other fuels, as n-heptane is a widely used primary reference fuel. Since the sub-mechanisms of n-30 

pentane, n-hexane and n-heptane have adopted consistent reaction rate rules, the model is more likely to 31 

accurately simulate the oxidation of mixtures of these fuels. In addition, the successful implementation 32 

of these rate rules have indicated the possibility of their application for the development of mechanisms 33 

for larger hydrocarbon fuels, which are of great significance for practical combustion devices. 34 

 35 
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Introduction 1 

The oxidation of n-heptane has been widely studied as it is a primary reference fuel (PRF) and is 2 

a representative normal alkane. It is also an important component of toluene reference fuel (TRF) and 3 

ethanol toluene reference fuel (ERF) [1], which has been used as a surrogate gasoline fuel for research 4 

of combustion processes in internal combustion engines [2]. Experiments have been performed which 5 

have focused on different properties of fuel oxidation over a wide range of conditions, such as ignition 6 

delay times in shock tubes [3-8] and rapid compression machines [9-12], species versus time and/or 7 

temperature profiles measured in jet-stirred reactors [13-17] and flow reactors [18-21], laminar flame 8 

speeds [22-26] and spatial distribution of species in flames [27-30]. Moreover, a series of experiments 9 

have been performed in engines [31-35] to study homogeneous charge compression ignition (HCCI), 10 

engine knock, exhaust gas recirculation (EGR), NOx emission control, etc. Since 1979 [4] efforts have 11 

been made to develop a kinetic model for n-heptane oxidation at both low temperature and high 12 

temperature to provide further insight into this process . In 1989, Westbrook et al. developed a detailed 13 

chemical kinetic mechanism to describe the oxidation of n-heptane and iso-octane [36]. This 14 

mechanism adopted both low- and high-temperature chemistry, and was validated through comparisons 15 

with experimental data from shock tube, turbulent flow reactor and jet-stirred reactors. Later, Chevalier 16 

developed a computational technique to automatically develop detailed kinetic mechanisms, which 17 

were used to study the influence of fuel, fuel mixtures and fuel additives on knock tendency [37]. Ranzi 18 

et al. proposed a semi-detailed kinetic model for n-heptane oxidation [38], while Côme used a computer 19 

package to develop the kinetic models for the oxidation of both n-heptane and iso-octane [39]. 20 

Curran et al. [40] carried out a comprehensive kinetic modeling study of n-heptane oxidation  in a 21 

systematic way. The important reactions during the oxidation of n-heptane were categorized into 25 22 

different reaction classes, including 10 reaction classes to describe high-temperature oxidation and 15 23 

classes to describe the low-temperature regime. Although approximate treatments were assigned to 24 

some less important reactions such as the consumption of the heptene isomers, the overall performance 25 

of the mechanism was very good. This mechanism has been improved and further validated, with good 26 

performance over the pressure range of 3 to 50 atm, in the temperature range of 650 to 1200 K and at 27 

equivalence ratios of 0.3 to 2.0. More importantly, this model set a successful frame for the kinetic 28 

mechanism development of other larger n-alkanes [41]. A more recent study carried out by Mehl et al. 29 

[42] on the kinetic modeling of gasoline surrogate components and mixtures under engine conditions 30 

has further refined and adopted this mechanism. Moreover, this mechanism also forms the basis for the 31 

mechanism development in this work. 32 

There has been a continual interest among the research community in developing a better 33 

understanding of n-heptane oxidation both experimentally and theoretically. For example, Herbinet et al. 34 

performed an experimental study in a jet-stirred reactor [16]. In addition to traditional gas 35 

chromatography, the experiments also used synchrotron vacuum ultraviolet photoionization mass 36 

spectrometry as the diagnostic technique to identify the unstable species such as radicals, which is an 37 
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example of the new experimental methods being applied to this kind of study. Herbinet et al. also 1 

generated a kinetic mechanism using the software EXGAS [43], which satisfactorily reproduced the 2 

mole fraction profiles of most of the species identified in the experiments.  3 

Meanwhile, new reaction pathways are being adopted into the kinetic model to better describe the 4 

oxidation process of n-heptane. Recently, Pelucchi et al. proposed an improved kinetic model for n-5 

heptane [44], by emphasizing new reaction classes producing organic acids, diones and ketones in the 6 

low temperature regime. The mechanism was validated over a wide range of conditions including both 7 

low and high-temperature ranges. Good agreement was observed between simulations and experimental 8 

data from the literature for ignition delay time measurements [5, 42, 45], species profiles measurements 9 

taken in a jet-stirred reactor [14-16] and in a flow reactor [20], as well as laminar flame speeds [26]. 10 

Meanwhile, the experimental database of n-heptane is being extended to cover a wider range of 11 

conditions. Seidel et al. performed an experimental and kinetic modeling study of a fuel-rich, premixed 12 

n-heptane flame at 40 mbar, and successfully identified over 80 species generated at this condition [30]. 13 

Based on previous work, a detailed kinetic model was developed. Reduced kinetic mechanisms are also 14 

being proposed, such as the work by Cai and Pitsch [46], who proposed an optimized chemical 15 

mechanism for gasoline surrogates which was validated under extensive conditions and it showed a 16 

very good performance compared to experimental ignition delay measurements. 17 

This current study is based on a continuity of effort in experimental and kinetic modeling studies 18 

of hydrocarbon fuels that we have published previously [47-58]. In this work, the ignition delay times 19 

of n-heptane in air are firstly measured in two different high-pressure shock tubes to provide more 20 

experimental ignition delay time data at elevated pressures. Moreover, the experimental conditions of n-21 

heptane oxidation in a jet-stirred reactor have been extended to extremely rich (φ = 4.0) and very lean 22 

(φ = 0.25) conditions, while the other conditions remain consistent with those published previously. To 23 

reflect the improvements in the chemical kinetics and thermodynamics as well as their impact, a 24 

detailed kinetic model of n-heptane oxidation has been developed based on our previous work, 25 

including our updated base mechanism [47-50, 53, 56-58], the sub-mechanisms of the pentane isomers 26 

[51, 55] and n-hexane [54]. In the development of this mechanism, the new reaction classes and 27 

reaction rate rules with modifications, which have been successfully applied to the pentane isomers and 28 

n-hexane, have been adopted. The thermodynamic database has also been updated with recently 29 

published optimized group values [52]. The model has been validated using the experimental data sets 30 

obtained in this work, as well as those from the literature for ignition delay times, species profile 31 

measured in jet-stirred reactors and also for laminar flame speed measurements. Moreover, comparisons 32 

are made between the current model and those from recent publications. The significant reaction 33 

pathways for the oxidation of n-heptane are revealed by further analysis of the simulations.  34 

  35 
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Experimental Methods 1 

PCFC Shock tube 2 

The Physico-Chemical Fundamentals of Combustion (PCFC) shock tube at Aachen University has been 3 

designed similar to the high-pressure shock tube at NUIG. It has an inner diameter of 63.5 mm and an 4 

overall length of about 7.5 m with a 3 m driver section. Due to physical space limitations the driver 5 

section is curved with a bending radius of 1 m. The diaphragm section can house up to two pre-scored 6 

aluminum diaphragms. All parts coming into contact with fuel/air mixtures are made of stainless steel 7 

(316Ti), except for the aluminum diaphragms. Shock velocities and pressure profiles are recorded in the 8 

measuring section close to the endwall of the driven section with up to 8 PCB 113B22 pressure sensors. 9 

Signals are recorded using a digital oscilloscope with a sampling rate of 25 MHz. Fuel/air mixtures are 10 

prepared in a separate 40 L Teflon coated stainless steel mixing vessel. Partial pressures are used to 11 

prepare the desired gas mixtures. Static pressures are monitored with two STS ATM. 1st pressure 12 

sensors with measuring ranges of 500 mbar and 5 bar, respectively. The shock tube, manifold and 13 

mixing vessel can be electrically heated to 150 °C in order to avoid fuel condensation. In this study, 14 

initial temperatures of 40 °C are sufficient due to the relatively high vapor pressure of n-heptane. 15 

