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System Dynamics Modelling to Support Policy Analysis for Sustainable
Healthcare!

Abstract

System Dynamics (SD) is an established simulation methodology used to explore the
behavior of social systems over time. The field has addressed challenging
sustainability problems in fisheries, urban planning, and environmental resource
management. It has also been successfully applied to healthcare, in chronic disease
modelling and workforce planning. This paper presents system dynamics models of
healthcare sustainability, and illustrates two complementary applications of SD: (i)
continuous simulation of healthcare infrastructure adequacy; and (ii) conceptual
modelling of the wider public policy context for healthcare sustainability. The
infrastructure model provides a simulator for evaluating impacts of population
growth and ageing, as well as assessing the likely effects of policy interventions on
system sustainability. This model is validated using empirical data from Ireland’s
public health service, and its practical application for sustainability analysis is
illustrated. Our conceptual endogenous SD model explores a wider system boundary
and public policy interdependencies that impact sustainability outcomes.

Keywords: healthcare ecosystem, system dynamics simulation, socio-economic sustainability.

1. Introduction

The sustained global financial crisis of the past 5-6 years is a sharp reminder that
high-cost models of healthcare delivery are not sustainable, in economic and
social terms. Current publicly funded healthcare systems throughout the
developed world are wedded to an underlying structural cost inflation cycle,
with healthcare expenditure ratios already as high as 9.5% of GDP in the OECD,
and up to 17.7% in the US (OECD 2013 ). This poses an immediate challenge for
national governments. But a bigger challenge for policy makers is the un-
sustainable healthcare system legacy we are likely to pass-on to the next
generation, which will be faced with the additional socio-economic pressures of
an ageing demographic profile, higher dependency ratios, increased prevalence
of chronic diseases, multiple comorbidities of elderly patients, and higher unit
cost diagnostic and treatment interventions (Boyd et al. 2008).

Sustainability in healthcare is defined by the WHO as “the ability to meet the
needs of the present without compromising the ability to meet future needs”
(Roberts 1998). Olsen provides further definition and a conceptual framework
for healthcare sustainability analysis, based on understanding the balance
between contextual factors, organisational capacity and delivery activities (Olsen
1998). Systems dynamics provides an effective simulation environment for
exploring these complex social system environments.

The focus of this paper is on both the economic and social sustainability; so our
simulation framework will examine these in terms of measurable changes in:

1 The model and data can be obtained from the authors upon request



(i) Economic sustainability, expressed as a significant shift in the primary
demand drivers for healthcare services; that is, overall system loading
relative to economically available capacity.

(ii) Social sustainability. While social sustainability can involve many ethical
and moral perspectives related to funding and provisioning policies (Eikemo
et al. 2008; Olsen 1998), we use access to services (regardless of ability to
pay) as a measurable proxy indicator of declining/improving performance
for healthcare system social acceptability.

As a quantitative evidence-based approach to planning, simulation has three
distinct communities of practice: discrete event simulation (Robinson 2005),
agent-based modelling (Duggan 2008; Macal and North 2010), and system
dynamics (Forrester 1961). The purpose of this paper is not to debate the
relative merits of these different approaches to healthcare simulation. A number
of comprehensive reviews of literature and available techniques have already
been conducted where the strengths of each method are well articulated
(Brailsford, Desai, and Viana 2010; Brailsford et al. 2009; Katsaliaki and
Mustafee 2011; Mielczarek and Uziako-Mydlikowska 2012; Mustafee, Katsaliaki,
and Taylor 2010; Royston et al. 1999).

The emphasis on system-wide sustainability analysis in this paper, rather than
on detailed component simulation, predisposes our approach towards system
dynamics. The key strength of system dynamics (SD) is its suitability to address
long-term public policy problems that exhibit dynamic complexity (Sterman
1994), in terms of the significant time delays between cause and effect
(Rahmandad, Repenning, and Sterman 2009; Yasarcan 2011). Further benefits of
SD are its support for explaining learning in complex systems (Kopainsky,
Pirnay-Dummer, and Alessi 2012), precise modeling for aging populations
(Eberlein and Thompson 2013), connecting micro-dynamics with population
distributions (Fallah-Fini et al. 2013), and capturing feedback characteristics that
lead to unintended consequences (Wolstenholme 2003).

