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Deep Neural Network and Data Augmentation 
Methodology for off-axis iris segmentation in wearable 
headsets  

Viktor Varkarakis1, Shabab Bazrafkan2, and Peter Corcoran3 

Abstract 
A data augmentation methodology is presented and applied to generate a large dataset of off-
axis iris regions and train a low-complexity deep neural network. Although of low complexity 
the resulting network achieves a high level of accuracy in iris region segmentation for 
challenging off-axis eye-patches. Interestingly, this network is also shown to achieve high 
levels of performance for regular, frontal, segmentation of iris regions, comparing favorably 
with state-of-the-art techniques of significantly higher complexity. Due to its lower complexity 
this network is well suited for deployment in embedded applications such as augmented and 
mixed reality headsets.  

Keywords:Deep Neural Networks, Data Augmentation, Off-axis, Iris Segmentation, AR/VR 

1. Introduction 
Data augmentation is a common technique in Deep Learning and is frequently exploited by 
researchers in order to overcome the obstacle of limited labelled data. But even where large 
datasets are available using appropriate data augmentation techniques can improve the 
distribution of training samples and reduce overfitting during training. In turn this increases 
the generalization of the trained network and improves network accuracy & robustness.  
Commonly used data augmentation techniques involve rotation, translation, flipping, re-sizing 
or affine transformation of data samples.  Other well know techniques include adding noise, 
motion or optical blur, or varying image contrast or gamma.  These techniques are 
computationally inexpensive (Krizhevsky, Sutskever, & Hinton, 2012) and have been 
previously used successfully to reduce overfitting in training a CNN for the ImageNet Large-
Scale Visual Recognition Challenge (ILSVRC) (Russakovsky et al., 2015), and achieved state-
of the-art results at that time. 
Data augmentation methods have been widely used in deep learning, and the selection of an 
appropriate data augmentation strategies can be more important  to solving a machine learning 
problem than the choice of a particular neural-network structure (Goodfellow, Bengio, & 
Courville, 2016; Shijie, Ping, Peiyi, & Siping, 2017).  
In this work we focus on presenting and validating a new data-augmentation technique targeted 
to optimise the performance of off-axis iris segmentation. Our results show promising levels 
of accuracy for off-axis segmentation and the resulting trained neural network has performance 
that is competitive  with state-of-art frontal iris segmentation networks of much greater 
complexity. This illustrates the powerful generalizing capabilities of our augmentation 
methodology.   
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The core of this work takes high-resolution frontal iris datasets as a starting point for generating 
a corresponding set of off-axis data samples. A similar approach can be adopted and applied to 
create a set of off-axis data samples from any frontal object view, but in this work we focus on 
the problem of off-axis iris segmentation as this is a new, emerging challenge for user 
authentication on Augmented and Mixed reality headsets.    
Biometric user authentication is available on consumer devices, including smartphones, using 
facial recognition (Darwaish, Moradian, Rahmani, & Knauer, 2014; Samangouei, Patel, & 
Chellappa, 2017; Vazquez-Fernandez & Gonzalez-Jimenez, 2016) and fingerprint biometric 
(Bakir, Chesler, & Torriente, 2016; Cherapau, Muslukhov, Arachchilage, & Beznosov, 2015; 
De Luca, Hang, von Zezschwitz, & Hussmann, 2015; Goode, 2014; Ring, 2015; Tipton, II, 
Sershon, & Choi, 2014). The broad adoption of biometrics on consumer devices was originally 
discussed in (PM Corcoran, 2013) with additional discussion of the impacts in several 
following articles (P. M. Corcoran, 2017; P Corcoran & Costache, 2016; Peter Corcoran, 
2016). Being a near ideal biometric, the iris of the human eye is well-suited to many consumer 
applications, but iris recognition is traditionally implemented in a controlled environment and 
under constrained acquisition conditions.  
Authentication requirements in consumer devices are evolving beyond today’s mobile devices. 
New virtual reality (VR) and augmented reality (AR) headsets provide a gateway to  
sophisticated virtual worlds and online services (Kress, Saeedi, & Brac-de-la-Perriere, 2014; 
Linao, 2016; Timekeeper, 2017). In fact researchers have been working with Augmented 
Displays for more than 20 years (Bhorkar, 2017; Mann, 2001, 2004, 2013; Mann & Fung, 
2002; Starner et al., 1997; Tang, Aimone, Fung, Marjan, & Mann, 2002). The most recent mass 
market experiment with a wearable, augmented/mediated-reality display, that could be worn 
on a day-to-day basis, was Google Glass (Ackerman, 2013; Hayes, 2016; Mann, 2013). Glass, 
as it became known, was considered to be a game changing technology for a few years across 
a wide range of industry sectors (Elise, 2014; Fox & Felkey, 2013; Muensterer, Lacher, Zoeller, 
Bronstein, & Kübler, 2014; Schreinemacher, Graafland, & Schijven, 2014). But ultimately, the 
product was withdrawn (Cave, 2015).  
A key challenge with AR/VR headsets is that, lacking a physical keyboard they do not provide 
an intuitive mean of user authentication. The weak authentication available in Glass (Ching & 
Singh, 2016; Hayes, 2016; Yadav, Ionascu, Ongole, Roy, & Memon, 2015) subsequently led 
to various attempts to refine and improve on the basic authentication of the headset (Chan, 
Halevi, & Memon, 2015; Chauhan, Asghar, Kâafar, & Mahanti, 2016; Peng et al., 2017). 
Ultimately, the device authentication was simply not adequate and led, in part, to its withdrawal 
from the market.     
This leads us to consider how the next generation of wearable AR/VR vision systems might 
implement a more seamless and intuitive authentication mechanism without sacrificing 
security and robustness.  The implementation of a face recognition system is not practical, as 
the form-factor of an AR/VR head-set does not allow to capture a full facial image. However, 
with the reduction in size and cost of multi-cameras systems on mobile devices it is now 
practical to consider that rear-facing (i.e. user-facing) camera systems can be incorporated into 
such headsets. One important driver for rear-facing cameras is the use of eye-tracking to 
dynamically determine the wearer’s point of gaze (PoG) which is important for accurate 
AR/VR rendering (Cognard, Goncharov, …, & 2018, n.d.; Rompapas et al., 2017).  

Iris authentication is a proven and reliable biometric trait with high distinctiveness, permanence 
and performance (Prabhakar, Pankanti, & Jain, 2003). The use of iris recognition on consumer 
devices is explored across multiple works (Peter Corcoran, Bigioi, & Thavalengal, 2015; S 



Thavalengal, Bigioi, & Corcoran, 2015b; Shejin Thavalengal, Andorko, Drimbarean, Bigioi, 
& Corcoran, 2015; Shejin Thavalengal & Corcoran, 2016) and the importance of accurate iris 
segmentation, particularly in consumer imaging devices, is identified as a key challenge 
(Bazrafkan, Thavalengal, & Corcoran, 2018; Shejin Thavalengal, Bigioi, & Corcoran, 2016). 
In the iris authentication workflow, failed segmentations represent the single largest source of 
error (Erbilek, Da Costa-Abreu, & Fairhurst, 2012; Heinz Hofbauer, Alonso-Fernandez, Bigun, 
& Uhl, 2016; Proença & Alexandre, 2010). In addition to its role in improving the performance 
of an iris-based authentication system, the accurate segmentation of iris regions, can be used 
successfully for eye-gaze estimation (Hammal, Massot, Bedoya, & Caplier, 2005). Eye-gaze 
as mentioned is a key element of various user-interface modalities for wearable AR/VR 
displays.  

1.1. Background to the Problem 

 
Figure 1: Virtual Reality Glasses – Patent Number: US D795952S1 (Natsume, 2017) 

As mentioned in the introduction, the next generation of wearable AR/VR vision systems will 
have to implement a more seamless and intuitive authentication mechanism that is available on 
today’s mobile devices. US design patent, D795952S1 (Natsume, 2017) Figure 1, shows an 
example of how the next generation of AR/VR headsets might incorporate a user-facing camera 
for iris authentication or eye-gaze tracking. Figure 2 (Pupil Labs, n.d.)(Kassner, Patera, & 
Bulling, 2014) shows several alternative camera attachments possibilities for contemporary 
AR/VR devices – these are currently targeted for eye-tracking. In all these examples off-axis 
iris images can be readily obtained and provide a suitable biometric for user authentication.  

Note that a key challenge for accurate iris recognition is to accurately segment the iris region 
(Bazrafkan et al., 2018; Jillela & Ross, 2013). Given that camera locations for AR/VR devices 
must be mounted off-axis, often with an oblique perspective and close proximity to the 
observed eye-region the segmentation process for such off-axis iris regions becomes even more 
critical as errors at the segmentation stage are propagated to the feature extraction and pattern 
matching stages of the authentication workflow (Bazrafkan et al., 2018; H Hofbauer, Alonso-
Fernandez, Wild, Bigun, & Uhl, 2014; Heinz Hofbauer et al., 2016). While there are past 
studies on off-axis iris and its effects on recognition rates, the problem of near-eye iris 
segmentation is a new problem arising from the introduction of emerging AR/VR headset 
technology into consumer devices.  



 

Figure 2: User-facing camera attachment system in current AR/VR systems (Pupil Labs, n.d.) 