Temperatures are monitored with type T thermocouples due to their lower measuring uncertainty 16 

compared to conventional type K ones. High purity grade gases for reactive mixture preparation (N2 and 17 

O2) were provided from Praxair and Westfalia. Helium and compressed air were used as driver gases. 18 

The reflected shock conditions were calculated using the initial conditions of pressure and temperature 19 

and mixture composition and the measured shock velocity with an in-house code which is based on the 20 

shock and detonation toolbox [59] in Cantera [60]. An uncertainty analysis has been performed for the 21 

PCFC shock tube and is provided as Supplementary material. Maximum uncertainties in the reflected 22 

shock temperatures are estimated to amount to 1.1% in the reflected shock temperature and 3.5% in the 23 

reflected shock pressure. Depending on the fuel reactivity this can induce uncertainties of up to 15% in 24 

the measured ignition delay time for the range studied.  25 

NUIG Shock tube 26 

High-temperature (above 1000 K) ignition delay times for stoichiometric mixtures of n-heptane 27 

at compressed pressures of 15 bar in a 21% O2 : 79% N2 bath gas were measured in the National 28 

University of Ireland, Galway (NUIG) high-pressure shock tube [61], with an inner diameter of 63 mm. 29 

The methodology used to measure ignition delay times in this facility has recently been described in our 30 

work on n-hexane [54], and thus will not be described further here. Again, n-heptane was supplied by 31 

TCI UK in high purity (> 99.0%), while oxygen (99.5%) and nitrogen (99.95%) were supplied by BOC 32 

Ireland. 33 

  34 
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Jet-stirred reactor 1 

The oxidation of n-heptane was studied in a jet-stirred reactor at LRGP in Nancy (France). This 2 

reactor can be considered to be perfectly stirred [62] and has frequently been used for numerous gas 3 

phase kinetic oxidation studies of hydrocarbons and oxygenated compounds [63]. Experiments were 4 

performed at a constant pressure of 1.067 bar, at a residence time of 2 s, at temperatures ranging from 5 

500 to 1100 K, and at four equivalent ratios of φ = 0.25, 1.0, 2.0 and 4.0. The fuel was diluted in helium 6 

resulting in an n-heptane concentration of 0.5%. The fuel was provided by Sigma-Aldrich (purity of 7 

99%). Helium and oxygen were provided by Messer with purities of 99.99% and 99.999%, respectively. 8 

The reactor is made of fused silica, and consists of a fused silica sphere (volume = 95 cm3) into 9 

which diluted reactant enters through an injection cross located at its center. It is operated at constant 10 

temperature and pressure and it is preceded by an annular pre-heating zone in which the temperature of 11 

the gases is increased to the reactor temperature before entering it. The gas mixture residence time 12 

inside the annular pre-heater is very short compared to its residence time inside the reactor (a few 13 

percent). Both the spherical reactor and the annular pre-heating zone are heated using resistance wires 14 

coiled around their walls. The temperature is controlled using type K thermocouples. The reaction 15 

temperature was measured using another independent type K thermocouple which was located in a 16 

glass finger at the center of the reactor (which is actually the intra annular part of the preheater). The 17 

uncertainty in the temperature measurement is ±5 K. 18 

A Coriolis flow controller is used to feed n-heptane, and two mass flow controllers are used to 19 

meter the helium and oxygen flow rates. The fuel is mixed with helium and evaporated in a heat 20 

exchanger. Oxygen is added at the reactor inlet. The accuracy in flow rates given by the manufacturer 21 

(Bronkhorst) is 0.5%. This results in a small uncertainty of 2.00 ± 0.01 s in the residence time. 22 

Product species are analyzed directly by gas chromatography using a heated transfer line between 23 

the reactor outlet and the chromatograph sampling. The temperature of the line is heated to 160 oC to 24 

avoid product condensation during transfer. Three gas chromatographs are used for the quantification of 25 

the different species. The first chromatograph, equipped with a Carbosphere packed column, a thermal 26 

conductivity detector (TCD) and a flame ionization detector (FID), is used for the quantification of O2, 27 

CO, CO2, methane, ethylene, acetylene and ethane. The second is fitted with a PlotQ capillary column, 28 

a methanizer, and an FID is used for the quantification of molecules from methane to reaction products 29 

containing up to 5 carbon atoms and 1 or 2 oxygen atoms maximum. The third is fitted with a HP-5 30 

capillary column and an FID is used for the quantification of molecules which contain at least 5 carbon 31 

atoms. Calibrations are performed by injecting standards where available or by using the effective 32 

carbon number method when standards were unavailable. The maximum relative error in mole fractions 33 

is estimated to be ±5% for species which are calibrated using standards and ±10% for species calibrated 34 

using the effective carbon number method [64-65]. The identification of reaction products is performed 35 

using a gas chromatograph equipped with a PlotQ or an HP-5 capillary column and coupled to a mass 36 

spectrometer (quadrupole). The mass spectra of all of the detected reaction products are included in the 37 
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NIST 08 Mass Spectra Database [66]. For certain species, single-photon-ionization mass spectrometry 1 

(SPI-MS) [67] is used for higher accuracy, as shown in the experimental data sets provided in the 2 

Supplementary material. 3 

Chemical Kinetic Mechanism 4 

The kinetic model used in this work consists of 1268 species and 5336 reactions. The sub-5 

mechanism for C0–C4 fuels is taken from AramcoMech 2.0 [57-58]. This mechanism has been widely 6 

validated for a series of fuels including hydrogen, syngas [48], methane, methanol [56], formaldehyde, 7 

ethane, ethylene, acetylene, ethanol, acetaldehyde [47], dimethyl ether [53] and propene [49-50]. The 8 

sub-mechanisms for the three pentane isomers and for n-hexane have also been published recently [51, 9 

54-55]. On the basis of the above mechanisms, an n-heptane sub-mechanism has been developed in this 10 

work. Table 1 shows the nomination of some representative species in the n-heptane sub mechanism.  11 

Figure 1 shows the reaction pathways for n-heptane oxidation considered in this work, which are 12 

similar to those considered previously [40, 51, 54]. The reaction pathways of a fuel are strongly 13 

dependent on its structure, and significantly affect the reactivity of the fuel. Compared to smaller 14 

alkanes, n-pentane shows a higher reactivity at low temperatures because its structure contains more 15 

connected secondary carbons. H-atom abstraction is favored at secondary sites compared to primary 16 

ones, where secondary pentyl peroxyl radicals formed can isomerize via six-membered transition state 17 

(TS) rings into hydroperoxy pentyl radicals. Six-membered TS ring formations are faster than any other 18 

(5-, 7-, or 8-membered ones) which is mainly due to their lower ring-strain energy and formation of six-19 

membered TS ring structures contributes considerably to the chain branching process at low 20 

temperatures, promoting fuel reactivity [51, 54-55]. Similarly, n-hexane shows a higher reactivity 21 

compared to n-pentane because six-membered TS ring structures are available for all of the four 22 

connected secondary carbons, while the reactivity of n-heptane is even higher than that of n-hexane 23 

since the ratio of secondary carbon atoms to primary ones is even higher again. However, the reaction 24 

pathways that need to be considered for n-pentane, n-hexane and n-heptane are almost identical, as 25 

shown in Fig. 1. Therefore consistent reaction rate rules can be applied to their sub-mechanisms. 26 

A series of reaction rate rules have been adopted in our previous work on the oxidation of the 27 

pentane isomers [51, 55]. These rate rules were derived from recently published ab-initio calculations 28 

[68-73] and have been applied to the reaction classes in the low temperature regime. New reaction 29 

classes related to the alternative isomerization pathway of peroxy hydroperoxyl alkyl radicals [51] have 30 

also been added. The mechanisms for the three pentane isomers predict well ignition delay times with 31 

good agreement observed compared to the experimental data [55]. Many of the rate constants for the 32 

low temperature reaction classes (e.g. RȮ2 ⇌ Q̇OOH, etc.) for the pentane isomers are available from 33 

ab-initio calculations [68, 71-72], but those for the hexane isomers and larger alkanes are rare. 34 

