ARAN - Access to Research at NUI Galway

Analyzing time-course microarray data using functional data analysis - a review

ARAN - Access to Research at NUI Galway

Show simple item record

dc.contributor.author Coffey, Norma en
dc.contributor.author Hinde, John en
dc.date.accessioned 2011-05-16T15:11:00Z en
dc.date.available 2011-05-16T15:11:00Z en
dc.date.issued 2011-05 en
dc.identifier.citation Coffey, Norma and Hinde, John (2011) "Analyzing Time-Course Microarray Data Using Functional Data Analysis - A Review," Statistical Applications in Genetics and Molecular Biology: Vol. 10: Iss. 1, Article 23. en
dc.identifier.uri http://hdl.handle.net/10379/1903 en
dc.description.abstract Gene expression over time can be viewed as a continuous process and therefore represented as a continuous curve or function. Functional data analysis (FDA) is a statistical methodology used to analyze functional data that has become increasingly popular in the analysis of time-course gene expression data. Several FDA techniques have been applied to gene expression profiles including functional regression analysis (to describe the relationship between expression profiles and other covariate(s)), functional discriminant analysis (to discriminate and classify groups of genes) and functional principal components analysis (for dimension reduction and clustering). This paper reviews the use of FDA and it¿s associated methods to analyze time-course microarray gene expression data. en
dc.format application/pdf en
dc.language.iso en_US en
dc.publisher Statistical Applications in Genetics and Molecular Biology en
dc.subject Functional data analysis en
dc.subject Time-course microarray data en
dc.subject Gene expression en
dc.subject School of Mathematics, Statistics and Applied Mathematics en
dc.title Analyzing time-course microarray data using functional data analysis - a review en
dc.type Article en
dc.identifier.doi 10.2202/1544-6115.1671 en
dc.local.publishedsource http://www.bepress.com/sagmb/vol10/iss1/art23 en
dc.description.peer-reviewed peer-reviewed en
dc.contributor.funder Science Foundation Ireland under Grant No. 07/MI/012 en
dc.contributor.funder Science Foundation Ireland en

Files in this item

This item appears in the following Collection(s)

Show simple item record