Show simple item record

dc.contributor.authorRodgers, Michael
dc.contributor.authorHealy, Mark G.
dc.contributor.authorPrendergast, John
dc.date.accessioned2012-01-25T10:51:36Z
dc.date.available2012-01-25T10:51:36Z
dc.date.issued2006-06-01
dc.identifier.citationRodgers, M., Healy, M.G., Prendergast, J. 2006. A novel hybrid filter for the treatment of septic tank effluent. ASCE Journal of Environmental Engineering 132(7): 764 - 768.en_US
dc.identifier.urihttp://hdl.handle.net/10379/2531
dc.description.abstractIntermittent sand filtration is a common and effective method for treating septic tank effluent. However, if the loading rate is too high, clogging and ponding of the sand filter surface layer can occur due to the accumulation of excessive biomass and the deposition of suspended solids. This ponding limits the practicality of sand filtration as it makes it necessary to take the filter out of service for maintenance. The objective of this study was to develop and test, on-site, a new hybrid filter system that would reduce the risk of clogging at an organic loading rate substantially greater than the maximum recommended loading rate for intermittent sand filters. The system comprised a 0.6 m deep horizontal flow biofilm reactor (HFBR) over a 0.85 m deep stratified sand filter. The HFBR consisted of a stack of 20 horizontal corrugated polyvinyl chloride (PVC) sheets, at 32 mm vertical spacings. The sheets were arranged so that the wastewater flowed over and back along alternate sheets down through the stack. The main biofilm growth formed on these sheets. The hybrid filter was loaded with septic tank effluent from an office/garage complex at the rate of 206 L/m2-d for a period of 400 days in 2 phases. During the first phase, the effluent volume of 600 L/d was applied in 24 doses/d for 10 minutes per dose, and during the second phase in 6 doses/d for 40 minutes/dose. Biofilms in the HFBR substantially reduced the organic and suspended solids loads that reached the sand filter surface and allowed an average total biochemical demand (BODT) loading rate, based on HFBR plan area, of 37 g BODT/m2-d to be applied to the system without clogging. This rate was substantially greater than the maximum recommended loading rate of 24 g BODT/m2-d for intermittent sand filters (US EPA 1980). During both loading phases a BODT removal of 94% was achieved and nitrification was nearly complete. The average effluent BODT was 12-4 mg/L during both phases. The hybrid filter system appeared to perform better in terms of suspended solids handling and nitrification during the more frequent dosing phase. The hybrid filtration system offers a more compact alternative to intermittent sand filtration on its own with little risk of clogging.en_US
dc.formatapplication/pdfen_US
dc.language.isoenen_US
dc.publisherASCE Journal of Environmental Engineeringen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Ireland
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/ie/
dc.subjectCivil Engineeringen_US
dc.subjectWaste treatmenten_US
dc.subjectWaste Managementen_US
dc.subjectSand filtersen_US
dc.subjectHorizontal flow biofilm reactoren_US
dc.subject.lcshWaste managementen_US
dc.subject.lcshSand filtersen_US
dc.titleA novel hybrid filter for the treatment of septic tank effluent.en_US
dc.typeArticleen_US
dc.local.publishedsourcehttp://cedb.asce.org/cgi/WWWdisplay.cgi?153388en_US
dc.description.peer-reviewedpeer-revieweden_US
dc.contributor.funderCoffey Construction Ltd., Athenry, Co. Galwayen_US
nui.item.downloads1044


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Ireland
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Ireland