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Abstract: 14 
Being able to predict the final product yield at all stages in long-running, industrial, mammalian 15 
cell culture processes is vital for both operational efficiency, process consistency, and the 16 
implementation of Quality by Design (QbD) practices.  Here we used Raman spectroscopy to 17 
monitor (in terms of glycoprotein yield prediction) a fed-batch fermentation from start to finish.  18 
Raman data were collected from 12 different time points in a Chinese Hamster Ovary (CHO) 19 
based manufacturing process and across 37 separate production runs.  The samples comprised of 20 
clarified bioprocess broths extracted from the CHO cell based process with varying amounts of 21 
fresh and spent cell culture media.  Competitive adaptive reweighted sampling (CoAdReS) and 22 
ant colony optimization (ACO) variable selection methods were used to enhance the predictive 23 
ability of the chemometric models by removing unnecessary spectral information.  Using 24 
CoAdReS accurate prediction models (relative error of predictions between 2.1–3.3%) were built 25 
for the final glycoprotein yield at every stage of the bioprocess from small scale up to the final 26 
5000L bioreactor.  This result reinforces our previous studies which indicate that media quality is 27 
one of the most significant factors determining the efficiency of industrial CHO-cell processes.  28 
This Raman based approach could thus be used to manage production in terms of selecting 29 
which small scale batches are progressed to large-scale manufacture, thus improving process 30 
efficiency significantly.  31 
 32 
Keywords:  Raman spectroscopy, Bioprocess, Glycoprotein, Chemometrics, Variable Selection,  33 
CHO cell.    34 
 35 
1.   INTRODUCTION  36 

The manufacture of therapeutic proteins by mammalian cell culture based processes is 37 
driving the development of a new generation of spectroscopic (primarily vibrational) based 38 
analytical methodologies [1-8].  The need for rapid, reliable, robust, and non-destructive 39 
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analytical methods is of paramount importance to ensure efficient and reliable process control, to 40 
improve fermentation performance and product quality, leading to decreases in cost-of-product.  41 
Ideally it would be best if these methods could enable the accurate prediction of final yield (and 42 
other product quality attributes) as early as possible in the process cycle, preferably in the seed 43 
reactor.   44 

A fed-batch fermentation process for recombinant protein production, starting with the cell 45 
bank vial and ending with the final product, is a very complex system.  Multiple process 46 
parameters that determine product yield and other desired quality attributes include feed quality, 47 
feeding strategy, inoculum age, and harvest point (to name but a few) [9-11].  Once a process 48 
seed reactor has been transferred to the large-scale manufacturing bioreactor stage, most of the 49 
process operational parameters will have been fixed, except for feed quality, which can vary 50 
substantially.  In bioreactors during growth and production phases, there is a complex 51 
environment, comprising of materials that include feed media (a mixture of amino acids, 52 
inorganic salts, carbohydrates, organic acids, vitamins, etc.), whole cells and cell debris, product 53 
and host cell protein, and metabolites [9, 12, 13].  The analysis of these complex materials is 54 
challenging, and chromatographic techniques (often coupled with mass spectrometry) offer the 55 
necessary chemical resolution for detailed analysis [14, 15].  Alternatively one can consider the 56 
use of high-field NMR which can generate extensive information about the constituents of cell 57 
culture media [16].  However, these approaches are generally only implemented with a low 58 
analysis frequency because of tedious sample preparation, high capital cost and often highly 59 
skilled, labor-intensive/ time-consuming data analysis.   60 

The potential of near-infrared (NIR) and mid-infrared (MIR) spectroscopies has been 61 
documented for bioprocess analysis [1-3, 5, 6, 17].  These methods are however hindered by the 62 
very strong water signal, so in aqueous solutions, much of the critical, analyte signal can be 63 
masked.  In the context of bioreactor broth analysis, Raman spectroscopy has significant 64 
advantages, such as ease of implementation, ease of use, low maintenance, and high analysis 65 
frequency, as an industrial process desires.  Sample preparation in many cases is not required, 66 
permitting in-situ sample analysis.  Water has a weak Raman signal and so spectra can be easily 67 
collected from aqueous solutions.  Raman spectroscopy is generally implemented using 68 
excitation sources in the visible to NIR regions of the spectrum which allows for the use of fiber 69 
optic probes for remote or in-situ analysis [18, 19].  The use of Raman spectroscopy for the 70 
analysis of complex systems like in-reactor bioprocess monitoring is a rapidly expanding [20-22].  71 

