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Abstract: One of the main stages in the design of wave energy converters (WEC’s) is the numerical 

modelling of a given converter. In this paper, the numerical simulation of both linear deep water 

waves and linear waves for the finite depth case are explored using computational fluid dynamics 

(CFD), to aid in this design stage. The CFD software package described in this paper is the 

commercial finite volume package ANSYS CFX (Release 12.1). The results of parametric studies, 

which were performed in order to optimise the CFD model, are detailed and a guide to creating a 

model that produces the desired waves is presented. The model was validated in two ways: (a) the 

wave created was compared to wavemaker theory (WMT) and (b) the water particle velocity and 

elevation of the wave was compared to linear, Airy, wave theory (LWT) for deep water waves. It was 

also found that wave generation in ANSYS CFX using a flap-type wavemaker was restricted to a low 

normalised wavenumber, k0h. In order to increase this restriction, the hinge of the wavemaker was 

raised and, with this alteration, it is possible to generate deep water linear waves. A case study of a 

real world application of wave-structure interaction, employing this methodology, is also explored. 

Keywords: ANSYS CFX, Computational fluid dynamics, Deep water waves, Linear (Airy) wave 

theory, Wave energy, Wavemaker theory. 

Nomenclature: 

A Wave amplitude m M Mass of the structure kg 

a Radius of a vertical cylinder m p Pressure Pa 



am Added mass  p0 Coefficient  

b Draft of a vertical cylinder m qi Volume fraction of the fluid i  

d Water height at the SWL m T Wave period s 

g Acceleration due to gravity m/s2 t Time s 

Fi Force i-component N S Stroke length m 

Fext Excitation force N s Scaling factor  

FH Hydrodynamic force N U(y) 
Prescribed horizontal velocity of 
the wavemaker 

m/s 

Fhs Hydrostatic force N ui Flow velocity i-component m/s 

FR Radiation force N v Water particle velocity m/s 

f Frequency (1/T) s-1 x Distance from wavemaker m 

H Wave height m y 
Increases from the SWL with 
depth 

m 

H୫
ሺଵሻ

 
Hankel function of the first 
kind of order m 

 ε0 Initial phase angle  

h 
Height of wavemaker flap from 
hinge to SWL 

m ξ Separation constant  

I୫  
Modified Bessel function of 
the first kind of order m  

 μ Viscosity Pa.s 

J୫ 
Bessel function of the first 
kind of order m 

 ρ Fluid density Kg/m3 

k0 Wavenumber m-1 φ Velocity potential ms-1 

l 
Height of wavemaker flap hinge 
from base of model 

m ω Wave angular frequency s-1 

L0 Wavelength m    

 

1. Introduction 

In the design of any floating or fixed marine structure, it is vital to test models in order to understand 

the fluid/structure interaction involved. Inevitably laboratory experiments will be carried out in a 

wave tank or wave basin, followed by tests on scale models in real sea conditions. However, with the 

developments in computational fluid dynamics (CFD) software, it is now possible to carry out 



inexpensive and relatively quick initial studies. That is, provided that the numerical model used is 

representative of the real life environment.  

The numerical models used to model wave-tanks are known as numerical wave tanks (NWT’s). 

NWT’s are developed using a variety of numerical techniques, including the boundary volume 

method (BEM), the finite element method (FEM) and the finite difference method. In a NWT, a wave 

is generated at the input boundary and damped out near the output boundary. 

Kim et al (2001) and Park et al (2004) numerically simulated 3-D non-linear multi-directional waves 

using a finite difference method. The waves were generated using a numerical wavemaker by 

specifying the water particle velocities at the wavemaker boundary. Koo and Kim (2004) expanded 

the process to fluid-structure interaction in order to explore the effects of a nonlinear wave on a freely 

floating body for the 2-D case. Sun and Faltinsen (2006) developed a 2-D numerical tank using the 

boundary element method in order to simulate the impact of a horizontal cylinder on the free surface. 

Ning and Teng (2007) used a three-dimensional higher order boundary element model to simulate a 

fully nonlinear irregular wave tank. Ning et al (2008) expanded this study to infinite water depth for 

nonlinear regular and focused waves. On the other hand, Yan and Lui (2011) developed a 3-D 

numerical wave tank using a high-order boundary element method (HOBEM) in order to simulate 

nonlinear wave-wave and wave-body interactions. The fluid motion inside a sphere was an example 

of wave-body interaction that they explored. 

