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Abstract.  

Objective: In this study, we examine the potential of using machine learning classification to 

determine the bladder state (‘not full’, ‘full’) with electrical impedance tomography (EIT) images 

of the pelvic region. Accurate classification of these states would enable urinary incontinence 

(UI) monitoring to alert the patient, before involuntary voiding occurs, in a low-cost and discrete 

manner. Approach: Using both numerical and experimental data, we form datasets that contain 

diverse observations with varying clinical parameters such as bladder volume, urine conductivity, 

and the reference used for time-difference imaging. We then classify the bladder state using both 

pixel-wise and feature extraction-based classification techniques. We employ principal 

component analysis, wavelets, and image segmentation to help create features. Main results: The 

performance was compared across several classifier algorithms. The minimum accuracy was 

77.50%. The highest accuracy observed was 100%, and was found by combining principal 

component analysis and the Gaussian radial based function kernel support vector machine. This 

combination also offered the best trade-off between classification performance and the costs of 

training time and memory space. The biggest challenge in bladder state classification is 

classifying volumes near the separation volume of not full and full, in which choosing the most 

suitable classifier combination can minimize this error. Significance: We performed the first 

machine learning classification of bladder EIT images, achieving high classification accuracies 

with both numerical and experimental data. This work highlights the potential of using image-

based machine learning with an EIT device to support bladder monitoring for those suffering 

from UI. 
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1. Introduction 
 

Urinary incontinence is a condition characterized by the involuntary discharge of urine (Abrams et al 

2010). This condition affects more than 200 million people across the world (Norton and Brubaker 2006). 

Urinary incontinence is particularly prevalent in women (Yip and Cardozo 2007),  the elderly (Shamliyan 

et al 2009),  children and adolescents with intellectual disabilities (Lottmann and Alova 2007; Gor, Fuhrer 

and Schober 2012), and in individuals with urinary dysfunction, diabetes or neurological conditions such 

as spinal cord injury and multiple sclerosis (Shamliyan et al 2009). Urinary incontinence can significantly 

and negatively impact an individual’s quality of life, both physically and psychologically (Coyne et al 

2008). Notably, in the elderly, there is an increased risk of morbidity due to falls with the condition 

(Gibson et al 2018). Overall, urinary incontinence places a considerable burden on healthcare systems 

(Morrison and Levy 2006). 

Non-invasive methods, such as ultrasound imaging, aid in monitoring the bladder volume, 

primarily in clinical settings (Kelly 2004). These devices produce images in either 2D or 3D in order to 

determine the bladder volume (Jalbani and Ather 2014). However, ultrasound devices require medical 

professionals to regularly check the bladder volume with the ultrasound probe, burdening health systems 

(Niestoruk et al 2012). Wearable ultrasound devices have been investigated to continually monitor the 

bladder in individuals with urinary incontinence (Kristiansen, Djurhuus and Nygaard 2004; Niestoruk et 

al 2012), yet remain bulky (Cao et al 2011) and costly (Niu et al 2011). Therefore, there is a need for a 

tool to monitor urinary incontinence in a discrete and low-cost way. 

Electrical impedance tomography (EIT) is a non-invasive, portable, and low-cost method that can 

be used to monitor bladder volume through interpretation of reconstructed images of the pelvic region 

(Leonhardt et al 2011). This technology involves the injection of small alternating currents into the pelvic 

region and the measuring of the resultant voltages. Then, the resultant voltages are used to reconstruct the 

conductivity distribution within the pelvis and produce an image. The reconstructed image can then be 

used to map the bladder shape and pixel intensities to the bladder volume (Schlebusch et al 2014a).  

Previous studies using EIT have shown the viability of the technology for monitoring bladder 

volume in clinical settings (Leonhardt et al 2011; Li et al 2016). Further, more recent studies have 

suggested EIT as alternative to ultrasound, particularly for determining residual urine (Leonhäuser et al 

2018). Image-based assessments, such as correlating the global impedance of the image and the area of 

the bladder in the image with the bladder volume, have also been investigated with simulation data 

(Schlebusch et al 2014a). However, for urinary incontinence, it is far more important to alert the 

incontinent individual to go to the toilet in time than it is to report the absolute bladder volume. Thus, in 

order to address this need, this work focuses on classifying ‘not full’ and ‘full’ bladder states. We have 

previously used machine learning to classify the bladder state using the raw voltage data (i.e. without 

reconstructing an image), which showed very promising results (Dunne et al 2018a). However, image 

reconstruction has a potential advantage over the raw voltage data, in that images also provide spatial 

information, which could further enhance classification of the bladder state. For example, as the bladder 

fills, the bladder ascends and widens within the pelvic region, and thus images may help capture this 

spatial information. Therefore, in this work, we perform the first machine learning classification of EIT 

images for bladder monitoring. We classify the bladder state directly using the pixel intensity values, and 

by using feature extraction (FE) and selection techniques, on images from both simulated and experiment 

data. We investigate the effects of bladder volume, urine conductivity, and the type of reference used in 

image reconstruction, on the classification outcomes. We also compare pixel-wise and FE-based methods 

and highlight the advantages and drawbacks of each. Furthermore, while the target population in this 

study is children with intellectual disabilities who are struggling with urinary incontinence and toilet 

training, the methodology and results are broadly applicable to all populations with urinary incontinence. 

