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Abstract:  Anisotropy resolved multidimensional emission spectroscopy (ARMES) provides 

valuable insights into multi-fluorophore systems like proteins that have complex overlapping 

emission bands.  The method combines multidimensional fluorescence, anisotropy, and 

chemometrics to facilitate the differentiation of fluorophores with very similar emission 

properties. Here, we address the critical issue of standardizing the chemometric methods 

required to accurately extract spectral and anisotropy information from fluorophore mixtures 

using two standard sample sets: perylene in glycerol, and a mixture of Erythrosin B and 

Phloxine B with overlapping emission but different anisotropies.We show for the first time 

how to accurately model component anisotropy using Multivariate Curve Resolution (MCR) 

from data collected using total synchronous fluorescence scan (TSFS) and Excitation Emission 

Matrix (EEM) measurement methods. 

These datasets were selected to avoid the presence of inner filter effects (IFE) or F€orster 

resonance energy transfer (FRET) that would depolarize fluorescence emission or reduce data 

tri-linearity.  This allowed the non-trilinear TSFS data to yield accurate component anisotropy 

data once modelled using the correct data augmentation strategy, however, the EEM data 

proved to be more accurate once optimal constraints (non-negativity and correspondence 

among species) were employed. For perylene (S2) and Phloxine B which both have very weak 

anisotropy (<0.06), while the spectral recovery was excellent, the modelled anisotropy values 

were reasonably accurate (±20% of the real value) because of large relative 

noise contributions. However, for perylene (S1) and Erythrosin B which have large (>0.2) 

anisotropies, bilinear and trilinear EEM models built using a total tri-linearity constraint, 

yielded solutions without any rotational ambiguities and very accurate (±4% of real value) 

anisotropy values. These sample systems thus provide simple and robust test systems for 

validating the spectral measurement and chemometric data analysis elements of ARMES. 

 

Keywords:  Fluorescence, Anisotropy, Multidimensional, Standards, Chemometrics.    
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1.  Introduction. 

Protein analysis by intrinsic fluorescence is useful because it is non-invasive and also 

preserves the structure and behavior of protein native states [1-5].  The multiple fluorophores 

usually present in proteins are however generally in close proximity (<5 nm) and thus interact 

photophysically via Förster resonance energy transfer (FRET), and electron transfer quenching 

by peptide bonds.  Furthermore, variable solvent exposure and inner filter effects (IFE) also 

cause a complex emission [6, 7].  To fully explore this complex emission space, 

multidimensional fluorescence spectroscopy (MDF) measurement techniques like excitation-

emission matrix (EEM) [8] and Total Synchronous Fluorescence Scan (TSFS) [9] are used and  

both have specific advantages and disadvantages.  TSFS is for example almost twice as fast as 

EEM because it only measures the spectral region where λem > λex [10], and it also avoids 1st 

order Rayleigh scatter contamination which is an important consideration for anisotropy 

measurements [1].  Both methods provide more information about the multiple fluorophores 

[11, 12] present in proteins, and are dependent on critical parameters that govern emission.  

These parameters, determined by protein structure, are the location, separation, and orientation 

of the fluorophores or other photophysically active molecules (e.g. quenchers), which govern 

FRET and quenching processes. 

A major problem with fluorescence spectroscopy of multi-fluorophore proteins is that 

extensive spectral overlap makes spectral interpretation difficult.  Multivariate curve resolution 

(MCR) [13-16], and parallel factor analysis (PARAFAC) [17-19] can be used to identify the 

spectral contributions of individual constituents from MDF data, which can then be associated 

with specific fluorophore emission and processes.  However, these methods work well only 

when MDF data is not, or minimally affected by scatter, IFE, or FRET.  Rayleigh and Raman 

scatter also cause problems as they are non-bilinear elements, negatively impacting the 

deconvolution of EEM [20-23].  While scatter can be corrected with a variety of methods, it 

would be much more advantageous to avoid the strongest 1st order Rayleigh using TSFS 

measurements.  

Unfortunately, one drawback with TSFS data modelling is its complex data structure 

which arises from the dependence of the emission measured at the offset (Δλ) with λex [24].  

Whereas in EEM (of well-behaved samples like a single ideal fluorophore) the intensity of the 

fluorescence signal changes as a function of both the excitation or emission wavelength, the 

spectra profile tends to remain the same in both dimensions (i.e. the shape of the excitation and 

emission spectra do not vary).  EEM is thus considered to be trilinear because both excitation 

and emission are highly reproducible spectral orders [25].  In TSFS, a change in Δλ induces a 

change in spectral profile, which means that TSFS does not behave tri-linearly [26], which has 

a negative impact on MCR or PARAFAC modelling.  The situation becomes more complex if 

IFE or FRET are present.  IFE [27] breaks the linearity between fluorescence intensity and 

concentration, and can also drastically distort EEM profiles.  Because this distortion can vary 

from sample to sample, the reproducibility of excitation and emission spectral orders is greatly 

reduced, which breaks the tri-linearity of EEM data [23, 28-31].  In TSFS data, IFE also affects 

spectral profiles and cause misinterpretations [32].  Similarly, large deviation from tri-linearity 

are encountered in the presence of FRET [33] particularly when chromophores/fluorophores 

are in close proximity (<10 nm).  
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However, even with careful chemometric analysis of good quality data (scatter free or 

corrected, IFE corrected, and FRET free), fluorophore emission can remain unresolvable, so 

one needs to measure other properties (e.g. lifetime, anisotropy) to enable fluorophore 

resolution.  Combining anisotropy with MDF [34] enabled the differentiation and 

quantification of fluorophores with similar emission properties in complex mixtures, based on 

their rotational speed and hydrodynamic volume, and thus the molecular size, or for 

macromolecules the mobility/flexibility of the constituent fluorophores.  ARMES a 4D 

measurement (λex, λem, I, r), exploits this and can provide an additional layer of information 

that enables the differentiation of fluorophores with very similar emission properties. 