Therefore in the kinetic modeling study of n-hexane, the reaction rate rules were derived from those 35 

calculated for n-pentane but modifications were made within their uncertainty range, which have led to 36 
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better agreement between the experimental and simulated results [54]. The refined rate rules have been 1 

used to generate the n-heptane mechanism used in this work to maintain consistency in the chemical 2 

kinetics.  3 

The thermodynamic data of the species involved have been updated using the THERM software 4 

[74], which is based on the group additivity method proposed by Benson [75]. The group values used in 5 

the calculation have been optimized [52], and are consistent with those used for the pentane isomers and 6 

for n-hexane [51, 54-55]. The kinetic mechanism, thermodynamic data, transport data, species glossary 7 

and group values for group additivity method are available as Supplementary material. In the future, 8 

this mechanism might be updated for better performance and released with comprehensive validations. 9 

Please visit our website http://c3.nuigalway.ie/ for more details. 10 

High temperature mechanism 11 

The most significant reaction classes in the high temperature regime of n-heptane oxidation are 12 

the unimolecular decomposition of the fuel and fuel derived radicals in addition to hydrogen abstraction 13 

from the fuel by the radical pool. To derive the rate constants for the unimolecular decomposition of n-14 

heptane, firstly the high-pressure limit rate constants of the radical recombination are estimated; then 15 

the reverse rate constants are obtained using the CHEMRev software package [76] with their pressure 16 

dependence calculated using Quantum-Rice-Ramsperger-Kassel/Modified Strong Collision 17 

(QRRK/MSC) theory, which has been proven to show good agreement with the more precise Rice-18 

Ramsperger-Kassel-Marcus/Master Equation (RRKM/ME) approach for alkane decomposition [77]. 19 

The Lennard-Jones parameters for n-heptane are from Jasper and Miller [78], which are σ = 4.42 Å and 20 

ε = 213 cm–1 in a bath gas of N2. The pressure dependent rate constants for the decomposition of the 21 

fuel-derived radicals: Ċ7H15-1, Ċ7H15-2 and Ċ7H15-3 are adopted from [79].  22 

H-atom abstraction from the fuel by ȮH radicals is the most significant reaction class involving 23 

the fuel with the radical pool over a wide temperature range. The rate constants for these reactions have 24 

been adopted from the values reported by Sivaramakrishnan and Michael [80], who measured these 25 

reaction rates experimentally in a shock-tube using ȮH-radical electronic absorption and compared the 26 

results with literature data. H-atom abstraction by HȮ2 radicals contributes little to fuel consumption at 27 

low temperatures (600–750 K) but these reactions become more important at higher temperatures (750–28 

1300 K) because the H2O2 molecule produced decomposes into two ȮH radicals, greatly promoting 29 

reactivity. The rate constants for H-atom abstraction from the fuel by HȮ2 radicals are adopted from 30 

[81]. other reactions in the high temperature regime and their rate constants are mainly derived from the 31 

n-heptane mechanism proposed by Curran et al. [40]. 32 

  33 
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Low temperature mechanism 1 

The low-temperature reaction pathways are illustrated in the upper part of Fig. 1. In the low-2 

temperature regime, the fuel derived radicals (Ṙ) add to molecular oxygen to form alkylperoxy radicals 3 

(RȮ2). Further isomerization of RȮ2 via ring transition states and internal hydrogen atom transfer leads 4 

to the formation of hydroperoxy-alkyl radicals (Q̇OOH). The most important competing reaction class 5 

is the concerted elimination forming C7 olefins and HȮ2 radicals, which becomes more competitive as 6 

the temperature increases. At low- and intermediate-temperatures this concerted elimination reaction 7 

tends to reduce reactivity, because it consumes a reactive radical (usually ȮH) in the hydrogen 8 

abstraction reaction from the fuel, and produces an HȮ2 radical which is less reactive. Other 9 

consumption reactions of RȮ2 are bi-molecular reactions, but only play a minor role in the reaction flux. 10 

For the consumption of Q̇OOH radicals, the addition to molecular oxygen is a significant step, 11 

producing peroxy alkylhydroperoxide radicals (Ȯ2QOOH) as the precursor of ketohydroperoxides. ȮH 12 

radicals are produced from both the formation and decomposition of ketohydroperoxides, which make 13 

this reaction sequence the major chain branching process at low temperatures. Meanwhile, the 14 

consumption of Q̇OOH radicals also has other channels. As the O–O bond in the hydroperoxy group is 15 

weak, the consumption of Q̇OOH radical can produce small molecule products or cyclic ethers and 16 

release an ȮH radical, which contributes to the chain propagation process. The beta-scissions of C–O 17 

bonds that produce olefins and HO2 radicals are only available for certain structures such as 18 

C7H14OOH1-2 and are thus less important.  19 

The equilibrium between RȮ2 and Q̇OOH radicals significantly influences fuel reactivity at low- 20 

and intermediate-temperatures. The concerted elimination reaction of RȮ2 leads to chain propagation 21 

while the addition of Q̇OOH radicals to O2 ultimately contributes to chain branching. Other significant 22 

reaction classes that can affect this equilibrium include the addition of Ṙ to O2, the formation of cyclic 23 

ethers and the formation of ketohydroperoxides. The modified reaction rate rules for the above 24 

mentioned reaction classes are consistent with those proposed for n-hexane [54], as shown in Table 2. 25 

Detailed discussions of the comparison of rate rules and the refinements can be found elsewhere [51].  26 

The red open arrows in Fig. 1 denote the reaction classes induced by the alternative isomerization 27 

pathways of Ȯ2QOOH radicals. These reaction classes have been proposed in our previous work [51, 28 

54], with their reaction rate constants taken by analogy with those possible for RȮ2 radicals. Although 29 

the adoption of alternative isomerization pathways has proven to have a limited effect upon model 30 

predictions for n-hexane [54], these reaction classes have been included for n-heptane to reflect the 31 

complexity of the low temperature chemistry, which become more important for the oxidation of 32 

branched alkanes [51]. 33 

  34 
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Results and discussion 1 

High pressure shock tube data 2 

The ignition delay times for the oxidation of stoichiometric n-heptane/air mixtures at different 3 

pressures have been measured in the PCFC high pressure shock tube, see solid symbols in Fig. 2, over 4 

the temperature range of 688–1412 K, which includes the low, intermediate and high temperature 5 

regimes. The new data sets are consistent with those reported in previous work [82-83] which are 6 

depicted as half-filled symbols and open symbols respectively, showing a significant pressure effect 7 

reflected by the decrease in ignition delay times and the shifting of the negative temperature coefficient 8 

(NTC) region towards higher temperatures [5] at higher pressures. Furthermore, simulation results 9 

using the kinetic mechanism presented in this study are shown. Shock tube ignition delay times are 10 

simulated using the constant volume closed homogenous batch reactor code in CHEMKIN PRO [84]. It 11 

is assumed that the changes in conditions induced by facility effects in the region near the endwall can 12 

be treated as an isentropic compression/expansion by an effective volume change as in the RCM. These 13 

CHEMKIN PRO input files and the experimental data are available as Supplementary material. In the 14 

following descriptions, the ignition event in the simulation is defined as the maximum pressure rise 15 

unless the experimental data sets taken from literatures define the ignition delay differently. 16 

It is important to note that the different data sets have been obtained in different facilities. This is 17 

a critical aspect regarding the level of confidence of the experimental results. By considering results 18 

taken at the same conditions but from different facilities, a higher level of confidence can be attributed 19 

to the experimental results. This has motivated a repeat of experiments in this study at conditions that 20 

have been reported previously.  21 

Another aspect of this investigation is the treatment of facility effects. The conditions such as 22 

pressure and temperature behind the reflected shock are ideally constant. However, in the real process 23 

both the pressure and temperature behind the reflected shock increase with time due to boundary layer 24 

effects inside the shock tube and the non-ideal opening of diaphragms. This leads to pressure and 25 

temperature gradients influencing the ignition process. As a result, the measured ignition delay times 26 

may be shorter than those assuming ideal conditions. More detailed discussion on these shock tube 27 

facility effects can be found in [85]. In general, these effects become stronger with smaller inner 28 

diameter tubes and longer measuring times. In Fig. 2 the results of shock tubes with inner diameters of 29 