Healthcare applications of system dynamics described in the literature cover
three different levels of analysis: (1) disease models of the body; (2) operational
models of healthcare delivery units; and (3) strategic whole-system models.
Earlier reported work on whole-system SD modelling provides a robust
foundation for applications to sustainability analysis of national public health
systems. Taylor and Dangerfield (2004) explore the consequences of shifting
the balance of healthcare delivery away from centralised facilities and “closer to
home”, illustrating dynamic feedback mechanisms through a number of case
studies. Homer, Hirsch, and Milstein (2007), study chronic illness, and show the
impact of up-stream policy intervention and targeting of behaviours that impact
disease risk factors. Lane, Monefeldt, and Rosenhead (2000) perform a
simulation analysis of an accident and emergency department, and highlight the
problem of basing policy decisions on narrowly bounded models, rather than on
whole-system simulations. Wolstenholme (1999), through a study of patient
flows in the UK Health Service, demonstrates that policy adjustments to
throughput (flow) variables can provide significantly greater leverage than
adjustments to capacity (stock) variables.



One of the main advantages of SD in the analysis of healthcare is that it provides
a structured enquiry framework for whole-system identification, analysis and
implementation. This allows the modeller to develop both quantitative
simulations of system structures, as well as more conceptual abstract models for
qualitative analysis and problem description (Wolstenholme and Coyle 1983).
The quantitative SD approach to simulation is viable where the model can be
validated against a real-world foundation of data and measurable relationships
or processes. Several recent examples of quantitative and qualitative
applications in specific healthcare domains are available in the literature
(Vanderby and Carter 2009; Wong et al. 2012).

This paper describes a whole-systems SD approach to modelling and evaluation
of healthcare sustainability, at the macro level of a public healthcare system. The
contributiuon draws on the authors’ past experience in public healthcare system
design, upon previous modelling projects, as well as on the SD literature. It
illustrates the strengths of SD as a planning and research methodology for both:
(i) long-term quantitative analysis of sustainability, in terms of provider
capacity and patient access adequacy, in the core public health provider
infrastructure;
(ii) conceptual modelling for exploration of the wider public policy context for
healthcare sustainability, as SD facilitates structural model alterations as
well as parameter changes.

Sustainability is initially explored in terms of a population level SD
demand/capacity model and simulates the dynamic interdependencies of the
different care provision constituencies (or care capacities): primary care,
outpatient day-case and acute in-patient services. The capacity model
components are disaggregated to allow for the evaluation of various national or
local policy decisions on both the total system equilibrium or on individual
provider sector performance. For instance, in the primary care model (general
practitioner - GP) a stock management structure takes account of recruitment
and training policies, as well as the gender and age demographic of the GP
population. In acute care, disaggregation allows for bed-day capacities, and so
captures Average Length of Stay (ALOS) variance in terms of different patient
and disease cohorts. Finally, the entire demand model is fully disaggregated by
patient age cohort, and uses the most recent national population projections in
our case study. This model is validated using published data and planning
assumptions for the Irish public health system, and a set of scenarios is
developed to illustrate the application of SD for sustainability analysis over
prolonged planning periods.

Expanding on this validated model of healthcare infrastructure, we then develop
a qualitative feedback model to illustrate the application of SD as a conceptual
framework for exploring the wider public policy context, and interdependencies
likely to impact healthcare sustainability. This whole-systems feedback model
highlights the potential dynamics at the interface of healthcare, social, and
economic systems. Its stock and flow structure also provides the basis for future
quantification and empirical validation of causal relationships.



2. Characterising sustainability of public healthcare infrastructure

Sustainability of the healthcare system is influenced by a multitude of inter-
dependent and dynamic causal elements. These include: (i) a range of
exogenous, pre-determined factors, mainly associated with underlying
population dynamics; and (ii) internal decision variables, which allow for a range
of policy and management responses to externally imposed sustainability
threats. The policy options available include: public health interventions, system-
wide organisation design and funding choices, as well as provider-level
management and productivity changes. Long-term sustainability management of
the whole healthcare system is thus based upon:

* Comprehension of the likely impacts of exogenous factors at an early enough
stage in the planning cycle in order to allow appropriate policy and system
configuration responses;

* Implementation of policy measures to mitigate the effects of exogenous
factors; and

* Development of the healthcare delivery ecosystem to cope with the new and
different demands created by exogenous factors, such as the increased
prevalence of chronic diseases, and multiple comorbidities amongst a greater
portion of the population.