The majority of existing iris recognition systems follow the authentication workflow as (i) 
image acquisition: an eye image is acquired using a camera, (ii) iris segmentation: eye/iris 
region is located in this image followed by isolating the region representing iris. (iii) iris 
normalization (iv) Feature extraction: relevant features which represent the uniqueness of the 
iris pattern is extracted from the iris region and (v) similarity of the two iris representation is 
evaluated by pattern matching techniques. The described workflow is illustrated in Figure 3, 
highlighting the focus of this work, which is on the second step of the iris recognition 
workflow, the iris segmentation. Specifically, a deep learning technique is implemented to 
successfully segment off-axis close proximity iris images as represented when captured from 
a user-facing camera on an AR/VR device. Although this work is focussed solely on the use of 
deep neural networks for the off-axis iris segmentation task, it could be widely applicable for 
other off-axis region segmentation problems. 

 
Figure 3: Iris authentication workflow. In practical implementation the bulk of authentications errors are due to 
incorrect segmentations (Heinz Hofbauer et al., 2016).(Proença & Alexandre, 2010)(Erbilek et al., 2012) 

1.2. Related literature 
The significant success of deep neural networks at vision-oriented tasks has enabled 
exceptional advancement in semantic segmentation. An instance of that is the DeepLab method 
(Chen, Papandreou, Kokkinos, Murphy, & Yuille, 2014), where instead of using 
deconvolution, they proposed Atrous (‘Holes’) convolution. The proposed method is combined 
with fully connected conditional random fields (CRF) and is able to produce semantically 
accurate predictions and detailed segmentation maps efficiently. In a follow-up publication 
(Chen, Papandreou, Kokkinos, Murphy, & Yuille, 2018), the same team proposed an atrous 
spatial pyramid pooling (ASPP) module, consisting of multiple parallel atrous convolutional 
layers with different sampling rates to improve the segmentation of objects. The DeepLab team 
consistently proposes methods for improving the segmentation standards (Chen, Papandreou, 
Schroff, & Adam, 2017), (Chen, Zhu, Papandreou, Schroff, & Adam, 2018). In another 
semantic segmentation approach (Jiang, Yuan, & Wang, 2018), the authors develop an 
adaptive-depth neural network to obtain the course semantic segmentation results. At the same 
time, the contour information is provided by a contour-aware network. Both the coarse 
semantic information and contour information are modelled in the same way and  combing this 
information the semantic labels are given through global inference based on CRF. Furthermore, 
semantic segmentation methods could provide a solution to road detection, a challenging 
problem in autonomous driving. In (Wang, Gao, & Yuan, 2018), a Siamese neural network  is 
developed which accepts an RGB image, the semantic contour and the location prior, at the 
same time, for the road detection task and the results demonstrate that the network is able to 
learn discriminative features of road boundaries and location prior. More detailed information 



for semantic segmentation techniques using deep learning can be found in (Lateef & Ruichek, 
2019),(Garcia-Garcia, Orts-Escolano, Oprea, Villena-Martinez, & Garcia-Rodriguez, 2017).  

As the work is focused is on the iris segmentation task, a quick overview of similar works in 
the literature are outlined below.  

1.2.1. Frontal Iris Segmentation 
The number of methods in the literature regarding iris segmentation shows that this topic has 
been thoroughly studied but remains an active area of research. When referring to iris 
segmentation algorithms, a good starting point are two highly cited works in the literature: 
Daugman (Daugman, 2009) and Wildes (Wildes, 1997). In the iris matching algorithms 
developed in these research papers iris segmentation is achieved by fitting a circular contour 
to the iris and pupil.  These two methods differ mostly in the way they define the circular 
boundaries on the image information. Daugman’s integrodifferential operator searches the 
entire image pixel by pixel to find the best circular path for the iris and pupil boundaries. While 
Wilde, in order to fit the circular contour, combines an edge detector and Hough transform.  
In continuance approaches were implemented in an attempt to speed up the process. For 
example, Liu (Y. Liu, Yuan, Zhu, & Cui, 2003), uses a Canny edge detector with a Hough 
transform to provide a fast localization of the iris edges with the assumption that the iris texture 
is located between two homocentric circles. Several other methods were developed based on 
Wilde’s and Daugman’s implementations such as: Huang’s (Huang, Luo, & Chen, 2002), 
Khan’s (Khan et al., 2011), He’s and Shi’s (He & Shi, 2006), Lili’s and Mei’s (Lili & Mei, 
2005). 
As noted, the aforementioned methods assume the circularity of the iris outer boundary and 
pupil boundaries. However, Daugman in his follow up work (Daugman, 2007) shows that a 
non-circularity applies to the iris and pupil contour which when defined precisely it has an 
significant influence on recognition performance. Therefore, adopts an active contours or snake 
model to segment the iris. Furthermore, Shah (Shah & Ross, 2009) implemented a geodesic 
active contour to capture the iris texture and experimental result on non-ideal iris images 
designate the effectiveness of this method. Koh (Koh, Govindaraju, & Chaudhary, 2010) 
similarly implemented an active contour model which was combined with the Hough transform 
for iris localization. In another approach, Broussard (Broussard & Ives, 2009), used a feature 
saliency algorithm to identify the measurements that could define the iris boundary. The 
selected measurements are fed to a shallow artificial neural network in order to accurately 
predict the outer iris boundary. A detailed overview of the iris segmentation literature can be 
found in (Bowyer, Hollingsworth, & Flynn, 2008),(Bowyer, Hollingsworth, & Flynn, 2013) as 
well as in (Jan, 2017) where approaches for segmenting non-ideal iris images are reviewed.  

1.2.2. Off-axis Iris Segmentation 
A subsection of non-ideal iris images includes the off-axis iris images. Localizing the iris in 
this type of images has always been a challenge for researchers. In (Dorairaj, Schmid, & 
Fahmy, 2005) , Dorairaj  assumes that a rough estimation of the angle rotation is available in 
order to deal with the off-axis iris problem. Two different objective functions are used to refine 
the estimate. When two images are available from the same iris class, the “ideal” and off-axis 
iris image, the Hamming distance between the ICA coefficients of the two images is calculated. 
In the case that only the off-axis image is available, Daugman’s integro-differential operator is 
used. A projective transformation is applied to rotate the off-axis image into a frontal view 
image once the angle is estimated. In the next step, the image is enhanced and segmented with 
the integro-differential operator. In another approach, Li in (Li, 2006) first fits an ellipse to the 
pupil boundaries. After that based on the information that has been retrieved from the ellipse 



fitting, rotation and scaling are applied to the image, to restore the straight position of the ellipse 
and the circularity of the pupil. The segmentation of iris is then operated by Daugman’s like 
algorithms. A similar approach can be found in (Abhyankar, Hornak, & Schuckers, 2005) 
where the use of projective and affine transformation is explored in order to bring the off-axis 
iris images and match them with frontal iris images. This approach comes with some serious 
downsides, such as the blurring of the iris outer boundaries and the fact that a prior knowledge 
of the angle is required for the transformation. Finally, in (Abhyankar & Schuckers, 2006) the 
use of active shape models to retrieve the elliptical boundaries of the off-axis iris is 
investigated.  

1.2.3. Deep Learning Approaches for Iris Segmentation 
Liu, in (N. Liu et al., 2016) proposed two CNN approaches to segment noisy iris images 
acquired under unconstrained conditions. In the first approach called hierarchical convolutional 
neural networks (HCNNs), three patches taken from different scales of the same image are 
used as input. The HCNN consists of three similar blocks, a combination of convolutional and 
pooling layers that are merged together into a fully connected layer. In the second approach, 
31 convolutional layers and 6 pooling layers are used to compose the multi-scale fully 
convolutional network (MFCNs). Both models are end-to-end, with no requirement for pre- or 
post-processing of the image. Arsalan (Arsalan et al., 2017), introduced a two-stage iris 
segmentation method. The first stage includes a pre-processing of the image and the use of a 
modified Hough Transform to identify the region of interest (ROI). In the second stage, a mask 
of [21 × 21] pixels, based on the ROI defined in the previous stage, is fed to a pre-trained 
VGG-face model which classifies the pixels as iris or non-iris. In a follow up work which is 
focused on segmenting low quality iris images, Arsalan in (Arsalan et al., 2018), proposed a 
densely connected  fully convolutional network (IrisDenseNet), consisting of two main 
components: a densely connected encoder and a SegNet decoder. In a similar work, Bazrafkan 
in (Bazrafkan et al., 2018), presented a network design focused on segmenting iris of inferior 
quality. Four different end-to-end fully convolutional networks are merged into a single model 
using a method known as Semi Parallel Deep Neural Networks (SPDNN). In this way, the final 
model benefits from each of the four distinct network designs. Furthermore from a more 
medical aspect in (Lakra, Tripathi, Keshari, Vatsa, & Singh, 2018) , utilises a DenseNet-121 
which has four convolution blocks to be able to segment iris with cataract or post cataract 
surgery. Finally, since the existence of a large labelled dataset is a prerequisite in order to 
implement a convolutional neural network approach, Jalilian in (Jalilian, Uhl, & Kwitt, 2017) 
to overcome this obstacle, introduced a domain adaption method so that a CNN for iris 
segmentation could be trained with a limited data. 

1.3. Contributions 
The focus of this work is to improve the segmentation of off-axis iris images originating from 
the unconstrained conditions of a user-facing camera on wearable AR/VR device. 
The model proposed is an end to end deep neural network which accepts an off-axis eye-region 
image and generates the corresponding binary segmentation map for the iris region as output. 
Performance evaluation of the proposed model shows advantages over recent iris segmentation 
techniques in the literature which together with its simple, yet efficient design makes it well-
suited for deployment in wearable AR/VR devices. 
Three noteworthy contributions are presented in this work. 

