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Classes of cannabinoid-based pharmacological agents cited in the review  

Nonselective CB1/CB2 agonists: Δ9-THC, HU210, CP55940, WIN55,212-2 

Selective CB2 agonists: JWH-015 

FAAH inhibitors: URB597, AA-5HT 

MAGL/ABHD6 inhibitors: JZL184, MJN110, KML129, WWL70 

Endocannabinoid reuptake inhibitors: UCM707, OMDM1/2, AM404 
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Abstract 

Toll-like receptors (TLRs) mediate the innate immune response to pathogens and are critical in the 

host defence, homeostasis and response to injury. However, uncontrolled and aberrant TLR 

activation can elicit potent effects on neurotransmission and neurodegenerative cascades and has 

been proposed to trigger the onset of certain neurodegenerative disorders and elicit detrimental 

effects on the progression and outcome of established disease. Over the past decade, there has been 

increasing evidence demonstrating that the endocannabinoid system can elicit potent modulatory 

effects on inflammatory processes, with clinical and preclinical evidence demonstrating beneficial 

effects on disease severity and symptoms in several inflammatory conditions. This review examines 

the evidence supporting a modulatory effect of endocannabinoids on TLR-mediated immune 

responses both peripherally and centrally, and the implications for psychiatric disorders such as 

depression and schizophrenia. 

 

Keywords: Endocananbinoid; Anandamide; 2-AG; TLR3; TLR4; LPS; Poly I:C; depression; 

schizophrenia  
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Introduction 

The endocannabinoid system is an important lipid signalling system involved in modulation of a host 

of physiological responses ranging from appetite, respiration, metabolism, inflammation, pain and 

neurotransmission to name but a few. Of particular interest over the past decade has been the 

discovery that cannabinoids (plant-derived, synthetic and endogenous) elicit potent modulatory 

effects on inflammatory processes, with clinical and preclinical evidence demonstrating beneficial 

effects on disease severity and symptoms in several inflammatory conditions (Yoshihara et al., 2005, 

Storr et al., 2009, Tschop et al., 2009, Yu et al., 2010). However, the precise mechanisms by which 

cannabinoids modulate immune function depend on the conditions under investigation, and in many 

cases remain to be determined. There has been increasing data to suggest that one mechanism by 

which cannabinoids influences innate immune function may be by interacting with a superfamily of 

pattern recognition receptors (PRR) namely toll-like receptors (TLRs). Activation of TLRs 

participates in host defences, homeostasis and response to injury however, uncontrolled and aberrant 

TLR activation can elicit potent effects on neurotransmission and neurodegenerative cascades [for 

reviews see (Owens, 2009, van Noort and Bsibsi, 2009, Lehnardt, 2010, Arroyo et al., 2011)]. 

Furthermore, viral and bacterial induced activation of TLRs results in systemic and central 

inflammation, an effect proposed to trigger the onset of some neurodegenerative disorders (Deleidi 

and Isacson, 2012) and elicit detrimental effects on the progression and outcome of established 

disease (Perry, 2004, Holmes et al., 2009, Teeling and Perry, 2009). As TLRs are expressed on 

neurons, astrocytes and microglia within the CNS (Bsibsi et al., 2002), and TLR expression has been 

reported to be increased in the post-mortem brain of patients with neurodegenerative  and psychiatric 

disorders (Salaria et al., 2007, Brudek et al., 2013), modulation of TLR-associated innate 

inflammatory responses by cannabinoids may provide a novel therapeutic target for such disorders.  
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The endocannabinoid system 

The endocannabinoid system is widely expressed in all tissues of the body and comprises the 

cannabinoid (CB)1 and CB2 receptors, the naturally occurring endogenous receptor agonists or so-

called endocannabinoids, the best characterised of which are arachidonyl ethanolamide (anandamide, 

AEA) and 2-arachidonoyl glycerol (2-AG) (Devane et al., 1992, Mechoulam et al., 1995, Sugiura et 

al., 1995), and the enzymes involved in their synthesis and degradation. It should be noted that other 

endocannabinoid ligands including oleamide (Leggett et al., 2004), O-arachidonoyl ethanolamine 

(virodamine) (Porter et al., 2002), 2-arachidonoyl glycerol ether (noladin ether) (Hanus et al., 2001) 

and N-arachidonoyl-dopamine (NADA) (Huang et al., 2001, Bisogno et al., 2005) have been 

identified however, the role of these ligands in physiological processes has not been examined in 

detail. Endocannabinoids are not stored in vesicles but rather their biosynthesis occurs on demand 

via hydrolysis of cell membrane phospholipid precursors. AEA, and two related analogues N-

oleoylethanolamide (OEA) and N-palmitoylethanolamide (PEA), formed from the precursor N-

arachidonoylphosphatidylethanolamine (NAPE), with AEA formed due to the hydrolytic activity of 

the phospholipase D enzyme NAPE-PLD (Di Marzo et al., 1994, Sugiura et al., 1996). The main 

biosynthetic pathway for 2-AG involves the hydrolysis of the membrane phospholipid 

phosphatidylinositol (PI) by phospholipase C (PLC), producing 1,2-diacylglycerol (DAG), which in 

turn is then converted to 2-AG by diacylglycerol lipase (DAGL) (Prescott and Majerus, 1983, 

Sugiura et al., 1995). 

Once release, endocannabinoids elicit their effect primarily via CB1 and/or CB2 receptors. CB1 

receptors are G-protein coupled receptors that are highly expressed throughout the human and rodent 

brain, with particularly high density on the pre-synaptic terminals of GABA and glutamate neurons 

(Herkenham et al., 1991, Tsou et al., 1998, Mackie, 2008). Activation of CB1 receptors results in 

inhibition of cyclic AMP, activation of MAPK and inhibition of N- and P/Q- type voltage-activated 

Ca2+ channels while concurrently activating the inwardly rectifying K+ currents, effects which result 
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in the inhibition of central neurotransmitter release. Although at lower density than on neurons, CB1 

receptors have also been shown to be expressed on glia and on a wide range of peripheral tissues 

(Galiegue et al., 1995, Carlisle et al., 2002, Osei-Hyiaman et al., 2005, Cavuoto et al., 2007, Cota, 

2007). In comparison, CB2 receptors, also a G-protein coupled receptor, is widely distributed in 

peripheral tissues, particularly in immune tissues including the spleen, tonsils, thymus, mast cells and 

blood cells (Munro et al., 1993, Berdyshev, 2000, Sugiura et al., 2000) and on activated glia within 

the brain (Carlisle et al., 2002, Nunez et al., 2004, Rock et al., 2007).  Accumulating evidence has 

also indicated that CB2 receptor protein and mRNA is also expressed on subsets of neurons within 

the brain (Van Sickle et al., 2005, Gong et al., 2006, Onaivi et al., 2006, Baek et al., 2008, Zhang et 

al., 2014) and thus this receptor may also directly modulate neurotransmission. In addition to CB1 

and CB2, endocannabinoids are now known to also elicit activity at other receptors, namely the 

transient receptor potential vanilloid 1 (TRPV1), PPARs, GPR55 and GPR119 (Huang et al., 2002, 

Overton et al., 2006, Sun et al., 2006, Ryberg et al., 2007).  Activity at these receptors has been 

proposed to account, at least partially, for some of the differential effects observed with potent 

selective cannabinoid agonists and modulation of endocannabinoid tone. 

A number of enzymes have been identified that are involved in the catabolism of endocannabinoids. 

Fatty acid amide hydrolase (FAAH) has been identified as the enzyme primarily responsible for the 

metabolism of AEA, exhibiting similar distribution to CB1 receptors (Cravatt et al., 1996, 2001, 

Walker et al., 2002). In comparison, monoacylglycerol lipase (MAGL) is considered the primary 

enzyme involved in 2-AG inactivation, responsible for approximately 85% of its metabolism (Dinh 

et al., 2002, Long et al., 2009a). The remaining 15% is thought to be broken down by FAAH, 

cyclooxygenase-2 (COX2), ABDH6 (serine hydrolase α/β-hydrolase domain) and ABDH12 

(Blankman et al., 2007). Moreover, both COX-2 and lipoxygenase (LOX) catalyse the oxidation of 

AEA and 2-AG into metabolic products which mediate biological effects independent of cannabinoid 

receptors (Ueda et al., 2011, Urquhart et al., 2014).      



