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Abstract

In time-to-event studies subjects are followed until the event of interest has hap-

pened. Subjects who do not experience the event are referred to as censored. Due

to censoring, methods of plotting individual survival time, such as density plots,

are invalid. The graphical displays of time-to-event data usually take the form of

a Kaplan-Meier survival plot. However, using a Kaplan-Meier survival plot might

not be the most informative way to present the data to answer the typical questions

of interest. The median survival is often used as a summary of the survival expe-

rience of a patients’ population and it is easily read off the Kaplan-Meier plot. It

is unlikely however that the median is a relevant summary at the patient level and

a density plot of the data is perhaps more informative for communication than a

single summary statistic. A fundamental idea in this thesis is to consider censored

data as a form of missing, incomplete, data and use approaches from the missing

data literature to handle this issue. In particular, we will use the idea of imput-

ing the censored observations, based on the other information in the dataset and

some form of assumed model. By imputing values for the censored observations and

combining the original complete and imputed incomplete data, it is possible to plot

the density of the full data to complement the information given by Kaplan-Meier

plots. In this thesis, we consider using parametric Bayesian and non-parametric

Bayesian methods to impute right censored survival data to achieve this aim. The

imputation of censored observations not only allows more interpretable graphics to

be produced for a wider general audience (physicians and patients), but it opens

up the possibility of the use of standard formal methods of analysis for continuous

responses.

xiii



Acknowledgements

First of all, I am deeply indebted to my supervisors Prof. John Hinde and Prof.

John Newell for their dedication, instruction and encouragement, without which

I would not have been able to complete this work. Thank you for your support,

especially in the difficult times.

Many thanks to the Irish Research Council (IRC) for awarding me a postgraduate

scholarship which gave me the opportunity to pursue my PhD in Ireland but also

learn from Irish culture.

I would also like to thank my friends who made the stay in Galway a much nicer

experience.

My parents, Effat and Mohammad, you have always supportive in all my decisions.

It was you that encouraged me to start this project, and without your love, I would

not have been able to complete the PhD. You have made me the person I am today.

I also want to thank my aunts Hakimeh and Azimeh, who have been supportive in

every way possible. You have always been there to listen to me during times when

I was finding things tough.

Finally, I owe special thanks to my husband, Amir, for his never ending patience,

love and encouragement during these years. Amir, this thesis would not have been

possible without your unconditional support.

I would like to dedicate this thesis to my family, for everything.

xiv



Chapter 1

Introduction

The main interest in survival analyses is studying the time to an event (usually

death, recurrence or remission). In survival analysis subjects are followed until the

event of interest has happened. Subjects who do not experience the event are re-

ferred to as censored. Unless waiting till everyone in a trial has died before analysing

the data, some patients will be still alive at the end of the study and hence their

time to death will remain unknown. Due to censoring, methods of plotting in-

dividual survival times such as the histogram or the density plot are less useful.

Therefore, graphical displays of time-to-event data usually take the form of a plot of

the survivor function (typically using the Kaplan-Meier estimator). However, using

a Kaplan-Meier survival plot might not be the most informative way to present the

data to answer the typical questions of interest.

The median survival is often used as a summary of the survival experience of a pa-

tients’ population. It is unlikely however that the median is a relevant summary at

the patient level. Stephen Gould in his paper ”The median isn’t the message” [48]

recounts his personal experience as a statistician suffering from abdominal mesothe-

lioma, a rare and severe cancer when given a diagnosis of having eight months left to

live. On reading the literature, he discovered that the estimate corresponded to the

median survival time from a right-skewed distribution and questioned the practice

of reporting the median in isolation to a patient. The median gives an estimate

of the survival time for half the cohort in question and is unlikely to apply to any

individual.

1
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In comparing survivor functions between treatment groups, these curves may be

similar at the onset but diverge considerably as time progresses. This wide space

between the curves may not represent a dramatic benefit of treatment, but may

likely indicate variability rising from the small sample sizes available for the analy-

sis at the end of the study. The smaller the number of people available to experience

an event, the larger the drop when there is an occurrence of an event. Two esti-

mated survivor functions may look very different with a small log-rank p-value but

the actual distribution of time to events may overlap considerably. So, providing

graphical summaries of the underlying distribution of the time to the event is clearly

an attractive alternative to avoid these concerns and may temper the enthusiasm of

physicians and patients to see diverging survival curves.

A key idea in this thesis is to consider censored data as a form of missing, incom-

plete, data and use approaches from the missing data literature to handle this issue.

In particular, we will use the idea of imputing the censored observations, based on

the other information in the dataset and some form of model. However, in using

imputation for censored data there is an important difference from standard missing

data imputation, with censored data we have some, albeit limited, information on

the censored value. For example, with right censoring we know that the true failure

times exceeds the recorded censored time and we obviously need to make use of this

information in our imputations. By imputing values for the censored observations

and combining the original complete and imputed data, it is possible to plot the

histogram or density of the completed data to complement the information given

by Kaplan-Meier plots. In this thesis, we proposed two novel methods to impute

right censored survival data including a parametric Bayesian and non-parametric

Bayesian approaches. The imputation of censored observation not only allows more

interpretable graphics to be produced for the wider audience (physicians and pa-

tients), but it opens the possibility of the use of formal methods of analysis for

continuous responses.



1.1 Datasets 3

1.1 Datasets

Four datasets will be used throughout this thesis to demonstrate the methods pro-

posed in this work.

1.1.1 Galaxy Data

The first dataset is the well-known galaxy data from the astronomy literature. It

is believed that after the Big Bang, matter expanded at an enormous rate and due

to the local attraction of matter, the galaxies formed. Astronomers predicted that

gravitational pull would lead to some clustering of galaxies. Historically, astronomers

have mapped galaxies by the latitude and longitude with respect to the earth. The

third component of position which is the distance from our galaxy to others is

estimated using the red shift in the light spectrum in a fashion analogous to the

way the Doppler effect measures changes in speed via changes in sound. Given

the expansion scenario of the universe, points furthest from our galaxy must be

moving at greater velocities. Distance, then, is proportional to and can be estimated

from velocity. If the galaxies are clumped, the distribution of velocities would be

multimodal where each mode describes a cluster as it moves away at its own speed.

In an unfilled survey of the Corona Borealis region, velocities of 82 distant galaxies

from 6 well-separated conic sections of space were measured. The data are the

recession velocities in units of 103 km/s. The astronomers Postman et al. [90] gave

the full data by region. The Galaxy dataset was first described by Roeder [91].

These data can also be found as a part of the R package MASS as dataset galaxies.

1.1.2 6-MP Data

The second dataset is based on the historical 6-MP trial. This dataset has been

widely used in the survival analysis literature as an illustrative example in theo-

retical and applied work. The data is from a prospective clinical trial where 6-

mercaptopurine (6-MP) was compared to a placebo in the maintenance of remission

in acute leukaemia. (Gehan [44]; Freireich et al. [43]). The study was confined to
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patients under 20 years of age who had received no chemotherapy before admission.

The first patient was enrolled in April 1959, and the last patient was entered in the

study in April 1960. In the study, there are 42 leukaemia patients where 21 patients

were allocated to a 6-MP treatment group and 21 to control (placebo) group.

The variable of interest is the time spent in remission by each patient. Some remis-

sion durations were censored due to the loss of follow up, and many patients were

alive with no recurrence of disease at the end of the study. There is no censoring in

the control group while there are 12 censored observations in the intervention group.

1.1.3 Metastatic Renal Carcinoma Data

The third dataset is from the Medical research council RE01 trial in metastatic renal

carcinoma [22]. In the duration between February 1992 and November 30, 1997,

350 eligible patients who had historically or cytologically confirmed renal carcinoma

with metastases were recruited to the RE01 trial which was conducted at 31 centers

in the United Kingdom.

Patients were randomly assigned to treatment with interferon alpha or with medrox-

yprogesterone acetate (MPA). Patients were followed up every four weeks until 12

weeks after randomisation. Minimum follow-up was then at six months and one

year from randomisation and after that every six months until death.

The variable of interest is time to death and was defined as the time from randomi-

sation to death. As June 21, 2001, of the 347 patients with available data, 25 (7%)

were censored, and the remainder had died. 175 of these patients were treated by

MPA and 172 of them with interferon alpha. There are 8 censored observations

in the MPA group and 17 censored observations among patients who treated with

interferon alpha.

1.1.4 Bronchopulmonary Dysplasia (BPD) Data

The fourth dataset used in this thesis is the Bronchopulmonary Dysplasia (BPD)

data [53]. This study is about low birth weight infants (< 1500 grams) with Bron-

chopulmonary Dysplasia who are treated with oxygen. The data were collected



1.2 Structure of the Thesis 5

between December 1987 to March 1991.

A total of 78 infants were in this study including 35 babies receiving surfactant

therapy and 43 of them not receiving this treatment. There are five censored obser-

vations in this study as five babies were still on oxygen at their last follow-up visit.

Two of these censored observations are in the treatment group and three of them

are in the control group.

The purpose of the study was to determine factors that predict the length of time

for these infants to be on oxygen and the outcome is the total number of hours

an infant needed oxygen therapy. The data are also available at Wiley’s FTP site

ftp://ftp.wiley.com/public/ sci_tech_med/survival/.

1.2 Structure of the Thesis

This thesis consists of five main chapters (along with this introduction and the

future work and discussion in Chapter 7). In Chapter 2 a review of survival anal-

ysis is presented. Chapter 3 includes an overview of the non-parametric Bayesian

approach to inference. In Chapter 4 two new Bayesian approaches for imputing cen-

sored observations in survival analysis are introduced. In Chapter 5 the results of

a comprehensive simulation study are presented to study the performance of these

approaches. Finally, in Chapter 6 the results of applying the Bayesian imputation

approaches to the example datasets are reported.

The following paragraphs contain a brief introduction of each of these main chapters.

Chapter 2: Survival Analysis

Survival analysis is a set of statistical methods to analyse data where the outcome

of interest is the time until an event occurs. A particular source of difficulty in

analysing survival data is censoring which arises when some of the observations are

incomplete due to causes that are not under the control of the investigator.

The chapter begins with the definition of censoring. It continues with a brief in-

troduction of the survivor and hazard functions. The definition of the likelihood

ftp://ftp.wiley.com/public/sci_tech_med/survival/
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in the context of censored survival data is explained. Also, an overview of various

commonly used parametric, non-parametric and also semi-parametric techniques in

estimating the survivor function is presented. Finally, the Bayesian modelling of

time to event data is discussed which introduces the approach that will be used in

this thesis.

Chapter 3: Non-parametric Bayesian Approach

Chapter 3 is devoted to the framework of non-parametric Bayesian methods. The

intention is not to be complete but rather to touch on areas of interest for the thesis.

Non-parametric Bayesian methods enhance the flexibility of standard parametric

models while providing a fully probabilistic framework for inference. Under the

non-parametric Bayesian paradigm, the unknown functions or distributions of the

model are treated as random parameters with stochastic non-parametric priors, such

as the Dirichlet process.

The chapter begins with a definition of non-parametric Bayes continued with a brief

introduction of mixture models. An overview of the definition and constructive

procedure of Dirichlet process are described. Moreover, the Dirichlet process mixture

model is presented followed by a discussion on the associated simulation procedures

and the definition of posterior predictive distribution. Finally, a location normal

Dirichlet process mixture model is presented as an illustration.

Chapter 4: A Bayesian Approach to Imputation of Survival Data

In the presence of right censoring, standard methods of plotting individual survival

times are limited. Therefore, graphical display of time-to-event data usually takes

the form of a Kaplan-Meier survival plot. Based on the Kaplan-Meier plot, the

median survival time is the classical summary reported to the patients and is often

mis-interpreted. If there is no censoring in the data set, standard graphical and

numerical summaries can be used. By imputing the censored observations and com-

bining the original and imputed data a ’complete’ data set can be constructed, and

it is then possible to plot the histogram or density of the data to complement the
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information given by Kaplan- Meier plots.

The chapter begins with an overview of imputing methods for missing data as an

introductory concept for the rest of the chapter where we try to impute the censored

observations. A parametric approach (Royston [92], [93]) to impute censored obser-

vations is introduced. Two new approaches have been proposed for imputing cen-

sored observations, including a parametric Bayesian approach and a non-parametric

Bayesian method. These methods are compared to the Royston parametric approach

for imputing censored observations.

Chapter 5: Simulation Study

The main goal of this simulation study is to understand if the proposed imputation

methods create plausible complete (imputed) datasets. The benefit of using simu-

lated data is that we know not only the true underlying density function but also

the real value of the sample data before the censoring was applied.

This chapter starts with a review of methods for generating censored observations.

In the simulation studies, both parametric Bayesian and non-parametric Bayesian

approaches are used to impute censored observations. The study considers different

percentages of random right censoring and also situations with decreasing, increas-

ing and constant hazard functions. Finally, the parametric Bayesian method and

non-parametric Bayesian approach are compared for a specific sample size.

Chapter 6: Applications

This chapter begins with a review of methods for the estimation of an empirical

density. The primary focus of this chapter is to apply the parametric Bayesian and

non-parametric Bayesian approaches proposed in this thesis to the three datasets to

motivate the benefits of considering these methods for imputing censored observa-

tions in time to event studies.



Chapter 2

Survival Analysis

2.1 Introduction

In many applications the question of interest is often the time to the occurrence of

a given event. In medical studies, this event may be the time to response to treat-

ment, tumour-free time, the length of remission, or time to death [70]. Analysis of

such data is usually described as survival analysis and originates in studies of time

to death, but the approaches are more generally applicable to any time to event, or

lifetime, data. Similar approaches for the analysis of lifetime data are used in many

different disciplines, including biology, epidemiology, engineering, demography, pub-

lic health, etc. Although the outcome is usually measured on a continuous scale,

the standard methods for analysing continuous responses cannot be used for various

reasons. First, time data are intrinsically positive and so the survival distribution is

often right-skewed and far from being normal, therefore standard normal methods

are not generally appropriate. The second reason is the presence of censoring. An

observation is censored if there is some information about the individual survival

time, but the exact survival time is unknown (incomplete observation), this may

be due to causes that are not under the control of the investigator or to limited

periods of follow-up. An important and common form of censoring is when the

event of interest happens at some point in the future, but the investigator does not

know when, giving right censored data. It is also possible to have left censoring (the

8
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event of interest occurs at some unknown time in the past) or interval censoring

(the event occurs at an unknown time in an interval). In fact, all of the various

forms of censoring can be considered as special cases of interval censoring, although

in this work only right censoring will be considered. To describe censored data the

observed outcome is comprised of a continuous measurement (the, possibly, incom-

pletely observed time) and a binary indicator that specifies if an observation has

been censored or not [64]. To accommodate censoring in the analysis of survival

data specific methods have been developed, which differ from those used with gen-

eral forms of complete response data.

In this chapter, an overview of survival analysis and its main methods is presented.

This chapter is organized as follows: It starts with a definition of censoring in Sec-

tion 2.2. Then in Section 2.3 a brief introduction is given to the survivor function

and the hazard function. In Section 2.4 the definition of the likelihood for censored

survival data is explained. In Section 2.5 we consider parametric models for estimat-

ing the survivor function. In Section 2.6 we move on to non-parametric methods of

estimating the survivor function. Extension to semi-parametric survivor estimates is

discussed in Section 2.7. Finally, in Section 2.8 Bayesian modelling of time to event

data is described, which introduces the approach that we will use in this thesis.

2.2 Censoring

A special source of difficulty in analysing survival data is censoring. In reality,

censoring happens when the time recorded does not correspond with the time at

which the event of interest occurs. Censoring could happen in one of the following

three situations: In right censoring, a patient is enrolled at the beginning of the

study however they may be lost to follow-up, or withdrawn before the study ends,

or the patient may still be alive at the end of study, so the true survival time is not

known (i.e., censored); all that is known is that it exceeds the observed time and so

on a time-axis the censored survival time is to the right of the observed time. Left

censoring occurs when the event of interest has already happened at the point of

observation and so the patient’s true survival time is less than the observed time, i.e.
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to the left. In interval censoring, the event occurs at an unknown time between two

observation times and so the true survival time is known to lie within an interval.

These different forms of censoring are shown in Figure 2.1.

Figure 2.1: Different censoring forms

In this thesis only right censoring will be considered. There are four common reasons

for right censoring:

1. A patient does not experience the event before the study ends;

2. A patient is lost to follow-up during the study period;

3. A patient withdraws from the study (drop out);

4. A patient may have experienced another event (competing risk) and no longer

be observed (e.g. death by accident).

Right censoring can be classified into three forms.

• Type I censoring :

Often, because of time or cost limitations, the researcher cannot wait for the
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event of interest to occur in all patients. The length of an experiment, or

observation period, is set up in advance and censoring may occur as a conse-

quence of this. Survival times recorded for patients who had the event during

the study period are times from the start of the experiment to the event time.

Subjects who did not experience the event of interest before the end of the

experiment are considered right censored where the censored times correspond

to the length of the experiment. More generally, recruitment is progressive and

not all subjects are followed from the start of the study/observation period and

the censored times may be different. There may also be other right censored

observations where some patients are lost to follow-up or die accidentally (or

from causes unrelated to the study) and their censored survival times are from

the start of observation until the loss or death (see Random Censoring). In

Type I censoring the number of censored observations will be random.

Figure 2.2: Example of Type I censored data.

• Type II censoring :

In type II censoring, the required number of complete observations is set in

advance. In other words, when a pre-specified number of events have occurred

the experiment stops. The subjects who did not experience the event are

treated as right censored. In this case, if there are no accidental losses and all

subjects are recruited at the start of the study, then the censored observation

times are equal to the largest uncensored observation. Here we have a fixed

number of censored observations but the observation period is now random.
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Figure 2.3: Example of Type II censored data. In this experiment, the investigator
decides to terminate the study after four of the six patients have experienced the
event.

• Random censoring :

A random censoring process is one in which each individual is assumed to

have an event time T and a censoring time C where T and C are independent

random variables. If the censoring time happens before the failure time the

observation is right censored otherwise the true event time is observed. This

form of censoring is common in medical studies.

In this thesis, T will represent the random variable for the survival time of an

individual, which is the time until an event occurs. So T is called the survival,

or event, time. Since T denotes time, its possible values include all non-negative

numbers and t denotes any specific value for the random variable T . Similarly we

let C be a random variable for the censoring time. In survival analysis we observe

either the event time T or the censoring time C, whichever is smaller, i.e. whichever

occurs first. So the observed time random variable is Y = min{T,C}. Finally, a

censoring indicator δ is defined as a 0/1 random variable indicating whether failure

or censoring has occurred:

δ =

1 T ≤ C

0 T > C

(2.1)

So δ = 1 if we observe an actual event time and δ = 0 for censored observations. An

essential assumption is that survival times T and censored times C are independent.

Another assumption is that the distribution of C does not depend on any parame-

ters of the event time T distribution. This is called uninformative censoring.
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Obviously, in considering survival processes the ideal situation would be to have no

censoring and hence complete observed data. However, in practice this is unreal-

istic and the challenge in analysing survival data is how to handle the incomplete

observations. The survival time for a patient who is censored is incomplete but still

informative and should be incorporated into the analysis using the information up

until censoring. Simple approaches such as dropping subjects with censored survival

times from the analysis lead to biased estimates of the survival time as this is just

based on analysing observed failure times and long-term survivors are ignored [21].

General methods in survival analysis are concerned with how to make use of the lim-

ited additional information in the censored observations. However, an alternative

would be to obtain a complete dataset, not by deleting the censored observations,

but rather by treating them as missing values and using imputation methods. This

is the main focus of this thesis, with the aim of complementing traditional formal

inferential methods for survival data and providing more interpretable displays for

physicians and patients. Different methods of imputing right censored observations

are described in Chapter 4.

2.3 The Survivor and Hazard Function

One of the important functions in survival analysis is the survivor function, S(t),

which provides a full summary of the survival distribution. The survivor function

is specified as the probability that a patient will survive beyond time t.

S(t) = P (T > t) = 1− F (t) =

∫ ∞
t

f(u)du (2.2)

where F (t) is the cumulative distribution function for the random variable T .

Theoretically, as ”t” ranges from 0 up to infinity, the survivor function for a con-

tinuous random variable can be graphed as a smooth curve, as shown in the Figure

2.4.
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Figure 2.4: Survivor function

All survivor functions have the following characteristics:

• They are non-increasing functions.

• S(0) = 1, Since at the start of the study everybody is alive.

• S(t) tends to 0 as t gets large. However, it is possible for S(∞) > 0 as in a

cure model [10], [51] in long term survival data.

In practice, the survivor function can be described parametrically using specific

distributions (Section 2.5) or by using some non-parametric estimator such as the

Kaplan Meier estimate (Section 2.6).

Compared to the survivor function, which focuses on the probability of not having

an event, the hazard function concentrates on the event occurring. The hazard

function h(t) gives the instantaneous rate of failure per unit time, given that the

individual has survived up to time t, and is defined by:

h(t) = lim
∆t→0

P (t ≤ T < t+ ∆t|T ≥ t)

∆t
=
f(t)

S(t)
(2.3)

=
−S ′(t)
S(t)

=
−d(log(S(t)))

dt
(2.4)

For a specified value of t, the hazard function h(t) has the following features:

• It is always non-negative (i.e. h(t) ≥ 0 for all t > 0).
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• It has no upper bound.

By using (2.4), the survivor function can be written in terms of hazard function as

follows:

S(t) = exp

(
−
∫ t

0

h(x)dx

)
= exp(−Λ(t)) (2.5)

where Λ(t) =
∫ t

0
h(x)dx is the cumulative hazard function.

Further from (2.3) and (2.5) f(t) can be written in terms of the hazard function:

f(t) = h(t)exp

(
−
∫ t

0

h(x)dx

)
= h(t)exp(−Λ(t)) (2.6)

So defining any one of the probability density function, survivor function, or hazard

function enables the other two functions to be determined and they all give equiva-

lent descriptions of the distribution.

The hazard function can have different shapes as shown in Figure 2.5 .

• Constant over time; note that for a person who continues to be healthy

throughout the study period, his/her instantaneous potential for becoming

ill at any time during the period remains constant throughout the follow-up

period. Constant hazards correspond to an exponential distribution.

• Increasing over time; this might be expected for leukaemia patients not

responding to treatment, where the event of interest is death. As survival

time increases for such a patient, and as the prognosis accordingly worsens,

the patients potential for dying from the disease also increases. Probability

models with increasing hazard include the Weibull distribution with a shape

parameter greater than 1.

• Decreasing over time; this might be expected when the event is death

in persons who are recovering from surgery, because the potential for dying

after surgery usually decreases as the time after surgery increases. Probability

models with deceasing hazard include the Weibull distribution with a shape

parameter less than 1.
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• Increasing and then decreasing; this can be expected for tuberculosis

patients, since their potential for dying increases early in the disease and de-

creases later. The lognormal distribution gives hazards of this form.

• Decreasing and then increasing; commonly called a bathtub shape: for

example when a child is born there is a chance of early death, but as it escapes

childhood diseases, the hazard of failure decreases with age. The hazard is flat

and low during the adult life (except for males who have a spike in the early

20s.). Finally, with increased age, the hazard of death is increased. The

beta distribution with p.d.f f(t) = 1
B(p,q)

tp−1(1− t)q−1 has the bathtub hazard

function when p < 1 [47].

Figure 2.5: Different hazard functions

2.4 Likelihood Function

For a random sample of n individuals we assume independent observations (yi, δi),

i = 1, ..., n, of the (possibly censored) survival times and associated censoring indi-

cator. The full dataset is defined as D ≡ {y, δ}. For each underling true event time

ti, we assume that the density f(ti|θ) is known except for a parameter vector θ,
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so the survivor function S(ti|θ) and hazard function h(ti|θ) are similarly specified.

The full likelihood based on the n observations is given by

L(θ|D) =
n∏
i=1

L(θ|yi, δi) (2.7)

and to find the explicit form of the likelihood function in a simple way, we assume

initially that both the event time and censoring distributions are discrete. As above,

we have f(.|θ) and S(.|θ) as the discrete density and survivor function for T , and

similarly let g(.) and G(.) be the discrete density and survivor function for C. By

using (2.1) the likelihood function for individual i is

L(θ|yi, δi) =

P (Ti = yi, δi = 1|θ) δi = 1

P (Ci = yi, δi = 0|θ) δi = 0

=

P (Ti = yi, Ti ≤ Ci|θ) δi = 1

P (Ci = yi, Ti > Ci|θ) δi = 0

=

P (Ti ≤ Ci|Ti = yi,θ)P (Ti = yi|θ) δi = 1

P (Ti > Ci|Ci = yi,θ)P (Ci = yi|θ) δi = 0

Using the independence of Ci and Ti and also the uninformative censoring assump-

tion (the censoring distribution does not depend on parameters of the event time

T ) and since θ is the vector of parameters of the distribution of T , we can write

L(θ|yi, δi) =

P (yi ≤ Ci)P (Ti = yi|θ) δi = 1

P (Ti > yi)P (Ci = yi|θ) δi = 0

=


[
G(yi) + g(yi)

]
f(yi|θ) δi = 1

S(yi|θ)g(yi) δi = 0

∝ [f(yi|θ)]δi [S(yi|θ)](1−δi)
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This argument can be modified to handle continuous cases [21].

Hence, the likelihood function based on the data is

L(θ|D) =
n∏
i=1

[f(yi|θ)]δi [S(yi|θ)](1−δi) (2.8)

which, using the definition of the hazard function can be written as

L(θ|D) =
n∏
i=1

[h(yi|θ)]δi [S(yi|θ)] (2.9)

2.5 Parametric Estimation of the Survivor Func-

tion

Sometimes there is information about the failure process in a population that sug-

gests a particular distribution, though this information is rarely specific enough to

justify one particular family of models [69]. In the case that the assumed parametric

model is correct, parameter estimates which are obtained from this approach can

completely specify the survival and hazard functions. This simplicity and complete-

ness are the primary interests of using a parametric approach. Once a probability

density function f(t) is defined for survival time, the corresponding survival and haz-

ard functions can be determined using (2.2) and (2.3). In a parametric approach,

the survival time is assumed to follow a known distribution. The commonly used

distributions for survival time are exponential, Weibull, gamma,and lognormal. In

this section, the characteristics and application of some of these distributions are

discussed [70].

