
 
Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-05-03T10:53:14Z

 

Some rights reserved. For more information, please see the item record link above.
 

Title Cannabinoids and pain: sites and mechanisms of action

Author(s) Starowicz, Katarzyna; Finn, David P.

Publication
Date 2017-06-20

Publication
Information

Starowicz, Katarzyna, & Finn, David P. (2017). Chapter
Thirteen - Cannabinoids and Pain: Sites and Mechanisms of
Action. In David Kendall & Stephen P. H. Alexander (Eds.),
Advances in Pharmacology (Vol. 80, pp. 437-475): Academic
Press, doi: 10.1016/bs.apha.2017.05.003

Publisher Elsevier

Link to
publisher's

version
https://doi.org/10.1016/bs.apha.2017.05.003

Item record http://hdl.handle.net/10379/15091

DOI http://dx.doi.org/10.1016/bs.apha.2017.05.003

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/


 1 

Cannabinoids and Pain: Sites and Mechanisms of Action 
 

Katarzyna Starowicz 1 and David P. Finn 2* 

1 Institute of Pharmacology, Department of Pain Pharmacology, Laboratory of Pain 

Pathophysiology, Polish Academy of Sciences, 31-343 Krakow, Smetna street 12, Poland. 

2 Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre and 

Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland. 

 

*Corresponding author  

Prof. David P. Finn, Pharmacology and Therapeutics, School of Medicine, University Road, 

National University of Ireland, Galway, Ireland. Tel. +353 91 495280; Fax +353 91 495586 

Email: david.finn@nuigalway.ie 

URL: http://www.nuigalway.ie/medicine-nursing-and-health-

sciences/medicine/disciplines/pharmacology/stafflist/davidfinn/ 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

mailto:david.finn@nuigalway.ie
http://www.nuigalway.ie/medicine-nursing-and-health-sciences/medicine/disciplines/pharmacology/stafflist/davidfinn/
http://www.nuigalway.ie/medicine-nursing-and-health-sciences/medicine/disciplines/pharmacology/stafflist/davidfinn/


 2 

Abstract 

The endocannabinoid system, consisting of the cannabinoid1 receptor (CB1R) and 

cannabinoid2 receptor (CB2R), endogenous cannabinoid ligands (endocannabinoids) and 

metabolising enzymes, is present throughout the pain pathways.  Endocannabinoids, 

phytocannabinoids and synthetic cannabinoid receptor agonists have anti-nociceptive effects 

in animal models of acute, inflammatory and neuropathic pain.  CB1R and CB2R are located 

at peripheral, spinal or supra-spinal sites are important targets mediating these anti-

nociceptive effects.  The mechanisms underlying the analgesic effects of cannabinoids likely 

include inhibition of pre-synaptic neurotransmitter and neuropeptide release, modulation of 

post-synaptic neuronal excitability, activation of the descending inhibitory pain pathway, and 

reductions in neuroinflammatory signalling.  Strategies to dissociate the psychoactive effects 

of cannabinoids from their analgesic effects have focused on peripherally restricted CB1R 

agonists, CB2R agonists, inhibitors of endocannabinoid catabolism or uptake, and 

modulation of other non-CB1R /non-CB2R targets of cannabinoids including TRPV1, GPR55 

and PPARs.   The large body of pre-clinical evidence in support of cannabinoids as potential 

analgesic agents is supported by clinical studies demonstrating their efficacy across a variety 

of pain disorders. 

 

Keywords: Pain; Cannabinoid receptor; Endocannabinoids; in vivo; Pre-clinical; Periphery; 

Spinal Cord; Brain; Rat; Mouse  
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CB1R, cannabinoid receptor type 1 

CB2R, cannabinoid receptor type 2 

CCI, chronic constriction injury 

CeA, central nucleus of the amygdala 

CFA, complete Freund’s adjuvant 

CGRP, calcitonin gene-related peptide 

DRG, dorsal root ganglia 

FAAH, fatty acid amide hydrolase 

GRP55, G protein-coupled receptor 55 

I.c.v., intracerebroventricular 

I.p., Intraperitoneal 

I.t., intrathecal 

MAGL, monoacylglycerol lipase 

OEA, N-oleoylethanolamide 

PAG, periaqueductal grey 

PEA, N-palmitoylethanolamide 

PPARs, peroxisome proliferator-activated receptors 

PSL, partial sciatic ligation model 

RVM, rostral ventromedial medulla 

SNI, spared nerve injury  

SNL, spinal nerve ligation  

TRPV1, Transient Receptor Potential Subfamily V Member 1 

∆9-THC, ∆9-tetrahydrocannabinol 
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1.  Introduction 
 
 
Cannabis sativa has been used for medicinal purposes, including relief of pain, for thousands 

of years (Grinspoon & Bakalar, 1993).  The isolation and identification of the principal 

psychoactive constituent of cannabis, ∆9-tetrahydrocannabinol (∆9-THC), in the 1960s 

(Mechoulam & Gaoni, 1967), sparked a search for its mechanism of action which in turn led 

to the discovery of two cannabinoid receptors, the cannabinoid1 receptor (CB1R) (Devane, 

Dysarz, Johnson, Melvin, & Howlett, 1988; Matsuda, Lolait, Brownstein, Young, & Bonner, 

1990) and cannabinoid2 receptor (CB2R) (Munro, Thomas, & Abu-Shaar, 1993). 

Endogenous ligands (endocannabinoids) which exert their effects upon binding to these 

cannabinoid receptors were also discovered, the two best characterised being arachidonyl 

ethanolamide (anandamide; AEA) (Devane et al., 1992) and 2-arachidonyl glycerol (2-AG) 

(Mechoulam et al., 1995; Sugiura et al., 1995). The receptors, endocannabinoids, transport 

proteins and enzymes that synthesise or degrade the endocannabinoids together comprise the 

endocannabinoid system. A large body of pre-clinical and clinical research indicates that this 

lipid signalling system modulates a broad range of physiological processes and behaviours 

including, but not limited to, pain, mood, appetite, emesis, neuronal activity, memory, 

immunity, cell development and cell fate, and the cardiovascular system.  In particular, the 

anti-nociceptive effects of cannabinoids and endocannabinoid signalling have received a lot 

of attention over the past 30 years, with thousands of peer-reviewed publications reporting 

antinociceptive/analgesic effects in preclinical and clinical studies and elucidating the sites 

and mechanisms of action. The impact of this research has started to be seen in clinical 

practice with the introduction of the ∆9-THC/Cannabidiol buccal spray nabiximols 

(Sativex®) for the adjunctive treatment of neuropathic pain in multiple sclerosis patients and 

severe cancer pain in Canada, and with many US states and countries around the world 
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relaxing their laws to allow patients to use cannabis or cannabinoids for a range of conditions 

including chronic pain. The present review will focus primarily on the evidence from pre-

clinical studies utilising animal models of acute, inflammatory and neuropathic pain with an 

emphasis on the sites and mechanisms underlying cannabinoid-mediated anti-nociception.  

For excellent recent reviews and meta-analyses of clinical studies in this area, please see 

(Barnes, 2006; Boychuk, Goddard, Mauro, & Orellana, 2015; Health, 2016; Iskedjian, 

Bereza, Gordon, Piwko, & Einarson, 2007; Lynch & Ware, 2015; McCormick et al., 2017; 

Russo, 2016; Vermersch, 2011; Whiting et al., 2015). 