 

7 
 

Due to the topography of this lipid signalling system, the endocannabinoid system is in a unique 

position to regulate a host of physiological activities. Over the past decade there has been increased 

interest in cannabinoid modulation of immune function in both health and disease, which has been 

examined in detail by several excellent reviews (Nagarkatti et al., 2009, Stella, 2009, Jean-Gilles et 

al., 2010, Stella, 2010, Rom and Persidsky, 2013). The general consensus is that cannabinoid 

modulation of inflammatory processes provides a novel therapeutic target for central and peripheral 

inflammatory disorders. We propose that one of the mechanisms by which cananbinoids (both 

exogenous and endogenous) influence immune function is via modulation of TLR-mediated 

responses and thus the aim of this review is to examine the evidence supporting a modulatory effect 

of cannabinoids on TLR-mediated immune responses both peripherally and centrally, and review the 

implications for psychiatric disorders such as depression and schizophrenia. 

 

 

Toll-like Receptors and innate immune function 

The innate immune system is critical in mediating the body’s physiological response to invading 

pathogens and self antigens [For reviews of innate immunity and pathogen host interaction see 

(Basset et al., 2003, Akira et al., 2006)]. Comprised of cells including monocytes/macrophages, 

fibroblasts, mast cells, neutrophils, natural killer and dendritic cells, as well as other circulating 

leukocytes, the innate immune response is mediated and orchestrated by a diverse range of pattern 

recognition receptors (PRRs) located on these cells which recognise pattern associated molecular 

patterns (PAMPS), the molecular signatures of microbes. The most widely studied of the PRRs is a 

class of type-I transmembrane glycoprotein’s known as Toll-like receptors (TLRs). Thirteen TLRs 

have been identified to date;  TLRs 1-9 are conserved among humans and mice, TLR10, 12 and 13 

are found in humans only while TLR11 is expressed only in mice. TLRs are divided into subgroups 

based on their ability to recognise particular PAMPs; TLR1-2, TLR4-6 and TLR10-12 sense 
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microbial membrane components while TLR3, TLR7-9 and TLR13 sense microbial and viral nucleic 

acids.  A comprehensive review of TLR signalling is beyond the scope of this article and has been 

extensively covered in several excellent reviews (Akira et al., 2006, Akira, 2011, Gangloff, 2012). 

As such, provided here is an overview of the main classes of TLRs and their primary mechanism of 

action. Extracellular membrane bound TLRs include TLR4 and the associated MD-2 molecule which 

recognizes lipopolysaccharide (LPS) present on the cell wall of gram negative bacteria; TLR2 in 

conjunction with TLR1, TLR6 or TLR10 recognizes bacterial associated triacyl and diacyl portions 

of lipoproteins; and TLR5 and TLR11 recognizes flagellin, the major component of bacterial flagella. 

In comparison, the intracellular TLRs, located in the endosome, include TLR3 which recognizes 

double-stranded RNA released from viruses; TLR7-8 recognizes single-stranded RNA; TLR9 

recognizes bacterial and viral DNA and TLR13 which recognizes bacterial ribosomal RNA. In 

addition, TLRs are known to be activated by several damage-associated molecular patterns (DAMPs) 

released form stressed cells such as heat shock proteins (e.g. HSP70) and ATP; and environmental 

factors such as ozone and toluene [reviewed in (Asea, 2008, Lucas and Maes, 2013, Schaefer, 2014)]. 

Following binding of the ligand, TLRs oligomerise and signal via various adaptor molecules such as 

myeloid differentiation primary response gene 88 (MyD88), Toll-interleukin 1 receptor (TIR)-

domain-containing adaptor-inducing interferon-β (TRIF), TIR-domain containing adaptor protein 

(TIRAP) and TRIF-related adaptor molecule (TRAM). MyD88 is involved in all TLR signalling 

except for TLR3 which signals via the MyD88-independent pathway TRIF, resulting in the 

activation of the transcription factor interferon regulatory factor 3 (IRF3) and subsequent production 

of the type 1 interferons, IFNα and IFNβ [Figure 1]. In comparison, activation of the MyD88 

pathway results in activation of several signalling cascades, the translocation of the transcription 

factor NFĸB to the nucleus and the enhanced expression of chemokines, interferons and pro-

inflammatory cytokines such as IL-1β, IL-6 and TNFα [Figure 1] [for reviews of signalling 

mechanisms of TLRs see (Akira and Takeda, 2004, Mogensen, 2009)]. Taken together, activation of 
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TLRs induces an innate inflammatory state that acts to recruit macrophages and neutrophils and 

phagocytose invading pathogens, limit infection and promote healing. In addition, peripheral 

inflammatory mediators produced in response to TLR activation can communicate with the central 

nervous system via several routes, including entering the brain via the circumventricular organs, 

transported across the blood brain barrier via transport molecules expressed on brain endothelial cells, 

or cytokine-induced activation of the vagal communication pathway [for review of brain-immune 

communication pathways see (Dantzer, 2004, Quan and Banks, 2007)]. This ultimately results in 

activation of microglia, the production of further chemokines and cytokines that then mediates a 

sickness response characterised by fever, hypolocomotion, hyperalgesia, anorexia, anhedonia and 

activation of the stress-hypothalamic-pituitary adrenal (HPA) axis. These symptoms are collectively 

considered to represent a highly organised strategy of an organism to fight infection, which acts to 

conserve energy, reduce bacterial/pathogen replication, stimulate proliferation of immune cells and 

minimize thermal loss in the host (Dantzer, 2001, 2004). In addition, microglia, astrocytes, neurons 

and oligodendrocytes also express multiple functional TLRs (van Noort and Bsibsi, 2009) which are 

important in mounting  immune  responses against microbial invasion of the CNS.  Thus, TLR 

signalling is crucial for peripheral and central innate immune responses, however if not tightly 

controlled can contribute to and/or exacerbate various diseases and disorders [reviewed in (O'Neill et 

al., 2009, Kawai and Akira, 2010, Lehnardt, 2010)]. Modulation of TLR-associated inflammatory 

responses has therefore been highlighted as a therapeutic target for a range of disorders. To date, 

numerous negative regulators of TLR signalling have been identified which down regulate TLR 

expression, block recruitment of signalling molecules, cause degradation of target proteins and 

negatively regulate transcription [reviewed in (Takeda and Akira, 2007, Lucas and Maes, 2013)]. 

Provided herein is the evidence that the endocannabinoid system may provide a further means of 

modulating in TLR-associated inflammatory responses and the possible implications for psychiatric 

disorders.  
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Fig 1: Primary location and signalling pathways for TLR1-9.  All TLRs signal via the 
adaptor MyD88, except TLR3 which signals via TRIF.  
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Endocannabinoid modulation of TLR4-induced inflammatory responses  

TLR4 is the most characterised TLR, responsible for inducing inflammatory responses to gram 

negative bacterial antigens. In order to activate TLR4, lipopolysaccaride (LPS), a component of the 

wall of gram-negative bacteria, interacts with circulating LPS binding protein (LBP) which in turn 

enables the association between LPS and CD14 and consequently facilitates the transfer of LPS to 

the TLR4/MD-2 receptor complex. Binding of LPS to TLR4, causes the receptor to dimerise and 

activate the MyD88 dependant pathway resulting in translocation of NFkB to the nucleus with 

consequent enhancement of transcription and translation of pro-inflammatory mediators such as 

chemokines and cytokines including IL-1β, TNF-α and IL-6, which mediate a concerted 

physiological response to fight infection. Due to the well recognised molecular mechanism 

underpinning TLR4-induced inflammatory responses, LPS is a very useful pharmacological tool with 

which to investigate peripheral and central immune processes and their modulation. 

 Some of the first evidence demonstrating a possible immunomodulatory role for the 

endocannabinoid system emerged from research investigating the effects of cannabinoids on TLR4-

induced inflammatory responses in vitro. For example, potent non-selective cannabinoid receptor 

agonists such as Δ9-THC, HU210, CP55940 and WIN55,212-2 have been shown to inhibit TLR4-

induced pro-inflammatory cytokine and nitric oxide release, induce apoptosis and inhibit migration 

of macrophages (Jeon et al., 1996, Chang et al., 2001, Klegeris et al., 2003). Furthermore, these 

compounds have also been demonstrated to inhibit TLR4-induced inflammatory responses in 

microglial and astrocyte cultures (Puffenbarger et al., 2000, Facchinetti et al., 2003a), highlighting an 

important role in modulation of neuroinflammatory responses. Due to the high expression of CB2 

receptors on immune cells and activated glia it was not surprising that many researchers attributed 

the anti-inflammatory effects of cannabinoids to activity at this receptor. However, while some of 

these studies demonstrated that modulation of TLR4-induced inflammation was mediated by 

activation of CB2 receptors (Germain et al., 2002, Correa et al., 2005, Zhao et al., 2010, Merighi et 
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al., 2012, Gui et al., 2013), a role for CB1 receptors in mediating effects of some cannabinoids was 

also noted (Cabral et al., 2001, Esposito et al., 2001, Germain et al., 2002) and a significant 

proportion of studies indicated non-CB1/2 receptor mediated anti-inflammatory effects (Puffenbarger 

et al., 2000, Facchinetti et al., 2003a, Verhoeckx et al., 2006, Chiba et al., 2011, Ribeiro et al., 2013, 

Chiurchiu et al., 2014). As discussed above, it is now recognised that cannabinoids also exhibit 

activity at other receptor targets such as PPARs and GPR55, effects at which may underlie, at least in 

part, the anti-inflammatory activity of these compounds in certain cell types.  