50 mm [83], 63.5 mm (this study) and 140 mm [82] are shown. In [82] an average pressure gradient of 30 

p/p0 = 3%/ms is given for the 140 mm tube. The PCFC tube has an average pressure gradient of 8%/ms 31 

due to the smaller inner diameter. This pressure gradient has been determined from non-reactive 32 

measurements (Fig. 3). Pressure gradients of the 50 mm tube have previously been reported to amount 33 

to around 10%/ms [85].  34 

At high pressures, where ignition delay times are well below 1 ms, these different pressure 35 

gradients hardly have an effect on ignition delay times and in this case the simulations can be performed 36 

assuming a truly constant volume reactor. For longer measuring times above 1 ms, facility effects are 37 
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taken into account by assuming a volume change reflecting the experimentally observed constant 1 

increase in pressure as appropriate, depending on the shock tube as discussed above. Comparing the 2 

experimental results with the kinetic simulation including a proper treatment of the facility induced 3 

increase in pressure and temperature, it becomes obvious that the mechanism is able to predict the 4 

measured ignition delay times within 15%, which is within the experimental uncertainty.  5 

It can be seen in Fig. 2 that the model predicts well the measured ignition delay times when the 6 

facility effect is considered (solid lines). The previous and current results appear inconsistent in ignition 7 

delay times at 38 bar, because both the current experiments and simulations were not performed at 8 

precisely 38 bar as in [82] (see the experimental data in the Supplementary material). Therefore the 9 

inconsistency is caused by the pressure effect. By using the specific experimental temperatures and 10 

pressures in our simulations, the model can successfully reproduce both the current and the previous 11 

experimental results. It is worth noting that the simulations using varying volume traces obtained from 12 

the experimentally measured non-reactive pressure profiles are very similar to those assuming an 13 

average constant increase in pressure of 8%/ms, which is consistent with the average pressure gradient 14 

of 7–8%/ms assumed for the PCFC shock tube. The dashed lines in Fig. 2 represent the simulations 15 

with the current mechanism using unmodified rate rules, which tend to under-predict ignition delay 16 

times over the entire temperature range. This trend is similar to those observed in the kinetic and 17 

modeling study of n-hexane [54].  18 

As an additional input to the ignition delay times at higher temperature, Fig. 4 shows the ignition 19 

delay times measured in the high-pressure shock tube at NUIG for n-heptane oxidation at φ = 1.0 and 20 

15 bar in the temperature range 1058–1298 K. The agreement between the experimental (points) and 21 

modeling results (solid line) are good, which further validates the high temperature n-heptane chemistry. 22 

The dashed line shows model simulations with unmodified rate rules. The slight difference between the 23 

predictions indicates that those modifications have only a minor effect in this temperature regime. 24 

The mechanism has also been validated using shock tube ignition delay time data from the 25 

literature. Campbell et al [86] used a shock tube to measure ignition delay times for n-heptane oxidation 26 

in the temperature range 651–823 K and at pressures between 6.1 and 7.4 atm at φ = 0.75 in 15% 27 

O2/5%CO2/Ar and in 15% O2/Ar mixtures. Both first-stage (cool flame) and second-stage (total) 28 

ignition delay times were measured, providing critically needed targets for further validation of kinetic 29 

models. Figure 5 shows the experimental and modeling results for that study [86] which used the LLNL 30 

mechanism [42], and the predictions using the current model as well as several other models [16, 30, 31 

46]. It can be seen that the current mechanism generally shows a better performance in predicting both 32 

the first and the second stage ignition delay times.  33 

Shen et al. [45] measured ignition delay times for several n-alkane/air mixtures in a heated shock 34 

tube. The experimental results for n-heptane, which were measured at φ = 0.25, 0.5 and 1.0 at multiple 35 

pressures are shown in Fig. 6. These results show the varying reactivity of n-heptane depending on 36 

temperature, pressure and equivalence ratio, which have been well captured by the current model. Here 37 
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the maximum in excited OH radical concentration is defined as the ignition delay event, which is 1 

consistent with that reported in [45]. Some discrepancies can be seen at conditions such as φ = 0.5 at 13 2 

atm. However, the relevant experimental data is not completely consistent with those under similar 3 

conditions shown in Fig. 7. Therefore these discrepancies can be partly attributed to the uncertainties of 4 

some specific data points from the literature. Ciezki and Adomeit  investigated the ignition delay times 5 

for n-heptane/air mixtures in a high pressure shock tube for equivalence ratios of 0.5 to 3.0, at pressures 6 

between 3.2 and 42 bar in the temperature range of 660–1350 K [5]. These experimental data have been 7 

the benchmark for validating n-heptane oxidation mechanisms [16-17, 30, 40, 42, 44] for many years. 8 

Figure 7 shows a comparison of the experimental results reported by Ciezki and Adomeit and the 9 

predictions using the current mechanism, which indicates that it captures well the trend of the reactivity 10 

with the varying equivalence ratio, pressure and temperature ranges. The comparison of the predictions 11 

using the current mechanism and several other recently published ones [16, 30, 42, 44, 46] are shown in 12 

Fig. 8 (a), (b), (c), (d) and (e) respectively.  13 

A brute force sensitivity analysis was performed using CHEMKIN PRO [84] at φ = 1.0, p = 20 14 

bar, T = 720 K, and at 820 K and 1000 K respectively to determine the reactions that are most 15 

significant for the ignition process, Fig. 9. In the analysis, the rate constants of each reaction were 16 

increased and decreased by a factor of two (k+ and k-), and the simulations were performed using two 17 

mechanisms adopting these changes to obtain the ignition delay times (τ+ and τ-). The sensitivity 18 

coefficient (S) is then defined as follows:
 

19 

S 	
ln	 /
ln	 /

	
ln	 /
ln	 2/0.5

 20 

From the definition above, it can be concluded that a reaction with a positive sensitivity 21 

coefficient inhibits reactivity while that with a negative sensitivity coefficient promotes reactivity.  22 

At low temperatures, the consumption of the fuel is mainly initiated by H-atom abstraction from 23 

the fuel by ȮH radicals, followed by propagation via addition to O2 → isomerization to Q̇OOH → 24 

addition to O2, and the branching process via the formation and decomposition of ketohydroperoxides 25 

which produce ȮH radicals, promoting reactivity. Therefore at low temperatures, the reactivity is 26 

dominated by chain branching from the fuel, depicted in Fig. 9 (a). Hydrogen and other small species 27 

chemistry is only of minor importance. The most significant reactions promoting reactivity are those 28 

leading to the formation and decomposition of ketohydroperoxides. However, the formation of 29 

ketohydroperoxides via the isomerizations of Ȯ2QOOH radicals is not sensitive, because at low 30 

temperatures this reaction class dominates the consumption of Ȯ2QOOH radicals, while other 31 

consumption pathways such as the beta-scissions of Q̇OOH radicals cannot compete with their addition 32 

to molecular oxygen, even when their A factors are reduced by a factor of two. The newly adopted 33 

alternative isomerization reactions of Ȯ2QOOH radicals only show minor contributions as discussed in 34 

a previous work [54].  35 
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n-Heptane composes only primary and secondary carbon atoms. H-atom abstraction from fuel by 1 

the radical pool mainly occurs at secondary carbon sites because the C–H bonds are weaker compared 2 

to those on primary carbons. For the same reason, the hydrogen atoms on secondary carbons are 3 

favored for the internal H-atom transfer/abstraction process in the isomerization of RȮ2 to Q̇OOH 4 

radicals. Meanwhile, the isomerization of RȮ2 to Q̇OOH radicals prefers six-membered ring transition 5 

states since they have the lowest ring strain energies. These preferences of relevant reaction classes are 6 

also reflected in Fig 9 (a). For example, the most sensitive reaction promoting reactivity is the addition 7 

of Ċ7H14OOH2-4 radicals to O2. These are produced through the sequence of hydrogen abstraction from 8 

a secondary carbon → addition to O2 → isomerization via a six-membered transition state ring and 9 

internal abstraction of a secondary H-atom. The decomposition of the relevant ketohydroperoxide, 10 