In the first ARMES studies, using TSFS measurements and polymer thin film polarizers 

(TFP) [34, 35], we observed that multi-fluorophore albumin proteins generated complex aniso-

TSFS (excitation wavelength (λex) × wavelength offset (Δλ) × anisotropy (r)) plots that were 

diagnostic of both protein identity and structure.  TFP however, do not transmit below ~290 

nm, which did not permit the collection of the complete intrinsic protein fluorescence 

originating from Tyrosine and Tryptophan.  TFP also caused the excitation maxima of the 

recovered components to be both red-shifted and reshaped, compared to non-polarized spectra 

[35].  While this distortion compensated for the lack of tri-linearity in TSFS data, it also 

distorted the recovered excitation profiles which often appeared to have dual bands, an artefact 

caused by the TSFS data structure.   

The ARMES measurement wavelength range can be extended using polarizers with 

better UV transmittance and enable the acquisition of data in the important tyrosine/tryptophan 

region [36].  Polarizer efficacy was confirmed using a perylene standard which has two 

different emitting states with different fundamental anisotropies of 0.4 (S1) and –0.2 (S2) [37, 

38], and the measured anisotropy was significant in viscous glycerol solution: 0.197 and –0.031 

± 0.002 at 25°C [39].  However, the use of UV transmitting filters also resulted in the 

elimination of the spectral reshaping previously observed in TSFS measurements [35] which 

has consequences in terms of data structure.   

Before applying ARMES to the analysis of proteins, it was first necessary to investigate 

and standardize the chemometric methodology to be used.  In particular, one has to determine 

if it was possible to extract using curve resolution methods (here MCR) accurate excitation and 

emission, scores and profiles, and therefore anisotropy values for individual fluorophores using 

either TSFS or EEM data.  To do this we also had to determine the optimal data augmentation 

procedure to ensure recovery of reliable spectral profiles and scores from MCR.  A second 

facet of the study was to determine if TSFS measurements made using a dual wire grid polarizer 

(dWGP) could still be analyzed as demonstrated previously [35] which required an 

investigation into how to deal with trilinear (EEM) and non-trilinear (TSFS) data.  We also had 

to ascertain what were the optimal constraints to use, to produce accurate solutions without 

rotational ambiguities.  This was important in some measurement situations where excess light 

scatter cannot be avoided and thus TSFS will be more suitable measurement, for example in 

turbid media like bioreactors.    

Here we studied two systems:  a major/minor fluorophore mixture (perylene in glycerol, 

used to validate hardware performance, [36]), and second where there were two fluorophores 

of similar molecular size (Erythrosin B and Phloxine B) with overlapping emission spectra of 
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the same intensity but different anisotropies.  These samples had minimal IFE and FRET, 

which ensured data tri-linearity and minimized unwanted depolarization effects.   

 

2. Materials and Methods 

2.1 Materials:  Perylene, Erythrosin B (EB), and Phloxine B (PB) were purchased from Sigma-

Aldrich and used as received without further purification.  Glycerol (spectrophotometric grade 

≥ 99.5%) was purchased from Acros Organics.  A 1 μM stock solution of perylene in 100% 

glycerol was prepared, and then diluted to obtain 0.2, 0.5, and 0.8 μM solutions.  Erythrosin B 

(~ 6 µM) and Phloxine B (~ 0.6 µM) stock solutions were prepared in HEPES buffer (pH = 

7.2, 25 °C) which were then combined to prepare solutions of mixed fluorophore 

concentrations (Table S-7, SI).  All concentrations were chosen to minimise IFE.  There was 

no particular reason for selecting a closed system (∑ �� =  100% ) for the EB:PB mixtures.  

However, this is a worst case example for MCR because the different concentration profiles 

are linearly dependent (if one decreases, the other one increases, or both decrease or increase 

at same time), which can create rank deficiency.  One therefore can evaluate the quality of the 

MCR models if they can deal with this issue.  

2.2 Instrumentation and data collection:  Fluorescence data were measured in triplicate at 

25°C from solutions in 0.4×1 cm pathlength quartz cuvettes (Lightpath Optical, UK) using an 

Eclipse Fluorescence Spectrophotometer (Agilent) fitted with dWGP [36] and a thermostatted 

multi-cell holder.  Samples were thermally equilibrated for several minutes prior to 

measurements.  For perylene, EEM data were collected for λex/λem range of 230–470/420-530 

nm (2 nm steps) with 5 and 10 nm excitation/emission slit widths.  TSFS measurements were 

collected using λex = 230–470 nm and Δλ intervals of 20–210 nm (2 nm steps).  EEM data of 

the Xanthene dyes were collected using 10/10 nm slits widths and λex/λem range of 470–

570/500-650 nm (2 nm steps).  For each sample, four different polarized spectra were collected: 

vertical-vertical (VV), vertical-horizontal (VH), horizontal-vertical (HV) and horizontal-

horizontal (HH).  Spectra were not corrected for instrument response.  The anisotropy (r) at 

each λex/λem wavelength pair was calculated using the � = (��� − � × ���)/(��� + � × � ×

���) formula [1], where G (=IHV/IHH) corrected for instrument response. 