 

[Insert Table 1 near here] 

 

With regards preclinical studies in rodents, both genetic and pharmacological (Table 1) 

approaches have been used to demonstrate and understand the modulation of pain by 

cannabinoids and the endocannabinoid system.  Enhanced thermal analgesia and reduced 

nociceptive behaviour in the formalin and carrageenan models was observed in mice lacking 

the enzyme fatty acid amide hydrolase (FAAH) which catabolises AEA and other N-

acylethanolamines including N-palmitoylethanolamide (PEA) and N-oleoylethanolamide 

(OEA), compared with wild-type controls (Carey et al., 2016; Cravatt et al., 2001; Lichtman, 

Shelton, Advani, & Cravatt, 2004).  These results suggest that one or more FAAH substrates 

exert antinociceptive actions in these models.  FAAH knockout mice, and mice that express 

FAAH exclusively in nervous tissue, have also been shown to display anti-inflammatory and 

antihyperalgesic effects in both the carrageenan and collagen-induced arthritis models, effects 

prevented by administration of a CB2R, but not CB1R, antagonist (Kinsey, Naidu, Cravatt, 

Dudley, & Lichtman, 2011; Lichtman et al., 2004). Thus, the augmented levels of AEA in 

these mice appears to exert tonic analgesia via CB2R.  However, a pronociceptive phenotype 
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of FAAH knockout mice can be unmasked following intradermal injection of the TRPV1 

agonist capsaicin (Carey et al., 2016). Similarly, mice lacking the 2-AG-catabolising enzyme 

monoacylglycerol lipase (MAGL) exhibited significantly augmented nociceptive behaviour 

in the formalin and acetic acid tests and no alterations in thermal tail-withdrawal latency, 

effects that were likely due to desensitisation of CB1R (Petrenko, Yamazaki, Sakimura, 

Kano, & Baba, 2014; Schlosburg et al., 2010). In a recent study, nitroglycerin-induced 

mechanical allodynia and neuronal activation of the trigeminal nucleus to model migraine 

were abolished in FAAH-deficient mice, results also seen in mice administered FAAH 

inhibitors (Nozaki, Markert, & Zimmer, 2015). These effects were shown to be CB1R-

mediated and they infer that one or more FAAH substrates mediate antinociception via 

CB1R.  Knockouts of the CB1R have also been generated and exhibit hypoalgesia in the hot 

plate, tail immersion and formalin tests (Valverde, Karsak, & Zimmer, 2005; Zimmer, 

Zimmer, Hohmann, Herkenham, & Bonner, 1999), suggesting, somewhat paradoxically, a 

pro-nociceptive role for CB1R.  However, a different CB1
-/- mouse line displayed similar 

basal responses to noxious stimuli compared to wild-type animals (Castane et al., 2006; 

Ledent et al., 1999).  Development of mechanical hypersensitivity following partial sciatic 

nerve ligation was unaltered in CB1R knockout mice (Castane et al., 2006; Racz, Nent, 

Erxlebe, & Zimmer, 2015), however these mice did exhibit more pronounced behavioural 

manifestations of anxiety-related behaviours compared to wild-type mice (Racz et al., 2015), 

suggesting an anxiolytic role for CB1R.  Mice lacking the CB2R have also been generated as 

have CB1/CB2 double knockouts (Buckley, 2008; Buckley et al., 2000) and mice 

overexpressing the CB2R (La Porta, Bura, Aracil-Fernandez, Manzanares, & Maldonado, 

2013).  The affective manifestations of osteoarthritis pain in the monosodium iodoacetate 

model were enhanced in CB1R knockout mice and absent in CB2R knockouts, suggesting 

that the presence of CB1R attenuates the affective component in this model while CB2R is 
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required for expression of the affective component. Both the CB1R agonist ACEA and the 

CB2R agonist JWH133 ameliorated the nociceptive and affective alterations, with ACEA 

also improving the associated memory impairment (La Porta et al., 2015).  It had previously 

been shown that development of mechanical allodynia in this model was unaltered in CB1R 

and CB2R knockout mice, but attenuated in those overexpressing CB2R, compared with 

wild-type mice (La Porta et al., 2013). In another recent study, paclitaxel-induced mechanical 

and cold allodynia developed to an equivalent degree in mice lacking CB1R, CB2R, and 

wild-type mice (Deng et al., 2015), suggesting that CB1R and CB2R do not impact on the 

development of the pain-related phenotype in this model.  Following intraplantar 

administration of  complete Freund's adjuvant (CFA), or partial nerve ligation, mechanical 

hyperalgesia was absent in mice lacking GPR55 (Staton et al., 2008), a receptor sensitive to 

some cannabinoids. However, another study reported thermal hyperalgesia in GPR55 

knockout mice (Bjursell et al., 2016) and, most recently, it was shown that genetic deletion of 

GPR55 did not alter the development of pain-related behaviour in a number of 

mechanistically distinct models of inflammatory and neuropathic pain (Carey et al., 2017).   

 

Shortly after its discovery, Bicher and Mechoulam (1968) showed that ∆9-THC was anti-

nociceptive in rabbits (Bicher & Mechoulam, 1968).  Since then, many studies have shown 

that cannabinoids are anti-nociceptive following systemic administration (For comprehensive 

review see Pertwee, 2001).  The animal (usually rodent) models used can be divided into 

three broad groups: (1) acute pain (2) inflammatory pain involving tissue injury (3) 

neuropathic pain involving peripheral nerve injury.  Cannabinoid receptor agonists, 

administered intraperitoneally, intravenously, subcutaneously or orally, demonstrate 

analgesic efficacy (to greater or lesser degrees depending on the compound and model under 

investigation) across these models (Finn & Chapman, 2004; Pertwee, 2001) with a potency 
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that is comparable with, or greater than, some opiates and cyclooxygenase inhibitors (Bloom 

& Dewey, 1978; Smith, Cichewicz, Martin, & Welch, 1998; Sofia, Vassar, & Knobloch, 

1975; Thorat & Bhargava, 1994).  Many of the earlier studies used non-selective cannabinoid 

receptor agonists, however, the involvement of CB1 and/or CB2 receptors has been probed 

with selective antagonists, and more recent studies have assessed the efficacy of agonists with 

selectivity for CB1 or CB2 receptors.  Interpretation of the results of studies employing 

systemic administration of cannabinoids can, however, sometimes be complicated by 

cannabinoid-mediated suppression of motor activity.  To examine the specific sites and 

mechanisms through which cannabinoids reduce pain, studies have investigated the anti-

nociceptive activity of cannabinoids and endocannabinoid system modulators administered 

supra-spinally, spinally and peripherally.  These site-specific studies are the key focus of the 

present review. 

 

 

2.  Anatomical localisation of the endocannabinoid system throughout the 

pain pathway 

 

Two major ascending pain pathways in mammals, the spino-thalamic pathway and the spino-

parabrachial pathway, encode the sensory-discriminatory and affective aspects of pain 

respectively (see Figure 1).  In addition, the descending pain pathway originates in higher 

cortical regions and in the amygdala and hypothalamus, and projects (via the periaqueductal 

grey (PAG)) to the lower brainstem and spinal cord.  Descending control of pain can be either 

inhibitory or facilitatory depending on the precise circuitry and receptors that are engaged 

(Millan, 2002; Ossipov, Morimura, & Porreca, 2014; Suzuki & Dickenson, 2005; Suzuki, 

Rygh, & Dickenson, 2004).  The endocannabinoid system is expressed throughout the 
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ascending and descending pain pathways at peripheral, spinal and supra-spinal sites (Figure 

1).  CB1 receptors are located on peripheral endings and central terminals of primary afferent 

neurons (Hohmann, Briley, & Herkenham, 1999; Hohmann & Herkenham, 1998, 1999a).  

CB1 receptors are also found in the dorsal root ganglion (DRG) and in the superficial laminae 

of the spinal cord (Farquhar-Smith et al., 2000; Glass, Dragunow, & Faull, 1997; Herkenham 

et al., 1991; Hohmann & Herkenham, 1999a; Ross et al., 2001; Sanudo-Pena, Strangman, 

Mackie, Walker, & Tsou, 1999).  Ahluawalia et al. (2002) reported that 80% of CB1R-

expressing neurons either contained calcitonin gene-related peptide (CGRP), a marker for 

peptidergic neurons, or bound IB4, a marker for  an unmyelinated neurons which express 

glycoproteins (Ahluwalia, Urban, Bevan, Capogna, & Nagy, 2002), suggesting a functional 

role for CB1R on peripheral nerve terminals.   However, there is also evidence that CB1R 

mRNA is expressed predominantly in medium and large sized DRG neurons, with lower 

levels of in DRG neurons expressing substance P or CGRP mRNA (Hohmann & Herkenham, 

1999b).  In addition to its peripheral and spinal localisation, CB1R is also located in all of the 

major brain regions involved in pain processing and modulation.  Receptor autoradiography 

and immunohistochemistry studies have demonstrated the presence of CB1R in the cortex, 

amygdala, hypothalamus, thalamus, PAG, parabrachial nucleus (PBN) and in brainstem 

regions including the rostral ventromedial medulla (RVM) (Glass et al., 1997; Herkenham et 

al., 1991; Herkenham et al., 1990; Mailleux, Parmentier, & Vanderhaeghen, 1992; Thomas, 

Wei, & Martin, 1992; Tsou, Brown, Sanudo-Pena, Mackie, & Walker, 1998). CB1R 

localisation is predominantly presynaptic, and its direct activation by synthetic agonists, or by 

endocannabinoids that signal retrogradely, inhibits the release of neurotransmitters including 

GABA and glutamate (Rea, Roche, & Finn, 2007).   