C7KET24, also significantly promotes reactivity. Similarly, the additions of Ċ7H14OOH3-5 and 11 

Ċ7H14OOH4-2 radicals to O2 also contribute significantly to reactivity, with certain differences caused 12 

by the branching ratios of hydrogen abstraction reactions from the fuel. On the other hand, the 13 

concerted (olefin + HȮ2 radical) elimination reactions are the most inhibiting at low temperatures. 14 

Although HȮ2 radicals can abstract hydrogen atoms from the fuel, these reactions are considerably 15 

endothermic and contribute little to fuel consumption at low temperatures. In addition, H-atom 16 

abstraction from the fuel by HȮ2 radicals produces H2O2 which only decomposes easily into ȮH 17 

radicals at higher temperatures (~850 K). As has been discussed above, the equilibrium between RȮ2 18 

and Q̇OOH radicals significantly influences fuel reactivity at low temperatures. This is consistent with 19 

Fig. 9 (a) since the concerted elimination reactions of RȮ2 play a key role in reducing reactivity, while 20 

the addition of Q̇OOH to O2 greatly increases it. The predicted reactivity of n-heptane (Fig. 2) and n-21 

hexane [54] become lower when modified reaction rate rules are used, which can be mainly attributed 22 

to the enhanced concerted elimination reactions in the modification [54]. 23 

Figure 9 (b) shows the results of the sensitivity analysis performed in the NTC region at 820 K. 24 

With an increase in temperature, there is an increased competition between chain branching and chain 25 

propagation/termination reactions. Under these conditions, the addition of Q̇OOH radicals to O2 and the 26 

concerted elimination reactions of RȮ2 radicals continue to be important promoting and inhibiting 27 

reaction classes, respectively. However, the chemistry of small molecules starts to become important. 28 

The most important reaction promoting reactivity is the decomposition of H2O2, while the most 29 

inhibiting reaction is the chain termination reaction HȮ2 + HȮ2 = H2O2 + O2. This is because in this 30 

reaction two HȮ2 radicals are consumed to produce just one H2O2 molecule leading to the formation of 31 

two reactive ȮH radicals, whereas if one HȮ2 radical reacts with any stable species two radicals and 32 

two H2O2 molecules will be produced leading to the formation of four reactive ȮH radicals. Moreover, 33 

even though the decomposition of H2O2 into ȮH radicals promotes reactivity, this reaction is 34 

endothermic and only becomes significant at higher temperatures. At 820 K, HȮ2 radicals can also be 35 

converted into more reactive ȮH radicals via reaction with ĊH3 and CH3Ȯ2 radicals, promoting 36 

reactivity as shown in Fig. 9 (b), or inhibit reactivity through the chain-termination reaction producing 37 
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H2O2 and O2. However, the temperature can increase to temperatures above 900 K after the first stage 1 

ignition, making the decomposition of H2O2 much easier and promoting reactivity. The sensitivity 2 

coefficients shown in Fig. 9 (b) reflect the influences of different reactions integrated over the entire 3 

ignition process. It indicates that the production and consumption reactions of HȮ2 radicals play a 4 

significant role in the NTC region, and are sensitive to the increase in temperature leading to ignition. 5 

The relatively large sensitivity coefficient of H-atom abstraction from primary carbon atoms 6 

indicates the branching ratio of this reaction class is also important in controlling reactivity. As 7 

discussed above, H-atom abstraction occurs preferentially from secondary carbon atoms. However, the 8 

concerted elimination reaction that inhibits reactivity also favors secondary alkylperoxy radicals, since 9 

there are more hydrogen atoms on beta carbons. On the other hand, primary alkylperoxy radicals, 10 

C7H15-1Ȯ2, only have two hydrogen atoms on the beta carbon leading to the concerted elimination 11 

reaction, and therefore there is less competition from this reaction class in the sequent chain branching 12 

process. Besides H2/O2 and C1 chemistry, the reactions of other small molecules also become sensitive. 13 

For example, the concerted elimination of n-propyl peroxide radical (nC3H7Ȯ2) inhibits reactivity. 14 

These small molecule radicals are mainly produced from the -scission of fuel-derived radicals or from 15 

low-temperature products of the chain branching process. 16 

The chemistry of small molecule species is even more important in the high-temperature regime, 17 

as shown in Fig. 9 (c). As the temperature increases, the decomposition of H2O2 is further enhanced and 18 

becomes the dominant reaction promoting reactivity. Correspondingly, H-atom abstraction from fuel by 19 

HȮ2 radicals, which converts HȮ2 radicals into H2O2, greatly promotes reactivity. On the other hand, 20 

the duplicated chain terminating reactions of HȮ2 radicals are the most inhibiting reactions, as 21 

discussed above. The unimolecular decomposition of the fuel and -scission of the fuel-derived radicals 22 

show positive or negative sensitivity coefficients depending on the reactivity of the different smaller 23 

hydrocarbon species produced. The low-temperature chain branching reactions are not observed to be 24 

sensitive in Fig 9 (c) due to the high temperature conditions. A series of reactions between small 25 

molecule hydrocarbon radicals and HȮ2 radicals are shown in Fig. 9 (c). In general, those converting 26 

HȮ2 into ȮH radicals directly or indirectly promote reactivity, while those converting HȮ2 into O2 27 

inhibit reactivity.  28 

Jet stirred reactor 29 

The jet-stirred reactor experiments were performed at 1.06 bar, at a residence time of 2s and at 30 

equivalence ratios of 0.25, 2.0 and 4.0 in order to extend the relevant experimental database to very lean 31 

(φ = 0.25) and very rich (φ = 4.0) conditions. Detailed compositions of the mixtures are listed in Table 3, 32 

with over 40 species being identified. The intermediates include C1–C2 alcohols, C1–C4 aldehydes, C1–33 

C4 alkanes, C2–C7 alkenes, small molecular dienes and alkynes, C7 cyclic ethers, as well as other 34 

oxygenated species such as acids and unsaturated aldehydes, which can be produced from the low-35 

temperature oxidation process. The simulation has been performed using the perfectly-stirred reactor 36 
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module within CHEMKIN PRO [84] employing the transient solver, with an end-time of 20 s. Figures 1 

10–12 present the model versus experimental results at equivalence ratios of 0.25, 2.0 and 4.0, 2 

respectively. The experimental data sets are available in the supplementary material. 3 

The NTC behavior of n-heptane under different conditions is reflected in the experimental 4 

results. In general, the experimental trends are well captured by the model, except for the under-5 

prediction in reactivity at φ = 0.25 at a temperature of approximately 750 K, indicating that the current 6 

mechanism can capture the overall chemical behavior of n-heptane under most conditions studied in the 7 

present work. Good agreement is observed between the experimental results and the predictions for 8 

major intermediates, with the deviations in the peak concentrations being mostly within a factor of two 9 

of the experiments. However, the deviations for oxygenated species at low temperatures, such as those 10 

shown in Fig 10 (j), Fig 11 (b) and Fig 11 (f), suggest that the consumption pathway of the low-11 

temperature chemistry products can be further refined. In the current mechanism, the Korcek 12 

mechanism [87] which produces acids from ketohydroperoxides has also been considered, with the rate 13 

constants adopted from Pelucchi et al. [44]. However, the effects of adopting this reaction class are very 14 

slight, as the concentrations of the acids are under-predicted at all conditions studied in this work, 15 

especially for the leanest mixture which requires further investigation. This might be due to the fast 16 

decomposition of ketohydroperoxides in the current model which requires further investigation of the 17 

detailed reaction pathways that consume ketohydroperoxides. The dashed lines present the simulations 18 

using the mechanism with unmodified rate rules. It can be see that the new modifications have only a 19 

slight effect upon the predicted mole fraction profiles of major species. The dashed lines are 20 

overlapping with the solid lines for many cases. 21 

It is worth noting that two important classes of intermediates are reasonably well predicted by the 22 

model, that is, heptenes and C7 cyclic ethers. As shown in Fig 10–12 (m), the heptene isomers are 23 

largely produced from the concerted elimination reactions of RȮ2 radicals, to which ignition delay 24 

times are sensitive, showing different effects depending on the temperature range, as discussed earlier. 25 