Wu and Hu (2004) used a FEM numerical tank with a wavemaker to simulate the nonlinear 

interaction between water waves and a floating cylinder. Hadzic et al (2005) created a 2-D NWT 

using a commercial CFD software package to explore the motion of a floating rigid body with up to 

six degrees of freedom as it is subjected to large amplitude waves. Turnbull et al (2003) investigated 

the effects of inviscid gravity waves on a submerged fixed horizontal cylinder in a 2-D FEM 

numerical wave tank. Agamloh et al (2008) used a commercial CFD software package to develop a 3-

D numerical wave tank, which allowed fluid-structure interaction of a water wave and a cylindrical 

ocean wave energy device to be explored. Both the response of a single device and the response of an 



array of devices were investigated. Sriram et al (2006) used a piston type wavemaker to generate 2-D 

nonlinear waves using FEM. Sriram et al (2006) used a cubic spline approximation with the finite 

element approach when discretising the domain and had a fully reflecting wall at the end of the 

boundary. Contento (2000) used a 2-D numerical wave tank, which was based on the BEM technique, 

to simulate the nonlinear motions of arbitrary shaped bodies in order to develop improved seakeeping 

techniques. Mousaviraad et al (2010) developed a harmonic group single run seakeeping procedure, 

which was solved using a general purpose unsteady Reynolds averaged Navier-Stokes (URANS) 

solver. A linear potential solution was specified at the input boundary in order to generate linear input 

waves. Liang et al (2010) also explored the use of a piston type wavemaker to generate an irregular 

wave train using FEM. In 2008, Lal and Elangovan (2008) explored the CFD simulation of linear 

water waves for a flap type wavemaker using the same finite volume package described in this paper. 

However, the dimension of the model was taken as an experimental wave tank and simulations were 

only carried out for the shallow water case. 

In this paper, an efficient NWT model is developed by altering its overall dimensions, as shown in 

Figure 1. In particular the overall height, the base length and mesh setup are varied to obtain an 

efficient model. These dimensions are dependent on the period of the desired deep water waves. The 

model works the same way as an experimental wave tank. The waves are generated at the model input 

boundary using a flap-type wavemaker and there is a sloped beach in place at the model output 

boundary in order to damp out the wave, which can be seen in Fig. 1. The CFD software package 

used in this analysis is ANSYS CFX (ANSYS, 2009). It uses a finite volume method in order to solve 

the Reynolds Averaged Navier-Strokes equations (RANSE), which accounts for turbulence and 

viscosity. When the analysis is extended to fluid-structure interaction, ANSYS Mechanical is used in 

conjunction with CFX as a motion solver.  

In this paper, 2-dimensional CFD models are validated using wavemaker theory (WMT) for deep 

water waves. The experimental validation of WMT was achieved by Ursell et al (1960) using an 

experimental wave tank. Furthermore, the water particle velocities determined by the CFD model are 

compared to linear, Airy, wave theory (LWT). Therefore, the waves generated by the model will be 



validated by comparing to both LWT and WMT. Thus, the main objective of this paper is to present a 

guide to designing a CFD model that can accurately produce both linear deep water waves and linear 

finite depth water waves. Furthermore, the model outlined in this paper will represent an optimised 

wave tank model, as its overall dimensions will be dependent on the period of the desired waves. In 

order to achieve this model, a number of convergence tests were carried out. Finally, a case study of a 

real world application of the methodology derived is undertaken. It is an analysis of the interaction 

between a linear deep water wave and a floating truncated vertical cylinder. 

 

2. Methodology 

The CFD model created in this paper is similar in set-up to that of an experimental wave tank. 

However, the model dimensions are to be recalculated in order to optimise the model dependant on 

the period of the desired waves. An illustration of the dimensioning is shown in Fig. 1, where d is the 

height of the still water level (SWL), S is the stroke length of the wavemaker and H is the height of 

the generated wave. Furthermore, since the generated waves are to be compared to LWT, the waves 

created are assumed to be of small amplitude relative to their length. Small amplitude waves are 

defined by the steepness relation H/ L0 ≤ 0.03 (Ursell et al, 1960), where L0 is the wavelength. The 

response of wave energy converters (WEC’s) to small amplitude waves is of interest as their 

performance needs to be optimised when the resource is at its least. In other words, the WEC should 

be tuned to the expected properties of the dominant small amplitude waves.  

