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�I am very particularly indebted to Duncan Foley, Francesco Luna, John McCall, Shu-Heng
Chen and Stefano Zambelli. They encouraged my early and continuing interest in Jorma
Rissanen�s work from their own particular viewpoints of Bayesian statistics, Gold�s model of
learning, de Finetti�s theory of probability, MDL and Chaitin�s algorithmic information theory,
respectively. However, they are not responsible for any of the remaining infelicities. My own
view was, from the outset, shaped by my determination to fashion the subject of computable
economics on the foundations of recursion theoretic and constructive mathematics - i.e., on the
works of Turing, Kolmogorov, Brouwer and Bishop. Hence, I came to stochastic complexity,
as Rissanen originally did, from �Kolmogorov complexity�theory.
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Abstract

Rissanen�s fertile and pioneeringminimum description length principle (MDL)
has been viewed from the point of view of statistical estimation theory, informa-
tion theory, as stochastic complexity theory1 �i.e., a computable approxima-
tion to Kolomogorov Complexity �or Solomono¤�s recursion theoretic induction
principle or as analogous to Kolmogorov�s su¢ cient statistics. All these �and
many more � interpretations are valid, interesting and fertile. In this paper I
view it from two points of view: those of an algorithmic economist and a dy-
namical system theorist. From these points of view I suggest, �rst, a recasting
of Jevons�s sceptical vision of induction in the light of MDL; and a complexity
interpretation of an undecidable question in dynamics.

1 I am using �stochastic complexity�in a kind of �generic�way. Rissanen has, over the past
three decades, gradually re�ned the exact formal meaning of the phrase and I believe his most
mature views are now represented in [1]. The kind of meaning I have in mind is what I learned
from Rissanen�s early writings on MDL, for example in [24], p.1080, emphasis in the original:

"[I]f ... a shortest description of the data, to be called stochastic complexity
is found in terms of the models of a selected class, there is nothing much further
anyone can teach us about the data; we know all there is to know."
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1 A Personal Preamble

To paraphrase the famous reply of Laplace to Napoleon, who won-
dered why the word �God�did not appear in Mécanique Céleste, we
could state that �the assumption of a �true�distribution is not needed
in this theory�.

Jorma Rissanen

I have shared many moments of intellectual and personal splendour with
Jorma Rissanen. One serendipitous conjunction relates to my �rst published,
technical, article, which was in 1978, in Volume 14 of Automatica, [27]. I did
not, of course, know, then, that Jorma Rissanen�s �rst published, pioneering,
paper on stochastic complexity �or, the Minimum Description Length princi-
ple (henceforth, MDL) �was also in that same volume of the same Journal2 !
Justi�ably, that paper on MDL spawned a path-breaking research program that
has, in one strand, developed into Algorithmic Statistics. It gives me great and
undiluted pleasure to state that my own, much humbler piece, in that same
volume of Automatica, was also the fountainhead for what I have developed
into the research program on Algorithmic Economics!
In the intervening 30 years, particularly in its second half, I have had the

pleasure and privilege of hosting Jorma Rissanen at numerous venues, exotic
and otherwise, trying to make his fertile and fascinating research program more
familiar to obdurate economists. I believe a measure of success can now be seen,
albeit taking place at snail�s pace.
I had read, quite by chance (sic!), an expository piece on stochastic complex-

ity in an issue of the IBM Research Magazine3 around the time I was trying to
establish the Center for Computable Economics (CCE ), in the department of
economics, at UCLA, in the academic year 1990-91. The modest initial success,
together with funds for a seminar series on Computable Economics, gave me the
chance to invite Jorma Rissanen to give a talk at the CCE seminar series, as one
of its �rst speakers, in autumn, 1991. Soon after that I organised a �Summer
School�in Computable Economics, in July, 1992, sponsored by Aalborg Univer-
sity in Denmark, at the beautiful Dronninglund Slot in Nordjylland. Naturally,
Jorma Rissanen was one of the key speakers at that event.

2Rissanen�s classic was published in the September issue of Volume 14, 1978 and mine in
the November issue of the same Volume ([23], [27]). Mine had been presented an an IFAC
meeting in Vienna the year before. My path towards what I now call Algorithmic Economics
began with computational complexity theory. I like to think there is a further serendipity
even here: one strand of the tradition from which Jorma Rissanen created MDL arose from
algorithmic complexity theory, as is well documented in several articles tracing his thought on
these matters.

3The �expository� piece, by Rowan Dordick of IBM�s �communications department�, [7],
had an eye-catching title �Understanding the �go�of it, quoting Maxwell �and an attractive
blurb, (with a photograph of Jorma Rissanen at the blackboard (those were the days...!),
which said:

"A novel approach to statistical inference �the theory of stochastic complexity
�holds that the best description of data is the shortest one. "
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Most recently I set up the Computable and Behavioural Economics Research
Axis4 (COBERA) in the department of economics at the National University
of Ireland, in Galway. One of the �rst events sponsored by COBERA was a
�Spring School�on Computable Economics, in March, 2005. Naturally, Jorma
Rissanen was again one of the key lecturers at this event, too.
In all of the above events the audience was predominantly made up of ad-

vanced graduate students, senior and junior faculty and interested outside par-
ticipants, almost all of whom were economists. However, the distinguished
speakers � like Jorma Rissanen �were not all economists; apart from Jorma
Rissanen, there were recursion theorists (Piergiorgio Odifreddi, F.A. Doria), al-
gorithmic information theorists (Greg Chaitin), game theorists (Ken Binmore),
dynamical system theorists (Ralph Abraham, Joe McCauley), and others, all
of whom were united by being motivated by an algorithmic approach to theory
and application in the sciences, both pure and applied.
Jorma Rissanen was always a persuasive lecturer and an engaging participant

at all of these events. Economists of widely varying persuasions �in statistical
methodology and mathematical epistemology �were always fascinated by his
wonderful lectures, always prepared with utmost care and delivered with im-
maculate clarity. On many occasions his talks were interrupted by genuinely
perplexed members of the audience who were struggling to absorb a whole new
set of concepts with which to understand a fascinating framework and method-
ology. On occasions there was also one or another famous, but obdurate, econo-
mists, entrenched in orthodoxy, who was unable to dissociate himself from the
traditional frameworks that shackled his thoughts and practice.
I would like to end this brief personal preamble with a pleasant recollec-

tion of an event that I have had occasion to repeat almost every time I have
chaired a session where Jorma Rissanen has been the lecturer. On this partic-
ular occasion, after Jorma Rissanen�s beautifully crafted lecture on stochastic
complexity and statistical estimation, the following brief dialogue occurred be-
tween a very distinguished game theorist (referred to as DGE), not known for
any competency in statistical methodology, and Jorma (JR):
DGE: (In an irritated tone), �You seem to be suggesting that your method

is the only one around. You must know that there are many other methods,
and some have survived the test of time, too.�
Pin-drop silence in the lecture hall (at Dronninglund Slot).
JR: (In a perfectly calm and conciliatory tone), �Oh, I am so sorry; I did

not mean to suggest that MDL was the only statistical method around. I do
apologise if I gave that impression.�
Pause and continued silence in the lecture hall; not even a whisper or a

murmur among the distinguished collections of lecturers and auditors, among
whom were very famous economists like Bob Clower, Axel Leijonhufvud, Michael
Intrilligator, John McCall; computer scientists like Berc Rustem, Greg Chaitin
and Piergiorgio Odifreddi; and so on.
Then, after only a brief pause, which seemed like eternity:

4Now defunct.
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JR: �But it is the best [method available]!�
The whole hall erupted in appreciative and almost unanimous (i.e., except

one member of the audience!) laughter and applause.
Jorma Rissanen continues a distinguished Finnish tradition of making Induc-

tion a scienti�cally respectable enterprise, free of the nihilistic scepticism prop-
agated by ill-informed scholars of Hume and Mill5 , particularly in economics
and the philosophy of science. His great predecessors and contemporaries in
the rich Finnish tradition of the mathematical epistemology of induction are,
among others, of course Georg Henrik von Wright, Jaako Hintikka, Ilkka Ninilu-
oto and Risto Hilpinen6 . In my own economics education at Cambridge in the
early 1970s, under the inspiring supervision of Richard Goodwin, I was advised,
wisely as it turned out later, to attend the lectures given by Ian Hacking in the
philosophy department. Fortunately, Hacking was just then lecturing, broadly,
on issues of induction and probability and, of course, the works of Wittgenstein�s
immediate successor as the Knightbridge Professor of Philosophy at Cambridge,
Georg Henrik von Wright, were often brought into focus. Margaret Anscombe
was often at those lectures and, occasionally, a brief dialogue took place between
Hacking and Anscombe, to which we �students �were privileged auditors.
It is a pleasure and a privilege to pay homage to a pioneer scientist of un-

compromising integrity and undiluted personal warmth.
The paper is divided into four subsequent sections. A brief methodological

discussion, of lessons learned from Rissanen�s modelling philosophy, is the con-
tent of the next section. In section 3, the main, substantively economic section
of the paper, I try to reinterpret a celebrated sceptical �even hostile �vision
of inductive inference by one of the pioneers of modern economic theory from
the point of view of MDL. In section 4, motivated by an issue in economic
dynamics, I try to pose an undecidable problem in dynamical systems theory
as an inference problem and formulate its Kolmogorov complexity. The con-
cluding section 5 consists of speculative thoughts on Algorithmic Economics as
a companion in arms of Algorithmic Statistics, Algorithmic Randomness and
Algorithmic Information Theory.

5 I have in mind, in particular, Jevons in eocnomics and Popper in the philosophy of science.
What I ahve to say about Jevons is given in section 3, below; I have had my say on Popper,
from the point of view of MDL in [30]. Li and Vitanyi quite pungently, but accurately (I
think) note, [31], p.448:

"Unsatisfactory solutions [to the problem of scienti�c inference] have been pro-
vided by philosophers like R.Carnap and K.Popper."

I suppose they should ahve been a little more precise and designated these two worthy
individuals as �philosophers of science�! In any case, my case against Popper from the point
of view of MDL, substantiating the Li-Vitanyi claim, is fully described and discussed in detail
in [30].

6von Wright�s magisterial exposition of induction in the probabilistic tradition is in [32] &
[33]; for Hintikka�s views (and Niniluoto�s) , in a Carnapian tradition, the best source may
well be, [11] & [12]. A di¤erent source for Niniluoto�s work on induction is, of course, his
early joint monograph with another distinguished Finn, Tuomela, in, [21]. One reference for
Hilpinen�s work on inductive logic is [9].
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2 Extracting Methodological Precepts for Algo-
rithmic Economics fromRissanen�sModelling
Philosophy

"Regarding the ultimate model, no algorithmic procedure to �nd
it can exist, as shown in the theory of the algorithmic complexity,
Solomono¤ (1964), Kolmogorov (1965), Chaitin (1973), which also
is the spiritual father of our main notion."