This paper is structured as follows: we discuss the simulation and experimental data collection in 

section 2; the types of classification performed in sections 3 and 4; the classifiers and the architecture 

used in section 5; the feature selection in section 6; the results in section 7; and we conclude in section 8. 
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2. Data Collection & Preparation 
 
In this section, we describe the design of the simulation and experimental scenarios, the data obtained 
from each experiment, and the data pre-processing methods prior to the implementation of any machine 
learning algorithms. 

 
2.1. Simulation Dataset Collection & Preparation 

Using the open-sourced Electrical Impedance Tomography and Diffuse Optical Tomography 
Reconstruction Software (EIDORS) (Adler et al 2006), we constructed a finite element model (FEM) of 
the human pelvis. The pelvic FEM is an elliptical cylinder, similar to in previous bladder classification 
studies (Schlebusch et al 2014a; Dunne et al 2018a). The FEM is proportionally-accurate to the human 
computed tomography (CT) images from the Visible Human Project (Ackerman 1998), and the 
experimental phantom that is discussed later in subsection 2.2. The model matches the average size of a 
5-year old male child (Dunne et al 2018b). 

This cylindrical FEM has been previously implemented to compare machine learning algorithms 
with simulation data in this field (Schlebusch et al 2014a; Dunne et al 2018a). The electrode shape and 
locations were modelled to match those of our experimental setup (Swisstom 44 cm child belt, 
swisstom.com), as shown in figure 1. Ellipsoidal FEMs represent the bladder in the pelvis, with varying 
diameters based on the volume of urine being represented (40-420 ml). The diameters of the bladder 
ellipsoids were chosen to match the dimensions of actual human bladders (Hirahara et al 2006; Dunne, 
et al 2018b) and scaled to child-size. Each bladder has the same bottom location within the pelvic FEM. 
As the bladder volume increases, the centroid of the bladder ellipsoid increases in height, mimicking the 
process of the human bladder ascending in the pelvic cavity towards the abdomen.  

In bladder monitoring, the main biological factors that may vary are the bladder volume and the 
urine conductivity. Both of these factors are variable in time, and intra- and inter-individually 
(Schlebusch et al 2014b). For example, the urine conductivity can range from between 0.59-3.22 S/m  
(Schlebusch et al 2014b). Time-difference imaging is the primary technique used in bladder EIT 
(Leonhardt et al 2011; Dunne et al 2018b) and it requires reference data in order to reconstruct an image. 
The reference data may be data from an empty bladder or from a different bladder volume than the target 
(i.e., full) bladder volume. Generally, it is preferable to have as large a difference between the target 
volume and the reference volume as possible, as this will lead to the biggest time-difference, and thus 
reconstructed images with higher contrast. Here, we use the bladder volume, urine conductivity, and 
reference data as the factors to test the ability of machine learning in identifying the bladder state with a 
low signal-to-noise ratio (SNR). 

 

 
 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

Figure 1: The FEM for simulation data generation, with 32 electrodes. The FEM is an elliptical 

cylinder and is proportionally-accurate to a child-sized human pelvis. The FEM has a background 

conductivity of 0.2 S/m, determined from a weighted average of the conductivities of the tissues in 

the pelvic cavity. The calculation is further discussed in (Dunne et al 2018b). The FEM contains 

the 240 ml bladder modelled by an ellipsoid, with dimensions based on human data as described in 

our previous work (Dunne et al 2018b). The bottom position of all bladders of different volumes is 

fixed to the same location, while the centroid ascends up through the cylinder. This positioning 

mimics how the human bladder ascends upwards within the pelvis toward the abdomen as the 

bladder fills. 
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The simulated parameters for each factor are given in table 1, and are based on current literature 

(Schlebusch et al 2014b, Kelly 2004). Each simulated scenario consisted of one bladder volume, one 

urine conductivity, and one particular reference (with one specific reference bladder volume and one 

reference urine conductivity). An SNR of 40 dB was used for all simulations, in which the additive white 

Gaussian noise was added to the voltage signals before image reconstruction.  This type of noise has been 

previously used in EIT scenarios such as mimicking detached and erroneous electrodes (Asfaw and Adler 

2005). However, we note that additive white Gaussian noise may not accurately model all realistic factors 

such as electrode movement. Further work is needed in clinical situations to determine the applicable 

noise models. This SNR was chosen as it was the point where most misclassification began to occur in 

our previous study on raw voltage data classification (Dunne et al 2018a). Further, this SNR level 

represents a more noisy scenario than is typical with EIT devices (Avery et al 2017), which generally 

have SNRs in the 60 – 80 dB range. However, the 40 dB level attempts to mimic cases in the real world 

where SNR degrades, such as with patient-electrode contact (Asfaw and Adler 2005). The definition of 

the SNR used in this study is detailed in (Dunne et al 2018a).   
The simulated data was generated in the EIDORS v. 3.9 package using an electrode “skip of 4” 

pattern, an injection current of 6 mAp-p and the GREIT (Graz consensus Reconstruction algorithm for 
EIT) time-difference image reconstruction algorithm (Adler et al 2009). The following parameters were 
used for GREIT image reconstruction: Noise Figure = 0.5; Target Size = 0.03; Target Offset = 0; 500 
Targets. Each reconstructed image consisted of a 32x32 pixel array, in which the pixel intensity is 
indicative of the conductivity change in the region between the target and the reference. 
 