 

[Insert Figure 1 close to here] 
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The clinical utility of cannabinoids acting at CB1R can be limited due to adverse central side 

effects and the development of tolerance (De Vry, Jentzsch, Kuhl, & Eckel, 2004; Gonzalez, 

Cebeira, & Fernandez-Ruiz, 2005).  This has led to increased interest in the role of the CB2R 

in pain.  The CB2R has been categorised classically as the peripheral cannabinoid receptor 

due to its presence on the cells and tissues of the immune, reproductive, cardiovascular, 

gastrointestinal and respiratory systems and numerous reports which were unable to detect 

CB2R transcripts in normal healthy brain (Derbenev, Stuart, & Smith, 2004; Facci et al., 

1995; Griffin et al., 1999; Munro et al., 1993).  However, more recent evidence suggests that 

CB2R are present in the brain under normal and, in particular, under 

pathological/inflammatory conditions (Baek, Zheng, Darlington, & Smith, 2008; Concannon, 

Okine, Finn, & Dowd, 2015; Onaivi, Ishiguro, Gong, et al., 2006; M. Roche & Finn, 2010; 

Van Sickle et al., 2005; H. Y. Zhang et al., 2014), although to a much lesser extent than the 

ubiquitously expressed CB1R.  CB2R expression has been demonstrated within pain-related 

brain regions including the cerebral cortex, hippocampus, striatum, amygdala, thalamic 

nuclei, PAG, cerebellum and several brain stem nuclei of the rodent brain (Ashton, Friberg, 

Darlington, & Smith, 2006; Brusco, Tagliaferro, Saez, & Onaivi, 2008; Gong et al., 2006; 

Onaivi et al., 2008; Onaivi, Ishiguro, Gong, et al., 2006; Onaivi, Ishiguro, Sejal, et al., 2006; 

Suarez et al., 2008; Van Sickle et al., 2005).  Although many studies have identified central 

CB2R on glial and endothelial cells, there is also evidence to support the expression of CB2R 

on sub-populations of neurons within the central nervous system (Ashton et al., 2006; 

Beltramo et al., 2006; Gong et al., 2006; Molina-Holgado et al., 2007; Onaivi, Ishiguro, 

Gong, et al., 2006; Palazuelos et al., 2006; Suarez et al., 2008; Van Sickle et al., 2005; 

Viscomi et al., 2009; H. Y. Zhang et al., 2014).  There is evidence for expression of CB2R in 

DRG and in the dorsal horn of the spinal cord and upregulation during neuropathic or 
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inflammatory pain (Anand et al., 2008; Hsieh et al., 2011; Romero-Sandoval & Eisenach, 

2007; Romero-Sandoval, Nutile-McMenemy, & DeLeo, 2008; Ross et al., 2001; Svizenska, 

Brazda, Klusakova, & Dubovy, 2013; Wotherspoon et al., 2005; J. Zhang et al., 2003).  The 

high expression of the CB2R in tissues of the immune system including the spleen and 

thymus as well as on specific immune cells including B lymphocytes, natural killer cells, 

monocytes, neutrophils and T lymphocytes (Berdyshev, 2000; Howlett et al., 2002; Klein, 

Newton, & Friedman, 2001; Munro et al., 1993; Sugiura et al., 1995) has focused research on 

the viability of the CB2R as a therapeutic target in inflammatory pain conditions in particular, 

but also neuropathic pain which can have a neuroinflammatory/neuroimmune component 

(Milligan et al., 2003; Watkins, Milligan, & Maier, 2003).  

 

In addition to the cannabinoid receptors, other components of the endocannabinoid system 

are also present throughout the ascending and descending pain pathways.  Thus, the 

endocannabinoids, N-acylethanolamines and their metabolising enzymes are localised in 

peripheral tissues innervated by primary afferent nociceptive neurons (Calignano, La Rana, 

Giuffrida, & Piomelli, 1998; Felder et al., 1996), spinal cord (Di Marzo et al., 2000; 

Egertova, Giang, Cravatt, & Elphick, 1998; Tsou, Nogueron, et al., 1998), and brain (Devane 

et al., 1992; Egertova et al., 1998; Hanus et al., 2001; Huang et al., 2002; Porter et al., 2002; 

Stella, Schweitzer, & Piomelli, 1997; Tsou, Nogueron, et al., 1998) tissues, including regions 

important in pain.  Elegant in vivo microdialysis experiments demonstrated that intraplantar 

injection of the chemical irritant formalin evokes the release of anandamide in the midbrain 

PAG (Walker, Huang, Strangman, Tsou, & Sanudo-Pena, 1999a).   The endocannabinoids 

and N-acylethanolamines also have affinity for, and activity at, a number of non-CB1/non-

CB2 receptors, including Transient Receptor Potential Subfamily V Member 1 (TRPV1), 

GPR55 (putative CB3 receptor) and the peroxisome proliferator-activated receptors (PPARs) 
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(Alexander & Kendall, 2007; Wiley & Martin, 2002), all of which are also expressed 

throughout the pain pathways and likely play important roles in endocannabinoid-mediated 

regulation of pain.  The remainder of this review will focus on functional in vivo studies of 

cannabinoids and the endocannabinoid system in models of acute, inflammatory and 

neuropathic pain with a focus on supraspinal, spinal and peripheral sites and mechanisms of 

action.  

 

 

3. Supra-spinal sites and mechanisms of action  

3.1 Evidence from acute pain models 

In the 1990s, it was demonstrated that the inhibitory effects of the cannabinoid receptor 

agonists CP-55,940, THC and WIN 55,212-2, administered systemically, on either tail-flick 

responding (Lichtman & Martin, 1991) or noxious-evoked responses of spinal neurons 

(Hohmann, Tsou, & Walker, 1999) are abolished in rats following spinal transection, results 

that suggested an important role for descending inhibitory pathways in mediating 

cannabinoid-induced anti-nociception.  The realisation that CB1R is present in moderate to 

high densities in brain regions which play an important role in nociceptive processing (see 

section 2 above) also prompted investigation of supra-spinal sites of action mediating 

cannabinoid-induced anti-nociception.  Multiple studies have now shown that synthetic or 

plant-derived cannabinoid receptor agonists, or endogenous cannabinoid ligands, display anti-

nociceptive activity in the mouse and rat tail-flick tests, following intracerebroventricular 

(i.c.v) administration (Fang et al., 2012; Lichtman & Martin, 1997; Martin, Lai, Patrick, 

Tsou, & Walker, 1993; Pan et al., 2014; Raffa, Stone, & Hipp, 1999; Welch, 1994; Welch, 

Huffman, & Lowe, 1998; Welch, Thomas, & Patrick, 1995; Zheng et al., 2016).   