2.3 Data analysis:  Chemometric analyses were performed using MATLAB (ver. 7.0.1), using 

either PLS_Toolbox4.0® or MCR_ALS 2.0 toolbox [40] for implementation of trilinear 

constraints.  MCR-ALS was selected for data analysis to ensure continuity with previous 

studies [34, 35, 41] although PARAFAC [18] could also be applied to this type of data.  TSFS 

data were organized by λex (mode 1), Δλ (mode 2), and sample (mode 3), same as EEM where 

mode 2 was λem.  The number of factors, were assessed using SVD.  Spectral decomposition 

was performed on augmented matrix datasets and unless otherwise stated, for TSFS the 

“concentration” mode corresponded to “λex × sample” and the “spectral” mode to Δλ.  This was 

the same for EEM except that the “spectral” mode was λem.  Spectral deconvolution was 

performed using MCR-ALS [42] and estimation of rotational ambiguities were performed 

using MCR-BANDS [43].  Separate models were built for each polarization setting once initial 

estimates had been obtained using SIMPLISMA [44].  A non-negativity constraint was used 

on both concentration and pure spectra profiles, as well as normalization of the spectral profiles 

to equal length (Euclidean) to avoid intensity ambiguities between components.  In all cases, 
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models converged with fewer than 100 iterations (due to the simplicity of the dataset).  A 

similarity index (SimI), was used to rapidly compare EEM/TSFS spectra or anisotropy maps 

[45].  SimI between two matrices X1 and X2 (e.g. EEM or TSFS of dimensions I x J, discrete 

data points) was calculated using the following equation: 

���� = 1 −  �
�∑ ∑ ��

�����
�
���

�
���

�∑ ∑ ��
�����

�
���

�
���

 

λ was a penalty parameter, used to set a detectable limit of variance between X1 and X2.  In 

these calculations it was set to 4 which corresponds to 5% variance in the multidimensional 

fluorescence data and was proven quite adequate.  px1-x2 and px1+x2 are elements of (X1-X2) and 

(X1 + X2) respectively.  The closer SimI value was to one, the more alike the two matrices X1 

and X2 were.  

 

3. Results and Discussion. 

3.1 Perylene data: presence of a fluorescent impurity 

A simple standard sample set (perylene, varying concentration in glycerol, [46]) was 

used as the initial test to establish if either TSFS and EEM, could accurately extract component 

anisotropy using MCR modelling.  These samples contained a weak fluorescent impurity 

(Figure 1) which originated from the solvent.  This was confirmed by overlapping the EEM 

spectrum of pure glycerol with perylene (Fig. S-1, Supplemental Information, SI).  Glycerol is 

known to contain organic fluorescent impurities [47-49].  While the use of more highly purified 

solvents and blank subtraction is recommended to remove the influence of minor solvent 

impurities and Raman scatter, it may not always be feasible.  However, we felt that it was also 

important to demonstrate that chemometric modelling could also recover weakly fluorescing 

components such as impurities (which could originate from fluorophore or glassware 

contamination).  Especially, as weak fluorescing components can also be encountered during 

protein analysis.  
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Figure 1: (a) VV-TSFS spectrum of a 0.2 µM Perylene solution, showing the impurity signal at λex/Δλ 

= 328/70 nm;  (b) VV-EEM spectrum of glycerol (blank) collected using a higher detector gain (PMT 

voltage of 800V instead of 600V);  (c)  Fluorescence intensity vs concentration of perylene in 100% 

glycerol, for each polarization setting.  Error bars were obtained over 3 replicates.   

 

In this TSFS data, 1st order Rayleigh scattering was intrinsically eliminated but Raman 

scattering from the solvent was present, even though it was too weak to be observed with the 

experimental conditions used.  The Raman spectrum of glycerol (mainly O-H stretching mode 

at ~3400 cm–1) was only measurable from blank measurements in the VV orientation (highly 

polarized scatter) using a higher gain on the detector (PMT voltage of 800V instead of 600V).  

But even here, the Raman band of glycerol was < 7% of the intensity of the impurity signal 

(Figure 1), which means that it could be eliminated as a source of error.  

Rayleigh scatter was therefore the major non-bilinear element to be considered here for 

the EEM data of perylene because the 1st order band overlapped the S1 emission and 2nd order 

the S2 emission.  Due to this extensive overlap, classical interpolation could not correct 

sufficiently well for anisotropy studies.  We therefore used modelling of shifted scatter by PCA 

or PARAFAC [20] for Rayleigh scatter removal which was proven to produce accurate 

anisotropy measurements over a much wider emission range [36].  If the Rayleigh was not 

removed then MCR modelling produces very erratic results (Figure S-2, SI).   

 

3.2 MCR Analysis of polarized TSFS perylene data: 

The TSFS trilinear-like behaviour observed by Groza et al. [35] which was due to TFP 

induced spectral reshaping, enabled the use of column wise augmentation (CWA), Δλ × (λex × 

samples), for MCR-ALS analysis.  This however contradicted the rank dependency normally 

observed in this type of augmentation [24].  This reshaping was eliminated once the dWGP 

were used since the full emission spectra was now obtained.  Modelling this dWGP-TSFS 
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perylene dataset (for all four polarization configurations) using CWA required five components 

which was obviously too many (scores and loadings are shown Figure S-4/S-5, SI).  Instead of 

fitting/generating a pure perylene spectrum, the components appeared as 

combinations/rearrangements of the different vibronic bands associated with each electronic 

transition (Figures S-3, SI) and this effect was directly related to the non-bilinear behaviour of 

TSFS data [26].   