Our high-level characterisation of the public healthcare ecosystem allows us to
focus on the essential modelling variables required for an evaluation of
healthcare sustainability. This also provides a valuable context for building an
effective SD simulation. Figure 1 details a high-level IDEF, (Feldmann and Tieso
1998) representation of public healthcare, showing the Exogenous (Demand
Drivers) and Decision (Policies and Organisation) variables, as well as the
downstream consequences for sustainability of changes in any of these
influencing factors.

GOVERNING POLICIES AND ORGANISATION

Funding & Resource Healthcare Public
payment allocation system health
model model configuration policies
DEMAND DRIVERS SUSTAINABILITY QUTCOMES
Population profile . Total system cost (per capita)
- -
Disease prevalence Social performance measures, e.g.:

v

* Access

Lifestyle risk factors . * Backlogs -
> Public healthcare system >
Population health expectations N Clinical outcomes -
>

Health technology advances Population health outcomes

4
A

Capital Physical & Staff Management
investment consumable resources & eHealth

& recurrent resources Innovation
funding

ENABLING RESOURCES

Figure 1: Top-level characterisation of a national public health system



Exogenous threats to sustainability:

Demographic, lifestyle and environmental changes are at the root of healthcare
sustainability, as they determine the aggregate system burden in operational
demand and overall cost terms. In Europe and North America, the underlying
demographic profile reveals an ageing population structure, with greater life
expectancies; this results in extended periods of healthcare dependency as
elderly people with chronic and multiple disease conditions now live
considerably longer.

A supplementary escalation in healthcare demand can be expected from
increased prevalence of many chronic disease conditions. Some of these are
related to lifestyle risk factors, and may apply to sub-cohorts of the overall
population. These include: Type 2 Diabetes, as well as a number of Cancers
involving high lifestyle risk associations with tobacco and alcohol consumption.
However, higher expected prevalence levels are also associated with earlier and
more effective diagnoses of disease, regardless of risk source - lifestyle or
genetic. Together, we can think of these lifestyle and prevalence factors as an
overlay on the basic demographic healthcare demand driver.

Finally, advances in healthcare technologies drive an escalation in both unit
treatment costs and demand volume, as clinicians prescribe more sophisticated
remedies. These technologies currently include: new diagnostic procedures,
medical and surgical treatments and pharmacological products. But we can
expect a further expansion in health technology based demand and cost, as
advances in genomics and personalised medicine create opportunities for even
higher levels of individual care, with a corresponding rise in overall healthcare
expectation levels of the population. Whether these can be accommodated in a
sustainable public healthcare ecosystem remains to be determined.

Policy levers to enhance sustainability:

While policy makers can exercise little direct control over these exogenous
demand drivers, the long-term sustainability of the healthcare system is
ultimately determined by the policy, investment and management choices made
by healthcare leaders. Amongst the portfolio of design responses available are:

(i) Development of chronic disease management structures to reduce
dependency upon highest-acuity in-patient care settings. Several
opportunities are available to rebalance the provision model, and these can
lead to improvements in long-term overall sustainability. These include:
development of the primary care setting for greater community based
management of patients with chronic disease and older persons with
multiple comorbidities; avoidance of acute admissions through appropriate
provision in primary care or outpatient clinics; and increased use of day-
case procedures to reduce the reliance on limited in-patient capacity.

(i) Improvements in management and productivity in various provider
constituencies (especially acute care) can yield substantial gains in
effective capacity and throughput (with lower average length-of-stay,
ALOS) over the planning horizon. Process improvements include



development of: discharge planning, electronic patient record systems,
diagnostic support and patient monitoring systems, e-prescribing and care
pathway management.

(iii) Public health policy interventions to improve the population health,
especially related to lifestyle risk factors. The net beneficial effect of such
policy measures would be to reduce the demand at source, by improving
the population health status, either for the whole community or for
segmented cohorts targeted by individual policy interventions.

