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Published in the Briefings in Bioinformatics journal on 17 February 20209

Abstract

Complex biological systems are traditionally modelled as graphs of inter-
connected biological entities. These graphs, i.e. biological knowledge graphs,
are then processed using graph exploratory approaches to perform different
types of analytical and predictive tasks. Despite the high predictive accuracy
of these approaches, they have limited scalability due to their dependency on
time-consuming path exploratory procedures. In recent years, owing to the
rapid advances of computational technologies, new approaches for modelling
graphs and mining them with high accuracy and scalability have emerged. These
approaches, i.e. knowledge graph embedding models, operate by learning low-
rank vector representations of graph nodes and edges that preserve the graph’s
inherent structure. These approaches were used to analyse knowledge graphs
from different domains where they showed superior performance and accuracy
compared to previous graph exploratory approaches. In this work, we study this
class of models in the context of biological knowledge graphs and their different
applications. We then show how knowledge graph embedding models can be a
natural fit for representing complex biological knowledge modelled as graphs.
We also discuss their predictive and analytical capabilities in different biology ap-
plications. In this regard, we present two example case studies that demonstrate
the capabilities of knowledge graph embedding models: prediction of drug target
interactions and polypharmacy side-effects. Finally, we analyse different prac-
tical considerations for knowledge graph embeddings, and we discuss possible
opportunities and challenges related to adopting them for modelling biological
systems.
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1 Introduction

Biological systems consist of complex interconnected biological entities that work
together to sustain life in living systems. This occurs through complex and system-
atic biological interactions of the different biological entities. Understanding these
interactions is key to elucidating the mechanism-of-action of the different biological
functions (e.g. angiogenesis, metabolism, apoptosis, etc), and thus, understanding
causes and activities of diseases and their possible therapies. This encouraged the
development of multiple physical and computational methods to assess, verify and
infer different types of these interactions. In this study, we focus on the use of com-
putational methods for assessing and inferring interactions (associations) between
different biological entities at the molecular level. We hereof study the use of knowl-
edge graphs and their embedding models for modelling molecular biological systems
and the interactions of their entities.

Initially, basic networks i.e. uni-relational graphs, were adopted by early efforts
for modelling complex interactions in biological systems [1–4]. Despite their initial
success [5], these networks could not preserve the semantics of different types of
associations between entities. For example, protein-protein interaction networks
modelled with basic networks cannot differentiate between different types of inter-
actions such as inhibition, activation, phosphorylation, etc. Therefore, more recent
works modelled biological systems using heterogeneous multi-relational networks
i.e. knowledge graphs, where they utilised different visual [6, 7] and latent represen-
tations [8, 9] of graph entities to infer associations between them.

In the context of biological applications, knowledge graphs were used to model
biological data in different projects such as the UNIPROT [10], Gene Ontology [11]
and Bio2RDF [12] knowledge bases. Moreover, they were the basis of multiple pre-
dictive models for drug adverse reactions [6, 8], drug repurposing [9, 13] and other
predictions for different types of biological concepts associations [13, 14]. The task
of learning biological associations in this context is modelled as link prediction in
knowledge graphs [15]. Predictive models then try to infer a typed link between
two nodes in the graph using two different types of features: graph features and
latent-space vector representations.

Graph features models (i.e. visual feature models) are part of the network analysis
methods which learn their predictions using different feature types such as random
walks [16, 17], network similarity [18], nodes connecting paths [19] and subgraph
paths [19, 20]. They are used in multiple biological predictive applications such as
predicting drug targets [21] and protein–protein interaction analysis [18]. Despite
the expressiveness of graph feature models predictions, they suffer from two major
drawbacks: limited scalability and low accuracy [22, 23]. They are also focused
on graph local features compared to embedding models which learn global latent
features of the processed graph.

Latent feature models i.e. embedding models, on the other hand, express knowl-
edge graphs’ entities and relations using low-rank vector representations that pre-
serve the graph’s global structure. Knowledge graph embedding (KGE) models on the
contrary are known to outperform other approaches in terms of both the accuracy
and scalability of their predictions despite their lack of expressiveness [23–25].
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In recent years, knowledge graph embedding models witnessed rapid develop-
ments that allowed them to excel in the task of link prediction [24–30]. They have
then been widely used in various applications including computational biology in
tasks like predicting drug target interactions [9] and predicting drug polypharmacy
side-effects [8]. Despite their high accuracy predictions in different biological infer-
ence tasks, knowledge graph embeddings are in their early adoption stages in com-
putational biology. Moreover, many computational biology studies that have used
knowledge graph embedding models adopted old versions of these models [31, 32].
These versions have then received significant modifications through recent computer
science research advances [25].

In a previous study, Su et. al. [14] have introduced the use of network embedding
methods in biomedical data science. The study compiles a taxonomy of embedding
methods for both basic and heterogeneous networks where it discusses a broad range
of potential applications and limitation. The study’s objective was to introduce the
broad range of network embedding methods, however, it lacked deeper investigation
into the technical capabilities of the models and how can they be integrated with a
specific biological problem. The study also did not compare the investigated models
in terms of their accuracy and scalability which is essential to assist reader from the
biological domain to understand the key differences between these methods as to
their applicability.

In this study, we exclusively explore KGE models, focusing on the best performing
models in terms of both scalability and accuracy across various biological tasks. We
use these case studies to demonstrate the analytical capabilities of KGE models, e.g.
learning clusters and similarity measures in different biological problems. We also
explore the process of building biological knowledge graphs for generic and specific
biological inference tasks. We then present computer-based experimental evaluation
of knowledge graph embedding models on different tasks such as predicting drug
target interactions, drug polypharmacy side-effects and prediction of tissue-specific
protein functions.

The rest of this study is organised as follows: Sec. 2.1 discusses knowledge graphs
as a data modelling technique and their applications in the biological domain. Sec. 2.2
discusses knowledge graph embedding (KGE) models, their design and how they
operate on different types of data. Sec. 3 presents the example case studies that we will
use throughout the study. Sec. 4 discusses the predictive and analytical capabilities
of KGE models on the designated case studies discussed in Sec. 3. Sec. 5 discusses the
performance of KGE models on biological data in terms of the predictive accuracy
and scalability. Sec. 6 discusses the current challenges and possible opportunities of
the use of KGE models to model the different types of biological systems. Finally, we
discuss our conclusions in Sec. 7.