Table  1. Simulation dataset properties. 

Property Values 

SNR 40 dB 

Volumes 

- Not Full 
- Full 

 

{40, 80, 120, 160, 200, 240, 280, 290} ml 

 {300, 310, 320, 340, 360, 380, 400, 420} ml 

Urine Conductivities {0.75, 2, 3.25} S m-1 

Reference Volumes {30, 50} ml 

Reference Conductivities {0.75, 2, 3.25} S m-1 

 

 
For each scenario, 10 observations were obtained that differed only by the effect of the additional 

white gaussian noise; for each observation, a new image was formed. The total number of observations 
in the dataset was 2880. Example images for two specific observations are shown in figure 2 for 40 ml 
and 400 ml bladders, both with a conductivity of 3.25 S m-1 and a 30 ml reference of conductivity  
0.75 S m-1. 
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Figure 2: Example time-difference images using a 40 ml (left) and 400 ml (right) bladder volume 

of conductivity 3.25 S m-1 and a 30 ml reference of conductivity 0.75 S m-1. The SNR was 40 dB. 

The intensity of the pixels relates to the conductivity change between the target and the reference. 

The full bladder is easily discernible (red). However, the full bladder image does have artefacts that 

become more pronounced with smaller differences between the target volume and reference volume 

and smaller changes in conductivity. The effects of a small contrast between the target volume and 

the reference volume are clearly seen in the 40 ml bladder image. 

 

2.2. Phantom Dataset Collection & Preparation 

Previously, we created the first anatomically and conductively realistic phantom for bladder volume 

monitoring (BVM) using EIT (Dunne et al 2018b). This modular phantom consisted of graphite, carbon 

black, and polyurethane to form the solid outer pelvic wall, with a homogenous fluid (ultrasound gel) 

inside that represented the weighted average of the conductivities for the organs in the pelvic cavity. 

Bladder phantoms were constructed using the same material ingredients as the outer wall, but with 

different quantities of each material in order to achieve the desired conductivities. The phantom formation 

process and the electrical properties of each component are explained in (Dunne et al 2018b). We used 

this phantom (as shown in figure 3) to gather experimental data. We also further expand on the bladder 

volumes in (Dunne et al 2018b) by forming additional volumes over the three conductivities {1.15, 1.68, 

2.24} S m-1. The 12 bladder volumes used in the study were {40, 60, 100, 160, 240, 260, 280, 300, 320, 

340, 360, 380} ml. In total, thirty phantom bladders were used as target volumes and six phantom bladders 

as references. 

 

 

 
 

 

 

 

 
 

 

 
 

 

 

Figure 3: (left) Conductively and anatomically-accurate male child-sized pelvic phantom for EIT 

as presented in (Dunne et al 2018b). The internal conductivities are modelled as a weighted average 

of all pelvic organs (0.2 S m-1). This region is realized using ultrasound gel with additional sodium 

chloride. (right) The employed bladder phantoms, ranging from 40-380 ml.  

 

A Swisstom Pioneer Set with the 32 electrode Swisstom 44 cm child belt was used to gather the 

data from the pelvic phantom. Raw voltage data was captured for each bladder volume. The data was 

captured at 15 frame s-1, with a 50 kHz injection frequency, an injection current of 6 mAp-p and a skip of 4 

(i.e., the number of electrodes that are skipped between the two injection electrodes, and similarly between 

the two measurement electrodes). Similar to the simulation setup, the bottom location of the bladders was 

maintained constant as the bladder volumes increase. For each measurement scenario, 10 frames were 

recorded. Different reference frames were obtained by averaging 10 frames for each scenario of 40 ml and 

60 ml bladder volumes. Then, time-difference images were generated using combinations of observed 

bladder frames with the references. Unlike the simulation scenario, image reconstruction of the 

experimental phantom uses a tailored FEM (i.e. the same shape as the pelvic phantom) (Dunne et al 2017; 

Dunne et al 2018b) in order to minimize image reconstruction errors in the forward problem due to the ill-



6 
 

posed problem of EIT. The previously outlined GREIT settings were used and each image reconstructed 

was a 32x32 pixel array. The dataset consisted of 1800 observations in total. The properties of the dataset 

are outlined in table 2.   

 

Table  2. Phantom Dataset Properties 

Property Values 

Bladder Volumes 

- Not Full 
- Full 

 

 
{100, 160, 240, 260, 280} ml 
{300, 320, 340, 360, 380} ml 

 

Urine Conductivities*  {1.15, 1.68, 2.24} S m-1 

Bladder Reference Volumes {40, 60} ml 

Bladder Reference Conductivities* {1.15, 1.68, 2.24} S m-1 

*Conductivities of the bladder phantoms at 50 kHz 

 

3. Pixel-Wise Classification 

 
Pixel-wise classification involves using the pixel intensities of the reconstructed images (either from the 
entire image or a cropped portion). In this portion of the study, we use the entire image in order ensure 
the maximum amount of useful information is input into the classifier.  