Jorma Rissanen, [25], p.224; italics added.

Rissanen�s philosophy of stochastic complexity suggests a way of exorcising
the search for that traditional �Will o�the Wisp�in formal modelling exercises:
the �true�model underpinning observable, empirical data. Secondly, in one of
its recent incarnations, the modelling philosophy of stochastic complexity has
evolved into algorithmic statistics. As de�ned by the three pioneers, algorithmic
statistics is the theory of the �relation between an individual data sample and
an individual model summarizing the information in the data�, [8], p. 2443. In
this theory the search is for an �absolute notion�of such a �relation�in analogy
with the way �Kolmogorov complexity is the accepted absolute measure of in-
formation content of an individual �nite object�(ibid). Thirdly, the concept of
universality �either of the Universal Turing Machine in recursion theory, or of
the prior in the Solomono¤ scheme or of models in Rissanen�s recent work on
stochastic complexity.
Finally, I want to return to one of the earliest insights and interpretations

of �stochastic complexity�as a computable approximation of the uncomputable
Kolmogorov complexity (or, equivalently, of Solomono¤�s uncomputable �uni-
versal prior�). The orientation of my own research in algorithmic economics has
been almost entirely determined by this particular insight. Therefore, let me,
touch on this point, very brie�y, before going on to the main sections of the
paper.
In his original paper introducing the stochastic complexity approach to sta-

tistical inference as inductive inference from �nite data sequences, Rissanen
acknowledged his indebtedness to Kolmogorov ([18], p. 465). It is generally un-
derstood, by scholars who have closely studied the origins and evolution of Ris-
sanen�s ideas on stochastic complexity, that this horn of the original motivation
�the other being Akaike�s AIC model7 �led to the idea of stochastic complexity
being a computable approximation to the uncomputable Kolmogorov complex-
ity. In this original paper, Kolmogorov de�ned the notion that has forever since

7Even with some reservations, Rissanen is handsome in his acknowledgement to Akaike,
[25], p.224:

"[W]e are indebted to Akaike�s pioneering and innovative work for inspiration in
our own e¤orts."
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then been associated with his name in the following way:

K� (yjx) = f
min�(p;x)=y l (p)

1 @ p s.t � (p; x) = y
(1)

where:
� (p; x) = y : a partial recursive function �the �method of programming��

associating a (�nite) object y with a program p and a (�nite) object x:
Kolmogorov went on to observe, crucially, that (ibid, pp.299-300):

"[T]he function K� (yjx) need not be e¤ectively computable (gener-
ally recursive) even if it is a fortiori �nite for any x and y."

Remark 1 The proof that K� (yjx) is nonconstructive, freely appealing to ter-
tium non datur. I consider this an infelicity. But since it is not an existence
proof, rectifying the infelicity by a constructive proof may not be essential

To the best of my knowledge most proofs of the uncomputability of K� (yjx)
are based on the unsolvability of the Halting problem for Turing Machines8 .
Shortly after Kolmogorov�s above paper was published, Zvonkin and Levin, [34],
p.92, Theorem 1:5; b; provided the result and proof that rationalises the basic
principle of stochastic complexity providing the computable approximation to
the uncomputable K� (yjx) :The signi�cant relevant result is:

Theorem 2 Zvonkin-Levin
9 a general recursive function H (t; x) ; monotonically decreasing in t, s:t :

lim
t!1

H (t; x) = K� (yjx) (2)

Remark 3 This result guarantees, the existence of �arbitrarily good upper esti-
mates�for K� (yjx) ; even although K� (yjx) is uncomputable. I am not sure this
is a claim that is constructively substantiable9 . How can a noncomputable func-
tion be approximated? If any one noncomputable function can be approximated
uniformly, then by �reduction� it should be possible, for example, to �approxi-
mate�, say, the Busy Beaver function. I suspect an intelligent and operational
interpretation of the Zvonkin-Levin theorem requires a broadening of the notion
of �approximation�.

8For example in [6], §7.7, pp.162-8. Incidentally, the section on Models of Computation
(§7.1, pp.146-7), in this book is quite unreliable and strange, to put it mildly. The presentation
of the genesis of the Turing Machine and Church�s Thesis are both incorrect to the point of
being absurd.

9My view on tis further strengthened by some of the remarks in [6], particularly, p.163,
where one reads (italics added):

"The shortest program is not computable, although as more and more programs
are shown to produce the string, the estimates from above of the Kolmogorov
complexity converge to the true Kolmogorov complexity, (the problem, of course,
is that one may have found the shortest program and never know that no shorter
program exists).

These remarks border on the metaphysical! How can one approximate to a true value which
cannot be known, by de�nition?
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Universality, (approximate) computability, data compression, the eschewing
of �truth�(in model selection) �these are, in my reading, the four fundamen-
tal building blocks of Rissanen�s methodology. They form the methodological
building blocks of algorithmic economics, which in earlier writings I called Com-
putable Economics (cf. [28]).

3 Re-reading Jevons in the Light of MDL

"Doubtless there is in nature some invariably acting mechanism,
such that from some �xed conditions an invariable result always
emerges. But we, with our �nite minds and short experience, can
never penetrate the mystery of these existences .... . We are in the
position of spectators who witness the production of a complicated
machine, but are not allowed to examine its structure. We learn what
does happen and what does appear, but if we ask for the reason, the
answer would involve an in�nite depth of mystery."