2 Background

In this section, we discuss both knowledge graphs and knowledge graph embedding
models in the context of biological applications.
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Figure 1: A schema of a knowledge graph that models a complex biological system
of different types of entities and concepts. The abbreviation DR represents drugs,
GE represents proteins (their genes), EX represents protein expressions (tissues and
cell-lines), AB represents protein antibodies, MO represents protein motifs and other
sequence annotations, GO represents gene ontology, DS represents diseases, SE
represents drug side-effects, AT represents ATC classes, CL represents drug classes
and PA represents pathways.

2.1 Knowledge graphs

A knowledge graph is a data modelling technique that models linked data as a graph,
where the graph’s nodes represent data entities and its edges represent the relations
between these entities. In recent years, knowledge graphs became a popular means
for modelling relational data where they were adopted in various industrial and
academic applications such as semantic search engines [33], question answering
systems [34] and general knowledge repositories [35]. They were also used to model
data from different types of domains such as general human knowledge [35], lexical
information [36] and biological systems [12].

Knowledge graphs model facts as subject, predicate and object (SPO) triples,
where subjects and objects are the knowledge entities and predicates are the knowl-
edge relations. In this context, the subject entity is associated to the object entity with
the predicate relation e.g. (Aspirin, drug_target, COX1). Fig. 1 shows an illustration of
a schema of a knowledge graph that models complex associations between different
types of biological entities such as drugs, proteins, antibodies, etc. It also models
different types of relations between these entities, where these relation carry different
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Figure 2: An illustration of the training network of one training instance of a knowl-
edge graph embedding model.

association semantics.
In our study, we use G to denote a knowledge graph, E to denote entities and R

to denote relations i.e. predicates. We also use Ne and Nr to denote the total count
of both entities and relations in a knowledge graph respectively.

Popular Biological Sources. Online knowledge bases are a popular means for pub-
lishing large volumes of biological data [37]. In recent years, the number of these
knowledge bases have grown, where they cover different types of data such as paper
abstracts [38], raw experimental data [39], curated annotations [10, 40, 41], etc.
Biological knowledge bases store data in different structured and unstructured (free
text e.g. comments) forms. Although both data forms can be easily comprehended by
humans, structured data is significantly easier for automated systems. In the follow-
ing, we explore popular examples of these knowledge bases which offer structured
data that can be easily and automatically consumed to generate knowledge graphs.

Table 1 summarises the specialisations and the different types of covered biologi-
cal entities of a set of popular biological knowledge bases. The table also shows that
most of the current knowledge bases are compiled around proteins (genes). However,
it also shows their wide coverage of the different types of biological entities such as
drugs, their indications, gene ontology annotations, etc.

Building Biological Knowledge Graphs. Knowledge graphs store information in
a triplet form, where each triplet (i.e. triple) model a labelled association between
two unique unambiguous entities. Data in biological knowledge bases, however,
lacks these association labels. Different knowledge bases also use different identifier
systems for the same entity types which results in the ambiguity of entities of merged
databases. Building biological knowledge graph process therefore mainly deals with
these two issues.

In the association labelling routine, one can use different techniques to provide
meaningful labels for links between different biological entities. This, however, is
commonly achieved by using entity types of both subject and object entities to denote
the relation labels as shown in Fig 1 (e.g. “Drug Side-effect” as a label for link between
two entities that are known to be types of Drug and Side-effect, respectively).

The ambiguity issue, i.e. merging entities of different identifier systems, is com-
monly resolved using identifier mapping resource files. Different systems study
entities on different speciality levels. As a result, the links between their different
identifier systems is not always in a form of one-to-one relationships. In such cases, a
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UNIPROT [10] S/U GE 3 3 3 3 3 3 3
REACTOME [42] S PA 3 3 3
KEGG [40, 43] S PA 3 3 3 3
DrugBank [44] S/U DR 3 3 3
Gene Ontology [11] S GO 3 3 3
CTD [45] S/U CH 3 3 3 3 3
ChEMBL [46] S/U CH 3 3 3 3 3
SIDER [47] S DR 3 3
HPA [48] S/U GE 3 3 3 3
STRING [49] S GE 3
BIOGRID [50] S GE 3
InAct [41] S GE 3
InterPro [51] S GE 3
PharmaGKB [52] S DR 3 3
TTD [53] S DR 3 3
Supertarget [54] S DR 3 3

Table 1: A comparison between popular biological knowledge graph in terms of
the coverage of different types of biological entities. The abbreviation S represent
structured data, U represents unstructured data, DR represents drugs, GE represents
proteins, GO represents gene ontology,PA represents pathways and CH denotes
chemicals.

decision is made to apply a specific filtering strategy based on either expert’s opinion
or problem-specific properties (for instance, deciding on an authoritative resource
such as UniProt for protein entities and resolving all conflicts by sticking to that
resource’s naming scheme and conventions).

To complement the basic principles introduced in the previous paragraphs, we
refer the reader to the Bio2RDF initiative [55] that has extensively studied the gen-
eral topic of building interlinked biological knowledge graphs (see also Bio2RDF
scripts1 for corresponding scripts and conversion convention details). General prin-
ciples as well as an example of actual implementation of conversion from (relational)
databases into RDF (i.e. knowledge graphs) are discussed in the study of Bizer et.
al. [56]. Possible solutions to the problem of aligning and/or merging several such
knowledge graphs are reviewed in the study of Amrouch et.al. [57] that focuses on
ontology matching. An example of a more data-oriented method is for instance
LIMES [58]. All these approaches may provide a wealth of inspiration for building

1https://github.com/bio2rdf/bio2rdf-scripts/wiki
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bespoke approaches to building knowledge graphs in specific biomedical use cases,
should the information we provide in this section be insufficient.

2.2 Knowledge graph embeddings (KGE)

In this section, we discuss knowledge graph embedding models where we briefly ex-
plore their learning procedure. We then explore different embedding representation
types and their potential uses and application.

The learning procedure. Multiple studies have explored knowledge graph em-
bedding (KGE) models, their technical design, training objectives and predictive
capabilities on general benchmarking settings [15, 24, 59]. Therefore, in the follow-
ing we only focus on providing a brief and concise description of how KGE models
work.

KGE models operate by learning low-rank representations of knowledge graph
entities and relations. The KGE learning step is a multi-phase procedure as shown in
Fig. ’2 which is executed iteratively on knowledge graph data. Initially, all entities and
relations are assigned random embeddings (noise). They are then updated using a
multiphase learning procedure.