The set-up for the CFD model is divided into three stages: (1) the geometry setup, which defines the 

physical dimensions of the model, (2) the mesh setup, where a mesh is created and is refined at the 

still water level (SWL) to capture the free surface accurately, and (3) the wave water, or physics, 

setup, which defines the analysis type, the domain setup, the motion of the wavemaker, the initial 

water height and other characteristics of the water and air-water interaction. In defining the domain 

set-up, a number of assumptions are included. The surface tension at the air-water interface is 

assumed to be negligible. The air is specified to a temperature of 25°C and, therefore, its density is 



specified to be 1.185 kg/m3. Furthermore, an isothermal heat transfer model is specified, which is 

homogeneous. The fluid (water) temperature is defined as 25°C and its density is given as 1030 kg/m3 

to represent salt water.  

The top of the model has an opening boundary condition, which allows air to pass through. The 

boundary condition at the wavemaker is a wall with a specified displacement, which is inputted using 

the ANSYS CFX expression language (CEL) (ANSYS, 2009). There are symmetry boundary 

conditions specified for the adjacent sides, in order to create a model that is infinitely wide, and the 

remaining boundaries are assigned a static wall boundary condition. 

 

2.1. The governing equations 

The method on which the solver in ANSYS CFX is based on is the finite volume technique (ANSYS, 

2009). This technique divides the region of interest into sub-regions and discretises the governing 

equations in order to solve them iteratively over each sub-regions. Therefore, an approximation of the 

value of each variable at points throughout the domain is achieved. 

The governing equations that need to be solved by the ANSYS CFX solver is the mass continuity 

equation (Versteeg and Malalasekera, 1995), which is given as: 
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and the Navier-Stokes equations (Versteeg and Malalasekera, 1995), which are given as: 
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where t is time, x is the horizontal distance from the wavemaker, y is the vertical height from the SWL 

and increases with depth, u1 is the horizontal flow velocity, u2 is the vertical flow velocity, F1 is the 

horizontal force on the fluid, F2 is the vertical force on the fluid, p is pressure and μ is viscosity. 

In order to determine the position of the free surface, or air-water boundary, the volume of fluid 

method is applied. This technique was also employed by Liang et al (2010). This method adds another 

governing equation, given by: 
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where qi is the volume fraction of the fluid i with ∑ ௜ݍ ൌ 1ଶ
௜ୀଵ . The free surface is then approximated 

as at the position of the minimum of value |q1 – q2| along the model. 

 

2.2. Optimisation of the length/height of the model 

The height of the model is dictated by a number of factors; the still water level, the maximum height 

of the waves and the response amplitude and height of the device. Therefore, since the tank is being 

designed for deep water wave theory, the height of the tank is estimated to be 4/3 times the still water 

level, as this will leave sufficient room at the top (Opening boundary) of the tank for the device to 

oscillate as a result of the incoming wave. 

As it is a numerical model, the geometry of the wave tank can be easily changed. As a result of this, 

the geometry can be optimised depending on the period of the incoming wave. As the incoming waves 



will be almost linear, Linear (Airy) wave theory can be used to predict the minimum depth of the 

water, as follows (Coastal Engineering Research, 1977): 
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, g is gravity and T is the wave period. Thus, Eq. (5) can be written as: 
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This relationship between the minimum still water level, d, and the wave period, T, is shown 

graphically in Fig. 2. 

The length of the model is dictated by the SWL, the beach slope and the size of the WEC device being 

investigated. Dean and Dalrymple (1984) show that the velocity potential for a 2-D wavemaker is 

divided into two parts; the first is that of the progressive wave and the second of the standing wave, 

which decay away from the wavemaker. It is also shown that the standing wave part is negligible after 

a distance of three times the SWL, or 3d, away from the wavemaker. Therefore, from this distance 

onwards the progressive wave is only present and, as a result, the optimum placing of a device in a 

wavetank is at this distance. An illustrated summary of these dimensioning techniques is shown in 

Fig. 1. 

 

2.3. Optimisation of the model mesh  

It is essential to optimise the mesh size as this will reduce computational effort. This is particularly 

important for 3-D modelling of wave tanks. A significant observation that must be noted is the 

sensitivity of the wave elevation to the mesh refinement. Therefore, it is essential to optimise the 

method of meshing employed, which should be dependent on the height and period of the wave being 

created. 



In Table 1 and Fig. 3, a number of meshing techniques are compared in order to determine which 

method would provide the most optimum mesh. The generated wave used in the comparison has a 

period of 1.35s, and it adheres to finite depth theory, as d = 1.5m. A beach slope of 1:5 is employed. 