Each pixel was given to the classifier as a feature. In order to do this, the 32x32 pixel arrays were 
converted into 1x1024 row vectors. Columns with all zero (or NaN) entries were removed, e.g. pixels 
outside the region delimited by the pelvic FEM. The dataset size was then 2880x704 for the simulation 
dataset and 1800x525 for the experimental phantom dataset (excluding labels). The difference in the 
reduced number of columns between the simulation and experiment pixel-wise data is due to the different 
FEMs used during image reconstruction, as discussed in the previous section. 

 

4. Feature Extraction 
 

Feature extraction is used to reduce the dimensionality of a large dataset, and ensures that only the key 
information that more specifically describes the observations in the dataset is retained (Santorelli et al 
2014a). This process can reduce training and testing computational time and saves storage space due to 
the reduced number of features. A number of methods to extract features exist such as exacting features 
with feature descriptor tools or analysing the collected data using dimensional reduction tools. 

Common advanced feature descriptor algorithms include Histogram of Oriented Gradients (HOG) 
and Speeded-up Robust Features (SURF) (Bay et al 2008). However, these algorithms work best for 
high frequency transitions in the images, i.e. where there are sharp changes or well-defined edges, such 
as in finger print detection (Hany and Akter 2015). The images from EIT have low frequency transitions 
as can be seen in the reconstructed images in figure 2. Thus, we perform FE with features more suitable 
to this application that are manually crafted from the region of interest (ROI), image segmentation, and 
wavelets. These features are discussed in the subsequent subsections. In terms of feature reduction 
techniques, we use principal component analysis (PCA), which is a common technique employed in 
medical imaging classification (Nandi et al 2015; Oliveira et al 2015; Li et al 2017). Thus, for FE, we 
first use manual FE (MFE)  and then apply PCA. 
 

4.1. Region of Interest 

The image reconstruction algorithm results in a 32x32 pixel array for each image. However, this array 

contains areas outside the FEM (to make a square) and areas within the pelvic FEM but outside the bladder 

region that did not provide additional useful information for monitoring the bladder volume. Thus, we 

cropped each image to a region of interest (ROI), determined from an ideal case.  

The urinary bladder has, on average, the highest conductivity in the human body (Dunne et al 

2018b). As the bladder volume increases, the average and maximum pixel intensities also increase. Using 

an ideal case of the maximum full bladder volume and the smallest reference bladder volume (at the same 

urine conductivity and a noiseless image), we determined the ROI pixel locations. We took the horizontal 

and vertical vectors that contained the maximum pixel intensity location in a 420 ml full bladder image 

(figure 4) and then calculated the 2.6 standard deviation of each of these vectors. This led to a ROI 

described by a 16x18 pixel array, centred around the maximum value in the image as shown in figure 4.  
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This ROI was extracted from each simulation and phantom image for use in defining and applying 

ROI-based features. The cross-sectional bladder locations in both simulation and phantom were 

approximately the same.  

 

 

 

 
 
 
 
 
 
 

Figure 4: A grey-scale noiseless image of a 420 ml full bladder reconstructed using a 
noiseless 30 ml reference image. The red box is the 16x18 ROI centred around the 
maximum location in the image. This region, in the exact location shown, is applied to 
all simulated and experimental images in this portion of the study, prior to feature 
extraction. 

 
4.2. Image Segmentation 

To determine the bladder shape from the image, segmentation was employed. A previous imaging study 

for BVM using EIT (Schlebusch et al 2014a) used Canny’s Edge Detection Algorithm (Canny 1986) to 

segment the bladder in order to associate the number of pixels (area) with the bladder volume. However, 

EIT images suffer from low-frequency transitions that make determining the exact edges difficult. Thus, 

a more suitable algorithm may be region growing, which involves defining the seed point for the algorithm 

and then allowing the algorithm to grow until a threshold is reached. Thus, we applied this algorithm on 

the ROI (after applying a grey-scale transformation) in order to segment the image. The region growing 

algorithm uses the mean intensity measure with a 15% threshold and the seed was defined as the 

maximum pixel intensity in the image. 

 

4.3. Discrete Haar Wavelet Transformation 

Properties of discrete wavelets such as the discrete statistics, the power, and the entropy have been 

previously shown to be useful features in imaging classification studies (Huang and Aviyente 2008; 

Rajan, Ramesh and Yuvaraj 2014). Thus, we further process the ROI using the 2D Discrete Haar Wavelet 

Transform (DHWT) (Ruch et al 2011) and interpret the coefficients returned as a signal, which is then 

used as the basis for some of the proposed features outlined in subsection 4.4. 

 

4.4. MFEs 

The features in table 3 are based on the ROI, the image segmentation, or the coefficient signal from the 
DHWT. This list is a small but a key sample of features that could possibly be extracted from EIT images 
of the bladder (10 features total). 
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Table  3. Descriptions of the MFE 

Feature Name Description 

Mean of the ROI 

 

Applied to all pixels in the ROI. The metric has been previously shown 
to be an effective method of classifying bladder state (Dunne et al 
2018c). 

Standard Deviation 

of the ROI 

Applied to all pixels in the ROI. The metric can help distinguish small 

bladder volumes where there may be high background noise due to 

poor contrast in difference imaging. 