KGE models consume knowledge graphs in the form of subject, predicate and
object (spo) triplets. They first generate negative samples from the input true triplets
using uniform random corruptions of the subjects and objects [60]. KGE models then
lookup corresponding embedding of both the true and corrupted triplets. The embed-
dings are then processed using model-dependent scoring functions (cf. mechanism-
of-action in Table 2) to generate scores for all the triplets. The training loss is then
computed using model-dependent loss functions where the objective is to maximise
the scores of true triplets and minimise the scores of corrupted triplets. This objective
can be formulated as follows:

∀t∈T,t ′∈T′ f (θt ) > f (θt ′ ), (1)

where T denotes the set of true triplets, T′ denotes the set of corrupted triplets, f
denotes the model-dependent scoring function and θt denotes the embeddings of
the triplet t .

Traditionally, KGE models use a ranking loss, e.g. hinge loss or logistic loss, to
model the objective training cost [26, 28, 29]. This strategy allows KGE models to
efficiently train their embeddings in linear time, O (d), where K denotes the size of
the embedding vectors. On the other hand, some KGE models such as the ConvE [30]
and the ComplEx-N3 [25] models adopt multi-class based strategies to model their
training loss. These approaches have shown superior predictive accuracy compared
to traditional ranking based loss strategies [25, 30]. However, they suffer from limited
scalability as they operate on the full entity vocabulary.

The KGE models minimise their training loss using different variations of the
gradient descent algorithm e.g. Adagrad, AMSGrad, etc. Finally, some KGE models
normalise their embeddings as a regularisation strategy to enhance their generalisa-
tion. This strategy is often associated to models which adopt ranking based training
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Model Scoring mechanism Em. Format Time Space Year Repository (Github)

RESCAL [27] Tensor factorisation (d ,d 2) O (d 2) O (nd +md 2) 2011 mnick/rescal.py
TransE [26] Linear translation (d ,d) O (d) O (nd +md) 2014 ttrouill/complex
DistMult [28] Bilinear dot product (d ,d) O (d) O (nd +md) 2015 ttrouill/complex
HolE [62] Fast Fourier Transformation (d ,d) O (d logd) O (nd +md) 2016 mnick/holographic-embeddings
ComplEx [29] Complex product (2d ,2d) O (d) O (nd +md) 2016 ttrouill/complex
ANALOGY [63] Analogical structure (d ,d) O (d) O (nd +md) 2017 quark0/ANALOGY
ConvE [30] Convolutional filters (d ,d) O (d) O (nd +md) 2018 TimDettmers/ConvE
TriModel [64] Multi-part embeddings (3d ,3d) O (d) O (nd +md) 2019 samehkamaleldin/libkge

Table 2: A comparison between popular KGE models, their learning mechanism,
published year and available code bases. Em. format column denotes the format of
the model embeddings in the form (g (d),h(d)), where d denotes the embeddings
size, g (d) denotes the shape of the entities embeddings and h(d) denotes the shape
of the relations embeddings. n and m denote the number of entities and relations
respectively in the space complexity column.

loss strategies such as the TransE and DistMult models [26, 28].
The learning multi-phase procedure is executed iteratively to update the model’s

embeddings until they reach an optimal state that satisfies the condition in Eq. 1. Ta-
ble 2 also provides a summary of properties of popular KGE models, their mechanism
of action i.e. scoring mechanism, output embeddings format, runtime complexity,
release year and available code bases.

Knowledge graph embedding models ingest graph data in triplets form where
they learn global graph low-rank latent features which preserve the graph’s coherent
structure. These features encode semantics such as node types and their neighbours
by isolating nodes’ embeddings on different embedding dimensions [23]. However,
they have limited ability to encode indirect semantics such as logical rules and in-
direct relations [61].

Embedding representation. Knowledge graph embeddings have different formats
e.g. vectors, matrices, etc, which serve as numerical feature representations of their
respective objects. These representations can be used in both general tasks such as
clustering and similarity analysis, as well as in specific inference tasks such as predict-
ing different association types. Similarly, in computational biology, they can be used
to cluster biological entities such as protein, drugs, etc, as well as to learn specific
biological associations such as drug targets, gene related diseases, etc. Embeddings of
biological entities can also be used as representative features in traditional regression
and classification models e.g. logistic regression or SVM classifiers.

Popular KGE models. Table 2 presents a comparison between a set of popular
KGE models, their scoring mechanism, embeddings format, time complexity, space
complexity, year of publication, and corresponding source code repository. These
models use different approaches to learn their embeddings where they can be cat-
egorised into three categories: distance based models, factorisation based models
and convolutional models. Distance based models such as the TransE model use
linear translations to model their embeddings interactions using a linear time and
space complexity procedure. Convolution based methods such as the ConvE use

8

mnick/rescal.py
ttrouill/complex
ttrouill/complex
mnick/holographic-embeddings
ttrouill/complex
quark0/ANALOGY
TimDettmers/ConvE
samehkamaleldin/libkge


convolutional neural networks to model embedding interactions which also have a
linear time and space complexity. Factorisation based models, on the other hand,
use dot product based procedures to model embedding interactions, where they
also have linear time and space complexity. However, tensor factorisation based
models commonly use higher rank embeddings than convolution and distance based
models [29, 64].

In this study, we are focused on embedding methods which operate on multi-
relational graphs as we mentioned in the introduction of the paper. The Deep-
Walk [65], Node2Vec [66], etc are uni-relational graphs embedding methods, thus,
they we do not include them in this study.

3 Examples of biological case studies

In the following, we present two example biological case studies that we use through
this study to demonstrate the capabilities of KGE models. Firstly, we discuss the task
of predicting drug target interactions where we model biological information as a
knowledge graph. We then evaluate the predictive accuracy of KGE models and we
compare them to other state-of-the-art approaches. Secondly, we discuss the task of
predicting drug polypharmacy side-effects, where we model the investigated drug
polypharmacy data as a 3D tensor.