1. Specialized data augmentation methods that generate distorted iris images of size and 
quality typical of the user-facing camera employed on today’s wearable AR/VR 



headsets. These are derived from a high-quality iris dataset together with a 
corresponding ground truth. 

2. By utilising the data augmentation techniques and producing a large number of 
representative data, it enabled us to propose an improved low complexity neural 
network design for the off-axis iris segmentation task with reduced memory and 
computational requirements in comparison with other deep learning state-of-the-art iris 
segmentation techniques while achieving equivalent performance. 

3. A thorough evaluation of the proposed segmentation model is presented on several 
well-known public iris datasets. The presented method is compared with state-of-the-
art iris segmentation techniques. 

 

1.4. Foundation Methods 
1.4.1. Data Augmentation 

Data augmentation techniques and their effectiveness in computer vision have been explored 
in multiple research works.  
In (Taylor & Nitschke, 2017) and (Shijie et al., 2017) the effect of several data augmentation 
techniques (GAN/WGAN, Flipping, Cropping, Shifting, PCA jittering, Colour jittering, Noise, 
Rotation) is investigated, in improving the performance of a CNN in the image classification 
task. Furthermore, researchers have studied ways to implement and automate different data 
augmentation techniques (beyond the traditional techniques) that can boost a CNN’s 
performance.  
In (Perez & Wang, 2017) their method: neural augmentation, allows a neural network to learn 
augmentations that will improve the accuracy of a CNN classifier. Similarly in (Cubuk, Zoph, 
Mane, Vasudevan, & Le, 2018) where their AutoAugment method searches automatically for 
improved data augmentation policies in order for a neural network to yield higher performance 
in the validation set.  
Additionally in (Lemley, Bazrafkan, & Corcoran, 2017), the Smart Augmentation method 
learns automatically suitable augmentations during the training of the neural network. The 
results indicate that this method could be applied for a range of tasks and that by implementing 
this augmentation method a small network achieved better results than those obtained by a 
much larger network. Finally the effectiveness of data augmentation isn’t applicable only to 
computer vision problems but also in audio (Salamon & Bello, 2017),(Schlüter & Grill, 2015). 
Despite the large amount of data available today, there are many problems where data 
collection and annotation poses challenges and thus only small datasets are publicly available. 
In some cases, the data contains sensitive information such as in medical applications or due 
to privacy / legislations reasons, data is not easily accessible.  Also, with the technology rapidly 
growing, new problems arise frequently and in many cases it takes a while before a proper 
dataset is built and made publicly available. The problem investigated in this work is a clear 
example of the later situation. Therefore, data augmentation is utilised to overcome the non-
availability of data due to the aforementioned reasons. Applying the appropriate augmentation 
techniques to available datasets allows to investigate a problem where there are currently no 
existing public datasets and where the collection of a large training dataset poses significant 
challenges. Data augmentation can simulate the features and characteristics of such problems 
without the time, expense and data-collection and annotation challenges associated with 
building a dataset of many thousands of individual subjects. 



In regard to our problem the main focus of the proposed augmentation techniques, is to simulate 
off-axis iris images as captured by a user-facing camera on AR/VR device, as to the best of our 
knowledge such dataset is not available. As shown in Figures 1-2, a possible location of the 
user-facing camera utilized for iris recognition and eye-gaze is below the eye. In that case the 
iris samples obtained will be off-axis in the horizontal and the vertical plane. Main 
characteristics of the iris images taken with a head-mounted device are their elliptical shape 
along with the fact that are not centred, in contrast with frontal iris images where the iris is 
most of the time centred and a more circular shape is obtained. Therefore, the augmentation 
techniques in this work are focused in achieving the described representation. In addition, a 
secondary goal of our augmentation is to introduce effects of images when captured in real-
life, where the samples are not obtained in constrained conditions and a lower quality is 
reported. These augmentation techniques are focused on reducing the contrast between the iris 
and the pupil as well as adding noise to the samples. 

1.4.2. Network Design 

In this work a low complexity network, targeted for deployment in embedded devices is 
designed and trained to generate the segmentation map for low quality off-axis iris images.  
In order to achieve high performance results, when a network is designed, large structures with 
high capacity are favoured. That is translated into CNNs containing millions of parameters, 
which to be used require large memory and high operation cost. Therefore, executing deep 
CNNs requires significant hardware resources which is a limited specification in many 
computational platforms.  
The number of parameters in the proposed network is significantly lower compared to the 
parameters of other deep learning approaches designed for the iris segmentation task. Thus, 
making the proposed network faster and with reduced memory requirements, while attaining 
high performance results in producing the segmentation map for off-axis iris images of low 
quality as represented when captured by a user-facing camera on AR/VR headset and therefore 
well-suited for deployment in such devices. 
The rest of the paper is arranged as follows: In section 2, the datasets used are presented along 
with a detailed description of the augmentation techniques. In section 3, the network design 
and training are explained. In section 4, the results are illustrated and in section 5, the numerical 
evaluation of the proposed method and its comparisons with state-of-the-art segmentation 
techniques are presented. 
Finally, it should be remarked that preliminary results from this research were first presented 
in (Varkarakis, Bazrafkan, & Corcoran, 2018). This article builds on that earlier work with 
more detailed and extensive experimental verifications, exhaustive description of the 
augmentation techniques and direct comparison on off-axis and frontal iris samples with state-
of-the-art iris segmentation techniques. 

2. Datasets and augmentation methodology overview 
In this work, three datasets are utilised. CASIA Thousand (“CASIA Iris Image Database,” n.d.) 
and Bath800 (Rakshit, 2007) are used during the training and testing stages. UBIRIS v2 
(Proenca, Filipe, Santos, Oliveira, & Alexandre, 2010) is used for tuning and testing. Two types 
of augmentation methods are described below. The first type is concentrated on adding real-
world condition effects to the iris images, while the second is focused on augmenting the 
images so that they represent off-axis iris images. The combination of these two types of 
augmentation methods results in iris images as captured by an user-facing camera on AR/VR 



device. Below, the datasets used are presented along with the production of their ground truth, 
and finally, the augmentation techniques are explained. 

2.1. Datasets 
CASIA-Iris-Thousand is a subset of CASIA-Iris V4 dataset. This subset contains 20000 iris 
images from 1000 subjects. The iris images are constrained, high quality and high contrast. 
Bath800 dataset is made of 31997 images taken from 800 individuals. The samples similarly 
to the CASIA Thousand are of high quality and high contrast. Both datasets consist of Near 
InfraRed (NIR) samples. Finally, UBIRIS v2 dataset includes 11102 iris images from 261 
subjects, captured in visible wavelength. The samples are of low-quality as they are taken under 
unconstrained conditions. More detailed description of CASIA Thousand, Bath800 and 
UBIRIS v2 can be found in (Bazrafkan et al., 2018). Samples from the datasets used in this 
work are shown in Figures 4-6. 

 
Figure 4: Eye socket samples from Bath800 dataset 

 
Figure 5:Eye socket samples from CASIA Thousand dataset 

 
Figure 6:Eye socket samples from UBIRIS v2 dataset 

2.2. Ground Truth 
Bath800 and CASIA Thousand are not provided with the segmentation ground truth. However, 
these datasets as mentioned above contain images of high quality, high contrast and are 
captured under constrained conditions. In this work, the binary iris map for these datasets is 
produced using the commercial iris segmentation solution MIRLIN (“MIRLIN,” n.d.). The 
obtained segmentation map is considered in this work as the ground truth. The selection of the 
segmentation algorithm is based on the availability as well as its performance on large-scale 
iris evaluations (Quinn, Grother, Ngan, & Matey, 2013). The same segmentation solution was 
also adopted in (Bazrafkan et al., 2018). The low-resolution segmentations for Bath800 and 
CASIA Thousand are publicly available4. 

 

4 https://Goo.gl/JVkSyG.		



Regarding UBIRIS v2, the manual segmentation generated by WaveLab5 (WaveLab, n.d.), 
available in IRISSEG-EP dataset (H Hofbauer et al., 2014), is used. The manual segmentation 
map is not available for all the samples of the dataset. Segmentation of only 2250 images from 
50 individuals is provided and therefore only these are used in this work. Segmentations 
examples derived from these datasets are shown in Figures 7-9. 

 

Figure 7: Bath800 automatic segmentation results 

 
Figure 8: CASIA Thousand automatic segmentation results 

 

 

Figure 9: UBIRIS v2 manual segmentation results 

2.3. Data Augmentation  
In order to accurately train a deep neural network, a large number of labelled training samples 
are required. These samples should correctly characterize the imaging problem so that it 
enables the deep learning process to train an accurate model.	To the extent of our knowledge, 
there isn’t available a dataset with iris samples captured from a user-facing camera on AR/VR 
device. Even if such datasets were available it would require an accurately marked 
segmentation ground truth – a task which poses new problems over more conventional frontal 
iris images. Thus, in order to obtain a large number of labelled samples to enable the training 
of a DNN for AR/VR iris segmentation task, some specialized augmentations of existing 
datasets are required. To find the best augmentations for the iris images, precise observations 
have been made on iris images obtained by a user-facing camera on head-mounted displays. 
The augmentation techniques are divided into two categories. The first category of 
augmentation techniques is focused on representing real-life scenarios where low-quality 
images are obtained. Based on research that has been done in (S Thavalengal et al., 2015b)(S 
Thavalengal, Bigioi, & Corcoran, 2015a), the difference between high-quality constrained iris 
images and wild ones is linked to contrast, blurring, and shadows. Consequently, to simulate 
the effects of real-world conditions in iris images the contrast is changed, motion blurring and 
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shadows are added to the images. The augmentation techniques used to deteriorate the image 
quality and simulate unconstrained conditions are derived from (Bazrafkan et al., 2018). The 
objective of the second category's augmentation techniques is to simulate the representation of 
iris images as captured by a user-facing camera on an AR/VR device. This representation 
includes off-axis iris images mainly of elliptical shape and not centred in the image.  
The augmentation techniques are detailed in the sections 2.3.1 and 2.3.2. The workflow that is 
followed for the augmentation of the datasets is described in the section 2.3.3. In this work all 
the samples are resized to [120 × 160] using bilinear interpolation. Smaller resolution samples 
are preferred rather than larger ones as it accelerates the training of the deep neural network. 