2.5.1 Exponential Distribution

The simplest distribution which is used in survival analysis is the exponential dis-

tribution. This distribution plays a central role in survival analysis as most of the

useful survival distributions are related directly to the exponential distribution. The

density function of the exponential distribution with parameter λ for survival time
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T is defined as:

f(t) =

λe
−λt t ≥ 0, λ > 0

0 t < 0

(2.10)

The survivor function and the hazard function are:

S(t) = e−λt t ≥ 0 (2.11)

h(t) = λ t ≥ 0 (2.12)

The hazard rate for exponential distribution is constant so, the probability of death

at a time t does not depend on the length of the previous lifetime. This distribution is

famous for its ”lack of memory” which means the instantaneous probability of failure

is the same and not related to how long the item has already survived therefore this

distribution represents the lifetime of an item which does not age or wear. A large

λ indicates high risk and short-term survival while a small λ indicates low risk and

long survival.

2.5.2 Weibull Distribution

The Weibull distribution is a generalisation of the exponential distribution with

broader application. This distribution was proposed by Weibull in 1939 [109]. Later

in 1951 [110], Weibull discussed the distribution’s applicability to various failure

situations. The Weibull distribution is characterised by two parameters, α and λ

which are called shape and scale parameter, respectively. The density function,

survivor function and hazard function are:

f(t) = αλtα−1e−λt
α

t ≥ 0 α, λ > 0

S(t) = e−λt
α

t ≥ 0 α, λ > 0

h(t) = λαtα−1 t ≥ 0 α, λ > 0
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When the α = 1, it reduces to an exponential distribution, as the hazard rate is

constant. When α > 1, as time t increases, the hazard rate increases, as for patients

with lung cancer, while for α < 1, the hazard decreases over time, as may apply for

patients who undergo successful major surgery.

2.5.3 Gamma Distribution

Suppose that a failure takes place in k stages or as soon as k sub-failures have

happened. At the end of the first stage which is after time T1, the first sub-failure

occurs, and so on. Total failures happen at the end of nth stage when kth sub-failure

happens. The survival time T is then T1 + T2 + ... + Tk. If the times T1, T2, ..., Tk

spent in each stage are assumed to be independently exponentially distributed, then

the distribution of T is called the Erlang distribution with parameters λ and k. If

the parameter k, restricted here to integer values, is replaced by α which takes any

real positive value then the gamma distribution is obtained.

The gamma distribution is characterized by the shape parameter α and a scale

parameter λ. The probability density function and survivor function are:

f(t) =
λα

Γ(α)
tα−1e−λt t > 0 α > 0, λ > 0

S(t) =

∫ ∞
t

λα

Γ(α)
xα−1e−λxdx α, λ > 0

When α is integer-valued and equal to k, the hazard function can be calculated as:

h(t) =
λ(λt)k−1

(k − 1)!
k−1∑
j=0

(λt)j

j!

(2.13)

while for general α the hazard involves incomplete gamma functions, but is readily

calculated in R using the pgamma and dgamma functions. As time increases from 0

to infinity, when 0 < α < 1, the gamma hazard rate decreases monotonically from

infinity to λ. When α > 1, the hazard rate increases monotonically from 0 to λ and

when α = 1, the hazard rate is a constant, equal to λ, again corresponding to the

exponential distribution.
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2.5.4 Lognormal Distribution

The lognormal distribution is defined as the distribution of a random variable whose

logarithm follows the normal distribution. The distribution of survival times for

some diseases, such as Hodgkin’s disease and chronic leukaemia, may be rather

closely approximated using a lognormal distribution as they are markedly right

skewed and the logarithm of survival times are approximately normally distributed.

For the lognormal distribution Λ(µ, σ2), the probability density function, survivor

function and hazard function are, respectively,

f(t) =
1

tσ
√

2π
exp

[
− 1

2σ2
(logt− µ)2

]
t > 0, σ > 0

S(t) =
1

σ
√

2π

∫ ∞
t

1

x
exp

[
− 1

2σ2
(logx− µ)2

]
dx

h(t) =

1

tσ
√

2π
exp

[
− 1

2σ2
(logt− µ)2

]
1

σ
√

2π

∫∞
t

1

x
exp

[
− 1

2σ2
(logx− µ)2

]
dx

This distribution is positively skewed and the greater the value of σ2 the greater the

skewness (Figure 2.6).

Figure 2.6: lognormal density functions with identical parameter µ but differing σ
parameters

The hazard function increases to a maximum and then decreases ( almost as soon
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as the median is passed ) to 0, as time goes to infinity. So, it is suitable for survival

studies with increasing and then decreasing hazard rate such as tuberculosis disease.

2.5.5 Regression models

The data in survival analysis often includes covariates, such as age and general con-

dition of the patient, that can be related to lifetime. In many studies, the goal is to

understand the relationship between lifetime and these covariates. Regression mod-

els for survival data can be defined using parametric models. In parametric survival

models, normally either the scale parameter or the shape parameter of a distribution

is taken to depend upon a set of covariates, typically by relating it through some

appropriate link function to a linear predictor of variables and associated regression

parameters while the other parameter of the distribution is held fixed [69].

More specifically, if we assume that each individual has a column vector x =

(x1, ..., xp)
′ of covariates then the linear predictor η = β′x is related to the parameter

of interest, θ, through h(θ) = η. For example, if we assume that the distribution of

T is exponential, the survivor and hazard functions, for a specific set of covariates

x, can be written as

S(t|x) = exp(−λ(x)t)

h(t|x) = λ(x)

where using a log link function for the hazard λ(x), gives λ(x) = exp(β′x) where β

is a p × 1 column vector of regression coefficients, typically including an intercept.

Using this log link for the hazard function has the attractive property that λ(x) ≥ 0

for all real vectors x and β, as is required for the exponential distribution, although

the canonical link function is the reciprocal. This use of an exponential function of

the linear predictor is analagous to the very popular Cox regression model, which

will be described in Section 2.7. Although in the exponential model the baseline

hazard is constant, while in the Cox model it is assumed to take some unspecified

form.

The distributions described in this section are reasonable and commonly used mod-
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els for survival times. However, they may not be appropriate for many practical

situations which leads us to consider other methods of estimating the survivor func-

tion.

2.6 Non-parametric Estimation of the Survivor

Function

In using the parametric models described above specific functional forms are assumed

for the survivor and hazard functions. However, in some practical situations these

may not be appropriate or sufficiently flexible and then non-parametric approaches

are often used based on the empirical survivor function, life table, Nelson-Aalen, and

Kaplan-Meier estimates. In the case of censored observations, the life-table, Kaplan-

Meier[62] and Nelson-Aalen[1],[2],[85],[86] estimates are the three most common

methods that allow estimation of the survivor function with censoring. These tech-

niques do not make any specific assumptions about the shape of the underlying

survivor function.

If there are not any censored observations in the dataset, then a simple survivor

function estimate would be the empirical survivor function:

Sn(t) =
number of individuals with T > t

total sample size
=

∑n
i=1 I {Ti > t}

n
(2.14)

where I is the indicator function, and defined as:

I {A} =

1 A is true

0 A is false

(2.15)

Note that Fn(t) = 1 − Sn(t) is the empirical CDF. It is easily shown that Sn(t) is

a consistent estimate of the true underlying survivor function S(t). We note that

I {Ti > t} ∼ Bernoulli(S(t)) and by using the strong law of large numbers which

states that the sample average converges almost surely to the expected value, the

sample average of I {Ti > t}, which is Sn(t), converges almost surely to the expected

value S(t) (using the expected value in Bernoulli distribution). As Sn(t) converges
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almost surely to S(t), it also converges in probability to S(t) and is consistent.

When there are censored observations in the dataset, some modification of (2.14)

is required, as the number of lifetimes greater than or equal to t will not be known ex-

actly. The simple modification described here is called the Kaplan-Meier estimate[62].

The Kaplan-Meier (KM) estimator, among all the non-parametric approaches, is the

most commonly used for estimating the survivor function and has been in widespread

use since its development by Kaplan and Meier in 1958. To compute KM curves,

the failure times must first be ordered from smallest to largest. We then identify

the distinct ordered failure times t(1) < t(2) < ..., and associated inter-event time

intervals Ij = [t(j), t(j+1)). For each interval I(j) we count ej, the number of individ-

uals with events at tj, and rj, the number of individuals at risk at the start of the

interval, that is the number of individuals who have survived until at least time tj.

The Kaplan-Meier estimator is written as follows:

Ŝ(t) = P (T > t)

=
∏

j : t(j)≤t

P (Survive beyond j-th interval Ij | Survived to the start of Ij)

=
∏

j : t(j)≤t

(
rj − ej
rj

)
(2.16)

To estimate the survival probability at a given time, the KM method uses the risk

set at that time to include the information on a censored person up to the time

of censorship. Although the KM estimate of survivor function does not change at

censoring times, the effect of censoring times is reflected in the size of the risk set

rj. In the absence of censoring the KM estimator is simply the empirical survivor

function.

The Kaplan-Meier estimate is a decreasing step function that starts with a hori-

zontal line at a survival probability of 1 and then steps down as we move from one

ordered failure time to another.

For illustration, the Kaplan-Meier plot for the 6-MP dataset, described in Chapter

1, is shown in Figure 2.7. The response here is the time to remission in leukaemia

patients, with some patients being treated with the drug 6-Mp and others serving as

a control group. Plotting the Kaplan-Meier estimate for two or more groups allow a
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graphical examination of possible differences between the groups. Figure 2.7 shows

that the survivor function for the treatment group consistently lies above that for

the control group; this difference indicates that the treatment appears effective at

all points of follow-up.

Survival data relate to a non-negative random variable and are typically not sym-

metrically distributed but rather highly positively skewed, so the median survival

time is the preferred summary measure that is often used [23]. The median is eas-

ily read off the plot of the Kaplan-Meier estimates by looking at the time where

the probability of survival of 0.5 meets the Kaplan-Meier estimate, Ŝ−1(0.5). In

the same way other summary quantiles can be calculated. While the full estimated

survivor function gives the complete summary of these values it may not be the

simplest graphical and a density plot of the data may be more easily interpreted

and more informative than any single summary statistic. However, presence of

censoring makes the construction of this plot difficult so in Chapter 4 we consider

replacing the censored observations by suitably imputed values allowing us to plot

histograms, or smoothed density functions, of the completed dataset to complement

the information given by Kaplan-Meier plots.
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Figure 2.7: Kaplan-Meier plot for the 6-MP data
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2.7 Semi-parametric Estimation of the Survivor

Function

Survival data often include explanatory variables that might be related to lifetime

such as age, sex, type of tumour and type of treatment assigned to the patient.

Although in survival analysis, the outcome of interest is the time to an event, by

knowing the values of these other explanatory variables, referred to as covariates,

a better understanding of the survival experience can be obtained and effects of

covariates on survival can be studied.

The Cox proportional hazards model is the most popular regression model for sur-

vival data. This model does not require knowledge of the underlying distribution,

however a key assumption is that hazard functions of different individuals are as-

sumed to be proportional [25] with explanatory variables being used to model this

proportionality.

One way of describing the variation in survival among individuals is to consider a

particular hazard function hi(t) for each individual and to assume a proportional

hazard assumption which says that

hi(t) = cih0(t) (2.17)

where ci is a time-independent constant for individual i and h0(t) is an unspecified

hazard function. The effect of covariates on the hazard can then be modeled by

taking ci = exp(β′xi), with the use of the exponential linear form (corresponding to

a log link function for the ci) being designed to ensure that ci > 0, leading to the

Cox regression model, which was originally introduced by Cox in 1972 [26]. The

Cox proportional hazards model is a regression model that enables the information

provided by the covariates to explain the variation in survival times across the indi-

viduals and identify important variables. The hazard function for the ith individual

is then

hi(t|xi) = h0(t)exp(β′xi) (2.18)

Here xi is the column vector of the covariates for an individual i and β is a column

vector of associated regression coefficients. The key feature of this assumption is the
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separation of the shape of the hazard function, through the baseline hazard h0(t),

and the multiplicative covariate effects. There is no intercept term included in β′x

as it is subsumed into h0(t).

By using (2.5), the survivor function implied by the model is given by

Si(t|xi) = exp(−Λ0(t)exp(β′xi)) = S0(t)exp(β
′xi) (2.19)

where, Λ0(t) is the cumulative baseline hazard and S0(t) = exp(−Λ0(t)) is the base-

line survivor function.

The Cox model is similar to the parametric regression when assuming exponen-

tial distribution as described in Section 2.5. The main difference between theses

two regression models is that in exponential distribution the hazard is constant for

each pattern of covariates which is much stronger assumption than the proportional

hazard assumption. If the hazards are constant, consequently the ratio of them is

constant as well. But in the Cox model, the hazard ratio is assumed constant which

does not necessarily mean that each hazard is constant. In fact, the form of the

baseline hazard in the Cox model is not even specified and is essentially considered

as a nuisance parameter.

When there are no covariates in the model the Cox model reduces to a common

baseline hazard. Thus, h0(t) may be considered as a starting or baseline version of

the hazard function, prior to considering the effect of the covariates x. The fact

that in the Cox model the baseline hazard, h0(t), is an undefined function makes it

a semi-parametric model. Even though the baseline hazard is unspecified, it is still

possible to estimate the β in the exponential part of the model and for a wide vari-

ety of datasets, reasonably good estimates of regression coefficients, survival curves

and hazard ratios of interest can be obtained. In other words, the Cox proportional

hazard model is robust to the precise form of the underlying hazard and avoids the

need for a parametric specification of h0(t), as would happen in a parametric model,

and therefore the Cox model results can be considered as closely approximate to the

results that would be obtained for a correctly specified parametric model. This is a

fundamental reason for the popularity of the Cox model. However, the assumption

of proportional hazards is key and may not always hold in practice.



2.8 Bayesian Modelling of Time to Event Data 28

2.8 Bayesian Modelling of Time to Event Data

In the Bayesian approach, the parameters are considered as random variables and

inference uses a probability model conditional on the observed data. This contrasts

with the frequentist approach where a parameter is considered as a fixed but un-

known constant, and inference is based on repeated sampling.

In the Bayesian paradigm, the initial uncertainty about a parameter θ is represented

by a probability distribution p(θ) which is unconditional on any observed data. p(θ)

is called prior distribution for θ. By using Bayes theorem [8], the prior distribu-

tion p(θ) is updated to a posterior distribution p(θ|D) which represents uncertainty

about θ in light of the observed data.

By specifying a probability model for the observed data D, given the unknown

parameter θ, we obtain the likelihood function L(θ|D). By using the likelihood

function (2.8) with prior p(θ), the posterior of θ is obtained by Bayes’ theorem as

follows:

p(θ|D) =
L(θ|D)p(θ)∫

Θ
L(θ|D)p(θ)dθ

(2.20)

where Θ denotes the parameter space for θ. The posterior distribution is propor-

tional to the product of likelihood and prior:

p(θ|D) ∝ L(θ|D)p(θ) (2.21)

and m(D) =
∫

Θ
L(θ|D)p(θ)dθ is the normalizing constant for p(θ|D).

If there is little prior information about θ, or an inference based solely on the data

is desired, a highly diffuse prior distribution could be chosen, which is referred to as

non-informative prior. In choosing a prior belonging to a particular distributional

family, some choices may be more computationally convenient than others. In par-

ticular, it may be possible to choose a prior distribution which is conjugate to the

likelihood, in which case the prior and posterior distribution will be in the same

family and have the same distributional form. For example, if the data follow a

Binomial distribution it will be convenient, but no means necessary, to use a Beta

distribution for the prior. The Beta distribution is conjugate to the Binomial dis-

tribution, so the posterior distribution is another Beta distribution [17].
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In many cases, the posterior distribution does not have closed form because the

normalizing constant m(D) does not have simple analytic form. A solution to this

is to use simulation methods to obtain sample realizations from the posterior dis-

tribution, for example through Gibbs sampling when full conditional distributions

are available as is often the case in simpler problems. While in principle providing a

general and widely applicable approach, in practice Bayesian inference can be com-

putationally demanding. The increased application of Bayesian methods over the

last 30 years can be attributed to the development of Markov Chain Monte Carlo

(MCMC) algorithms that allow simulation of draws from the posterior distribution

and any associated quantities of interest [45].

In survival data, Bayesian analysis has received much recent attention because of

these advances in computational techniques. There are some advantages in Bayesian

paradigm compared to the frequentist strategy in the area of survival analysis. First,

some survival models are generally quite hard to fit, especially in the presence of

complex censoring schemes. By using the Gibbs sampler and other MCMC tech-

niques, fitting complex survival models is fairly straightforward, and the availability

of software like BUGS greatly eases the implementation. Second, MCMC allows

inference from the model for any sample size and does not depend on large sample

asymptotics. Also, for many models frequentist inference can be obtained as a spe-

cial case of Bayesian inference by using non-informative priors, as in this case it can

be argued that all of the information resulting in the posterior arose from the data

and all resulting inferences are completely objective [57].

A major aspect of the Bayesian paradigm is prediction. Prediction is also impor-

tant in survival modeling. Consider a general parametric model for the data that

depends on parameter θ. The posterior predictive density of a future event time

tnew given the data is defined as:

f (tnew|D) =

∫
f (tnew|θ) p(θ|D)dθ (2.22)

where f (tnew|θ) denotes the sampling density of tnew. In (2.22) the dependence of

tnew on θ is removed by integrating out θ using its posterior distribution p(θ|D),

which summarises the full information on θ given the observed data D.

The predictive survivor function of a future failure time tnew given the data is ob-
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tained as

S (tnew|D) =

∫
S (tnew|θ) p(θ|D)dθ (2.23)

where S (tnew|θ) is the sampling survivor function of tnew.

From (2.22), the predictive mean can be written as the following integral

Predictive mean =

∫
tnewf (tnew|D) dtnew (2.24)

and also by using (2.23), the predictive median (tpmed) can be obtained by solving

the following equation

S (tpmed|D) = 0.5 (2.25)

However, in general such direct calculations are not possible, unless the posterior

distribution is in a known recognizable form, and hence we rely on simulations.

Therefore m posterior samples {θk : k = 1, ...,m} could be obtained through Gibbs

sampling. So for any function of θ , say γ = g(θ) , the posterior p(γ|D) is approx-

imated numerically using the sample {γk ≡ g(θk) : k = 1, ...,m}. In the case that

the posterior distribution does not have closed form, the posterior survivor function

S (t|θ,D) for all t > 0, can be estimated using a MCMC method to simulate θ1, ..., θm

from the posterior distribution of θ and for each θk compute S(t|θk). As we can not

estimate the survivor function at all t > 0, it is evaluated over a fine grid, possibly

t = 0, 0.01, 0.02, ...T ∗ where T ∗ is just bigger than the largest observed time in the

data. From {S(t|θ1), ..., S(t|θm)} the posterior median and other percentiles of the

survivor function can be calculated. The posterior mean of the survivor function is

approximated by:

Ŝ(t|θ,D) =
1

m

m∑
k=1

S(t|θk) (2.26)

Although it might be convenient to simply put the posterior mean of θ into S (t|θ),

the result is not the posterior mean of S (t|θ) because E(S(t|θ)|D) 6= S(t|E(θ|D))

[21].
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2.8.1 Exponential Example

As an example [63] assume that the survival time has an exponential distribution,

which is the most basic parametric model in survival analysis. The exponential arises

naturally as the waiting time between events in a Poisson process. The density,

survivor and hazard function of the exponential distribution are defined in (2.10),

(2.11) and (2.12) respectively. For observed survival data D = {(ti, δi); i = 1, ..., n},

subject to right censoring, the likelihood function of λ can be written as:

L(θ|D) =
n∏
i=1

[f(yi|θ)]δi [S(yi|θ)](1−δi)

=
n∏
i=1

[h(yi|θ)]δi [S(yi|θ)]

= λd exp

(
−λ

n∑
i=1

ti

)

Where d =
∑n

i=1 δi. In order to have a conjugate prior for λ, the gamma prior with

hyperparameter (α0, λ0) is assumed with density:

p(λ|α0, λ0) ∝ λα0−1 exp (−λ0λ)

So, the posterior distribution of λ is given by:

p(λ|D) ∝ λα0+d−1 exp

{
−λ

(
λ0 +

n∑
i=1

ti

)}
(2.27)

The kernel of the posterior distribution in (2.27) is a Gamma(α0 + d, λ0 +
∑n

i=1 ti)

distribution. So, having an identified form of p(λ|D) the normalizing constant is

known. The posterior mean and variance of λ are obtained as:

E(λ|D) =
α0 + d

λ0 +
∑n

i=1 ti

V ar(λ|D) =
α0 + d

(λ0 +
∑n

i=1 ti)
2
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The posterior predictive density of a future failure time tnew is given by

f(tnew|D) =

∫ ∞
0

f (tnew|λ) p(λ|D)dλ

∝
∫ ∞

0

λα0+d+1−1 exp

{
−λ

(
tnew + λ0 +

n∑
i=1

ti

)}
dλ

∝

(
λ0 +

n∑
i=1

ti + tnew

)−(d+α0+1)

Thus the normalized posterior predictive density is given by

f(tnew|D) =


(d+ α0)(λ0 +

∑n
i=1 ti)

(d+α0)

(λ0 +
∑n

i=1 ti + tnew)
(d+α0+1)

tnew > 0

0 otherwise

(2.28)

which has the Pareto distribution.

By using (2.27) and the fact that gamma densities integrate to 1, the predictive

survivor function for a future survival time tnew can be calculated as follows:

S(tnew|D) =

∫ ∞
0

S (tnew|λ) p(λ|D)dλ

=

∫ ∞
0

exp(−λtnew)
(λ0 +

∑n
i=1 ti)

α0+d

Γ(α0 + d)
λα0+d−1 exp

{
−λ

(
λ0 +

n∑
i=1

ti

)}
dλ

=
(λ0 +

∑n
i=1 ti)

α0+d

Γ(α0 + d)

∫ ∞
0

λα0+d−1 exp

{
−λ

(
λ0 + tnew +

n∑
i=1

ti

)}
dλ

=
(λ0 +

∑n
i=1 ti)

α0+d

Γ(α0 + d)

Γ(α0 + d)

(λ0 + tnew +
∑n

i=1 ti)
α0+d

=

(
λ0 +

∑n
i=1 ti

λ0 + tnew +
∑n

i=1 ti

)α0+d

(2.29)

By using (2.24) and (2.28), the predictive mean for the exponential distribution is

calculated as follows:

Predictive mean =

∫ ∞
0

tnewf (tnew|D) dtnew

=

∫ ∞
0

tnew
(d+ α0)(λ0 +

∑n
i=1 ti)

(d+α0)

(λ0 +
∑n

i=1 ti + tnew)
(d+α0+1)

dtnew

= (d+ α0)(λ0 +
n∑
i=1

ti)
(d+α0)

∫ ∞
0

tnew(λ0 +
n∑
i=1

ti + tnew)−(d+α0+1)dtnew
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Writing λ0 +
∑n

i=1 ti + tnew = u, so the above equation reduces to

(d+ α0)(λ0 +
n∑
i=1

ti)
(d+α0)

∫ ∞
λ0+

∑n
i=1 ti

(u− λ0 −
n∑
i=1

ti)(u)−(d+α0+1)du

= (d+ α0)(λ0 +
n∑
i=1

ti)
(d+α0)

∫ ∞
λ0+

∑n
i=1 ti

(u)−(d+α0) − (λ0 +
n∑
i=1

ti)(u)−(d+α0+1)du

= (d+ α0)(λ0 +
n∑
i=1

ti)
(d+α0)

{
(u)−(d+α0)+1

−(d+ α0) + 1
− (λ0 +

n∑
i=1

ti)
(u)−(d+α0)

−(d+ α0)

}∞
λ0+

∑n
i=1 ti

= (d+ α0)(λ0 +
n∑
i=1

ti)
(d+α0)

×
{

(u)−(d+α0) [(λ0 +
∑n

i=1 ti)(d+ α0 − 1)− (d+ α0)u]

(d+ α0 − 1)(d+ α0)

}∞
λ0+

∑n
i=1 ti

=
λ0 +

∑n
i=1 ti

d+ α0 − 1
(2.30)

Also, the predictive median (tpmd) can be calculated using (2.25) and (2.29) as

follows:

S (tpmed|D) = 0.5

⇒
(

λ0 +
∑n

i=1 ti
λ0 + tpmed +

∑n
i=1 ti

)α0+d

= 0.5

⇒
(

1 +
tpmed

λ0 +
∑n

i=1 ti

)α0+d

= 2

⇒ tpmed =
(

α0+d
√

2− 1
)(

λ0 +
n∑
i=1

ti

)
(2.31)

For illustration, the Bayesian method is applied to the 6-MP dataset which is de-

scribed in Chapter 1. The exponential distribution is assumed for the survival time

with a gamma prior for the parameter of the exponential distribution. Figure 2.8

shows the posterior mean of Bayesian survivor function, as described in (2.26), for

treatment and control groups. It can be seen that the exponential distribution can

fit well in this example.
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Figure 2.8: The posterior means of survivor function based on 5000 simulated sur-
vivor functions compared to the Kaplan-Meier plot for the 6-MP data

2.9 Chapter Summary

This chapter has presented survival analysis and its common feature called censoring.