 



 14 

Significant effort has also been directed at elucidating the specific brain regions that mediate 

the anti-nociceptive effects of cannabinoid receptor agonists (Corcoran, Roche, & Finn, 

2015).  In early work by Martin and colleagues, direct administration of WIN55,212-2 into a 

number of different brain regions including the amygdala, thalamus, superior colliculus and 

A5 region was shown to be anti-nociceptive in the tail-flick test (Martin et al., 1999).  Micro-

injection of the non-selective cannabinoid receptor agonists WIN55,212-2 and HU210 into 

the RVM also elevated tail-flick latencies in rats (Martin, Tsou, & Walker, 1998; Meng & 

Johansen, 2004).  Moreover, the effects of HU210 were attenuated by co-administration with 

the CB1R antagonist/inverse agonist rimonabant (Martin et al., 1998).  Further evidence for 

the importance of the RVM in cannabinoid-induced attenuation of acute pain came from a 

study demonstrating that GABAA receptor agonist-mediated inactivation of the RVM 

prevented anti-nociceptive effects of systemically administered WIN55,212-2 in the rat tail-

flick test (Meng, Manning, Martin, & Fields, 1998). In addition, it has been shown that the 

antinociceptive effects of intra-RVM administration of WIN55,212-2 in the tail-flick test are 

associated with inhibition of ON-cell activity and an increase in OFF-cell activity, effects 

blocked by rimonabant (Meng & Johansen, 2004).  Within the RVM, the nucleus reticularis 

gigantocellularis pars alpha appears to be an important locus for cannabinoid-mediated 

antinociception (Monhemius, Azami, Green, & Roberts, 2001).   

 

The PAG, another major component of the descending inhibitory pain pathway, is also an 

important locus for the anti-nociceptive effects of cannabinoids.  Electrical stimulation of the 

dorsal or lateral columns of the PAG resulted in CB1R-mediated anti-nociception in the rat 

tail-flick test which was accompanied by a marked increase in AEA release in the PAG 

(Walker, Huang, Strangman, Tsou, & Sanudo-Pena, 1999b).  Intra-plantar injection of 

formalin also resulted in increased AEA release, suggesting engagement of an endogenous 
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cannabinergic pain-modulatory system in this midbrain region.  Direct administration of 

CP55, 940 into the ventrolateral (vl) PAG (Lichtman, Cook, & Martin, 1996) and of 

WIN55,212-2 into the dorsal PAG (Martin et al., 1999; Martin, Patrick, Coffin, Tsou, & 

Walker, 1995) had anti-nociceptive effects in the rat tail-flick test.  In vitro studies of the 

mechanism of action of cannabinoids at the level of the PAG suggest that cannabinoids 

reduce neurotransmitter release from pre-synaptic terminals and inhibit GABAergic and 

glutamatergic transmission (Vaughan, Connor, Bagley, & Christie, 2000).  Thus, the anti-

nociceptive effects of cannabinoid agonists administered into the PAG may arise from the 

disinhibition of GABAergic interneurons and the activation of the descending inhibitory 

controls, with subsequent inhibition of excitatory transmission at the level of the spinal cord.  

There is also evidence for a CB1-glutamatergic interaction in the dlPAG in mediating 

cannabinoid-induced antinociception in the plantar test in rats (Palazzo et al., 2001). The 

suppression of acute pain (tail-flick response) following exposure to acute stress (footshock) 

via the phenomenon of stress-induced analgesia has also been shown to be mediated by 

endocannabinoids acting at CB1R in the dlPAG and RVM (Hohmann et al., 2005; Suplita, 

Farthing, Gutierrez, & Hohmann, 2005).  There is also evidence that the cannabinoid receptor 

agonist HU210 can enhance the antinociceptive effects of morphine, and vice versa, with a 

site of action in the vlPAG (Wilson-Poe, Pocius, Herschbach, & Morgan, 2013; Wilson, 

Maher, & Morgan, 2008).  In addition to its activity at cannabinoid receptors, AEA also acts 

at TRPV1, a receptor that also plays an important role in supraspinal modulation of pain 

(Madasu, Roche, & Finn, 2015).  The TRPV1 agonist capsaicin has been shown to induce 

initial hyperalgesia in the tail-flick test, followed by antinociception, when injected into the 

dlPAG (McGaraughty et al., 2003).  Similarly, in the rat plantar test, biphasic effects of intra-

dlPAG administration of capsaicin have been demonstrated (Palazzo et al., 2002) and intra-

vlPAG administration of capsaicin results in glutamate release in the RVM, thereby activating 
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OFF-cells and producing antinociception (Starowicz et al., 2007).  In further work using the 

rat plantar test, intra-vlPAG injection of a low dose of the FAAH inhibitor URB597 with the 

CB1 receptor antagonist/inverse agonist AM251 converted the hyperalgesic effect of low 

dose URB597 to an antinociceptive effect, while co-administration of URB597 with both the 

TRPV1 antagonist capsazepine and AM251 abolished all effects (Maione et al., 2006). In 

comparison, the antinociceptive effect of high dose URB597 was converted to a hyperalgesic 

effect following TRPV1 antagonism. The URB597-induced antinociceptive effects (TRPV1-

mediated) and pronociceptive effects (CB1 receptor mediated) were associated with enhanced 

or reduced RVM OFF cell activity, respectively, suggesting URB597-induced modulation of 

the activity of excitatory PAG output neurons (Maione et al., 2006). Intra-vlPAG injection of 

the dual FAAH inhibitor and TRPV1 antagonist AA-5-HT increased endocannabinoid levels 

and had an antinociceptive effect in the rat tail-flick test, with associated inhibition of RVM 

ON- and OFF-cell activity (de Novellis et al., 2008). These effects were blocked by the CB1 

receptor antagonist AM251 or the TRPV1 antagonist I-RTX and were mimicked by intra-

vlPAG co-administration of the FAAH inhibitor URB597 with the TRPV1 antagonist I-RTX 

(de Novellis et al., 2008).  Thus, activity of the descending pain pathway is regulated by the 

action of endocannabinoids at both CB1R and TRPV1 in the vlPAG.  For an excellent 

schematic of the possible mechanisms underlying endocannabinoid/endovanilloid-mediated 

control of nociception in the ventrolateral PAG and RVM see Scheme 1 within Maione et al. 

(2006).  Recently, it has also been shown that intra-PAG administration of the GPR55 agonist 

lysophasphatidylinositol reduces the nociceptive threshold in the rat hotplate test, an effect 

blocked upon pretreatment with the GPR55 antagonist ML-193 (Deliu et al., 2015), thereby 

suggesting a role for this putative CB3 receptor in the PAG in acute pain processing. 
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The amygdala is thought to play a role in the affective component of pain and is also a 

component of the descending pain pathway (Neugebauer, Galhardo, Maione, & Mackey, 

2009; Neugebauer, Li, Bird, & Han, 2004).  Direct administration of WIN55,212-2 into either 

the basolateral (BLA) or central (CeA) nucleus of the amygdala has been shown to increase 

tail-flick latency in rats (Hasanein, Parviz, Keshavarz, & Javanmardi, 2007; Martin et al., 

1999).   Intra-CeA, but not intra-BLA, administration of muscimol, significantly attenuated 

the anti-nociceptive effects of systemically administered WIN55,212-2 in rats (Manning, 

Martin, & Meng, 2003). Another study from the same group found that the amygdala also 

plays a role in cannabinoid-induced antinociception in non-human primates (Manning, Merin, 

Meng, & Amaral, 2001).  Pharmacological blockade of CB1R in the rat BLA attenuated the 

stress-induced suppression of nociceptive responding in the tail-flick test (Connell, Bolton, 

Olsen, Piomelli, & Hohmann, 2006).  A role for CB1R signalling in the rat prelimbic cortex 

in facilitation of stress-induced analgesia has also been demonstrated (Freitas, Salgado-

Rohner, Hallak, Crippa, & Coimbra, 2013).  Using fMRI, it has been shown that THC 

reduces the reported unpleasantness, but not the intensity of ongoing pain and hyperalgesia, 

induced by capsaicin in healthy human subjects, an effect positively correlated with amygdala 

activity. THC also reduced functional connectivity between the amygdala and primary 

sensorimotor areas during the ongoing-pain state (Lee et al., 2013).   