The variables used in the comparison in the comparison are: (1) the mesh relevance, which defines the 

fineness of the overall mesh, (2) the maximum mesh element size and (3) the radius of the ‘Sphere of 

Influence’ being used and its element size. The ‘Sphere of Influence’ technique is employed in order 

to perform mesh refinement along the SWL, between the wavemaker and the beginning of the beach. 

From Fig. 3, it is clear that the most efficient mesh is that in model WT2, which contained 4830 

elements, as it provides a wave that is insignificantly different to that obtained from model WT4, 

which contained 6440 element mesh. Therefore, the optimum mesh for the model utilises both a 

maximum element size and the ‘Sphere of Influence’ technique. 

During the study, it was found that the radius of the sphere is dependent on the height of the wave 

and, as a result, the radius is estimated as the expected height of the wave and an element size of one 

tenth the radius is sufficient. The optimum minimum element size was established in this study, i.e. 

for T = 1.35s, and is affected by the wavelength, L0. Therefore, a simple linear relationship was 

established to estimate the minimum element size when T = n sec and is given as: 
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This relationship holds true when the beach slope is at 1:5 and the meshing method above is adhered 

to. A typical mesh for the model is shown in Fig. 4. 

 

2.4. Time-step interval and total time 

The time-step interval and total time are both dependent on the wave period. As the device is being 

placed at three times the still water level, 3d, the waves of interest are those at this location. From Fig. 

5, it is clear that waves of various periods are fully developed at this location after six cycles. 



Therefore, a total time equal to ten times the wave period is sufficient to allow comparison between 

the waves generated by the numerical model and their predicted by LWT and WMT, with the waves 

created during the last four cycles being those of interest, i.e. fully developed waves.  

Furthermore, a parametric study was carried out in order to determine the optimum integration time-

step interval. As accurate velocity results are one of the main requirements from the simulation, it is 

necessary to use a relatively small integration time-step interval. The results of this parametric study 

are shown in Fig. 6 and it is clear that the optimum time-step is found by dividing the wave period 

into 50 intervals (T/50). This agrees closely with the findings of Ning and Teng (2007), which stated 

the maximum time-step interval is the wave period divided by 40 (T/40). 

 

3. Results 

 

3.1. Beach Slope Study 

A variety of techniques have been employed by a number of researches to dissipate, or damp out, the 

waves at the end of the model. Ning and Teng (2007) and Ning et al (2008) used an artificial beach 

employed along the free surface boundary of the model. Liang et al (2010) introduced a dissipation 

zone by adding terms to the momentum equations in order to eliminate wave reflection. In this study, 

a sloped beach is used to damp out the waves, a technique which is also used by Lal and Elangovan 

(2008). 

The optimum beach slope to provide damping of the wave at the end of the model is explored over a 

variety of slopes. The mesh sensitivity, discussed in Section 2.2, is used as an advantage near the 

beach, as a coarse mesh will produce a damping effect on the wave. This technique is also employed 

by Park et al (1999) and Park et al (2004) in the dissipation zone as the mesh becomes coarser 

horizontally along the zone. 



Models with beach slopes ranging from 1:3 to 1:6 were investigated. The measured transient wave 

elevations for various beach slopes at 1.5m from the end of the beach are plotted in Fig. 7. A distance 

of 1.5m from the end of the beach was chosen as it was a monitoring point near the end of the beach, 

which was without the presence of nonlinearities as a result of the wave breaking. It was found that 

the optimum beach slope is 1:5, as the difference in the degree of damping provided compared to a 

slope of 1:6 is negligible. This result contradicts the findings of Lal and Elangovan (2008), where an 

optimum beach slope of 1:3 was determined. As can be seen in Fig. 7, a model containing a beach 

slope of 1:3 would induce the least damping of the slopes investigated. A comparison between the 

wave elevation of the fully formed progressive wave and the dissipated wave, near the end of the 

beach, is shown in Fig. 8. It is clear to see that damping of the wave has occurred as a result of the 

sloped beach. The generated wave used in this study is the same as the one used in Section 2.2 and 

employs the optimum mesh method. 

 

3.2. Validation of CFD wave with LWT  

The validation of the method required is a vital step in this analysis. The first validation is a 

comparison of the generated wave in terms of the water particle velocity, v, between the SWL and 

model base, to linear wave theory (LWT), which uses the following set of equations (Coastal 

Engineering Research, 1977): 

ݒ  ൌ  ௞బ௬ (8)݁߱ܣ
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where v is the water particle velocity, A is the wave amplitude, ω is the angular frequency of the 

wave, k0 = ω2/g is the wavenumber for the deep water case, y increases from the SWL with depth, 

ηLWT is the wave elevation of the LWT wave, and εo is the initial phase angle dependant on the initial 

stroke of the wavemaker and the distance from the wave maker of the profile.  