Survivor function and hazard function are introduced as two important functions in

the area of survival analysis. Additionally, we have provided an overview of various

commonly used parametric, non-parametric and also semi-parametric techniques

in estimating the survivor function. In the last part of this chapter, the Bayesian

modelling of time to event data is discussed which is the main topic in the context of

this thesis to be used as an imputation method to impute the censored observations

in the dataset.

In the next chapter, the Bayesian framework is continued by focusing on Bayesian

non-parametric models where the Dirichlet process is used as a non-parametric prior.



Chapter 3

Non-parametric Bayesian

Approach

3.1 Introduction

A standard way to develop a parametric regression model is to allow distribution pa-

rameters to depend on covariates in a pre-specified way. Classical semi-parametric

methods specify the regression relationship between the response and covariates

parametrically, but leave the actual survival distribution unspecified. The disadvan-

tages of these methods stem from inflexible functional forms of parametric models

and limited inference of classical semi-parametric techniques. In particular, a fixed

specification of distributional properties for the random or error terms in the model,

while typically mathematically convenient, may be inadequate for the actual data.

In this chapter non-parametric Bayesian methods (NPB) will be discussed as they

will be used in Chapter 4 as a tool to impute censored observations. These methods

enhance the flexibility of standard parametric models while providing a fully proba-

bilistic framework for inference. Under the non-parametric Bayesian paradigm, the

unknown functions or distributions of the model are treated as random parameters

with stochastic non-parametric priors, such as Dirichlet or Gaussian processes.

This chapter is organized as follows: It starts with a definition of non-parametric

Bayes in Section 3.2. Then in Section 3.3, a brief introduction is given to mixture

35
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models. In Section 3.4 the definition of Dirichlet distribution and Dirichlet process

are explained. In Section 3.5, the constructive definition of the Dirichlet process is

described using stick-breaking and Pólya Urn methods. In Section 3.6 we present

the Dirichlet process mixture model followed by a discussion of the associated simu-

lation procedures in Section 3.7. In Section 3.8 the posterior predictive distribution

is described. Finally, in Sections 3.9 a location normal Dirichlet process mixture

model is presented as an illustration.

3.2 Non-parametric Bayes

A common motivation in using non-parametric Bayesian methods is to account for

model uncertainty about the choice of a parametric distribution. For example, a

normal distribution is often used as the error distribution in regression. But sam-

pling distributions for data or priors often do not follow any standard parametric

shape. In contrast to classical non-parametric methods such as the rank test or

Kaplan-Meier survivor estimate, non-parametric Bayesian methods can provide full

probability models for the data-generating process which can account for uncertainty

about distributional shape [76].

An early overview of non-parametric Bayesian methods is given in Ferguson in 1973

[38]. Under a non-parametric Bayesian perspective, a prior probability model is

considered for the unknown density F, in some infinite dimensional function space.

This requires the definition of probability measures on a collection of distribution

functions. Such probability measures are generically referred to as random proba-

bility measures (RPM) [83].

Ferguson [38] states two important desirable properties for this class of measures;

first, the posterior inference should be analytically manageable, although the devel-

opment of MCMC methods largely overcomes this potential barrier. Second, their

support should be large in respect of some suitable topology for the space of proba-

bility distributions on the sample space. This means the prior can generate sampling

distributions within arbitrary small neighbourhoods of any true data-generating like-

lihood across a broad class. For example, consider the simple case in which data
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consist of a scalar continuous variable yi, i = 1, ..., n and the density function f

is unknown. From a frequentist non-parametric perspective, we could define some

density estimator for example through kernel smoothing. From a parametric Bayes

perspective, we would choose some parametric form for the density having finitely

many parameters θ and we would induce a prior on density f through a prior for

θ. Let F indicate the set of all densities on the real line with respect to Lebesgue

measure. Suppose that the true density that generated the data is f0. Define neigh-

bourhoods around f0 using some distance d(f, f0). Parametric priors for f will in

general always generate densities on a vanishingly small subset of F . If the true den-

sity does not exactly follow the parametric form, then the parametric prior assigns

probability zero to small neighbourhoods around ”f0”. The idea of large support

priors is to define a prior that assigns non-zero probability around ”f0” for any ”f0”

in a large subset of F (perhaps only ruling out weird or irregular densities) and for

any neighbourhood size. The non-parametric Bayesian method defines large support

priors that are as simple and as interpretable as possible, incorporating any prior

knowledge as far as possible, and that lead to tractable (ideally efficient and easy)

posterior computation.

Ferguson [38] presents a class of such prior distributions, called Dirichlet process

(DP) priors, as a random probability measure which is broad in the sense of large

support and its posterior inference is analytically manageable.

Before describing the properties of the Dirichlet process, mixture models are re-

viewed in the next section as these are needed in the rest of this chapter.

3.3 Mixture Models

Mixture models arise naturally as flexible alternatives to standard parametric fam-

ilies when the measurements of a random variable are taken under two, or more,

different conditions. For instance, the distribution of heights in a population of

adults reflects the mixture of females and males in the population. One of the first

analyses using mixture models was by Karl Pearson [89]. Finite mixture models

make a broad class of interesting statistical models which are less restrictive than
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the usual distributional assumptions. The basic idea of these models is that the data

arise from two or more underlying groups with the same, or different, distributional

form and different parameters [4].

Suppose that it is desired to model the distribution of a random sample y =

(y1, ..., yn) as a mixture of K components. For k = 1, ..., K, the k-th component

distribution, fk(yi|θk), is assumed to depend on a parameter vector θk. So the

sampling distribution of y is:

f(yi|θ, p) =
K∑
k=1

pkfk(yi|θk) i = 1, ..., n (3.1)

where the pk denote the proportions of the population from component k. These

pk are non-negative and sum to one, so there are only K − 1 identifiable proportion

parameters [28].

The finite mixture is a special discrete case of the more general compound form,

f(yi) =
∫
f(yi|θ)p(θ)dθ. This can be considered as a continuous mixture in the

sense that each yi is a random variable with distribution depending on random

parameters θ. The prior distribution or population distribution of the parameter θ

is given by the mixing distribution p(θ) [46].

A Bayesian finite mixture model with two components and Gaussian densities can

be written as follows:

yi|ω, µ1, µ2, σ
2
1, σ

2
2
ind∼ ωN(yi;µ1, σ

2
1) + (1− ω)N(yi;µ2, σ

2
2)

=

∫
N(yi;µ, σ

2)dG(µ, σ2)

where G(.) = ωδ(µ1,σ2
1)(.) + (1− ω)δ(µ2,σ2

2)(.) corresponds to a discrete mixing (com-

pound) distribution.

Figure 3.1 shows the mixture of two normal distributions with parameters (µ1 =

0, σ1 = 1) and (µ2 = 3, σ2 = 0.5) with ω = 0.6.

In finite mixture models, there is uncertainty about the number of mixture compo-

nents K to include in the model. Models with large numbers of components can

be computationally expensive, while models with the small number of components

may not reflect all features of the data. Instead of managing the enormous number
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Figure 3.1: Mixture of two normal distributions with parameters (µ1 = 0, σ1 = 1)
and (µ2 = 3, σ2 = 0.5) with ω = 0.6

of parameters of finite mixture models with a large number of components, it could

be simpler to work with an infinite dimensional specification by assuming a ran-

dom mixing distribution which is not limited to a specified parametric family. The

Dirichlet process (DP) has been the most widely used prior for the random mixing

distribution. Using a DP prior for G, results in a Dirichlet process mixture (DPM)

model.

3.4 Dirichlet Process

Instead of using particular parametric forms of prior, non-parametric options have

been proposed, such as Dirichlet process priors. The Dirichlet process, developed

by Ferguson [38],[39], is a tool that is used in the non-parametric Bayesian analysis

which directly specifies a random probability distribution for the response data y.

Specifying a random probability distribution is also what the traditional Bayesian

parametric approach does, but it does it in two steps. First, the traditional Bayesian

methodology chooses a random distribution for the data by specifying a fixed para-

metric density f(y|θ) conditional on the parameter θ and second making θ random

by specifying a prior density p(θ) [21].

At first, we review the properties of the Dirichlet distribution needed for the de-
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scription of the Dirichlet process.

3.4.1 Definition of Dirichlet Distribution

The Dirichlet distribution arises as a natural family of distributions for point in a

simplex and can be used in problems involving order statistics. The Dirichlet dis-

tribution is also used as a conjugate prior for the parameters of a multinomial dis-

tribution, a set of probabilities {π1, π2, . . . , πk} subject to the constraint
∑

k πk = 1,

i.e. points in a unit k-dimensional simplex.

Assume X = (X1, ..., Xk) be independent random variables, whereXj
iid∼ Gamma(αj, 1),

j = 1, ..., k. Define Yj =
Xj∑k
l=1Xl

then (Y1, ..., Yk) have a Dirichlet distribution with

parameters (α1, ..., αk) and it is denoted as (Y1, ..., Yk) ∼ D(α0, ..., αk) with the

following density function

f(y1, ..., yk) =
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

(1−
k−1∑
i=1

yi)
αk−1

k−1∏
i=1

yαi−1
i (3.2)

where yi ≥ 0, i = 1, ..., k and
∑k

i=1 yi ≤ 1. By defining α =
∑k

l=1 αl, the first two

moments of Dirichlet distribution is as follows

E(Yi) =
αi
α

E(Y 2
i ) =

αi(αi + 1)

α(α + 1)

E(YiYj) =
αiαj

α(α + 1)
i 6= j

V (Yi) =
αi(α− αi)
α2(α + 1)

If (Y1, ..., Yk) ∼ D(α0, ..., αk) and r1, ..., rk are integers such that 0 < r1 < ... < rl = k

then  r1∑
1

Yi,

r2∑
r1+1

Yi, ...,

rl∑
rl−1+1

Yi

 ∼ D

 r1∑
1

αi,

r2∑
r1+1

αi, ...,

rl∑
rl−1+1

αi


Note that Beta distribution is a special case of Dirichlet distribution where k = 1

so, D(α0, α1) ≡ Beta(α0, α1).
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3.4.2 Definition of Dirichlet Process

The Dirichlet process (DP) was anticipated in the work of Freedman [42] and Fabius

[36], and developed by Ferguson [38],[39]. It is the first prior defined for spaces of

distribution functions.

A random probability distributionG is generated by a DP if for any finite measurable

partition B1, ..., Bk of the sample space the vector of random probabilities G(Bk)

follows a Dirichlet distribution as follows:

(G(B1), ..., G(Bk)) ∼ D (αG0(B1), ..., αG0(Bk)) (3.3)

It is denoted as G ∼ DP (α,G0). The DP is characterised by two parameters; G0,

a specific distribution on X and α, a precision parameter that defines variance. For

large α there is small variability in DP realizations, and the larger the α is, the

closer the realization of G to G0.

The DP is an infinite-dimensional analogue of the finite-dimensional Dirichlet prior,

which has its roots in the one-dimensional Beta distribution. Therefore, most of the

properties of DP arise as an extension of the properties of the Dirichlet distribution.

For any measurable subset B ∈ X , G(B) ∼ Beta(αG0(B), αG0(Bc)) and thus

E(G(B)) = G0(B) (3.4)

V ar(G(B)) =
G0(B) {1−G0(B)}

α + 1
(3.5)

The DP prior distribution also has a conjugacy property. Assume yi ∼ G for

i = 1, ..., n, and G ∼ DP (α,G0). Let δy(.) denote a point mass at y. Therefore,

the posterior distribution is G|y1, ..., yn ∼ DP (α + n,G1) with G1 ∝ G0 +
∑n

i=1 δyi

[83],[46].

In original forms of the DP prior, G0 is assumed to be known (fixed). One problem

with a DP when G0 is known is that it produces distributions that are discrete

with probability one. Another option is to assume that the parameters in G0 are

unknown and following a set of parametric distributions, with possibly unknown hy-

perparameters, resulting in a mixture of Dirichlet process model [24]. The Dirichlet

process mixture model will be reviewed in Section 3.6.
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As the DP prior is defined through the marginal probabilities allocated to finite

partitions, it does not provide any intuition for what realisations G ∼ DP (α,G0)

actually look like. Therefore in the next section constructive representations of

Dirichlet process will be described.

3.5 Constructive Definition of Dirichlet Process

Many authors examine various representations for the Dirichlet process including

the gamma process, stick-breaking, Chinese restaurant process and also Pólya Urn.

In this section the stick-breaking method and Pólya Urn scheme are described in

detail.

3.5.1 Stick-breaking Method

The stick-breaking method is one of the constructive methods to generate realiza-

tions from Dirichlet process. It was first introduced by Sethuraman and Tiwari 1982

[97] and Sethuraman 1994 [96].

Assume {zr : r = 1, 2, ..,} and {θl : l = 1, 2, ...} are independent sequences of inde-

pendent and identically distributed (i.i.d.) random variables. Generate zr and atom

θl as i.i.d. random variables as follows:

zr
iid∼ Beta(1, α) r = 1, 2, . . .

θl
iid∼ G0 l = 1, 2, . . .

Define ω1 = z1 and ωl = zl
∏l−1

r=1(1 − zr) for l = 2, 3, .... Construction of ω can

be thought as a stick-breaking procedure. At each stage, we independently and

randomly, break what is left of the unit length and assign the length of this break

to the current ωl. In other words, a random piece of length z1 is broken off with the

length generated from a Beta(1, α) distribution and allocate this ωl = zl probability

weight to the randomly generated first atom θl∼G0. So, 1− zl of the stick remains

to be assigned to the other atoms. Then, a proportion z2 ∼ Beta(1, α) of the 1− zl
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is broken off and allocated to the probability ω2 = z2(1 − z1) to the second atom

θ2∼G0. Consequently, the sticks get shorter so that the length which is allocated to

the latest atom decreases stochastically, with a rate of decrease that depends on α.

Hence a realizationG fromDP (α,G0) using stick-breaking method is (almost surely)

of the form:

G(.) =
∞∑
l=1

ωlδθl(.),

where δθ(.) denotes a degenerate distribution with all its mass at θ and ωl is the

probability mass at atom θl. In our simulations which will describe in Section 3.5.3,

we work with a finite number of terms (N) in the above sum.

3.5.2 Pólya Urn Method

The Pólya urn is another method of representing Dirichlet process. Blackwell and

MacQueen [11] describe the connections between Pólya sequences and the Ferguson

distribution.

Assume θi|G for i = 1, 2, .., N are i.i.d from G, and G ∼ DP (α,G0), then, a sequence

of θi follows a generalized Pólya urn scheme with:

• θ1 ∼ G0

• For i = 2, ..., N , θi|θ1, ..., θi−1 distributed according to the mixed distribution

that puts point mass (α+ i−1)−1 at θj, j = 1, ..., i−1 and mass α(α+ i−1)−1

on the continuous G0.

Hence:

p(θ1, ..., θN) = G0(θ1)
N∏
i=2

{
α

α + i− 1
G0(θi) +

1

α + i− 1

i−1∑
j=1

δθj(θi)

}

3.5.3 Illustrative Web Application

As a preliminary learning step for developing MCMC samplers for a posteriori in-

ference and prediction from the Dirichlet process, a Shiny (CRAN-R) application
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has been implemented. Shiny is a new package from RStudio that makes it easier

to build interactive web applications with R. The Shiny package allows the creation

of user-friendly graphical interfaces for R code to be displayed as a webpage (Shiny)

[19]. Basically, the Shiny framework is for making the input values entered in a web

page readily accessible to R and taking the R output results back to the web page.

A Shiny application consists of two main components; a user-interface script (ui),

and a server script (server). The ui controls the layout and appearance of the

application while the server specifies all the R actions. The power of Shiny arises

from the ability to use reactive expressions, which are R objects that take inputs,

apply R code for the required actions and return another R object of interest.

Our application provides for sampling from a Dirichlet process (DP) and a simple

DP location mixture model. It illustrates how the sample paths from the DP process

are affected by changes in the main parameters, as listed below. In this application

G0 is assumed to have a normal mixture distribution. In the shiny implementation

the following inputs can be set.

• Simulation representation method for Dirichlet process — stick-breaking or

Pólya urn;

• the number of θ atoms, N ;

• the number of simulations;

• the precision parameter α;

• the weight parameter ω for the mixture of normals in G0;

• the location and scale parameters of the mixture distributions in G0.

By changing these values and clicking the Refresh button, the app instantly up-

dates the inputs and subsequently draws a new plot. The Shiny R code is listed in

the Appendix.

Figure 3.2 shows the effect of changing α, N and the number of simulations in

generating data from DP based on the stick-breaking method using the Shiny ap-

plication. The sample paths from a DP process are affected by changing N , the

number of simulations, and the value of α. Since E(zl) = 1
1+α

, values of α near zero
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lead to high weight on the first couple of atoms with the remaining atoms being

assigned small probabilities. For large α, the DP prior effectively draws from the

base parametric distribution G0.

Figure 3.3 shows the effect of changing N , α and the number of simulations in gen-

erating data from a DP based on a Pólya urn method using the Shiny application.

In Figure 3.3 we take G0 to have a normal mixture distribution with parameters

µ1, σ1, µ2, σ2 and ω that can be set interactively to show different mixtures. Again

based on Figure 3.3, the sample paths from a DP process are affected by changing

N , the number of simulations, and the size of α.

3.6 Dirichlet Process Mixture Model

A Dirichlet process prior as described in the previous section is a simple and com-

putationally tractable prior for an unknown distribution. However, it produces

distributions that are discrete with probability one, making it unsuitable for den-

sity modelling. To solve this problem, the distribution can be convolved with some

continuous kernel, or more generally, by using a DP to define a mixture distribution

with infinitely many components, of some simple parametric form.

A Dirichlet process mixture (DPM) model is a mixture with a parametric kernel

and a random mixing distribution modelled with a DP prior, see Ferguson [38],

[39], Antoniak [6], Escobar and West [35]. A DP mixture model is given by

F (.;G) =

∫
K(.|θ)G(dθ) (3.6)

where K(.|θ) is the distribution function of the parametric kernel of the mixing and

G ∼ DP (α,G0). The corresponding density function is given by

f(.;G) =

∫
k(.|θ)G(dθ) (3.7)

where k(.|θ) is the density function corresponding to K(.|θ).

Choosing an appropriate kernel depends on the underlying sample space. If the

underlying density function is defined on the entire real line, a location-scale kernel
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Figure 3.2: These graphs shows the sample path from DP process using stick-
breaking method with G0 ≡ N(0, 1). The heavy smooth line indicates N(0, 1).
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Figure 3.3: These graphs shows the sample path from DP process using Pólya Urn
method where G0 has mixture of normal distribution with the weight 0.6 (G0 ≡
0.6N(0, 1) + 0.4N(3, 0.5)). The heavy smooth line indicates the mixture of normal
distribution.
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can be used while on the positive half-line, mixtures of gamma, Weibull or lognormal

may be appropriate.

The model (3.6) is essentially a Bayesian hierarchical model that can be expressed

in the following way. If Y1, ..., Yn are i.i.d. realizations from f(.;G), for each Yi a

latent θi can be introduced and the model can be written as follows:

Yi|θi, φ
ind∼ k(θi, φ), i = 1, ..., n,

θi|G
i.i.d∼ G, i = 1, ..., n,

G|α, ψ ∼ DP (αG0), G0 = G0(.|ψ)

α, ψ, φ ∼ p(α)p(ψ)p(φ), (3.8)

where p(α)p(ψ)p(φ) denotes the assumption of independent priors for α, ψ and φ,

with p(·) denoting a generic distribution.

In the next section, posterior inference for DPM models is described, based on

MCMC posterior simulation.

3.7 Simulation Based Model Fitting

A break-through in fitting Dirichlet process mixture model is based on the work of

Escobar [34] which is extended in Escobar and West [35], who realized the potential

of using MCMC methods in this context.

In Bayesian non-parametric methods the discreteness of the random distribution G

induces a clustering of θ. Assume n∗ is the number of distinct elements (clusters)

in the vector (θ1, ..., θn) defined as θ∗j , j = 1, ..., n. let s = s1, ..., sn be the vector of

configuration indicator, si = j if and only if θi = θ∗j , i = 1, ..., n. Also, assume nj be

the size of cluster j. It is obvious that (n∗, s, (θ1, ..., θn∗)) gives the same information

as (θ1, ..., θn).

The main goal is to draw from the conditional distribution p(θ1, ..., θn, α, ψ, φ|data).

A standard Gibbs sampling approach is based on following full conditionals:

(a) p((θi, si)|{(θi′ , si′), i′ 6= i}, α, ψ, φ, data), for i = 1, ..., n.
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(b) p(θ∗j |s, n∗, ψ, φ, data), for j = 1, ..., n∗.

(c) p(α|n∗, data) and p(ψ|{θ∗j , j = 1, ..., n∗}, n∗).

(d) p(φ|{θi, i = 1, ..., n}, data).

Each of the full conditionals in (a) is obtained by multiplying the likelihood term

for θi, k(yi; θi, φ), and the full conditional prior p(θi|{θi′ , i
′ 6= i}, α, φ).

A superscript ”-” denotes all relevant quantities when θi is removed from the vector

(θ1, ..., θn). So the n∗− is defined as the number of clusters in {θi′ i
′ 6= i} when θi is

removed. Also, nj− is the number of elements in cluster j, j = 1, ..., n∗− when θi is

removed and define θ∗j as the distinct cluster values.

For each i = 1, ..., n, the full conditional in (a) is the mixed distribution as follows:

p(θi|{θi′ , i
′ 6= i}, α, φ, data) =

q0h(θi|γ, φ, yi) +
∑n∗−

j=1 n
−
j qjδ(θ∗j )(θi)

q0 +
∑n∗−

j=1 n
−
j qj

(3.9)

Where

• qj = k(yi; θ
∗
j , φ)

• q0 = α
∫
k(yi; θ, φ)g0(θ|ψ)dθ

• h(θi|γ, φ, yi) ∝ k(yi; θi, φ)g0(θi|ψ)

where g0 is the density of G0.

Once step (a) is finished, a specific number of clusters (n∗), specific configuration s

and the associated cluster locations θ∗j are produced.

In step(b) by sampling, and thus moving cluster locations, the mixing of the chain

is improved [15]. For each j = 1, ..., n∗

p(θ∗j |s, n∗, ψ, φ, data) ∝ g0(θ∗j |ψ)
∏
{i:si=j}

k(yi; θ
∗
j , φ) (3.10)

Recall that for a Dirichlet process DP (α,G0), α controls how close a realisation G

is to G0. In the Dirichlet process mixture model α controls the distribution of the

number of distinct elements n∗ of the vector θ = (θ1, ..., θn) and hence the number
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of distinct components of the mixture [6], [35] [73].

In using the result of Antoniak [6],

P (n∗|α, n) = cn(n∗)n!αn
∗ Γ(α)

Γ(α + n)
n∗ = 1, ..., n (3.11)

where cn(n∗) = P (n∗|α = 1, n), not involving α. It can be computed using re-

currence formulas for Stirling numbers. The full conditional for α, the precision

parameter of the Dirichlet process, is generated using the augmentation method in

Escobar and West [35]. The full conditional for α depends only on n∗ and on the

data only through n. Assume a Gamma(aα, bα) prior for α with mean aα/bα also

by knowing
Γ(α)

Γ(α + n)
=

(α + n)β(α + 1, n)

αΓ(n)
(3.12)

we have

p(α|n∗, data) ∝ p(α)αn
∗ Γ(α)

Γ(α + n)

∝ p(α)αn
∗−1(α + n)β(α + 1, n)

∝ p(α)αn
∗−1(α + n)

∫ 1

0

xα(1− x)n−1dx (3.13)

Now if an auxiliary variable u is introduced such that

p(α, u|n∗, data) ∝ p(α)αn
∗−1(α + n)uα(1− u)n−1 (3.14)

This implies that p(α|n∗, data) is the marginal distribution for α arising from (3.14).

The Gibbs sampler can be extended to draw from the full conditionals for α and u

resulting from(3.14). Specifically, p(u|α, data) ∝ Beta(α + 1, n) and

p(α|u, n∗, data) ∝ pGamma(aα+n∗, bα−log(u))+(1−p)Gamma(aα+n∗−1, bα−log(u))

where

p =
aα + n∗ − 1

n(bα − log(u)) + aα + n∗ − 1
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The full conditional for ψ is as follows:

p(ψ|{θ∗j , j = 1, ..., n∗}, n∗) ∝ p(ψ)
n∗∏
j=1

g0(θ∗j |ψ) (3.15)

Finally, the full conditional for the last step is simple and as follows, since it does

not involve the non-parametric part of the model.

p(φ|{θi, i = 1, ..., n}, data) ∝ p(φ)
n∏
i=1

k(yi; θi, φ) (3.16)

We will describe this process below for the particular case of normal Dirichlet process

mixture model.

3.8 Posterior Predictive Distribution

By using the MCMC methods described in the previous section, posterior samples

can be obtained. A Bayesian density estimate is based on the posterior predictive

density p(ynew|data) with associated mixing parameter θnew. Using the Polya urn

structure for the Dirichlet process,

p(θnew|n∗, s, θ∗, α, ψ) =
α

α + n
G0(θnew|ψ) +

1

α + n

n∗∑
j=1

njδθ∗j (θnew) (3.17)

The posterior predictive distribution for ynew is given by

p(ynew|data) =

∫
p(ynew|n∗, s, θ∗, α, ψ, φ)p(n∗, s, θ∗, α, ψ, φ|data)

=

∫∫
k(ynew|θnew, φ)p(θnew|n∗, s, θ∗, α, ψ)p(n∗, s, θ∗, α, ψ, φ|data) (3.18)

By using (3.17) we have

p(ynew|data) =

∫ (
α

α + n

∫
k(ynew|θ, φ)g0(θ|ψ)dθ +

1

α + n

n∗∑
j=1

njk(ynew; θ∗j , φ)

)

p(n∗, s, θ∗, α, ψ, φ|data) (3.19)
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The above integral is a mixture of n∗+1 components. The last n∗ components (that

dominate when α is small relative to n) yield a discrete mixture (in θ) of k(.; θ, φ)

with the mixture parameters defined by the distinct θ∗j . The posterior predictive

density for ynew is achieved by averaging this mixture with respect to the posterior

of n∗, s, θ∗ and all other parameters.