One of the key technologies driving the adoption of Raman (and other multivariate 72 
spectroscopic) based methods has been the increased use of chemometrics to extract useful 73 
quantitative and qualitative information from data [23].  In the context of quantitative bioreactor 74 
broth analysis, chemometrics has generally been used to specifically quantify metabolites or 75 
nutrients [8], or more holistically predict the final yield.  Partial least-squares regression (PLS) 76 
[24, 25] is one of the most important chemometric tools and generally used to develop statistical 77 
multivariate regression models within and between large and complex data matrices, and thus to 78 
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facilitate understanding of the important relationships between spectroscopic measurements and 79 
the analyte or property of interest.  To improve PLS regression performance, many methods have 80 
been proposed for selecting the variables that carry higher information content regarding the 81 
property of interest from a large number of spectral wavelengths/variables [26-29].  82 

Some variable selection methods are based on the inspection of regression coefficients or 83 
latent variables [30-32], such as the typical uninformative variable elimination [33, 34], variable 84 
importance in projection [35], and competitive adaptive reweighted sampling (CoAdReS) [36].  85 
Other methods involve the conduction of the minimum error searches, for example, interval-PLS 86 
[37], moving window PLS [38], genetic algorithms [29, 39-41], particle swarm optimization 87 
(PSO) [42], and ant colony optimization (ACO) [43, 44].  CoAdReS and ACO variable selection 88 
methods both employ a Monte Carlo (MC) strategy to select a limited number of key variables 89 
from the multivariate spectral data, and thus generate more accurate chemometric models [36, 90 
44].  In this study we have used both methods because they are both better than the other 91 
common variable selection methods (e.g. genetic algorithms) and second because the two 92 
methods used intrinsically different methods of variable selection.  Thus analyzing the complex 93 
bioprocess derived Raman spectral data using both of these methods should provide a clear 94 
indication of model reliability. 95 

Here we used Raman spectroscopy to model/monitor a complete fed-batch, CHO cell based 96 
process from the initial small, liter-scale right up to the final large-scale (5000L) fermenter.  97 
Spectral data was collected from off-line, samples and the productivity of the process was 98 
evaluated in terms of glycoprotein product yield.  It was possible by the judicious use of 99 
computational, variable selection methods to accurately predict process yield with small relative 100 
errors of prediction (REP%).  This ability to accurately predict final yield at all stages of the 101 
process using a single analytical method is highly desirable because it provides a rapid quality 102 
assurance tool for optimal operation of large-scale CHO bioreactors.   103 
 104 
 105 
2.   MATERIALS AND METHODS  106 
 107 
2.1   Materials 108 

An industrial bioprocess for the production of a recombinant protein using CHO cells in 109 
bioreactors up to 5000L was sampled over a continuous 40+ batch, production campaign.  For 110 
each production run, the process was sampled at twelve different set time points over the course 111 
of the fermentation process.  The bioprocess was operated in fed-batch mode using proprietary 112 
basal and feed media formulations.  Samples were first centrifuged and sterile filtered to remove 113 
any whole cells,1 before being aliquotted under sterile conditions.  Samples were then shipped to 114 
Ireland at -70°C from the Bristol-Myers Squibb Company, Syracuse, US, with a maximum travel 115 
time of two days.  Sample temperature integrity was confirmed by the use of electronic 116 
                                                 
1  For the sake of clarity we will refer to these specific samples as being bioprocess broths.  
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temperature sensors in each shipment.  These samples were further aliquotted into smaller 117 
volumes and stored at -70°C.  For analysis, the samples were randomly removed from cold 118 
storage and defrosted at room temperature [7].  119 
 120 
Table 1:  Details of the bioprocess samples used in this study obtained from a continuous 40+ 121 
batch production campaign.  122 
 123 

Dataset Bioreactor Content Description. Bioreactor 
Volume 

Sample 
size 

DS1 Media Start 2L 21 
DS2 Media End 2L 17 
DS3 Cells + spent basal media:  solutions of cells and spent 

basal media just prior to transfer to next, larger-sized 
bioreactor. 

2L 17 

DS4  Cells + spent & fresh basal media:  contain the cells and 
spent basal (transferred from the previous bioreactor) plus 
new basal media added to advance process scale-up.   

100-200L 31 

DS5 Cells + spent basal media:  solutions of cells and spent 
basal media just prior to transfer to next, larger-sized 
bioreactor. 

100-200L 31 

DS6  Cells + spent & fresh basal media:  contain the cells and 
spent basal (transferred from the previous bioreactor) plus 
new basal media added to advance process scale-up.   

1000L 31 

DS7  Cells + spent basal media: solutions of cells and spent 
basal media just prior to transfer to next, larger-sized 
bioreactor. 

1000L 34 

DS8 Cells + spent basal media  5000L 37 
DS9  Cells + spent & fresh basal media:  contain the cells and 

spent basal (transferred from the previous bioreactor) plus 
new basal media added to advance process scale-up.   