Even though all the CWA-MCR-TSFS models explained >90% of the variance (Table S-1, SI) 

and components were recovered without any rotational ambiguities (table S-2, SI) the Lack of 

Fit (LOF) was too high, which is symptomatic of non-bilinear data trying to be fitted with a 

bilinear model.  LOF [42] corresponds to the difference between the input data (D) and the data 

reproduced by MCR-ALS: C x ST.  In this equation, dij correspond to an element of D and eij 

of the model residuals. 

���� �� ��� (%) = 100 �
∑ ��

���,�

∑ ��
���,�

 

 

Increasing component number (to 9 or 13 suggested by SVD local minima) decreased 

LOF to ~ 2% and increased the explained variance to >99% in all modes.  However, this did 

not make chemical sense, because the recovered components (not shown) all overlapped.  In 

addition, the anisotropies calculated from five pure profiles extracted from each MCR model 

were not constant along Δλ (for example component 1 and 5, Figure S-6, SI).  Therefore, we 

can conclude that CWA was not satisfactory.  Row-wise augmentation would be expected to 

give similar kind of resolution, as λex × (Δλ × samples) with concentration and spectral modes 

that were co-dependant. 

 

Table 1:  Perylene in Glycerol MCR best model results.  Percentage of variance captured by each MCR 

model component (Fit %X).  Each model convered with ~ 100 iterations, and were built using variety 

of constraints 1). normalization, 2).  non-negativity, 3). unimodality, and 5). total tri-linearity.  For 

SWA-TSFS and EEM models, non-negativity was applied on both concentration and spectral modes, 

and normalization was applied on spectral modes.  Unimodality and tri-linearity were applied on 

augmented mode for SWA-TSFS and EEM models respectively. 

SWA-TSFS MCR model (constraints 1,2,3) 

Comp HH (%X) HV (%X) VH (%X) VV (%X) 

1 99.82% 99.86% 99.89% 99.86% 

2 0.12% 0.10% 0.07% 0.12% 

Sum 99.94% 99.96% 99.96% 99.98% 

Lack of Fit  2.40% 1.95% 2.02% 1.34% 

EEM MCR model (constraints 1,2,5) 

Comp HH (%X)  HV (%X)  VH (%X)  VV (%X)  

1 99.77% 99.78% 99.84% 99.80% 

2 0.19% 0.17% 0.12% 0.15% 

Sum 

Lack of Fit 

99.96% 

2.09% 

99.95% 

2.12% 

99.96% 

1.93% 

99.95% 

2.26% 
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The correct way to unfold a TSFS dataset for MCR-ALS is along the sample direction 

(samples × (λex × Δλ)) as only this allowed generation of an independent and equal rank for 

both directions of the unfolded matrix (samples and λex × Δλ) [24].  This rank should also equal 

to the real number of fluorophores in solution if there was no FRET or IFE effects present.  

Using this sample wise augmentation (SWA) approach, the unfolded TSFS matrix behaved 

bilinearly and MCR-ALS modelling of this SWA-TSFS perylene data only required two 

components (Table 1).  A first attempt using only normalization and non-negativity constraints 

(Table S-5, SI), yielded one component for perylene (98% explained variance), and a second 

for the fluorescence impurity (~2% variance).  However, component two appeared to be a 

composite of impurity emission (centred at λex/λem 328/398 nm) mixed with perylene emission 

(Figure S-11, SI).  To improve resolution, stricter constraints were applied by adding 

unimodality to component two, using the average implementation and a tolerance of 1.1, 

because the second component behaved unimodally (Figure 1a).  Consequently, LOF increased 

from ~1.3% to ~ 1.9%, however, compared to CWA, the results were indicative of a true, 

bilinear structure in the augmented TSFS dataset.   

Resolution was improved (Figures S-12/S-13, SI) and the first component (perylene) now 

explained >99.8% of the variance, and the second component <0.2% (similar to EEM, Table 

1).  The second component was however only partially resolved (inset S-12) and not equally 

resolved in all samples (as shown by the decreasing scores in Fig. S-13, SI).  It seems likely 

that some of the impurity emission is still present in the 1st component (Fig. S-15, SI).  This 

model, however, enabled the recovery of accurate perylene anisotropy values (Table S-6, 

Figure S-14, SI) which was important because TSFS may be the only practical ARMES 

measurement method for highly scattering samples.  However, the main issue with this model 

was the presence of rotational ambiguities in the solution (especially for impurity, Table 2), 

which cannot be reduced (by application of trilinear constraint for example) showing the 

limitations of SWA-TSFS.  

 
Table 2:  Estimation of component rotational ambiguities by MCR-BANDS using various constraints: 

1). Normalization, 2).  Non-negativity, 3). Unimodality, and 5). Total tri-linearity, for TSFS and EEM 

MCR models.  

SWA-TSFS MCR model. 

1,2,3 Component 1 (~ 99.8%) Component 2 (~ 0.1%) 

 HH HV VH VV HH HV VH VV 

fn initial 0.998 0.998 0.999 0.998 0.035 0.031 0.026 0.035 

fn max 0.998 0.998 0.999 0.998 0.145 0.136 0.132 0.172 

fn min 0.937 0.896 0.950 0.884 0.035 0.136 0.026 0.035 

fn max-fn min 0.061 0.102 0.049 0.114 0.110 0.105 0.106 0.137 

EEM MCR model 

1,2,5 

 

Component 1 (~ 99.8%) Component 2 (~ 0.2%) 

HH HV VH VV HH HV VH VV 
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fn initial 0.992 0.991 0.994 0.995 0.044 0.041 0.034 0.038 

fn max 0.992 0.991 0.994 0.995 0.044 0.041 0.034 0.038 

fn min 0.992 0.991 0.994 0.995 0.044 0.041 0.034 0.038 

fn max-fn min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

The loss of tri-linearity because of the WGP increased UV transmittance meant that 

CWA was not applicable to TSFS data.  SWA unfolding on the other hand was mathematically 

correct for MCR-ALS [26], and enabled the separation of perylene and impurity once the 

correct constraints were applied.  Even if the 2nd component only partially recovered the 

impurity, we were able to accurately reconstruct anisotropy values of Perylene for both excited 

states.  Although SWA permitted bilinear decomposition of augmented TSFS data, the data 

was still not trilinear.  This meant that neither PARAFAC nor trilinear constraints could be 

applied, and one therefore must deal with presence of rotational ambiguities in the model 

solutions. 