Normalized Centre of Mass 

(2 features) 

Centre of mass (COM) normalized by the respective length of region of 
interest. The COM is calculated on greyscale pixel intensities. As 
images are 2D, the COM provides two features: ‘x’ and ‘y’ coordinates.  

Area of the Segment 

 

As the bladder fills and widens, the cross-sectional area changes. Thus, 
we calculate the area by determining the number of pixels within the 
segmented bladder. 

Area of the Equivalent 

Ellipse 

The bladder is often modelled as an ellipsoid. Taking the cross section 
will give an ellipse whose area is dependent on the bladder volume. In 
order to calculate the elliptical area, the ‘x’ and ‘y’ lengths of the 
segmented bladder are first determined around the COM. 

Perimeter of the Segment 

 

As the bladder widens, the cross-sectional parameter also changes. The 
perimeter is determined by counting the number of pixels on the edge 
of the bladder segment. 

Total Power of the Wavelet The total power of the signal is defined as the coefficients from the Fast 
Fourier Transform multiplied by the conjugate of the coefficients. 

Maximum of Wavelet 

 

Taking the maximum of the wavelet coefficients from the DHWT of 
the image. 

Log Energy Entropy of the Wavelet Taking the log energy entropy of the wavelet coefficients from the 
DHWT of the image. 

 

4.5. MFE-based Classification Dataset Preparation 

For MFE-based classification, the image dataset was analysed in terms of the features as previously 
discussed, reducing the overall number of features fed into the classifier. The resulting dataset sizes for 
simulation and experimental classification were 2880x10 and 1800x10 respectively. 
 

4.6. Principal Component Analysis 

PCA uses the maximum variances of a dataset to reduce the dimensionality and to create principal 
components (PCs) that can be used as new features for the classification. Thus, in this work, we applied 
the technique to the pixel-wise simulation and experimental datasets to determine how PCA can aid in 
reducing time and memory costs as well as to determine how PCA may affect the classification accuracy. 

For each training-test set pair (further explained in section 5), we applied PCA to the training set 
to establish the training set PC, transformation coefficients, and scores. Then, the training transformation 
coefficients were applied to the corresponding test set in order to gather the test scores for assessing the 
classifier. The training and test sets were centred and normalized based on the training set mean and 
standard deviation. This ensures the test set is not contaminated by previous knowledge of the training 
set. The applied PCA methodology is similar to one applied by Howley et al 2006.  

We found that the first 100 components explained 99.997% of the total variance. Thus, we 
analysed the performance for first 100 components to determine the best number of PCs to use in order 
to maximize the generalized accuracy. Then, this best number was selected for use in the test sets. 

 

5. Classifier & Classification Architecture 
 

5.1. Classifier 

Support-vector machines (SVMs) are a commonly used machine learning algorithm. SVMs transform the 

data into a high-dimensional space in order to separate the two classes of input data using a hyperplane 

(Schölkopf 2002). Linear SVM attempts to separate the input data by using a line to define the hyperplane 

that maximizes the margins between the two classes in the higher dimensional space. This machine 

learning algorithm has previously been shown to be effective for bladder monitoring on raw voltage data 

(Dunne et al 2018a). The Gaussian Radial Basis Function (GRBF) is another commonly used kernel for 

SVM in medical imaging studies (El-Naqa et al 2002; Santorelli et al 2014b). To examine the impact of 

kernel choice in bladder state detection, we compare linear SVM to GRBF SVM.  

  Specifically, in this work, we use SVM with both kernels to classify ‘not full’ and ‘full’ bladder 
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states. Classification with both kernels is performed with each feature type. We examine the effect of each 

factor, e.g. bladder volume and conductivity, on classification accuracy. Further, we use Bayesian 

Optimization (MathWorks 2018) to minimize the generalization error by adjusting the hyperparameters: 

the box constraint and the kernel scaling factor. This process helps prevent overfitting. 

 
5.2. Classification Architecture 

To train and evaluate the classifier, we use 10-fold testing as described in (Li et al 2017; Dunne et al 
2018a). The method repeats the training and testing 10 times, never testing again on the same 
observations. The advantage of 10-fold testing is that we get a more generalized error, which is important 
for BVM using EIT as the known factors such as urine conductivity vary both intra-individually and 
inter-individually (Schlebusch et al 2014b). The classification architecture and dataset splits are 
described in figure 5.  

To ensure that the training is generalized, we perform 10-fold cross-validation with Bayesian 
Optimization to choose the ideal box constraint and kernel scaling factor. These parameters are chosen 
based on the lowest generalized error in the cross-validation and are then used for the final trained 
classifier with the test set. The architecture applies to both pixel-wise and FE-based classification. 
However, in FE-based classification, unsupervised feature selection is performed on the training data. 
This process is further outlined in section 6. 
 

 
 

Figure 5: Classification architecture for both simulation and experimental scenarios. The 
architecture ensures fair testing of the dataset by never testing on the same test set during each of 
the 10 iterations. 

 

 

6. Feature Selection 
 

Two methods of FE are applied in this paper, MFE and PCA. Both aim to reduce the complexity of the 

dataset in order to improve performance in terms of time, memory and possibly accuracy. In order to 

choose the best performing features for each FE method and the individual classifiers, feature selection 

techniques were applied. These are further discussed in the following subsequent subsections. 