5000L 29 

DS10  Day 5 Post inoculation 5000L 35 
DS11  Day 10 Post inoculation 5000L 34 
DS12  Prior to transfer for harvest:  this is centrifuged harvest 

material, i.e., end of production material rich in cells and 
spent media.  Some cells at this stage would have 
undergone apoptosis and thus expelled host cell protein 
and other cell debris into the supernatant.  In every case, 
the material that was centrifuged to eliminate whole cell 
and large cell debris is considered clarified, but does still 

5000L 33 
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have some cell components present such as membranes, 
broken organelles, DNA/RNA, etc.. 

 124 
The DS9–12 samples follow the final stages of fermentation up to the harvest point, and 125 

during this phase, feed media was also added at specific times.  Protein yield (titer) was 126 
measured using the following method.  The soluble media supernatant, which contains the Fc-127 
fusion protein, was first past over an affinity Protein A column.  The captured product (usually 128 
greater than 98% recovery) was then eluted by a low pH rinse.  The product was then analyzed 129 
using a spectrophotometric measurement (A280) with an extinction coefficient of 1.0.  The 130 
extinction coefficient was determined both by theoretical and experimental amino acid 131 
concentration.  The protein concentration method is validated to ICH standards and is well 132 
within 10% (2–3 % reference standard reproducibility, with EC within 2% of theoretical).  133 
 134 
2.2   Instrumentation and data collection/analysis 135 

Raman spectra were collected with 785 nm excitation using a RamanStation spectrometer 136 
(AVALON Instruments Ltd, Belfast, NI, now acquired by Perkin-Elmer).  A laser power of ~70 137 
mW at the sample with an exposure time of 2×10 seconds was generally used and spectra were 138 
recorded at a resolution of 8 cm-1 from 3311 to 250 cm-1 [7].  100 μL of sample was pipetted 139 
directly into a stainless steel multi-well plate for analysis [45].  For each measurement, a 3×3 140 
sampling grid was used, and thus nine Raman spectra were generated.  Each sample was 141 
measured in triplicate and for each of the three measurements a fresh aliquot of sample was used.  142 
Finally, the triplicate measurements were averaged to generate a single spectrum for each sample.  143 
Raman data was collected over 38 months and a cyclohexane standard was used to ensure 144 
wavelength accuracy during this period.  To minimize the effects of baseline drift, scatter effects, 145 
and uncontrolled fluctuations, Raman data were subjected to a series of sequential pre-processing 146 
steps (baseline removal, normalization to water bending band, water band removal, and first 147 
derivative transformation) prior to chemometric modeling.  All calculations were performed 148 
using MATLAB [46], PLS_Toolbox [47], and in-house-written MATLAB routines 149 
(supplemental information).  ACO MATLAB code was generously provided by Prof. A.C. 150 
Olivieri (Universidad Nacional de Rosario, Argentina).  See supplemental information for 151 
sample spectra.  152 
 153 
2.3   Calibration and validation samples 154 

Twelve datasets (Table 1) were generated from the various samples; however, the first three 155 
datasets (DS1–3) had low sample numbers and therefore were not used further.  The remaining 156 
sets comprised of samples acquired at different time points for the same CHO based process 157 
(30+ lots) where each sample set describes a different stage of the process.  All data sets were 158 
mean-centered prior to PLS or PCA modeling.  For PLS modeling, datasets were randomly split 159 
into a calibration and test set (always five samples) in a ~80:20 split using an MC based 160 
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sampling protocol.  To ensure robustness the calibration/test set selection was repeated 500 times 161 
and a PLS model run on each unique selection.  PLS model quality was assessed using a 162 
combination of parameters including: root mean square error of calibration (RMSEC), root mean 163 
square error of prediction (RMSEP) for validation/test set, relative error of prediction 164 

(REP%=100×RMSEP/ caly , where caly  is the mean calibration value of the product titer), and the 165 

square of the correlation coefficient (R2) between predicted and measured titers for the validation 166 
set.  Finally to avoid potential overfitting, we used a randomization test method to determine the 167 
proper number of PLS components to be used for each final model (see supplemental 168 
information for details) [48].  This method enabled a clearer assessment of which components 169 
were likely to contribute to overfitting, and resulted in the use of 20–45% fewer components 170 
compared to standard cross-validation methods. 171 
 172 
2.4   CoAdReS variable selection 173 