The overall agreement between the model and experimental results of 1-, 2- and 3-heptene are better 26 

predicted using the modified rate rules adopted here, yet the branching ratio may need to be further 27 

refined. Another possible reason for the deviations, especially those at intermediate temperatures, may 28 

be attributable to the consumption pathways of these alkenes. The experimental and simulated mole 29 

fraction profiles of five different C7 cyclic ethers are shown in Figs. 10–12 (n)–(o). These species are 30 

produced from the chain propagating reactions of Q̇OOH radicals forming cyclic ethers and ȮH 31 

radicals. Although this reaction class is not seen to be sensitive according to our analysis presented 32 

above, its significance for the consumption of RȮ2 radicals cannot be neglected, as will be shown in the 33 

rate of production analysis below. Using the modified rate rules adopted here, in general the predicted 34 

mole fraction profiles agree better with the experimental results. Even at φ = 0.25, where the 35 

performance of the model is not as good as at the other equivalence ratios, the predicted peak 36 

concentration of cyclic ethers match the magnitude of the measured values.  37 
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Figures 13 and 14 present the validation of the model against experimental data from previous 1 

studies [16-17] in the same jet-stirred reactor. The experimental conditions are similar having a fuel 2 

concentration of 0.5% using helium as the diluent gas. The pressure was 1.06 bar with the residence 3 

time of 2s. The equivalence ratios were 1.0 and 3.0, respectively. The agreement of the predicted mole 4 

fraction profiles with the measured ones is good for the major species. Figures 13 (d) and Fig. 13 (f) 5 

show the mole fraction profiles of cyclic ethers and the heptene isomers. The cyclic ethers are well-6 

predicted, while the heptenes are over-predicted within a factor of two. Similar trends are seen in Fig. 7 

14 (d) for the φ = 3.0 condition, as the concentrations of the two cyclic ethers are well predicted, while 8 

the agreement for 1- and 2-heptene shown in Fig. 14 (f), are better than those at the stoichiometric 9 

condition. However, certain deviations are observed at low temperatures for oxygenated species at φ = 10 

3.0, such as acetaldehyde and propanal shown in Fig 14 (c) and (e). Figure 15 shows the validations at 11 

higher pressures, which uses the experimental data from Dagaut et al. [14]. The model can in general 12 

reproduce well the species mole fraction profiles. The predicted mole fraction profiles of the heptane 13 

isomers agree better with the experimental results as shown in Fig. 15 (f) compared to those at 1.06 bar, 14 

while certain deviations between the experimental and modeling results can be observed for some 15 

smaller alkenes such as ethylene and propene as shown in Fig. 15 (b) and Fig. 15 (c). These 16 

observations indicate that the consumption pathways for the primary oxidation products of n-heptane 17 

may need further refinement, possibly by firstly considering their pressure dependence.  18 

Simulations have also been performed using the mechanisms proposed by Mehl et al. [42], 19 

Herbinet et al. [16], Pelucchi et al. [44] Seidel et al. [30] and Cai et al. [46] and compared with those of 20 

the current mechanism. The experimental data sets are taken from [16]. Comparisons are shown in Fig. 21 

16, with each row comparing the simulated results using the current mechanism compared to the target 22 

mechanism, which indicates that the current mechanism has an overall better performance. Rate of 23 

production analyses have been performed for n-heptane oxidation in the jet-stirred reactor using helium 24 

diluted at 0.5% fuel, at a residence time of 2 s,  at φ = 1, and at T = 650, 850 and 1000 K in order to 25 

reflect the significant reaction pathways over the entire temperature range. Based on the results at the 26 

three different temperatures, a reaction pathway diagram has been generated following two principles 27 

and is shown in Fig. 17. Considering the neatness of the diagram, the first principle is that, the reaction 28 

pathways with contributions of less than 10% at all three temperatures are not shown. Some of the 29 

remaining pathways may have very low contributions at either low or high temperatures due to their 30 

dependence on temperature; e.g. the addition of fuel derived radicals to oxygen. Therefore the second 31 

principle is that, if a reaction pathway has a contribution of less than 6%, the contributions of the 32 

sequent reaction pathways of its product are not shown. The arrows denote reaction pathways, with 33 

their contributions under different temperatures indicated using different fonts: red italic denotes T = 34 

650 K, black bold denotes T = 850 K and blue underlined denotes T = 1000 K. 35 

At all three temperatures, fuel consumption occurs mainly via H-atom abstraction by the radical 36 

pool, with a slight change in the branching ratios leading to different fuel derived radicals (Ṙ). An 37 
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analysis of the branching ratio for abstraction by different radicals indicates that the contribution of H-1 

atom abstraction by ȮH radicals to fuel consumption is 95.8% at 650 K, 78.1% at 850 K and 43.5% at 2 

1000 K, while that by Ḣ atoms is 3.1% at 650 K, 9.1% at 850 K and 52.7% at 1000 K. This reflects the 3 

inhibited chain propagating process due to increasing temperature, as well as the enhanced -scission of 4 

fuel derived radicals which readily produce Ḣ atoms in the sequent dehydrogenation reactions. This 5 

overall trend can also be observed from the change in flux distribution with increasing temperature. 6 

Unlike those of ȮH radicals and Ḣ atoms, the contributions to fuel consumption of H-atom abstraction 7 

by HȮ2 radical is 0.7% at 650 K, 9.1% at 850 K and 2.2% at 1000 K. This trend is consistent with the 8 

discussions on sensitivity analysis for ignition delay time in that H-atom abstraction from the fuel by 9 

HȮ2 radicals plays an important role at intermediate temperatures (~850–1300 K). The production of Ṙ 10 

radicals is depicted in the upper left part of Fig. 17, and the consumption is shown in the order of 1-, 2-, 11 

3- and 4-heptyl vertically. In general, the chain propagation and chain branching processes in the 12 

consumption of each fuel radical are depicted from left to right in Fig.17; the left edge shows the 13 

reaction classes such as the -scission and isomerization reactions of alkyl radicals, followed by chain 14 

propagation reactions including the addition of alkyl radicals to O2, concerted elimination of RȮ2 15 

radicals producing an HȮ2 radical and an olefin, which competes with the isomerization of RȮ2 into 16 

Q̇OOH radicals. In the middle part of Fig.17, the multiple consumption channels of Q̇OOH are shown, 17 

including Q̇OOH radical addition to O2, the formation of cyclic ethers and also the -scission reactions 18 

producing smaller molecule products. On the right edge, the chain branching step is reached via the 19 

formation of ketohydroperoxide species and bi-hydroperoxy alkyl radicals. The formation and 20 

decomposition of the former produce two ȮH radicals in total, while the decomposition of the latter 21 

also releases two ȮH radicals. The further decomposition pathways of these species are not depicted 22 

here in order to reduce the size of the figure. Alternative isomerization reactions are more important for 23 

Ȯ2QOOH radicals where the hydroperoxy groups are on primary carbon atoms. This is because the C–24 

H bonds are stronger and are not favored by the internal H-atom transfer process. Although for n-25 

heptane, the alternative isomerization reaction leads to chain branching which can also be reached via 26 

the formation of ketohydroperoxides, this additional pathway may be important for branched alkanes 27 

when the formation of ketohydroperoxides is not possible [51]. 28 

At 650 K, the chain branching process dominates, with the production of ketohydroperoxides and 29 

bi-hydroperoxyl alkyl radicals at the right end of Fig.17. The -scission pathway of each fuel derived 30 

radical can be neglected. The concerted elimination reactions of RȮ2 have lesser contributions 31 

compared to those of the isomerization into Q̇OOH radicals. However, ignition delay time predictions 32 

are very sensitive to these concerted elimination reactions where an increase in their rate reduces 33 

reactivity, as shown in Fig 9. On the other hand, the flux leading to cyclic ethers is quite high. For each 34 