3.9 Example of Dirichlet Process Mixture Model

As an example, the location normal Dirichlet process mixture model is used to

illustrate how the simulation method is applied.

Yi|θi, φ
ind∼ N(yi; θi, φ), i = 1, ..., n,

θi|G
i.i.d∼ G, i = 1, ..., n,

G|α, µ, σ2 ∼ DP (αG0), G0 = N(µ, τ 2) (3.20)

with hyperpriors:

p(α) = Gamma(aα, bα)

p(µ) = N(aµ, bµ)

p(τ 2) = IGamma(aτ2 , bτ2)

p(φ) = IGamma(aφ, bφ)
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At first we need to find p(θi|{θi′ , i
′ 6= i}, α, φ, µ, τ 2, φ, data) for i = 1, ..., n using

(3.9). So we need to find q0 and h(θi|µ, τ 2, φ, yi).

q0 = α

∫
k(yi; θ, φ)g0(θ|µ, τ 2)dθ

= α

∫ ∞
−∞

N(yi; θi, φ)N(θ|µ, τ 2)dθ

= α

∫ ∞
−∞

1√
2πφ

exp

(
−(yi − θ)2

2φ

)
1√

2πτ 2
exp

(
−(θ − µ)2

2τ 2

)
dθ

=
α

√
2πφ
√

2πτ 2
exp

(
−y2

i

2φ

)
exp

(
−µ2

2τ 2

)∫ ∞
−∞

exp

(
−θ2(τ 2 + φ) + 2θ(yiτ

2 + µφ)

2φτ 2

)
dθ

=
α

√
2πφ
√

2πτ 2
exp

(
−y2

i

2φ

)
exp

(
−µ2

2τ 2

)
exp

(
(yiτ

2 + µφ)2

2φτ 2(φ+ τ 2)

)

×
∫ ∞
−∞

exp


−
(
θ − yiτ

2 + µφ

φ+ τ 2

)2

2φτ 2

(φ+ τ 2)

 dθ

=
α√

2π(φ+ τ 2)
exp

{
−(yi − µ)2

2(φ+ τ 2)

}
(3.21)

Also

h(θi|µ, τ 2, φ, yi) = k(yi; θ, φ)g0(θ|µ, τ 2)

=
1√
2πφ

exp

(
−(yi − θ)2

2φ

)
1√

2πτ 2
exp

(
−(θ − µ)2

2τ 2

)

∝ exp


−
(
θ − yiτ

2 + µφ

φ+ τ 2

)2

2φτ 2

(φ+ τ 2)


∼ N

(
yiτ

2 + µφ

φ+ τ 2
,
φτ 2

φ+ τ 2

)
(3.22)

So, by substituting (3.21),(3.22) and qj = N(yi; θ
∗
j , φ) in (3.9), p(θi|{θi′ , i

′ 6= i}, α, φ, µ, τ 2, φ, data)

can be found.

By using (3.10), p(θ∗j |s, n∗, φ, µ, τ 2, data) which is the resampling of the cluster lo-
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cations θ∗j .

p(θ∗j |s, n∗, φ, µ, τ 2, data) ∝ g0(θ∗j |µ, τ 2)
∏
{i:si=j}

k(yi; θ
∗
j , φ)

∝ N(θ∗j |µ, τ 2)
∏
{i:si=j}

N(yi; θ
∗
j , φ)

∝ 1√
2πτ 2

exp

(−(θ∗j − µ)2

2τ 2

)
×
(

1√
2πφ

)nj
exp

(
−
∑

i:si=j
(yi − θ∗j )2

2φ

)

∝ exp

(−(θ∗2j − 2µθ∗j )

2τ 2

)
× exp

(−(njθ
∗2
j − 2θ∗jnj ȳ

∗
j )

2φ

)
∝ exp

(
−1

2φτ 2

{
(φ+ njτ

2)

[
θ∗j −

(
µφ+ njτ

2ȳ∗j
φ+ njτ 2

)]2
})

∼ N

(
µφ+ njτ

2ȳ∗j
φ+ njτ 2

,
φτ 2

φ+ njτ 2

)
(3.23)

where nj is the size of cluster j and ȳ∗j = 1
nj

∑
i:si=j

yi.

p[α|n∗, data] is calculated in (3.13). By using (3.15), p(µ|{θ∗j , j = 1, ..., n∗}, n∗) and

p(τ 2|{θ∗j , j = 1, ..., n∗}, n∗) can be found as follows:

p(µ|{θ∗j , j = 1, ..., n∗}, n∗) ∝ N(µ|aµ, bµ)
n∗∏
j=1

N(θ∗j |µ, τ 2)

∝ 1√
2πbµ

exp

(
−(µ− aµ)2

2bµ

) n∗∏
j=1

1√
2πτ 2

exp

(−(θ∗j − µ)2

2τ 2

)
∝ exp

(
−1

2bµτ 2

{
µ2(τ 2 + n∗bµ)− 2µ(aµτ

2 + bµn
∗θ̄∗)

})

∝ exp

 −1
2bµτ2

τ2+n∗bµ

{
µ− aµτ

2 + bµn
∗θ̄∗

τ 2 + n∗bµ

}2


∼ N

(
aµτ

2 + bµn
∗θ̄∗

τ 2 + n∗bµ
,

bµτ
2

τ 2 + n∗bµ

)
(3.24)
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where θ̄∗ =

∑n∗

j=1 θ
∗
j

n∗
.

p(τ 2|{θ∗j , j = 1, ..., n∗}, n∗) ∝ IGamma(aτ2 , bτ2)
n∗∏
j=1

N(θ∗j |µ, τ 2)

∝
b
aτ2
τ2

Γ(aτ2)
(τ 2)−aτ2−1exp

(
−bτ2
τ 2

) n∗∏
j=1

1√
2πτ 2

exp

(−(θ∗j − µ)2

2τ 2

)

∝ (τ 2)−aτ2−1exp

(
−bτ2
τ 2

)(
1√

2πτ 2

)n∗
exp

(
−
∑n∗

j=1(θ∗j − µ)2

2τ 2

)

∝ (τ 2)−(aτ2+n∗
2

)−1exp

(
−1

τ 2

{
bτ2 +

1

2

n∗∑
j=1

(θ∗j − µ)2

})

∼ IGamma

(
aτ2 +

n∗

2
, bτ2 +

1

2

n∗∑
j=1

(θ∗j − µ)2

)
(3.25)

p(φ|{θi, i = 1, ..., n}, data) can be calculated using (3.16) as follows:

p(φ|{θi, i = 1, ..., n}, data) ∝ IGamma(aφ, bφ)
n∏
i=1

N(yi; θi, φ)

∝
b
aφ
φ

Γ(aφ)
(φ)−aφ−1exp

(
−bφ
φ

) n∏
i=1

1√
2πφ

exp

(
−(yi − θi)2

2φ

)
∝ (φ)−aφ−1exp

(
−bφ
φ

)
(φ)

−n
2 exp

(
−
∑n

i=1(yi − θi)2

2φ

)
∝ (φ)−(aφ+n

2
)−1exp

(
−1

φ

{
bφ +

1

2

n∑
i=1

(yi − θi)2

})

∼ IGamma

(
aφ +

n

2
, bφ +

1

2

n∑
i=1

(yi − θi)2

)
(3.26)
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Finally, by using (3.19) and (3.21) the posterior predictive distribution can be cal-

culated using the following formula:

p(ynew|data) =

∫ (
α

α + n

∫
k(ynew|θ, φ)g0(θ|ψ)dθ

+
1

α + n

n∗∑
j=1

njk(ynew; θ∗j , φ)

)
p(n∗, s, θ∗, α, ψ, φ|data)

=

∫ (
α

α + n
N(y0|µ, φ+ τ 2) +

1

α + n

n∗∑
j=1

njN(ynew; θ∗j , φ)

)

p(n∗, s, θ∗, α, ψ, φ|data) (3.27)

Related R code can be found in the Appendix.

DPpackage in R which was developed by Jara [60] can also be used for implemen-

tation of some non-parametric Bayesian models.

3.9.1 Illustration

As an example, we discuss the well-known galaxy data, which was described in

Section 1.1.1. The Galaxy dataset considers physical information on the recession

velocities (km/second) for 82 galaxies. The data is sampled from six well-separated

conic sections of the Corona Borealis region. The question of interest is whether

these galaxies form distinct super-clusters surrounded by voids in space. As there is

a jump between the seven smallest observations around 10 and also another jump

in the central body of observations between 16 and 26 and moreover there is a gap

between 27 and 32, for the three largest observations, so we would expect to find

at least three components in the data. For ease of presentation the velocities were

divided by 1000.

Fitting the location-normal Dirichlet process mixture model, as described in (3.20),

the corresponding posterior density for the data is displayed in Figure 3.4. Based

on Figure 3.4, five components are suggested for the Galaxy data.



3.9 Example of Dirichlet Process Mixture Model 57

Figure 3.4: Posterior density for Galaxy data using model described in (3.20)

Dpdensity function in DPpackage is also used to generate a posterior density for a

Dirichlet process of a mixture of normals models. The following model is assumed

to estimate the density:

yi | µi, Σi∼N(µi, Σi)

(µi, Σi) | G∼G

G | α,G0 ∼ DP (α,G0)

where the baseline distribution is the conjugate normal-inverted-Wishart

G0 = N(µ | m1, (1/k0)Σ)IW (Σ | ν1, ψ1)
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with hyperpriors

α | a0, b0 ∼ Gamma(a0, b0)

m1 | m2, s2 ∼ N(m2, s2)

k0 | τ1, τ2 ∼ Gamma(τ1/2, τ2/2)

ψ1 | ν2, ψ2 ∼ IW (ν2, ψ2)

Figure 3.5 shows the posterior density for Galaxy data using Dpdensity function in

DPpackage. Based on Figure 3.5, five components are suggested for the data.

Figure 3.5: Posterior density for Galaxy data using Dpdensity function in
DPpackage

3.10 Chapter Summary

In this chapter, we provide an overview of some important aspects of non-parametric

Bayesian inference. The intention is not to give a complete account but rather to

touch on areas of interest for the thesis. The non-parametric Bayesian approach is

described briefly and how it can account for model uncertainty relating to the choice
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of a parametric distribution. This is in contrast to classical non-parametric methods

which may be distribution-free, here uncertainty about distributional shape is pro-

vided by a flexible probability model for the data-generating process. In this context

the Dirichlet process prior is used as a flexible alternative to standard parametric

priors. As Dirichlet priors produce, with probability one, posterior distributions that

are discrete these are unsuitable for density modelling. The Dirichlet process mix-

ture (DPM) model provides a solution to this that will be used as a non-parametric

prior for survival distributions. The simulation method and posterior predictive

distribution for DPM are discussed as they are required in imputing the censored

observations.

As a preliminary learning step for developing MCMC samplers for a posteriori infer-

ence and prediction from the Dirichlet process, a Shiny (CRAN-R) application has

been implemented. Our application provides for sampling from a Dirichlet process

(DP) and a simple DP location mixture model. It illustrates how the sample paths

from the DP process are affected by changes in the main parameters.

In the next chapter, the Bayesian framework is considered as a flexible approach to

impute the censored observations using predictive distributions.



Chapter 4

A Bayesian Approach to

Imputation of Survival Data

4.1 Introduction

In the presence of right censoring, standard methods of plotting individual survival

times are invalid. By treating the censored observations as missing and using im-

putation methods, a complete dataset can be formed. Then standard graphics may

usefully complement Kaplan-Meier plots.

In this chapter we consider using a Bayesian framework to present a flexible approach

to impute the censored observations using predictive distributions. The method is

intended to be used for the visual exploration and presentation of survival data.

We illustrate its use for standard survivor and hazard function plots, which give a

simple, interpretable display for physicians and patients to understand the results

from clinical trials.

This chapter is organized as follows: we start with a review on imputation of missing

data in Section 4.2. Then in Section 4.3 we give a brief introduction to imputing

censored observations. In Section 4.4 the Royston parametric approach [92],[93] is

introduced. In Section 4.5 we consider using a parametric Bayesian framework to

impute the censored observations. In Section 4.6 non-parametric Bayesian methods

(NPB) are used as a second approach to Bayesian imputation, as considering a fixed

60
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distributional specification for the random or error components in the model may

be inappropriate for the actual data. Finally, in Section 4.7 the Royston parametric

approach is compared to our two proposed imputation methods utilising parametric

Bayesian and non-parametric Bayesian methods.

4.2 Imputation Methods for Missing Data

Missing data appear in almost all statistical analyses. The missing data mechanism

which describes the probability that a response is observed or missing is not under

the control of the investigator. Instead, assumptions are made about the missing

data mechanism, and the validity of analysis depends on these assumptions. A hi-

erarchy of three different types of missing data can be distinguished [80].

The first and simplest type of missing data is missing completely at random (MCAR).

The data are said to be missing completely at random if the probability of being

missing is the same for all cases. This effectively implies that causes of the missing

data are unrelated to the data. The primary aspect of MCAR is that the incomplete

observed data can be thought of a random sample of the complete data. Accord-

ingly, all moments, and even the joint distribution of the observed data do not differ

from the corresponding moments or joint distribution of the complete data.

The second type of missing data is called missing at random (MAR) where the

probability that responses are missing depends on the observed responses but is

unrelated to the specific missing values that should have been obtained. MAR is a

much broader class than MCAR.

The third missingness mechanism is known as Missing Not At Random (MNAR),

also referred to as ”non-ignorable” in much-published research. If missingness on

the predictor is MNAR, it depends on the actual level of the predictor and poten-

tially other variables not available in the data. Note that MNAR does not mean

that missingness lacks a random component, only that its systematic component is

a function of the actual values of the variable with missingness [52].

Researchers use different ways to deal with missing data including case deletion,

single imputation and multiple imputation. A brief introduction of each method is
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explained in the following subsections.

4.2.1 Case Deletion

Deleting the missing values is an obvious simple solution for dealing with missing-

ness and this approach includes listwise and pairwise deletion methods.

In listwise deletion, also known as the complete case analysis, only full cases that

have no missing data in any of the recorded variables are entered in the analysis.

If the data are not MCAR, listwise deletion can severely bias estimates of means,

regression coefficients and correlations. Although in the case of MCAR listwise dele-

tion does not add any bias, it does decrease the power of the analysis by decreasing

the effective sample size. Also, in real life applications, when the number of variables

is large, there can be more than half of the original sample that is lost, and clearly

a small subsample leads to a loss of power and degrades the ability to detect the

effects of interest [104].

Pairwise deletion, also known as available case analysis, attempts to remedy the data

loss problem in listwise deletion. This statistical procedure uses cases that contain

some missing data. The process deletes a case when it is missing on a variable that

is required for a particular analysis, but includes that case in analyses for other

variables with non-missing values. The estimates can be biased if the data are not

MCAR. Pairwise deletion enables you to use more of your data, but, each computed

statistic may be based on a different subset of cases, which can be problematic. For

example, a sample correlation matrix calculated using pairwise deletion may not be

positive definite, which is a requirement for most multivariate procedures. Correla-

tions outside the range [1,+1] can also occur, a problem that comes from different

subsets used for the covariances and the variances. Such problems are more severe

for highly correlated variables [71].

4.2.2 Single Imputation

Instead of discarding the unit entirely from the study, it is tempting to replace the

missing items with substituted values, commonly referred to as imputation. Im-
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putation has several desirable features. As no units are sacrificed, it is potentially

more efficient than case deletion and, for example, the estimated sample correlation

matrix remains positive definite. Moreover, retaining the full sample helps to pre-

vent loss of power resulting from a diminished sample size. In single imputation, a

variety of approaches are used to replace missing data.

A quick fix for the missing data is to replace them by the mean of that variable

for all other complete cases, while the mode can be used for categorical data [29].

Mean imputation is a fast and simple way for imputing the missing data. However,

it underestimates the variance, as the variability in the data is reduced with all

replaced missing values being identical. The overall correlation estimate decreases

due to filling in the data with a set of uncorrelated cases. Also, it leads to bias of

almost any estimate other than the mean, and may even bias the estimate of the

mean when data are not MCAR [7]. Mean imputation should perhaps only be used

as a rapid fix when a small number of values are missing, and it should be avoided

in general.

Another single imputation method which is often used is regression imputation. Re-

gression imputation uses regression models to predict values for the missing entries

of a variable based on other variables that have been measured for the subjects in

the study. The first step involves building a model from the observed data. Pre-

dictions for the incomplete cases are then calculated under the fitted model and

serve as replacements for the missing data. Regression imputation yields unbiased

estimates of the means under MCAR, just as in mean imputation. Regression im-

putation is better than mean imputation as it considers other information that has

been collected on a subject when imputing a value for that subject and gives dif-

ferent imputed missing values for different subjects. Nevertheless, it does not solve

the problem associated with mean imputation of underestimated standard errors as

any values which have to be imputed will lie along the fitted regression line and not

reflect the variability of individual data values.

Stochastic regression imputation is a refinement of regression imputation that pro-

duces unbiased parameter estimates under a MAR missing data mechanism. This

method uses regression equations to predict the incomplete variables from the com-

plete variables, but it takes the extra step of augmenting each predicted score with a
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normally distributed residual term. Adding residuals to the imputed values restores

lost variability to the data and efficiently eliminates the biases associated with stan-

dard regression imputation schemes [33].

Hot-deck imputation is a collection of techniques replacing missing values with sim-

ilar responding units in the sample [72]. In the basic form of hot-deck imputation,

missing values are imputed with the scores of other similar respondents where a ran-

dom draw from the observed data replaces each missing value. Hot-deck approaches

are not well suited for estimating measures of association and can produce substan-

tially biased estimates of correlations and regression coefficients.

The last observation carried forward (LOCF) is a missing data technique that is

specific to longitudinal designs. This procedure involves filling in the missing values

for a subject with their last recorded value for that particular measurement. Al-

though this approach is simple, it makes the strong assumption that the value of

the outcome remains unchanged after dropout, which seems likely to be unrealistic.

Molenberghs and Kenward [81] show that LOCF can yield biased estimates even

under MCAR. Generally, LOCF is not recommended for use.

Another simple idea developed before the modern computing era is the indicator

method [61]. This method is popular in public health and epidemiology. Suppose

that in the regression model there are missing values in one of the explanatory

variables. The indicator method modifies the original regression model by adding

a missingness indicator and, possibly, interactions between this indicator and the

covariates. In other words, the indicator method replaces each missing value by a

zero and extends the regression model by the response indicator. The procedure

is applied to each incomplete variable. The user analyses the extended regression

model instead of the original. An advantage is that the indicator method retains the

full dataset. Also, it allows for systematic differences between the observed and the

unobserved data by inclusion of the response indicator. The indicator method can

yield estimates with much reduced standard errors relative to the complete-subject

method. Unfortunately, the method can also yield severely biased regression esti-

mates, even under MCAR and for low amounts of missing data [102] [49] [65].

Single imputation methods generally cause standard errors to be too small because

they fail to consider the fact that we are uncertain about the missing values. In the
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next section, multiple imputation techniques are discussed, which have the advan-

tage that they can reflect the uncertainty of the missing data.

4.2.3 Multiple Imputation

The concept of multiple imputation (MI) was first described by Donald Rubin in a

1977 manuscript prepared for the United States Social Survey, and it is also repre-

sented in his 1987 book [94]. This approach has become an important method for

dealing with the statistical analysis of incomplete data.

Multiple imputation is an extension of the single imputation method as it replaces

each missing value by a vector of D ≥ 2 imputed values. These D values give D

completed data sets which can be formed from the vectors of imputations; the first

completed dataset can be created by replacing each missing value with the first com-

ponent in the vector of imputations, etc. Then each completed dataset is analysed

using the standard complete-data procedure for the question of interest. As each

analysis is performed D times, once for each imputed data set, the analysis phase

yields D sets of parameter estimates and standard errors, and the D complete-data

inferences can be combined to form a single inference that properly reflects uncer-

tainty due to nonresponse under that model [71] using so-called Rubin’s rule [94].

Multiple imputation seems a better alternative to single imputation, because by

imputing a single value and treating that value as known, single imputation cannot

reflect sampling variability under one model for nonresponse or uncertainty about

the correct model for nonresponse. Also, by generating repeated randomly drawn

imputations under more than one model, multiple imputation provides the study of

the sensitivity of inferences to various models for nonresponse by using complete-

data methods repeatedly.

Different approaches to performing multiple imputation can be described within

three major categories [103]. Univariate (generally regression based) imputation

methods for single variables and monotone missing patterns; data-augmentation

imputation using a joint probability model; and the method of fully conditional

univariate regression specification ( also known as chained equations or sequential

regression imputation) [80].
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In monotone missing data imputation, variables that are subject to missing data can

be ordered where the last variable in the ordering has the largest number of missing

values. Therefore, imputations are created by drawing from a sequence of univari-

ate conditional distributions P (Yj|Y1, ..., Yj−1) for j = 1, ..., p. This is a powerful

approach, but problems in which missingness has a monotone structure seem to be

relatively uncommon in practice, motivating the need for more general approaches.

Joint modelling assumes that the hypothetically complete data can be described

by a multivariate distribution, so imputations are created as draws under the as-

sumed model. By using the joint modelling method, the data Y is described by the

multivariate distribution P (Y |θ), where θ is a vector of unknown parameters of the

distribution. A major advance in the practical application was Schafer’s develop-

ment of computational algorithms for imputation under joint probability models, in

particular, the multivariate normal distribution [95]. The response is assumed to

have a normal distribution conditional on the covariates along with a multivariate

normal distribution for the covariates. This approach uses Markov Chain Monte

Carlo (MCMC) to fit this model to the observed data by treating missing values

as parameters and updating them using an MCMC algorithm until the MCMC

sampler converges. So the first imputed dataset contains current draws of missing

values together with the observed values. Successive imputed datasets should be

independent draws from the distribution of missing values given the observed data.

The algorithm for this method is computationally stable and generates reasonable

results for quite large numbers of variables. But users of this approach need to make

a decision on how to handle variables which do not follow a normal distribution [80].

The term fully conditional specification (FCS) refers to a class of imputation mod-

els for non-monotone multivariate missing data. This approach relies on specifying

univariate regression models for each variable, conditioning on all other variables in

the dataset. In other words, the user specifies a conditional distribution P (Yj|Y−j)

directly for each variable Yj conditioning on all other variables in the dataset Y−j

(where −j refers to the deletion of the jth variable) and assumes this distribution

to be the same for the observed and missing Yj. Imputations are created by itera-

tively drawing from these conditional distributions. The multivariate model P (Y )

is implicitly specified by the given sets of conditional models. The main reason
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for using this method is the flexibility in allowing an appropriate univariate regres-

sion specification for each variable, which not only allows appropriate scaling and

modelling of univariate error but also allows the univariate models to incorporate

non-linear terms and interaction effects. Nevertheless, when multilevel structures

with unbalanced data and partially observed variables at several levels of the hi-

erarchy are considered, FCS loses its simplicity and computational attraction. For

an appropriate choice of priors, FCS and joint modelling are equivalent for unstruc-

tured multivariate normal models[18].

To sum up, over the past decade multiple imputation methods have become a valu-

able tool for the incomplete data analysis. However, their assumptions and limita-

tions need to be considered to prevent misleading application and conclusions.

In the next section, right censored observations in survival analysis are treated as

missing values and a brief introduction to imputation methods for censored obser-

vations is given.

4.3 Imputing Censored Observations

In the presence of censoring the Kaplan-Meier estimator, described in Section 2.6,

is an estimator of the survivor function. As described in Section 2.6, based on the

Kaplan-Meier plot, the median survival time is the classical summary reported to

the patients and is often mis-interpreted. However, the median may not be unique

as if the Kaplan-Meier survival estimate is horizontal at Ŝ(t) = 0.5 any value in the

interval Ij = [t(j), t(j+1)) is a reasonable estimate of the median where t(1) < t(2) < ...

are ordered observed event times. Also, in some data sets, the median survival time

can not be calculated as the Kaplan-Meier survival curve does not reach the median

because of extensive censoring [12], [70].

If there is no censoring in the data set, standard graphical and numerical summaries

can be used. By imputing the censored observations and combining the original

and imputed data a full data set can be constructed and it is possible to plot the

histogram or density of the data to complement the information given by Kaplan-

Meier plots.
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The idea of imputing right censored survival data has, to some extent, already

been considered in the literature. Wei and Tanner [107] proposed a method to

impute failure times for the censored observations drawn from the conditional normal

distribution in the context of regression analysis with censored data. Also in their

other paper [108], they used the Poor Man’s data augmentation algorithm and an

asymptotic data augmentation algorithm for censored regression data. Furthermore,

Pan and Connett [88] have extended these results to clustered censored data in semi-

parametric linear regression models. Ageel [3] considers using an estimated value of

E[Ti|Ti > Ci] as a pseudo-value to replace the ith censored observation using both

an empirical distribution and the Weibull distribution. In the empirical approach,

E[Ti|Ti > Ci] ≈
n∑

j=1,j 6=i

{Tj|Tj ≥ Ci and Tj is an uncensored datum } /nui

where nui is the number of events in the set

{Tj|Tj ≥ Ci and Tj is uncensored, j = 1, ..., n, j 6= i} .

In using the Weibull distribution approach, the continuous random variable T is

assumed to follow a Weibull distribution, Weibull(α, λ), and then

E[Ti|Ti > Ci] = α−1exp
[
(αCi)

λ
]

Γ

(
1 +

1

λ

)[
1− I

(
(αCi)

λ, 1 +
1

λ

)]

where Γ is the gamma function and I the cumulative distribution function of a

gamma distribution. Also, Chiou [20] proposes another method where the censored

observation is imputed by Median[Ti | Ti > Ci]. Cantor [16] presents a method of

imputation for right censored survival data in which the possibility that an indi-

vidual with a censored survival time is cured is explicitly accommodated. For each

right censored observation, first a cure/non-cure indicator is imputed and then for

the non-cured a survival time is imputed based on a Gompertz model. Lue et al.