CoAdReS was implemented on each individual dataset to select the spectral variables which 174 
correlated most strongly with yield.  These variables were then used to generate quantitative PLS 175 
models (Table 2).  200 CoAdReS sampling runs were performed and for each sampling run, a 176 
PLS model was constructed using 83% of the samples, which were randomly selected.  177 
CoAdReS then generated sequentially 200 subsets of variables (182 in run 1, only 2 in run 200) 178 
and regression coefficients for each variable were obtained from the PLS models.  The variable 179 
selection process was based first on the magnitude of the regression coefficients, and second on 180 
the reduction rate, for example in the ith sampling run, the ratio of variables/wavenumbers to be 181 

kept (ri) is given by: )200  2 1  0.0232,  1.0234,( ...,,,ikaaer ki
i   .  Variables with low 182 

regression coefficients were weighted to zero, and the significant variables to be retained were 183 
weighted with a value related to their absolute regression coefficient value.  These retained 184 
variables were then used for PLS modeling in the next sampling run, and so on [36].  Once the 185 
200 subsets were generated, the remaining samples (17%) were employed for cross validation on 186 
each CoAdReS sampling run, and the RMSEP was calculated for this cross validation.  The 187 
optimal subset of variables (from the 200) is the subset with the lowest RMSEP value.   188 

To ensure that we had a robust variable selection procedure, we reran CoAdReS 500 times 189 
for each dataset using random calibration/test sample combinations (selected using MC), and as a 190 
consequence, the key variables selected varied slightly.  All 500 sets of key variables were then 191 
statistically analyzed to generate a normalized histogram.  To determine the optimal number of 192 
the selected variables to be used for the final chemometric model, leave-one-out cross validation 193 
[49] PLS modeling was performed with trial numbers of selected variables from 10 to 45.  In 194 
practice, all selected variables were ranked according to the magnitude of the histogram values 195 
from largest to lowest.  Then, a number of the selected variables (from 10 to 45) were picked for 196 
PLS modeling and RMSEP values calculated.  Plotting the RMSEP values versus variable 197 
number allowed a minimum value to be determined and thus set a threshold limit for the optimal 198 
number of selected variables.  This rather computationally intensive approach was necessary 199 
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because of sample complexity, the low sample number per dataset, and because of the very weak 200 
analyte bands.  However, computational time is relatively inexpensive, so that it is feasible to 201 
implement these methods in an industrial context without expensive IT infrastructure. 202 
 203 
 204 

3.   RESULTS AND DISCUSSION  205 
 206 
3.1   Spectral analysis 207 

Most of the Raman signal originates from water, with the media component signals being 208 
relatively weak for both bioprocess broths and basal media samples (Figures 1 and 2).  The O–H 209 
stretching band above ~3000 cm-1 shows the largest variation which is caused by a variety of 210 
factors.  Based on our previous experience with cell culture media analysis [7, 45] we omitted, 211 
the 3311–1860 cm-1 spectral region from the chemometric analysis.  The 400–250 cm-1 spectral 212 
region was also excluded from chemometric analysis because it was compromised due to 213 
Rayleigh light bleed through from the filters (Figure 1, inset graph) [7, 45].  The water bending 214 
bands (1636 and 1364 cm-1) dominate in a large proportion of the fingerprint region, making 215 
specific analyte identification difficult (Figure 2).  In addition, there are significant baseline 216 
fluctuations and intensity variations present in the Raman spectra similar to those previously 217 
observed for the media and raw materials used in this process [7, 45].  Most of the significant 218 
spectral information is contained in the 1853–400 cm-1 range where we expect to observe bands 219 
associated with the components of the media, cell constituents, and the protein product.  220 
Providing definitive band assignments was not possible due to a combination of compositional 221 
complexity, low Raman resolution, the unknown identity of many of the metabolites, and the 222 
confidential nature of the basal media used in the process.  In any event, we are seeking to use 223 
Raman spectroscopy in a more holistic role rather than a precise diagnostic tool.  One should 224 
also note that in fed-batch operation the continual addition of fresh basal and feed media as one 225 
progresses through (i.e. a longitudinal study) the production cycle makes it much more difficult 226 
to track specific process changes, as these are more than likely swamped by the addition of 227 
media.  Thus it is more practical for process monitoring to only consider the changes at fixed 228 
time points i.e. a cross-sectional approach.  The downside of this approach is that one requires 229 
access to a sufficient number of good quality samples (20–30 production cycles) in order to 230 
extract useful data.  231 

Figure 2A shows the normalized Raman spectra of clarified supernatant from the end 232 
cultures (cells + spent basal media) of the small-scale bioreactors.  When compared to Figure 2B 233 
(normalized Raman spectra of clarified supernatant from the starting cultures: cells + spent & 234 
fresh basal media) there are no significant differences.  The exact formulation of these propriety 235 
media are commercial trade secrets and thus we cannot discuss in detail the origin of the 236 
differences between the media, nor assign specific identities to the various spectral bands.  Most 237 
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of the differences in these spectra are due to the increase in cell density and volume and to 238 
changes in metabolite concentrations  239 