 

6.1. MFE Feature Selection 

In order to rank the important features, the unsupervised Laplacian Score (He, Cai and Niyogi 2005) was 

employed for MFE-based classification. The main assumption is that two data points close together relate 

to a single class (He, Cai and Niyogi 2005). The algorithm is unsupervised, thus, the algorithm can be 

applied on the whole training dataset regardless of the supervised processes without biasing the result.  

We applied the feature selection algorithm (using Euclidean distance to form the weight matrix of 

the Laplacian score) to the training data and then, the 10-fold validation was run with both SVM kernels. 

The performance of the number of features extracted was determined by the averaged generalized 

accuracy from the cross-validation process. This process was carried out by first using only the highest 

ranked feature and then sequentially adding features until all 10 were included in the training set. The 

generalized accuracy for each number of ranked features is given in figure 6. 
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Figure 6: Analysing the optimum number of features for the MFE-based classification using the 
generalized accuracy gathered from the cross validation and Bayesian optimization. The features 
were added based on the ranking for feature selection.  The highest generalized accuracy is 
observed at 9 features for Linear SVM and at 10 features for GRBF SVM, thus 9 and 10 features 
are our optimum number of features from the feature selection process for each classifier, 
respectively.  
 

From figure 6, the general trend is that as features are added, the generalization accuracy increases. For 

linear SVM, the 2nd and 10th highly ranked features (perimeter of the segment and the ‘x’ normalized 

COM, respectively) did not increase generalization accuracy. However, in combination with lower ranked 

features, the perimeter of the segment did contribute to higher generalized accuracies. Thus, based on our 

chosen features and the ranking, the top nine features were chosen for FE-based classification with linear 

SVM. In other words, all features are used except for ‘x’ normalized COM.  

 For the GRBF SVM, feature 6 (the elliptical area) did not increase the generalized accuracy. 

However, when the features were put in combination with more features of lower ranking, the generalized 

accuracy was increased. Therefore, all 10 features were beneficial to the GRBF SVM and thus, were used 

in the FE-based classification.  
 

6.2. PCA Component Selection 

Having reduced the number of components (discussed in Section 4.6), the generalized accuracy was 
established for each classifier and set of components on the training set. The generalized accuracies are 
given in figure 7. 
 
 
 
 
 
 
 
 
 
 

Figure 7: Determining the optimum number of input PCs for PCA-based classification. The 
GRBF SVM outperforms linear SVM in terms of generalized accuracy on the 10-fold validation 
with Bayesian Optimization. However, both kernel SVMs have their maximum generalized 
accuracy at 100 PCs. 

 

For both GRBF and linear SVMs, the best generalized accuracy is when all of the first 100 components 

are given to the classifier. Thus, we use 100 components to test the PCA-based classification on the test 

sets. 
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7. Results & Discussion 
 

In this section, we discuss the results of both pixel-wise and FE-based classification of simulation and 

experimental data. We investigate how the various parameters of bladder volume, urine conductivity, 

reference data, and noise impact the classification accuracy. We also examine where and why the most 

misclassifications occur. 

 

7.1. Simulation Results & Discussion 

For the full simulation dataset, the performance metrics of accuracy, sensitivity, and specificity were 

calculated from the classification outcomes with each feature type (pixel-wise, MFE-based, and PCA-

based). The average value for each performance metric over 10-fold testing is given in tables 4, 5, and 6, 

for the different feature types respectively. For all feature types, the GRBF SVM outperforms linear SVM, 

showing the GRBF kernel best separates the features from the given datasets. For these scenarios, the 

GRBF SVM tends to prioritize the sensitivity while the linear SVM tends to prioritize the specificity. 

Favouring the sensitivity is preferable in this application, in order to alert the child to go to the toilet 

before involuntary urination occurs. To further prioritize the sensitivity, the misclassification cost may be 

adjusted for training in future work. 

Between each of the three feature types in tables 4-6, PCA-based classification performs the best 

with the test set accuracy of 98.61 ± 1.88%. This result surpasses the next-best performer, pixel-wise 

classification, by approximately 3%. This outcome is not surprising as the use of PCA in classification 

with SVM has been previously shown to help improve the overall classification accuracy of high-

dimensionality data (Howley et al 2006). The MFE-classification suffers the worst classification accuracy 

of the three techniques. However, only 10 features are employed compared to 100 features or more for 

both pixel-wise and PCA-based classification. Despite this, for this specific application (with a long-term 

goal of a wearable, wireless bladder monitor), the accuracy may be sacrificed if reduced memory is 

needed. This could make MFE-based classification more desirable.  

To determine where the classifiers suffer in terms of accuracy, we analysed the misclassified 

bladder volumes, urine conductivities and references. For this analysis, we used the best performing 

kernel, GRBF. We found that approximately 91.80%, 64.04%, 95% of the bladder volumes were 

misclassified around 20 ml of the 300 ml bladder separation volume for the pixel-wise, MFE, and PCA-

based classification, respectively. This outcome is in line with our previous study on the classification of 

the raw voltage data, where the biggest contributors to misclassification were the bladder volumes near 

the bladder state separation and low SNRs. 