[75] addresses the issue of reducing the dimension of predictors in survival regres-

sion without requiring a prespecified parametric model. They replace each right

censored survival time with its conditional expectation by using Buckley and James

[13] pseudo-random variables Yi = Tiδi +E[Ti | Ti > Ci](1− δi). Jackson et al. [58]
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impute failure times for censored participants from the entire sample of observed

failure times that are greater than their corresponding censoring times in order

to quantify the sensitivity of the conclusions from fitted Cox proportional hazards

models. Taylor et al. [101] described non-parametric multiple imputation methods,

including risk set imputation and Kaplan-Meier imputation, to handle missing event

times for censored observations in the context of non-parametric survival estimation

and testing. Faucett, Schenker and Taylor [37] and also Hsu in collaboration with

Taylor and other colleagues [56] used auxiliary variables to recover information from

censored observations by using Markov chain Monte Carlo methods to impute event

times for censored cases. Hsu and Taylor [54] extended this work on estimation us-

ing auxiliary variables to adjust, via multiple imputation, for dependent censoring

in the comparison of two survival distributions. Hsu, Taylor and Hu [55] further

adapted their previous method to the situation where the event and censoring times

follow accelerated failure time models.

The approach proposed in this work is similar to that proposed by Royston [92][93]

in respect to using imputations of censored observations in visualising tools of sur-

vival in time to event studies. In Royston’s approach, each censored survival time

is imputed by assuming a lognormal distribution for the unobserved actual failure

time. Royston’s method is inherently parametric and is described in detail in Section

4.4.

4.4 Parametric Approach

Royston [92][93] shows the practical use of the lognormal distribution for imputation

in prognostic models for time-to-event in datasets from breast and ovarian cancer.

This method introduces an appropriate amount of random variation to simulate

realistic individual survival times. Values of the censored survival time are imputed

by substituting values randomly sampled from a lognormal distribution by drawing

a value for each patient who was censored conditional on their survival to at least

the point of censoring. The mean and standard deviation of the distribution are

estimated taking into account the values of prognostic factors for each patient.
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The survivor function of the lognormal distribution of a random variable T with

location parameter µ and variance σ2 is given by

S(t) = 1− Φ

(
ln t− µ

σ

)

where Φ(.) is the standard normal distribution function. Typically, µ is modelled as

a linear function of covariates x, therefore the regression model for the log-survival

times can be written as

ln t = β0 + βTx + εσ

where ε ∼ N(0, 1). Parameters β0 and β can be estimated from a sample of nU un-

censored and n−nU censored observations by maximising the following log-likelihood

function as described in Section 2.4:

lnL =

nU∑
i=1

ln f(ti; β0,β) +
n∑

i=nU+1

lnS(ti; β0,β)

Let m be the expected log-survival time for a given patient with a real survival time

of T , which depends on the patient’s prognostic factors. Once a lognormal model has

been estimated, the expected value mi = E(lnTi|xi) is available for all i = 1, ..., n.

Assume s to be the residual standard deviation of the log-survival times, that is,

the standard deviation of (lnT −m) over the sample. The lognormal model specfies

that

(
lnT −m

s

)
has a standard normal distribution. For censored observations, the

actual survival time, which is unknown, always exceeds the censored time. Assume

that τi is the unobserved true survival time related to a censored observation ci. The

model assumes that

(
ln τi −mi

s

)
has a standard normal distribution, but taking

account of the known censoring time ci we have to consider the right-hand tail of a

normal distribution truncated at

(
ln ci −mi

s

)
.

In order to impute τi stochastically, a random draw ui is sampled from a standard

normal truncated at ki =

(
ln ci −mi

s

)
. Obtaining ui is straightforward. Assume

that u has a standard normal distribution truncated at k, the distribution of u is

effectively an N(0, 1) with all observations less than k discarded. this is a simple,

but wasteful, approach to simulation. Alternatively, the cumulative distribution
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function of the truncated distribution can be expressed as:

Φk(u) =
Φ(u)− Φ(k)

1− Φ(k)
, u ≥ k (4.1)

where Φ(u) is the cdf of the standard normal. This can now be used in a standard

inverse cdf simulation approach, where to draw a random observation from the

truncated distribution we simply take ui = Φ−1
k (pi), with pi as a realisation of the

uniform(0, 1) distribution. Thus, in order to get the value of ui :

pi = Φk(ui) =
Φ(ui)− Φ(k)

1− Φ(k)

⇒ Φ(ui) = pi((1− Φ(k)) + Φ(k)

⇒ ui = Φ−1 (pi(1− Φ(k)) + Φ(k)) ,

which corresponds to an inversion method for the right-hand tail, truncated at k,

of a normal distribution. After sampling a random draw ui from a standard normal

truncated at ki the pseudo sample {t+i } is defined as follows:

t+i =

ti, if i ≤ nU .

exp(mi + uis), otherwise, i.e. censored.

(4.2)

The process is repeated for all of the individuals with censored times, giving one

complete imputation of the censored observations. The uncensored survival times

are not altered, as in 4.2. The related R code can be found in the Appendix. In the

case of a correctly assumed model, the {t+i } should act as a sample of uncensored

observations from the same distribution as the dataset. The imputation can be re-

peated several times to test the sensitivity.

This single imputation approach has some limitations. With a high degree of censor-

ing there is uncertainty in the real shape of the survival distribution and producing

sensible imputations becomes harder, relying on a small set of observed survival

times that may all be relatively short and thus containing only limited information

on the underlying survival distribution. Therefore, estimates of extreme survival

times can be obtained, including possibly values that extend beyond the human

lifetime. Accordingly, Royston recommended that it might be unwise to use this
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method when more than approximately 50% of the data are censored, since it is

unacceptable to get a reliable feel for the shape of the survival distribution when

more than half of the data are being imputed. Although the imputation method

that is described by Royston helps to gain an impression of the survival times of an

individual, it does not follow that a parametric survival model such as lognormal

distribution will necessarily be a satisfactory model for the data. Additionally, even

if the lognormal, or any other supposed distribution, were correct the true µ and

σ are unknown and their point estimates, based on a regression model, are used,

which could lead to underestimating the variability.

To overcome this problem, we propose a Bayesian paradigm as an alternative ap-

proach to impute censored observations, which naturally incorporates the uncer-

tainty about the parameters of the distribution.

4.5 A Parametric Bayesian Approach

In the previous section, the Royston method for imputing censored observation is

reviewed where a parametric model is assumed for imputing censored observations.

In this section a parametric Bayesian approach is introduced as another option to

impute censored observations. The introduction of the Bayesian framework for time

to event data is explained in Section 2.8. For convenience, conjugate priors for the

parameters of the distribution are chosen to give a computationally convenient pos-

terior. Also, non-informative priors could be a good choice for the hyperpriors in

situations where there is little prior information about parameters.

By applying MCMC methods [76] we obtain simulated draws for the predicted val-

ues of the censored observations, conditional on the observed censoring times. We

can then use these predicted values as imputed values to give complete datasets, as

in standard multiple imputation methods. Standard graphics can then be used to

explore many aspects; such as treatment effects and hazard functions, with some in-

dication of the uncertainty due to the censoring and uncertainty in the fitted model.

Censoring in survival analysis is a key feature in defining the likelihood and for ob-

taining a posterior sample. However, censoring plays no role in determining a prior
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or in interpreting the results once we have our posterior and predictive sample.

In order to impute censored observations, first, a specific distribution needs to be

considered for the survival times. To represent the imputation method, we consider

a general parametric model for the data that depends on a parameter θ, say f(t|θ).

Also p(θ) is assumed as a prior distribution for θ, which is unconditional on any

observed data. By using Bayes theorem, the prior distribution p(θ) is updated to a

posterior distribution p(θ|D).

Second, we need to find the density for the survival time conditional on a (right)

censoring time, because it is evident that the imputed value for the censored ob-

servation needs to be bigger than its censoring time. Taking c as the value of the

censored observation the conditional density is defined as:

f(t | T ≥ c, θ) =
f(t | θ)
S(c | θ)

, t ≥ c (4.3)

and the conditional expected value of the censored observation is:

E(T | T ≥ c) =

∫∞
c
tf(t | θ)dt
S(c | θ)

(4.4)

Moreover, by using S(t | θ), the survivor function of survival times, the conditional

median tmed, of a censored observation can be found by solving S(T |T ≥ c, θ) = 0.5

as follows:

0.5 = S(T | T ≥ c, θ) =
P (T ≥ tmed | θ)
P (T ≥ c | θ)

⇒ S(tmed | θ)
S(c | θ)

= 0.5

⇒ tmed = S−1 (0.5× S(c | θ)) (4.5)

Finally, samples from a predictive distribution conditional on the observed censoring

time are generated using the following density:

f(t | T ≥ c,D) =

∫
f(t | T ≥ c, θ)p(θ | D)dθ (4.6)

Suppose we have a posterior density p(θ|D) and that we can generate a random

sample from this distribution, say θ1, θ2, ..., θs where θs is the s-th component of the



4.5 A Parametric Bayesian Approach 74

sample. Then to sample tk, observations from the predictive conditional distribu-

tion, first of all, θk are sampled from the posterior density p(θ | D), then tk are

generated from the density f(t | T ≥ c, θk). The sampled tk is a draw from the

predictive distribution conditional on the observed censoring time. This is done re-

peatedly and independently to obtain a Monte Carlo sample {tk : k = 1, ..., s}. The

mean of the predictive distribution can be numerically approximated by
∑s

k=1 t
k/s,

and the median of the predictive distribution by the median of the sample.

Here the WinBUGS software is used to impute censored observations. WinBUGS is

a menu-driven Windows program that generates samples from the posterior distri-

bution. Samples are generated in WinBugs using the probabilistic idea of a Markov

chain with a stationary distribution that corresponds to the desired posterior dis-

tribution. WinBUGS requires that the data be entered in a different form from the

D = {y, δ} described above, here NA is used to indicate missing (censored) data

and so we transform a (y, δ) observation into a form (t, c) where for i = 1, ..., n

ti =

yi, if δi = 1

NA, if δi = 0

ci =

0, if δi = 1

yi, if δi = 0

These define separate data vectors for censored and uncensored observations. In t

NA is used for each yi that corresponds to censored observation and the vector c

has the censoring times for all censored observations.

To indicate the censored time in the model, a general distribution is defined as

t ∼ ddist(theta)I(a, b) where a and b give information about censoring. If there

is no available data for a specific t (i.e it is an NA), then it is assumed that the

observation is from the specified distribution but censored in the interval a < t < b.

I(a, ) is used to define right-censoring and I(, b) for left-censoring. When WinBUGS

recognises the NA for an individual, it knows that the data for that individual is

censored and generates an appropriate term for the likelihood, in the case of right-

censoring S(c; θ). When there is an actual value for t, it neglects any information

in I(a, b) and generates the appropriate term for the likelihood, f(t; θ).

As an example, if the Weibull model is assumed for some right-censored survival

data, the model can be written in WinBugs as follows:
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model{

#likelihood

for(i in 1:n){t[i]~dweib(alpha,lambda)I(c[i],)}

#prior

alpha~dlnorm(a,b)

lambda~dgamma(c,d)

}

#initial

list(n=100, a=0.001, b=0.001, c=0.001, d=0.001)

#Data

t[] c[]

1 0

NA 2.5

# more rows of data would be listed here

END

For easy access in R, instead of using Winbugs directly the R2WinBUGS package [98]

can be used. In R2WinBUGS package, the bugs function takes data and initial values

as input and writes a WinBUGS script, calls the model, and saves the simulations

in R.

bugs(data, inits, parameters.to.save, model.file="model.bug",

n.chains="", n.iter="", n.burnin="",n.thin="",

n.sims = "", bin="", debug=FALSE, DIC=TRUE,

digits="", codaPkg=FALSE,bugs.directory="",

program=c("WinBUGS"), working.directory=NULL, clearWD=FALSE,

useWINE=FALSE, WINE=NULL, newWINE=TRUE,

WINEPATH=NULL, bugs.seed="", summary.only=FALSE,

save.history=TRUE, over.relax = FALSE)

In the bugs function, the data and initial values, inits, which provides starting
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values for each unknown parameter can be saved in a text file the same format as they

are used in WinBUGS in the working directory. Parameters.to.save is a vector of

the names of parameters of interest that need to be saved. Also, model.file is the

file containing the model written in WinBUGS code saved as text file. n.chains

shows the number of parallel Markov chains to be used with a default of 3 and n.iter

is the number of iterations per chain, which also includes burn-in. n.burnin is the

length of burn-in which determines the number of iterations to be removed from the

start, so that from then on the chain is, hopefully, in a stationary state and providing

realizations from the required posterior distributions. n.thin shows the thinning

rate, which is the way to improve the efficiency of the posterior sample whereby only

every ν the value from Gibbs sampler is actually retained for inference, this breaks

the autocorrelation of subsequent draws from the chain. n.sim is the approximate

number of simulations to be kept after thinning. The address of the directory

containing WinBUGS needs to be specified with the bugs.directory argument.

4.5.1 Illustration

For illustration, the Weibull distribution is considered for the survival times. Weibull

distribution features, including its survivor and hazard function, are explained in

detail in Section 2.5. The Weibull distribution has a different form of hazard func-

tion depending on the value of the shape parameter and this feature makes it a

good candidate distribution for time to event data. In order to have a posterior

distribution from the same family, conjugate priors are preferred for the parame-

ters. For a Weibull distribution, if the shape parameter is known, a gamma prior

is conjugate for the scale parameter. Although when the shape parameter is un-

known, no joint prior can be placed on (α, λ) such that it leads to a recognisable,

analytically tractable joint posterior distribution, therefore, we rely on simulations.

Here, the Lognormal distribution is assumed as a prior for the shape of the Weibull

distribution, and the gamma distribution is assumed as a prior for the scale param-

eter [21]. The properties of the lognormal distribution and gamma distributions are

explained in Section 2.5. The model can be summarised in the following hierarchical
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specification:

ti ∼ Weibull(α, λ)

α ∼ lognormal(a, b)

λ ∼ gamma(d, e)

where a,b,d and e are hyper-parameters. Using MCMC methods we can obtain sim-

ulated draws for the predicted values of the censored observations, conditional on

the observed censoring times.

For the Weibull distribution using the WinBugs definition, f(t) and S(t) are ex-

pressed as follows:

f(t) = αλtα−1e−λt
α

S(t) = e−λt
α

Assuming c to be the value of a censored observation and by using the conditional

density formula in (4.3), the density function of a survival time conditionally on

being censored at time c is:

f(t | T ≥ c) =
αλtα−1e−λt

α

e−λcα
, t ≥ c (4.7)

Also, the conditional expected value of a censored observation based on a Weibull

distribution is given by:

E(T | T ≥ c) =

∫∞
c
tαλtα−1e−λt

α
dt

S(c)

=
1

S(c)

[
−te−λtα

]∞
c
− 1

S(c)

∫ ∞
c

−e−λtαdt

=
cS(c)

S(c)
+

1

S(c)

∫ ∞
c

−e−λtαdt

= c+
1

S(c)

∫ ∞
c

S(t)dt

= c+
1

e−λcα

∫ ∞
c

e−λt
α

dt (4.8)
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So, in general, when the density comes from the Weibull family of distributions, to

obtain conditional expected values the following integral needs to be evaluated:

∫ ∞
c

e−λt
α

dt (4.9)

Since (4.9) does not have a closed analytic form, we need to resort to a numerical

procedure such as the integrate function in R.

If α = 1 the Weibull distribution is the same as the exponential distribution with

survivor function S(t) = e−λt. So the conditional expected value of a censored

observation is then:

E(T | T ≥ c) = c+
1

e−λt

∫ ∞
c

e−λtdt = c+
1

λ
= c+ E(T )

where E(T ) is the unconditional expectation of T . However, for other values of α

the integrate function in R needs to be used.

To check the performance of integrate for obtaining these conditional expected we

consider another special case with α = 2 where:

∫ ∞
c

e−λt
2

dt =

∫ ∞
c

e−2λ t
2

2 dt

=

√
2π

2λ

1√
2π
2λ

∫ ∞
c

e
− t2

2( 1
2λ

)dt

=

√
π

λ

[
1− Φ(c

√
2λ)
]

(4.10)

So when α = 2 we have an expression in terms of the normal cdf Φ :

E(T | T ≥ c) = c+
1

e−λc2

√
π

λ

[
1− Φ(c

√
2λ)
]

(4.11)

Table 4.1 shows the result of solving (4.9) using (4.11) and also using integration in

R for λ = 2 for different values of c.
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c Using (4.11) Using integrate

0 0.6266571 0.6266571
1 1.2106846 1.2106846
2 2.1183262 2.1183262

Table 4.1: E(T | T ≥ c) for a Weibull(2, 2) distribution.

This gives some confidence that we can use integrate to evaluate (4.8) for a gen-

eral Weibull distribution, and indeed a similar approach could be taken for other

parametric survival distrubutions.

Finding the conditional median, tmed of a censored observation based on a Weibull

distribution reduces to solving S(T | T ≥ c) = 0.5 where c is the censoring time so

S(T |T ≥ c) =
P (T ≥ tmed)

P (T ≥ c)
= 0.5

⇒ S(tmed)

S(c)
=
e−λt

α
med

e−λcα
= 0.5

⇒ exp {−λ(tαmed − cα)} = 0.5

⇒ tαmed − cα =
ln(0.5)

−λ

⇒ tmed =
α

√
−ln(0.5)

λ
+ cα (4.12)

using WinBugs, samples from the predictive distribution conditional on the observed

censoring times are generated based on (4.6). So, in order to check these predicted

values provided with WinBugs, a Weibull distribution Weibull(α = 1, λ = 2) (i.e.

exponential) is assumed for the survival times together with ten percent censoring

of the data. Two hundred data are generated from Weibull(α = 1, λ = 2) where

there is nineteen censored observations in the dataset. The mean of random draws

from WinBugs are compared to the explicitly calculated values from (4.8). We write

t∗1, ..., t
∗
B for Winbugs random draws from the predictive distribution f(t | T ≥ c,D)

for a specific censored value. We also denote θ∗1, ..., θ
∗
B as the posterior values of the

Weibull parameters (α, λ) where θ∗j = (α∗j , λ
∗
j) for j = 1, ..., B. Based on the Weibull

distribution E(T |T ≥ c) = c + 1
e−λcα

∫∞
c
e−λt

α
dt, so for each posterior parameter

value we define

I(θ∗j ) = c+
1

e−λ
∗
j c
α∗
j

∫ ∞
c

e−λ
∗
j t
α∗j
dt (4.13)
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In order to check the WinBugs results, we need to compare A =

∑
j I(θ∗j )

n1

and

C =

∑
j t
∗
j

n2

where n1 is the number of random draws of posterior values θ∗j which is

assumed as 100 and n2 is the number of random draws from the predictive distri-

bution f(t | T ≥ c,D). We also calculate standard deviations of the random draws

σ1 = sd(I(θ∗j )) and σ2 = sd(t∗j) based on 100 draws. Then in order to realistically

compare the target means, A and C, the standard deviations of these means need

to be the same. Taking n1 = 100, an appropriate n2 can be calculated as follows

σ1√
n1

=
σ2√
n2

⇒ σ1√
100

=
σ2√
n2

⇒ n2 =

(
10σ2

σ1

)2

So for each censored value, we found a comparable sample size n2 and based on that

determined C. The results are shown in Table 4.2.

From Table 4.2, after equalising the standard errors of the means, the differences

of means are less than 0.05, so it can be concluded that the results from imputing

censored observations using WinBugs are in agreement with what we would theo-

retically expect.

To illustrate how well the parametric Bayesian imputation is working, one hundred

event times were generated from a Weibull distribution (Weibull(α = 2, λ = 4))

with twenty percent of them taken to be censored. In the particular realised ex-

ample below there are twenty two censored observations. By taking the censored

observations as incomplete data and using the posterior predictive distribution as in

(2.22) conditional on the observed censored time, simulated draws for the predicted

values of the censored observations were produced using WinBugs. After imputing

censored values and combining them with the observed failure times the complete

dataset can be formed. As a result of having a completed dataset due to the imputed

values of censored observations, the survival data transform to the standard dataset

and standard graphics, such as a histogram, boxplot, or density plot, can be drawn.

As the data are simulated and then the censoring is applied, here we know the real

value of the data before the censoring and in what follows we refer to this as true-
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censored censored
observation value σ1 σ2 n2 A C A-C

1 0.257 0.178 2.348 17400 2.405 2.389 0.01
2 3.997 0.269 2.268 7108 6.082 6.054 0.02
3 1.395 0.215 2.24 10854 3.512 3.543 −0.03
4 4.626 0.278 1.841 4385 6.706 6.708 −0.002
5 1.09 0.206 2.019 9605 3.213 3.189 0.02
6 0.008 0.169 2.162 16365 2.171 2.176 −0.005
7 5.462 0.290 1.78 3767 7.536 7.547 −0.01
8 3.735 0.264 1.615 3742 5.822 5.795 0.02
9 3.39 0.258 1.812 4932 5.48 5.47 0.01
10 1.013 0.204 2.051 10108 3.137 3.122 0.01
11 0.480 0.186 2.215 14181 2.619 2.585 0.03
12 6.481 0.302 2.175 5186 8.549 8.509 0.04
13 1.518 0.218 2.079 9094 3.632 3.621 0.01
14 2.959 0.251 2.008 6400 5.053 5.05 0.003
15 0.913 0.201 2.43 14615 3.04 3.031 0.009
16 0.889 0.201 2.215 12143 3.017 2.978 0.03
17 7.346 0.312 1.911 3751 9.409 9.441 −0.03
18 3.577 0.262 2.317 7820 5.665 5.671 −0.006
19 0.791 0.197 1.861 8924 2.921 2.95 -0.02

Table 4.2: Check of the predicted values provided using WinBUGS based on 200
observations generated from a Weibull(α = 1, λ = 2) with ten percent censoring.

failure. Therefore, in this artificial situation the imputed values can be compared

to the true original data. In Figure 4.1, a Kaplan-Meier plot of the data after im-

putation is compared to the Kaplan-Meier plot of the true data, the Kaplan-Meier

plot of the full data including censoring (the usual plot in practice) and also the

Kaplan-Meier plot of the data when the censored observations are omitted from the

dataset (deletion).
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Figure 4.1: The Kaplan-Meier survivor plots: for the full data with censoring; the
true failure times; omitting censored observations; and using parametric Bayesian
imputation for the censored values.

Based on Figure 4.1, the Bayesian imputation method for censored observations

is not only in agreement with the Kaplan-Meier estimate of the data but also in

agreement with the Kaplan-Meier estimate of true-failure times with the additional

benefit of being able to plot an estimate of the underlying failure time distribution.

As discussed at the start of this chapter, one of the ways of dealing with censored

observations is to delete them from the dataset, however based on Figure 4.1 it is

apparent that by omitting censored observations the results become biased.

Rather than using only one single imputation as in Figure 4.1, we imputed the cen-

sored observations multiple times using parametric Bayesian approach. Figure 4.2

compares the Kaplan-Meier estimation of the censored data with the Kaplan-Meier

estimates from one hundred imputations using the parametric Bayesian approach.

Figure 4.2 shows that the Kaplan-Meier plots for all of the one hundred imputations

are around the Kaplan-Meier estimate of the data, and as is expected, the mean

of these one hundred Kaplan-Meier plots is near to the Kaplan-Meier of the data

before imputation.
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Figure 4.2: Kaplan-Meier plots of the censored data compared with the mean of the
Kaplan-Meier estimates from one hundred imputations using a parametric Bayesian
approach.

Figure 4.3 shows the boxplot for thirty imputed datasets comparing them to the

true-failure times and the dataset omitting the censored values. It can be seen that

the ranges of most of the imputation boxplots are near the range of true-failure

times. Also, medians are near to the true median of the data. This Figure shows

that the distribution of data may not be sensitive to different imputations, however

some extreme values may be imputed, as noted by Royston [93].
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Figure 4.3: Boxplots of the true failure times and when omitting censored observa-
tions are compared to the 30 draws of parametric Bayesian imputations.

One goal in this thesis is to impute the censored observations to enable plots of the

density of the complete dataset as an additional visualizing tool to complement the

common Kaplan-Meier plot. Figure 4.4 compares the density of the true-failure data

to the density of the imputed dataset based on one single imputation. It is shown

that the density plots are close to each other most of the time. The logspline

function [66] in R is used to plot these densities and will be described in Section

6.2.
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Figure 4.4: Comparing the density of the true-failure data to the density of the
imputed dataset using a parametric Bayesian approach based on one single imputa-
tion.

The parametric Bayesian approach which is discussed in this section could be ex-

tended to other survival distributions and other Bayesian survival models by chang-

ing the assumed distribution of the data and also the prior distributions. In the case

that there is no recognisable and analytically tractable posterior, then, as above,

MCMC methods can be used to draw from the posterior and predictive distribu-

tions.

In the next section, a non-parametric Bayesian approach is introduced as a second

method for imputing censored observations.

4.6 Non-parametric Bayesian Approach

A potential problem in parametric Bayesian approach is that a fixed specification

of distributional properties for the error terms in a model may be inadequate for

the real data. Under the non-parametric Bayesian paradigm the unknown distribu-

tion of the model is treated as a random parameter with stochastic non-parametric
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priors, such as the Dirichlet process. The non-parametric Bayesian methods are

explained in detail in Chapter 3.