Based upon this characterisation, we now present a system dynamics
representation of the underlying demography, demand drivers and capacity
formulations of the healthcare system. Apart from simulating the overall primary
impact of demographic change, the model allows the planner to
activate/deactivate these three policy responses, to explore their impact on
system sustainability. The model also allows for variation of different
underlying planning assumptions, using a number of demand modifiers, relating
to such factors as disease prevalence trends, chronic disease levels, health
technology advances, healthcare expectation levels and the impact of targeted
public health campaigns.

3. Healthcare systems dynamics demand-capacity model

Our overall model structure is designed as a powerful small model that is
sufficient to explain system-wide dynamics, illustrate component
interdependencies, and build intuition regarding appropriate policy responses
(Ghaffarzadegan, Lyneis, and Richardson 2011). The model captures key stocks,
a small number of feedback loops, and important rate equations, including
capacity constraint formulations. It also allows for detailed policy
experimentation, including analysis of permutations for decision variables such
as health service configuration, public health interventions and productivity
improvements.

The top-level SD model (Figure 2) captures the demand-capacity health system
dynamics, and summarises the system'’s high-level stocks and flows.

The main health system stocks are:

* Population Being Treated and Waiting for Treatment. Based upon the
underlying demographic forecasts from the exogenous Population variable,
this represents patient demand in the system, being treated or awaiting
treatment. The stock also models any backlog in the system, which is an
indicator of unmet presenting demand and/or access delays.

* Resources. This represents the disaggregated health care capacities for the
different provider constituencies. This includes the number (and processing
capacity) of primary care practitioners (general practitioners - GPs), the
quantity of available beds in the acute setting, and the bed capacity for
daycare settings.
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Figure 2: Aggregate SD demand-capacity model for healthcare sustainability

The stock’s behaviours are determined through their flows. For the Resource
stock these values are straightforward, whereas the stock for Population Being
Treated has multiple inflows and outflows, namely:

* Patient Demand - The normal demand on the healthcare system, in terms of
number of episodes per annum, by patient age cohort. This demand can be
adjusted by Demand Modifiers to take account of macro level dynamics such
as changes in overall population health, health technology, or health
expectation levels.

* Patients Treated - The effective capacity of the system, and the number of
patients treated each year. Factors that influence capacity include
productivity, resource numbers (people and infrastructure), and the average
length of stay (ALOS) for acute care episodes.

* Patients Not Treated - A measure of how many patients do not get treated
within any given year.

* Delayed Patients Demand - where patients not treated due to capacity
limitations re-enter the system after a time delay.

Un-met demand or delayed processing (resulting in backlogs) reflects poor social
acceptability of the healthcare system as they imply a reduction in system access,
a clear indicator of declining social sustainability. In addition to these flows,



there are a number of important feedback loops that capture responses to
changes in stock values. These are:

* BI1 (resource management), which is a stock management structure balancing
control loop (Sterman 1989) that regulates resources according to (1) the
expected loss rate, (2) the desired value and (3) the adjustment time - i.e. the
time taken to close the gap between desired and current resource levels.

* B2 (manage the flows), a balancing loop that captures health service
reconfiguration policies, such as acute sector avoidance through the
development of primary or day-case capacities.

* B3 (patients “balk”), an undesirable balancing loop that reduces pressure on
the system because patients may be discouraged from entering the system at
all, due to poor quality of service and expectations of long delays.

* B4 (improve the process), where targeted productivity improvements are
captured at an aggregate level, and result in additional capacity, which in turn
reduces the overall backlog. For example, this might include efforts in the
acute sector to reduce average length of stay (ALOS).

* R1 (unmet demand rework), a reinforcing loop to take account of the build-up
of patients in queues for diagnostic or treatment services.

A number of demand modifier parameters influence the total system demand
(and ultimately cost) by increasing/decreasing the volume of attendances at
various care settings (Figure 2). These can be independently set by the analyst,
taking account of local evidence for these variables, or can be modelled as a
parameter sweep over a range of values where reliable data is not available.
These include:

(i) changes in prevalence levels for many common diseases;

(ii) changes in the expected wellbeing status of the population over time;

(iii) level of chronic disease in the population;

(iv) the impact of public health interventions on improving health status;

(v) increasing health expectations of the population over time; and

(vi) an increased demand expectation for diagnostic and treatment

services created by advances in health technologies.