RȮ2 radical, the 1,4 H-atom transfer channel is favored over the other isomerization pathways, and the 35 

sequent formation of five membered ring cyclic ethers dominates the consumption of the corresponding 36 

Q̇OOH radicals. However, the reactivity of the system is in-sensitive to the formation of cyclic ethers 37 
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because these chain propagation reactions produce ȮH radicals which are much more reactive than the 1 

HȮ2 radicals produced from the concerted elimination reactions of RȮ2 radicals at low temperatures. As 2 

the temperature increases to 850 K, the chain propagation pathways become more dominant and there is 3 

little flux to chain branching and Q̇OOH radical addition to O2. An obvious feature in the reaction 4 

pathways is that the concerted elimination reactions largely consume RȮ2 radicals, especially secondary 5 

RȮ2 radicals since there are more hydrogen atoms on the beta carbons. Meanwhile, the formation of 6 

cyclic ethers is also enhanced. As has been discussed previously, the production of 1-heptyl radicals 7 

promotes reactivity, with this class of reaction showing a relatively large sensitivity coefficient at 8 

intermediate temperatures. This may be partly explained by the consumption channels of different fuel 9 

radicals shown in Fig. 17. While the concerted elimination reaction dominates the consumption of 2-, 3- 10 

and 4-heptyl radicals, the isomerization reactions contribute about 69% in total to the consumption of 1-11 

heptyl radicals. Therefore the production of 1-heptyl radicals, compared to the other heptyl radicals, 12 

increases the chain branching process, and thus promotes reactivity. At the higher temperature condition 13 

of 1000 K, the only important consumption pathways for alkyl radicals are -scissions, simultaneously 14 

producing smaller hydrocarbon radicals and olefins. Therefore the chemistry of these smaller 15 

hydrocarbon species becomes important in controlling the reactivity of the system. The addition of alkyl 16 

radicals to molecular oxygen has only a minor contribution to the overall flux of the system. 17 

Rate of production analyses have also been performed at φ = 0.25 and φ = 4.0 at T = 650 K to 18 

determine the influence of equivalence ratio upon the oxidation of n-heptane through the reaction 19 

pathways shown in Fig. 17. The contributions have been marked with numbers in red frames and 20 

numbers with red backgrounds for φ = 0.25 and φ = 4.0 at T = 650 K, respectively. As shown by the 21 

experimental conditions in Table 3, the concentration of the fuel remains constant, while that of oxygen 22 

varies with increasing equivalence ratio. As a result, the reactions involving oxygen are enhanced at φ = 23 

0.25 and inhibited at φ = 4.0. This is reflected in Fig. 17 in that the additions of Ṙ and Q̇OOH radicals 24 

to molecular oxygen, especially the latter, have higher contributions at the fuel-lean condition. For 25 

example, the addition of C7H14OOH4-2 radicals to oxygen account for 89.2%, 67.2% and 35.5% to its 26 

consumption at φ = 0.25, 1.0, and 4.0, respectively, shown at the bottom of Fig. 17. For the 27 

consumption of Q̇OOH radicals, the lower contribution of the addition to O2 with an increase in 28 

equivalence ratio leads directly to the higher contribution of cyclic ether formation. Meanwhile, the 29 

equilibrium between RȮ2 and Q̇OOH radicals is also affected. As the consumption of Q̇OOH radicals is 30 

actually inhibited by the lack of O2 at the fuel-rich condition, the isomerization of Q̇OOH radicals back 31 

to RȮ2 radicals and the consumption of RȮ2 radicals via other reaction pathways are promoted. Figure 32 

17 shows that the production of 3-heptene from C7H15-4Ȯ2 radical contribute 15.3%, 32.9% and 45.7% 33 

to its consumption at φ = 0.25, 1.0, and 4.0, respectively. According to the results and discussions of the 34 

sensitivity analysis shown in Fig. 9, these changes lead to a lower reactivity at fuel-rich conditions, 35 

which is consistent with the fuel consumption values shown in Figs. 10–12 (b). On the other hand, the 36 

branching ratios in the production of different fuel derived radicals are very similar at all of the three 37 
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equivalence ratios. This is because H-atom abstraction from the fuel occurs mainly via ȮH radicals, 1 

with only minor contributions from the other radicals, but varies with equivalence ratio. Similarly, the 2 

branching ratios of different consumption channels of Ȯ2QOOH radicals are also highly consistent 3 

despite of the varying equivalence ratio, since they are mainly consumed via isomerization and sequent 4 

decomposition. 5 

Laminar flame speed predictions 6 

The current mechanism has been validated using the laminar flame speed data reported in [24-26]. 7 

The comparisons are shown in Figs. 18–20. The simulation used the premix code in CHEMKIN PRO 8 

[84]. Considering the high temperature condition in the flame, the current mechanism has been reduced 9 

by removing most of the reactions involving low-temperature species. This reduced mechanism, or the 10 

high temperature version of the current mechanism, is also available as Supplementary material and at 11 

the C3 website: http://c3.nuigalway.ie/. 12 

Dirrenberger et al. measured adiabatic laminar burning velocities of n-heptane at 1 atm using a 13 

flat flame adiabatic burner [26]. The heat flux method was used to determine burning velocities at 14 

conditions for which the net heat loss of the flame is zero. Figure 18 shows the experimental data sets 15 

reported  for n-heptane flame speeds, which were measured at 298 K, 358 K and 398 K [26]. The model 16 

predicts well the flame speeds except for the under-prediction at fuel-rich conditions, which is similar to 17 

the deviations between the experimental and modeling results presented in the original paper [26]. 18 

Sileghem et al. measured the laminar burning velocities of n-heptane using the heat flux method for a 19 

flat flame adiabatic burner at atmospheric pressure and at multiple initial temperatures from 298 K to 20 

358 K [25]. Good agreement can be seen between the experimental data and the simulations using the 21 

current model for all data sets at initial temperature from 298 K to 358 K (Fig. 19). Only slight under-22 

predictions can be seen at the initial temperature of 358 K. The deviations are mostly within the 23 

reported uncertainty range (± 1.4 cm/s for equivalence ratio = 1.3 and ±1 cm/s for the other equivalence 24 

ratios). 25 

The current mechanism has been further validated against flame speed data at elevated pressures. 26 

Kelly et al. performed experimental study on laminar flame speeds and Markstein lengths studies for 27 

C5–C8 n-alkane mixtures in air at pressures of up to 10 atm [24]. Figure 20 shows the measured n-28 

heptane flame speeds at an initial temperature of 353 K and at pressures of 1, 2, 5, and 10 atm, 29 

respectively. The predicted flame speeds agree well with the experimental results at all pressures, with 30 

slight under-predictions at 5 atm which are within the reported uncertainty range of ± 2 cm/s. This 31 

indicates that the pressure dependence of the high temperature chemistry is reasonable in the current 32 

mechanism. 33 

  34 
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Conclusions 1 

 In this work, the oxidation of n-heptane has been firstly investigated experimentally. A detailed 2 

chemical kinetic model has been developed to numerically describe these experimental observations. 3 

Good agreement is observed between the model predictions and measured ignition delay times. In 4 

general, the model also satisfactorily captures the trend in the mole fraction profiles of most species 5 

measured in a jet-stirred reactor over a very wide range of equivalence ratios (0.25, 2.0 and 4.0). A 6 

good performance of the current mechanism is also indicated via further validations and comparisons to 7 

several recently published n-heptane mechanisms. The reaction rate rules used in this mechanism are 8 

consistent with those used for the pentane isomers [51, 55] and n-hexane [54] sub-mechanisms. 9 

Therefore good consistency in kinetic can be expected, which is important regarding simulations for 10 

fuel mixtures. The reaction rate rules have been shown to lead to reasonably good predictions and may 11 

thus be used in the development of mechanisms of larger alkanes. 12 
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Table 1. Nomination of some representative species in n-heptane sub mechanism. 1 

nC7H16 

 

Ċ7H15-1 
 

C7H14-1 
 

C7H15Ȯ2-2 

 

Ċ7H14OOH2-4 

 

C7H14O2-5 

 

C7H14OOH2-4Ȯ2 

 

Ċ7H13Q13-5 

 