This section describes using a non-parametric Bayesian framework to present a flex-

ible approach to impute censored observations using predictive distributions. Re-

cently, non-parametric Bayesian models in survival analysis have become popular

because of the advances in computing technology and improvement of the efficient

computational algorithm. In non-parametric Bayesian inference the typical ap-

proach is to specify a prior distribution over the space of all possible cumulative

distribution functions F (t) = 1−S(t) [57]. The Dirichlet process DP (α,G0), which

is described in Section 3.4, is perhaps the most celebrated and popular prior pro-

cess in non-parametric Bayesian inference. In a Dirichlet process G0 is a specific

distribution on Θ and is referred to as the base distribution while α is a precision

parameter.

Early work on the Dirichlet process in the context of survival analysis dates back to

the work of Susarla and Van Ryzin [99] and also Ferguson and Phadia [40]. Susarla

and Van Ryzin [99] in the case of right censoring, derive the Bayes estimator of the

survivor function under the Dirichlet process prior and obtained a closed form for

the mean and other moments of the posterior distribution. The Bayes estimator of

S(t) is obtained under squared error loss :

L(Ŝ, S) =

∫ ∞
0

(Ŝ(t)− S(t))2dw(t)

where w is a weight function (which is nonnegative and nondecreasing on (0,∞))

and Ŝ(t) is an estimator of S(t). Suppose there are n observations, y1, ..., yn, Let

y1, ..., yk denote the uncensored observations and yk+1, yk+2, ..., yn indicate the cen-

sored observations, also let y(k+1), y(k+2), ..., y(m) denote the distinct observed times

among the censored observations yk+1, yk+2, ..., yn. Write λj to represent the number

of censored observations that are equal to y(j), for j = k + 1, k + 2, ...,m and N(t)

and N+(t) for the number of observations (censored or not censored) greater than

or equal to t and the number greater than t, respectively. The Bayes estimator of
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Ŝ(u) under square error loss is given by

Ŝ(u) =
α(1−G0(u)) +N+(u)

α + n

×
l∏

j=k+1

(
(α(1−G0(y(j)))) +N(y(j))

α(1−G0(y(j))) +N(y(j))− λj

)
(4.14)

in the interval y(j) ≤ u ≤ y(l+1), l = k, k + 1, ...,m, with y(k) = 0 and y(m+1) = ∞.

The estimator (4.14) is based on computing the conditional first moment of the

survival probability S(u) = 1−F (u) given (yi, δi), i = 1, ..., n where F is distributed

as a Dirichlet process.

It is shown by Susarla and Van Ryzin [99], that the Kaplan-Meier estimator of S(u)

is a limiting case of (4.14) which is gained when G0 −→ 1. To show the relation

between the Kaplan-Meier estimator defined in (2.16) and the Bayes estimator de-

fined in (4.14), requires that the number of events ej in an interval be as small as

unity. In other words we take the intervals sufficiently short and numerous to only

have one death in each interval. So assuming the n observed y values are labelled

as 0 ≤ ý1 ≤ ý2 ≤ ... ≤ ýn in increasing magnitude, based on the Kaplan-Meier

estimator, the product limit of estimator of S(u) is defined as [62]

Ŝ(u) = 1− F̂ (u) =
∏
r

(n− r)
(n− r + 1)

(4.15)

where r are values such that ýr ≤ u and ýr is an uncensored observation. As

G0 −→ 1 , the (4.14) converges to

N+(u)

n
×

l∏
j=k+1

(
N(y(j))

N(y(j))− λj

)
(4.16)

Assume i(u) is the largest integer to have ý(i(u)) ≤ u. Therefore

N+(u)

n
=
∏
j≤i(u)

N+(ýj)

N(ýj)
(4.17)

By replacing (4.17) into (4.16) and cancelling the ratios common to both the prod-

ucts, which are the ratios related to the censored observations, (4.16) reduces to
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∏
j

N+(ýj)

N(ýj)
(4.18)

where the product is taken over those j that ýj ≤ u and ýj is an uncensored observa-

tion. This is exactly (4.15) provided that the uncensored observations are distinct.

For calculating the Kaplan-Meier estimator in (4.15), actual censored observations

do not need to be known and only the number of censored observations between two

uncensored observations is enough. However, both censored and uncensored obser-

vations need to be known in order to calculate the Bayes estimator in (4.14). Hence,

the Bayes estimate uses all of the data and might be preferable to the Kaplan-Meier

estimator. The larger the value of α, the smoother the Bayes estimator becomes in

comparison to Kaplan-Meier estimator, as the jumps at the event points are smaller

[57].

Susarla and Van Ryzin [99] also obtained the posterior pth moment of S(u) as

E(S(u)p|D) =

p−1∏
s=0

(
G0(u,∞) + s+N+(u)

G0(R+) + s+ n

)

×
l∏

j=k+1

(
G0(y(j),∞) + s+N(y(j))

G0(y(j),∞) + s+N(y(j))− λj

)
(4.19)

where G0(u,∞) = α(1 − G0(u)) and D = (y, δ). It could be seen that when p = 1

the (4.19) reduces to (4.14).

Although the Dirichlet process prior is a simple and computationally tractable prior

for an unknown distribution, it produces distributions that are discrete with prob-

ability one, making it unsuitable for density modelling. To overcome this problem,

the distribution can be convolved with some continuous kernel, or more generally,

by using a Dirichlet process to define a mixture distribution with infinitely many

components, of some simple parametric form. A Dirichlet Process Mixture (DPM)

model is a mixture with a parametric kernel and a random mixing distribution mod-

elled with a DP prior. The Dirichlet process Mixture model is described in Section

3.6 (for more detail see Ferguson [38], [39], Antoniak [6]).

Doss [30], Doss and Huffer [31] and Doss and Narasimhan [32] discussed using

mixtures of Dirichlet process priors for F (t) = 1 − S(t) with a Gibbs sampler in

the presence of right censored data. A non-parametric Bayesian method based on
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mixtures of Dirichlet priors gives a reasonable compromise between purely non-

parametric and purely parametric models. In the presence of censored data, there is

no closed form for the posterior distribution of F given the data. Therefore, Monte

Carlo methods need to be used.

De Iorio [27] proposed an unconstrained model for survival regression based on a DP

prior that allows for the introduction of covariates in an interpretable manner for

right censored data. Assume t1, ..., tn are n independent and identically distributed

survival times, where ti is the survival times for individual i, and δi is the associ-

ated censoring indicator, and also xi is a p-dimensional vector of categorical and

continuous covariates for individual i. Let k(.|µ, σ2) denote an arbitrary family of

location-scale parametric kernel densities. For each individual with covariate xi a

mixture model for the data is defined as:

fxi=x(ti;G) =

∫
k(ti|µ, σ2)Gx(dµσ2)

Gx ∼ DP (α,G0x) (4.20)

The choice of an appropriate kernel density depends on the underlying sample space.

As in survival analysis the sample space defined on the positive half-line, mixtures

of gamma, log extreme value (Weibull), log-logistic, or lognormal distributions may

be appropriate. The choice of lognormal kernel is equivalent to using a normal ker-

nel based on log-transformed data. In comparison to kernels like log-logistic and

Weibull, the lognormal kernel is more convenient in practice [74] and computation-

ally easier due to conjugacy of the base measure G0 and the kernel. In this case,

any MCMC scheme for DP mixture models can be used. The MCMC algorithm

for implementing posteriors are described in detail in Section 3.7 also a modified

version that accounts for the presence of censored observations in the data can be

found in Web Appendix of De Iorio [27].

The LDDPsurvival function in the DPpackage in R can be used for this approach

to survival modelling and here it is used to impute the censored observations in a

non-parametric manner. This package was developed by Jara [60] for the imple-

mentation of some non-parametric Bayesian and semiparametric models in R. The

LDDPsurvival function for fitting survival models has the following call:
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LDDPsurvival(formula,zpred,prior,mcmc,state,status,grid,

data=sys.frame(sys.parent()),na.action=na.fail,work.dir=NULL)

where formula is a two-sided linear formula object describing the model to be fitted,

with the response on the left of a∼ operator and the terms, separated by + operators,

on the right. The resulting design matrix is used to model the distribution of the

response in the LDPP mixture of normals model. The response matrix for right-

censored data is a two-column matrix such that for each failure time the two columns

are the same, equal to the value of the failure, and for censored observation, the first

column is filled with the censored value and the second column should be written as

−999 as it is an unknown limit. Constructing the design matrix in R can be done

as follows:

for (i in 1:n){

if (data$status[i]==1){

data$left[i]=data$time[i]

data$right[i]=data$time[i]

}

if (data$status[i]==0){

data$left[i]=data$time[i]

data$right[i]= -999

}

}

The model which is used in the LDDPsurvival function is based on the model defined

by De Iorio et al. [27]. To understand the model specified by the LDDPsurvival

function, for survival times ti, i = 1, ..., n the full model can be written in the
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hierarchical form:

log(ti) | β, σ2∼KN(. | β, σ2)

β, σ2 | G ∼ G

G | α,G0 ∼ DP (α,G0)

by specifying a conditionally conjugate base measure

G0 = N(β | µb, sb)Gamma(σ2 | τ1/2, τ2/2) (4.21)

with conjugate hyperpriors

α | a0, b0 ∼ Gamma(a0, b0)

µb | m0, s0 ∼ N(m0, s0)

Sb | ν, ψ ∼ IWq(ν, ψ)

τ2 | τs1 , τs2 ∼ Gamma
(τs1

2
,
τs2
2

)
where the inverted Wishart distribution (IW) is parametrized so that

A ∼ IWq(ν, ψ)⇒ E(A) =
ψ−1

ν − q − 1

The computational implementation used in DPpackage is based on the MCMC

method described in [77] and [84].

The posterior feature of greatest interest to us here is the predictive distribution,

which is used to impute the censored observations. Take φ to represent the entire

set of parameters, then the posterior predictive distribution for an observation tnew

is given by

p(tnew|T ≥ c, data) =

∫∫
k(tnew|T ≥ c, βnew, σnew)p(βnew, σnew|φ)p(φ|data) (4.22)

Samples from the predictive distribution conditional on the observed censoring time

are generated using (4.22). Specifically, φk are sampled from the posterior den-

sity p(φ|data), then conditional on these values (βk, σk) are generated from the
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density p(βnew, σnew|φk) and finally tk are sampled from the conditional density

k(tnew|T ≥ c, βk, σk). In this way the sampled tk is a draw from the predictive dis-

tribution conditional on the observed censoring time. This is done repeatedly and

independently to obtain a Monte Carlo sample {tk : k = 1, ..., s}. More details on

the posterior predictive distribution are given in Section 3.8.

4.6.1 Illustration

To illustrate the effectiveness of the non-parametric Bayesian imputation approach,

we generate one hundred event times from a Weibull distribution, (Weibull(α =

2, λ = 4)) with twenty percent censoring. In this illustrative realization there are

in fact seventeen censored observations. Simulated draws for the imputed values of

the censored observations are produced using DPpackage. Because the data are first

simulated and then the censoring applied, the real value of the sample data before

the censoring is known and again referred to as true-failure. Therefore, the imputed

values can be compared to the true unobserved. In Figure 4.5, the Kaplan-Meier

plot of the data after imputation is compared to the Kaplan-Meier of the true-failure

data, the standard Kaplan-Meier plot of the censored data, and also a Kaplan-Meier

plot of the data when the censored observations are omitted (deletion).

Based on Figure 4.5, the non-parametric Bayesian imputation method for censored

observations is in agreement with the Kaplan-Meier estimate of the data and also in

agreement with the Kaplan-Meier estimate of the true-failure times. It is also again

apparent that by omitting censored observations the results become biased.

It is of course possible to repeat the imputation process and Figure 4.6 compares

the Kaplan-Meier plot of the censored data with the Kaplan-Meier estimates of

one hundred imputations using the non-parametric Bayesian approach. As can be

seen, the Kaplan-Meier plots for all of the one hundred imputations are around the

Kaplan-Meier estimate of the data, and the mean of these imputed Kaplan-Meier

plots is close to the Kaplan-Meier of the data.
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Figure 4.5: Kaplan-Meier survivor plots: for the full data with censoring; the
true failure times; omitting censored observations; and using the non-parametric
Bayesian imputation for the censored values.

Figure 4.6: Kaplan-Meier plots of the censored data compared with the mean of
the Kaplan-Meier estimates from one hundred imputations using a non-parametric
Bayesian approach.
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Figure 4.7 shows a boxplot for thirty of the imputed datasets comparing them to

the true-failure times and the data omitting censored values. It can be seen that

medians of the imputation boxplots are close to the true median of the data, however

some extreme values may be imputed.

Figure 4.7: Boxplots of the true failure times and when omitting censored observa-
tions compared to 30 sets based on non-parametric Bayesian imputations.

Finally, Figure 4.8 compares the estimated density (using the logspline function

[66] in R) of the true-failure data to that of the imputed dataset based on one single

imputation. It is clear that the density plots are very close to each other most of

the time T .
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Figure 4.8: Comparison of density estimates of the true-failure data to the density
of the imputed dataset using non-parametric Bayesian approach based on one single
imputation.

In the next section the parametric approach is compared to the parametric Bayesian

and non-parametric Bayesian approaches.

4.7 Comparing Different Imputation Methods

We now compare the Royston parametric approach, described in Section 4.4, with

the parametric and non-parametric Bayesian methods that were described in Sec-

tions 4.5 and 4.6 using results based on a single imputation. This comparison is

divided into two parts. First, a correctly specified distribution of the failure time

data is used in imputation approaches, while in the second part the censored obser-

vations are imputed based on a mis-specified model.
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4.7.1 Assuming a Correct Model

In this part, one dataset is generated from a specific distribution with an assumed

desired percentage of censoring. Then based on our knowledge of the true distribu-

tion of the data, censored observations are imputed. As Royston’s method assumed

a lognormal distribution to impute censored observations, we generate one hundred

data from a lognormal (lognormal(1, 0.5)) distribution with a twenty percent cen-

soring rate. In our example, there are twenty-two censored observations from the

100 data values. The censored observations are then imputed based on Royston’s

approach, a non-parametric Bayesian method, and a parametric Bayesian approach

where a lognormal distribution is assumed for the survival data. As we know the

true failure times, these approaches could be compared not only with each other,

but also to the true failure times.

Figure 4.9 compare the survivor plot across the different methods. As can be seen,

for all of the methods the survivor plot is close to the survivor plot of true failure

time.

Figure 4.10 compares this same information in a boxplot for the different imputation

methods and the true data. It is apparent that all of the three methods are near to

the true failure times, however the median of the parametric Bayesian approach is

closer to the median of the true failure, which is perhaps not surprising as it is based

on the correct model and also incorporates the added uncertainty in the imputation

process that is missing in Royston’s method.
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Figure 4.9: The survivor plot for Kaplan Meier estimates of the data, true failure
times, Royston imputation, parametric Bayesian imputation, and non-parametric
Bayesian imputation.

Figure 4.10: Boxplots for data generated from lognormal(1, 0.5) imputing censored
observations using parametric, parametric Bayes, and non-parametric Bayesian ap-
proaches.



4.7 Comparing Different Imputation Methods 98

Figure 4.11 compares the density estimates of the true-failure data to those of

the imputed datasets based on one single imputation using parametric, paramet-

ric Bayesian and non-parametric Bayesian approaches. It shows that the density

plots of different imputation methods are near each other most of the time and they

are also near to the density of true failure times. However among all methods, the

density of parametric Bayesian approach is much closer to the density of true failure

time, possibly for the reasons that we noted above.

Figure 4.11: Comparing the density estimates of the true-failure times to the im-
puted datasets using parametric, parametric Bayesian, and non-parametric Bayesian
approaches to impute the censored observations.

Based on Figure 4.9, Figure 4.10 and Figure 4.11 when we use the assumption of

the correct model in imputing the censored observations all parametric, parametric

Bayesian and non-parametric Bayesian methods impute the censored observations

around the true failure times. Although it should be noted that the above is just

based on one single imputation and only provides us with some visual reassurance

and is not sufficient to make firm conclusions.
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4.7.2 Mis-specified model

In the previous part, the true assumption about the density used to generate the

data is used in different methods of imputation. However, in reality, this distribution

of the data may not be known. In this part we consider the effect of mis-specification

of this model.

For illustration, one hundred data values are generated from a Weibull (Weibull(2, 4))

distribution with twenty percent censoring. In our specific example, there happen to

be twenty censored observations among the 100 data. In order to consider the mis-

specification of the distribution of the data, we assume that they were generating

from a lognormal distribution. The censored observations are then imputed based

on the Royston approach, which assumes a lognormal distribution. They are also

imputed using a parametric Bayesian approach where a lognormal distribution is

assumed for the survival distribution. Finally, the non-parametric Bayesian method

is used which makes no specific assumption for the distribution of the data. Again

as we know the true failure times from the simulation, these approaches can be

compared to the true failure times.

Figure 4.12 compares the survivor plot over the different methods based on one

single imputation. It is apparent that the survivor plot using Royston’s parametric

approach and the Bayesian parametric approach are both far from the survivor plot

of the true failure data. Based on one single imputation, among all these three

methods the survivor plot of the non-parametric Bayesian approach is much closer

to the survivor plot of the true failure times.
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Figure 4.12: The survivor plot for Kaplan Meier estimates of the data, true failure
times, Royston imputation, parametric Bayesian imputation and non-parametric
Bayesian imputation.

Figure 4.13 compares the boxplots for the different imputation methods to that of

the true data. It can be seen that the median and the range of the parametric

Bayesian approach and non-parametric Bayesian approach are near to the median

and the range of the true failure time. However, some extreme values are generated

using the non-parametric Bayesian approach. Compared to the parametric Bayesian

and non-parametric Bayesian approaches, the median and the range in the Royston

method are greater than the median and the range of true failure data and it also

exhibits some extreme imputed values.
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Figure 4.13: Boxplots for data generated from a Weibull(2, 4) with censored obser-
vations imputed using parametric, parametric Bayes and non-parametric Bayesian
approaches and compare to the true failure times.

Finally Figure 4.14 compares the density estimates of the true-failure data to the

density of the imputed dataset based on one single imputation using parametric,

parametric Bayesian and non-parametric Bayesian approaches in this mis-specified

setting. It seems that the density plots of non-parametric imputation method is close

to the density of true failure time across most of the range. The Royston method

seems to perform worst with a marked right-skewness, while parametric Bayesian

method seems to underestimate the right-hand tail, although is closer to the true

density.
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Figure 4.14: Comparing the density plots of the true-failure to the imputed
datasets including parametric, parametric Bayesian and non-parametric Bayesian
approaches.

According to Figure 4.12, Figure 4.13 and Figure 4.14 which are based on one single

imputation when we mis-specified the assumption of the model in imputing the

censored observations, the non-parametric Bayesian approach impute the censored

observations closer to the true failure times.

4.8 Chapter Summary

In this chapter, we provide an overview on imputing methods for missing data as

an introductory concept for the rest of the chapter where we try to treat the cen-

sored observations as missing values and used different methods of imputation. By

imputing the censored observations, it is possible to present the actual distributions

to give simple and interpretable graphical displays for physicians and patients.
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Two new approaches have been proposed for imputing censored observations, includ-

ing a parametric Bayesian approach and a non-parametric Bayesian method. These

methods are compared to the Royston parametric approach for imputing censored

observations. Based on our preliminary test of concept results, generally limited to

one single imputation, when the true distribution of the data is used to impute the

censored observations all three of these methods provide imputed censored obser-

vation near the true failure values. However when we use a mis-specified model,

the imputation results based on non-parametric Bayesian approach are closer to the

true failure values. This suggests that when, as in practice, the true distribution is

unknown, there may be some advantage to using the more flexible non-parametric

Bayesian method and that it might also be considered as a useful diagnostic for

studying robustness to model assumptions in the parametric approaches. In the

next chapter, we explore these comparisons in more detail through a simulation

study. The results of the simulation study are discussed and specifically address

aspects such as the effect of differing percentages of censoring and different forms of

survival distribution, including situations with decreasing, increasing and constant

hazard functions.



Chapter 5

Simulation Study

5.1 Introduction

The primary purpose of this simulation study is to understand if the proposed im-

putation methods create plausible complete (imputed) datasets. Simulating data

sets needs an assumed distribution for the data and full specification of the specified

parameters. The simulated data sets should have some correspondence to reality

so that any results can be generalized to real life situations. We will compare ap-

proaches based on using parametric and non-parametric Bayesian models for survival

data simulated from some known survival functions. The benefit of using simulated

data, especially for examples that include censoring, is that we know not only the

true underlying density function, which the data was generated from, but also the

real value of the sample data before the censoring was applied. The study considers

different percentages of random right censoring and also situations with decreasing,

increasing and constant hazard functions.

This chapter is arranged as follows: we start with a review to the methods of gener-

ating censored observations in Section 5.2, followed in Section 5.3 where the chosen

method of generating censored observations in this thesis is described. In Section

5.4 the simulation methodology is reviewed. In Section 5.5 the results of parametric

Bayesian imputation are reported and in Sections 5.6 the non-parametric Bayesian

imputations are used as a second approach to imputation. Finally, in Section 5.7 the

104
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parametric Bayesian method and non-parametric Bayesian approaches are compared

for a specific sample size.

5.2 Methods of Generating Censored Observations

Simulating survival data in comparison to other types of data requires specific con-

sideration. To simulate censored survival data, two survival distributions are re-

quired, one for representing the censored mechanism and another for the uncensored

survival times that would be observed if the follow-up time had been sufficiently long

enough to reach the event [14]. The observation times, Yi, incorporating both events

and censored observations are calculated for both cases by combining the uncensored

survival times, Ti, and the censoring times, Ci. If the uncensored survival time for

an observation is less than or equal to the censoring time, then the event is consid-

ered to be uncensored and the observation time equals the uncensored survival time,

otherwise, the event is considered censored and the observation time equals the cen-

soring time. In other words, the observed times can be defined as Yi = min(Ci, Ti)

with δi = I(Ti < Ci) a censoring indicator.

There are many different ways to simulate censored observations. One way is to use

some specific R packages for the simulation of survival data. Package survsim [82]

could be used for simulation of simple and complex survival data, such as multiple

event survival data and recurrent event survival data. survsim allows simulation of

times using Weibull, lognormal and log-logistic distributions.

Another R Package is PermAlgo, which is a permutational algorithm to simulate

survival data. This algorithm is a flexible tool to generate a dataset in which event

and censoring times follow user-specified distributions and also they can be condi-

tional on a user-specified list of covariates [100].

Additionally, Bender et al. [9] show how survival times can be generated to simu-

late Cox models with known regression coefficients and with any non-zero baseline

hazard rate. In this article survival times generated from a variety of survival dis-

tributions including the exponential distribution for constant hazards, the Weibull

distribution for monotone increasing or decreasing hazards, and the Gompertz dis-
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tribution to model human mortality. Also, Milkoslavsky et al. [79] discuss how to

simulate survival times with time-dependent covariates and dependent informative

censoring.

Halabi and Singh [50] provide formulae to obtain the specific amount of censoring in

both unstratified and stratified cases. In other words, for a given censoring probabil-

ity p, the proportion of patients Pj allocated to treatment j and failure time survivor

function Sj(t) in group j, the parameter of the censoring density is obtained. For a

given overall proportion p of censoring, the parameter of the censoring distribution

is calculated by solving the following equation.

p =
k∑
j=1

Pj

∫ ∞
0

Sj(t)gc(t)dt (5.1)

where gc(t) is the censoring density.

For the case when stratification is present, the overall censoring proportion p is given

by

p =
l∑

s=1

k∑
j=1

Pjs

∫ ∞
0

Sjs(t)gc(t)dt (5.2)

where Pjs is the proportion of patients who received treatment j in stratum s, Sjs

is the survivor function for the failure time in stratum s and treatment j. And gc(t)

is the censoring density across the strata and treatment groups.

Since in our simulation study we need to prespecify the percentage of censoring, in

the next section we are going to use the Halabi and Singh [50] method to generate

a desired percentage of censored observations.

5.3 Generating Censored Observations

As discussed above, we use the Halabi and Singh [50] method to generate a desired

percentage of censored observations. We asssume the survival data, T , are generated

from a distribution with failure distribution F (t) and survivor function S(t). The

goal is to obtain a percentage p of survival data as censored observations. Let C

denote the censored time with density g(c). If there is only one treatment group,
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the exact amount of censoring is calculated as follows;

p =

∫ ∞
0

S(c)g(c)dc (5.3)

The goal is to choose the proper distribution for censored observations. To achieve

it, we will find a bound range when there is no censoring to use as a comparison

tool. First, we ran 100 iterations with sample size equal to one hundred from the

Weibull distribution (Weibull(2, 4)). We divided the time span into 100 intervals.

Then for each iteration, the differences between the true value and the estimated

value based on Kaplan-Meier estimator are evaluated at each time point which we

called True-Estimate. Finally, we plot True-Estimate for all iterations and draw the

bound for the maximum and minimum value of iterations in Figure 5.1.

Figure 5.1: Bound range for difference of true survival and KM estimated value

We consider three different censoring mechanisms including binomial, uniform and

exponential distributions to investigate the best mechanism regarding the similarity

of Kaplan-Meier estimation of survivor plot to the true failure values. To explore

whether the assumed censoring distributions are good choices we see how these

methods are working in studies with a low, medium or a high percentage of censor-

ing.

Our comparison among different censoring distributions starts by assuming a bino-

mial distribution for censored observations. First, 100 samples are generated from a
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binomial distribution B(1, p), where p equals to the desired percentage of censoring,

to give the censoring indicators. Second, for each selected observation, a sample

is generated from a uniform distribution U(0, Ti) where Ti is the failure value for

the ith observation. Finally, we set the generated value from this uniform distribu-

tion as the censored observation. The difference between the true Weibull and KM

estimate based on binomial censoring is shown in Figure 5.2 according to different

percentages of censoring. Based on the results in Figure 5.2, binomial censoring does

not work well in the presence of a high percentage of censoring, as the Kaplan-Meier

estimate overestimates the survivor function.