 

3.2  Evidence from inflammatory pain models 

Some studies have investigated the effects of intra-cerebral administration of cannabinoids 

specifically in animal models of inflammatory pain.  Direct micro-injection of WIN55,212-2 

into the nucleus reticularis gigantocellularis pars alpha, a major source of descending 

modulation, reduced formalin-evoked pain behaviour, via the CB1 receptor (Monhemius, 

Azami, Green, & Roberts, 2001).  Administration of the potent cannabinoid receptor agonist 
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HU210 into the dorsal PAG inhibited formalin-evoked nociceptive behaviour during the 

second phase and was anti-aversive in rats ( Finn et al., 2004; Finn et al., 2003).  Intra-vlPAG 

administration of AA-5-HT to rats prevented the changes in ON- and OFF-cell firing activity 

induced by intra-plantar injection of formalin, and reversed the formalin-induced increase in 

locus coeruleus adrenergic cell activity (de Novellis et al., 2008). Injection of the CB1 

receptor antagonist AM251 into the PAG or RVM reverses metazinol-induced analgesia in 

the rat carrageenan model of inflammatory pain, suggesting a role for the endocannabinoid 

system in these brain regions in NSAID-induced analgesia (Escobar et al., 2012). These data 

provide additional evidence that the RVM and PAG are important brain regions mediating the 

anti-nociceptive effects of cannabinoids in animal models of inflammatory pain.  Evidence 

that pharmacological blockade of CB1R in the dlPAG attenuates conditioned fear-induced 

suppression of formalin-evoked nociceptive behaviour (i.e. fear-conditioned analgesia) 

further substantiates the key role of the endocannabinoid system in the PAG in stress-induced 

analgesia (Olango, Roche, Ford, Harhen, & Finn, 2012).  Conversely, anxiety and depression 

may exacerbate pain and are frequently found co-morbid with chronic pain.  Finn and co-

workers have demonstrated that hyperalgesia to intra-plantar formalin injection in Wistar-

Kyoto rats that exhibit an anxiodepressive phenotype (versus Sprague-Dawley counterparts) 

is associated with impaired endocannabinoid-CB1R signalling in the RVM (Rea et al., 2014).  

Recently, it has been shown that while CB1R-mediated inhibition of GABAergic neurons in 

the RVM is reduced in the rat CFA model, CB2R functionality in this region is increased in 

this model of persistent inflammatory pain (Li, Suchland, & Ingram, 2017), supporting the 

contention that CB2R may represent a viable analgesic target.  

 

Unilateral inactivation of the CeA reduced the suppression of formalin-evoked c-Fos 

expression by WIN55,212-2 in the superficial dorsal horn of the spinal cord (Manning et al., 



 19 

2003).  Furthermore, intra-BLA administration of WIN55,212-2 has also been shown to 

reduce formalin-evoked nociceptive behaviour in rats, an effect attenuated by intra-BLA 

administration of the CB1R antagonist AM251 (Hasanein et al., 2007). Interestingly, intra-

BLA administration of rimonabant has also been reported to attenuate formalin-evoked 

nociceptive behaviour and associated increases in c-Fos immunoreactivity in the 

hippocampus and RVM in rats (Roche et al., 2010; Roche, O'Connor, Diskin, & Finn, 2007), 

although intra-BLA administration of AM251 did not have this effect (Rea et al., 2013).  In 

contrast, intra-BLA administration of AM251 (Rea et al., 2013), but not rimonabant (Roche 

et al., 2010; Roche et al., 2007), attenuated fear-conditioned analgesia in rats.  The same 

doses of rimonabant and AM251 were microinjected into the BLA in these studies and under 

very similar methodological conditions. However, as discussed in Rea et al. (2013), 

discrepancies between the effects of the two CB1R antagonists/inverse agonist may relate to 

dose–response differences between the 2 compounds when administered into this brain 

region or to differential activity of the two compounds at non-CB1R targets expressed in the 

BLA (e.g. GPR55, TRPV1 or PPARs).  There is also evidence that fear-conditioned analgesia 

is mediated by endocannabinoid-CB1R signalling in the ventral hippocampus (Ford, Kieran, 

Dolan, Harhen, & Finn, 2011). 

 

In the rat kaolin/carrageenan intra-articular injection model of arthritis, co-activation of 

mGluR5 and CB1R increased activity of prefrontal cortex neurons and inhibited pain-related 

neuronal activity in the CeA (Ji & Neugebauer, 2014). Further evidence for a role of the 

endocannabinoid system in the prefrontal cortex in arthritic conditions comes from work 

demonstrating that osteoarthritis pain is associated with increased 2-AG levels in the 

prefrontal cortex of mice in the monosodium iodacetate model (La Porta, et al., 2015).  

Recently, Finn and co-workers demonstrated that the antinociceptive effects of N-
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palmitoylethanolamide injected into the anterior cingulate cortex in the rat formalin test are 

likely mediated by AEA-induced activation of CB1R in this brain region arising from 

substrate competition between PEA and AEA at FAAH (Okine et al., 2016).  A facilitatory 

role for PPARs and TRPV1 in the anterior cingulate cortex in formalin-evoked nociceptive 

behaviour has also been suggested (Okine et al., 2016; Okine et al., 2014). 

 

3.3  Evidence from neuropathic pain models 

Increased levels of AEA and 2-AG, have been reported in the PAG and RVM of rats 7 days 

post chronic constriction injury (CCI) of the sciatic nerve, when hyperalgesia and mechanical 

allodynia were observed to be maximal (Petrosino et al., 2007).  Partial sciatic nerve injury 

has been shown to reduce formalin-evoked pain behaviour in rats (Monhemius et al., 2001).  

This effect was blocked by direct administration of rimonabant into the nucleus reticularis 

gigantocellularis pars, suggesting that increased endocannabinoid tone in neuropathic rats can 

modulate nociceptive behaviour (Monhemius et al., 2001).  In the thalamus, CB1R mRNA is 

up-regulated in a rat model of neuropathic pain (Siegling, Hofmann, Denzer, Mauler, & De 

Vry, 2001).  Potentially, up-regulation of thalamic CB1R in neuropathic pain states may serve 

to enhance the analgesic effects of cannabinoids under these conditions.  Interestingly, it has 

been shown that CB2R plays a functional role in the modulation of responses of neurons in 

the ventral posterior nucleus of the thalamus in spinal nerve ligated, but not sham-operated, 

rats (Jhaveri et al., 2008). 

 

TRPV1 expression is increased in glutamatergic neurons of the medial prefrontal cortex 

following spared nerve injury (SNI) in rats (Giordano et al., 2012). Moreover, SNI-induced 

neuropathic pain is also associated with increased levels of endovanilloids and 

endocannabinoids in the medial prefrontal cortex and direct administration of AA-5-HT into 
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the prelimbic and infralimbic cortices reduces nociceptive behaviour in rats following SNI (de 

Novellis et al., 2011; Giordano et al., 2012).   

 

4.  Spinal sites and mechanisms of action  

   

4.1   Evidence from acute pain models 

 Early evidence that the synthetic cannabinoid levonantradol produced a dose-

dependent increase in the hot plate and tail-flick response latencies following intrathecal (i.t.) 

administration (Yaksh, 1981), followed by studies elucidating mechanisms of THC-induced 

analgesia (Smith & Martin, 1992), indicated a spinal component in the antinociceptive action 

of the cannabinoids. Behavioural (Smith & Martin, 1992; Yaksh, 1981), electrophysiological 

(Hohmann, Tsou, & Michael Walker, 1998; Johanek, Simone, & Lisa, 2005; Sokal, Elmes, 

Kendall, & Chapman, 2003) and neurochemical (Hohmann, Tsou, & Walker, 1999) studies 

have demonstrated that cannabinoids act at the spinal level to suppress nociceptive 

processing. In a model of tonic pain, immunocytochemistry for the protooncogene c-fos (a 

marker for the activation of nociceptive neurons in the spinal cord) was used to demonstrate 

that cannabinoids reduce behavioral responses to noxious stimuli by decreasing spinal 

processing of nociceptive inputs (Tsou, Martin, & Bereiter, 1996). 

 

4.2   Evidence from inflammatory pain models 

 The CB1R has been suggested to be tonically active in the spinal cord under normal 

conditions and its activity is increased in response to injections of CFA in the plantar surface 

of the rat hindpaw (Martin, Loo, & Basbaum, 1999). The synthetic mixed CB1R/CB2R 

agonist WIN55212-2 reverses inflammation-induced allodynia at doses that do not produce 
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analgesia; additionally SR141716A differentially affects the pattern of Fos expression in the 

spinal cord, depending on the presence or absence of inflammation (Martin et al., 1999).  