In terms of the urine conductivity, the lowest urine conductivity of 0.75 S m-1 accounted for the 

largest proportion of the misclassifications (approximately 42%) across the three urine conductivities and 

three feature types. This was followed by 2 S m-1 with around 30% and 3.25 S m-1 with around 28% of 

the total misclassifications. The majority of these misclassifications at 0.75 S m-1 occurred for the bladder 

volumes between 280-320 ml. The reason for the poor performance at low urine conductivities may be 

due to difficulty in discriminating between close bladder volumes as there is a decreased contrast in pixel 

intensities between the reference conductivity and the urine conductivity at 0.75 S m-1. 

The third and final factor that we varied was the reference image. Reference images were varied 

across  two volumes with three conductivities each. The 50 ml reference tended to cause more 

misclassifications than the 30 ml reference by a maximum of 15% of the total misclassifications across 

results with all feature types. However, for PCA-based classification, there was no difference in the 

number misclassified by the 30 ml and 50 ml reference images. The difference in misclassification 

between the reference conductivities at 30 ml and 50 ml was small (within 13% of all misclassified) across 

results with all feature types. However, it is important to note that at 50 ml, the majority of 

misclassifications were at a conductivity of 0.75 S m-1, highlighting the weaker contrast hypothesis for 

the most misclassifications at lower urine conductivities. 

Thus, for bladder state image classification, the bladder volumes around the bladder state 

separation volume had the biggest role in misclassification. 
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Table  4. Pixel-wise simulation classification results for both classifiers 

Metric GRBF SVM Linear SVM 

Accuracy 95.76 ± 3.58% 92.64 ± 1.94% 

Sensitivity 96.08 ± 3.98% 91.96 ± 2.98% 

Specificity 95.51 ± 3.54% 93.35 ± 2.49% 

 

Table  5. MFE-based simulation classification results for both classifiers 

Metric GRBF SVM Linear SVM 

Accuracy 84.17 ± 2.89% 77.50 ± 2.90% 

Sensitivity 86.79 ± 2.68% 76.26 ± 3.30% 

Specificity 81.70 ± 5.83% 78.83 ± 4.07% 

 

Table  6. PCA-based simulation classification results for both classifiers with 100 components 

Metric GRBF SVM Linear SVM 

Accuracy 98.61 ± 1.88% 92.47 ± 1.19% 

Sensitivity 98.72 ± 1.47% 91.93 ± 2.55% 

Specificity 98.45 ± 2.53% 93.03 ± 1.42% 

 

7.2. Experimental Results & Discussion 

The performance metrics obtained with the experimental data are given in table 7 for MFE-based 

classification only, as both pixel-wise and PCA-based classification achieved a classification accuracy of 

99.99% or greater on the test set for both SVM kernels. As in the simulation results, and as expected, 

pixel-wise and PCA-based classification outperformed MFE-based classification.  

There are a number of factors that could lead to the superior experimental performance relative to 

simulation. The simulation dataset included more bladder volumes around the bladder separation volume 

than did the experimental data, i.e. ±20 ml in phantom experiments compared to ±10 ml for the simulation 

data. We observed in the simulation results that most bladder volumes were misclassified around the 

bladder state separation (300 ml). Thus, we can confidently classify the phantom bladder state within  

20 ml volume resolution with the pixel-wise and PCA-based classification. For bladder state 

classification, smaller volume resolutions do not pose a problem as the classifier can be biased to 

prioritizing either the sensitivity or specificity. 

The simulation dataset was also generated with a high level of noise (SNR of 40 dB) that could 

possibly mimic some of the unknown real-world factors. Whereas, in the experiment, we used a phantom 

setup without any movements, and used commercially available EIT hardware that has an unknown 

(unpublished) SNR. However, typical EIT hardware has SNRs between 60-80 dB (Avery et al 2017). In 

order to validate and confirm this result, we further ran the simulation with the same scenarios as in table 

1 but with a SNR of 80 dB. With 80 dB SNR, an accuracy of 100% was achieved with both kernels for 

pixel-wise and PCA-based classification. Similarly, using the GRBF SVM MFE-based classification, we 

found an accuracy of 97.60 ± 0.87%.  This result is similar to the experimental results for the same kernel, 

thus, indicating that the data had a high SNR. 

 With the experimental data, the MFE-based classification performed comparably well with both 

kernels, having accuracies of over 94%. Overall, the behaviours observed with the experimental data with 

respect to variations in bladder volume, conductivity, and the reference were similar to those observed in 

the simulation results. 
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Table  7. MFE-based experimental classification results for both classifiers 

Metric GRBF SVM Linear SVM 

Accuracy 99.83 ± 0.37% 94.78 ± 0.91% 

Sensitivity 99.65 ± 0.79% 92.69 ± 1.90% 

Specificity 100 ± 0% 96.96 ± 1.93% 

 

7.3. Computational & Memory Cost 

In certain systems, power and/or memory size may be limited. In this case, classification accuracy may 

be traded for lower training time memory costs. Feature extraction helps in reducing the number of 

features required, which can result in lower training times and memory space. Thus, we assess how each 

feature type performs under training times and size of the dataset. The factors discussed in this paper are 

very patient-specific and therefore, ideally, the device needs to be trained on the data collected from the 

user. This may be done over a specific training period. The training time was used (rather than the test 

time), as this is where most of the time is spent in generating a classification result. The simulation dataset 

(the largest and most complex) was used for the analysis of cost of each feature type. For each kernel and 

feature type, the training was performed 3 times on a 7th generation Intel® Core™ i7 processor with 48 

GB of 2133 MHz random access memory. The Bayesian Optimization was parallelized on the 4-core 

system. The training time results are given in table 8 and the 10-fold dataset sizes are given in table 9.  