3.1 Predicting drug target interactions

The study of drug targets has become very popular with the objective of explaining
mechanisms of actions of current drugs and their possible unknown off-target ac-
tivities. Knowing targets of potential clinical significance also plays a crucial role
in the process of rational drug development. With such knowledge, one can design
candidate compounds targeting specific proteins to achieve intended therapeutic
effects. Large-scale and reliable prediction of drug-target interactions (DTIs) can
substantially facilitate development of such new treatments. Various DTI prediction
methods have been proposed to date. Examples include chemical genetic [67] and
proteomic methods [68] such as affinity chromatography and expression cloning
approaches. These, however, can only process a limited number of possible drugs
and targets due to the dependency on laboratory experiments and available physical
resources. Computational prediction approaches have therefore received a lot of
attention lately as they can lead to much faster assessments of possible drug-target
interactions [69, 70].

Data. We consider the DrugBank_FDA [71] benchmarking dataset as an example
to evaluate the predictive accuracy of KGE models and to compare them to other
approaches. We also utilise the UNIPROT [10] database to provide richer information
about both drugs and their protein targets in the input knowledge graph. The dataset
contains 9881 known drug target interactions which involve 1482 drugs and 1408
protein targets.

Related work. The work of Yamanishi et. al.[69] was one of the first approaches to
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predict drug targets computationally. Their approach utilised a statistical model that
infers drug targets based on a bipartite graph of both chemical and genomic infor-
mation. The BLM-NII [70] model was developed to improve the previous approach
by using neighbour-based interaction-profile inference for both drugs and targets.
More recently, Cheng et. al. [72, 73] proposed a new way for predicting DTIs, where
they have used a combination of drug similarity, target similarity and network-based
inference. The COSINE [74] and NRLMF [75] models introduced the exclusive use of
drug-drug and target-target similarity measures to infer possible drug targets. This
has an advantage of being able to compute predictions even for drugs and targets
with limited information about their interaction data. However, these methods only
utilised a single measure to model components similarity. Other approaches such
as the KronRLS-MKL [76] model used a linear combination of multiple similarity
measures to model the overall similarity between drugs and targets. Non-linear
combinations were also explored in an early study [70] and shown to provide better
predictions. Recently, further predictive models were developed to utilise matrix
factorisation [77] and biological graph path features [7] to enable more accurate drug
target prediction.

3.2 Predicting polypharmacy side-effects

Polypharmacy side-effects are a specific case of adverse drug reactions that can cause
significant clinical problems and represent a major challenge for public health and
pharmaceutical industry [78]. Pharmacology profiling leads to identification of both
intended (target) and unintended (off-target) drug-induced effects, i.e. biological
system perturbations. While most of these effects are discovered during pre-clinical
and clinical trials before a drug release on the market, some potentially serious
adverse effects only become known when the drug is in use already.

When more drugs are used jointly (i.e. polypharmacy), the risk of adverse effects
rises rather rapidly [79, 80]. Therefore, reliable automated predictions of such risks
are highly desirable to mitigate their impact on patients.

Data. In this case study, we consider the dataset compiled by Zitnik et al. [8] as an
example benchmark. The dataset includes information about multiple polypharmacy
drug side-effects 2. The dataset also contains facts about single drug side-effects,
protein-protein interactions and protein-drug targets. The drug side-effects repre-
sented in the dataset are collected from the SIDER (Side Effect Resource) database [47]
and the OFFSIDES and TWOSIDES databases [80]. These side-effects are categorised
into two groups: mono-drug and polypharmacy drug-drug interaction side-effects.

In our study, we only consider the polypharmacy side-effects and we filter out
both the mono-side effects and drug targets data.

Related work. The research into predictive approaches for learning drug polyphar-
macy side effects is in its early stages [8]. The decagon model [8] is one of the first
introduced methods for predicting polypharmacy side-effects which models the
polypharmacy side-effects data as a knowledge graph. It then solves the problem as a

2http://snap.stanford.edu/decagon/
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link prediction problem using a generative convolution based strategy. Despite its
effectiveness, this approach still suffers from a high rate of false positives. Further-
more, other approaches considered using a multi-source embedding model [81] to
learn representations of drugs and polypharmacy side-effects. These approaches
achieved similar performance to the Decagon model with a more scalable training
procedure [81].

3.3 Predicting tissue-specific protein functions

Proteins are usually expressed in specific tissues within the body where their pre-
cise interactions and biological functions are frequently dependent on their tissue
context [82, 83]. The disorder of these interactions and functions results in dis-
eases [84, 85]. Deep understanding of tissue-specific protein activities is therefore
essential to elucidate the causes of diseases and possible treatments.

Data. We consider the tissue-specific dataset compiled by Zitnik et. al [86] to study
tissue-specific protein functions. The dataset contain protein-protein interactions
and protein functions of 144 tissue types3.

Related work. Recently, Zitnik et. al. have developed the state-of-the-art model,
the OhmNet model [86], a hierarchy-aware unsupervised learning method for multi-
layer networks. It models each tissue information as a separate network, and learns
efficient representations for proteins and functions by generating their embeddings
using the tissue-specific protein-protein interactome and protein functions. They
have also examined other different approaches such as the LINE model [87] which
uses a composite learning technique where it learns half of the embeddings’ di-
mensions from the direct neighbour nodes, and the other half from the second hop
connected neighbours. The GeneMania model [88] is another model which has sug-
gested a propagation based approach for predicting tissue-specific protein functions.
In this method, the tissue-specific networks are firstly combined into one weighted
network, and they are then propagated to allow predicting other unknown protein
functions.

4 Capabilities of KGE models

KGE models can be used in different supervised and unsupervised applications
where they provide efficient representations of biological concepts. They can be
used in applications such as learning biological associations, concepts similarity
and clustering biological entities. In this section, we discuss these applications in
different computational biology tasks. We provide a set of example uses cases where
we present the data integrated in each example, how the KGE models were utilised
and we report the predictive accuracy of the KGE models and we compare it to other
approaches when possible.

3 http://snap.stanford.edu/ohmnet/
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4.1 Learning biological associations

KGE models can process data in the form of a knowledge graph. They then try to
learn low-rank representations of entities and relations in the graph which preserve
its coherent structure. They can also process data in a three dimensional (3D) tensor
form where they learn low-rank representations for the tensor entities that preserve
true entity combination instances in the tensor.

In the following, we provide two examples for learning biological associations on
a knowledge graph and a 3D tensor in a biological application. First, we discuss the
task of predicting drug target interactions where we model biological information as
a knowledge graph. We then evaluate the predictive accuracies of KGE models and we
compare them to other state-of-the-art approaches. Secondly, we discuss the task of
predicting drug polypharmacy side-effects, where we model the related data as a 3D
tensor. We then apply KGE models to perform tensor factorisation and we evaluate
their predictive accuracy in learning new polypharmacy side-effects compared to
other state-of-the-art approaches.