 Enhancing endocannabinoid tone has been proposed as an alternative means of activating 

cannabinoid receptors without concomitant overt psychotropic effects associated with potent 

synthetic CB1 receptor agonists. In vitro studies suggest that endocannabinoids elicit anti-

inflammatory effects comparable to those of synthetic cannabinoids.  Increasing AEA tone, either 

directly, via inhibition of its primary catabolic enzyme, FAAH, or by inhibiting its uptake, has been 

demonstrated to reduce TLR4-induced increases in the levels of pro-inflammatory cytokines and 

inflammatory mediators such as TNFα, IL-1β and nitric oxide, and enhance the release of the anti-

inflammatory cytokine IL-10 in vitro [see Table 1] (Molina-Holgado et al., 1997, Puffenbarger et al., 

2000, Chang et al., 2001, Facchinetti et al., 2003a, Ortega-Gutierrez et al., 2005, Tham et al., 2007, 

Correa et al., 2009, Correa et al., 2010). However, it should be noted that enhancing AEA tone has 

also been shown to enhance LPS-induced IL-6 levels in astrocytes (Ortega-Gutierrez et al., 2005), 

thus effects of AEA may depend on the inflammatory mediators and cell type under investigation. 

Similarily, enhancing 2-AG tone has also been found to induce suppressive effects on TLR4-induced 

immune activation, namely by reducing proinflammatory cytokines such as IL-6, TNF-α, and 

expression of COX2 in macrophages and glia [Table 1] (Gallily et al., 2000, Chang et al., 2001, 

Facchinetti et al., 2003b, Zhang and Chen, 2008). Similar to the effects observed with synthetic 

cannabinoids, the effects of enhancing endocannabinoid tone have been attributable to CB1/2 and 

non-CB1/2 receptor activation (Puffenbarger et al., 2000, Facchinetti et al., 2003a, Correa et al., 2008, 
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Correa et al., 2009, Correa et al., 2010, Lu et al., 2014b) [Table 1]. However, regardless of the 

receptor mechanism, endocannabinoids have been shown, for the most part, to inhibit TLR4-induced 

NFĸB activation (Zhang and Chen, 2008, Correa et al., 2010, Du et al., 2011, Lu et al., 2014b).  

TLR4 and CB1/2 receptors share common molecular targets such as MAPK and several studies have 

demonstrated that this is a key pathway for endocannabinoid modulation of TLR4-induced 

inflammatory responses. For example, AEA has been shown to augment and attenuate LPS-induced 

IL-10 and IL-12p70 expression respectively, in mixed glial cultures, effects mediated by CB2 

receptor activation of ERK1/2 and JNK pathways (Correa et al., 2009, Correa et al., 2010). Similarly, 

AEA and 2-AG have been shown to up-regulate CB1/2 receptors and enhance IL-10 and TGFβ 

expression while concurrently reducing pro-inflammatory cytokine expression in primary muller 

glial cultures (Krishnan and Chatterjee, 2012). Thus, the anti-inflammatory effects of 

endocannabinoids following TLR4 activation has been proposed to be due to enhanced production of 

the anti-inflammatory cytokine IL-10 (Correa et al., 2010).  Furthermore, it has recently been shown 

that AEA activation of CB2 receptors blocks the LPS-induced reduction in CD200R1 on microglia 

(Hernangomez et al., 2012). Activation of CD200R1 was shown to attenuate LPS-induced pro-

inflammatory and enhance IL-10 production, and IL-10 increases neuronal expression of CD200, an 

effect which consequently reduced neuronal cell death (Hernangomez et al., 2012). Thus, AEA-

induced up regulation of CD200R1 and IL-10 expression acts to attenuate TLR4-induced microglial 

activation, limiting the neuroinflammatory response and inducing neuroprotection.  

 

In vivo studies support in vitro data demonstrating the immunomodulatory effects of enhanced 

endocannabinoid tone on TLR4-mediated effects [see Table 2]. Some of the first in vivo data 

demonstrating a modulatory role for the endocannabinoid system in TLR4-induced inflammatory 

responses arose from our data demonstrating that systemic administration of the AEA reuptake 

inhibitor AM404 attenuates LPS-induced increases in plasma IL-1β and IL-6 levels (Roche et al., 
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2008). However, it was also noted that LPS-induced plasma TNFα levels were augmented by 

systemic administration of either AM404, or the FAAH inhibitor URB597 (Roche et al., 2008). 

Similar augmentations in LPS-induced plasma TNFα levels were observed following central FAAH 

inhibition, and activation of hypothalamic CB1 receptors was found to be critical in mediating this 

response (De Laurentiis et al., 2010). Thus, AEA activation of hypothalamic CB1 receptors appears 

to facilitate the production and release of TNFα in the plasma in response to LPS.  Hypothalamic IL-

1β has been shown to mediate fever (Murakami et al., 1990) and hypophagia (Kent et al., 1994) in 

response to LPS, effects which can be attenuated by AEA (Hollis et al., 2011). Furthermore, recent 

studies from our group have demonstrated that systemic administration of the FAAH inhibitor 

URB597 increased AEA levels, an effect associated with the attenuation of LPS-induced IL-1β 

expression in the hypothalamus (Kerr et al., 2012) and  CB1 receptors have been shown to be critical 

in mediating the temperature response to LPS (Steiner et al., 2011; Duncan et al., 2013). Thus taken 

together, enhancing AEA tone, possibly via CB1 receptor activation, attenuates TLR4-induced IL-1β 

expression in the hypothalamus which may in turn inhibit associated sickness behaviour.  

 

The relatively recent development of potent and selective MAGL inhibitors such as JZL184, 

KLM129 and MJN110 (Long et al., 2009a, Long et al., 2009b, Chang et al., 2012, Niphakis et al., 

2013, Ignatowska-Jankowska et al., 2014) has facilitated more detailed investigation of the role of 2-

AG in a number of physiological and pathophysiological processes. Consistent with the in vitro data, 

enhancing 2-AG levels following MAGL inhibition also modulates peripheral and 

neuroinflammatory responses following TLR4 activation [Table 2], however the exact mechanisms 

underlying these effects remain unclear. MAGL inhibition has been shown to result in an attenuation 

of LPS-induced TNFα, IL-6 and MCP-1 levels in bronchoalveolar fluid (BALF) from a mouse model 

of acute lung injury, effects shown to be mediated by CB1 and CB2 receptors (Costola-de-Souza et al., 

2013). Furthermore, Alhouayek and colleagues demonstrated that MAGL inhibition was associated 



 

15 
 

with a significant attenuation of colitis-induced increases in endotoxemia as measured by serum LPS 

levels, circulating inflammatory cytokines and the expression of TNFα and IL-1β in the liver and 

brain. The anti-inflammatory effects of MAGL inhibition on mucosal and peripheral inflammation 

was shown to be partially mediated via CB1 and CB2 receptors (Alhouayek et al., 2011). In a 

subsequent study from this group, the authors demonstrated that inhibition of 2-AG metabolising 

enzyme ABHD6 attenuated LPS-induced increases in IL-1β, IL-6 and MCP-1 expression in the 

cerebellum, lungs and liver of mice (Alhouayek et al., 2013). However, 2-AG levels were increased 

in the peripheral tissues, but not in the cerebellum, and only in the liver were the anti-inflammatory 

effects were partially attenuated by CB1 receptor antagonism. The authors went onto conduct further 

studies, demonstrating that central increases in 2-AG are not responsible for the anti-inflammatory 

effects of ABHD6 inhibition in the brain and that these are most likely attributed to PGD2-G (a 

prostaglandin D2-glycerol ester), a COX2 metabolite of 2-AG (Alhouayek et al., 2013). Thus, 

enhancing 2-AG tone may modulate TLR4-induced inflammation via differential mechanisms 

depending on the tissue in question. Similarly, Nomura and colleagues demonstrated that systemic 

administration of the MAGL inhibitor JZL184, enhanced 2-AG levels both centrally and peripherally 

and attenuated LPS-induced IL-1β, IL-1α, IL-6, TNFα, prostaglandin PGE2 and arachidonic acid 

levels in the brain of mice. The central anti-inflammatory effects of MAGL inactivation were shown 

not to be mediated by CB1 or CB2 receptors, but rather attributed to a reduction in arachidonic acid 

and downstream prostaglandins (Nomura et al., 2011). Recent work from our laboratory further 

indicate that the mechanisms by which MAGL inhibition results in modulation of TLR4-induced 

inflammation may be different in the periphery and CNS. Our data demonstrated that systemic 

administration of JZL184 attenuated LPS-induced increases in cytokine expression in the rat frontal 

cortex and plasma, effects partially attenuated by pharmacological blockade of the CB1 receptor 

(Kerr et al., 2013). However, 2-AG levels were only enhanced peripherally and central effects were 

not accompanied by reduced arachidonic acid and prostaglandin synthesis. Thus, the attenuation of 
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TLR4-induced inflammatory responses in the brain following MAGL inhibition may be mediated by 

modulation of peripheral systemic innate immune responses that then communicate with the CNS to 

induce a state of neuroinflammation. Taken together the data to date indicate that while effects of 

enhancing 2-AG tone on TLR4-induced inflammatory responses in the periphery may be CB1/2 

mediated, this does not appear to be the mechanism of action in the central nervous system. Such an 

effect may be significant, as this would allow for modulation of neuroinflammatory processes 

without the potential for adverse psychotropic effects that would be associated with central CB1 

receptor activation by 2-AG. Further studies are required in order to determine if this is a possible 

therapeutic target for neuroinflammatory disorders.  