 A functional inhibitory effect of i.t administration of the CB2R-selective agonists A-

836339 and AM1241 have been demonstrated in CFA-induced chronic inflammatory pain 

(Hsieh et al., 2011). These data complement the findings that CB2R mRNA is up-regulated in 

the spinal cord only from rats under inflammatory conditions, suggesting that CB2R agonists 

may elicit analgesic effects by acting not only at peripheral DRG sites but also at central 

levels of the spinal cord, making CB2 an attractive target for chronic pain treatment, avoiding 

the adverse psychotropic effects that can accompany CB1R-based therapies. The 

antinociceptive effects of A-836339 were not sensitive to pre-treatment with naloxone, and 

thus are not mediated by µ-opioid receptors. Interestingly, the blockade of AM1241 by 

naloxone was observed in the CFA model of inflammatory pain (Hsieh et al., 2011).  

  

   4.3   Evidence from neuropathic pain models 

Cannabinoids suppress C-fiber-evoked responses of dorsal horn neurons recorded in a 

rat model of neuropathic pain (Elmes et al., 2004). The synaptic processes that produce 

“wind-up”, the phenomenon whereby repeated stimulation of cutaneous C-fibres at 

frequencies > 0.3 Hz gives increasing responses of dorsal horn cells and withdrawal reflexes, 

are sufficient to produce central sensitization, which appears to be an important component of 

hyperalgesia and allodynia. The effect of cannabinoids, namely of the potent, synthetic 

cannabinoid receptor agonist WIN 55,212-2 on wind-up of spinal dorsal horn neurons was 

investigated in 1999 (Strangman, Walker, & Strangman, 1999). Strangman and Walker 

provided the first direct evidence that cannabinoids inhibit the activity-dependent facilitation 

of spinal nociceptive responses. These authors suggested that cannabinoids may act as 
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general inhibitors of central sensitization by inhibiting calcium entry (Strangman et al., 

1999). 

The effectiveness of cannabinoids is inconsistent in preclinical neuropathic pain models. 

WIN 55,212-2 delivered i.t. is effective in mitigating mechanical allodynia in the CCI model 

(Lim, Sung, Ji, & Mao, 2003) while Costa et al. (Barbara Costa et al., 2005) demonstrated 

that systemic administration of a CB1R antagonist significantly reduces mechanical and 

thermal hyperalgesia in CCI rats and in mice. Others (Toniolo et al., 2014) (Ueda et al., 2014) 

have also suggested that CB1R expression and activation can be maladaptive. Very recent 

research indicates that CB1R expression contributes to the development of persistent 

mechanical hypersensitivity, protects against the development of cold allodynia but is not 

involved in motor impairment following spared-nerve injury in mice (Sideris et al., 2016).  

Although nerve injury increased CB2R expression in spinal microglia (Zhang et al., 2003), 

CB2R agonists suppressed microglial activation and reduced neuropathic pain symptoms 

(Wilkerson et al., 2012). I.t. delivery of the CB2R agonist JWH-015 reverses hypersensitivity 

following nerve injury in a CB2R- and not CB1R-dependent manner (an effect blocked by 

AM630 but not AM281) (Romero-Sandoval & Eisenach, 2007). Interestingly, CB2R 

knockout mice displayed increased microglial and astrocytic reactivity in the spinal cord and 

enhanced neuropathic pain symptoms, whereas transgenic mice overexpressing CB2R 

showed attenuated glial reactivity and neuropathic pain (Racz et al., 2008). CB2R are up-

regulated on both microglia and astrocytes following spared nerve injury in mice, and chronic 

systemic administration of the CB2R agonist NESS400 reduces pain behaviour, astrogliosis, 

microglial activation, and levels of proinflammatory cytokines, whilst promoting levels of 

anti-inflammatory cytokines (Luongo et al., 2010).  
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Interestingly, the CB2-selective agonists A-836339 and AM1241, which have previously 

been shown to counteract inflammatory pain, have also been proven to alleviate neuropathic 

pain in the rat SNL model (Hsieh et al., 2011). As in the case of CFA-induced inflammation, 

A-836339 action was opioid-insensitive, while the blockade of AM1241 by naloxone was not 

observed. The reason for the difference between two drugs is currently unknown. AM1241 

may interact with additional targets that may contribute to the antinociceptive efficacy 

through the regulation of the opioid receptor pathway (Hsieh et al., 2011). However, there is 

some conflicting evidence in the literature, with a recent study reporting no effect of the CB2 

agonists GW405833 and JWH-133 on mechanical allodynia in CCI model of neuropathy 

(Brownjohn & Ashton, 2012). This study also reported no elevation of CB2 at either the 

protein or mRNA level, probably due to the choice of neuropathic pain model (SNL or CCI).  

 

The endocannabinoids AEA and 2-AG are also increased in the spinal cord following 

induction of a neuropathic pain state in a CCI model (Petrosino et al., 2007; Starowicz et al., 

2012), suggesting that pharmacological manipulation of endocannabinoid accumulation or 

breakdown may suppress neuropathic nociception in rodents. Both FAAH and MAGL 

represent potential therapeutic targets for the development of pharmacological agents to treat 

chronic pain resulting from nerve injury. A significant reduction of neuropathic pain 

symptoms following inhibition of the AEA hydrolytic enzyme with URB597 in a rat CCI 

model was reported (Starowicz et al., 2012, 2013). Depending on the dose of URB597 used, 

and on the consequent lesser or higher elevation of endogenous AEA levels, analgesia was 

mediated via CB1 or TRPV1 receptors, respectively. These data suggest that indirect 

modulation of TRPV1 function, as well as strengthening endogenous AEA signalling by 

inhibiting its enzymatic degradation, together hold promise for the development of novel 
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multi-target pharmacological treatments. These studies highlight the importance of the 

endocannabinoid system as a potential therapeutic target for treatment of neuropathic pain. 

 

5.  Peripheral sites and mechanisms of action  

  

   5.1   Evidence from acute pain models 

 In behavioural experiments, administration of the endogenous CB1R agonist, AEA, 

into the ipsilateral hindpaw of the rat reduced formalin-induced nociception (Calignano, La 

Rana, Giuffrida, Piomelli, 1998), indicating that activation of peripheral CB1R produces 

antinociception. PEA produced a similar effect by activating peripheral CB2R. Furthermore, 

PEA was administered together with AEA, the two compounds acted synergistically. The 

peripheral actions of CB1R agonists are attributed to an inhibition of both the sensitizing 

effects of NGF and CGRP release (Richardson, Kilo, & Hargreaves, 1998) and (Rice, 

Farquhar-Smith, & Nagy, 2002) . 

 

In 2001, it was demonstrated that selective activation of peripheral CB2R results in 

antinociception (Malan, Ibrahim, Deng, Liu, Mata, Vanderah, Porreca, 2001). AM1241, the 

CB2R-selective agonist, administered both locally and systematically (i.p.) produced thermal 

hypoalgesia, which was absent when the compound was coadministered with AM630, a 

CB2R antagonist, but not AM251, the CB1R antagonist. AM1241 administered locally to the 

contralateral paw did not elict antinociception, which suggests a local site of action. 

Moreover, local administration of AM630 blocked the antinociceptive effect of AM1241 

injected i.p., further implicating peripheral CB2R as the main site of action. Ibrahim et al. 

(Ibrahim, Porreca, Lai, Albrecht, Rice, Khodorova, Davar, Makriyannis, Vanderah, Mata,  
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Malan, 2005) reported that CB2R activation produces antinociception by stimulating the 

release of β-endorphin from keratinocytes, which in turn acts at μ-opioid receptors on 

primary afferent neurons. Furthermore, it was also suggested that other mediators might be 

released from local cells after activation of CB2R, contributing to its antinociceptive effects. 