Fig. 9 (a) shows that the wave elevation of the CFD generated deep water wave is identical to that for 

the LWT wave once the CFD wave has fully developed. Fig. 9 (b) compares the scalar water particle 

velocity of the CFD wave, which is labelled ‘Velocity’, and scalar water particle velocity according to 

LWT, which is labelled ‘LWT Velocity (v)’, which are, also, in very good agreement. Furthermore, the 

horizontal component of the water particle velocity, which is labelled ‘Hor. Velocity’, and the vertical 

component of the water particle velocity, which is labelled ‘Vert. Velocity’, of the CFD wave are 

displayed in Fig. 9 (b). These are the vectors that combine to create the scalar wave particle velocity. 

Similarly, these comparisons and conclusions are true for the generated deep water wave in Fig. 10. 

 

3.3. Validation of CFD wave with WMT  

In Fig. 11, results from CFD analysis and WMT are plotted in terms of the wave height to stroke 

length ratio (H/S) against the wavenumber, k0, times the height of the wavemaker flap hinge to SWL, 

where the hinge of the wavemaker flap is at the base of the tank. It was found that for the deep water 

case, a flap type wavemaker hinged at the bottom of the model does not satisfy wavemaker theory for 

deep water waves, which is valid for k0h ≥ 3.13 according to LWT. On the other hand, it is satisfied 

when k0h ≤ 2, where h is the height of the wavemaker hinge to the SWL. Hence, this only holds true 

for the finite/shallow depth case according to LWT and this can clearly be seen in Fig. 11. Therefore, 

it is necessary to adapt the model to satisfy both linear theory and wavemaker theory. This is achieved 

by moving the hinge of the wavemaker to a distance of half the still water level, h/2, above the base of 

the model. However, from Fig. 12, it can be seen that this adaption is only valid for a k0h ≤ 1.7. 

Consequently, as 2h = d, the theory is valid for the deep water case provided the relation k0h does not 

exceed 1.7. 

As the hinge of the wavemaker flap is located at a distance of half the SWL above the base of the 

model, it is necessary to adapt the theory in order to allow for the section of the wavemaker wall that 

is now stationary. Wavemaker theory, when generating two-dimensional small amplitude waves, is 

derived from the velocity potential of a simple boundary value problem. This velocity potential, ϕ, 



describes the simple harmonic wave motion. The boundary conditions which need to be satisfied are: 

the Laplace’s equation, the free surface condition, the structural boundary condition, the base 

condition and the radiation condition, respectively (Linton and McIver, 2001): 
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where U(y) is the prescribed horizontal velocity of the wavemaker. This problem is solved by Ursell 

et al (1960), where the wave height to wavemaker stroke ratio (H/S) is given for a paddle wavemaker 

hinged at the base as: 
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(15) 

However, this takes the prescribed horizontal velocity of the wavemaker as: 
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Since, there is fluid now below the height of the hinge of the wavemaker, the wavemaker exerts a 

force on this fluid and, in turn, Eq. (15) needs to be adapted to show this loss of energy. Furthermore, 



when the hinge of the wavemaker is taken at a height, l, from the base of model, the prescribed 

horizontal velocity of the wavemaker is given as: 
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Therefore Eq. (15) is adapted to allow for this change in the height of the hinge to give: 

ܪ 
ܵ
ൌ
߱ଶ cosh ݇଴݄

݃݇଴

׬ ሼ1 െ ሽ݄/ݕ cosh ݇଴ሺ݄ െ ሻݕ ݕ݀
௛ି௟
଴

׬ coshଶ ݇଴ሺ݄ െ ሻݕ ݕ݀
௛
଴

ൌ
4 sinh ݇଴݄	

݇଴݄
݇଴݄ sinh ݇଴݄ െ cosh ݇଴݄ െ ݇଴݈ sinh ݇଴݈ ൅ cosh ݇଴݈

sinh ݇଴݄ ൅ 2݇଴݄
 

(18) 

where, h is the height of the wavemaker from the hinge to the still water level, k0 is obtained from the 

relation ω2 = gk0 tanh k0h, and l is the height of the hinge of the wavemaker from the base of the 

model. The above equation is represented by the ‘WMT Curve’ in Fig. 12. It is evident from Fig. 12 

that the theory is valid for the deep water case with the wavemaker hinged at a height of half the still 

water level, h, provided the relation k0h does not exceed 1.7. 