Figure 5.2: True-Estimate values based on Weibull(2, 4) for 100 iterations using
binomial censoring.

As another option for censoring, we assume a uniform distribution U(0, b) for the

censored observations. To achieve a desired percentage of censoring, p, the parameter

b of the uniform distribution needs to be calculated. In general, for any failure
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distribution f(t);

p = p(C < T ) =
1

b

∫ b

0

∫ ∞
c

f(t)dtdc =
1

b

∫ b

0

[
1−

∫ c

0

f(t)dt

]
dc (5.4)

In our simulations, we use a Weibull distribution for the failure observations. The

difference between a true Weibull and the KM estimate based on uniform censoring

can be found in Figure 5.3.

Figure 5.3: True-Estimate values based on Weibull(2, 4) for 100 iterations using
uniform distribution for censored observations. The calculated value for uniform
parameter b is 35.45 for 10 percent, 17.73 for 20 percent and 6.99 for 50 percent
censoring

Although for different percentages of censoring all of the iterations are in the bound

range, there is evidence of truncation under 50 percent censoring. It is more evident

in this scenario because the value for b is 6.99, which is smaller than the follow-up

time. In uniform censoring when we have large value for the failure time, P (C < T )

becomes large therefore long survival time values are more likely to be censored. So,

by using uniform censoring the data can be truncated.
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Finally, an exponential distribution is considered for the censored observations. Con-

sequently to achieve the desired percentage of censoring, the parameter of the ex-

ponential distribution needs to be calculated. Failure times are assumed to have a

Weibull distribution with parameters α and λ and censored observations have an ex-

ponential distribution with parameter β , then by defining a percentage of censoring,

the parameter of censored distribution is calculated as follows:

p = p(C < T ) =

∫ ∞
0

∫ ∞
c

αλtα−1e−λt
α

βe−βcdtdc =

∫ ∞
0

e−λc
α

βe−βcdc (5.5)

By changing the target percentage of censoring, the required parameter of the cen-

sored distribution β will need to change in (5.5). In general, by defining different

values for β, the integral can be evaluated. So the integration values could be plotted

against the β values and, for any desired percentage of censoring, which is equivalent

to the value of integral, the related value for β can be found. For explicit calculation

the uniroot function in R can be used. The uniroot function searches for a root

(i.e., zero) of a function f over its first argument in a specified interval, from lower

to upper limits. Here the function which is used is the integral minus the desired

percentage of censoring considered as a function of β, i.e.

f(β) =

∫ ∞
0

e−λc
α

βe−βcdc− p

As can be seen from Figure 5.4 all of the iterations for different percentages of

censoring are in the bound range.

In summary, the simulations presented here suggest that the best results are ob-

tained when the exponential distribution is chosen as the censoring distribution.

Therefore it is used in implementing the censoring mechanism in the remainder of

our simulation studies.

5.4 Simulation Scheme

In this part, the simulation methodology is described. Samples from a desired dis-

tribution are generated. Then some observations are assigned as censored values
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Figure 5.4: True-Estimate values based on Weibull(2, 4) for 100 iterations using
exponential distribution for censored observations. The calculated value for expo-
nential parameter λ is 0.031 for 10 percent, 0.065 for 20 percent and 0.216 for 50
percent censoring

by drawing a random values from the censoring distribution, taken here to be an

exponential distribution based on the discussions above. If the value that is gen-

erated from the censoring distribution is smaller than the actual survival value in

the sample, then that individual is assumed to be censored with the censoring value

obtained from the exponential distribution. Then by using different methods of im-

putation, including the parametric Bayesian and nonparametric Bayesian methods

which were described in the previous chapter, values for the incomplete censored

observations are imputed. By including these imputed values together with the un-

censored failure times, a complete data set is created.

These steps are described as follows:

• Draw a random sample {t1, ..., tn} of size n from the Weibull distribution as

failure times.
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• Draw a random sample {c1, ..., cn} of size n from the exponential distribution

with parameter β as potential censoring times.

• Obtain the observed value as yi = min(ci, ti) for i = 1, ..., n.

• Obtain the censoring indicator as δi = 1{ti≤ci}.

• Use the parametric Bayesian method and non-parametric Bayesian method to

impute the censored observations in the data set (yi, δi).

• Make a complete dataset by replacing censored times with the imputed failure

times.

• Calculate the difference between the survivor curves of the true and the com-

pleted dataset at different time points.

• Repeat these steps 100 times.

In the next section, the results of the parametric Bayesian imputation are described

for different sample sizes and different percentages of censoring.

5.5 Parametric Bayesian Imputation

In this section, the results of imputing censored observations using the parametric

Bayesian approach will be discussed. This method is described in detail in Section

4.5. The samples are simulated from a Weibull distribution, which is a good flexible

candidate for modelling survival data as, depending upon the shape parameter, it

can have an increasing, decreasing or constant hazard function. As the sample size

may affected the imputation results, we consider the effects of different sample sizes.

We consider three cases, small (n = 50), medium (n = 100), and large (n = 200)

sample sizes. The percentage of censoring, as well as sample size, has a significant

impact in analysing survival data and also on any imputation. In the case of a high

percentage of censoring the variation in imputations may be increased. To study

this samples are generated using different percentages of censoring; low (p = 10%),

medium (p = 20%) and high (p = 50%). Furthermore, we want to investigate if
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there is any difference in the imputation results for samples from Weibull distribu-

tions with different hazard shapes. Hence, the data are simulated from constant,

increasing, and decreasing hazards to see the impact, if any, on the performance of

imputation.

The general procedure is as follows: a sample is generated from a particular Weibull

distribution and the resulting values are considered as the true failure times. Then

the desired percentage of censoring is applied, where for the censored observations

the true failure values are replaced with values from an exponential distribution, as

described in Section 5.3. Winbugs is used to fit the parametric Bayesian model and

simulated draws of the imputed values for the censored observations are generated.

Using 100 sets of these simulated imputed values and combining them with the un-

censored event times, 100 completed datasets are generated. The difference between

the survivor function based on the true values from the Weibull distribution and

the survivor function based on the completed (imputed) datasets is calculated over

a range of different time points. The main goal is to show that our method is at

least as good as the Kaplan-Meier estimate, so it is sensible to compare our results

to Kaplan-Meier estimates. Consequently, as a visual measure, to see how well the

model is working, these 100 completed datasets are also compared to the range and

quantiles of the Kaplan-Meier estimates. If the difference between the true failures

and our completed dataset are within theses bounds for each of the 100 sets of data,

it could be concluded that our method is as good as Kaplan-Meier estimates. The

steps for plotting the bound and quantile ranges are as follows:

• 100 sets of data with the desired sample size are simulated from the specific

Weibull distribution with no censoring.

• The survivor curve of these data is estimated using a Kaplan-Meier estimator.

• The Kaplan-Meier estimated value for all of the 100 simulation sets is sub-

tracted from the true value of the Weibull distribution survivor function at

specific time points.

• The maximum and minimum of these difference values are used to define a

bound range over the time period of interest.
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The steps for plotting quantile range are as follows:

• 100 sets of the data with the desired sample sizes are simulated from the

specific Weibull distribution with the desired percentage of censoring.

• The survivor curve of these data is estimated using a Kaplan-Meier estimator.

• The Kaplan-Meier estimated value for all of the 100 simulation sets is sub-

tracted from the true value of the Weibull distribution survivor function at

specific time points.

• Quantiles of these differences are calculated at each of the time points and

plotted as a quantile range.

We will start with the simplest constant hazard scenario. As described in Chapter

2, the Weibull distribution has the constant hazard when α = 1 and it reduces to

an exponential distribution. In Figure 5.5 the results are shown for different sample

sizes and different percentages of censoring where the samples are simulated from a

Weibull(1, 4) distribution.

As it can be seen from Figure 5.5, by increasing the sample size, the variability

decreases and the bounds become tighter as is to be expected. An interesting and

good property to note is that in all of the graphs, the medians of the boxplot at each

time point are nearly zero, and the boxplots are symmetric around the zero line.

For the same sample size increasing the percentage of censoring causes some of the

iterations to stay outside the bound, which means it is better not to use imputation

methods when there is a high percentage of censoring.

In the second simulation study, the data are simulated from a Weibull with α > 1

which leads to an increasing hazard situation. As it can be seen in Figure 5.6, again,

by increasing the sample size, the imputations look reasonable as the difference

between the true failure and Kaplan-Meier estimates for 100 the complete datasets

are symmetrical around the zero line. However, at the later time points all of the

iterations are below the zero line in nearly all of the graphs, which means that there

is overestimation for the large censored values and this becomes worse when there

is a high percentage of censoring.
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Figure 5.5: True-Estimate values using the parametric Bayesian approach for 100
datasets generated from Weibull(1, 4) using exponential censoring
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Figure 5.6: True-Estimate values using parametric Bayesian approach for 100
datasets generated from a Weibull(2, 4) using exponential censoring



5.5 Parametric Bayesian Imputation 117

Figure 5.7: True-Estimate values using parametric Bayesian approach for 100
datasets generated from a Weibull(0.25, 4) using exponential censoring.
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Finally, we consider a Weibull distribution with decreasing hazard (α < 1). In

Figure 5.7, as in Figures 5.5 and 5.6, by increasing the sample size the imputed

values becomes closer to the true values. Also in comparison to the increasing

hazard case, at the later time points, the differences between the true failure and

Kaplan-Meier estimates are still symmetric around the zero line, which means there

is no significant under or over estimation of the censored observations. Moreover, in

nearly all of the combinations of sample size and censoring percentage graphs, the

boxplots are symmetric with medians near zero lines.

In conclusion, in all of the these three different situations, with increasing, decreasing

and constant hazards there are some common features. First, by increasing the

sample size the imputed values become closer to the true values. Second, we get

reasonable imputed values when there is only a low degree of censoring. Third, in all

of the 27 combination graphs, different draws are within the Kaplan-Meier bound,

which means our parametric Bayesian approach is within the variability expected

for the Kaplan-Meier estimate. However, across the different hazard scenarios, the

imputed values seem more reliable in the case of decreasing or constant hazard, as

nearly all of the iterations are placed symmetrically around the zero line, in contrast

to the increasing hazard case where there is an indication of overestimation for high

censored times.

In the next section, our second approach of imputation is discussed. In this method,

the censored observations are imputed using the non-parametric Bayesian approach

which was introduced in Section 4.6.

5.6 Non-parametric Bayesian Imputation

In this section, the results of imputing censored observations using a non-parametric

Bayesian approach will be discussed. Here, we again examine our method using dif-

ferent Weibull distributions with different hazard function forms. Again, we explore

the effect of various percentages of censoring and different sample sizes. As before,

100 draws are simulated from the desired Weibull with the assumed percentage of

censoring. Since from our simulations the true failure times are initially known
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and only then potentially censored, the imputed values can be compared with the

original values before censoring. So after imputing censored observations using the

non-parametric Bayesian approach, these imputed values are subtracted from true

failure values at different time points. The closer these repeated realizations are

to the zero line, the better the estimates are. Additionally, these differences are

compared to the bound range of Kaplan-Meier estimate with no censoring and the

quantile ranges of the Kaplan-Meier estimate under the desired percentage of cen-

soring.

The simulation study is started with a constant hazard Weibull (exponential) distri-

bution Weibull(1, 4) where the shape parameter of the distribution is equal to one

(α = 1). The results for combinations of different sample sizes and percentages of

censoring can be found in Figure 5.8. It can be seen from Figure 5.8 that when the

sample size increases the results of different draws of imputed values are within a

smaller range. Also, by increasing the percentage of censoring the imputed values

become less accurate as there is a sign of overestimation at the end of follow-up time.

The medians of boxplots are near zero in the case of 10% and 20% of censoring, but

in 50% censoring case after some time point (approximately after half of the study)

the medians fall below the zero line which corresponds to overestimation. This is

not surprising as it makes little sense to impute more than half of the data and in

that situation there is not enough information in the observed failures to determine

the failure distribution.

We now consider simulating from a Weibull distribution with increasing hazard.

The data are simulated across the 9 different scenarios from a Weibull(2, 4). The

results are displayed in Figure 5.9. It can be noticed from Figure 5.9 that after

some time the median falls below zero line in all of the scenarios, which indicates an

overestimation at those time points. This becomes even more pronounced under a

high percentage of censoring, where nearly all of the realizations are below the zero

line which means that the censored observations at those time points are definitely

overestimated. In general, in the case of increasing hazard the imputed values are

reliable if the sample size is large enough along with a low percentage of censoring.
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Figure 5.8: True-Estimate values using the non-parametric Bayesian approach for
100 datasets generated from Weibull(1, 4) using exponential censoring.
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Figure 5.9: True-Estimate values using non-parametric Bayesian approach for 100
datasets generated from a Weibull(2, 4) using exponential censoring.
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Finally, we look at the simulation results for a Weibull distribution with decreasing

hazard as in Figure 5.10 where the data are simulated under the 9 different scenarios

from a Weibull(0.25, 4).

As it can be seen from Figure 5.10, all of the medians across the different time

points are around zero and the boxplots are mostly symmetric around the zero-line.

However, under 50% censoring some of the trajectories are outside the Kaplan-Meier

bound.

To sum up, if the failure times are generated from a Weibull distribution, the non-

parametric Bayes approach imputes plausible values for censored observations in

the case of a decreasing hazard function. In the case of increasing hazard this

method gives overestimated values for long-term censored observations. In the case

of constant hazard, the non-parametric Bayesian approach gives good estimates

when there is at most a medium percentage of censoring. Hence, this approach is

not recommended for imputation in the presence of a high percentage of censoring.

5.7 Comparing Imputation Methods

Here, the parametric Bayesian and non-parametric Bayesian approaches are com-

pared using their simulation results. At first, the assumption of a correct assumed

distribution for the data is considered in the parametric Bayesian imputation ap-

proach, while in the second part the censored observations are imputed using the

parametric Bayesian approach based on a mis-specified probablity model. These

comparisons are made based on data generated from a Weibull distribution with

constant hazard Weibull(1, 4) with sample size of 200. The difference between the

survivor functions based on the true Weibull values and the imputed values over

different time points is presented for the two imputation approaches and also under

different percentages of censoring. These True-Estimate values are compared to the

range and quantiles of the Kaplan-Meier estimate.
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Figure 5.10: True-Estimate values using non-parametric Bayesian approach for 100
datasets generated from Weibull(0.25, 4) using exponential censoring.
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5.7.1 Using a Correct Model

In this part, one hundred datasets are generated from a Weibull(1, 4) with different

percentages of censoring. In the parametric Bayesian approach, the distribution of

the data needs to be pre-specified so based on the simulation setting a Weibull dis-

tribution is assumed for the data together with lognormal and Gamma distributions

as priors for the shape and scale parameters of the Weibull distribution, respectively.

Censored is then applied as above and these observations are then imputed using

parametric Bayesian and non-parametric Bayesian methods. The results are pre-

sented in Figure 5.11. Based on Figure 5.11, for large sample sizes (n = 200) the

parametric Bayesian approach and non-parametric Bayesian method are nearly the

same under low and medium percentages of censoring. However, with a high per-

centage of censoring , p = 50%, the parametric Bayesian approach works quite well

as the boxplots are symmetric around zero lines and all the medians are nearly zero.

However, when using the non-parametric Bayesian approach, we obtained imputed

values which are much higher than the true failure times and so overestimation oc-

curs.

In the case of a high percentage of censoring, when the actual distribution of the

data is known, imputed values for censored observations using parametric Bayesian

approach are closer to the true failure times in comparison to the non-parametric

Bayesian imputed values. This is not unexpected as we assuming the correct distri-

bution in the parametric Bayesian approach.

5.7.2 Using a Mis-specified Model

In the previous part, the correct assumption about the distribution of the data is

used in the parametric Bayesian approach. However, in reality, the distribution of

the data may not be known. In this part we consider the effect of mis-specifying the

survival distribution in the parametric Bayesian model. One hundred datasets are

generated from a Weibull(1, 4) with different percentages of censoring.
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Figure 5.11: True-Estimate values based on a Weibull(1, 4) for 100 iterations using
parametric Bayesian and non-parametric Bayesian approach for n=200
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In the parametric Bayesian approach, the distribution of the data is assumed to have

a lognormal distribution with normal and Gamma distribution priors for the mean

and standard deviation of the lognormal distribution, respectively. The results are

presented in Figure 5.12.

Based on Figure 5.12, non-parametric Bayesian methods provide better estimation

of the censored observations in comparison to the parametric Bayesian approach, as

the medians are near zero especially for low and medium percentages of censoring.

However, in the parametric Bayesian approach, the results of True-Estimate values

are still within the Kaplan-Meier range for low and medium percentages of censoring.

This means that even by mis-specifying the model assumption in the parametric

Bayesian approach it is still as good as the Kaplan-Meier estimates under low and

medium percentages of censoring. For a high degree of censoring both parametric

and non-parametric Bayesian methods overestimates the censored observations as

the medians fall below zero line. As we have already noted this is not surprising as

it is unwise to use imputation methods when more than approximately half of the

observations are censored. Under a high percentage of censoring the non-parametric

Bayesian method provides better estimation for censored observations.

In general, in comparison to the parametric Bayesian method, the non-parametric

Bayesian imputation approach is very time-consuming. For example, for a single

simulation realisation with 10000 MCMC iterations it took around 4 to 10 minutes

to run, depending on the sample size and the percentage of censoring. So on average,

each scenario with 100 sets of data took around 13 hours to run (there are 27 different

scenarios in our simulation studies). The parametric Bayesian approach is much

faster taking around one minute, or less, to run, so each scenario with 100 sets of

data could be completed in around 1.5 hours (again there are 27 scenarios to be

considered in parametric Bayesian approach).

In conclusion, if we know the true distribution of the data it is better to use the

parametric Bayesian approach as it is not only faster but also it provides appropriate

imputations for censored values. In the situations where the true distribution of the

data is unknown the non-parametric Bayesian approach is recommended, but it

needs considerably more time to run.



5.7 Comparing Imputation Methods 127

Figure 5.12: True-Estimate values based on a Weibull(1, 4) for 100 iterations using
parametric Bayesian (assuming lognormal distribution in imputation method) and
non-parametric Bayesian approach for n=200
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5.8 Chapter Summary

In this chapter, we mainly focused on our simulation results. At the beginning of the

chapter, we reviewed different methods of generating censored observations. From

these methods, we decided to use the Halabi and Singh method to generate realiza-

tions with the desired percentage of censoring. Based on our simulation results the

exponential distribution is chosen as a suitable distribution for the censored mech-

anism. Therefore the exponential distribution is used in the rest of the simulation

studies as the censoring distribution.

In the simulation studies both parametric Bayesian and non-parametric Bayesian

approaches are used to impute censored observations. The imputation results are

generated based on different sample sizes and different percentages of censoring.

Moreover, the data are simulated from the Weibull distribution with different haz-

ard shapes. In both parametric and non-parametric Bayesian methods, as the sam-

ple size increased the imputed values became closer to the true values. Also, for

the same sample size by increasing the percentage of censoring the imputed values

become less accurate. Furthermore, for most of the time, the imputation values are

within the Kaplan-Meier bound, which means our imputation methods are at least

as good as the Kaplan-Meier estimates, especially in the cases of low or medium

percentages of censoring. In the case of constant or decreasing hazard, both meth-

ods exhibit better performance in comparison to the increasing hazard case as the

realizations are symmetrical around zero line.

If we know the true distribution of the data, it is better to use the parametric

Bayesian approach as it provides appropriate imputations for censored values. In

the situations where the true distribution of the data is unknown, the non-parametric

Bayesian approach is recommended and potentially superior, but this needs to be

balanced against the fact that it is much more computationally intensive and this

more time-consuming. In general, these imputation methods are not recommended

for a high percentage of censoring, as when half or more of the data are censored

there is insufficient information in the observed failure times to provide meaningful

imputations.



Chapter 6

Applications

6.1 Introduction

The simulation chapter gave an insight into the likely performance of the proposed

Bayesian imputation methods. Building on these results the methods developed

in this thesis were applied to the three example datasets introduced in Chapter

1 to motivate the benefits of considering parametric Bayesian and non-parametric

Bayesian methods for imputing censored observations in time to event studies.

This chapter is arranged as follows: we start with a review of the methods of esti-

mating an empirical density in Section 6.2. In Section 6.3 the results of parametric

Bayesian and non-parametric Bayesian approaches are discussed when applied to

the 6-MP dataset. Then in Section 6.4, our proposed methods are investigated for

imputing censored observations in the metastatic renal carcinoma dataset. In Sec-

tion 6.5 the BPD dataset is interpreted. Finally, in Section 6.6 concluding remarks

are made in terms of the applicability of these approaches.

6.2 Estimating a Density Function

One of the goals of this thesis is to impute the censored observations in order to

generate the density plot of the complete dataset as an additional graphical repre-

129
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sentation of the data to complement the widely used Kaplan-Meier plot. To start,

a commonly used method to estimate and plot an estimate of a density of a distri-

bution is described.

In practice, the common way of modelling an unknown distribution is to assume

the data in question were generated from one of the classical distributions such as

the Weibull, gamma, normal, lognormal, or beta. But in reality, the distribution

that generated the data is unknown so a histogram, kernel or other non-parametric

estimate of the unknown density function, based on the data provided, can be used

to generate a plot that may be a useful guide.

Constructing a histogram is easy and also displaying data in the form of a histogram

can provide an experimenter with useful information at a glance. But before con-

structing a histogram, the number of classes, the width of each class and also the

lower limit of first class should be considered, which are not easy to choose. For

example, if the widths are too small, distracting features are introduced and if they

are too large, important features may be lost [106].

The empirical density function, which belongs to a large class of non-parametric

density estimators, is a simple modification and improvement of the usual his-

togram. It is estimated directly from sample data, without assuming an underlying

form of the distribution model [41]. The definition of the distribution function is

F (t) = P (X ≤ t), so by assuming X1, ..., Xn to be a random sample from a distri-

bution function F on the real line, the underlying cumulative distribution function

(CDF) can be estimated using the following formula:

Fn(t) =
number of sample values ≤ t

n
=

1

n

n∑
i=1

1{Xi≤t} (6.1)

where 1A is the indicator of event A. This empirical CDF is an estimate of the true

CDF which can be found without making any assumption about the underlying

distribution provided that it satisfies the definition of a CDF. The empirical CDF

is not only an unbiased estimate of the population CDF but it is also a consistent

estimator for the true CDF at any value of x [105]. The approximate derivative of
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Fn(t), refered to as the empirical density function, is as follows [106]:

gn(x) =
Fn(x+ λ)− Fn(x− λ)

2λ
(6.2)

where λ > 0.

One of the packages in R which is used to plot the empirical density is the Envstat

package [78]. The function epdfplot produces an empirical probability density

function plot. When considering a discrete distribution, the empirical pdf plot is

the same as the standard relative frequency histogram which means that each bar

of the histogram denotes the proportion of the sample equal to that particular cat-

egory. In the case of a continuous distribution, the function epdfplot calls the

R function density to compute the estimated probability density at a number of

evenly spaced points between the minimum and maximum values. The resulting

empirical probability density function (epdf) plot is a graphical tool that could be

used in conjunction with other graphical tools such as boxplots and histograms to

estimate characteristics of the variable of interest (e.g. symmetry, middle, spread).

Another package in R which estimates an unknown density function is logspline

[66]. In this method, the logarithm of the unknown density function is approxi-

mated by a polynomial spline, where the unknown coefficients are estimated using

maximum likelihood. Also, logspline density estimation was developed to handle

data that may be right, left or interval censored [68]. Consider estimating an un-

known density function f based on sample data, l = log(f) could be estimated using

a function of the form l̂ = ŝ + c(ŝ) where c(ŝ) is a normalizing constant such that∫
exp(l̂) = 1 and the maximum likelihood method is used to choose ŝ from a finite-

dimensional linear space S of functions on R. Therefore the corresponding density

estimate is f̂ = exp(l̂) which is positive and integrates to one. If ŝ is restricted to

the subspace of S0 of cubic splines, the corresponding logspline density is estimated.

Assume Y is a random variable with positive and continuous density function. Let

Y1, ..., Yn be independent random variables having the same distribution as Y . The

identifiable p-parameter exponential family f(.; θ), θ ∈ Θ of a positive twice differ-

entiable density function on R is referred to as a logspline family. The log-likelihood
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function related to the logspline family is given by

l(θ) =
∑
i

log(f(Yi; θ)) (6.3)

The maximum likelihood estimate θ̂ is obtained by maximising the log-likelihood

function and f̂ = f(.; θ̂) is referred to as the logspline density estimate [67].

An illustration of the difference between these two methods will be given by applying

them to the illustrative datasets and the methods compared are also using a data

simulated from a known distribution. Here 1000 data values are simulated from

a Weibull distribution (Weibull(3, 4)). As the data are simulated from a known

distribution, the epdfplot and logspline approaches can be compared to the actual

density plot of (Weibull(3, 4)).

In Figure 6.1 a histogram of the simulated data from (Weibull(3, 4)) is displayed,

and three density plots of the data are superimposed: these are (i) true population

density of (Weibull(3, 4)) and the estimated density plots using (ii) epdfplot and

(iii) logspline.

As the datasets that are discussed in this thesis relate to time to event studies area

where the response of interest is a time, the domain of the density is the positive

real line. As it can be seen in Figure 6.1, the estimated density function using the

epdfplot function in Envstat package is not restrained to positive values. In order

to solve the problem of negative values in a density plot generated using epdfplot,

the logarithm of the response will be plotted, and then the empirical density plot is

back transformed to the density plot of the variable on the raw scale.

By assuming ν = log(y) instead of plotting the data y, the plot of exp(ν) could be

drawn using the following transformation formula:

y = exp(ν)

fy = fν

∣∣∣∣dνdy
∣∣∣∣ =

fν
exp(ν)

(6.4)

So using epdfplot to draw (exp(ν), fν
exp(ν)

) and the related density plot is compared

to the logspline and true Weibull density (Weibull(3, 4)) in Figure 6.2.