 

3.3 MCR-ALS models on EEM data.   

For EEM data, a key consideration was implementation of a tri-linearity constraint during 

MCR modelling to ensure accurate and unambiguous recovery of all components.  The 

development of mathematical multilinear constraints [25] made it possible to reproduce the 

inner trilinear structure [50] of PARAFAC in MCR-ALS, by implementing tri-linearity as an 

optional constraint.  The trilinear constraint in MCR-ALS forces the resolved pure profiles to 

behave the same in all C or ST matrices.  In fact, because this constraint can be implemented 

separately on each species [42], it allows a certain degree of flexibility for cases varying from 

pure bi-linearity to complete tri-linearity [51].  Within the trilinear case, the profiles can be 

further constrained by synchronisation, which can correct for spectral shifts and force the 

profiles to appear at the same positions for all samples.  Tri-linearity constraints are powerful 

because if the dataset is suitable then this constraint can ensure resolution of pure and 

unambiguous profiles [50, 52].  However, fluorescence dataset requirements for its use are 

demanding [25] as they must be free of scatter, IFE, and FRET.  The Rayleigh corrected 

polarized-EEM datasets of perylene in glycerol fulfils the tri-linearity criteria as shown by the 

plots of maximum fluorescence intensity against concentration obtained for each polarized 

dataset (Figure 1c) which are all highly linear (r2>0.99).  This is further confirmed by the 

anisotropy measurements (Table 4) which were constant (and agreed with the literature [39]) 

at all concentrations, indicating the absence of depolarization processes such as IFE or FRET.   

We also verified that the dataset was not unnaturally forced to fit the trilinear constraint 

by following how the MCR model fit evolved as we progressed from the use of a simple 

bilinear constraint, to the use of a partial trilinear (shape) constraint, and finally a total trilinear 

(shape + synchronisation) constraint were applied (Table 3).  If the percentage of variance 

explained R2 and the lack of fit LOF were constant, then one can reasonable consider that the 

data structure was suitable for using a trilinear constraint.  Here all the polarised 

perylene/glycerol data were found suitable.  It is useful to note that PARAFAC would have 

been a good alternative to MCR with the tri-linear constraint for modelling this type of data.  

However, here we also needed to compare bilinear with trilinear models, and MCR offers the 
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advantage to switch between bilinear to partial tri-linear and total trilinear cases which may be 

important in the future for modelling more complex emission systems like multi-fluorophore 

proteins.   

 

Table 3:  Evolution of R2 and LOF of MCR models applied to CWA-EEM polarized data, when: 1). 

Normalization, 2). Non-negativity, 3). Bilinear, 4). Partially trilinear, and 5). Total trilinear constraints 

were applied. 

 
R2 (total variance explained) LOF (lack of fit) 

HH HV VH VV HH HV VH VV 

1,2,3 99.96% 99.95% 99.97% 99.95% 1.96% 1.95% 1.83% 2.19% 

1,2,4 99.96% 99.95% 99.96% 99.65% 2.10% 2.12% 1.95% 2.28% 

1,2,5 99.96% 99.95% 99.96% 99.95% 2.09% 2.12% 1.93% 2.26% 

 

Table 4: Real and modelled (from EEM-MCR, constraints 1,2,5) averaged anisotropy values calculated 

for each concentration, for λex/em (S2) = 240-270/430-520 nm and λex/em (S1) = 370-460/430-520 nm. 

 

 

Real anisotropy ± STD Modelled anisotropy ± STD 

S2 S1 S2 S1 

0.2 μM –0.034 ± 0.010 0.204 ± 0.015 –0.031 ± 0.012 0.201 ± 0.014 

0.5 μM –0.026 ± 0.004 0.202 ± 0.007 –0.030 ± 0.005 0.202 ± 0.007 

0.8 μM –0.030 ± 0.004 0.192 ± 0.004 –0.037 ± 0.002 0.194 ± 0.003 

1 μM –0.035 ± 0.004 0.204 ± 0.002 –0.027 ± 0.002 0.205 ± 0.002 

Av/std –0.031 ± 0.004 0.201 ± 0.005 –0.031 ± 0.004 0.201 ± 0.005 

 

As expected, MCR modelling of EEM data required two components (Table 1) with 

explained variance for the second impurity component (0.2%) slightly higher than SWA-TSFS 

where impurity was only partially recovered (Figure S-12, SI).  This recovered second 

component was purer, entirely recovered as shown by the normalized-averaged excitation and 

normalized emission of the spectral loadings (Figure 2 a/b for HH, others are shown in Fig. S-

8, SI).  The use of a total trilinear constraint during ALS optimization significantly improved 

impurity resolution.  This can be shown by comparison with the results from a model run only 

with non-negativity and normalization constraints (Fig. S-7, SI).  In addition, the tri-linearity 

constraint also ensured that both components were resolved without any ambiguities (Table 2) 

whereas the use of only non-negativity and normalization constraints resulted in some 

rotational ambiguities, particularly with the weak second component (table S-3).  This was also 

a big improvement compared to SWA-TSFS model. 
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Figure 2: (top, a/b) Normalized excitation (averaged across all samples, left) and emission (right) 

profiles obtained for each pure component after MCR modelling of the HH polarized EEM datasets.  