 

3.4. Comparison of turbulence models 

A comparison was carried out between a laminar and a k-ε turbulence model in order to investigate 

the effects of viscosity. The k-ε turbulence model includes the history effects such as the turbulent 

kinetic energy and turbulent dissipation. However, it was found that there was no difference in the 

generated wave elevation between the two models and, therefore, is not a factor in the generation of 

water waves using a wavemaker. Similar observations are noted by Lal and Elangovan (2008). 

 

3.5. Scaling laws in deep water wave modelling 



There is a dimension restriction in ANSYS CFX (Version 12.1) of 500 m (ANSYS, 2009). Therefore, 

as a result of the model dimensions derived in this paper, it is necessary to scale the model when 

dealing with low frequencies (i.e. f ≤ 0.125). Furthermore, when dealing with real-world models it is 

necessary to use the scaling factors derived in this section. These scaling factors are derived from the 

equations used in linear (Airy) wave theory for deep water waves (Coastal Engineering Research, 

1977). A summary of the scaling factors is given in Table 2. Please note that these are not all of the 

scaling factors, but a summary of those applicable to deep water wave modelling. 

The scaling that is referred to in this paper is a function of the wave period, T, and the scaling 

coefficient is s, where	 ௡ܶ௘௪ ൌ 	ݏ ௜ܶ௡. As force is directly proportional to acceleration and acceleration 

is given as ߱ܣଶ݁௞௬ (Coastal Engineering Research, 1977), it is deduced that the wave force on a 

body/structure is given by the relation: 

 
௡௘௪ܨ ൌ

௜௡ܨ
ଶݏ

 (19) 

where, Fnew is the wave force on the body or structure in the scaled model, Fin is the wave force on the 

full scale body or structure and s is the scaling coefficient. 

 

4. Wave-Structure Interaction 

In this section, the methodology described in Sections 2 and 3 is used to analyse the interaction 

between a linear wave and a floating truncated vertical cylinder. For this analysis, two simulations are 

required. The first is when the structure is held in a fixed position in order to obtain the excitation 

force. The second is when the structure is free to oscillate in the vertical, or heave, motion. 

Since the model is to represent deep water conditions, i.e. infinite depth, it is necessary to increase the 

depth of the water. This change to the methodology is required as the oscillating body generates fluid 

velocities beneath it and these velocities are affected by the base of the model if the depth isn’t 

sufficient. When specifying the boundary conditions on the longitudinal walls of the model, a 



symmetry boundary is specified on one wall in order to only model half of the problem and reduce the 

calculation required. On the other longitudinal wall, a wall with an unspecified mesh motion and no 

symmetry is specified. The free surface and a fixed floating cylinder of the model are shown, for 

example, in Fig. 13 for a specific moment in time. 

In the initial analysis, the cylinder is held in a fixed position and the excitation forces are calculated. 

The CFD solution will be compared to an analytical solution derived by Finnegan et al (2011) in order 

to ensure the CFD analysis is setup and performing accurately. Finnegan et al (2011) employs the 

method of separation of variables in order to derive the velocity potential in the fluid domain for 

calculating the wave excitation forces on a floating truncated vertical cylinder in water of infinite 

depth. The vertical, or heave, excitation force, in the frequency domain, ܨ෠ଷ,௘௫௧, is given as (Finnegan 

et al, 2011): 

 F෠ଷ,ୣ୶୲ ൌ െ2ܽ߱ߩ݅ߨඨ
2
ߨ
න ሻߦ଴ሺ݌

ሻܽߦଵሺܫ

ሻܽߦ଴ሺܫߦ

ஶ

଴
 (20) ߦ݀

and 

ሻߦ଴ሺ݌  ൌ െ
ܣ݃
߱
݅ඨ
2
ߨ
൭ܬ଴ሺ݇଴ܽሻ ൅ ଴′ሺ݇଴ܽሻܬ

଴ܪ
ሺଵሻሺ݇଴ܽሻ

଴ܪ
ሺଵሻ′ሺ݇଴ܽሻ

൱
݁ି௞బ௕݇଴
ଶߦ ൅ ݇଴

ଶ (21) 

 

where p0 is a coefficient, a is the radius of the cylinder, b is the draft of the cylinder, ܫ௠ is the 

modified Bessel function of the first kind of order m, ܬ௠ is the Bessel function of the first 

kind of order m, ܪ௠
ሺଵሻ is the Hankel function of the first kind of order m, and  is the 

separation constant. 