Nonetheless, β-endorphin release was suggested to be critical for CB2R-mediated 

antinociception because the effects of AM1241 were completely prevented by a β-endorphin-

sequestering antiserum (Ibrahim, Porreca, Lai, Albrecht, Rice, Khodorova, Davar, 

Makriyannis, Vanderah, Mata, Malan, 2005).  

 

Inhibition of endocannabinoid metabolism is considered a promising therapeutic target on its 

own. It has been demonstrated that blocking AEA degradation results in antinociceptive 

effects in the mouse hotplate test (Kathuria et al., 2003). The carbamate compound URB597 

reduces pain-related behaviour in the rat produced by prior i.pl. injection of CFA in a manner 

blocked by a CB1R but not a CB2R antagonist (Wilson et al., 2005). Also global deletion of 

FAAH results in lower inflammatory response to local administration of carrageenan 

(Lichtman, Shelton, Advani, & Cravatt, 2004). There is good evidence in the literature that 

CB2R may regulate oedema and hyperalgesia in response to carrageenan (Holt, Comelli, 

Costa, & Fowler, 2005). Antioedemic effect of the CB2R agonists, AM1241 and JTE-907, 

was demonstrated (Quartilho et al., 2003) (Iwamura, Suzuki, Ueda, Kaya, & Inaba, 2001). 

Moreover, URB597 reduced oedema formation in a CB2R-dependent manner (Holt et al., 

2005).  

 

   5.2   Evidence from inflammatory pain models 

 Studies have demonstrated that administration of the endogenous CB1R agonist, AEA 

into the ipsilateral hindpaw of the rat reduces carrageenan-induced hyperalgesia (Richardson 
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et al., 1998) and that administration of the PEA reduced oedema and inflammatory 

hyperalgesia (Mazzari, Canella, Petrelli, Marcolongo, & Leon, 1996). It was demonstrated 

that activation of CB2R suppresses the development of inflammatory pain (Nackley, 

Makriyannis, & Hohmann, 2003). AM1241, when injected i.p. suppressed the development 

of carrageenan-evoked thermal and mechanical hyperalgesia as well as allodynia in a CB2-

dependent manner. Furthermore intraplantar administration suppressed hyperalgesia and 

allodynia only on the inflamed paw and was inactive following administration in the 

contralateral (noninflamed) paw (Nackley et al., 2003).  

 

As a result of systemic administration of the selective FAAH inhibitor, URB597, elevation in 

endogenous AEA levels reduced the mechanical allodynia and thermal hyperalgesia in an 

inflammatory pain model in both CB1R- and CB2R-dependent manner (Jayamanne et al., 

2006).  Moreover, two distinct inhibitors of MAGL (JZL184 and URB602) elicited local 

analgesia in the formalin-induced pain model that involved both CB1R and CB2R. URB602 

produced regionally restricted increases in 2-AG levels in rat hind paw skin without altering 

AEA levels (Guindon, Guijarro, Piomelli, & Hohmann, 2011). The above findings indicate 

that increase in endocannabinoid tone block the development of inflammatory pain. 

 

   5.3   Evidence from neuropathic pain models 

 Studies by Fox et al., 2001 (Fox et al., 2001) and Elmes (Elmes, Jhaveri, Smart, 

Kendall, & Chapman, 2004) showed that antinociceptive effects in the PSL and SNL models 

were produced by the activation of peripheral CB1R and CB2R, respectively. In particular, 

WIN 55,212-2 reversed mechanical hyperalgesia following intraplantar administration into 

the ipsilateral hind paw (Fox et al., 2001). CB1 mRNA is localized in DRG neurons and 

CB1R has been shown to undergo peripheral axonal flow in the sciatic nerve (Hohmann & 
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Herkenham, 1999). Moreover, data form Hargreaves’ group indicate that CB1R activation 

inhibits sensory neuropeptide release from the skin of rat hindpaws, demonstrating a 

functional inhibitory activity on peripheral sensory nerves (Richardson et al., 1998). JWH-

133, a cannabinoid CB2R agonist, also significantly reduced noxious mechanically evoked 

responses of wide dynamic range dorsal horn neurons following intra-plantar injections 

(Elmes et al., 2004). Indeed CB2 agonists offer promise in neuropathic pain management. 

CCI of the sciatic nerve induced neuropathic pain behaviour and bilateral elevation of both 

CB2R protein and mRNA in lumbar L4-L5 as well as cervical C7-C8 DRG when compared 

with naive animals. CB2R protein and mRNA were increased not only in DRG neurons but 

also in satellite glial cells. Such changes suggest propagation of neuroinflammation alongside 

the neuraxis and the neuroprotective effects of CB2R (Svízenská, Brázda, Klusáková, & 

Dubový, 2013)  Work of Leichsenring et al. analysed the effect of repeated i.p. administration 

of the CB2R agonist GW-405,833 on mechanical allodynia, compared with the potent 

cannabinoid receptor agonist WIN-55,212-2 (Leichsenring, Andriske, Bäcker, Stichel, & 

Lübbert, 2009). Both drugs, applied daily at a low non-psychotropic dose, were equally 

effective in reducing mechanical allodynia induced by SNL. A reappearance of glial 

activation was also associated with return of neuropathic pain-related behavior in this study 

(Leichsenring, Andriske, Bäcker, Stichel, & Lübbert, 2009). The involvement of peripheral 

CB2R in neuropathic pain symptoms alleviation was also a subject of studies by Kinsey 

(Kinsey et al., 2011). An ethyl sulfonamide THC analogue, O-3223, a selective CB2 agonist, 

was reported to reduce thermal hyperalgesia in the CCI-induced neuropathic pain model. Its 

anti-hyperalgesic effects were blocked by pretreatment with the CB2R selective antagonist 

SR144528, but not by the CB1R antagonist, rimonabant. In addition, O-3223 (unlike CP-

55,940, CB1R and CB2R agonist), did not elicit hypothermia or motor disturbances, 
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indicating it has significant anti-inflammatory and anti-nociceptive effects in vivo, but does 

not cause CB1R-mediated side-effects. 

 

The therapeutic utility of locally administered AEA for neuropathic pain was proven by 

Guindon and Beaulieu (Guindon & Beaulieu, 2006). However surprising data on the lack of 

anti-allodynic and anti-hyperalgesic effects of URB597 in a neuropathic pain model were 

published by (Jayamanne et al. 2006). In animals subjected to partial ligation of the sciatic 

nerve, i.p. administration of the selective FAAH inhibitor, URB597, produced no significant 

change in mechanical paw withdrawal latency.  It has been suggested that repeated 

administration of URB597 may prove to be more efficacious in neuropathic pain models, as 

observed previously for exogenous cannabinoid receptor agonists (Costa et al., 2004). 

Moreover, acute administration of the irreversible FAAH inhibitor, URB597 and of the 

reversible FAAH inhibitor, OL-135, decreases allodynia in mouse CCI model of neuropathic 

pain (Kinsey et al., 2009). This attenuation was completely blocked by pre-treatment with 

either CB1- or CB2R antagonists. Given the neuroinflammatory nature of the nerve injury in 

the CCI model, it is not surprising that both cannabinoid receptors play a role in modulating 

neuropathic pain.  

 

Another FAAH inhibitor, PF-3845, characterized by an increased FAAH specificity and 

longer duration of in vivo activity (Kinsey, Long, Cravatt, & Lichtman, 2010) also showed an 

attenuation of CCI-induced mechanical and cold allodynia in wildtype mice (Kinsey et al., 

2009).. Subsequent work from the Lichtman group explored the contribution of CB1R and/or 

CB2R for the antiallodynic effects of the FAAH and the MAGL inhibitors in a mouse model 

of neuropathic pain (Kinsey et al., 2010) and further confirmed that both CB1 and CB2R are 

necessary for the antiallodynic effects of FAAH inhibitors, while only CB1R are necessary 
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for the antiallodynic effects caused by MAGL inhibition. These data indicate that the 

endocannabinoids may affect different levels of the nociceptive and inflammatory pathways 

involved in neuropathic pain.  