[13], p.222; italics added.

William Stanley Jevons, a pioneer of neoclassical economics was implaca-
bly opposed to the inductive method. His methodological precepts against the
inductive method were cogently presented in his monumental treatise on The
Principles of Science (ibid, henceforth referred to as TPOS ). However, a close
reading of its almost 800 pages, against the backdrop of some knowledge of the
principles underpinning the MDL principle has convinced me that the Jevonian
opposition to the inductive method is untenable. In this section a sketch of
my re-interpretation of TPOS as a treatise supporting what I have in earlier
writings called The Modern Theory of Induction ([28], Chapter 5) is outlined.

3.1 Background

"What especially characterised Jevons�s view of logical method was
the prominence he attached to the combination of formal and empir-
ical principles through the inverse application of the theory of prob-
ability"

[14], p.638; italics added

TPOS, a book of almost 800 dense pages refers to almost every known West-
ern natural philosopher without, however, a single mention of William of Ock-
ham, Occam�s Razor or Ockham�s Principle10 ! The closest he gets to anything
like a (dismissive) mention of Occam�s Razor is when he rejects Newton�s Rule 1

10The general literature seems to refer to William of Ockham but Occam�s Razor; hence I
retain this schizophrenia in my own spelling. Furthermore, Ockham�s own most often stated
version of the principle named after him seems to have been: �Pluralitas non est ponenda
sine necessitae��plurality is not be posited without necessity.The more commonly attributed
version: �Entia non sunt multiplicanda sine necessitate� � entities must not be multiplied
without necessity �appears not to have been used by him (cf. [3], p.xxi).
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for Natural Philosophy in the Principia as irrelevant for any inductive purpose,
let alone for acting as an anchor to eliminate inductive indeterminacy :

"It is by false generalisation, again, that the laws of nature have been
supposed to possess that perfection which we attribute to simple
forms and relations. ... Newton seemed to adopt the questionable
axiom that nature always proceeds in the simplest way; in stating
his �rst rule of philosophising, he adds: �To this purpose the philoso-
phers say, that nature does nothing in vain, when less will serve; for
nature is pleased with simplicity, and a¤ects not the pomp of su-
per�uous causes.�..... Simplicity is naturally agreeable to a mind of
limited powers, but to an in�nite mind all things are simple."

TPOS, p.625; italics added.

Is Jevons suggesting, in the context of his times, beliefs and traditions, that
the omnipotence and omniscience of the architect of the laws of nature � the
designer of the �complicated machine��are such that we are as likely to witness
the �productions of a complicated machine�as to a simple one11 . Jevons may
have been trying to make the point that Newton�s was a metaphysical assump-
tion and that we have no grounds for assuming anything about structure in
the absence of empirical evidence to the contrary12 . However, Jevons, who was
almost as obsessed with consistency as he was with deduction13 , did not obey
his own precepts when it came to choosing the order and degree of equations to
�t observed data. In such an example he argues clearly in favour of choosing
the simplest hypothesis, at least in the �rst instance:

"It is a general rule in quantitative investigation that we commence
by discovering linear, and afterwards proceed to elliptic or more
complicated laws of variation."

TPOS, p.474; italics added.

Perhaps, given the times and context, one can be generous to Jevons �more
generous than he was to Newton and more, also, than Marshall was to Jevons �
and suggest that he was doubtful about any reliance on Occam�s Razor because
he did not feel it possible to give a rigorous, invariant, analytical de�nition of
simplicity. I think, therefore, it may be reasonable to assume, counterfactually,
that Jevons would have accepted the use of Occam�s Razor in hypothesis se-
lection and inductive inference had it been possible to demonstrate that it was
11 I cannot but re�ect on Einstein�s wise maxim when faced with the Great Scorer�s devises,

�Subtle is the Lord, but malicious he is not� � Ra¢ niert ist der Herrgott aber boshaft ist
er nicht � and wish Jevons had shown some humility in the face of Einstein�s undisputed
predecessor�s, i.e., Newton�s, own methodological maxims.
12The Einsteinian example of the way he reasoned his way towards the general theory of

relativity from the special theory is clearly described and discussed by Kemeny, [15]. This
example is paradigmatic, of the role of simplicity in hypothesis selection and formation, in
the logic of scienti�c practice.
13He would, surely, �nd it uncomfortable to live in a post-Gödelian world where consistency

has been dethroned from its crowing place in the deductive enterprise!
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possible to de�ne, rigorously, the notion of simplicity. After Solomono¤ �not
a little in�uenced by Keynes �and Rissanen, re-reading Jevons and substanti-
ating a rigorous method of inductive inference is not the most di¢ cult task for
a philosophy of science. This will be attempted in the last sub-section of this
section, after �rst summarising the Jevonian vision of inductive indeterminacy
in the next sub-section.

3.2 The Jevonian Vision on Induction and its Indetermi-
nacy

"Combining insight and error, he spoilt brilliant suggestions by er-
ratic and atrocious arguments. His application of inverse probability
to the inductive problem is crude and fallacious, but the idea which
underlies it is substantially good. ... There are few books, so super-
�cial in argument yet suggesting so much as Jevons�s Principles of
Science."