A time-domain comparison between the analytical and CFD results is shown for a dimensionless 

wavenumber, k0a, of 0.6 with a draft to radius ratio of a = b and a = 2b, in Fig. 14 and Fig. 15, 

respectively. The maximum heave excitation forces in both are slightly overestimated in the analytical 

approximation and there is a slight phase difference between the two approaches. In addition, a 

parametric study for different dimensionless wavenumbers, k0a, is performed for a draft to radius ratio 



of a = b and a = 2b. In this study, the analytical and the CFD results match up closely, as shown in 

Fig. 16. 

From the second simulation, where the cylinder is free to move in the vertical direction, the dynamic 

response and the hydrodynamic force, or total wave force, on the structure is obtained. From this 

information, the total force on the structure can be decomposed into the various forces. Since the 

model deals with an unrestrained system, i.e. there are no external mechanical forces applied to the 

structure, the total wave force is the hydrodynamic force, which can be summarised as follows: 

ுܨ  ൌ ௘௫௧ܨ ൅ ோܨ ൅ ௛௦ܨ ൌ െܯ
݀ଶݕ
ଶݐ݀

 (22) 

Where FH is the hydrodynamic force, Fext is the excitation force, FR is the radiation force, Fhs is the 

hydrostatic force, M is mass of the body, and y is the dynamic displacement response of the structure, 

which increases from the SWL with depth. For preliminary models of WEC’s, it is reasonable to 

assume the excitation force is a combination of the Froude-Krilloff force and the diffraction force. 

This assumption is only valid when the overall dimensions are large compared to the wave length and 

Keulegan-Carpenter parameter (Dean and Dalrymple, 1984) is less than one. Furthermore, by using 

Eqn. (22), the total hydrodynamic force may be separated into the various forces which comprised it. 

An example of a summary of these forces is shown graphically, in the time-domain, for a case study 

in Fig. 17. 

The case study, which is detailed in this section, is a floating truncated vertical cylinder, with a = b = 

0.6m, and an incident wave of period 2s and an amplitude of 0.08m. A time domain representation of 

the incident wave and the dynamic response of the body is shown in Fig. 18. The excitation force on 

the body is shown in Fig. 14 and the summary of the forces which make up the hydrodynamic force is 

shown in Fig. 17. Furthermore, the added mass and the wave damping may be calculated from the 

radiation force which is given, in the frequency domain, as: 

෠ோܨ  ൌ െݕሷܽ௠ െ ሶ߭ݕ ൌ ߱ଶܽݕ௠ ൅  (23) ߭ݕ߱݅

Where am is the added mass and  is the wave damping. For the given case study the added mass is 

calculated as 196 kg and the wave damping is calculated as 185 kg/s. 



 

5. Discussions and Conclusions 

A guide to designing a CFD model that can accurately produce both linear deep water waves and 

linear waves for the finite depth case was presented in this paper. Furthermore, steps required to be 

taken to design an optimum CFD model were outlined. In particular, the effects of the meshing 

method, beach slope angle and the total time and time-step interval for the transient analysis set-up 

were explored, while minimising the overall dimensions of the model to generate a deep water wave. 

The optimum mesh for the model utilises both a maximum element size and the ‘Sphere of Influence’ 

technique. A total time equal to ten times the wave period was found to be sufficient and the optimum 

time-step interval is to divide the wave period into 50 intervals (T/50), which can be seen in Fig. 6. It 

is recommended to use a beach slope of 1:5 to dissipate, or damp out, the waves at the end of the 

wave tank. 

Furthermore, it is evident from Fig. 11 and Fig. 12 that a limitation of ANSYS CFX is it can only 

conform to WMT when dealing with relatively low k0h values, i.e. k0h ≤ 2 for h = d and k0h ≤ 1.7 for 

2h = d. It can also be concluded from Fig. 12 that, only when the hinge of the wavemaker is raised, 

can deep water waves be generated and conform to both WMT, using the adapted version of the 

equation described in Ursell (1960), and LWT. Fig. 9 and Fig. 10 show two sets of comparisons and 

from these it is apparent that the CFD generated deep water wave is in very good agreement to LWT. 

Therefore, the aim of generated linear regular waves in a wavetank model using a commercial CFD 

software package, ANSYS CFX, has been achieved. 