Figure 2C shows the normalized Raman spectra of extracts from bioprocess broths from a 240 
single production lot sampled at five time points over the last two bioreactors.  The signal quality 241 
is relatively good because of the sample preparation method.  However, one has to be cautious 242 
here with respect to spectral interpretation because a fed-batch strategy is employed, so the 243 
chemical composition changes not only because of metabolic activity and protein production, but 244 
also with the addition of the feed media.  The DS7 material is used to seed the last large scale 245 
bioreactor, and the DS9 sample is the seed material plus the newly added basal media used for 246 
the final stage bioreactor for production.  Thus if we consider the DS9–12 sequence of spectra 247 
we can observe significant changes due to the bioprocess itself.  DS9 contains exponentially 248 
growing cells with spent and new basal media mixed, DS10 is from an exponential cell growth 249 
phase with higher mass (106 mL-1 and viable) spent basal, feed media, DS11 is the stationary cell 250 
phase (still viable) with spent feed media, and DS12 is the harvest material (rich in cells and 251 
spent media).   252 

The major visible changes with process time are the increase in band intensity at 534, 853, 253 
1044, and 1413 cm-1 (see supplemental information for PCA study).  Unfortunately, the 254 
compositional complexity of the samples makes it very difficult to unambiguously assign any 255 
bands in the spectra apart from water.  However, it is quite possible that the 534 cm-1 band 256 
originates from the nine disulphide bonds present in the product glycoprotein, and thus is a 257 
marker for secreted product.  The 534 cm-1 value is mid-way between the values reported for a 258 
variety of similar proteins [50-52].  The identity of the other bands is much less certain.  For 259 
example, for the 853 cm-1 peak, strong bands at this wavenumber appear in both amino acids and 260 
sugars and are ascribed to a variety of different vibrational modes [53].   261 

However, changes in Raman spectra with process time are difficult to assign to specific 262 
components because this difference is convoluted with the variations between the various 263 
manufacturing runs, e.g., the lot-to-lot variation is much greater than the time-dependent changes 264 
(Figure 3).  The first plot shows the variation across 31 lots of a starting culture, DS4, and it is 265 
clear that there is a large spectral variation.  Most of this will be due to compositional changes, 266 
some of which is due to dilution.  The dilution with feed media is likely a significant variable 267 
because the process has complex feed media criteria in which volume input is related to cell 268 
density and growth rate, and thus nutrient consumption.  This may be reflected and related to this 269 
observation, i.e. some media samples look like they have a higher 1354/1635 band ratio 270 
indicating a stronger water band.  Similarly broth samples measured just prior to harvest (Figure 271 
3B) also shows a lot of spectral variation, and we expect that a significant proportion of this 272 
variation may be related to the yield of protein product and the degree of cell viability at harvest.   273 
 274 

275 
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 276 
3.2   Correlation with yield 277 

To correlate Raman spectra with the glycoprotein yield, PLS regression was applied to each 278 
individual sample dataset using the pre-processed spectra (Table 2).  The calibration models 279 
were then validated using the test sets.  The optimum number of latent variables (LVs) was 280 
determined using Monte Carlo cross-validation [54] and randomization test [48].  These models 281 
(using all 182 variables) were poor, R2 < 0.4, RMSEP/RMSEC ratios were between 3.3 and 15.8, 282 
and REP % values (8–13%) were high.  Interestingly, RMSEC values were low, and thus we 283 
surmised that the samples did contain intrinsic information that could be correlated with product 284 
yield.  However, the informative variables (Raman bands) are effectively swamped by the 285 
presence of many bands (from all the other chemical species present) that do not have any 286 
correlation with yield.  The glycoprotein yield range for these samples is between 0.67–0.92 g L-287 
1 [55], while the dissolved solid concentration of the media alone is of the order of ~10–20 g L-1, 288 
thus the protein product bands will be very weak.  The interference from uninformative variables 289 
needs to be eliminated, and thus we needed to consider some strategies for eliminating 290 
uninformative spectral data.  If one has a priori knowledge about the analytes of interest in a 291 
complex sample, then one can manually select variables [56], however, in this case the product 292 
and samples are much more complex, and it is virtually impossible to definitively assign a 293 
particular band to the protein product (apart from the disulphide stretch).  Therefore we decided 294 
to evaluate two different methods (CoAdReS and ACO) to select informative variables and then 295 
use these selected variables for PLS regression.   296 
 297 
3.3   CoAdReS variable selection 298 