Keynes, [17], p.204

I shall summarise, rather telegraphically and in an inelegant numbered-list
format, Jevons�s precepts on inductive inference. This will, then, enable me to
refer to them conveniently in the next section when a simple case is made to
encapsulate the Jevonian vision in the modern inductive fold.
The following twelve points summarise, however audacious the task of encap-

sulating summarily, a sustained criticism of the inductive method, spread over
a discursive book of almost 800 pages (all quotes in this list are from TPOS ):

1. "The theory of inductive inference stated [in TPOS ] was suggested by the
study of the Inverse Method of Probability." (p.265)

2. Induction is the inverse operation of deduction. (p.121)

3. Induction is perfect when an enumeration of all possible instances of the
phenomenon under consideration is feasible, at least in principle. (pp.146-
7)

4. Induction is imperfect in case the �enumeration�, as in (3), is infeasible.

5. The results of imperfect induction are, therefore, never more than proba-
ble:

"Only in proportion as our induction approximates to the character of
perfect induction, does it approximate to certainty. The amount of un-
certainty corresponds to the probability that other objects than those
examined may exist and falsify our inferences; ...". (p.229; italics added)

6. The number of instances of any inductive phenomenon is, at most, denu-
merably in�nite; and the number of alternative hypotheses that may be
entertained to account for any given inductive phenomenon is, at most,
denumerably in�nite.
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7. Inductive processes are those, and only those, that generate general laws
such that the hypothesis underlying them �yield deductive results in ac-
cordance with experience.�

8. "That process only can be called induction which gives general laws, and
it is by the subsequent employment of deduction that we anticipate par-
ticular events. .... I hold that in all cases of inductive inference we must
invent hypotheses, until we fall upon some hypotheses which yields deduc-
tive results in accordance with experience." (p.226-8)

9. The extraction of general laws, from a denumerably in�nite set of plausible
hypotheses, proceeds by way of applying the �inverse method of probabil-
ity�(i.e., using Bayes�s Rule):

"[I]n all cases ... of inductive inference where we seem to pass from some
particular instances to a new instance, we ... form an hypothesis as to
the logical conditions under which the given instances might occur; we
calculate inversely the probability of that hypothesis and compounding
this with the probability that a new instance would proceed from the
same conditions, we gain the absolute probability of occurrence of the
new instance in virtue of this hypothesis. But as several, or many, or even
an in�nite number of mutually inconsistent hypothesis may be possible,
we must repeat the calculation for each such conceivable hypothesis, and
then the complete probability of the future instances will be the sum of
the separate probabilities." (p.268)

This description indicates tat Jevons�s inductive method, despite its rhetoric
about being simply �the inverse of deduction�, is nothing other than a sim-
ple Bayesian procedure.

10. However, there is no rule or uniform principle on the basis of which it is
possible to assign priors to implement �the inverse method of probability�
in the mechanical way in which deductive rules can be applied:

"To assign the antecedent probability of any proposition, may be a matter
of di¢ culty or impossibility, and one with which logic and the theory of
probability have little concern." (p.211-2)

11. "All logical inference involves classi�cation [and it] is not really distinct
from the process of perfect induction. [But] there will be no royal road
to the discovery of the best system and it will even be impossible to lay
down the rules of procedure to assist those who are in search of good
arrangement." (pp.673-90; italics added)

12. The Ramean Tree (pp.702-3), is an encapsulation of the exhaustive method
of classi�cation.
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3.3 Disciplining Jevonian Inductive Indeterminacies in a
Post-Solomono¤MDL World

"[T]he most probable cause of an event which has happened is that
which would most probably lead to the even supposing the cause to
exist."

TPOS, p.243; italics added.

I claim that �most probable�, in the above Jevonian sense of being encap-
sulated within the inverse probability framework, is equivalent to the precise
recursion theoretic inductive inference concept of simplest and it removes, e¤ec-
tively, the much vaunted indeterminacy of induction. The fundamental notion
of the modern theory or recursion theoretic induction can be stated as the fol-
lowing proposition:

Proposition 4 An event with the highest probability of occurring is also that
which has the simplest description

Let me give a brief and elementary sketch of the kind of analysis that makes
such an equivalence possible �i.e., to be able to use Occam�s Razor to eliminate
the indeterminacy in the �inverse probability�method, correctly identi�ed by
Jevons. Consider a standard version of Bayes�s rule:

P (HijE) =
P (EjHi)P (Hi)P
i P (EjHi)P (Hi)

(3)

Where, apart from absolutely standard, textbook interpretations of all vari-
ables and notations, the only implicit novelty �for a Jevonian vision � is the
assumption of a denumerable in�nity of hypotheses (i.e., above, §3.2:(6)-(7)).
This, in a standard inverse probability exercise, E, the class of �observed�events,
and P (Hi) are given; Jevons�s inductive inference problem is, then, to �nd the
�most probable�Hi that would �most probably� lead to the observed event of
relevance. To get the perspective I want, rewrite (3) as:

� logP (HijE) = � logP (EjHi)� logP (Hi) + logP (E) (4)

where the last term on the r.h.s of (4) is a shorthand expression for the
denominator in (3) which, in turn, is the normalising factor in such inverse
probability exercises.
Now, �nding the Jevonian �most probable hypothesis� is equivalent to de-

termining that Hi, w.r.t which (4) is minimised. However, in (4), logP (E) is
invariant w.r.t Hi; hence the problem is to minimise (w.r.t., Hi) :

� logP (EjHi)� logP (Hi) (5)

However, it is clear that the problem of indeterminacy remains so long as
we do not have a principle on the basis of which the prior cannot be assigned
universally.