The GRBF kernel had the fastest training times regardless of feature type, as this kernel more 

easily separated the data compared to the linear kernel. The MFE-based classification had the quickest 

training times relative to the other feature types, but the MFE-based classifiers were also given the fewest 

number of features (9-10 features). 

 

Table  8. Runtime cost for each classifier and each feature type 

Feature Type 
GRBF SVM Training Time 

(Minutes) 

Linear SVM Training Time 

(Minutes) 

Pixel-wise 30.66 ± 1.07 276.66 ± 19.18 

MFE 4.82 ± 0.57 131.37 ± 8.73 

PCA 5.39 ± 0.22 258.68 ± 3.44 

 

 

In terms of memory cost with the 10-fold dataset, the MFE-based classification with the lowest 

number of features had the lowest memory cost. This could be advantageous in applications where memory 

space is costly or not available and the accuracy can be sacrificed. Each of the datasets for MFE and PCA-

based classification require less than one seventh of the memory of pixel-wise datasets, providing a large 

saving on hardware.   

Overall, in terms of the classification performance, training time and memory, PCA-based 

classification with the 100 features seems to be the optimum choice for image classification with bladder 

EIT images. 

 

Table  9. Memory cost for each classifier and each feature type 

Feature Type Number of Features 10-Fold Dataset Size  

Pixel-wise 704 1.64 GB 

MFE 
- Gaussian 
- Linear 

 
10 
9 

 
36.91 MB 
34.61 MB 

PCA 100 232.75 MB 
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7.4. Image Classification & Voltage Data Classification 

In this study, we hypothesized that adding spatial information would improve classification when 

compared to voltage data classification that we previously studied (Dunne et al 2018a). In our previous 

work, we analysed raw voltage data classification performed with the factors of different SNRs (including 

40 dB), bladder volumes, and urine conductivities, using linear SVM. Linear SVM with the raw voltage 

data resulted in a classification accuracy of 98.07 ± 0.27%. This performance was better than linear SVM 

accuracy found with image data in this study. However, the GRBF kernel on the image data slightly 

outperformed the linear SVM on the raw data (98.61 ± 1.88% vs. 98.07 ± 0.27%, respectively). Thus, 

showing that image classification is a feasible option for the application. It is also important to note that 

image classification requires another factor that the raw data does not, i.e., a reference image. This factor 

could explain the decrease in performance between the linear SVMs raw and image data performance 

along with the linear approximation of the image reconstruction algorithm GREIT. 

Further work is needed in both a direct comparison with the raw and image data and  to explore 

how clinical factors (posture, movement, contact, etc.) could impact image classification accuracy and to 

further improve classification with pre-processing to reduce noise. However, overall, image classification 

shows promise for aiding in bladder EIT applications. 

 

8. Conclusion 

In this study, we performed the first machine learning classification on bladder EIT images. We used 

SVM classifiers to classify bladder state with complex datasets with varying bladder volume, urine 

conductivity, and reference data. The classifiers were tested on both simulation and experimental image 

data. In simulation, we applied high levels of noise (SNR of 40 dB) in order to mimic the effects of 

unknown real-world factors. We also investigated using GRBF and linear SVM kernels with three 

different datasets extracted from the image datasets: pixel-wise, MFE and PCA-based image 

classification.  

We achieved high test set accuracies between 77-100% in our study. The biggest challenge in 

bladder state image classification is classifying the bladder volumes within ± 20 ml of the bladder state 

separation volume (300 ml in this study). However, in order to suit the needs of those with urinary 

incontinence, the sensitivity can be prioritized in the training of the classifier.  

We found the best overall classification method in terms of classification performance was the 

combination of PCA with GRBF SVM (with an accuracy of 100 ± 0% in experiment and 98.61 ± 1.88% 

in simulation). Also, the classification performance from this combination was comparable to our 

previous raw voltage classification study, indicating viability of bladder EIT image classification. PCA-

based classification was found to offer the best trade-off between classification performance and the costs 

of training time and memory. With the experimental data, we have shown that the bladder state can be 

confidently classified within 20 ml volume resolution using the classification techniques in this paper. 

Future work will include testing classification performance with varying body mass, posture, electrode 

contact and movement, changing of belt locations, and altering the image reconstruction setting such as 

the hyperparameters and the number of pixels in the images. Failing electrodes and compensation 

algorithms should be analysed for the application in the future, such as in (Mamatjan et al 2013). Also, 

other future work includes investigation of the using machine learning for not full and full classification 

compared to simple thresholding after transformation of image data to bladder volumes. 

Overall, this work demonstrates the promise of EIT as a bladder monitoring support tool for those 

suffering from urinary incontinence. 
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