The quantitative PLS models generated using CoAdReS are shown in Table 2.  For each 299 
model, a normalized histogram (Figure 4A) was generated which showed the selected variables, 300 
and then these variables were selectively used to generate the various PLS models, for which the 301 
optimum variable number was selected by comparing the RMSEP versus variable number plot 302 
(Figure 4B).  For the example shown, the RMSEP decreased to a minimum of 0.018 g L-1 using 303 
15 variables and this corresponded to a histogram threshold of 0.26.   304 

The improvement in model quality is dramatic compared to the case where the 1853–400 305 
cm-1 range was used.  R2 values are all >0.9, RMSEP:RMSEC ratios are ~2, and the REP% 306 
values are low (2.1–3.3%).  This large improvement is due to the removal of redundant variables 307 
(or more correctly those with low information content relating to product yield).  For example a 308 
large proportion of the measured Raman signal originates from the glucose and other 309 
carbohydrate energy sources which will be present in the highest concentration, and is unlikely 310 
to show signal variances that correlate with yield.  The high variable reduction factor of ~1 in 10 311 
indicates that the vast majority of the Raman signal is as expected not related directly or 312 
indirectly to the product yield.  It’s interesting to note that for both sets of PLS models (Table 2) 313 
the RMSEC values are almost identical and the same numbers of LVs are used for each sample 314 
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set.  This implies that the variables which has the greatest contribution were present in both 315 
datasets, but that their contribution to the PLS models when the full spectra were used, was 316 
swamped by the mass of irrelevant variables, leading to very poor RMSEP values.   317 

In summary, CoAdReS seems to offer a very robust method for generating quantitative 318 
models that can be used to predict product yield at multiple stages over the 30+ day process.  319 
Very important to note is the fact that the sampling time points DS4/6/8 are the starting cultures 320 
for each bioreactor stage (e.g. transferred material plus fresh basal media) whereas the DS5/7 321 
samples are the materials prior to transfer that contains both cells and the spent media.  This is 322 
significant because we have now established two separate yield correlations at the start and end 323 
of the small scale reactor stages.  We have already established that for this process it is possible 324 
to correlate changes in feed media composition as observed by fluorescence EEM spectroscopy 325 
with product yield [55].  Thus we need to examine the variables selected to see if there is any 326 
information regarding the nature of the chemical components that give rise to these productivity 327 
correlations, and also whether or not the correlations are due entirely to the media.  But first we 328 
need to validate the variable selection by using a different technique to see if the same variables 329 
are selected.  330 
 331 
Table 2:  Summary of the PLS models and their performance using full spectral data (1853–400 332 
cm-1), CoAdReS, and ACO selected variables for the 9 different sample sets.  Figures are the 333 
mean values obtained from 500 different individual models (see main body text for details).  In 334 
each case five samples were used for the test set.  RMSEC/RMSEP errors are given in g L-1 of 335 
the final protein product titer.  Dataset sample size in parentheses varied according to sample 336 
availability.  See the supplemental information for measured versus predicted plots from selected 337 
PLS models. 338 
 339 

Data set 
Variables 
selected 

PLS 
Factors 

RMSEC RMSEP 
REP% R2 

g L-1 protein titer 
Full spectral data models 

DS4 (28) 182 4 0.020±0.003 0.065±0.018 7.93 0.36 
DS5 (28) 182 5 0.019±0.003 0.068±0.020 8.26 0.38 
DS6 (28) 182 6 0.012±0.002 0.074±0.025 8.76 0.33 
DS7 (30) 182 5 0.022±0.003 0.075±0.021 9.26 0.27 
DS8 (31) 182 7 0.014±0.002 0.104±0.022 12.80 0.24 
DS9 (26) 182 8 0.006±0.002 0.095±0.020 11.72 0.22 
DS10 (31) 182 7 0.016±0.003 0.090±0.023 10.97 0.20 
DS11 (30) 182 6 0.019±0.003 0.107±0.030 13.05 0.20 
DS12 (29) 182 7 0.011±0.002 0.095±0.021 11.75 0.20 

CoAdReS models 
DS4  15 4 0.011±0.001 0.018±0.007 2.15 0.965 
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DS5  16 5 0.021±0.008 0.029±0.016 3.04 0.915 
DS6  14 6 0.009±0.001 0.018±0.007 2.11 0.957 
DS7  18 5 0.012±0.001 0.026±0.009 3.08 0.932 
DS8  11 7 0.015±0.001 0.020±0.006 2.34 0.969 
DS9  25 8 0.012±0.002 0.024±0.008 2.95 0.941 
DS10  15 7 0.012±0.002 0.025±0.012 2.83 0.916 
DS11  17 6 0.014±0.001 0.028±0.010 3.30 0.902 
DS12  23 7 0.010±0.001 0.022±0.008 2.57 0.962 