• Drug target prediction benchmark We present a comparison between state-
of-the-art drug target predictors and knowledge graph embedding models in
predicting drug target interactions. The KGE models in this context utilise
the fact that the current drug target knowledge bases like DrugBank [71] and
KEGG [40] are largely structured as networks representing information about
drugs and their relationship with target proteins (or their genes), action path-
ways, and targeted diseases. Such data can naturally be interpreted as a knowl-
edge graph. The task of finding new associations between drugs and their
targets can then be formulated as a link prediction problem on a biological
knowledge graph.

We use the standard evaluation protocol for the drug target interaction task [7]
on the DrugBank_FDA dataset that we introduced in Sec. 3.1. We use a 5-
fold cross validation evaluation on the drug target interactions where they are
divided into splits with uniform random sampled negative instances with a
1:10 positive to negative ratio.

Fig. 3 presents the outcome results of the KGE models (DistMult, ComplEx and
TriModel) compared to other approaches (DDR [7], DNILMF [77], NRLMF [77],
NRLMF [75], KRONRLS-MKL [76], COSINE [89], and BLM-NII [70]) on the
DrugBank_FDA dataset. The figure shows that the KGE models outperform all
other approaches in terms of both the area under the ROC and precision recall
curves.

• Polypharmacy side-effects prediction benchmark In Sec. 3.2 we discussed
the problem of predicting polypharmacy side-effects, the currently available
data and related works. In the following, we present an evaluation benchmark
for present polypharmacy side-effects where we compare the KGE models
with current state-of-the-art approaches. We first split the data into two sets,
train and test splits, where the two splits represent 90% and 10% of the data
respectively. We then generate random negative polypharmacy side-effects
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Figure 3: A summary of results of an evaluation of the predictive accuracy of knowl-
edge graph embedding models compared to other models on two biological inference
tasks: predicting drug targets and predicting polypharmacy side-effects. The reported
results represent the score percentage of the area under the ROC and precision recall
curves for the left and right side bars respectively.

by randomly generating combinations of drugs for each polypharmacy side
effect where the ratio between negative and positive instances is 1:1. We only
consider drug combinations that did not appear in the both training and test
splits to enhance the quality of sampled negatives and decrease the ratio of
false negatives.

We use the holdout test defined by Zitnik et. al. [8] where we train the predictive
models on the training data and test their accuracy on the testing data split.
We also run a 5-runs averaged 5-fold cross validation evaluation to ensure the
consistency of the model reported results over the different folds, however, we
only report the holdout test results which are comparable with state-of-the-art
methods. Our k-fold cross validation experiments confirm that the model
results are similar or insignificantly different across different random testing
splits.

We use the area under the ROC and precision recall metrics to assess the quality
of the predicted scores. Fig. 3 presents the results of our evaluation where we
compare KGE models such as the DistMult, ComplEx and TriModel models
to the current popular approaches (Decagon [8], KB_LRN [91], RESCAL [27],
DEDICOM [92], DeepWalk [65]). The results show that KGE models outperform
other state-of-the-art approaches in terms of both the area under the ROC and
precision recall curves.

• Tissue-specific protein function prediction benchmark In Sec. 3.3 we have
presented the problem of tissue-specific protein function prediction bench-
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mark where we have discussed current predictive models and established
benchmarking datasets. In the following, we present an evaluation benchmark
between a set of traditional approaches such as the OhmNet [86], LINE [87],
GeneMania [88] and SVM [86] models and other KGE models. We use the
dataset generated by Zitnik et. al. [86] which provides training and testing data
with both positive and negative instances where the negative to positive ratio
is 1 to 10.

We conduct a holdout test using the provided training and testing dataset where
we train our models on the training split and evaluate them on the testing using
the area under the ROC and precision recall curves. Fig. 3 presents the outcome
of our experiments where it shows that KGE models such as the TriModel and
ComplEx models achieve the best results in terms of both the area under the
ROC and precision recall curves. Similar to the previous experiments, we also
ran a 5-runs 5-fold cross validation test to ensure the consistency of our results
and the results of our experiments confirm the results reported in the holdout
test. However, we only report the holdout test results to be able to compare to
other approaches.

In all of our holdout test experiments, we learn the best hyperparameters using a
grid-search on the validation data split, where the training set is divided into two sets
for training and validation (90% and 10% respectively) in the absence of a validation
set. On the other hand, in the cross validation experiments, we re-split each into
training and validation splits (90% and 10% respectively) in order to learn the model’s
best hyperparameters. We have found the the embedding size is the most sensitive
hyperparameters where it correlates with the graph size. The regulation weight
and and embedding dropout also are important hyperparameters which affect the
generality of the models from the validation to the testing split.

Example source code scripts and datasets of the experiments which we executed
in this study are available at: https://github.com/samehkamaleldin/bio-kge-apps.

4.2 Learning similarities between biological entities

The KGE models enable a new type of similarity which can be measured between any
two biological entities using the similarity between their vector representation. The
similarity between vectors can be computed using different techniques such as the
cosine and p-norm similarities. Since the KGE representation is trained to preserve the
knowledge graph structure, the similarity between two KGE representations reflects
their similarity in the original knowledge. Therefore, the similarities between vector
representations of KGE models, which are trained on a biological knowledge graphs,
represent the similarities between corresponding entities in the original knowledge
graph.

In the following, we explore a set of examples for using KGE similarities on biolog-
ical knowledge graphs. We have used the drug-target knowledge graph created for
the drug target prediction task to learn embeddings of drugs, their target proteins
and the entities of the motifs of these proteins according to the PFam database [90].
We have then computed the similarities between embeddings of entities of the same
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Figure 4: Three similarity matrices that denote the Drug-drug similarities, motif-motif
similarities and protein-protein similarities. The similarity values are generated by
computing the cosine similarity between the embeddings of the pairs of compared
entities. All the embeddings used to generated this figure are computed on the
DrugBank_FDA datasets with the proteins associated to their PFam [90] motifs and
protein families.

type such as drugs, proteins and motifs as shown in Fig. 4. All the similarity scores in
the illustration are computed using cosine similarity between the embeddings of the
corresponding entity pair. The results show that the similarity scores are distributed
from 0.0 to 1.0, where the 0.0 represents the least similar pairs and the 1.0 scores
represent the similarity between the entity and itself. We then assess the validity of
resulting scores by investigating the similarity of attributes of a set of the examined
concepts with highest and lowest scores.