 

6.  Conclusions and future directions  

Cannabinoids exert a direct antinociceptive effect on pain of different origins. The CB1R-

mediated analgesic effects of cannabinoid ligands are well established, but limited by their 

side-effect profile. The observation that CB2R activation produces desirable actions in a 

range of preclinical models (Leleu-Chavain et al., 2012) (Han, Thatte, Buzard, & Jones, 

2013) attracted considerable interest. However, despite very favorable efficacy in a range of 

preclinical models, CB2 agonists have fared poorly in the clinic (Dhopeshwarkar & Mackie, 

2014). The targeted manipulation of the endocannabinoid system might also be beneficial in 

the face of inflammation and chronic pain conditions. Interestingly investigations into the 

endocannabinoids and their effector sites, along with other non-cannabinoid receptors, have 

exploded in recent years, and insights reveal this area of pharmacology to be highly complex 

and dynamic (Piscitelli & Di Marzo, 2012) (Starowicz & Di Marzo, 2013). Data derived from 

complex and clinically relevant animal models highlights the question of effectiveness of 

dual-acting compounds (Ligresti et al., 2014)(Aiello, Carullo, Badolato, & Brizzi, 2016) 

(Malek & Starowicz, 2016) and support the case for multi-target pharmacological 

intervention for effective pain treatment.  
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Figure Legend 

 

Figure 1. Cannabinoid receptor distribution throughout the pain pathways. Cannabinoid 

receptors are present at all three levels of pain processing: A) in the periphery: CB1R are 

present in the peripheral sensory nerve endings, both CB1R and CB2R are expressed in the 

dorsal root ganglion (DRG); B) in the spinal cord: CB1R are found in the dorsolateral 

funiculus, in the surroundings of the central canal and in the superficial dorsal horn. CB2R 

are expressed on glial cells highly restricted to lumbar spinal cord; its expression coincides 

with the appearance of activated microglia and C) in the supra-spinal sites: CB1R are 

distributed in areas of the brain involved in pain processing, perception and modulation eg. 

thalamus, amygdala, parabrachial nucleus, periaqueductal grey matter and rostroventral 

medulla. They are also present in caudate nucleus and putamen (n. accumbens), basal 

ganglia, hypothalamus and cerebellum. CB2R receptor are expressed in some neurons within 

the brainstem, and also on glial cells in the cerebellum and cortex. CB1R and CB2R 

distribution in regions involved in pain transduction, transmission, perception and modulation 

provides the anatomical basis for the well-known ability of CB1/CB2R agonists to decrease 

pain. 



 

 

 



Table 1. Compounds, referred to in the text, and used to elucidate the role of cannabinoids and the endocannabinoid system in pain modulation.  
 
 

 
Pharmacological substance 

  

 
IUPAC name   

 
Target 

THC (−)-(6aR,10aR)-6,6,9-Trimethyl-3-pentyl-6a,7,8,10a-tetrahydro-6H-
benzo[c]chromen-1-ol; ∆9-tetrahydrocannabinol 

The main psychotropic 
constituent of cannabis,  
CB1/CB2 receptor partial 
agonist 

ACEA N-(2-Chloroethyl)-5Z,8Z,11Z,14Z-eicosatetraenamide Potent and highly selective 
synthetic CB1 receptor agonist, 
has low affinity for CB2 

2-AG   
 
 
AEA 
 

(5Z,8Z,11Z,14Z)-5,8,11,14-Eicosatetraenoic acid, 2-hydroxy-1-
(hydroxymethyl)ethyl ester; 2-Arachidonoyl glycerol 
 
N-(2-Hydroxyethyl)-5Z,8Z,11Z,14Z-eicosatetraenamide; 
anandamide 

Endogenous CB1 and CB2 
receptor agonists without any 
marked selectivity for either 
sub-type.  AEA is also an 
agonist at TRPV1 

WIN 55,212-2 
 
 
CP-55,940 
 
 
HU-210 

{(R)-(+)-[2,3-dihydro-5-methyl-3-[(4-morpholino)methyl]pyrrolo-
[1,2,3-de]-1,4-benzoxazin-6-yl](1-naphthyl)methanone} 
 
{(−)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3-
hydroxypropyl)cyclohexan-1-ol} 
 
3-(1,1'-dimethylheptyl)-6aR,7,10,10aR-tetrahydro-1-hydroxy-6,6-
dimethyl-6H-dibenzo[b,d]pyran-9-methanol 

Mixed CB1/CB2 receptor 
agonist 

AM251 
 
 

N-(Piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-
methyl-1H-pyrazole-3-carboxamide 
 

CB1-selective antagonists 
 



AM281 
 
 
SR141716A (rimonabant) 

1-(2,4-Dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-
morpholinyl-1H-pyrazole-3-carboxamide 
 
[N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-
methyl-1H-pyrazole-3-carboxamide hydrochloride] (rimonabant) 

A-836339 
 
 
AM1241 
 
 
GW-405,833 
 
 
JTE-907 
 
 
JWH-015 
 
JWH-133 
 
 
NESS400 
 
 
O-3223 

[N(Z)]-N-[3-(2-methoxyethyl)- 4,5-dimethyl-2(3H)- thiazolylidene]-
2,2,3,3-tetramethyl- cyclopropanecarboxamide  

(2-iodo-5-nitrophenyl)-(1-(1- methylpiperidin-2-ylmethyl)-1H-
indol- 3-yl)methanone  

1-(2,3-Dichlorobenzoyl)-5-methoxy-2-methyl-3-[2-(4-
morpholinyl)ethyl]-1H-indole 

N-(1,3-benzodioxol-5-ylmethyl)-7-methoxy-2-oxo-8-pentoxy-1H-
quinoline-3-carboxamide 

(2-methyl-1-propylindol-3-yl)-naphthalen-1-ylmethanone 

(6aR,10aR)-6,6,9-trimethyl-3-(2-methylpentan-2-yl)-6a,7,10,10a-
tetrahydrobenzo[c]chromene 

1-(2′,4′-dichlorophenyl)-6-methyl-N-cyclohexylamine-1,4-
dihydroindeno[1,2-c]pyrazole-3-carboxamide  
 
(6aR,10aR)-6,6,9-trimethyl-3-(2-methylpentan-2-yl)-6a,7,10,10a-
tetrahydrobenzo[c]chromene 

CB2-selective agonists 

AM630 
 

6-iodopravadoline 
 

CB2-selective antagonists 
 



SR144528 5-(4-chloro-3-methylphenyl)-1-[(4-methylphenyl)methyl]-N-
[(1R,3S,4S)-2,2,4-trimethyl-3-bicyclo[2.2.1]heptanyl]pyrazole-3-
carboxamide 

OL-135 
 
 
PF-3845 
 
URB597 

7-phenyl-1-(5-pyridin-2-yl-1,3-oxazol-2-yl)heptan-1-one 
 
N-pyridin-3-yl-4-[[3-[5-(trifluoromethyl)pyridin-2-
yl]oxyphenyl]methyl]piperidine-1-carboxamide 
 
(3-phenylphenyl) N-(4-methoxyphenyl)carbamate 

FAAH inhibitor 

JZL184  
 
 
URB602 

4-nitrophenyl-4-[bis(1,3-benzodioxol-5-
yl)(hydroxy)methyl]piperidine-1-carboxylate 
 
[1,1'-biphenyl]-3-yl-carbamic acid, cyclohexyl ester 

MAGL inhibitor 

I-RTX 6,7-Deepoxy-6,7-didehydro-5-deoxy-21-dephenyl-21-
(phenylmethyl)-daphnetoxin,20-(4-hydroxy-5-iodo-3-
methoxybenzeneacetate); Iodoresiniferatoxin 

Potent TRPV1 antagonist 

AA-5-HT (5Z,8Z,11Z,14Z)-N-(2-(5-hydroxy-1H-indol-3-yl)ethyl)icosa-
5,8,11,14-tetraenamide; N-arachidonoyl-serotonin 

FAAH inhibitor and TRPV1 
antagonist 

ML-193  
(alternative name CID 
1261822)  

N-[4-[[(3,4-Dimethyl-5-isoxazolyl)amino]sulfonyl]phenyl]-6,8-
dimethyl-2-(2-pyridinyl)-4-quinolinecarboxamide 

Potent and selective GPR55 
antagonist 
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