As detailed independent demographic forecasts are available, Population
(which is the primary driver of healthcare demand) is treated as an exogenous
variable in the model. For the case-study presented in this paper, the most recent
long-range forecasts of population were provided by Ireland’s Central Statistics
Office (CSO 2013). The overall model is disaggregated by both patient gender
and age cohort, to take account of the reported differences in GP visit rates, acute
admission rates and average length of stay (PA Consulting 2007). As might be
expected visit rates and admissions increase exponentially with patient age.

The total capacity for primary care is a product of the total number of GPs (full-
time equivalents, FTE), the hours worked and patient throughput. GPs are



modeled as an aging chain (Sterman 2000) in seven five year cohorts over a 35
year career span, disaggregated by gender, and replenished by a stock
management structure. The total FTE per GP takes account of empirically based
studies estimating the aggregate impact of the overall female percentage in the
GP workforce. These highlight the impact of an increasing female/male gender
ratio, which can give rise to some loss in total potential primary care capacity
(2007; O'Dowd T, O'Kelly M, and F. 2006; RCGP 2006).

While this aggregate SD model provides an understanding of the overall
demand/capacity structure of the system, a disaggregate model across the main
provider sub-sectors is required for detailed simulation and experimentation, as
shown in Figure 3. These flows enable the simulation of policy options for
addressing the structural and organisational foundations for sustainability.
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GP Demand Being Treated | p poione Net Change in
TreatedVJr\/ \_/R(esources
¥
Effect of Public
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+

Day Case Being Day Case
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Figure 3: Disaggregated model by service type: GPs, Acute and Day Patients.

4. Empirical Study in Healthcare Sustainability

The SD sustainability modelling approach is validated through our direct
engagement in the analysis and design of the Irish public health system over
several years, and by specific reference to a number of detailed independent
reports on healthcare demand and supply dynamics in this jurisdiction (2007;
DoHC 2010; Layte et al. 2009). For the purposes of illustrating the application of
our model in this paper, we have drawn on recent population projections from
the Irish Central Statistics Office (CSO 2013), and detailed demand and capacity
data from the Irish Department of Health & Children (DoHC 2012), Health



Service Executive (ESRI 2012) and the Competition Authority (CompAuthority
2010).

Model Data

The Population data is based on a mid-range CSO forecast (M2F2) that takes
account of net migration and fertility levels over a planning horizon up to 2046
(CSO 2013). This forecast highlights the pressures of an ageing demographic, as
the only cohorts to grow significantly in this period are ages 65+. It also
confirms a near trebling of the elderly dependency ratio (DR) over the planning
period, while the young DR is cyclical around a flat profile. However, Ireland
retains a relatively high fertility rate of 1.8-2.1, which should help to support a
sustainable healthcare sector. The low and falling fertility rates in other parts of
the developed world will present a greater sustainability challenge.

The impact of ageing on the demand-side of healthcare is highlighted in (Table 1)
an age- cohort analysis of admissions to the acute sector for 2011 (both Acute In-
Patient and Acute Day-Case settings). This is based upon detailed discharge data
from the Irish health service (ESRI 2012). Coupled with the Population forecasts
this provides a detailed disaggregated picture of demand and capacity utilisation
patterns (with respect to ALOS). Ageing of the population is thus an important
contributory factor to an analysis of healthcare sustainability.

Acute Visit Rate Day Visit Rate Acute ALOS
Cohort Male Female Male Female ALL
Age 0-1 0.43 0.35 0.08 0.07 5.8
Age 1-14 0.07 0.06 0.06 0.04 2.4
Age 15-24 0.05 0.05 0.05 0.06 3.2
Age 25-34 0.05 0.05 0.08 0.10 3.9
Age 35-44 0.06 0.06 0.12 0.16 4.5
Age 45-54 0.09 0.08 0.20 0.25 5.6
Age 55-64 0.14 0.12 0.39 0.36 6.9
Age 65-74 0.25 0.20 0.66 0.50 8.7
Age 75-84 0.44 0.35 0.87 0.55 11.2
Age 85+ 0.62 0.46 0.73 0.30 13.3

Table 1: Visit Rates (2011) for Acute and Day, along with ALOS Data (by cohort)