• Drug-drug embedding similarity The left similarity matrix in Fig. 4 illustrates
the drug-drug similarity scores between the set of the most frequent drugs in
the DrugBank_FDA dataset. The scores are computed on the embeddings of
drugs learnt in the drug target interaction training pipeline. The figure shows
that the majority of drug pairs have a low similarity (0.0 ∼ 0.2). For example, the
similarity score between the drug pairs (Diazoxide, Caffeine) and (Tacromlimus,
Diazoxide) are zero. We asses these results by assessing the commonalities
between the investigated drugs in terms of indications, pharmacodynamics,
mechanism of action, targets, enzymes, carriers and transporters. The Caffeine
and Diazoxide in this context have no commonalities except for that they are
both diuretics [93, 94]. On the other hand, Halothane and Alprazolam does
not share any of the investigated commonalities.

The results also shows a few drug-drug similarities with relatively higher scores
(0.6 ∼ 0.7). For example, the similarity scores of the drug pairs (Alprazolam,
Halothane), (Alprazolam, Caffeine) and (Halothane, Caffeine) are 0.7, 0.6 and
0.6 respectively. These finding can be supported by the fact that the two drug
pairs share common attributes in terms of their targets, enzymes and carriers.
For example, both Alprazolam and Halothane act on sedating individuals and
they target the GABRA1 protein [95, 96]. They are also broken by CYP3A4
and CYP2C9 enzymes and carried by albumin [97]. Similarly, the (Alprazolam,
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Caffeine) and (Halothane, Caffeine) pairs have common associated enzymes.

• Motif-motif embedding similarity The middle similarity matrix in Fig. 4 illus-
trates the motif-motif similarity scores between the set of the most frequent
PFam motifs associated with protein targets from the drug target interaction
benchmark. The lowest motif-motif KGE based similarity scores correspond to
the pairs (ANF_receptor, Trypsin) , (ANF_receptor, DUF1986) and (ANF_receptor,
Trypsin_2).

On the other hand, The highest similarity scores (0.8, 0.9 and 0.9) exist between
the pairs (Trypsin, DUF1986), (Trypsin_2, DUF1986) and (Trypsin, Trypsin_2)
respectively.

We assess the aforementioned findings by investigating the nature and activities
of each of the discussed motifs. For example, Trypsin is a serine protease that
breaks down proteins and cleaves peptide chains while Trypsin_2 is an isozyme
of Trypsin which has a different amino acid sequence but catalyses the same
chemical reaction as Trypsin [98].

Moreover, the DUF1986 is a domain that is found in both of these motifs which
supports the high similarity scores. On the other hand, the ANF receptor is
an atrial natriuretic factor receptor that binds to the receptor and causes the
receptor to convert GTP to cGMP, and it plays a completely different role to
trypsin, which supports its reported low similarity scores with trypsin.

• Protein-protein embedding similarity The right similarity matrix in Fig. 4
illustrates the protein-protein similarity scores between the set of the most fre-
quent protein targets from the drug target interaction benchmark. The highest
scored protein-protein pairs are (PTGS1, PTGS2) and (CYP2C19, CYP2C9) with
the scores 0.8 and 0.8 respectively. This can be supported by the fact that the
proteins CYP2C9, CYP1A2 and CYP2E1 belong to the same family of enzymes
and thus they have similar roles.

On the other hand, The ACE protein have the lowest similarity scores with the
CYP2C9, CYP1A2 and CYP2E1 proteins with 0.0 similarity score. This can be
supported by the fact that ACE is a a hydrolase enzyme which is completely dif-
ferent from CYP2C9, CYP1A2 and CYP2E1 which are Oxidoreductases enzymes.

4.3 Clustering biological entities

In the following, we demonstrate the possible uses of embeddings based clustering in
different biological tasks. We explore two cases where we use the embeddings of KGE
models to generate clusters of biological entities such as drugs and polypharmacy
side-effects. We use visual clustering as an example to demonstrate cluster separation
on a 2D space. However, in real scenarios, clustering algorithms utilise the full
dimensionality of embedding vectors to build richer semantics of outcome clusters.
Fig 5 shows two scatter plots of the embeddings of drugs from the DrugBank_FDA
dataset and the polypharmacy side-effects reduced to a 2D space. We reduced the
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Figure 5: Three similarity matrices that denotes the Drug-drug similarities, motif-
motif similarities and protein-protein similarities. The similarity values are generated
by computing the cosine similarity between the embeddings of the pairs of compared
entities. All the embeddings used to generated this figure are computed on the
DrugBank_FDA datasets with the proteins associated to their PFam [90] motifs and
protein families.

original embeddings using the T-SNE dimensionality reduction module [99] with the
cosine distance configuration to reduce the embedding vectors to a 2D space.

The following examples examines two cases that differs in terms of the quality
of generated clusters where we examine both drugs and polypharmacy side-effects
according to different properties. In the first example (drug clustering), the gener-
ated embeddings is able to provide efficient clustering. On the other hand, in the
second example, the polypharmacy side-effects, the learnt embeddings could not be
separated into visible clusters according to the investigated property.

• Clustering drugs The left plot in Fig. 5 shows a scatter plot of the reduced
embedding vectors of drugs coloured according to their chemical structure
properties. The drugs are annotated with seven different chemical structure
annotations: Polycyclic, Hydrocarbons Cyclic, Hydrocarbons, Heterocyclic, Hete-
rocyclic 1-Ring, Heterocyclic 2-Ring and other chemicals. These annotations
represent the six most frequent drug chemical structure category annotation
extracted from the DrugBank database.

We can see in the plot that the Polycyclic chemicals are located within a distin-
guishable cluster in the right side of the plot. The plot also shows that other
types of Hydrocarbons and Heterocyclic chemicals form different micro-clusters
in different locations in the plot.

These different clusters can be used to represent a form of similarity between
the different drugs. It can also be used to examine the relation between the
embeddings as a representation with the original attributes of the examined
drugs.