2.3.1. Data Augmentation: Simulating unconstrained conditions 
The first type of augmentation techniques is applied to ensure that the samples used to train the 
network represent real-life scenarios. The distribution of the input data plays a vital role in 
what the network learns and how it will behave during the testing stage but also in 
unconstrained situations. As mentioned earlier, to simulate real-life captured iris images of low 
quality, the contrast of the samples is changed, blurring and shadows are added to the samples 
with the following augmentation techniques. The techniques mentioned below are derived from 
(Bazrafkan et al., 2018) and used with slight changes. The original code of these augmentation 
techniques is available.6 

2.3.1.1. Augmentation 1: Image Contrast 
The iris images captured by an AR/VR device in real-world conditions compared to the high-
quality, high-resolution NIR iris images acquired in constrained conditions have significant 
differences. The differences are with regard to the amount of contrast inside and outside the 
iris region as in unconstrained scenarios the samples are suffering from low contrast. Another 
difference noted is the intensity properties of the low-quality samples inside and outside the 
iris region. The region inside the iris is darker than the same region in high-quality samples. 
For the outside region of the iris the level of brightness cannot be categorized as it could differ 
from overexposed and strongly bright till very dark. To bring these properties to high-quality 
images, the contrast inside and outside the iris region is modified separately. This is achieved 
with the use of histogram mapping. The following histogram mapping equations are used to 
reduce the contrast of the iris images. The equation (1) is used for the region outside the iris 
and (2) is used for the region inside the iris. 

𝑦!"# = 𝑛𝑜𝑟𝑚(tanh,3 ∗ / $
%&&

− 0.5	56 + 𝒰(−0.2,0.3))) ∗ 255    (1) 

𝑦'( = 𝑛𝑜𝑟𝑚(tanh ,3 ∗ / $
%&&

− 0.45	56 − 𝒰(0,0.2))) ∗ 255     (2) 

Where 𝑥 is the input intensity in the range [0,255], 𝑦 is the output intensity in the same range, 
𝒰(𝑎, 𝑏) is the Uniform distribution between 𝑎 and 𝑏, and the norm function normalize the 
output between 0 and 1. As mentioned above the outside and inside region of iris suffers from 
low contrast, but the brightness differs. For the region outside of the iris, the histogram mapping 
with the equation (1) can result is bright, dark, or normally exposed low contrast outputs. For 
the region inside the iris, where the equation (2) is used, the contrast is reduced while the 
brightness of the iris region is reduced as well. Different equations are used to reduce the 
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contrast in the inside and outside region of the iris so that variety is obtained. An example of 
this step is shown in Figure 10. 

 
Figure 10:For inside the iris region, the contrast is reduced, and the region is getting darker. The outside of iris 
is altered by decreasing the contrast. 

2.3.1.2. Augmentation 2: Motion Blur 
Wearing AR/VR devices, head movements are inevitable. These movements can cause motion 
blur. Therefore, to mimic these situations and train the model in order to be efficient in these 
cases, motion blurring has to be introduced to the training images. In order to include this 
effect, the image is passed through a motion blur filter, applying the linear camera motion by 
𝒰	(3,7) pixels in the direction 𝒰	(−𝜋, 𝜋),	where 𝒰	(𝑎, 𝑏) is the Uniform distribution between 
𝑎 and 𝑏. The low contrast image after applying motion blur is shown in Figure 11. 

 
Figure 11:Applying motion blur in a random direction to the low contrast image. 

2.3.1.3. Augmentation 3: Shadowing 
In unconstrained conditions, the illuminations scenarios vary.  One main effect produced by 
different illumination directions is shadows. In order to add this effect, the iris images were 
multiplied with the following shadow function: 

𝑦 = 𝑛𝑜𝑟𝑚	(tanh	(2 ∗ 	𝑟𝑎𝑛𝑑𝑆𝑖𝑔𝑛 ∗ (𝑥 − 0.5 + 𝒰(−0.3,0.3)))	) + 𝒰(0,0.1)  (3) 

where 𝑥 is the dummy variable for image column number and y is the coefficient for intensity, 
𝒰(𝑎, 𝑏) is the Uniform distribution between 𝑎 and 𝑏, the norm function normalizes the output 
between 0 and 1, and the 𝑟𝑎𝑛𝑑𝑆𝑖𝑔𝑛 generates a random coefficient in the set	{−1,1} which 
determines the direction of the shadow. The final image after applying shadowing is given in 
Figure 12. 



 
Figure 12:Shadowing applied to low contrast blurred image. 

The segmentation map for these augmented samples is the same as the original segmentation 
ground truth as the structure and position of the iris remains unchanged. 
More detailed information regarding the augmentation techniques simulating unconstrained 
conditions can be found in (Bazrafkan et al., 2018) from where are originated.  

2.3.2. Off-Axis, Near-Perspective Iris Data Augmentation  

The second category contains two augmentation techniques, which their goal as mentioned 
previously is to generate iris images as they appear when acquired by an user-facing camera 
on AR/VR device. As noted in the introduction and illustrated in Figures 1-2, a possible 
location of the camera used for obtaining an iris image that is to be used in iris recognition or 
eye-gaze is below the eye. Therefore, the iris images captured are off-axis in both horizontal 
and vertical plane. The augmentation techniques described below are specialized to produce 
such off-axis iris images. Furthermore, the combination of the two augmentation techniques 
and the multiple ways and different volume that each technique can be applied to an image, it 
allows to represent the iris regions as captured from an user-facing camera on AR/VR device 
from many varying perspectives, as multiple AR/VR headsets exist and each will locate the 
camera in a different position. This is a desired goal as it facilitates the  training of generic 
DNN that is able to segment the off-axis iris region from user-facing cameras installed on 
AR/VR devices and being invariant of the camera’s different set-ups. The code for these 
augmentation techniques is also available7. 
2.3.2.1. Augmentation 4: Spatial stretching/contracting  
The iris images when captured from an AR/VR, are characterized as distorted and with an 
elliptical shape. In addition, the iris is not at the centre of the image as usual. In order to generate 
iris images with these properties, the samples are warped by applying a spatial 
stretching/contracting to the iris images. The stretching is linearly applied to the images. The 
stretching is achieved by mapping every column/row of the image to a new position given from 
𝑦[𝑗] as shown in Figure 13.  

The equations below illustrate how 𝑦[𝑗] is calculated for columns/rows: 
𝜆 = 𝒰(2,17)       (4) 

𝑘[𝑖] =
)!"*+,	

.+/
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𝑦[𝑗] = 𝑅𝑜𝑢𝑛𝑑(𝑎 ∗ 5), 𝑗	 ∈ 	 [2, 𝑠], 𝑦[1] = 1    (8) 
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Figure 13:Workflow of spatial stretching/contracting, illustrating the mapping of columns/rows to a new position 
based on y[j]. 

Where 𝑠 is the length of the columns or rows of the original image depending on where the 
distortion is applied, 𝑡[𝑖] is a vector which includes all the integer values [0, 𝑠 − 1] in ascending 
order and 𝒰(𝑎, 𝑏)	is the Uniform distribution between 𝑎 and 𝑏.  
The first column/row of the original image is mapped on the first column/row of the stretched 
image. The following columns/rows are then mapped in the position determined by the value 
of 𝑦[𝑗]. Depending on which is the desired direction for stretching the image, equation (5) or 
(6) is used in calculating 𝑦[𝑗]. 
The combination of (5) and (6) makes it possible to stretch the images in four main directions. 
If (5) is used for mapping the columns and the rows, the image will be stretched in the right 
and down direction. In case (6) is used for both columns and rows, the image is stretched at 
left and up. Using (5) when mapping the columns and the (6) when mapping the rows of the 
image, will result in stretching the image to the right and up direction. Finally mapping the 
columns using (6) and the rows using (5), the image will be stretched to the left and down 
direction. Each direction has the same probability of being selected when the image is 
stretched. For each distortion and each direction, the amount of stretching applied to the images 
differs on every occasion as well as the volume of the stretching applied to the columns and 
the rows of the image is different, so that variation is injected to the augmented dataset. The 
stretching is applied at first to the columns of the image. The void spaces that are created, are 
interpolated with a weighted nearest neighbour method, which is explained by the following 
equations: 

𝑐[𝑖] =
&('[)])
+$'[)]0

&('[),!])
'[),!]$+

!
+$'[)]0

!
'[),!]$+

	 , 𝑗	 ∈ [1,160]	, 𝑖 ∈ (𝑦[𝑗], 𝑦[𝑗 + 1])  (9) 

Where 𝑓(𝑥) is a function that returns the values of the 𝑥th column/row, 𝑐[𝑖] represents the 
values of the 𝑖th column/row of the stretched image. The values of 𝑦[𝑗] and 𝑦[𝑗 + 1] are the 
positions where the columns or rows of the stretched image have values and the columns/rows 
that need to be interpolated are located between these two positions. Finally, the image is 
contracted as the image is resized to the original resolution [120 × 160] using bicubic 
interpolation. The same process is then applied to the rows of the image. The same workflow 
is used for the ground truth segmentation map in order to obtain the segmentation map for the 
augmented sample.  