Note:  emission axis range in (b) was selected to better show only the perylene emission.;  (bottom) 

MCR scores (scaled to 1st sample) obtained for HH (c), HV (d), VH (e), and VV (f) polarized data.  

Models obtained using:  1). normalization, 2). non-negativity constraints and 5) total trilinear constraints.   

 

The normalised MCR scores (Figure 2 c-f) which represent the relative concentration of 

each extracted fluorophore show that the first component scores increase very linearly (r2>0.99 

for all) with perylene concentration.  The scores for component 2 are not constant with perylene 

concentration, and tend to increase particularly in HV and VH.  Due to the very low fluorophore 

concentrations for both components, there are small chances it is FRET.  This is also confirmed 

by Fig.S-9 SI showing that the fluorescence intensity of the impurity was ~ constant with 

perylene concentration, for each polarization setting.  The observed increase was probably due 

to incomplete resolution in the excitation spectra (<270 nm and>390 nm) where there was 

small, yet significant overlap with perylene (Fig.2, Fig S-8) particularly in the orthogonal HV, 

VH configurations.   
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3.4 Perylene anisotropy modelling   

Finally, using the spectral profiles for each component generated from the best four polarized-

EEM models, we calculated the anisotropy and generated an overlay plot which compared the 

real anisotropy to the modelled anisotropy (Figure 3).  This showed that the modelled and real 

anisotropy values were in excellent agreement along both excitation and emission directions 

for both excited states.  Once averaged across the entire S1 and S2 bands (Table 4), the real and 

modelled anisotropy values were identical within experimental error.  

 
 

Figure 3:  Overlay of HH-EEM excitation (A, λem = 444 nm) and emission (B, λex = 254 nm & C, λex 

= 440 nm) spectra (all corrected for 1st and 2nd order Rayleigh scatter) from perylene (1 µM) in glycerol 

with corresponding anisotropy values:  black = real data; grey = modelled using constraints 1 & 2; red 

= modelled using 1, 2, & trilinear constraints.  The blue boxed areas show the regions of most reliable 

anisotropy data.  The shaded areas represent areas of low fluorescence intensity and thus unreliable 

anisotropy data.  

 

The only big difference between the real and modelled data in the excitation spectra were 

observed between the two electronic states (λex = 300–350 nm), where mostly noise was present.  

In the emission spectra (Figure 3b), a small discontinuity between the real and modelled spectra 

was observed at ~495–515 nm, which corresponded to the location of second order Rayleigh 

scatter.  Therefore, it was possible that a small amount of residual scatter was present in the 

data, which would explain the slightly higher anisotropy values obtained in this region.  Both 

bilinear and trilinear models accurately retrieved perylene anisotropy for the S1 state, and the 

bilinear model was in slightly better agreement with the real anisotropy values (table S-4 vs 

table 4).  This was also observed in the S2 region, where the trilinear model slightly 

overestimated the anisotropy.  In this particular case, perylene, where Rayleigh scatter was 
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almost perfectly removed, the bilinear model worked better because it offered more flexibility 

to the spectra to best fit the data and reproduce the exact anisotropy.  In contrast the trilinear 

model restrained the spectral shape more strongly which lead to the discrepancy observed.  This 

was in contrast with cases where residual scatter (noise) in the data can affect the shape of the 

resolved spectra, and where trilinear models can help to fix this issue (i.e. fluorophore mixtures).  

However, the differences were small and are only really significant when the magnitude of the 

anisotropy is small, such as with the S2 state here.  Trilinear models have other advantages, 

such as avoiding rotational ambiguities and preserving a common spectral shape for same 

component across samples, which is of more practical significance in cases where the 

components have similar emission intensities.  This advantage was seen in case of the impurity, 

where the trilinear model better resolved the impurity profile.  Modelling of this second very 

weak (~0.2% variance) impurity component was more challenging because the signal to noise 

ratio was poor.  From the excitation (Fig. S-10A, SI) and emission (Fig. S-10B, SI) spectra, it 

seemed that within the band (λex = 290-350 nm), both bilinear and trilinear models were able 

to accurately reproduce the real anisotropy r = 0.310 ± 0.024.     

3.5 Fluorophore mixture modelling   

To further validate this chemometric methodology for accurate anisotropy recovery via 

MCR, we needed to examine a case where there were two fluorophores with overlapping 

emissions of near equal intensity but with different anisotropies.  This is more representative 

of the situation existing in proteins.  We used a mixture of Erythrosin B (~ 6 µM) and Phloxine 

B (~ 0.6 µM), analysed in HEPES buffer at pH 7.2 (Table S-7, SI) and 25°C.  These 

concentrations yielded equivalent fluorescence intensities and minimized IFE [53].  In addition, 

the short lifetimes (for example 75 ps for Erythrosin B in water [54]) of these fluorophores 

should further minimize depolarization effects.  The absorbance and the uncorrected 

fluorescence EEM spectra (Figure 4) of Phloxine B and Erythrosin B show that there is a small 

degree of IFE for EB, expected because of the relatively high absorbance (~ 0.18) for 6 μM EB 

compared to (~ 0.019) for 0.6 μM PB. 
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Figure 4: (a) UV-Vis spectra of 6 µM Erythrosin B and 0.6 µM Phloxine B;  (b) Plot of maximum 

fluorescence intensity versus Erythrosin B concentration;  EEM spectra of:  (c) 6 µM Erythrosin B and 

(d) 0.6 µM Phloxine B.  All data were averaged from three replicate measurements.   