12



Recall, now, that the Jevonian inductive enterprise is supposed to interpret
a class of observations, events, data, etc., � �the production of a complicated
machine��in terms of a denumerable in�nity of hypotheses, in such a way that
a general law is formalised from which, by deductive processes, the outcomes
with which one began are generated (cf. above, §3.2, (2), (7)-(9)). These entities
are formalised �in pre-set theoretic days �in terms of logical and mathematical
formulas. As far as the requirements of the logic of the inductive method recom-
mended in TPOS is concerned, we need only formalise, at most, a denumerable
in�nity of outcomes in an observation space, and there is a similar quantita-
tive upper bound for the number of hypotheses. Thus the space of computable
numbers is su¢ cient for this formalisation exercise.
Suppose, now, that every element in the outcome space and every potential

hypothesis �being denumerably in�nite �is associated with a positive integer,
perhaps ordered lexicographically. In TPOS every outcome and every hypothe-
sis is framed as a logical proposition. Every such proposition can, therefore, be
assigned one of the computable numbers and they, in turn, can be processed,
say, by a Turing Machine. Next, the binary codes for the assigned computable
numbers can be constructed, and thereby they can also be given a precise quanti-
tative measure in terms of their counts in bits. Thus the basic result of modern
recursion theoretic inductive inference, summarised in the above proposition,
results from the following Rissanen Rule of MDL Inductive Inference:

Proposition 5 Rule of Induction14

The �best theory�is that which minimizes the sum of:
(a). The length, in bits, of the number theoretic representation of the denu-

merable in�nity of hypothesis;
(b). The length, in bits, of the elements of the space of outcomes (also, by

assumption, at most, denumerably in�nite);

The conceptual justi�cation for this �rule�as the underpinning for Proposi-
tion 4 is something like the following reasoning> if the elements of the observa-
tion space (E) have any patterns or regularities, then they can be encapsulated
in a law, on the basis of some hypothesis. The idea that the best law is that which
can extract and summarise the maximum amount of regularities or patterns in
E and represent them most concisely captures the workings of Occam�s razor
in an inductive exercise. In homely terms: if two hypotheses can encapsulate
the patterns in the data, then choose the more concise one.
The �nal link in this inductive saga is a universal formula for the prior in

the inverse probability exercise.

Proposition 6 9 a probability measure m (:) that is universal (in the sense of
being invariant except for an inessential additive constant) such that:

log2m (:) � K (:) (6)

14The problem of summing an in�nite sum has to be resolved by some kind of standard
normalization procedure in the case, as here, of denumerable in�nity of hypotheses. I shall
ignore this detail here.
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where, K (:): the Kolmogorov complexity of the best theory generated in the
implementation of the rule of induction.

I think this closes the circle consistently with the aims set forth in TPOS
for an inductive exercise. Thus, I rest my case for Jevons, after Solomono¤-
Rissanen, as an inductivist.

4 Complexity of an Undecidable Inference in a
Dynamical System

"[T]he question of the decidability of the Mandelbrot set has another
justi�cation. It can partly answer and give insight to the question:
can one decide if a di¤erential equation is chaotic?"

[2], p.5; italics added.

I have had to tackle formal undecidabilities in economic dynamics. One
of the formal proposition I have derived in economic dynamics relates to the
non-e¤ectivity of policy in a complex dynamic economy. In trying to resolve
some dissatisfaction with this result, I have been in�uenced by some of Rissa-
nen�s methodological precepts. An outline of a result, the framework and some
conjectures are given in this section.
One of the keys to Rissanen�s inference methodology lies in eschewing the

search for �true� models that give rise to observable phenomena which have
to be explained. Taking a cue from such a methodology I want to pose the
following problem: given the observables of a dynamical system, is it possible
to infer interesting properties that characterise its basins of attraction? In
view of Rice�s theorem in classical recursion theory �or, alternatively, due to
the ubiquity of the unsolvability of the Halting Problem for Turing Machines
�it is often impossible to infer whether observable data is su¢ cient to decide
membership in a set, unless the set is characterised trivially.
Let me �rst provide the formal background in a general way.
I shall have to assume familiarity with the formal de�nition of a dynamical

system (cf. for example, the obvious and accessible classic, [10] or the more
modern, [4]), the necessary associated concepts from dynamical systems theory
and all the necessary notions from classical computability theory (for which the
reader can, with pro�t and enjoyment, go to a classic like [26] or, at the frontiers,
to [5]). Just for ease of reference the bare bones of relevant de�nitions for
dynamical systems are given below in the usual telegraphic form15 . An intuitive
understanding of the de�nition of a �basin of attraction�is probably su¢ cient for
a complete comprehension of the result that is of interest here - provided there is
reasonable familiarity with the de�nition and properties of Turing Machines (or

15 In the de�nition of a dynamical system given below I am not striving to present the most
general version. The basic aim is to lead to an intuitive understanding of the de�nition of a
basin of attraction so that the main theorem is made reasonably transparent. Moreover, the
de�niton given below is for scalar ODEs, easily generalizable to the vector case.
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partial recursive functions or equivalent formalisms encapsulated by Church�s
Thesis).