 

17 
 

Endocannabinoid modulation of TLR3-induded inflammatory responses 

Although a wealth of evidence has demonstrated a role for endocannabinoid modulation of TLR4-

induced inflammation, less is known about the role of this system in the modulation of inflammatory 

responding to other TLRs. TLR3 receptors are found mainly in the endosomal compartments of both 

immune and non-immune cells where they serve to recognise double stranded RNA (dsRNA) the 

molecular pattern associated with viral infection (West et al., 2006). Activation of TLR3 (and also 

TLR4) induces a MyD88-independent signalling response. Upon ligand binding, the adaptor protein 

TRIF) recruits a signalling complex leading to increased transcriptional activation of interferon 

regulatory factor (IRF3) and late phase NFkB activation. TRIF is the main adaptor molecule in the 

MyD88-independent pathway and once activated forms a complex with TRAF family-member-

associated NFkB activator (TANK) binding kinase 1 (TBK1) and the inhibitor of NFkB (IkB) kinase 

(IKK). This induces the phosphorylation of IRF3 and subsequent production of type I interferons 

(IFNs) which play an essential role in mediating the host’s anti-viral responses and also induces late 

phase NFkB-inducible inflammatory genes. 

TLR3 activation following systemic administration of the viral antigen polyinosinic:polycytidylic 

acid (poly I:C) results in enhanced production of the type I IFNs and NFkB-inducible inflammatory 

genes in the CNS (Cabral et al., 2001, Germain et al., 2002, Cunningham et al., 2007, Gibney et al., 

2013). This enhanced neuroinflammatory profile is associated with  sickness (Cunningham et al., 

2007, Dantzer et al., 2011, McLinden et al., 2012, Gibney et al., 2013), anxiety- and depressive-like 

behaviour (Gibney et al., 2013) and has been shown to exacerbate chronic neurodegenerative 

processes in a model of prion disease (Field et al., 2010). Furthermore, poly I:C-induced increases in 

IFNβ signalling in the hippocampus have been shown to be associated with enhanced neuronal 

excitability (Costello and Lynch, 2013), impaired contextual and working memory (Galic et al., 2009) 

and seizure susceptibility (Galic et al., 2009).  In addition, TLR3 deficient mice exhibit enhanced 

hippocampal-dependent working memory, increased hippocampal volume and neurogenesis (Okun 
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et al., 2010). Thus, modulation of TLR3-induced inflammatory responses may provide novel 

therapeutic approaches for viral-induced neuroinflammation and associated neuronal alterations.    

Some of the first data demonstrating a direct role of cannabinoids in modulating TLR3-induced 

inflammatory responses were reported by Downer and colleagues [Table 3]. This group 

demonstrated that the synthetic cannabinoid receptor agonist WIN55,212-2 enhances TLR3-induced 

IRF3 nuclear translocation and subsequent IFNβ expression, while concurrently attenuating TLR3-

induced NFĸB activation and TNFα expression in astrocytes cultures. These effects are in contrast to 

the WIN55,212-2 induced attenuation of both IFNβ and TNFα following TLR4 activation (Downer 

et al., 2011). Furthermore, enhanced IFNβ was necessary for the protective effects of WIN55212-2 in 

a mouse model of multiple sclerosis (Downer et al., 2011). Examination of the receptor mechanisms 

underpinning the augmentation of IFNβ by WIN55,212-2 revealed that the effects were independent 

of CB1/CB2 receptor activation, but rather mediated by peroxisome proliferator-activated receptor 

(PPAR)α-induced activation of JNK, activator protein-1 and positive regulatory domain (PRD) IV 

and subsequent IFNβ transcriptional activation (Downer et al., 2011, Downer et al., 2012). Thus, 

cannabinoids appear to induce differential effects on the expression of type 1 interferons following 

TLR3 or TLR4 activation. However, until recently it was unknown what effect (endo)cannabinoids 

would have on TLR3-induced inflammatory processes in vivo [Table 4]. In an effort to address this 

question, we have recently examined the effect of the inhibition of FAAH activity on the expression 

of both IFN and NFkB-inducible genes in the rat hippocampus following poly I:C-induced activation 

of TLR3 (Henry et al., 2014). Data from this study show that systemic administration of the FAAH 

inhibitor URB597 increased the hippocampal expression of the type I and type II IFN, IFNα and 

IFNγ, respectively and IL-6, while concurrently attenuating the TLR3-induced increases in the 

NFkB-responsive genes, TNFα and IL-1β. Although IFNs have been shown to elicit pro-

inflammatory effects and deleterious effects on neuronal function, several lines of evidence also 

indicate anti-inflammatory effects associated with these immune modulators. For example, 
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enhancement of both type 1 and 2 interferon’s limits inflammation and disease progression in models 

of multiple sclerosis (Lin et al., 2007, Bowen and Olson, 2013, Naves et al., 2013). Thus, increasing 

interferon expression in combination with a reduction in pro-inflammatory cytokines may limit the 

neuroinflammatory cascade, at least in the hippocampus, following TLR3 activation. It should be 

noted that systemic administration of URB597 elicits minimal effects on TLR3-induced peripheral 

inflammatory responses (unpublished data) indicating that enhancing levels of AEA and related N-

acylethanolamines elicits more profound effects on TLR3-induced neuroinflammatory responses.  In 

order to decipher the role of FAAH substrates within the brain on TLR3-induced neuroinflammation, 

the effects of central administration of the FAAH inhibitor URB597 on neuroinflammatory processes 

following systemic TLR3 activation was also evaluated. Our findings demonstrate that selective 

increases in FAAH substrates in the brain elicited a potent anti-inflammatory effect, exemplified by 

attenuation of TLR3-induced increases in IFNγ, the IFN-inducible chemokine IP-10, the IFN 

regulatory gene SOCS1 and the NFkB responsive pro-inflammatory gene TNFα, with concurrent 

enhancement of the expression of the anti-inflammatory cytokine IL-10 (Henry et al., 2014). Thus, 

while systemic administration of URB597 was associated with enhanced interferon and reduced pro-

inflammatory gene expression, central administration elicits a more profound attenuation of TLR3-

induced pro-inflammatory genes. Although the precise molecular and receptor mechanisms 

underpinning FAAH substrate-induced modulation of TLR3-mediated neuroinflammatory responses 

remains to be determined, we propose that one possible mechanism is via increased expression of the 

anti-inflammatory cytokine IL-10 which in turn may act to stabilise microglia (possibly via CD200-

CD200R1 interactions; (Hernangomez et al., 2012)), reducing NFĸB activation and decreasing 

expression of pro-inflammatory cytokines and downstream mediators, thereby limiting TLR3-

induced neuroinflammation. 

Further indirect evidence supporting an immunoregulatory role of the endocannabinoid system on 

TLR3-induced inflammation is evident from studies examining the effect of Theiler’s murine 
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encephalomyelitis virus (TMEV) which has been shown to induce an inflammatory response 

primarily via activation of TLR3 (So et al., 2006). To date, several studies have demonstrated that 

the endocannabinoid system modulates such immune responses to TMEV in vitro [Table 3]. 

Administration of AEA or the endocannabinoid reuptake inhibitor OMDM1 or UCM707 attenuates 

TMEV-induced IL-1β and IL-12p40 production in macrophages via CB1/CB2 receptor activation 

(Mestre et al., 2005), decreases NOS- and TNFα release in astrocytes (Molina-Holgado et al., 1997) 

and VCAM-1 production in brain endothelial cells via CB1 receptor activation (Mestre et al., 2011). 