The described workflow for the spatial stretching/contracting of an image is illustrated in 
Figure 14. Applying spatial stretching/contracting results in an iris region that is not located in 
the centre of the image and with non-circular iris-pupil structures, as shown in Figure 15 which 
is a usual case in iris images acquired from a user-facing camera on AR/VR headsets. 

 

 
Figure 14:Workflow of spatial stretching /contracting. For this transformation the equations (6) was used to map the columns 
and the rows of image and direct the image in up and left direction. 



 
Figure 15: Spatial stretched/contracted (warped) samples and their corresponding segmentation map. 

2.3.2.2. Augmentation 5: Image Tilting 
A possible location of the camera used for capturing the iris images, as mentioned in the 
introduction and illustrated in Figures 1-2, will be below the eye. Therefore, the iris images 
should be representing samples which when captured, the camera is positioned below the eye 
level. To achieve that effect and also give an elliptical shape to the iris, in this second 
augmentation technique the samples are tilted in two directions: up and left, up and right.  
A projective transformation is applied to the images. This transformation maps the top vertices 
of the image to a new pair of points as illustrated in Figure 16. The values from Figure 16, 𝑎, 
𝑏, 𝑐, and 𝑑 are randomly generated between a range of values, so the image is tilted in the 
desired direction with variation. When the image is tilted up and left the values of 𝑎, 𝑏 are in 
𝒰(0.15,0.45), 𝑐 in 𝒰(0.9,1)	 and 𝑑 in 𝒰(0,0.1). When the image is tilted up and right, the 
values of 𝑎, 𝑏 are in 𝒰(0,0.1), 𝑐 is in 𝒰(0.55,1) and 𝑑 is in 𝒰(0.15, 0.45), where 𝒰(𝑎, 𝑏) 
represents the Uniform distribution between 𝑎 and 𝑏. During this transformation as the image 
shrinks the interpolation used is the nearest-neighbour. The probability of the images being 
tilted in a direction between the two options (up and left / up and right) is the same. 



 
Figure 16:Tilt transformation 

As shown in Figure 16, when the transformation is applied, while mapping the top vertices, to 
the 𝑎, 𝑏, 𝑐 and 𝑑 points, the image is compressed at the boundaries. Since the resolution of the 
image has to stay unchanged, the void spaces around boundaries should be filled to avoid sharp 
edges in the image. Since the void spaces are at the boundaries of the image, there isn't a direct 
way to apply interpolation. Therefore, the value from the edges of the tilted image is extended 
for each column up to the image boundary. The same process is applied to the image rows. 
After this process has been applied in both columns and rows, the average value is assigned to 
the void spaces. Finally, in order to smooth the interpolated areas of the image, a gaussian 
3 × 3 filter with standard deviation 𝜎 equal to 2 is applied to this region.  
The described workflow for tilting an image is shown in Figure 17, and in Figure 18 samples 
are shown where the tilting transformation is applied. To obtain the segmentation map for the 
augmented samples, the same workflow is applied to the segmentation ground truth with the 
only difference being that the void spaces created are filled with black.  

 

 
Figure 17:Workflow of image tilting. 



 
Figure 18:Tilted samples and their corresponding segmentation map. 

2.3.3. Dataset Preparation 
 

2.3.3.1. Workflow of Combining the Augmentations Techniques 
The augmentation techniques are combined in various ways so that the dataset represents a 
generalized and realistic scenario and as a result the trained model can be robust and perform 
well in all the different conditions that one can encounter with iris images acquired from a user-
facing camera on AR/VR device.  
The augmentation techniques are mixed in three ways. Samples are augmented by only using 
the methods for simulating the off-axis, near-perspective iris images. At first, the spatial 
stretching/contracting transformation is applied to an image with 50% probability. In the next 
step, the tilting transformation is applied to the rest of the samples that the first transformation 
was not applied to. In addition to these, for an image that spatial stretching/contracting is 
applied to in the first step, there is a 50% probability that tilting is applied afterwards. In the 
second way, the samples are augmented using only the methods for simulating unconstrained 
conditions. At first, the contrast of all the iris images is modified as explained. Afterwards, all 
the images are passed through the motion filter, and finally, the technique used to introduce 
shadows is applied to the image. The probability that shadows are added to an image is 50%.  
Thirdly, the techniques from the two augmentation categories are combined. Initially, the 
techniques simulating the off-axis, near perspective iris images are applied to an image based 



on the augmentation workflow described above. Later the same image is processed using the 
techniques simulating unconstrained conditions, including contrast reduction, motion blurring, 
and shadowing. In Figure 19, the workflow explained is illustrated.  

 
Figure 19:Workflow of augmentation techniques 

The augmented samples simulate iris images captured using a user-facing camera on AR/VR 
device, frontal iris images affected by unconstrained conditions and AR/VR images affected 
by unconstrained conditions. Bath800 and CASIA Thousand are augmented with all three 
combinations of the augmentation techniques described. UBIRIS v2 was augmented only by 
using the augmentation techniques simulating iris images as represented by an AR/VR device. 
The samples of this dataset as mentioned previously are captured in unconstrained conditions, 
and therefore it will be redundant to make use of the augmentation techniques that simulate 
real-world conditions as they already exist in the dataset of UBIRIS v2.  

2.3.3.2. Dataset Analysis 
In this section a further analysis of the workflow used to combine the augmentation techniques 
is presented, in order to provide a better insight of the dataset created and used in this work.  
As mentioned above, the workflow was designed in that way so that the dataset created to train 
the network represents a generalized and realistic problem. By using the three combinations of 
the augmentation techniques, three different subsets are created as shown in Figure 19, that 
form the main dataset used in this work. The first combination as described earlier uses only 
the augmentation techniques designed to simulate off-axis iris images. This process is used 
twice for each dataset creating the off-axis iris subset. The second combination uses only the 
augmentation techniques that simulate unconstrained conditions. This process is used once for 
each dataset consisting thus the unconstrained condition subset. Finally, the third combination, 



uses the augmentation techniques simulating the off-axis iris images and unconstrained 
conditions. This process is used twice for each dataset formulating the off-axis & unconstrained 
condition iris subset. Bath800 and CASIA Thousand combined consist of around 50.000 
samples. With the use of the described workflow, 250.000 augmented samples are created. The 
off-axis iris subset is 100.000 samples, the unconstrained condition subset is 50.000 samples 
and 100.000 more samples from the unconstrained condition and off-axis iris subset. With the 
addition of the 50.000 original samples from Bath800 and CASIA Thousand, the final dataset 
used consist of 300.000 samples. In Table 1, a further analysis is presented describing the 
percentage of samples, with each augmentation technique or their combination, to the dataset.  
Table 1: Percentage (%) of images with each augmentation technique or combination in the dataset. In this table 
the augmentation techniques are referred as Contrast reduction: Contrast, Motion blur: Blur, Shadows: Shadows, 
Spatial stretching/contracting: Warp and Tilting: Tilt. 

Augmentation Techniques % of images Dataset 
Contrast & Blur ~8.5% Unconstrained condition subset 

Contrast & Blur & Shadows ~8.5% 

Warp ~8.5% Off-axis subset 

Tilt ~16.5% 

Warp & Tilt ~8.5% 

Warp & Contrast & Blur ~4% Off-axis  

& 

Unconstrained conditions subset 

 

 

Tilt & Contrast & Blur ~8.5% 

Tilt & Contrast & Blur & Shadows ~8.5% 

Warp & Contrast & Blur & Shadows ~4% 

Warp & Tilt & Contrast & Blur ~4% 

Warp & Tilt & Contrast & Blur & Shadows ~4% 

No augmentation ~16.5% Original subset 

 
Regarding the UBIRIS v2 as stated above, it consists of samples acquired in unconstrained 
conditions and therefore there is not a necessity of augmenting the samples with the 
augmentation techniques simulating unconstrained conditions. The samples of UBIRIS v2 are 
augmented only with the use of the augmentation techniques simulating off-axis iris images. 
This procedure is operated twice, creating the off-axis iris subset of UBIRIS v2 which along 
with the original samples are used in this work. 
Finally, the element of randomness introduced in the augmentation techniques as well as at the 
way they are combined as explained in the workflow plays an important role to the 
augmentation process. One instance of that is that the direction of the shadowing, stretching or 
tilting is chosen randomly for each image. Also, the volume that an augmentation technique is 
applied to an image is chosen randomly between a range of values. Additionally, as illustrated 
in the workflow a sample is augmented with one or more augmentation techniques combined 
in different ways. These three approaches make it possible that a variety of conditions are 
introduced into the dataset leading to a generalized solution and each time producing unique 
samples with different characteristics and distributions. Examples of augmented samples with 
the use of all three different workflow combinations and their corresponding ground truth are 
in given in Figure 20.  
 



 
Figure 20: Augmented samples and their corresponding ground truth. 

3. Network Design & Training 
In this section the design of the network is presented along with a detailed comparison of its 
complexity with other CNN methods designed for the iris segmentation task followed by the 
procedure of training and fine-tuning. 

