Show simple item record

dc.contributor.authorAshton, Patrick J.
dc.contributor.authorJun, Tea-Sung
dc.contributor.authorZhang, Zhen
dc.contributor.authorBritton, T. Benjamin
dc.contributor.authorHarte, Annette M.
dc.contributor.authorLeen, Sean B.
dc.contributor.authorDunne, Fionn P.E.
dc.date.accessioned2019-12-12T15:33:19Z
dc.date.available2019-12-12T15:33:19Z
dc.date.issued2017-03-24
dc.identifier.citationAshton, Patrick J., Jun, Tea-Sung, Zhang, Zhen, Britton, T. Benjamin, Harte, Annette M., Leen, Sean B., & Dunne, Fionn P. E. (2017). The effect of the beta phase on the micromechanical response of dual-phase titanium alloys. International Journal of Fatigue, 100, 377-387. doi: https://doi.org/10.1016/j.ijfatigue.2017.03.020en_IE
dc.identifier.issn0142-1123
dc.identifier.urihttp://hdl.handle.net/10379/15640
dc.description.abstractThis paper investigates the role of beta phase on the micro-mechanical behaviour of dual-phase titanium alloys, with particular emphasis on the phenomenon of cold dwell fatigue, which occurs in such alloys under room temperature conditions. A strain gradient crystal plasticity model is developed and calibrated against micro-pillar compression test data for a dual-phase alpha-beta specimen. The effects of key microstructural variables, such as relative beta lath orientation, on the micromechanical response of idealised alpha-beta colony microstructures are shown to be consistent with previously-published test data. A polycrystal study on the effects of the calibrated alpha-beta crystal plasticity model on the local micromechanical variables controlling cold dwell fatigue is presented. The presence of the alpha-beta phase is predicted to increase dwell fatigue resistance compared to a pure alpha phase microstructure. (C) 2017 Elsevier Ltd. All rights reserved.en_IE
dc.description.sponsorshipThe authors would like to acknowledge the Irish Research Council and the Engineering and Physical Science Research Council (through HexMat) for funding this work and the Irish Centre for High-End Computing (ICHEC) for the provision of computational facilities. FPED wishes to acknowledge gratefully the provision of funding for his Royal Academy of Engineering/Rolls-Royce research chair.en_IE
dc.formatapplication/pdfen_IE
dc.language.isoenen_IE
dc.publisherElsevieren_IE
dc.relation.ispartofInternational Journal Of Fatigueen
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Ireland
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/ie/
dc.subjectCrystal plasticityen_IE
dc.subjectDwell fatigueen_IE
dc.subjectLength-scale effectsen_IE
dc.subjectDual-phase titanium alloyen_IE
dc.subjectSTRAIN-RATE SENSITIVITYen_IE
dc.subjectPLASTICITY FE MODELen_IE
dc.subjectCRYSTAL PLASTICITYen_IE
dc.subjectDISLOCATION DENSITYen_IE
dc.subjectDWELL-FATIGUEen_IE
dc.subjectTI ALLOYSen_IE
dc.subjectDEFORMATIONen_IE
dc.subjectSIZEen_IE
dc.subjectTI-6AL-4Ven_IE
dc.subjectMECHANISMSen_IE
dc.titleThe effect of the beta phase on the micromechanical response of dual-phase titanium alloysen_IE
dc.typeArticleen_IE
dc.date.updated2019-12-12T14:13:20Z
dc.identifier.doi10.1016/j.ijfatigue.2017.03.020
dc.local.publishedsourcehttps://doi.org/10.1016/j.ijfatigue.2017.03.020en_IE
dc.description.peer-reviewedpeer-reviewed
dc.contributor.funderIrish Research Councilen_IE
dc.contributor.funderEngineering and Physical Sciences Research Councilen_IE
dc.contributor.funderRoyal Academy of Engineering/Rolls-Royceen_IE
dc.internal.rssid12726264
dc.local.contactSean Leen, Mechanical & Biomedical Eng, Eng-2051, New Engineering Building, Nui Galway. 5955 Email: sean.leen@nuigalway.ie
dc.local.copyrightcheckedYes
dc.local.versionACCEPTED
nui.item.downloads236


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Ireland
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Ireland