Furthermore, a in vivo data has demonstrated that administration of the endocannabinoid transport 

inhibitor UCM707 reduces TMEV-induced VCAM-1 expression and microglial activation in the 

brain, an effect partially mediated by CB1 receptors (Mestre et al., 2011) [Table 4]. Although Mestre 

and colleagues did not directly investigate or discuss the role of TLR3, given the early timepoint of 

pharmacological intervention it is likely that that enhancing anandamide tone may modulate TMEV-

induced inflammatory responses via TLR3. Several other studies have revealed beneficial effects of 

endocannabinoid modulation on inflammatory and behavioural responses in the chronic phases of 

TMEV-induced demyelating disease, however the role of TLR3 in mediating effects at this stage is 

unknown (Mestre et al., 2005, Correa et al., 2011, Hernangomez et al., 2012). Taken together, the 

data suggest that cannabinoids (exogenous and endogenous - AEA) modulate TLR3-incuded 

inflammatory responses both peripherally and possible more potently in the central nervous system. 

This may have important implications for neurodegenerative disorders such as multiple sclerosis 

where enhancing IFNβ with concurrent attenuation of pro-inflammatory cytokines has been shown to 

be therapeutically beneficial (Javed and Reder, 2006, Severa et al., 2014). Further research is 

required in order to decipher the effects of modulating 2-AG and the receptor and molecular 

mechanisms underlying the effects of enhancing endocannabinoid tone on TLR3-induced 

inflammatory responses and the functional consequences of such.  
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Endocannabinoid modulation of inflammatory responses induced by other TLRs 

A limited number of studies have examined the effects of endocannabinoid modulation on 

inflammatory responding following activation of TLRs other than from TLR3/4 [see Table 5]. 

Peptidoglycans, the main cell wall components of gram-positive bacteria, induce inflammatory 

processes via stimulation of TLR2 receptors. Echigo and colleagues recently reported that 2-AG 

suppressed TLR2-induced NFkB phosphorylation in U87MG glioblastoma cells via CB1 receptor 

activation (Echigo et al., 2012) while in lymph node cells, 2-AG attenuated TLR2-induced IL-4 

production via CB2 activation (Maestroni, 2004). Thus, 2-AG may act at different receptors in 

different cell types in order to modulate TLR2-induced inflammatory responses. Recent data has 

demonstrated that the endocannabinoid/endovanilloid, N-arachidonoyl dopamine (NADA) attenuates 

TLR2/6-induced increases in IL-6 and IL-8 secretion, adhesion of neutrophils and the surface 

expression of E-selectins in human endothelial cells, effects partially mediated via a CB1/CB2 

mechanism (Wilhelmsen et al., 2014). Although further studies are required to determine the effects 

of modulating AEA tone on TLR2-induced inflammatory responding, the possible receptor and 

molecular mechanisms involved, or effects of modulating endocannabinoid tone in vivo, the data so 

far indicate that the endocannabinoid system is capable of modulating TLR2-induced inflammation. 

TLR7 and 8 recognise and are activated in response to ssRNA and thus play an important role in 

mediating the host’s anti-viral responses. To our knowledge, only one study has examined the role of 

the endocannabinoid system on TLR7/8-induced immune activation (Chiurchiu et al., 2013). Pre-

treatment with either AEA or the selective CB2 receptor agonist JWH-015 attenuated TLR7/8-

induced increases in pro-inflammatory cytokine release from myeloid dendritic cells (mDCs) 

isolated from both healthy donors and multiple sclerosis patients, effects which were completely 

abolished in the presence of CB2 receptor antagonism in both cohorts (Chiurchiu et al., 2013). In 

contrast, pre-treatment with AEA or JWH-015 had no significant effect on TLR7/8-induced cytokine 

production in isolated plasmacytoid dendritic cells (pDCs) from multiple sclerosis patients. However, 
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it should be noted that pDCs isolated from MS patients exhibited a marked elevation in FAAH 

levels(Chiurchiu et al., 2013) and thus, the authors suggest that the lack of effects of AEA on 

TLR7/8-induced cytokine production in pDCs is due to rapid metabolism of AEA due to increased 

levels of FAAH. Supporting this hypothesis, the authors report that pharmacological inhibition of 

FAAH restored AEA-induced decreases in TNFα in TLR7/8 stimulated pDCs (Chiurchiu et al., 

2013). While the effects of 2-AG, the receptor mechanisms, and effects in other cell types and in vivo 

remain to be determined, these findings demonstrate that AEA modulates TLR7/8-induced immune 

responses, effects which differ depending on cell type and endogenous tone of the system.  
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Endocannabinoid regulation of TLR-induced inflammation: possible implications for 

treatment of depression 

The role of the innate immune system in major depressive disorder (MDD) has generated a great 

amount of interest over the past two decades, with increasing evidence indicating that excessive 

inflammation may at least be partly involved in disease pathogenesis [for detailed reviews see 

(Dantzer, 2006, Dantzer et al., 2008, Maes, 2011, Berk et al., 2013)]. A role of altered immune 

responding in MDD is supported by reports in which up to 70% of patients receiving cytokine 

therapy for specific cancers and malignancies develop depressive symptomatology (Musselman et al., 

2001, Capuron and Miller, 2004, Capuron et al., 2004). Additionally, increases in serum and 

cerebrospinal (CSF) levels of pro-inflammatory cytokines (Raison et al., 2006, Dantzer et al., 2008, 

Dowlati et al., 2010) and a concurrent  decrease in levels of the anti-inflammatory cytokine IL-10 

(Dhabhar et al., 2009) has been widely reported in MDD patients. Furthermore, successful 

antidepressant therapy is associated with a normalisation of cytokine levels (Gazal et al., 2013), thus 

indicating that immune alterations may be a trait marker for MDD. Despite the wealth of data 

indicating altered immune functioning both basally and in response to TLR activation in MDD, there 

has been a lack of studies directly examining if such alterations are also associated with altered TLR 

expression. Recent data examining the expression of TLRs in PBMCs revealed higher expression of 

TLR3, 4, 5 and 7 and lower expression of TLR1 and 6 in depressed patients. Furthermore, regression 

analysis revealed that TLR4 expression was an independent risk factor relating to the severity of 

MDD (Hung et al., 2014). Additional studies have revealed that the expression of TLR3 and TLR4 

mRNA is enhanced in post-mortem tissues from the dorsolateral prefrontal cortex of depressed 

subjects, and protein expression of these receptors increased in depressed suicide victims (Pandey et 

al., 2014). Similarly, preclinical studies have shown that in a stress-based model of depression, TLR4 

expression in the prefrontal cortex is enhanced; effects associated with NFĸB activation and 

enhanced iNOS and COX2 expression (Garate et al., 2014). Thus, depression appears to be 
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associated with alterations in central and peripheral expression of TLRs which may account for the 

heightened inflammatory state associated with the disorder [for excellent review of role of TLR4 in 

depression see (Liu et al., 2014)]. A wealth of preclinical evidence has demonstrated that activation 

of TLR4 is associated with depressive-like behaviour, effects attenuated by antidepressant and anti-

inflammatory agents (O'Connor et al., 2009, Wang et al., 2011, Salazar et al., 2012). Similarly, 

recent studies have demonstrated that TLR3 activation is associated with neuroinflammation, acute 

sickness behaviour and prolonged depressive-like behaviour (Gibney et al., 2013). The TLR-induced 

neuroinflammatory cascade has been shown to modulate various glial and neuronal proteins, 

including increased indoleamine 2,3-dioxygenase (IDO) activation, a rate limiting enzyme in 

tryptophan production, reduced serotonin production and enhanced formation of the neurotoxins 

quinolinic acid and kynurenine. Furthermore, activation of this signalling pathway is associated with 

increased glutamate neurotransmission and excitotoxicity, reduced BDNF and neurogenesis, 

activation of neurodegenerative cascades and altered HPA axis functionality [for review (Dantzer et 

al., 2011, Maes, 2011, Song and Wang, 2011, Zunszain et al., 2013)]; effects may underlie 

pathophysiology of inflammation-associated depression. Thus, modulation of TLR-induced innate 

immune responses may provide a novel therapeutic target for depression, and as highlighted 

previously, the endocannabinoid system may provide a route towards such modulation. 

In accordance, dysregulation of the endocannabinoid system has also been demonstrated in MDD. 