C7KET1-3 

 

C7KET1-3O 

 

 2 

3 
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Table 2. Modifications to the reaction rate rules.  1 

Reaction Rate 
rules 

Details Example 

RȮ2 ⇌  
Q̇OOH Table 6 

in 

[68] 

A × 0.5 for those using nearest analogy, which were not calculated: 

5 member ring, O2 on 
secondary, abstraction on 
primary 

C7H15Ȯ2-2 ⇌ Ċ7H14OOH2-1 

7 member ring, O2 on 
secondary, abstraction on 
secondary 

C7H15Ȯ2-2 ⇌ Ċ7H14OOH2-5 

8 member ring, O2 on 
secondary, abstraction on 
primary 

C7H15Ȯ2-2 ⇌ Ċ7H14OOH2-6 

Cyclic ether 
formation 

Table 3 
in 

 [72] 
 

All A factors × 0.5 

Ea+1 kcal for:  

CY/C4O, OOH on primary, 
radical on secondary 

Ċ7H14OOH1-4 <=> C7H14O1-4+ȮH    

CY/C3O, OOH on secondary, 
radical on secondary 

Ċ7H14OOH2-4 <=> C7H14O2-4+ȮH    

Ea-1 kcal for:  

CY/C4O, OOH on secondary, 
radical on secondary 

Ċ7H14OOH2-5 <=> C7H14O2-5+ȮH    

Concerted 
HȮ2 

elimination 

Table 4 
of 

[71] 
 

A × 1.5 for: 

O2 on primary, H on 
secondary 

C7H15Ȯ2-1 <=> C7H14-1 + HȮ2 

O2 on secondary, H on 
primary 

C7H15Ȯ2-2 <=> C7H14-1 + HȮ2 

O2 on S11, H on S11.                 
(P1-S10-S11-S11-S10-P1) 

C7H15Ȯ2-3 <=> C7H14-3 + HȮ2 

Second 
addition to O2 

Table 
IV of 
[69] 

A × 0.5 from the first addition 
to O2 

Ċ7H14OOH1-2+O2<=>C7H14OOH1-2Ȯ2 

 2 

  3 
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Table 3. The detailed composition of the reactant mixtures in jet-stirred reactor experiments. 1 

 
φ 

Inlet concentration (%) 
n-heptane O2 He 

4.00 0.50 1.38 98.13 
2.00 0.50 2.75 96.75 
0.25 0.50 22.00 77.50 

  2 



28 
 

Figure 1. Reaction pathways considered in the model development of this work. The reaction pathways 1 

induced by the alternative isomerization of peroxy hydroperoxyalkyl have been marked with open 2 

arrows.  3 

 4 

5 
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Figure 2. Experimental (symbols) and modeling results (lines) for n-heptane ignition delay times at 1 
multiple conditions (in air, φ = 1.0). Half-filled symbols are experimental data from [82], while solid 2 
symbols are experimental data measured in this work. Open symbols are experimental data from [83]. 3 
Solid and dashed lines are predictions with and without the modifications in the rate rules, respectively.  4 

 5 

6 
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Figure 3. An example non-reactive pressure trace 1 
 2 

 3 

  4 



31 
 

Figure 4. Experimental (symbols) and modeling results (lines) for ignition delay times of stoichiometric 1 

n-heptane/air mixture at 15 bar. Solid and dashed lines are predictions with and without the 2 

modifications in the rate rules, respectively. 3 

 4 

5 



32 
 

Figure 5. Experimental (symbols) [86] and modeling results (lines) for n-heptane/15%O2/5%CO2/Ar 1 
mixture ignition delay times at multiple conditions. Solid lines are predictions using current mechanism 2 
and dashed lines are predictions using mechanisms from (a) [42], (b) [16], (c) [30], (d) [46]. 3 
 4 

 5 
  6 
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Figure 6. Experimental (symbols) [45] and modeling results (lines) for n-heptane/air mixture ignition 1 
delay times at multiple conditions.  2 
 3 

 4 
  5 
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Figure 7. Experimental (symbols) [5] and modeling results (lines) for n-heptane/air  mixture ignition 1 

delay times at multiple conditions.  2 

 3 

  4 



35 
 

Figure 8. Comparisons of the predicted ignition delay times at multiple conditions using the current 1 

mechanism and several other ones proposed recently. Experimental data (symbols) are from [5]. Solid 2 

lines are predictions using current mechanism. Dashed lines are predictions using mechanisms from: (a) 3 

[42], (b) [16], (c) [44], (d) [30], (e) [46]. 4 

 5 

 6 

  7 
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Figure 9. Sensitivity analysis on the ignition delay time of n-heptane at T = 720 K, 820 K and 1000 K, p 1 

= 20 bar. Negative sensitivity coefficients indicate decreases in ignition delay times. 2 

 3 

 4 

 5 

  6 
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Figure 10. Experimental (symbols) and modeling results (lines) for n-heptane oxidation in jet-stirred 1 

reactor at 1.06 bar with residence time = 2 s, φ = 4.0, 0.5% fuel diluted by helium. Solid and dashed 2 

lines are predictions with and without the modifications in the rate rules, respectively.  3 

 4 

 5 

  6 
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Figure 11. Experimental (symbols) and modeling results (lines) for n-heptane oxidation in jet-stirred 1 

reactor at 1.06 bar with residence time = 2 s, φ = 2.0, 0.5% fuel diluted by helium. Solid and dashed 2 

lines are predictions with and without the modifications in the rate rules, respectively.  3 

 4 
 5 
  6 
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Figure 12. Experimental (symbols) and modeling results (lines) for n-heptane oxidation in jet-stirred 1 

reactor at 1.06 bar with residence time = 2 s, φ = 0.25, 0.5% fuel diluted by helium. Solid and dashed 2 

lines are predictions with and without the modifications in the rate rules, respectively. 3 

 4 

  5 
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Figure 13. Experimental (symbols) [16] and modeling results (lines) for n-heptane oxidation in jet-1 

stirred reactor at 1.06 bar with residence time = 2 s, φ = 1.0, 0.5% fuel diluted by helium. 2 

.  3 

4 
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Figure 14. Experimental (symbols) [17] and modeling results (lines) for n-heptane oxidation in jet-1 
stirred reactor at 1.06 bar with residence time = 2 s, φ = 3.0, 0.5% fuel diluted by helium. 2 
 3 

 4 
5 
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Figure 15. Experimental (symbols)[17] [14] and modeling results (lines) for n-heptane oxidation in jet-1 
stirred reactor at 10 bar with residence time = 1 s, φ = 1.0, 0.1% fuel diluted by nitrogen. 2 
 3 

 4 
  5 
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Figure 16. Comparisons of experimental results (symbols) [16] and predictions using the current 1 
mechanism and several other ones proposed recently. Solid lines are predictions using current 2 
mechanism. Dashed lines are predictions using mechanisms from: Row (a) [42], Row (b) [16], Row (c) 3 
[44], Row (d) [30], Row (e) [46]. 4 
 5 

 6 
  7 
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Figure 17. Reaction flux for n-hexane oxidation in jet stirred reactor at p = 1.06 bar with 0.5% fuel in 1 

helium, τ = 2s. The contributions of the reactions are marked. Red italic, black bold and blue underlined 2 

numbers are at φ = 1.0, T = 650 K, 850 K and 1000 K, respectively. Numbers with red frames and red 3 

backgrounds are at φ = 0.25 and φ = 4.0 at T = 650 K.  4 

 5 

 6 
 7 

 8 



45 
 

Figure 18. Experimental (symbols) [26] and modeling results (lines) for the laminar flame speed of n-1 

heptane in air at 1 atm and different initial temperatures.  2 

 3 

  4 
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Figure 19. Experimental (symbols) [25] and modeling results (lines) for the laminar flame speed of n-1 

heptane in air at 1 atm and different initial temperatures. 2 

 3 

 4 

  5 



47 
 

Figure 20. Experimental (symbols) [24] and modeling results (lines) for the laminar flame speed of n-1 

heptane in air at initial temperature of 353 K and different pressures.  2 

 3 

 4 