ACO models 
DS4  29 6 0.008±0.001 0.020±0.008 2.39 0.958 
DS5  26 6 0.021±0.006 0.029±0.013 3.25 0.919 
DS6  26 5 0.013±0.001 0.027±0.010 3.14 0.895 
DS7  32 5 0.019±0.002 0.038±0.015 4.43 0.846 
DS8  26 7 0.012±0.001 0.030±0.010 3.60 0.901 
DS9  30 5 0.013±0.002 0.036±0.012 4.30 0.852 
DS10  36 7 0.011±0.002 0.038±0.014 4.42 0.867 
DS11  23 5 0.017±0.002 0.031±0.011 3.74 0.935 
DS12 24 6 0.010±0.001 0.027±0.010 3.19 0.925 
 340 
 341 
3.4   ACO variable selection 342 

ACO was used because its basis of refinement is completely different to CoAdReS.  ACO 343 
was implemented using ρ (rate of pheromone evaporation) =0.65, N (number of ants) =100, w 344 
(sensor width) =1,  a maximum number of time steps of 50, and 50 repeated MC calculation 345 
cycles to build a histogram of variable selection probability.  The results (Table 2) reveal that in 346 
general the ACO method selected approximately twice as many variables as CoAdReS except 347 
for DS9/11/12 where variable numbers are very similar.  When the ACO selected variables were 348 
used for PLS modeling, the PLS models had the nearly same RMSEP/REP error as the CoAdReS 349 
derived models, while the RMSEC errors were essentially the same.  Taking DS4 as an example 350 
(Figure 4C/D), the histogram generated by the 50 repeated calculation cycles shows the 351 
importance assigned to each variable.  As with CoAdReS, subsets with 10–45 variables were 352 
generated and the data modeled by PLS.  The RMSEP reached a minimum (0.017 g L-1) at 29 353 
variables (a corresponding threshold value of 0.43) and the selection of additional variables did 354 
not improve the model any further.   355 

Both the CoAdReS and ACO PLS methods (Table 2) significantly improved predictive 356 
ability compared to the full spectrum models, with CoAdReS having a slightly better RMSEP 357 
and R2 values.  This small improvement seems due to the fact that CoAdReS is better at 358 
discriminating the good from the bad variables as shown by the green/black discrimination in 359 
Figure 4.  However, the differences are marginal, and when we consider that both variable 360 
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selection models yield prediction models with similar RMSEC/RMSEP values, similar numbers 361 
of LVs, and %REP (Table 2), operationally there is little to separate the methods in terms of 362 
predictive ability (for this limited sample number case).  The key difference is that ACO is much 363 
more time-consuming than CoAdReS, as it took ~200 times longer to run a single iteration using 364 
a standard workstation, i.e., 1.2 minutes versus 4 hours.  In conclusion we would prefer the use 365 
of the CoAdReS method for variable selection due to the fact that it is much more suited to rapid 366 
analysis. 367 
 368 
3.5   PLS model quality 369 

One issue which needs to be addressed is the fact that the variable selection method 370 
combined with the low sample number can generate PLS models which are overly optimistic 371 
because of overfitting, particularly when CV method is used.  Here we used the randomization 372 
method to ascertain the proper number of PLS components to use, and we found that in 373 
comparison to CV method (see supplemental information) the number of components was 374 
reduced by 20–45%.  The resulting models displayed RMSEP/RMSEC ratios that varied from 375 
1.4–2.2 for CoAdReS and 1.4–3.5 for ACO which while not ideal, do show robustness of the 376 
models.  Improving the model quality further would require a doubling or tripling of the sample 377 
numbers and unfortunately that is not feasible here at present.  However, in the manufacturing 378 
domain, one could easily increase the sample numbers year on year and revise/update the model 379 
to generate much more robust models. 380 
 381 
3.6   Analysis of variables selected 382 

While both methods can extract relevant variables and generate good correlations, we now 383 
have to consider if there is any useful composition information linked with the selected variables 384 
and, more importantly what is the basis for the correlation models in these complex media.  385 
Since the principles of operation for CoAdReS (PLS regression coefficients) and ACO 386 
(minimum error search) are intrinsically different one expects that the selected variables will be 387 
different, but that any common variables might be expected to be the ones with the greatest 388 
correlation with process yield.  Thus by looking at these common variables (Table S-4, 389 
supplemental information) we could get some indication as to which molecular species may be 390 
of significance.   391 