MCR modelling was then implemented using a similar process as for perylene.  The EEM 

data were Rayleigh scatter corrected (Fig.S-16, SI) and then MCR models were built for each 

polarization setting using CWA data.  Initial estimates were obtained using the pure 

fluorophore spectra.  Non-negativity constraint was used on both concentration and pure 

spectra profiles, as well as normalization to equal length (Euclidean) in order to avoid intensity 

ambiguities between components.  If no other constraints were applied, two components were 

resolved, but the components were not pure (Fig. S-17, SI).  To solve this issue, we 

implemented the “correspondence among species” option available in MCR-ALS 2.0 toolbox 

for multiset data structures [40], to inform the model about the presence/absence of both species 

in the augmented mode.  This constraint, which extends the concept of selectivity and local 

rank constraints to a multiset structure, is particularly useful for known chemical systems, as it 

reduces the rotational ambiguities of the solution [52] and helps the algorithm to converge 

quicker to the correct solution.   

Table 5:  Estimation of rotational ambiguities per component for the best EB-PB-EEM-MCR MCR 

model.  Built using 1: normalization, 2: non-negativity, 5: total trilinearity and 6: correspondence among 

species.  

1,2,5,6 

 

Component 1  Component 2  

HH HV VH VV HH HV VH VV 

fn initial 0.453 0.448 0.436 0.596 0.754 0.756 0.768 0.628 

fn max 0.453 0.448 0.436 0.596 0.754 0.756 0.768 0.628 
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fn min 0.453 0.448 0.436 0.596 0.754 0.756 0.768 0.628 

fn max-fn min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

Rotational ambiguities were removed by application of constraints 1,2,6 (table S-8, SI). 

However, we noted that the spectral profiles (especially for PB) were not well resolved, with 

presence of a small shift in PB, and noise in the loadings (due to residual scatter in data, 

particularly for the VV, Fig S-18 SI).  This negatively impacted the accuracy of the calculated 

anisotropy (SI table S-9).  The trilinear constraint was applied to rectify the problem, and this 

improved the shape of recovered components (less noise and no band shifts), which produced 

more accurate component anisotropy values (Table 7).   

 

Table 6: Evolution of R2 and LOF of the MCR models for the EB-PB-EEM data using 

combinations of constraints:  normalization (1), non-negativity (2), total trilinear (5), and 

correspondence among species (6).  Percentage of variance captured by each MCR model 

component (Fit %X) for 100 iterations.  

EB-PB-EEM MCR model (constraints 1,2,6) 

Comp HH (%X) HV (%X) VH (%X) VV (%X) 

1 26.94% 26.84% 24.36% 48.43% 

2 73.01% 73.11% 75.60% 51.45% 

Sum 99.95% 99.95% 99.96% 99.88% 

Lack of Fit  2.32% 2.29% 2.10% 3.45% 

EB-PB-EEM MCR model (constraints 1,2,5,6) 

Comp HH (%X)  HV (%X)  VH (%X)  VV (%X)  

1 26.42% 25.97% 24.35% 47.32% 

2 73.37% 73.85% 75.45% 52.35% 

Sum 

Lack of Fit 

99.79% 

4.57% 

99.82% 

4.25% 

99.80% 

4.45% 

99.67% 

5.73% 

 

LOF increased with application of the trilinear constraint (Table 6) and was probably due 

to the presence of residual scatter in the EEM.  Wider excitation slits (10 versus 5 nm) were 

used for the fluorophore mixtures compared to perylene, which generated wider and stronger 

Rayleigh scatter bands.  These were more difficult to correct because of the increased shot 

noise, and was best seen in the VV data as Rayleigh scatter is very strongly polarized (SI Fig. 

S-19).  Here after scatter correction, significant residual scatter was observed all along the 

Rayleigh band which correlated with the higher LOF obtained for VV dataset.   

Using this finalised set of constraints, the best MCR model used for anisotropy 

calculations, were built for each polarized dataset (Figure 5).  The first component 

corresponded to Erythrosin B (λex/em max = 530/548 nm) and the second to Phloxine B (λex/em 

max = 540/554 nm).  Some slight deviations were observed between excitation loadings and 

real components (deviations slightly higher for bilinear model compared to trilinear), but the 

emission loadings overlapped perfectly with the real spectra.  Component 1 explained more 

variance in the VV data compared to other polarization settings (Table 6) which was because 
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Erythrosin B had a larger anisotropy (r = 0.243) than Phloxine B (r = 0.054) because of its 

much shorter fluorescence lifetime, 75 ps vs. ~1 ns.  We are assuming that because both 

fluorophores have similar molecular masses, and structures, that they will also have similar 

rotational correlation times in this solvent system [1].  Erythrosin B was thus less depolarized 

and has stronger emission intensity in the VV configuration.  Component 1 deviated slightly 

from linearity, which was due to the small self-absorption IFE mentioned above, and the effects 

was largest in the VV configuration.  MCR scores (Figure 5) showed that component 2 (PB) 

varied linearly in all configurations, indicating that there was no detectable IFE or FRET.  This 

was expected because Phloxine B concentration was an order of magnitude lower than 

Erythrosin B.   
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Figure 5: (Top row) Overlap between real excitation/emission spectra (full line- red/blue) and spectra 

loadings obtained from EB-PB-EEM-126 model (dash-grey line) and EB-PB-EEM-1256 model (dash-

red/blue); (middle & bottom rows) MCR scores obtained for each pure component (EB-PB-EEM-1256  

model) for the HH (c), HV (d), VH (e), and VV (f) dataset.   