For example, CB1 receptor density has been shown to be increased in the prefrontal cortex of 

depressed suicide victims (Hungund et al., 2004), while reduction in CB1 receptor density has been 

reported in grey matter glia (Koethe et al., 2007). Serum levels of endocannabinoids have been 

reported to be reduced in patients with major depression (Hill et al., 2008). Recent studies have also 

indicated that genetic variations in the CB1 and CB2 receptor and FAAH may influence depressive 

symptoms and antidepressant treatment responding (Domschke et al., 2008, Onaivi et al., 2008, 

Juhasz et al., 2009, Monteleone et al., 2010). Similarly, genetic deletion of the FAAH or 
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overexpression of CB2 receptor in mice elicits a stress-resilient (antidepressant-like) phenotype, 

while in comparison, CB1 receptor knockout mice are particularly susceptible to stress-related 

impairments in emotional responding [see (McLaughlin and Gobbi, 2012) (Garcia-Gutierrez et al., 

2010)]. Furthermore, several reports have shown stress-induced alterations in the endocannabinoid 

system and that modulation of the endocannabinoid function exerts anti-depressant-like effects in 

several animal models of depression [for detailed reviews see (Saito et al., 2010, Micale et al., 2013, 

Zajkowska et al., 2014)]. However, to our knowledge there have been no studies to date examining if 

altering TLR-associated inflammatory processes may underlie the antidepressant-like effects of 

endocannabinoid modulation. Indirect support of this as a possible mechanism is provided by the 

research demonstrating that endocannabinoids modulate TLR-induced inflammatory responding both 

peripherally and centrally (see earlier sections). Central CB1 receptors are critical in mediating 

TLR4-induced hypothermic/fever response, HPA axis activation and enhanced circulating levels of 

TNFα (Steiner et al., 2011, Duncan et al., 2013) and TLR3/4 activation is known to induce 

depressive symptomology, an effect dependant on neuroinflammatory processes (Salazar et al., 2012, 

Gibney et al., 2013). Furthermore, repeated immobilisation/acoustic stress elicits a 

neuroinflammatory response that is mediated by TLR4 (Garate et al., 2014) and results in depressive-

like behaviour (Kiank et al., 2006). Pharmacological activation of CB1 or CB2 receptors attenuates, 

while genetic deletion of these receptors augments repeated stress-induced pro-inflammatory 

responses and cellular oxidation in the frontal cortex (Zoppi et al., 2011, Zoppi et al., 2014) and 

cannabinoids attenuate the reduction in hippocampal neurogenesis and depressive-like behaviour 

induced by chronic stress (Segev et al., 2014, Zhong et al., 2014).  Thus, while the evidence is 

primarily anecdotal to date with further studies required, endocannabinoid-modulation of TLR-

associated neuroinflammation may provide a novel antidepressant strategy for MDD. 
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Endocannabinoid regulation of TLR-induced inflammation: possible implications for the 

treatment of schizophrenia 

Schizophrenia is a chronic and debilitating psychiatric disorder affecting approximately 1% of the 

world’s adult population. Over the last number of years there has been increased focus on the role of 

immune-inflammatory responses in the disease pathophysiology (Monji et al., 2009, Na et al., 2012, 

Bergink et al., 2014, Zakharyan and Boyajyan, 2014). In addition, a recent study has demonstrated 

that TLR3 and TLR4 expression is enhanced on monocytes from schizophrenic patients (Muller et 

al., 2012). However, conflicting data have been reported on TLR-induced inflammatory responses in 

schizophrenic patients. For example, Muller and colleagues demonstrated a blunted enhancement in 

the expression of TLR3 and TLR4 receptors, and IL-1β release following the stimulation of 

monocytes (Muller et al., 2012) while in comparison, McKernan et al., showed that TLR4-stimulated 

whole blood cultures from schizophrenic patients exhibited augmented IL-1β release when compared 

to controls (McKernan et al., 2011). These discrepant findings may relate to the methodological 

differences between the studies, however when taken together, the data suggest that schizophrenia is 

associated with an altered innate immune response. Further support for a possible role of TLRs in the 

pathogenesis of schizophrenia arises from the considerable data demonstrating that early prenatal 

exposure to TLR agonist’s results in neuroinflammatory, neurodevelopmental and behavioural 

alterations in the offspring that resemble those observed in schizophrenia. Detailed consideration of 

the mechanisms and role of TLRs in the development of these alterations has been covered in detail 

elsewhere [see (Patterson, 2009, Ibi et al., 2011, Venkatasubramanian and Debnath, 2013)] and is 

beyond the scope of this review. However, the data indicated that anti-inflammatory and/or anti-

cytokine drugs may represent novel therapeutics in psychiatric disorders including schizophrenia. 

Accordingly, administration of the COX-2 inhibitor celecoxib, has been shown to be associated with 

improvements in both positive and negative symptoms in patients suffering from first episode of 

schizophrenia (Muller et al., 2010), and also improved positive symptoms in patients with prolonged 
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schizophrenia (Akhondzadeh et al., 2007). As COX inhibitors are known to be associated with 

cardiovascular and gastrointestinal toxicities, alternative anti-inflammatory therapies need to be 

explored. So the question arises as to whether the endocannabinoid system could be a potential 

treatment target for schizophrenia.  

Over the last number of years, there has been increased interest in the potential relationship between 

the endocannabinoid system and schizophrenia which has been examined in detail in a number of 

recent reviews (Muller-Vahl and Emrich, 2008, Fernandez-Espejo et al., 2009, Saito et al., 2013, Tan 

et al., 2014). Several studies have examined the interaction between exposure to potent synthetic or 

plant-derived cannabinoids during critical stages of development such as during adolescence, and 

how this may affect brain functioning and behaviour relevant to schizophrenia in vulnerable 

populations (double-hit theory; see (Realini et al., 2009)). However, it is unknown if exposure to 

cannabis (or other synthetic cananbinoids) is an independent risk factor for schizophrenia or a means 

of self medication. What is known though is that schizophrenia is associated with altered 

endocannabinoid tone, with reports of enhanced CB1 receptor binding in the prefrontal cortex of 

schizophrenic patients (Dean et al., 2001, Zavitsanou et al., 2004), although studies demonstrating no 

change (Deng et al., 2007, Koethe et al., 2007) or a reduction in density or expression (Eggan et al., 

2008, Uriguen et al., 2009, Eggan et al., 2010) have also been reported. Recent studies have 

indicated that schizophrenia is associated with two SNPs in the CB2 receptor gene, mutations 

responsible for reduced receptor expression and functionality (Ishiguro et al., 2010), and patients 

with first-episode psychosis have been shown to exhibit a decreased expression of CB2 receptors in 

isolated PBMCs in comparison to healthy controls (Bioque et al., 2013). Similarly, CB2 receptor 

knockout mice exhibit a schizophrenia-related behavioural phenotype (Ortega-Alvaro et al., 2011). 

Increased levels of AEA in the CSF of patients have been shown to negatively correlate with 

psychotic symptoms (Giuffrida et al., 2004, Koethe et al., 2009) and schizophrenic subjects have 

lower post-mortem levels of AEA in the cerebellum, hippocampus and prefrontal cortex and higher 
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levels of 2-AG (Muguruza et al., 2013). In addition, several clinical and preclinical studies have 

demonstrated beneficial effects of non-selective cannabinoid receptor agonists, CB1 receptor 

antagonists/inverse agonists or CB2 receptor agonists on both positive and negative symptoms of 

schizophrenia [for review see (Roser and Haussleiter, 2012, Kucerova et al., 2014)]. Additionally, 

the antipsychotic effects of the phytocananbinoid CBD has been extensively reported in preclinical 

models and is currently being evaluated in a number of ongoing clinical trials [for detailed review 

see (Zuardi et al., 2012)].  While endocannabinoids may directly influence neuronal functioning and 

plasticity, modulation of immune function has been proposed as the link between cannabinoids and 

psychosis [for review see (Suarez-Pinilla et al., 2014)]. However, as in the case of MDD, no studies 

to date have examined if modulation of TLR-induced inflammation underlies the anti-psychotic 

effects of cannabinoids.  Recent data has demonstrated a beneficial effect of CB2 receptor agonism 

on MK-801-induced deficits in prepulse inhibition (Khella et al., 2014), and although the authors 

propose that this is likely mediated by direct CB2-induced changes in neurotransmission, it is also 

likely that given the high expression of these receptors on immune cells that modulation of 

inflammatory process may play a role.  Accordingly, we have provided an overview of the data 

indicating that enhancing endocannabinoid tone is associated with a decrease in TLR-induced pro-

inflammatory cytokines and a concurrent increase in the anti-inflammatory cytokines such as IL-10 

(see above sections). Similarly, antipsychotics are known to also modulate TLR-induced 

inflammation (increasing IL-10 and reducing TNFα) (Szuster-Ciesielska et al., 2004, Sugino et al., 

2009) and genetic enhancement of IL-10 has been demonstrated to be associated with an attenuation 

of pre-pulse inhibition and latent inhibition in adult offspring of dams exposed to the TLR3 agonist 

poly I:C (Meyer et al., 2008). Thus, it is possible that endocannabinoid modulation of TLR-immune 

responses may provide a novel therapeutic target for schizophrenia.  
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Conclusion 