Earlier studies of Irish public healthcare have also examined the influence of
changes in disease prevalence for individual disease types (Diagnosis Related
Groups - DRGs), chronic disease incidence and healthcare expectation levels. For
the purposes of model validation in this paper, we have applied a net aggregate
additional year-on-year exogenous demand increment of 2%, driven by these
factors. This average level of incremental impact has been previously adopted in
earlier independent studies (PA 2007; Layte et al. 2009). However, our model
allows the analyst to test a range of assumptions using a set of demand modifiers
(Figure 2) for such influencing variables, where definitive relationships or
parameters are not readily supported by strong empirical evidence.
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Our SD model evaluates the sustainability impact of the forecast population on
component primary and acute care settings, and in particular underlines the
effect of population ageing. It also allows us to examine the ability of available
system capacity to cope with increased demand, and highlights the changes in
“backlog” for each care setting. Growing capacity deficits over time reflect an
economically unsustainable healthcare system, and this allows us to identify the
incremental capacities needed at each stage to maintain demand-capacity
equilibrium in the system. System backlog indicators with values greater than 1
represent un-met needs or delayed access to healthcare resources, and thus
provide a useful proxy measure for social sustainability. That is, an increasing
backlog indicator represents a net deterioration in healthcare access and thus
reduced overall social sustainability of the healthcare system.

Sustainability Impacts and Policy Scenarios

Based upon these detailed demographic forecasts and demand drivers, we
illustrate the application of the model using 3 sustainability scenarios: a baseline
model to evaluate the raw impact of changing demand on sustainability, and 2
models to evaluate various policy options to improve sustainability.

Scenario 1: Baseline resource levels held constant. This maintains
healthcare resources at existing levels, with no improvement in provision.
For instance, the ratio of GPs to population is maintained at current levels
(0.61 per 1,000). While this ratio is low relative to European averages, the
current demographic profile means that wait times for primary care in
Ireland are extremely low. Similarly, acute bed capacity per capita is high
relative to the baseline demographic.

Scenario 2: Productivity and public health policy improvements. As a
policy response to sustainability, investment in productivity measures is
focused on individual care settings, particularly the acute in-patient sector.
Public health policy intervention is also implemented to reduce source
demand for services, for instance in the early prevention of chronic disease.

Scenario 3: Chronic disease management structures. In this case the
policy response takes a whole-systems perspective to chronic disease
management, with a rebalancing of resources across the care sectors,
requiring investment in the primary and day-case sectors. This is additional
to the productivity and public health measures implemented in Scenario 2.

The raw demographic impact on future sustainability is illustrated in Figure 4 for
the Scenario 1 assumptions. This forecasts an emerging demand-capacity
shortfall, illustrated here for both the Primary (GP) and the Acute In-patient
sectors, caused by population growth and ageing, as well as an increasing
underlying disease prevalence and health technology advances. The early
oscillation in GP capacity is due to the working-out of an impending deficit
caused by near-term retirements, with a lag in additional supply from training
schemes. In order to maintain a level of equilibrium in the system, significant
additional investment in capacity would be needed, driving-up the overall and
per capita system costs. This amounts to a net incremental requirement to

11



create 26,000 acute in-patient beds by 2046, and an expansion (over current
numbers) of 1,200 general practitioners in the primary care sector. Should the
current ratio of GPs per 1,000 population be retained at current levels, this
would result in a 2046 planning deficit of 520 primary care doctors.

30,000 600

@ S1: Acute In-patient bed deficit

«= =51:Primare Care (GP) deficit

25,000 500

20,000 400

15,000 300

200

10,000

5,000

Acute In-patient bed supply deficit (no. of beds)

-5,000 -100

Figure 4: Scenario 1 - Capacity sustainability indicator in primary and acute care

Social sustainability is more clearly illustrated in Table 2, which shows the
deterioration in healthcare access caused by increasing backlogs at each of the
main care settings throughout the planning period. A backlog indicator of 1.0
indicates that the system is in demand-supply equilibrium. Values greater than
1.0 suggest increasing patient access difficulties as the demand/capacity
mismatch grows, leading to a deterioration in social acceptability of the service.