De�nition 7 The Initial Value Problem (IVP) for an Ordinary Di¤erential
Equation (ODE) and Flows. Consider a di¤erential equation:

_x = f(x) (7)

where x is an unknown function of t 2 I (say, t : time and I an open interval
of the real line) and f is a given function of x. Then, a function x is a
solution of (7) on the open interval I if:

_x(t) = f(x(t));8t 2 I (8)

The initial value problem (ivp) for (7) is, then, stated as:

_x = f(x); x(t0) = x0 (9)

and a solution x(t) for (9) is referred to as a solution through x0 at t0. Denote
x(t) and x0, respectively, as:

'(t; x0) � x(t), and '(0; x0) � x0 (10)

where '(t; x0) is called the �ow of _x = f(x):

De�nition 8 Dynamical System
If f is a C1 function (i.e., the set of all di¤erentiable functions with contin-

uous �rst derivatives), then the �ow '(t; x0);8t; induces a map of U @ R into
itself, called a C1 dynamical system on R:

x0 7�! '(t; x0) (11)

if it satis�es the following (one-parameter group) properties:

1. '(0; x0) = x0

2. '(t + s; x0) = '(t; '(s; x0));8t & s; whenever both the l.h and r.h side
maps are de�ned;

3. 8t; '(t; x0) is a C1 map with a C1 inverse given by: '(�t; x0);

Remark 9 A geometric way to think of the connection between a �ow and the
induced dynamical system is to say that the �ow of an ODE gives rise to a
dynamical system on R.

Remark 10 It is important to remember that the map of U @ R into itself
may not be de�ned on all of R. In this context, it might be useful to recall the
distinction between partial recursive functions and total functions in classical
recursion theory.
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De�nition 11 Invariant set
A set (usually compact) S @ U is invariant under the �ow '(:; :) whenever

8t 2 R; '(:; :) @ S:

De�nition 12 Attracting set
A closed invariant set A @ U is referred to as the attracting set of the

�ow '(t; x) if 9 some neighbourhood V of A; s.t 8x 2 V & 8t � 0; '(t; x) 2 V
and:

'(t; x)! A as t!1 (12)

Remark 13 It is important to remember that in dynamical systems theory con-
texts the attracting sets are considered the observable states of the dynamical
system and its �ow.

De�nition 14 The basin of attraction of the attracting set A of a �ow, denoted,
say, by �A, is de�ned to be the following set:

�A = [t�0't(V ) (13)

where: 't(:) denotes the �ow '(:; :);8t:

Remark 15 Intuitively, the basin of attraction of a �ow is the set of initial
conditions that eventually leads to its attracting set - i.e., to its limit set (limit
points, limit cycles, strange attractors, etc). Anyone familiar with the de�nition
of a Turing Machine and the famous Halting problem for such machines �or,
alternatively, Rice�s theorem �would immediately recognise the connection with
the de�nition of basin of attraction and suspect that my main result is obvious.

De�nition 16 Dynamical Systems capable of Computation Universal-
ity:
A dynamical system capable of computation universality is one whose de�n-

ing initial conditions can be used to program and simulate the actions of any
arbitrary Turing Machine, in particular that of a Universal Turing Machine.

Proposition 17 Dynamical systems characterizable in terms of limit points,
limit cycles or �chaotic�attractors, called �elementary attractors�, are not capable
of universal computation.

Proposition 18 Only dynamical systems whose basins of attraction are poised
on the boundaries of elementary attractors are capable of universal computation.

Theorem 19 There is no e¤ective procedure to decide whether a given observ-
able trajectory is in the basin of attraction of a dynamical system capable of
computation universality

Proof. The �rst step in the proof is to show that the basin of attraction of a
dynamical system capable of universal computation is recursively enumerable but
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not recursive. The second step, then, is to apply Rice�s theorem to the problem
of membership decidability in such a set.
First of all, note that the basin of attraction of a dynamical system capable

of universal computation is recursively enumerable. This is so since trajectories
belonging to such a dynamical system can be e¤ectively listed simply by trying
out, systematically, sets of appropriate initial conditions.
On the other hand, such a basin of attraction is not recursive. For, suppose

a basin of attraction of a dynamical system capable of universal computation
is recursive. Then, given arbitrary initial conditions, the Turing Machine corre-
sponding to the dynamical system capable of universal computation would be
able to answer whether (or not) it will halt at the particular con�guration char-
acterising the relevant observed trajectory. This contradicts the unsolvability
of the Halting problem for Turing Machines.
Therefore, by Rice�s theorem, there is no e¤ective procedure to decided whether

any given arbitrary observed trajectory is in the basin of attraction of such re-
cursively enumerable but not recursive basin of attraction.

Remark 20 There is a �monumental�mathematical �fudge�in my proof of the
recursive enumerability of the basin of attraction: how can one try out, �system-
atically�, the set of uncountable initial conditions lying in the appropriate subset
of <? Of course, this cannot be done and the theorem is given just to give an
idea of the problem that I want to consider.

Keeping the framework and the questions in mind, one way to proceed would
be to constructivise the basic IVP problem for ODEs and then the theorem can
be applied consistently. It will require too much space and time to do so within
the scope of this paper. Instead, I shall adopt a slightly devious method.
Consider the following Generalized Shift (GS) map ([19],[20]):

� : }! �F (}) [}�G (})] (14)

Where:
} : (bi-in�nite) symbol sequence;
F : mapping from a �nite subset of } to the integers;
G: mapping from a �nite subset of } into };
�: a shift operator;
The given ��nite subset of }�, on which F and G operate is called the domain

of dependence (DOD).
Let the given symbol sequence be, for example:

} � f::::p�1pp=1::::g (15)

Then:
}�G (})) replace DOD by G (}) :
�F (}) ) shift the sequence left or right by the amount F (})
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Remark 21 In practice, a GS is implemented by denoting a distinct position
on the initially given symbol sequence as, say, p0 and placing a �reading head�
over it. It must also be noted that pi 2 }; 8i = 1; 2; ::::could, for example, denote
whole words from an alphabet, etc., although in practice it will be 0; 1 and �
(�dot�): The �dot� will be signify that the �reading head� will be placed on the
symbol to the right of it.