Under normal physiological conditions, TLRs play a pivotal role in mediating host defences against 

invading pathogens and maintaining homeostasis however, aberrant or uncontrolled TLR signalling 

is associated with acute and chronic inflammation which may predispose or exacerbate existing 

disorders. Furthermore, accumulating evidence indicates that that uncontrolled TLR signalling in the 

CNS may underlie, at least in part, the pathophysiology of neurodegenerative and psychiatric 

disorders [for reviews see [(Hung et al., 2014, Pandey et al., 2014, Trotta et al., 2014)].  The studies 

reviewed herein demonstrate that the endocannabinoid system modulates TLR-induced inflammatory 

responses, with the greatest evidence supporting a role in TLR4-mediated events. The effects 

observed are often bi-directional, depend on the investigative conditions, the timing of modulation 

and the type of (endo)cannabinoid/receptor modulated. Furthermore, effects observed in studies 

examining endocannabinoid modulation of TLR4 immune responses cannot be generalised to those 

elicited by other TLRs. For example, while (endo)cannabinoids, for the most part, attenuate TLR-

induced NFĸB activation in a variety of experimental setting [see table 1-6], differential effects of 

cananbinoids are observed in relation to IRF3 activation in response to TLR3/4. The synthetic 

cannabinoid WIN55,212 and the FAAH inhibitor URB597 were found to augment TLR3-induced 

type 1 interferon expression/production, while WIN55,212 attenuated IRF3 activation in response to 

TLR4 activation (Downer et al., 2011, Henry et al., 2014). Furthermore, fever in response to LPS, 

but not poly I:C, is blocked in CB1-/- mice, indicating a role of CB1 receptors in mediating the 

hyperthermic response to TLR4, but not TLR3 activation (Duncan et al., 2013). Thus, while 

evidence indicated that the endocannabinoid system modulates TLR-induced inflammatory 

responses, further studies investigating receptor and molecular mechanism underlying the effects on 

TLR-induced immune responses are required.  In addition, this review has highlighted the lack of 

direct evidence for endocannabinoid modulation of TLR-neuroinflammatory responses as a possible 

treatment strategy for psychiatric conditions such as MDD and schizophrenia. This is an area ripe for 
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further investigation, particularly given the wide array (>150 over the past decade) of cannabis-based 

entities in clinical trials for a variety of psychiatric and neurodegenerative disorders [International 

Clinical Trials Registry Platform], disorders known to have a neuroinflammatory component. 

Currently three synthetic cannabinoids have been licenced and are used clinically; Cesamet® 

(nabilone) prescribed for the relief of chemotherapy-induced nausea and vomiting, Marinol® 

(dronabinol; THC) for appetite stimulation and Sativex® (THC:cannabidiol) for control of 

cancer/neuropathic pain and spasticity in patients with multiple sclerosis. However, as these agents 

induce their activity via modulation of central CB1 receptors, there is particular interest in the 

development of cannabinoid-based pharmaceuticals that are not associated with adverse CB1 

receptor associated psychoactive effects. Peripherally restricted CB1 receptor agonists/antagonists 

have been developed and demonstrated to modulate nociceptive responding and metabolism (Cluny 

et al., 2010a, Cluny et al., 2010b, Yu et al., 2010), however the effects on TLR-association 

inflammation, peripherally or centrally, remains to be evaluated. Given the high expression of CB2 

receptors on immune cells it is not surprising that CB2-selective agonists are considered to have 

multiple therapeutic applications for the relief of symptoms of neurodegenerative, immunological, 

and cardiovascular diseases [reviewed in (Pacher et al., 2006, Pertwee, 2012)], however global 

immunosupression will need to be considered in the use of these agonists. As endocannabinoids are 

synthesised on demand, preventing the breakdown of endocannabinoids at sites/tissues where they 

can elicit the most potent effects may have significant therapeutic benefit with less adverse side 

effects (Pertwee, 2014). Highlighted throughout this review, this approach has been shown to 

modulate TLR-induced inflammatory responses both peripherally and centrally, and elicit 

antidepressant and antipsychotic effects in several preclinical model systems (see previous sections). 

Of particular note was the data demonstrating that enhanced AEA tone following FAAH inhibition 

appears to modulate TLR-induced responses at the level of the CNS, thus possibly involving CB1 

receptor activation (Kerr et al., 2012, Henry et al., 2014). However, several lines of evidence indicate 
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that MAGL/ABHD6 inhibitors can potently inhibit neuroinflammatory processes in a mechanism 

alternate to 2-AG associated central CB1 receptor activation (Nomura et al., 2011, Alhouayek et al., 

2013, Kerr et al., 2013), thus providing a means of treating neuroinflammatory disorders that would 

be devoid of the potential adverse psychological effects. While this area of research is at a relatively 

early stage of investigation, the data to date indicate that targeting the endocannabinoid system may 

provide a novel and more efficacious treatment target for various diseases, in particular psychiatric 

and neurodegenerative conditions, where an accompanying TLR-mediated inflammatory component 

may be evident.  
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Table 1: Endocannabinoid modulation of TLR4 responses – in vitro studies 

Modulator Cell type  Immune/inflammatory response following TLR4 
activation 

Receptor 
Mechanism 

Reference 

Direct administration of Endocannabinoids 

AEA 

 

Human monocytic  THP-1 cell line  ↓ IL-1β secretion  - (Klegeris et al., 2003) 

Human Primary muller glial cultures 

↑ IL-10 & TGFβ mRNA production 
 
↓IL-6, IL-1β, TNFα, IL-2, IFNγ, IL-15, IL-12 &  IL-8 
mRNA production. ↓NFκβ,MAPK activation 

- 
 

(Krishnan and Chatterjee, 
2012) 

Mouse J774 macrophages ↓ NO, IL-6, PGE2 release  - (Chang et al., 2001) 

Murine RAW 264.7 macrophages ↓ IL-12p40  promoter activity  Non CB1/CB2 or 
TRPV1  

 
 

(Correa et al., 2008) Mouse primary mixed glial cells ↓ IL-12p35/p40 & IL-23p19 mRNA expression -  

Rat primary cortical microglial cells ↓ TNF-α release Non CB1/CB2 (Facchinetti et al., 2003a) 

Rat primary cortical microglial cells ↓ IL-1α, IL-1β, IL-6, TNFα mRNA expression Non CB1/CB2 (Puffenbarger et al., 2000) 
Rat primary cortical microglial and 

astrocyte cell cultures 
↑ PGE2, 8-iso-PGF2α production  

 - (Navarrete et al., 2009) 

Mouse primary mixed glial cultures ↓ IL-12 and IL-23 production CB2 mediated  (Correa et al., 2009) 

Mouse primary mixed glial cultures ↑induced IL-10 production, ↓ IkBα 
phosphorylation & p65 nuclear translocation CB2 mediated 

 
(Correa et al., 2010) 

 

Mouse primary mixed glial cultures ↑ CD200R1 expression  CB2 mediated 
(Hernangomez et al., 2012) Mouse primary cortical mixed neuronal 

& glial cultures ↓LPS/IFN-γ induced neuronal death  - 

Mouse primary cortical astrocytes ↓NO2,TNF-α release - (Molina-Holgado et al., 
1997) 

 
 
 

Human primary muller glial cultures 
↑ IL-10 & TGFβ mRNA production 
↓IL-6, IL-1β, TNFα, IL-2, IFNγ, IL-15, IL-12.  
↑ IL-8 mRNA production. ↓NFκβ activation 

 
 
 

(Krishnan and Chatterjee, 
2012) 



 

33 
 

 
 
 
 
 

2-AG 
 

Mouse J774 macrophages ↓ IL-6 and ↑ induced NO release - (Chang et al., 2001) 

Mouse peritoneal macrophages ↓ TNFα levels - (Gallily et al., 2000) 

Rat primary cortical microglial cells ↓ TNFα release 
 

Non CB1/CB2 

mediated (Facchinetti et al., 2003a) 

Rat primary hippocampal neurons ↓ IL-1β-induced COX2 expression 

CB1 mediated (Zhang and Chen, 2008) Rat primary astroglial cultures 
↓ COX2 expression Mixed hippocampal neuronal & 

astroglial cultures 
Rat primary caudate nucleus neurons ↓ COX2 levels, ↓ pNFkB,  pERK1/2 & p-P38 MAPK CB1 mediated (Lu et al., 2014a) 

Mouse primary hippocampal neurons ↓ COX2 expression & NFκB p65 phosphorylation CB1 and PPARγ. 
mediated  

(Du et al., 2011) 
 