3.1. Network Design 
For the segmentation task, a fully convolutional network inspired by (Bazrafkan et al., 2018) 
is used, consisting of 10 layers. The network starts with a 3 × 3 kernel mapping the input (1 
channel) on the first convolutional hidden layer which consists of 32 channels using a rectified 
linear unit (ReLu) as an activation function. The kernel size remains the same throughout the 
hidden convolutional layers, as well as, the number of channels and their activation function. 
Finally, at the output layer (1 channel), the kernel size is 3 × 3, but in this layer, the sigmoid 
activation function is used. Pooling layers were not used as it was observed that the 
performance of the network’s output was decreasing. The design of the network is illustrated 
in Figure 21. 



 
Figure 21: Network Design 

3.2. Complexity Comparison of CNNs for Iris Segmentation 
In this section, the complexity of several CNNs for iris segmentation will be compared with 
the proposed method. When referred to the complexity of a CNN, the main characteristics that 
one shall investigate is the number of parameters, the memory requirements for storing the 
parameters and the number of multiply-accumulate operations (MAC).  
It is common practise that when an architecture of CNN is designed, that deep and large 
structures are favoured thus increasing the possibility of solving the investigated problem or 
promise higher performance from a smaller size CNN. Selecting a CNN with a deeper structure 
rather than a more compact structure, comes with some drawbacks such as increased training 
and execution time as well as generous memory requirements. There are cases, such as the 
proposed CNN, where a low complexity network can produce similar results as a high 
complexity network and as extension make it feasible to eliminate the downsides of a large 
CNN.  
The proposed CNN consist of less than 75k parameters, requiring only 0.28MB of memory to 
store the parameters and 1426.64M MAC for an input image with dimensions [120 × 160 × 1] 
[𝑤𝑖𝑑𝑡ℎ	 × 	ℎ𝑒𝑖𝑔ℎ𝑡	 × 	𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠]. The SPDNN (Bazrafkan et al., 2018) consist of more than 
1M parameters, requiring 35.26MB to store them and 13536.22M MAC for a smaller input 
image of dimensions [98 × 128 × 1]	. Another high performance deep learning method, 
MFCNs (N. Liu et al., 2016) is of high complexity and memory requirements, with 21M 
parameters, needing 82.56MB of memory to store them. The input dimension and MAC in this 
structure are not specified as the input image dimension is not fixed and the number of MAC 
is related to the dimension of the input image. The complexity characteristics of the methods 
mentioned are shown in Table 2. 
In this section is presented the low complexity proposed network, with reduced memory 
requirements resulting into a more efficient solution which is compatible for deployment in 
embedded applications such as AR/VR headsets. Furthermore, in the evaluation of the 
proposed network in section 5, is demonstrated that the low complexity network proposed in 
this work can obtain high performance iris segmentation results in both off-axis and frontal 
samples. The proposed CNN is outperforming other methods in segmenting off-axis iris 
images. Also, despite the fact that the network is designed for segmenting off-axis iris images, 
the results reported in segmenting frontal iris images are comparable to the-state-of-the-art 
SPDNN method of higher complexity and memory requirements.  

 



Table 2:Complexity of CNNs for Iris Segmentation 

Metrics Methods 

Proposed 
Method 

SPDNN MFCNs 

Total no. parameters 74.593 1.101.851 21.643.596 

Parameters size 0.28MB 35.26MB 82.56 MB 

Input size dimensions 

(𝑤𝑖𝑑𝑡ℎ	 × 	ℎ𝑒𝑖𝑔ℎ𝑡	
× 	𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) 

120 × 160 × 1 96 × 128 × 1 N/A 

Total MAC 1426.64M 13536.22M N/A 

 

3.3. Training and Fine-tuning  
3.3.1. Training  
The network is trained on the original and augmented samples of Bath800 and CASIA 
Thousand. The dataset is divided 70% for the training set, 20% for validation set and 10% for 
the test set. 
The training was carried out in TensorFlow library. The Mean Squared Error is used as the loss 
function. The Gradient Descent with Adaptive Moment Estimation (Adam) is used, with a 
learning rate of 1e-4, beta1 and beta2 equal to 0.9 and 0.999 respectively, to optimize the loss 
function. The training is done on a desktop computer with Nvidia GTX 1080 GPU. The 
executable of the trained network is available atError! Bookmark not defined.. 

3.3.2. Fine-tuning 
In this section the process of fine-tuning the original network with the UBIRIS v2 dataset is 
described. Fine-tuning is a concept of transfer learning. Transfer learning is a machine learning 
technique, where knowledge gain during training in one type of problem is used to train in 
another related task or domain. 
The proposed model was trained on the augmented and original samples from Bath800 and 
CASIA Thousand. UBIRIS v2 differs from the other datasets in the fact that it consists of 
visible iris image while Bath800 and CASIA Thousand are taken in NIR domain. Obtaining 
high-performance segmentation results in visible iris samples requires training a new model 
from the beginning or either fine-tune a pre-trained network on a dataset with visible samples. 
As UBIRIS v2 is a small dataset, training a new model is not possible, therefore fine-tuning 
the parameters of the pre-trained network is more functional. The network is trained on NIR 
iris samples and therefore it is excepted that the network transfers the information and tune the 
parameters on the UBIRIS v2 samples, as the context of the task and the datasets are similar.  
Regarding the specifics of fine-tuning, the network is fine-tuned on the augmented and original 
samples of UBIRIS v2. The dataset is divided 70% for the training set, 20% for validation set 
and 10% for the test set. The training was carried out in TensorFlow library. The Mean Squared 
Error is used as the loss function. The Gradient Descent with Adaptive Moment Estimation 
(Adam) is used, with a learning rate of 5e-5, beta1 and beta2 equal to 0.9 and 0.999 
respectively, to optimize the loss function. The tuning is done on a desktop computer with 
Nvidia GTX 1080 GPU. 



4. Results 
The input of the network is a grayscale iris image of 1 channel with dimensions [120 × 160] . 
The output of the network is a grayscale segmentation map with values between [0,1] and of 
the same size and channels as the input. The binary segmentation map is obtained by using a 
thresholding technique, where the values bigger than the threshold are shifted to 1 and the 
others to 0. The threshold value 0.55 is used in this work for the Bath800, CASIA Thousand 
which are datasets containing NIR images. Regarding UBIRIS v2 which contains visible 
samples, after fine-tuning the network to the dataset, the threshold with value 0.4 is selected. 
The output of the proposed model for the different datasets are shown in Figures 22-24. 

 

  
Figure 22: Output of the network for the augmented off-axis and original samples of Bath800. 



 
Figure 23:Output of the network for the augmented off-axis and original samples of CASIA Thousand. 

 

Figure 24:Output of the network for the augmented off-axis and original samples of UBIRIS v2. 



5. Evaluation 
Several metrics are used to evaluate the proposed method and conduct a detailed comparison 
with several segmentation methods of the literature. The metrics used in this work are: 
accuracy, sensitivity, specificity, precision, NPV and F1-score. More information about these 
metrics can be found in (Bazrafkan et al., 2018). Two main experiments have been used to 
evaluate the performance of the proposed network: 

1) Evaluate the proposed network on the off-axis augmented samples:  
The network is trained on the original and augmented samples of Bath800 and CASIA 
Thousand. The network is tested on the off-axis augmented samples of Bath800, CASIA 
Thousand and UBIRIS v2. These are the off-axis subset and off-axis with unconstrained 
condition subset for Bath800 and CASIA Thousand and the off-axis subset for UBIRIS v2, 
as described in the section 2.3.3. In continuance it is compared with the segmentation 
results on these samples from the methods: SPDNN (Bazrafkan et al., 2018), IrisSeg 
(Gangwar, Joshi, Singh, Alonso-Fernandez, & Bigun, 2016) and OSIRIS (Othman, 
Dorizzi, & Garcia-Salicetti, 2016). The test set of the augmented samples is used to test the 
network and the other methods. 

2) Evaluate the network on the original samples from the datasets: 
The network is tested on the original samples of Bath800, CASIA Thousand and UBIRIS 
v2, which consist of frontal iris samples. The test set of these datasets are used for testing 
the proposed method. The results of the proposed network are compared extensively with 
the state-of-the-art SPDNN on the Bath800, CASIA Thousand and UBIRIS v2. 
Furthermore, the results of the network are compared with the available results from other 
segmentation methods of the literature. 

The results presented on UBIRIS v2 are the results of the original network after tuning. 

5.1. Evaluation and Comparison on off-axis Augmented Samples 
In this section the proposed method is tested on the off-axis augmented samples. These samples 
are the combination of the off-axis subset and the off-axis with unconstrained condition subset 
for Bath800 and CASIA Thousand and the off-axis iris subset for UBIRIS v2. The test sets 
from the datasets are used for the testing stage. 

5.1.1. Evaluation 
The proposed network produces high performance results in the datasets Bath800 and CASIA 
Thousand. This is expected as the network is trained on them. On UBIRIS v2 the network is 
able to provide accurate segmentation results but is not able to perform at the same level as on 
Bath800 and CASIA Thousand. The samples of UBIRIS v2 are taken in visible spectrum and 
therefore the distribution differs. The proposed network with tuning is able to produce high 
segmentation results showing that the CNN is able to adopt to a similar task but with different 
distribution.  
In the datasets that the network is trained on, the accuracy and the F1-score and sensitivity 
measurements are higher showing high quality in returning true results and more consistent 
segmentations in comparison with UBIRIS v2. The same applies with the sensitivity and NPV 
metrics showing that the network is able to rule-out non-iris pixels more effectively in the 
trained datasets than the dataset that it was tuned on. Although, the network has higher 
performance in precision and specificity on the UBIRIS v2 dataset, showing greater capability 



in returning real iris pixels in the UBIRIS v2 dataset rather than the Bath800 and CASIA 
Thousand. The results are shown in Tables 3-5. 