Scenario 1: Planning Year: 2011 2016 2021 2026 2031 2036 2041 2046
Primary (GP) care backlog:
Backlog Indicator 1.02 1.03 1.06 1.08 1.10 1.13 1.15 1.17
% Annual Change on 2011 Baseline 2% 5% 6% 9% 11% 14% 15%

Acute In-patient backlog:
Backlog Indicator 1.00 1.11 1.28 1.54 1.90 2.36 2.91 3.54

% Annual Change on 2011 Baseline 11% 29% 55% 91% 137% 192% 255%

Day-case backlog:
Backlog Indicator 1.00 1.10 1.20 1.31 1.42 1.51 1.60 1.66

% Annual Change on 2011 Baseline 10% 21% 32% 42% 52% 60% 67%

Table 2: Scenario 1 -- Service backlog ratio and change over 2011 baseline

In summary, the effect of demographic change over the planning horizon,
coupled with the additional influence of increased prevalence and health
technology advances, creates a clearly unsustainable level of demand relative to
the economically available baseline capacity throughout the healthcare system.
The social sustainability impact is even more pronounced, with significant
reductions in access to all health provider care settings.

12
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In response to these sustainability challenges, healthcare managers could focus
policy on improved productivity and ALOS in acute care. Investment in public
health measures, to reduce disease prevalence, could also be considered. These
are explored in Scenario 2 (see Figure 5). Finally in Scenario 3, we examine the
policy impacts of addressing sustainability with a more comprehensive whole-
system approach to chronic disease management in the health system, in
addition to the Scenario 2 productivity measures. This policy would see: (1) a
rebalancing of the acute sector in favour of a greater mix of day-case patients;
and (2) avoidance of the acute sector for chronic disease management (CDM), by
improving the capacity and service range of primary care.

Figure 5 summarises the results for both Scenarios 2 and 3. While acute sector
productivity measures (Scenario 2) result in a substantial improvement in both
demand-capacity balance and patient access over the near term, these are not
sustained as demand continues to escalate over time. However taking a whole-
system approach towards chronic disease management (Scenario 3) results in a
balanced healthcare system over the planning horizon, with sustainable demand-
capacity and patient access performances (Figure 5 and Table 3).

However, in order to achieve sustainability objectives, investment in primary
care and day-bed capacities is essential, albeit at significantly lower costs to
developing a corresponding capacity in acute in-patient care. The net addition in
GPs required over the planning horizon is of the order of 1,300, which would
take the GP/population ratio in Ireland to 0.74/1000, still well below the
European average. The incremental capacity in day-beds is equivalent to an 85%
increase in the baseline capacity. Such measures are being attempted throughout
Europe, and early efforts to move in this direction are being explored in Ireland.
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Figure 5: Scenarios 2 & 3 - Capacity sustainability indicator: primary and acute
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Scenario 3: Planning Year: 2011 2016 2021 2026 2031 2036 2041 2046

Primary (GP) care backlog:
Backlog Indicator 1.02 1.01 0.98 0.96 0.96 0.98 0.99 1.00
% Annual Change on 2011 Baseline 1% 4% 5% 5% 4% 3% 2%

Acute In-patient backlog:
Backlog Indicator 1.00 0.56 0.50 0.54 0.61 0.68 0.75 0.82

% Annual Change on 2011 Baseline 44% 49% 45% 39% 32% 25% 18%

Day-case backlog:
Backlog Indicator 1.00 0.93 0.89 0.91 0.94 0.99 1.04 1.08

% Annual Change on 2011 Baseline 7% 11% 9% 5% 1% 4% 8%

Table 3: Scenario 3 -- Service backlog ratio and change over 2011 baseline.

5. Healthcare systems dynamics whole-system conceptual model

Building upon our initial evidence-based simulation, we now explore a broader
conceptual model to further understand key macro-level feedbacks in health care
sustainability analysis. System dynamics provides an excellent methodology for
this broader task, as its overarching goal is to expand the boundary of our mental
models to observe patterns of behavior created by the underlying feedback
structure (Sterman 2000). This closed-boundary perspective also allows
modellers to confirm that there are no significant dynamic influences coming
from outside the system boundary. The resulting models, crucially, are
endogenous, where the dynamics of the system are generated within the system
boundary (Richardson 2011).