Finally, a case study of the interaction of a linear deep water wave and a floating truncated vertical 

cylinder, which employs the methodology to create a NWT described in this paper, is undertaken. A 

comparison between the CFD analysis and an analytical solution was undertaken to ensure the 

accuracy of the model set-up. It was found that the response predictions from the analytical and CFD  

model match up closely. Furthermore, a floating truncated vertical cylinder that oscillates in the 



vertical, or heave, motion was analysed to give the dynamic response and hydrodynamic forces on the 

structure. The added mass and wave damping were calculated from the radiation force. 
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Fig. 1 Overall dimensions of model 

 

 

 

Fig. 2 Minimum still water level as the wave period varies 
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Fig. 3 Comparison of wave elevation at 5m, or 3d, from the wavemaker for various  
mesh set-ups given in Table 1 

 

 

Fig. 4 Typical mesh for a wave tank model 
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Fig. 5 The normalised amplitude wave profile for various wave periods at a distance 3d from 
the wavemaker for the first ten cycles 

 

 

Fig. 6 Results from a parametric study comparing the effect of the time-step on the wave 
height for a wave period of 1.35s 
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Fig. 7 A comparisons of the wave elevations for various beach slopes at 1.5m  
from the end of the beach 

 

Fig. 8 A comparison of the wave elevation at 5m from the wavemaker and 
1.5m from the end of the beach 
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(a)                                                                     (b) 

Fig. 9 For a wave period of 5 s and a wave height of 1.12 m (i.e. 0.03L0) and at a distance of 
60m, or 3d from the wavemaker (a) Comparison of wave elevations of CFD generated wave 

to a linear wave (b) Comparison of CFD water velocity to LWT velocity for deep water 

 

(a)                                                                     (b) 

Fig. 10 For a wave period of 8 s and a wave height of 2.92 m (i.e. 0.03L0) and at a distance 
of 150m, or 3d from the wavemaker (a) Comparison of wave elevations of CFD generated 

wave to a linear wave (b) Comparison of CFD water velocity to LWT velocity for deep water 
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Fig. 11 Comparison of CFD results to wavemaker theory (WMT) for the wavemaker flap 
hinged at the base of the model 

 

Fig. 12 Comparison of CFD results to wavemaker theory (WMT) with the wavemaker hinged 
at a height, l = 0.5d, from the base of the model 
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Fig. 13 The wave-structure interaction from CFD analysis (ANSYS CFX) after 24 seconds. The free 

surface and a fixed floating cylinder are shown. 

 

Fig 14 Time domain comparison between the heave excitation forces obtained from the analytical and 

CFD models with k0a = 0.6 and a = b 



 

Fig 15 Time domain comparison between the heave excitation forces obtained from the analytical and 

CFD models with k0a = 0.6 and a = 2b 

 

Fig. 16 Comparison of the normalised vertical, or heave, excitation force for the analytical and CFD 

models with ratios of a = b and a = 2b 
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Fig. 17 Summary of the various forces on a floating truncated vertical cylinder with a=b, which is 

allowed to oscillate in a vertical, or heave, motion 

 

 

Fig. 18 The incident wave and the dynamic response of a floating truncated vertical cylinder with 

a=b, which is allowed to oscillate in a vertical, or heave, motion 

 

  



Table 1. Summary of parametric study of mesh set-up 

Model 
I.D. 

No. of 
Elements 

Relevance 
Max. Element 

Size 

Sphere of Influence 
Wave 
Height 

Radius Element  Size 

WT1 2424 Fine 100 Undefined 0.3 m 0.02 m 0.125 m 

WT2 4830 Fine 0 0.15 m 0.2 m 0.02 m 0.18 m 

WT3 6231 Fine 100 0.12 m 0.3 m 0.02 m 0.17 m 

WT4 6440 Fine 0 0.15 m 0.2 m 0.01 m 0.19 m 

WT5 8900 Fine 0 0.15 m 0.2 m 0.005 m 0.2 m 

 

 

 

Table 2 Summary of applicable scaling factors in deep water wave modelling. The subscript ‘in’ 
refers to the initial model and the subscript ‘new’ refers to the scaled model. 

Quantity Symbol 
Scaled 

Relation 

Wave Period Tnew sTin 

Wave Angular Frequency ωnew ωin/s 

Wave Length Lnew s2Lin 

Wave Amplitude Anew Ain 

Water Mass mnew min 

Water Density ρnew ρin 

Still Water Level dnew s2din 

Water Particle Velocity vnew vin/s 

Water Particle Acceleration anew ain/s
2 

Wave Force on a Body/ Structure Fnew Fin/s
2 

 

 

 

 