5.1.2. Comparison with SPDNN, IrisSeg and OSIRIS 
The proposed method is designed for segmenting low quality off-axis iris images as acquired 
from an AR/VR device. The proposed method is compared with the SPDNN, IrisSeg and 
OSIRIS on the test set of the augmented off-axis samples. The selection of these algorithms is 
based on their availability. Furthermore, the SPDNN is a state-of-the-art segmentation method 
specialized on low quality iris images and IrisSeg and OSIRIS are well-established methods 
with high performance in the iris segmentation task. The SPDNN is trained on the original and 
augmented samples of Bath800 and CASIA Thousand and tuned on UBIRIS v2. The 
augmented samples used in their work are representing unconstrained scenarios. The SPDNN 
is a network with high capacity and large number of parameters as analysed earlier. 
The SPDNN when tested on the off-axis augmented samples is able to provide overall good 
results in accuracy and specificity and average results in precision. The performance of the 
SPDNN is low in the sensitivity and F1-score measurements. The proposed network is 
outperforming the SPDNN in all the evaluation metrics showing higher results and ability to 
segment off-axis iris samples as appear when acquired from a user-facing camera on AR/VR 
device. In regard to IrisSeg and OSIRIS there not able to provide high segmentation results for 
the augmented off-axis samples. The low performance results of IrisSeg and OSIRIS are due 
to the fact that the augmented samples that used are challenging as they simulate off-axis iris 
images in unconstrained conditions. In addition, IrisSeg and OSIRIS were not able to provide 
a segmentation in many cases. The results included for IrisSeg and OSIRIS are only for the 
images that the algorithms were able to provide a segmentation. The results are given in Tables 
3-5. 
Table 3:Comparison of the proposed method with other segmentation methods on the off-axis augmented samples 
of Bath800. A higher value for 𝜇  and lower for 𝜎 is desired. 

Metrics Bath800 

Proposed 
Method 

SPDNN IrisSeg OSIRIS 

Accuracy 𝜇   99.22% 97.03% 96.10% 95.86% 

𝜎  0.62% 1.96% 3.53% 2.80% 

Sensitivity 𝜇   92.98% 58.71% 67.26% 62.16% 

𝜎  8.7% 38.04% 21.82% 35.72% 

Specificity 𝜇   99.62% 99.15% 98.02% 98.00% 

𝜎  0.38% 0.86% 3.53% 2.37% 

Precision 𝜇   93.97 80.34% 75.88% 67.68% 

𝜎  7.41% 19.32% 21.18% 24.11% 

NPV 𝜇   99.52% 97.74% 97.79% 97.60% 

𝜎  0.57% 2.14% 1.72% 2.24% 

F1-Score 𝜇   93.21% 59.90% 68.63% 59.54% 

𝜎  7.70% 35.76% 19.51% 31.78% 



Table 4:Comparison of the proposed method with other segmentation methods on the off-axis augmented samples 
of CASIA Thousand. A higher value for 𝜇  and lower for 𝜎 is desired 

Metrics CASIA Thousand 

Proposed 
Method 

SPDNN IrisSeg OSIRIS 

Accuracy 𝜇   99.40% 97.75% 96.7% 95.81% 

𝜎  0.56% 1.66% 5.52% 2.49% 

Sensitivity 𝜇   90.64% 49.36% 69.67% 36.34% 

𝜎  11.14% 43.15% 27.13% 38.40% 

Specificity 𝜇   99.77% 99.43% 97.90% 98.60% 

𝜎  0.29% 0.9% 5.62% 2.13% 

Precision 𝜇   94.17% 75.89% 74.37% 48.42% 

𝜎  7.87% 28.26% 27.97% 34.48% 

NPV 𝜇   99.59% 98.27% 98.63% 97.07% 

𝜎  0.49% 1.64% 1.19% 2.14% 

F1-Score 𝜇   91.93% 49.40% 69.00% 35.83% 

𝜎  9.66% 41.44% 26.72% 34.31% 

 
Table 5: Comparison of the proposed method with other segmentation methods on the off-axis augmented samples 
of UBIRIS v2. A higher value for 𝜇  and lower for 𝜎 is desired 

Metrics UBIRIS v2 

Proposed 
Method 

SPDNN IrisSeg OSIRIS 

Accuracy 𝜇   98.83% 97.94% 87.17% 92.96% 

𝜎  1.16% 1.84% 9.10% 5.31% 

Sensitivity 𝜇   83.89% 60.17% 27.06% 24.11% 

𝜎  10.48% 34.20% 23.51% 29.04% 

Specificity 𝜇   99.77% 99.75% 91.03% 97.58% 

𝜎  0.46% 0.73% 9.30% 4.15% 

Precision 𝜇   95.26% 93.78% 24.31% 39.11% 

𝜎  9.87% 15.51% 29.21% 38.34% 

NPV 𝜇   98.94% 98.01% 94.97% 95.15% 

𝜎  1.12% 1.88%% 4.22% 4.33% 

F1-Score 𝜇   88.72% 66.35% 21.58% 23.58% 

𝜎  10.62 35.49% 22.50% 29.66% 



5.2. Evaluation and Comparison on the frontal iris-region 
Samples  

In this section the proposed method is evaluated and compared on the frontal original samples 
of Bath800, CASIA Thousand and UBIRIS v2, which consist of frontal iris samples. It is 
worthwhile to note that the proposed technique is designed for segmenting off-axis consumer 
level iris images. Despite that, the experiments below are carried out in order to conduct a fair 
comparison with the other methods on frontal images. Meanwhile the proposed method is 
giving the best results on segmenting the augmented off-axis samples.  

5.2.1. Evaluation on the frontal iris-region samples 
The proposed network is now tested on the original samples from Bath800, CASIA Thousand 
and UBIRIS v2. For this procedure the test sets of the datasets are used. 
Similar outcomes with the one’s on the evaluation of the proposed method on the off-axis iris 
samples are found in the evaluation of the original samples. The proposed network has higher 
performance in the datasets that the network is trained on, Bath800 and CASIA Thousand. 
Lower performance is reported on UBIRIS v2. The network accomplishes high accuracy 
results in all datasets showing that has high quality in returning true results. Moreover, in all 
datasets it returns high values in specificity and precision, meaning that the model performs 
well returning iris pixels. The sensitivity metric on Bath800 and CASIA Thousand is high, 
showing the ability of the model in ruling out non-iris pixels accurately while in UBIRIS v2 
the same metric has average performance. The same applies to the F1-score measurement 
showing that the network produces more consistent segmentations, both in finding iris and non-
iris pixels in the datasets Bath800 and CASIA Thousand compared to UBIRIS v2.  In the Table 
6 the results of the proposed network on the test sets of the original samples from Bath800, 
CASIA Thousand and UBIRIS v2 are presented. 
Table 6:Testing the proposed method on the original samples of several datasets. 

Metrics Proposed Method 

Bath800 CASIA Thousand UBIRIS v2 

Accuracy 𝜇   99.13% 99.50% 98.92% 

𝜎  0.52% 0.36% 0.67% 

Sensitivity 𝜇   94.90% 94.67% 88.38% 

𝜎  6% 4.33% 9.29% 

Specificity 𝜇   99.56% 99.86% 99.71% 

𝜎  0.47% 0.16% 0.39% 

Precision 𝜇   95.67% 97.39% 96.33% 

𝜎  6.33% 2.83% 7.22% 

NPV 𝜇   99.49% 99.63% 99.10% 

𝜎  0.45% 0.34% 0.60% 

F1-Score 𝜇   95.17% 95.94% 91.46% 

𝜎  5.43% 2.89% 9.63% 



5.2.2. Comparison with the SPDNN 
The SPDNN is a sophisticated network, with state-of-the-art results in the iris segmentation 
task. Now as mentioned earlier the SPDNN it was trained on samples of Bath800 and CASIA 
Thousand and tuned on the UBIRIS v2, as is the proposed method. The SPDNN is of high 
complexity with 14 times more number of parameters when compared to the proposed network. 
This is an aspect that should be considered in the comparison between these segmentation 
methods. Also, as mentioned earlier the proposed network is designed for segmenting off-axis 
iris images as captured by a user-facing camera on AR/VR device. The numerical results of 
the SPDNN (Bazrafkan et al., 2018) performance are reported as presented in their work . 
5.2.2.1. Comparing results on Bath800, CASIA Thousand and UBIRIS v2 
The proposed method shows higher accuracy than the SPDNN in the Bath800 dataset which 
implies better quality in returning true results. The performance in specificity of the proposed 
method is also higher than the SPDNN. However in the precision metric the SPDNN is 
performing better. That shows that both can perform well in returning iris pixels, with not one 
method being better than the other. The same applies in the ability of the methods in ruling out 
non-iris pixels, as in NPV the proposed method is performing better than the SPDNN while 
the SPDNN shows higher results from the proposed method in the sensitivity metric. On the 
other hand, a small advantage of the SPDNN over the proposed method is in the F1-score 
showing a better efficiency. Overall in Bath800 dataset there isn’t a clear advantage of one 
method over the other as the performance in the metrics is divided with the differences between 
them either in favour or against them being marginal. The proposed network is performing 
comparable with the SPDNN in the Bath800 dataset. 
In regards with the CASIA Thousand dataset, the SPDNN shows a small advantage over the 
proposed method. The proposed method performs better in the specificity and precision metrics 
showing higher quality in returning iris pixels than the SPDNN. In the rest of the evaluation 
metrics the SPDNN is performing better than the proposed method. Nonetheless, generally the 
differences in performance are marginal. 
On UBIRIS v2, the SPDNN performs better than the proposed method. The proposed method 
is performing better only in the specificity and precision metrics showing that is better on 
returning iris pixels than the SPDNN. In some metrics such as accuracy and NPV the difference 
is marginal showing that the proposed method is almost as good as the SPDNN in returning 
true results and in ruling out non-iris pixels. In the rest of the metrics there is a slight difference 
between the two methods, showing that the SPDNN is able to adopt better to the dataset that 
the methods are tuned utilising thus the larger number of parameters of the SPDNN. 
Overall, the proposed network and SPDNN performs similarly in the Bath800 and CASIA 
Thousand datasets, which are the datasets that were trained on. Therefore, showing that when 
trained the proposed network is comparable to the SPDNN despite that the complexity of the 
proposed network is at least an order of magnitude less than the SPDNN as analyzed earlier. 
In the UBIRIS v2, where the proposed network and the SPDNN are tuned, the proposed method 
shows high results but the SPDNN still outperforms it, showing the ability to adopt better to a 
different dataset distribution, utilizing the higher complexity of its structure. The comparison 
between the two methods is shown in Table 7.  
 