• Clustering polypharmacy side-effects The right plot in Fig. 5 shows a scatter
plot of the reduced embedding vectors of polypharmacy side-effects. The
plot polypharmacy side-effect points are coloured according to the human
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Figure 6: A set of line plots that describe the relation between the training runtime
and the data size and configurable parameters of the TransE, DistMult, ComplEx and
TriModel knowledge graph embedding models. The y-axis in all the plots represents
the training time in seconds with different scales while the x-axis represents the data
size and the models’ parameters embedding size, negative samples and batch size
respectively. The reported results are acquired by running the KGE models on the
polypharmacy side-effects’ full dataset (≈ 4.5M instances).

body systems they affect. The plot includes a set of six categories of polyphar-
macy side-effects that represent six different human body systems e.g. nervous
system.

Unlike the drug clusters illustrated in the left plot, the polypharmacy side-
effects system-based categorisation does not yield obvious clusters. They,
however, form tiny and scattered groups across the plot. This shows that
the KGE models are unable to learn representations that can easily separate
polypharmacy side-effects according to their associated body system.

5 Practical considerations for KGE models

In this section, we discuss different practical considerations related to the use of KGE
models. We discuss their scalability on different experimental configurations, and we
explore their different training and implementation strategies.

5.1 Scalability

Not only KGE models outperform other approaches in biological knowledge graphs
completion tasks, but they also have better scalability compared to usual graph ex-
ploratory approaches. Often, complex biological systems are modelled as graphs
where exploratory graph analytics methods are applied to perform different pre-
dictive tasks [5–7]. These models however suffer from limited scalability as they
depend on graph traversal techniques that require complex training and predictions
times [100, 101]. On the other hand, KGE models operate using linear time and
space complexity [29, 59].

On the other hand, explanatory graph models use graph path searches which
require higher time and space complexity [22]. For example, the DDR model [21]
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is an exploratory graph drug-target predictor which uses graph random walks as
features. A recent study [102] has shown that knowledge graph embedding models
can outperform such models with higher scalability and better predictive accuracy.
This is due to their linear time and space complexity procedures [29] compared to
other exploratory models which use polynomial and exponential time and space
procedures [23, 103].

In the following, we provide an empirical study of the scalability of KGE models in
terms of different experimental configuration. We have studied the relation between
the training runtime of KGE models and several training configuration parameters to
examine their scalability capabilities. We have investigated the relation between the
training runtime and the data size, embedding size, training negative samples and
the training data batch size. We have performed our study on the polypharmacy side-
effects data where the objective was to learn embeddings of drugs and polypharmacy
side-effects.

Fig. 6 shows the outcome results of our study across the different investigated
attributes. The plot "A" shows the relation between the training runtime and the
size of the processed data. The plot shows that all the four investigated have a
linear relation between their training runtime and the investigated data size. The
plot also shows that the investigated models have a consistent growth in terms of
their runtime across all the data sizes. The DistMult model consistency achieves the
smallest runtime followed by the TransE, ComplEx and TriModel models respectively.

Plot "B" shows the relationship between the training runtime and the model em-
bedding size. The plot shows that all the investigated models have a linear growth of
their training runtime corresponding to the growth of the embeddings size. However,
the growth rate of the TransE and DistMult models is considerably smaller than the
growth of both the ComplEx and TriModel models. This occurs as both the TransE
and DistMult models use a single vector to represent each of their embeddings while
the ComplEx and TriModel models use two and three vectors respectively. Despite the
better scalability of both the TransE and DistMult models, the ComplEx and TriModel
models generally achieve better predictive accuracy than the TransE and DistMult
models [64].

The plot "C" shows the relation between the runtime of KGE models and the
number of negative samples they use during training. The plot shows that there is
a positive linear correlation between training runtime and the number of negative
samples–where all the KGE models have similar results across all the investigated sam-
pling sizes. The TriModel, however, consistently have the highest runtime compared
to other models.

Plot "D" shows the effects of the size of the batch on the training runtime. The plot
shows an exponential decay of the training runtime with the linear growth of the data
batch size. The KGE models process all the training data for each training iteration
i.e. epoch, where the data is divided into batches for scalability and generalisation
purposes. Therefore, the increase of the training data batch sizes lead to a decrease
of the number of model executions for each training iteration. Despite the high
scalability that can be achieved with large batch sizes, the best predictive accuracy
is often achieved using small data batch sizes. Usually, the most efficient training
data batch size is chosen during a hyper-parameter grid search along with other
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parameters such as the embedding size and the number of negative samples.

5.2 Implementation and training strategies

Different implementations of KGE models are available online in different reposito-
ries as shown in Table. 2. The high scalability of KGE models allows them to be ported
to both CPUs and GPUs where they can benefit from the high performance capabil-
ities of GPU cores. They can also be implemented to operate in a multi-machine
design, where they perform embedding training in a distributed fashion [104]. This
configuration is better suited for processing knowledge graph of massive volumes
that is hard to fit into one machine.

In this study, all our experiments are implemented in Python 3.5 using the Ten-
sorflow library where we train our models on a single GPU card on one machine. We
run our experiments on a Linux machine with an Intel(R) Core(TM) i7 processor, 32
GB RAM, and an nVidia Titan Xp GPU.

6 Opportunities and challenges

In this section, we discuss the challenges and opportunities related to the general
and biological applications of KGE models. We begin by discussing the scope of input
data for these models. We then discuss possible applications of KGE models in the
biological domain. We conclude by discussing the limited interpretability of KGE
models and other general limitations related to their biological applications.

6.1 Potential applications

KGE models can build efficient representations of biological data which is modelled
as 3D tensors or knowledge graphs. This includes multiple types of biological data
such as protein interactome and drug target interactions. In the following, we discuss
examples of biological tasks and applications that can be performed using KGE
models.

• Modelling proteomics data. KGE models can be used to model the differ-
ent types of protein–protein interactions such as binding, phosphorylation,
etc [105, 106]. This can be achieved by modelling these interactions as a
knowledge graphs and applying the KGE models to learn the embeddings of
the different proteins and interaction types. They can also be used to model
the tissue context of interactions where different body tissues have different
expression profiles of proteins, and these differences in expression affect the
the proteins’ interaction network. KGE can be used to model these interactions
with their associated contexts as tensors [6].

The biological activities of proteins also differ depending on their tissue con-
text [86]. This type of information can easily be modelled using tensors where
KGE models can be used to analyse the different functions of proteins depend-
ing on their tissue context [107].
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• Modelling genomics data. Genomics data has been widely used to predict
multiple gene associated biological entities such as gene–disease and gene–
function associations [108, 109]. These approaches model the gene associa-
tion in different ways including tensors and graph based representations [110].
KGE models can be easily utilised to process such data and provide efficient
representations of genes and their associated biological objects. They can
be further used to analyse and predict new disease–gene and gene–function
associations.