 Mouse J774 macrophages ↓IL-1β mRNA, NO production Non CB1/CB2 (Alhouayek et al., 2013) 

Endocannabinoid modulators (metabolic enzyme inhibitors) 

URB597 
(FAAH 

inhibitor) 
Rat primary microglial cultures ↓ COX2 expression , iNOS, PGE2 , NO & TNFα 

release 
Non CB1/CB2 

mediated (Tham et al., 2007) 

UCM707 
(FAAH 

inhibitor) 
Rat primary astrocyte cultures ↓ iNOS expression, NO levels 

↓TNFα, IL-1β & ↑ IL-6 production 
CB1/CB2 

mediated 
(Ortega-Gutierrez et al., 

2005) 

JZL184 
URB602 
(MAGL 

inhibitors) 

Mouse primary hippocampal neurons 

↓ COX2 expression & NFκB p65 phosphorylation 
 

CB1 and PPARγ. 
mediated  (Du et al., 2011) 

WWL70 
(ABHD6 

inhibitor) 

Mouse J774 macrophages 
Thioglycolate-elicited peritoneal 

macrophages (TGEM) 
BV2 microglial-like cells 

↓IL-1β, PGD2, PGJ2, PGE2 in J774 cells 
↓IL-1β in TGEM and BV2 cells 

Non CB1/CB2 (Alhouayek et al., 2013) 
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Table 2:  Endocannabinoid modulation of TLR4 responses – in vivo studies 

Modulator Response following TLR4 activation Receptor  Mechanism Reference 

Direct administration of Endocannabinoids 

AEA  
(1mg/kg s.c. rat) 

↓ LPS induced fever, and hypophagia 
↓ LPS-induced Fos expression in the hypothalamus 

- (Hollis et al., 2011) 

AEA  
(50ug/5µl icv rat) 

↑ LPS- induced hypothermic response  Possible CB1 mediated (Steiner et al., 2011) 

2-AG  
(3mg/kg i.p. mice) 

↓LPS induced COX2 levels in hippocampus  CB1 mediated (Zhang and Chen, 2008) 

FAAH  inhibitors 

URB597 
(50ng/5ul  i.c.v. rat) 

↑ LPS-induced plasma TNFα and Oxytocin  CB1 mediated (De Laurentiis et al., 
2010) 

URB597  
(0.3-0.6mg/kg i.p. rat)  

↓LPS-induced increase in leukocyte adhesion in intestinal venules  
↑ functional capillary density  

Leukocyte adhesion CB2 
mediated 

(Kianian et al., 2013) 

URB597  
(1mg/kg i.p. rat) 

↓LPS-induced IL-1β, SOCS3 expression in hypothalamus - (Kerr et al., 2012) 

URB597  
(0.6mg/kg i.p. rat) 

↑ LPS induced plasma TNFα - (Roche et al., 2008) 

URB597  
(0.6mg/kg i.v. mouse) 

↓ LPS-induced leukocyte adhesion in intestinal V1 & V3 venules -  (Sardinha et al., 2014) 

MAGL/ABHD6 inhibitors 

JZL184 
(16mg/kg i.v. mice) 

↓ LPS-induced leukocyte adhesion in intestinal V1 & V3 venules - (Sardinha et al., 2014) 

JZL184  
(10mg/kg i.p. rat) 

↓LPS-induced IL-1β, IL-6,TNF-α, IL-10 expression in FC .   
↓LPS-induced TNF-α, IL-10 levels in plasma 

↓in IL-1β in cortex CB1 
mediated. ↓in TNF-α, IL-10 in 
plasma CB1 mediated. 

(Kerr et al., 2013) 

JZL184  
(40mg/kg i.p. mouse) 

 
↓LPS-induced IL-1β, IL-1α, IL-6, TNFα, PGE2 levels in brain  

 
Non CB1/CB2 

 
(Nomura et al., 2011) 
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JZL184 
(16mg/kg i.p. mouse) 

↓ LPS induced leukocyte count,  TNFα, IL-6, MCP-1 levels  in 
Bronchoalveolar lavage fluid (BALF) 
↓LPS-induced lung damage 

CB1 and CB2 mediated (Costola-de-Souza et al., 
2013) 

WWL70 
(20mg/kg i.p. mice) 

↓IL-1, IL-6 expression  in cerebellum, lung and liver Effects in liver CB1 mediated  (Alhouayek et al., 2013) 

Endocannabinoid re-uptake inhibitor 

AM404  
(20mg/kg i.p. rat)  

↑ plasma TNFα levels 
↓ plasma IL-1β, IL-6 levels 

↓IL-1β is CB1 mediated (Roche et al., 2008) 
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Table 3: Endocannabinoid/cannabinoid modulation of TLR3-induced immune responses: in vitro studies   

 

 

  

Modulator Cell type Response following polyi:c-induced 
TLR3 activation 

Receptor  Reference 

 
WIN55-212,2 

 

TLR3 expressing Human 
Embryonic Kidney (HEK) 293 

cells 

↓ NFkB, TNFα  
↑IRF3 translocation and activation 

Non CB1/CB2 
PPARα mediated 

(Downer et al., 2011) 
(Downer et al., 2012) 

Mouse bone marrow-
derived macrophages 

↑  IFNβ expression 

Human U373 astrocytoma 
cells 

↓ NFkB, TNFα,  
↑ IFNβ expression 

Mouse primary astrocytes ↓  NFkB, TNFα,  
↑ IFNβ expression,  
↑ nuclear translocation of IRF3 

  Response following TMEV exposure   

AEA 

Mouse macrophage cultures  ↓ IL-1β & IL-12p40 production - (Mestre et al., 2005) 

Mouse primary cortical 
astrocytes 

↓ NO  & TNFα release  
- 

(Molina-Holgado et al., 
1997) 

Mouse primary astrocytes  ↑ IL-6 release CB1 mediated 
 

(Molina-Holgado et al., 
1998) 

Mouse primary mixed glial 
cultures  

↓ IL-12p70, IL-23 & ↑ IL-10 
production 

CB2 mediated (Correa et al., 2011) 

Mouse endothelial & 
astrocyte co-cultures 

↓ VCAM-1 production & leukocyte 
adhesion 

CB1 mediated (Mestre et al., 2011) 

OMDM1 
(EC reuptake inhibitor) 

Mouse Macrophage cultures  ↓ IL-1β & IL-12p40 production  - (Mestre et al., 2005) 

WIN55-212,2 
 

Mouse endothelial & 
astrocyte co-cultures 

↑ COX2 expression & PGE2 release Non CB1/CB2 or 
TRPV1 

(Mestre et al., 2006) 

↓ VCAM-1 PPARγ mediated (Mestre et al., 2009) 



 

37 
 

Table 4.  Endocannabinoid modulation of TLR3-induced immune responses: in vivo studies  

 

Modulator Immune response in following TLR3 activation Receptor  Reference 
URB597  

(1mg/kg., i.p. rat) 
↑ hippocampal expression of IFNα, IFNγ, IL-6;  
↓TNFα &  IL-1β 

- (Henry et al., 2014) 
 

URB597  
(50ug., i.c.v.rat ) 

↓ hippocampal expression of TNFα, IL-1β & ↑  IL-10 
↓IRF7, IFN-γ, IP-10 & SOCS1 

- (Henry et al., 2014) 

Modulator Immune response in TMEV-infected mice Receptor  Reference 
UCM707 

(3mg/kg., i.p. b.i.d. 3 days)  
↓ VCAM-1 expression in cortex  
↓ microglial activation  

Partial CB1 
receptor 

(Mestre et al., 2011) 
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Table 5.  Endocannabinoid/cannabinoid modulation of other TLR-induced immune mediators  

 

 

 

 

 

 

 

 

 

 

 

 

Modulator Species/cell type Immune/inflammatory response following TLR 
activation 

Receptor 
Mechanism 

Reference 

2-AG (50µM i.d.)  Mouse ↓ TLR2-induced IL-4 production in draining 
lymph node cells 

CB2 mediated (Maestroni, 2004) 

2-AG Human glioblastoma  
U87MG cell line 

↓ TLR2-induced NFkB CB1 mediated (Echigo et al., 2012) 

AEA Human PBMCs ↓ TLR7/8-induced TNFα, IL-6 & IL-12p40 - (Chiurchiu et al., 2013) 

NADA Human lung microvascular 
endothelial cells 

↓ TLR2/6-induced IL-6 & IL8 - (Wilhelmsen et al., 2014) 

WIN55,212-2 ↓ TLR2/6-induced IL-6, IL-8 & neutrophil 
adhesion 

- (Wilhelmsen et al., 2014) 

JWH-015  Human PBMCs ↓ TLR7/8-induced TNFα, IL-6 & IL-12p40 CB2 mediated (Chiurchiu et al., 2013) 
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