Since the DS5/7/8 samples are the cells and spent media before new basal media has been 392 
added, the variables selected should represent the key species in the spent media that correlate 393 
with the final yield.  The fact that the variables are very different in each case may indicate that 394 
the important metabolites changes as the process scales up.  When we next consider the DS4/6/9 395 
samples where the fresh basal media is added, we see that the selected variables change very 396 
significantly, indicating that the correlated bands are more likely to now be related to the new 397 
basal media.  This is not surprising since we have seen this type of process yield correlation to 398 
the media variation of a feed before (actually the feed media used in this process), and using 399 
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fluorescence we were able to generate a predictive model [55].  At DS12, the final sampling time 400 
point (just prior to harvest) should contain significant amounts of the glycoprotein product, the 401 
protein product concentration should be relatively high (0.67–0.92 g L-1) [55] and one might 402 
expect that some of the selected variables/bands should be clearly related to protein bands of the 403 
product.  The variables selected here are very different from the preceding time points with what 404 
looks like two clusters of significant variables in the 1600–1300 cm-1 and the 1250–920 cm-1 405 
ranges.  However, at this stage there is also an appreciable host cell proteins (HCP) concentration 406 
(possibly 100–200 mg L-1) [57] which will be virtually indistinguishable from the glycoprotein 407 
antibody in these complex samples.  Thus, unfortunately, it is not feasible, at this stage to assign 408 
these variables unambiguously to specific compounds using this low resolution, low signal-to-409 
noise quality Raman data.   410 
 411 
 412 
4.   CONCLUSIONS  413 
 414 

Conventional Raman spectroscopy coupled with variable selection and standard PLS 415 
modeling is an effective and inexpensive method for the quantitative characterization of 416 
mammalian cell culture process in terms of product yield.  We have shown the feasibility of 417 
predicting product yield from the very early stages of the manufacturing process right through to 418 
the final large-scale bioreactor.  The use of clarified bioreactor supernatant in an off-line method 419 
provides a good quality set of samples where scattering artifacts are minimized, thus generating 420 
more reproducible spectral data.  The key limitation is the inability to precisely identify the 421 
molecular species that correlate most strongly with process yield.  The variation in the selected 422 
variables, indicate that at each process point the species which correlate most strongly with yield 423 
change.  For the starting cultures of each bioreactor, it may be that the correlation is linked to 424 
specific media components.  However, from the later stages (i.e. the cells and spent media) the 425 
selected variables could be from metabolites and host cell proteins (secondary indicators) or the 426 
glycoprotein (primary indicator).  This then is a fundamental limitation of this low resolution (8 427 
cm-1) Raman method.   428 

These results coupled with our previous work on cell culture feed media [55] are very 429 
significant from an industrial standpoint because they suggest that one could design in 430 
appropriate control measures to implement an effective quality assurance programme for 431 
complex media and CHO based manufacturing using these Raman based methods.  Furthermore, 432 
if the appropriate calibration models are available [8] then one could also incorporate 433 
quantitative measurements for a variety of specific components (e.g. glutamine, glucose, lactate) 434 
at the same time.  Thus a single Raman measurement can deliver multitude outputs which can be 435 
used to control bioprocess operations. 436 

 437 
 438 
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FIGURES  532 
 533 

 534 
Figure 1:  Raman spectra collected from bioprocess broth samples over the full spectral range.  535 
Inset shows the low wavenumber range and the variation induced by excitation light bleed 536 
through.   537 
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Figure 2:  Baseline-corrected, 
normalized (to 1635 cm-1 band), Raman 
spectra of bioprocess broths: (A) the 
cells with spent media, (B) starting 
cultures for each bioreactor (e.g. cells 
and spent basal (from previous stage) 
plus new basal media); (C) five different 
time points in the 5000L bioreactor 
during a single complete production run.  
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Figure 3:  Raman 
spectra collected 
from 31/33 
production runs at 
the: (A) starting 
culture (DS4) stage 
in the #2 bioreactor 
and,  (B) bioreactor 
broths from the 
prior to transfer for 
harvest stage, 
DS12.   
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 540 
Figure 4:  (A) CoAdReS variable selection result for DS4 (Histogram values, Grey ≥0.26, Black 541 
<0.26).  Superimposed is the mean baseline-corrected Raman spectrum (light grey trace, 542 
arbitrary vertical scale).  (B) Determination of number of the selected variables.  (C)  ACO 543 
variable selection result for DS4 (Histogram values, Grey ≥ 0.43, Black <0.43).  Superimposed is 544 
the mean baseline-corrected Raman spectrum (arbitrary vertical scale). (D) Determination of 545 
number of the selected variables.   546 
 547 