Our macro-level conceptual model offers a whole-systems perspective of the
public health system within a wider public policy context (Figure 6). This model
retains the two initial stocks, that capture supply and demand, and their
associated feedback loops. The main difference with this enlarged model is that
previously exogenous variables (e.g. variables that are not part of a feedback
structure) are now endogenous. The most prominent of these is Population
Wellbeing, which - while challenging to measure - is an important community
level metric for the social sustainability of healthcare systems. Targeted
investments in policy areas such as health promotion should lead to an increase
in wellbeing, and this, in turn, has a cascading effect in terms of reducing the
overall pressure on the health system by reducing patient demand for services.
The remaining exogenous variables (Health Expectations, Disease Prevalence,
Health Technology and Public Health Interventions) that were treated as demand
modifiers in the first model, also become part of new feedback loops. These new
feedback structures can be used to inform policy debate, guide further model
refinement and data validation, and support the decision making process.

From a policy perspective, the conceptual model provides a concise summary of
public policy options, and emphasises their possible side-effects or unintended
consequences. The model illustrates feedback loops for 5 specific policy areas
(P1-P5), including: targeted funding of health system capacity; process
improvement; chronic disease management; development of long-stay
residential and home care initiatives; and health promotion activities. These
policies have a balancing effect on overall patient demand, and can be seen as
practical measures to support future sustainability.
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Apart from specific healthcare policies, the model also illustrates the interaction
with wider public policy areas (including economic and social policy). For
example, P6 reflects an overall political philosophy of better health contributing
to greater public productivity and wealth creation. This virtuous cycle can be
seen from the reinforcing loop R4, whereby a policy of investing in
improvements to population wellbeing can lead to higher economic productivity,
which in turn leads to more available resources, that can be invested to improve
health and wellbeing.

Finally, our model illustrates the effect of policy time-lag, where the impact of
policy actions may take significant time to manifest. For example, reinforcing
behaviours such as R1 - a lower quality of service (QOS) - give rise to higher
demand (vicious cycle effect), producing unchecked work pressure; here, a slow
policy response to capacity resourcing leads to front-line fatigue (R2), ultimately
reducing effective capacity. Other unexpected side effects are expressed through
loops B8 and B9, where technological advances (e.g. improved diagnostics) can
lead to increased demand for early intervention, or the increase in economic
wealth may drive higher expectations of the health system.

In summary, this conceptual model expands our boundary of analysis by
observing system feedbacks that may act on the exogenous variables from Figure
2, and so facilitates high-level policy exploration.

6. Conclusions and Future Work

Our whole-system SD approach provides quantitative simulation and qualitative
conceptual models for long-term policy analysis, investment and development
planning in sustainable healthcare. It is tested and calibrated based on currently
available data and demographic projections. In summary, our model
demonstrates the utility of the system dynamics method for addressing long-
term sustainability problems of dynamic complexity. It facilitates whole-system
impact analysis and allows the exploration of multiple individual and combined
policy options, as well as an examination of their interdependency with other
areas of public policy. The case study clearly demonstrates the value of
simulation in healthcare sustainability planning and reinforces the need for a
whole-system approach to such societal challenges.

There is much scope for future work using SD in healthcare sustainability. At a
macro-level, the wider policy and feedback relationships in our conceptual
model (Figure 6) need primary research to build reliable data sets for model
validation and refinement. At a structural level, our models can be further
developed across a number of dimensions. In line with similar studies such as
(Hirsch et al. 2005; Jones et al. 2006), the models could be extended to include
specific aggregations of disease prevalence in the population. This could be
achieved through the addition of population stocks such as Healthy, At Risk and
Chronic and Afflicted. Such a prevalence structure can then be used to drive an
endogenous (Ghaffarzadegan et al. 2011) aging chain model for population
prediction, so that health state also influences population change (thereby
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simulating loop B11 from our conceptual model). Furthermore, the model could
be re-focused on a specific disease type, such as Type Il diabetes or cancer
prevalence. Finally, there is an opportunity to extend the model scope to include
endogenous economic loops, such as funding and payment models, to explore the
differential impact of economic incentives. This work, which would be extensive
in terms of effort and data requirements, could further capture the interactions
between public and private healthcare sectors (or funding models) in terms of
the impact on available capacity, access and other measures of social equity, as
well as the overall economic cost of the healthcare system.
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