 

We then used the data from the best model to calculate individual component anisotropy.  

We first extracted the aniso-EEM plots for each resolved component for all mixtures (see Fig. 

S-20, SI, for some examples).  It appeared that the aniso-EEM plots in case of mixtures were 

smooth and uniform for both compounds over the full S1 emission band region (λex/em = 520–

620/470–570 nm), and correlated well with the data from the pure fluorophore solutions.  By 

averaging the data across the entire S1 region, a very good agreement was obtained between 

recovered anisotropy (calculated from the recovered components) and values from pure EB 

and PB in solution (Table 7), confirming that ARMES could retrieve accurately the anisotropy 

values of pure fluorophores in mixture, without any rotational ambiguities.  We quantified the 

degree of similarity between pure and recovered aniso-EEM plots using a similarity index [45] 

(Figure 6).  Due to variations in the size of the aniso-EEM plots between samples (because of 

the 10% threshold setting [36]), we calculated the similarity index using a specified area that 

was the same for all samples and contained no NaN valued data points (Fig S-21, SI).   

Table 7:  Real and modelled (calculated from MCR components) averaged anisotropy values (EB-PB-

EEM-1256 model, with the trilinear constraint), for each mixture concentrations, across the S1 (λex/em) = 

520–620/470–570 nm bands. 

 

 

Modelled anisotropy ± STD 

Component 1 (EB) Component 2 (PB) 

Pure PB EB solutions, 

real anisotropy values. 
0.243 ± 0.002 0.054 ± 0.002 

0% / 100% / 0.049 ± 0.001 

20% / 80% 0.244 ± 0.006 0.043 ± 0.001 

40% / 60% 0.246 ± 0.004 0.045 ± 0.002 

60% / 40% 0.238 ± 0.003 0.048 ± 0.002 

80% / 20% 0.234 ± 0.002 0.070 ± 0.008 

100% / 0% 0.241 ± 0.003 / 

Avg/std 0.241 ± 0.005 0.051 ± 0.011 

 

For EB, an index of >0.90 for most samples indicates that the recovered components 

for all polarization configurations were good and that the recovered aniso-EEM plots were 

accurate (to within ±4%).  We also note that the agreement was marginally better for the 

trilinear model, confirming that trilinear model was slightly better at recovering the anisotropy 

values.  However, for PB, because of its much weaker absorption, the excitation loadings 

differed slightly from real spectra at wavelengths below 520 nm (Figure 5).  The lower 

magnitude anisotropy of PB (~22% of the EB value) also makes accurate anisotropy 

component recovery in all polarization configurations a more challenging task, because shot 

noise from the second fluorophore will cause significant problems as seen in Figure 6b where 

the difference between real and recovered aniso-EEM plots gets larger and larger as the 
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proportion of EB fluorescence (and its constituent shot noise) increases.   All of these effects 

resulted in less accurate recovered anisotropies ( ~±20% of real value) and the similarity index 

only gave good values for λex > 520 nm, where absorbance was greatest (Figure S-21, SI).   

 

Figure 6: Similarity indices calculated between anisotropy plot extracted from real pure compounds in 

solution, and the recomposed components.  (Left) Results for EB, with results from trilinear model 

(blue) and bilinear model (grey), (Right) Data for PB, with results from the trilinear (red) and bilinear 

models (grey). 

 

4.  Conclusions 

These results show that it is possible to accurately extract the anisotropy of individual 

components using MCR from relatively simple small molecule fluorophore mixtures once 

appropriate data organisation and constraints have been applied.  For TSFS data, SWA with 

non-negativity, and unimodality constraints generates sufficiently accurate anisotropy data.  

Overall, however, MCR modelling of TSFS data was less efficient than MCR modelling of 

EEM data which was, for example better able to cleanly resolve the impurity in the perylene 

solutions.  For the EEM-MCR modelling the optimal settings were to use normalization, non-

negativity, and total trilinearity constraints, with correspondence among species being required 

for mixtures where the species had similar emission intensities.  Recovery of component 

anisotropy via chemometric modelling was also achieved and was accurate to ±4% for 

relatively large magnitude anisotropies (e.g. Perylene S1 and EB).  For the lower magnitude 

anisotropy (<0.06) fluorophores accuracy decreased (±20%) due to the impact of shot noise 

from the overlapping other component and relative measurement error.  This might be rectified, 

by changing the measurement conditions to improve signal to noise, which should result in less 

variation in the recovered components and thus the calculated anisotropies.  Despite this, the 

fact that these very low anisotropy components were recovered was still very significant.   

 Being able to recover the spectral and anisotropy information using MCR with either 

TSFS or EEM measurements provides a useful tool for accurately characterizing molecular 

systems where the fluorophores are not interacting (FRET or IFE) with each other and where 

significant size, mobility, or lifetime changes are occurring (e.g. fluorophore diffusion in 

polymer matrixes).  The two sample systems used here also provide very simple and robust test 

systems for validating the TSFS/EEM measurements and chemometric data analysis elements 
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of ARMES.  The next stage is to see if it is feasible to analyze/model much more complex 

situations where fluorophores have FRET interactions, such as the case with proteins.  

 

5. Supplemental information available   

Supporting information is available and includes further details about the spectral 

measurements and the chemometric modelling. 
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