The following results about Generalized Shift maps are relevant for my dis-
cussion:

Proposition 22 Any GS is a nonlinear (in fact, piecewise linear) dynamical
system capable of universal computation; hence they are universal dynamical
systems and are equivalent to some constructible Universal Turing Machine.

Thus the GS is capable of universal computation and it is minimal in a
precisely de�nable sense (see [19] and [20] for full details). It is also possible
to construct, for each such generalized shift dynamical system16 , an equivalent
UTM that can simulate its dynamics, for sets of initial conditions. Now consider
the observable set of the dynamical system, y 2 A; given the UTM, say U,
corresponding to }, the question is: for what set of initial conditions, say x,
is y the halting state of U. Naturally, by the theorem of the unsolvability
of the Halting problem, this is an undecidable question. This is the theorem
used in demonstrating the uncomputability of K� (yjx). However, by the above
Zvonkin-Levin theorem, we know that the existence of �arbitrarily good upper
estimates�for K� (yjx) ; even although K� (yjx) is uncomputable.
Now, taking a cue from Rissanen�s methodological point about the irrele-

vance of �true�models, but only of models that can explain the data minimally,
let me consider the above (minimal) universal dynamical system as canonical for
any question about membership in attracting sets, A: What is the complexity
of KU (pjx)? By de�nition it should be:

KU (yjx) = f
minU(p;x)=y l (p)

1 @ p s.t � (p; x) = y

The meaning, of course, is: the minimum over all programs, p; implemented
on U, with the given initial condition, x; which will stop at the halting con�g-
uration, y: The above theorem formalizes the notion that there is no general
algorithmic procedure to decide any such membership.

Remark 23 Why is it important to show the existence of the minimal program?
Because, is the observed y corresponds to the minimal program of the dynamical
system, i.e., of U, then it is capable of computation universality; if there is
no minimal program, the dynamical system is not interesting! A monotone
decreasing set of programs that can be shown to converge to the minimal program
is analogous to a series of increasingly complex �nite automata converging to a

16They can also encapsulate smooth dynamical systems in a precise sense. I have described
the procedure, summarising a part of Chris Moore�s approach, in [28], Chapter 4.
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TM. What we have to show is that there are programs converging to the minimal
program from above and below, to the border between two basins of attractions.

Thus, behind every undecidable proposition �at least in principle �there is
an inference principle which may or may not suggest an �approximation�strategy
to �decide the undecidable�. After all, Gödel himself thought that the undecid-
able may become decidable by going �upwards�, so to speak, in strengthening
the axiom systems; surely, there must be a practical way of going in the opposite
direction to locate the borders of the decidable as approximation to the unde-
cidable, too. Naturally, I expect these highly speculative conjectures to apply,
pari passu, to the computable-uncomputable divide, too.

5 Concluding Thoughts

"Inductive processes have formed, of course, at all times a vital,
habitual part of the mind�s machinery. Whenever we learn by expe-
rience, we are using them. But in the logic of the schools they have
taken their proper place slowly."

John Maynard Keynes, [16], p.241.

It is to Jorma Rissanen�s lasting credit that he has, almost single-handedly
developed a scienti�c method to make this �habitual part of the mind�s ma-
chinery�entirely and rigorously algorithmic. Thus, he belongs to the modern
scienti�c movement towards an algorithmic approach to statistics, randomness
and information. As an economist, I have strived to develop an analogous �eld of
algorithmic economics, where stochastic complexity and the MDL principle are
as central as algorithmic randomness, computability theory and computational
complexity theory. Learning and induction �indeed, learning as induction �is
a central topic at the frontiers of economics. The frontier researchers remain
blissfully ignorant of the algorithmic approach to learning and inductive infer-
ence, randomness and information. This is strange in a subject which prides
itself on placing the role of scarce information and its husbanding in its citadel.
Economics is singularly free of an algorithmic vision. The mathematics of

economic theory is dominated by Bourbakian thinking. The methodology of
statistical inference in economics is equally stone-aged.
The success of Jorma Rissanen�s single-handed, even single-minded, e¤orts

to inject a new algorithmic vision into statistical methodology, particularly in
inference, estimation and prediction theories, is heartening for those of us who
�nd ourselves at the fringes of mathematical economics in view of our algorith-
mic vision.
I believe Jorma Rissanen�s work contributes a missing link to the great

Finnish tradition of work in inductive logic, one which was most cogently stated
by Hilary Putnam in that period of an interregnum between the growing sytem-
atization of the philosophy of inductive logic and the emergence of the recursion
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theoretic inductive movement17 ([22], p.297):

"[W]e may think of a system of inductive logic as a design for a
�learning machine�: that is to say, a design for a computing machine
that can extrapolate certain kinds of empirical regularities from the
data with which it is supplied."

Jorma Rissanen, together with Ray Solomono¤, have pioneered and �patented�
not only the design for a �learning machine�; they have actually built it.

17 In particular, it must be remembered that Solomono¤�s work straddles the two traditions
and his two path-breaking contributions appeared almost before the proverbial ink was dry
on Putnam�s seminal contribution.
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