 



Table 7: Comparison between the proposed method and the SPDNN on the original samples from several datasets. 
Green colour shows a better performance. Yellow shows a marginal difference in the performance and Orange a 
noteworthy difference in performance. A higher value for 𝜇  and lower for 𝜎 is desired 

Metrics Bath800 CASIA Thousand UBIRIS v2 

Proposed 
Method 

SPDNN Proposed 
Method 

SPDNN Proposed 
Method 

SPDNN 

Accuracy 𝜇   99.13% 98.55% 99.50% 99.71% 98.92% 99.30% 

𝜎  0.52% 1.43% 0.36% 0.33% 0.67% 0.54% 

Sensitivity 𝜇   94.90% 96.03% 94.67% 97.96% 88.38% 93.98% 

𝜎  6% 4.76% 4.33% 2.95% 9.29% 9.45% 

Specificity 𝜇   99.56% 99.10% 99.86% 99.82% 99.71% 99.62% 

𝜎  0.47% 1.07% 0.16% 0.20% 0.39% 0.48% 

Precision 𝜇   95.67% 96.05% 97.39% 97.13% 96.33% 94.88% 

𝜎  6.33% 4.46% 2.83% 3.10% 7.22% 5.40% 

NPV 𝜇   99.49% 99.05% 99.63% 99.87% 99.10% 99.60% 

𝜎  0.45% 1.49% 0.34% 0.28% 0.60% 0.30% 

F1-Score 𝜇   95.17% 95.93% 95.94% 97.50% 91.46% 93.90% 

𝜎  5.43% 3.88% 2.89% 2.51% 9.63% 9.70% 

 

5.2.3. Comparison with state-of-the-art methods 
In the following section the proposed method is compared to the most advance and state-of-
the-art segmentation methods in the literature. First, accuracy over the challenging UBIRIS v2 
dataset is compared with several methods. In continuance, it is evaluated and compared over 
CASIA Thousand and UBIRIS v2 in three important segmentation metrics: sensitivity, 
precision and F1-score with known segmentation methods. 
5.2.3.1. Comparison of accuracy on UBIRIS v2 
The accuracy of the proposed method is compared with state-of-the-art segmentation methods 
over UBIRIS v2. The state-of-the-art segmentation methods used in the comparison are the 
SPDNN (Bazrafkan et al., 2018), MFCN and HCNN from (N. Liu et al., 2016) and Total 
Variation (TV) model utilized in (Zhao & Ajay, 2015); also an integrodifferential constellation 
followed by a  curvature fitting model proposed in (T. Tan, He, & Sun, 2010), the HOG-SVM 
from (Radman, Zainal, & Suandi, 2017), and the random walker algorithm used in (C.-W. Tan 
& Kumar, 2013). Moreover, the method proposed in (Proenca, 2010) where the sclera and iris 
regions are detected separately using neural networks as classifiers, and polynomial fitting is 
applied estimating the final iris region and finally the method from (C.-W. Tan & Kumar, 2012) 
in which proposes a post-classification procedure including reflection and shadow removal and 
several refinements on pupil and eyelid localizations to get higher performance on iris 
segmentation task. The accuracy of the proposed method compared with the aforementioned 
state-of-the-art methods on UBIRIS v2 dataset are presented in the Figure 25. 



As illustrated, the proposed method has the third best performance compared with the state-of-
the-art segmentation methods. The two methods that are performing better are: the SPDNN of 
(Bazrafkan et al., 2018) and MFCN of (N. Liu et al., 2016). However, these two methods are 
considerably more complex. As analysed in Section 3.2, SPDNN and MFCN contain 1M and 
21M parameters respectively while the proposed network contains only 75k parameters. 
Overall, the proposed method is the third best performing algorithm in the challenging dataset 
of UBIRIS v2 while is its complexity is at least an order of magnitude less than the two methods 
that outperforms it, making the proposed method more suited for deployment in embedded 
applications. 

 
Figure 25:Accuracy of the proposed method vs other methods over the original UBIRIS v2 dataset. 

5.2.3.2. Comparison on CASIA Thousand and UBIRIS v2 
In this section the proposed method is compared with other known segmentation methods over 
three important metrics: sensitivity, precision and F1-score. Sensitivity measures the model’s 
ability to rule out non-iris pixels, while precision measures the ability of the model to detect 
true iris pixels. F1-score is the harmonic average of these two metrics. The segmentation 
methods include CAHT, GST, IFFP, OSIRIS, and WAHET. The comparisons are made over 
the CASIA Thousand and UBIRIS v2 original datasets. The numerical results are initially 
presented at (H Hofbauer et al., 2014). The metrics for each presented algorithm are calculated 
comparing the algorithms results with the ground truth. The comparisons are illustrated in the 
Figures 26-27. Comparing all methods on the high-quality CASIA Thousand dataset, the 
proposed method achieves the best performance on the F1-score and precision metrics, and 
second best for the sensitivity metric.  Furthermore, on UBIRIS v2 where the samples are of 
low quality the proposed method gives higher results in all metrics compared to the other 
approaches. Although the proposed method is designed for segmenting off-axis iris samples, 
these results show that it performs well on frontal iris samples of high and low quality. 
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Figure 26: Sensitivity, Precision, F1-score on the original samples of CASIA Thousand for the proposed method 
vs five other methods 

  
Figure 27:Sensitivity, Precision, F1-score on the original samples of UBIRIS v2 for the proposed method vs five 
other methods 

6. Conclusion 
In this paper advanced data augmentation techniques are proposed to simulate off-axis iris 
samples as represented when captured by user-facing cameras on wearable AR/VR headsets, 
which enables us to propose a low-complexity neural network architecture, designed for 
deployment on embedded devices, targeting the segmentation of off-axis iris samples. The 
current network represents a proof of concept which will be integrated into hardware in future 
works. The quality of segmentation achieved by this network is evaluated and compared with 
state-of-the-art methods both for off-axis and frontal iris regions. 
The proposed network’s complexity is at least an order of magnitude less than other CNNs 
specifically designed for the iris segmentation task. Also, it has the best performance on 
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segmenting the augmented off-axis iris samples. Further, the segmentation performance of this 
network on frontal iris samples from several public datasets, is comparable with the SPDNN 
network proposed by (Bazrafkan et al., 2018) a state-of-the-art iris segmentation method. This 
performance is achieved even though the proposed network is of significantly smaller size and 
complexity and is trained for the task of segmenting off-axis iris samples. Due to its lightweight 
design and high performance in segmenting both off-axis and frontal iris samples and handling 
a range of input image qualities, the proposed network is well suited for general deployment 
on AR/VR devices. 
Future work will focus on refinements in the network design and training/augmentation 
methodologies to improve performance on specific AR/VR headsets. As can be noted from the 
introduction, different devices will have user-facing cameras in a more limited set of locations 
and image acquisitions will be at varying NIR/wavelengths. In addition, the imaging pipeline 
on each camera module can have subtle effects on image quality.  
Some practical examples of further research topics include developing an optimized CNN 
design based on SPDNN methods with a similar, or perhaps even smaller number of parameters 
that can achieve similar segmentation accuracy to our network. An additional further work 
includes the study of disease affected irises and the design of a CNN segmentation technique 
that is able to handle such iris images.  Another future research direction is to build some 
device-specific datasets with iris images captured by the user-facing camera on several state-
of-the-art AR/VR headsets. This will enable evaluation of the proposed segmentation method 
on practical off-axis iris samples. (At present it is not possible to gain low-level access to the 
imaging systems on the available devices to capture continuous image streams, but we have 
opened some discussions with device manufacturers and such access will hopefully be 
available in the near future as these devices continue to enter mainstream adoption.)  
It is also expected to extend this work to apply these improved segmentation techniques to a 
number of full iris recognition pipelines to evaluate its effects on the reliability and robustness 
of near-view, off-axis iris recognition. The main challenge here is that the only off-axis 
recognition pipeline that we are aware of is proprietary. Again, we expect other algorithms will 
appear in the near future and hopefully some of these will be open-source or provide at least 
API-level access to system developers.   
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