• Modelling pharmacological systems. Information on pharmaceutical chemi-
cal substances is becoming widely available on different knowledge bases [46,
71]. This information includes the drug–drug and drug–protein interactome.
In this context, KGE models can be a natural fit, where they can be used to
model and extend the current pharmacological knowledge. They can also be
used to model and predict both traditional and polypharmacy side-effects of
drugs as shown in recent works [8, 111].

More details and discussion of the possible uses of KGE models and other general
network embedding methods can be found in the study of Su et. al. [14] which
discusses further potential uses of these methods in the biological domain.

6.2 Limitations of the KGE models

In the following, we discuss the limitations of the KGE models in both general and
biological applications.

• Lack of interpretability In knowledge graph embedding models, the learning
objective is to model nodes and edges of the graph using low-rank vector
embeddings that preserve the graph’s coherent structure. The embedding
learning procedure operates mainly by transforming noise vectors to useful
embeddings using gradient decent optimisation on a specific objective loss.
Despite the high accuracy and scalability of this procedure, these models work
as a black box and they are hard to interpret. Some approaches have suggested
enhancing the interpretability of KGE models by using constraining training
with a set of predefined rules such as type constraints [112], basic relation
axioms [113], etc. These approaches thus enforce the KGE models to learn
embeddings that can be partially interpretable by their employed constraints.

In recent studies, researchers have also explored the interpretability of KGE
models through new predictive approaches on top of the KGE models. For
example, Gusmão et. al. [114] suggested the use of pedagogical approaches
where they have used an alternative graphical predictive model, the SFE model [19],
to link the learnt graph embeddings to the original knowledge graph. This ap-
proach was able to provide a new way for finding links between the embeddings
and the original knowledge; however, the outcomes of these methods are still
limited by the expressibility and feature coverage of the newly employed pre-
dictive models. The interpreting method in this context, also depends on
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graph traversal methods which have limited scalability on large knowledge
graphs [20].

• Data quality KGE models generate vector representations of biological entities
according to their prior knowledge. Therefore, the quality of this knowledge
affects the quality of the generated embeddings. For example, there is a high
variance in the available prior knowledge on proteins where well studied pro-
teins have significantly higher coverage in most databases [115]. This has a
significant impact on quality of the less represented proteins as KGE models
will be biased towards more studied proteins (i.e. highly covered proteins).

In recent years, multiple works have explored the quality of currently available
knowledge graphs [116] and the effect of low quality graphs on embedding
models [117]. These works have shown that the accuracy KGE predictions
degrade as sparsity and unreliability increase [117].

This issue can be addressed by extending the available knowledge graph facts
through merging knowledge bases of similar content. For example, drug target
prediction using KGE models can be enhanced by extending the knowledge of
protein–drug interactions by extra information such as protein-protein interac-
tions and drug properties [102].

• Knowledge evolution Biological knowledge evolves everyday, where new chem-
icals and drugs are introduced and different associations between biological
entities are discovered. However, KGE models in this context, are unable to
encode the newly introduced entities. This results from their dependence on
prior knowledge instead of the structural informations of proteins and chemical
substances.

This issue can be addressed by combining knowledge graph embedding scoring
procedure with other sequence and structured based scoring mechanisms.
This can allow informed prediction on new unknown objects. However, such a
strategy will affect the scalability of predictions due to the newly introduced
sequence and structure based features.

• Hyper-parameter sensitivity The outcome predictive accuracy of KGE embed-
dings is sensitive to their hyper-parameters [118]. Therefore, minor changes
in these parameters can have significant effects on the outcome predictive
accuracy of KGE models. The process of finding the optimal parameters of KGE
models is traditionally achieved through an exhausting brute-force parameter
search. As a result, their training may require rather time-consuming grid
search procedure to find the right parameters for each new dataset.

In this regard, new strategies for hyper parameter tuning such as differential
evolution [119], random searches [120] and Bayesian hyper parameter opti-
misation [121]. These strategies can yield a more informed parameter search
results with less running time.

• Reflecting complex semantics of biological data in models based on knowl-
edge graphs Knowledge graph embedding methods are powerful in encoding

22



direct links between entities, however, they have limited ability in encoding
simple indirect semantics such as types at different abstraction levels (i.e. tax-
onomies). For example, a KGE model can be very useful in encoding networks
of interconnecting proteins which are modelled using direct relations. How-
ever, it has limited ability in encoding compound, multi-level relationships
such as protein involvement in diseases due to their involvement in pathways
that cause this disease. Such compound relationships that could be used for
modelling complex biological knowledge are notoriously hard to reflect in KGE
models [122]. However, the KGE models do have some limited ability to encode
for instance type constrains [123], basic triangular rules [122] or cardinality
constraints [124]. This could be used for modelling complex semantic fea-
tures reflecting biological knowledge in future works. One has to bear in mind,
though, that the designs of these semantics-enhanced KGE models typically
depends on an extra computational routines to regularise the learning process
which affects their scalability.

In their study, Su et. al. [14] have also discussed further general limitations of
network embedding methods, and the effects and consequences of such limitations
on the use of network embedding methods in the biological domain.

7 Conclusions

In this study, we discussed knowledge graph embedding (KGE) models and their
biological applications. We presented two biological case studies, predicting drug
targets and predicting polypharmacy side-effects, to demonstrate the predictive
and analytical capabilities of KGE models. We demonstrated by computational
experimental evaluation that KGE models outperform state-of-the-art approaches in
solving the two studied problems on standard benchmarks. We also demonstrated the
analytical capabilities of KGE such as clustering and measuring concept similarities.
In this regard, we demonstrated KGE models’ abilities to learn efficient similarities
between different biological entities such as drugs and proteins. We also showed that
the KGE models can efficiently be used as clustering methods for biological entities.

Furthermore, we discussed different practical considerations regarding the scala-
bility and training strategies of KGE models. We also discussed the potential applica-
tions of KGE models in the biological domain. We finally discussed the challenges and
limitations which face KGE models where we explored both their general limitations
and the challenges that face them in the biological domain. In conclusion, we believe
that the presented study can be a solid stepping stone towards many promising
applications of the emergent KGE technology in the field of computational biology.
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