Based on Figure 6.2, the values of density estimates using epdfplot show different
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Figure 6.1: Density plot for dataset simulated from Weibull(3, 4) using logspline

package and epdfplot in Envstat package in R compared to true density of
Weibull(3, 4).

modes near zero. In general, the estimated density plot using the logspline package

is closer to the true Weibull density in comparison to the epdfplot.

The logspline function applied to the response looks like a practical approach, albeit

based on a simple example, for generating an estimate of a density function which

can then be visualised.

In the following sections, this technique will be used to provide estimates of the

underlying density function for the example datasets when censored observations

are imputed using the proposed Bayesian methods developed in this thesis.

6.3 6-MP Data

The first dataset considered is the 6-MP dataset, introduced and described in Sec-

tion 1.1.2 . Leukaemia patients were randomised to a treatment and a control group

and the variable of interest was the duration of remission in weeks (i.e. the time

until the cancer reoccurred). There are no censored observations in the control

group, therefore, all of the graphical plots, including a density plot could be used
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Figure 6.2: Density plot for dataset simulated from Weibull(3, 4) using logspline

package and epdfplot in Envstat package in R for transformed data using 6.4
compared to true density for Weibull(3, 4).

as a visualising tool to summarise time in remission for the control group. In the

treatment group, which contained 21 subjects, there are 12 censored observations

i.e. more than half of the data. Due to presence of censoring in the intervention

group, a boxplot or density plot of the variable of interest will be uninformative and

biased if the censored observations are simply ignored. The classical approach is to

plot a non-parametric estimate of the underlying survival function (i.e. 1- the CDF)

typically using the Kaplan-Meier estimator (i.e. a Kaplan-Meier plot).

The approach taken is to impute the censored observations in the treatment group

using the parametric Bayesian and non-parametric Bayesian techniques as intro-

duced in Sections 4.5 and 4.6 and, using these estimates, a plot of the estimated

density function can be drawn as a useful complement to the typical Kaplan-Meier

plot.

Figure 6.3 compares the Kaplan-Meier estimated survivor function for both treat-

ment and control group. It is apparent that the time to remission is shorter (i.e.

worse prognosis) for the control group as the corresponding survivor function lies

below the treatment group. An estimate of the median time to re-occurrence for
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the intervention group is 23 weeks while the median time for the control group is 8

weeks, which is further evidence that the treatment is effective.
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Figure 6.3: Kaplan-Meier plot for treatment and control group in 6-MP dataset.

For completeness, a plot of the estimated survivor functions for the control and

treatment groups is given in Figure 6.4 where the censored observations have been

imputed using the parametric and non-parametric Bayesian methods. The assumed

distribution in the parametric approach to impute censored observations is a Weibull

distribution.

Based on Figure 6.4, the estimates arising from the parametric Bayesian imputation

and non-parametric Bayesian imputation methods are in good agreement with the

Kaplan-Meier estimate. The real benefit in imputing the observations is when the

complete data are used to generate graphical displays such as boxplot and the den-

sity plot. In Figure 6.5, boxplots of the time to re-occurrence for both groups are

presented. When comparing the imputation methods, it can be seen the quantiles of

treatment group for both parametric and non-parametric Bayesian approaches are

nearly the same, but the tail is greater in the non-parametric Bayesian approach. It

might be due to overestimation. As we mentioned in Section 5.7, if there is a high

percentage of censoring, the non-parametric Bayesian approach can impute values

which are much higher than the true failure times.
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Figure 6.4: Kaplan-Meier plot for complete dataset in treatment group using para-
metric and non-parametric Bayesian approaches compared to the Kaplan-Meier of
treatment and control group in 6-MP dataset.

As a complete dataset is available upon imputation a plot of the estimated density

function can be made using the logspline function, for example. The plots, using

the two imputation approaches, are given in Figure 6.6. There is little to choose

between the imputation methods when comparing the plots for the treatment group

(i.e. where censoring was present) so there is no substantial evidence against using

a parametric assumption for the response distribution.

It could be argued that this plot may be easier to glean relevant information for

the clinician administering the treatment and equally, if not more importantly, for

the patient. The underlying distribution for time to re-occurrence for the controls

is right skewed with an estimated mean of 8.6 weeks compared to the estimated

median (based on the KM plot) of 8 weeks with estimated minimum of 1 and max-

imum of 23. The standard deviation is 6.46 and using the modified Chebycheff

inequality, a rough estimate can be made to the range of time to occurrence that

75% of individuals are likely to experience. Therefore 75% of the population are

likely to be in (0, 21.6). A more reliable estimate could be calculated by generat-

ing a 95% tolerance interval for 95% coverage using an appropriate transformation
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Figure 6.5: Comparing the boxplots of time to reoccurrence in the control and
treatment group using the parametric and non-parametric Bayesian imputation ap-
proaches.

or non-parametric approach to account for the skewed nature of the distribution.

Rather than providing an estimate of a parameter like a mean or median the 95%

tolerance interval gives a range of values that apply to the individual in terms of

what they are likely to experience. The tolerance interval in control group is (1, 23).

Using the parametric Bayesian imputation, the distribution of the time to re-occurrence

in the treatment group is shifted to the right (highlighting the treatment effect) with

an estimated mean of 40.77 minimum of 6 and maximum of 171. The distribution

is also right skewed with a larger standard deviation of 41.9 (compared to the con-

trols) suggesting that considerably longer times to re-occurrence are plausible on

treatment. Using modified Chebycheff’s inequality, 75% of the population are likely

to be in (0, 124.59) and a 95% tolerance interval for 95% coverage is (6,171) . The

distribution also suggests that if the disease has not re-occurred by 20 weeks the

time to re-occurrence may be quite a while off.

In conclusion, based on Figures 6.3, 6.5 and 6.6 the treatment group appears more

effective than the control group as the distribution of time to re-occurrence is shifted
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Figure 6.6: Comparing the density plot of control and treatment group using para-
metric and non-parametric Bayesian approaches to impute censored observations in
treatment group.

in the positive direction with a heavier (right) tail suggesting that the typical time to

re-occurrence is greater for those on treatment with a possibility of a considerably

longer time in remission compared to the controls. An individual in the control

groups is likely to have a remission time of between 1 to 23 while an individual on

the 6-MP treatment is likely to have a remission time of between 6 to 171 (based

on a 95% tolerance interval).

6.4 Metastatic Renal Carcinoma Data

The metastatic renal carcinoma data was introduced in Section 1.1.3 and will be

used to further illustrate how the imputation of censored observations can be a useful

translational tool. This dataset was also used by Royston [93] as an example of

his parametric-based imputation approach for censored data. In total 347 patients

were randomly assigned to two treatments, where 172 of them were treated with

interferon-alpha and 175 of them with medroxyprogesterone acetate (MPA). The
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variable of interest is time to death. At the end of the study, there were 8 censored

observations in the MPA group and 17 censored observations in the interferon-alpha

group, a relatively low degree of censoring.

The estimated survival functions for each group are presented in a Kaplan-Meier

plot in Figure 6.7. The Kaplan-Meier estimates suggest an improvement in survival

time for the patients in the interferon-alpha group compared to the standard MPA

treatment, and there are only a few deaths observed after 48 months. This difference

was deemed significant on the basis of a log rank test (p = 0.008). Based on Figure

6.7, the median survival of patients treated with interferon-alpha was 10 months,

which was 3 months longer than the median for the MPA group.
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Figure 6.7: Kaplan-Meier curves for the survival of patients by treatment group in
the RE01 trial.

The Kaplan-Meier plot (Figure 6.7) gives an indication of the conditional probability

of survival over time rather than an estimate of the likely time to death in units of

time. Our aim is to impute the censored observations to generate reliable estimates

of the time to event in general and at the individual level; both of these estimates

can be gained from plots of the underlying density function for survival time.

Using parametric Bayesian and non-parametric Bayesian approaches, we imputed
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an estimated time of death for each patient with a censored survival time. On

substituting an imputed value for each censored observations and combining these

with the original data a complete dataset is formed.

Before focussing on the density plots, KM plots were created using the original and

’complete’ data generated using the methods introduced in this thesis and also the

Royston method . These plots provide a useful reference in terms of the influence the

imputed observations have on the survivor function when compared to the unbiased

estimate provided by the KM estimator using the censored data.

Figure 6.8, displays the survivor function estimated by the parametric Bayesian, non-

parametric Bayesian and Royston parametric imputed values by treatment group.

In the parametric Bayesian approach, a Weibull distribution is assumed for the data

and a lognormal distribution for the Royston method as outlined in his paper [93].

The estimates appear comparable and in agreement.

Figure 6.8: Kaplan-Meier plot by treatment group in renal carcinoma dataset be-
fore and after imputation using parametric Bayesian, non-parametric Bayesian and
Royston parametric imputation approaches

Boxplots of the individual (observed and imputed) survival times are also in agree-
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ment across the imputation methods (Figure 6.9). It can be seen that the median

survival time amongst those on the interferon-alpha treatment is greater than the

median in MPA group.

Figure 6.9: Boxplots of survival times for the interferon-alpha and MPA treat-
ment groups after imputing censored observations using the parametric, parametric
Bayesian and non-parametric Bayesian approaches.

A more informative interpretation is available when considering the variability in the

individual survival times as evidenced by the density plot shown in Figure 6.10 using

the logspline package. As in Figures 6.8 and 6.9 the parametric Bayesian, non-

parametric Bayesian and Royston parametric methods are comparable; for brevity

only the parametric Bayesian imputation method was used to estimate the under-

lying density.

The density plot in Figure 6.10 shows that the substantial difference between Kaplan-

Meier curves for two treatment groups in Figure 6.7 which becomes more evident

after 12 months in favour of the Interferon therapy, may correspond to a consider-

able overlap in the distribution of survival times. The mean survival time in MPA

therapy is 12 while the survival mean in Interferon alpha treatment is 17.8.

Based on Figure 6.10, the density plots look similar at the start with a small differ-

ence between the two with a longer tail in the interferon-alpha treatment. Apparent

differences at later follow up times in the Kaplan-Meier plot (Figure 6.7) may be due
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Figure 6.10: Comparing the density plot of the interferon-alpha and MPA treatment
groups using the parametric Bayesian approach to impute censored observations.

to variability caused by smaller samples being observed rather than real differences.

Obviously, as time progresses the number of patients at risk to calculate the survival

estimates is decreasing as patients either experience the event or are censored. Alpha

Blending from the ggplot2 library [111] can be used to incorporate the number of

patients at risk where the thickness of the line represents the diminishing number of

patients at risk over time, the lighter the colour the lower the number of patients at

risk. Figure 6.11 shows the Alpha Blending enhanced plot for the interferon-alpha

and MPA groups. It is clear that as time increases the information for estimation

of the Kaplan-Meier curves is much reduced, since many patients have experienced

the event or been censored, and this is reflected in the lighter colour.

6.5 Bronchopulmonary Dysplasia (BPD) Data

The Bronchopulmonary Dysplasia (BPD) Data, described in Section 1.1.4, is the

third dataset used to provide an illustration of the use of our imputation methods.
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Figure 6.11: Kaplan-Meier curves for the survival of patients by treatment group in
RE01 trial using alpha blending on the lines to show how many patients are at risk
at the time.

This dataset relates to low-birth weight newborns and the total number of hours

needed on (oxygen) treatment for a chronic lung disorder to abate. Note that low

values are associated with a good outcome. Infants were randomised into either

a treatment (i.e. surfactant therapy) or a control group. There are two censored

observations in the treatment group of 35 infants, and three censored observations

in the control group of 43 infants.

Based on the Kaplan-Meier plots (Figure 6.12), the estimated median number of

hours on oxygen therapy for those infants who did not have surfactant therapy is

107 and the estimated median number of hours for those who had the therapy is 71,

suggesting that surfactant is a beneficial therapy.
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Figure 6.12: Kaplan-Meier plot for treatment and control group in the BPD dataset.

Although there are only a small number of censored observations in the dataset,

ignoring them is not statistical best practice. Instead, censored observations in both

groups were imputed using parametric Bayesian and non-parametric Bayesian ap-

proaches. As the percentage of censored observations in both treatment and control

group is small, based on our simulation study the imputation results should be good

estimates of their true unknown event times.

The Kaplan-Meier estimates of the survival function for the treatment and control

groups, along with the corresponding ones using imputation, are shown in Figure

6.13. The assumed response distribution used in the parametric Bayesian imputa-

tion is the Weibull distribution. Based on Figure 6.13, in both the treatment and

control group, the survivor estimates of the “complete” dataset after imputation

using parametric Bayesian and non-parametric Bayesian methods are in agreement

with the Kaplan-Meier estimate before imputation, which is as expected as there

are only a small number of censored observations in each group. The boxplot of

the completed datasets is shown in Figure 6.14 where the treatment effect is quite

evident.
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Figure 6.13: Kaplan-Meier plot for complete dataset in treatment and control group
using parametric and non-parametric Bayesian approaches compared to the Kaplan-
Meier estimates for the original data.
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Figure 6.14: Boxplots of the survival time for the control and treatment groups after
imputing censored observations using the parametric and non-parametric Bayesian
approaches.
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The density plot using the logspline package in R is shown in Figure 6.15. The

densities look quite similar initially while a separation occurs beyond 100 hours.

here the effect of treatment becomes more evident with the distribution of the time

to come off treatment having a shorter tail than for the control group.
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Figure 6.15: Comparing the density plot of cotrol and treatment group using the
parametric and non-parametric Bayesian approaches to impute censored observa-
tions in both groups.

In summary, from Figures 6.12, 6.14 and 6.15 it is clear that surfactant therapy

plays an important role in reducing the number of hours of oxygen therapy required

among low birth weight infants who require treatment. A possible explanation

for the results seen in the density plot is that there are two subgroups of infants,

those who will recover quickly, for whom there is no real treatment effect, and a

second group of sicker infants where the additional surfactant treatment is effective

in reducing the time required on oxygen therapy.
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6.6 Chapter Summary

The main focus of this chapter was to apply the parametric Bayesian and non-

parametric Bayesian imputation methods to the three example datasets with differ-

ent percentages of censoring introduced in Chapter 1. These imputation approaches

are used to motivate the benefits of considering imputing censored observations in

time to event studies. Also, we illustrate the usefulness of these methods in an

applied context. By imputing values for the censored observations and combining

the original complete and imputed incomplete data, it allows more interpretable

graphics to be produced for a wider general audience (physicians and patients). For

instance, it is possible to plot the density of the full data to complement the in-

formation given by Kaplan-Meier plots. These density functions were able to show

features of the data that were very hard to discern from the Kaplan-Meier plot.

Also, in this chapter, a discussion on different methods of estimating the empirical

density function was given where the logspline package in R was proposed as a

useful approach for estimating a density function of the data.

The benefit of being able to generate an estimate of the underlying density function

for the time to event response of interest was highlighted as a complement to plots

of the survivor function and a potentially useful translational tool.



Chapter 7

Conclusions and Future Work

7.1 Goal of the Thesis and Proposed Methods

In time-to-event studies subject to censoring methods of plotting individual survival

times, such as the histogram or the density plot, are not available and the graphical

display of time-to-event data usually takes the form of a plot of the survivor function

(typically using the Kaplan-Meier estimator). Based on the Kaplan-Meier plot, the

median survival time is the classical summary reported to the patients. The median

gives an estimate of the mid-population survival time for the cohort in question and

is unlikely to apply to any particular individual. Moreover, the median may not be

unique, and in some datasets, it cannot be calculated.

The principal aim of this thesis was to consider censored data as a form of missing,

incomplete, data and to propose Bayesian approaches to impute these partially ob-

served values. In this thesis, the imputed values of censored observations were used

to produce more interpretable graphical summaries of time-to-event data, such as

a density plot, which may usefully complement Kaplan-Meier plots. The imputa-

tion approach is intended to be used for the visual exploration and presentation of

survival data and give a simple, interpretable display for physicians and patients to

better understand summaries generated from time to event models.

The first new approach taken in this thesis was to use a parametric Bayesian frame-

work to impute the censored observations. The Bayesian perspective can be in-

148
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teresting as maybe historical data from similar past studies can be very helpful in

interpreting the results of the current study, or used to inform prior distributions for

model parameters in the analysis. A second new approach is to use non-parametric

Bayesian methods for imputation, as assuming a fixed distributional specification

for the random or error terms in the model may be inadequate for the actual data.

Mainly, we used the idea of imputing the censored observations based on the other

information in the dataset and some form of Bayesian model. However, in imputing

censored data, we have some additional limited information on the censored values.

For instance, with right censoring, we know that the true failure time exceeds the

observed censored time. Knowing this information is an important difference from

standard missing data imputation, and we used this knowledge in our imputations

to provide imputed values making use of all available information. By repeating the

imputation process we are able to obtain some indication of the uncertainty due to

the censored (partially observed) values.

7.2 Review of Simulation and Application Studies

To study the performance of our approach we carried out simulation studies, us-

ing both parametric Bayesian and non-parametric Bayesian approaches to impute

the censored observations. The simulation study results were obtained for different

sample sizes and different percentages of censoring.

Based on our simulation results, if the sample size is large enough (for example

greater than a hundred) and also in the presence of at most a moderate percent-

age of censoring (not more than twenty percent) both the parametric Bayesian and

non-parametric Bayesian imputation methods work quite well when estimating a

survivor function and are comparable to the Kaplan-Meier estimator. For both

parametric and non-parametric Bayesian methods, as the sample size increased the

imputed values became more accurate, but for a given sample size become less so

as the proportion of censoring increases. This shows that the approach behaves as

may be expected under conditions of more, or less, information.
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Also as expected, when the true survival distribution is known the parametric ap-

proach performed better and so should be used when possible. For example, in

tuberculosis disease, since the potential for dying increases early in the disease and

then decreases later, the lognormal distribution might be an appropriate distribu-

tion. However, in situations where the true distribution of the data is unknown, as

is often the case in practice, the non-parametric Bayesian approach is recommended

and potentially superior, but this needs to be balanced against the fact that it is

much more computationally intensive and more time-consuming. In general, these

imputation methods are not recommended for a high percentage of censoring, as

when half or more of the data are censored there is insufficient information in the

observed failure times to provide meaningful imputations.

The parametric Bayesian and non-parametric Bayesian methods were applied to

three datasets including 6-MP data, metastatic renal carcinoma data and bron-

chopulmonary dysplasia data. These datasets are chosen because they have differ-

ent percentages of censoring. The benefit of being able to generate an estimate of

the underlying density function for the time to event response of interest was high-

lighted as a complement to plots of the survivor function and a potentially useful

translational tool. These density functions were able to show features of the data

that were very hard to discern from the Kaplan-Meier plot.

7.3 Future Work

The development of the imputation ideas proposed in this thesis opens up new op-

portunities for further research. The simulation study will be extended to compare

and contrast parametric Bayesian and non-parametric Bayesian methods for differ-

ent sample sizes using mis-specified models. An R package will be developed to

impute censored observations using both parametric Bayesian and non-parametric

Bayesian methods, which would make the methods developed here accessible for oth-

ers to use. The current development has been confined to right-censoring, however,

the basic idea could be extended to interval and left censoring through appropriate

changes in the conditional distributions used for the imputation. Other censoring
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schemes, such as Type II censoring, where there are a fixed specified number of

failures, could also be considered by imputing suitable conditional order statistics

for the censored values.

Another application of the imputation approach could be in estimating the mean

residual life (MRL) function, which, it has recently been argued may be an informa-

tive alternative summary to the survival function, especially when communicating

to a non-statistical audience (see Newell et al. [87], Alvarez et al. [5], Jalali et

al. [59]). When there is no censored data the MRL estimation would be straight-

forward using the empirical estimate for the MRL function [112]. The presence of

censoring is the main challenge in estimating the MRL function since the survivor

function needs to be known. Alvarez et al. [5] proposed a method to estimate the

MRL function for right censored data using a hybrid estimator. By using Bayesian

imputation methods for right censored data a complete dataset can be created so

that the MRL function could be estimated using an empirical estimator.

Finally, the use of Bayesian imputation methods may lead to more flexibility in how

time to event data are modelled and analysed, as methods for modelling a contin-

uous response may now be applicable. In this the censored data would again be

treated as missing and imputed to give a completed dataset for analysis and the

usual consideration for analyses with imputed data would apply, such as the use of

multiple imputations and associated analyses with the results being combined by

Rubin’s rules.



Appendix: Rcode

Shiny Application for Sampling From a Dirichlet

Process

library("shiny")

runApp(list(

ui = bootstrapPage(pageWithSidebar( headerPanel(uiOutput("headerp")),

sidebarPanel(radioButtons("method", "Method:",

c("Stick breaking" = "stick","Polya urn" = "polya")),

sliderInput("N", "Number of N:",min = 1,max = 1000, value = 100),

sliderInput("nsim", "number of simulation:",min=1, max=100, value=50),

sliderInput("alpha", "alpha:",min = 0.1,max = 100, value = 20, step= 0.1),

sliderInput("w", "weight:",min = 0,max = 1, value = 1, step= 0.01),

numericInput("mu1", "First mean:", 0),numericInput("mu2", "Second mean:", 0),

numericInput("sigma1", "First standard deviation:", min=0, 1),

numericInput("sigma2", "Second standard deviation:", min=0, 1),

submitButton("Refresh")),mainPanel( plotOutput("cum.plot"))

)),

server = function(input, output){

library("dynpred")

library("splines")

library("survival")

output$headerp <- renderUI({

hpanel=list(paste("Dirichlet Process {G_0=",
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input$w, "* N(", input$mu1, ",", input$sigma1, ") + ",

1-input$w, "* N(", input$mu2, ",", input$sigma2, ")}", sep=" "))

do.call(tagList, hpanel)

})

LL = 200

output$cum.plot <- renderPlot({

w=input$w

mu1=input$mu1

mu2=input$mu2

sigma1=input$sigma1

sigma2=input$sigma2

nsim=input$nsim

alpha<-input$alpha

N<-input$N

rng= c( min(mu1-4*sigma1, mu2-4*sigma2), max(mu1+4*sigma1, mu2+4*sigma2) )

gen.w = function( N, alpha ){

zz = rbeta( N, 1, alpha )

ww = zz

temp = 1 - zz[1]

for( k in 2:(N-1) ){

ww[k] = temp * zz[k]

temp = temp * (1 - zz[k])

}

ww[N] = 1 - sum( ww[1:(N-1)] )

return( sample( ww ))

}

sample.mix.norm.g0 = function( N, alpha, LL=200 ){

ww = gen.w( N, alpha )

N1 = round( w * N )

psi = c( rnorm( N1, mean=mu1, sd=sigma1 ), rnorm( N-N1, mean=mu2, sd=sigma2))

cpsi = sort( psi, index.return=T )

cdf = cumsum( ww )
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cbind( cpsi$x, cdf )

}

mean.cdf = function( alpha, nsim, LL=200, N=1000, rng=c(-4,4) ){

newtm = seq( rng[1], rng[2], len = N )

newcdf = matrix( 0, nrow=nsim, ncol=N )

for( ii in 1:nsim ) {

res = sample.mix.norm.g0( N, alpha, LL )

newcdf[ii,] = evalstep( time = res[,1],

stepf = res[,2],

newtime = newtm,

subst = 0)

}

meancdf = apply( newcdf, 2, mean )

list( tm=newtm, cdf=newcdf, mcdf=meancdf )

}

if (input$method=="stick"){

label.plot<-"Stick breaking"

res = mean.cdf( alpha, nsim, LL=200, N=N, rng=rng )

plot( res$tm, res$mcdf, xlim = rng, ylab="P(X<x)", xlab="x", col="red",

lwd=2, type=’l’ )

grayc = seq( .5, .9, len=20 )

for( j in 1:nsim ){

for( i in 1:(N-1) ) {

segments( res$tm[i], res$cdf[j,i],

res$tm[i+1], res$cdf[j,i], col = gray( grayc[j%%20]) ) # horiz

segments( res$tm[i+1], res$cdf[j,i],

res$tm[i+1], res$cdf[j,i+1], col = gray( grayc[j%%20]) ) # horiz

}

if( j > 20 ) break

}

x = seq( rng[1], rng[2], len=200 )

lines( x, w*pnorm(x, mean=mu1, sd=sigma1) + (1-w)*pnorm(x, mean=mu2, sd=sigma2),
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col = "black", lwd=5, type=’l’ )

lines( res$tm, res$mcdf, xlim = rng, ylab="P(X<x)", col="red",

lwd=2, type=’l’ )

}

if (input$method=="polya"){

label.plot<-"Polya urn"

mat.x<-NULL

x = seq(rng[1], rng[2],len=200)

plot(x, w*pnorm(x, mean=mu1, sd=sigma1) + (1-w)*pnorm(x, mean=mu2, sd=sigma2),

ylab="P(X<x)", col="black", lwd=5, type=’l’)

grayc = seq( .5, .9, len=20 )

for(j in 1:nsim){

theta = rep(0,N)

rn1<-rnorm(1,mu1,sigma1)

rn2<-rnorm(1,mu2,sigma2)

u1<-runif(1)

if (u1<w) {theta[1]=rn1} else {theta[1]=rn2}

theta.star = rep(0,N)

theta.star[1] = theta[1]

for( ii in 2:N ) {

uu = runif( 1, 0, 1 )

if( uu < alpha/(alpha+ii-1)) {

rn1<-rnorm(1,mu1,sigma1)

rn2<-rnorm(1,mu2,sigma2)

u1<-runif(1)

if (u1<w) {theta[ii]=rn1} else {theta[ii]=rn2}

}

else {

theta[ii] = sample( theta[1:(ii-1)], 1, 1/(alpha+ii-1) )

}}

thetau = unique( theta )

L = length( thetau )
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thetap = rep(0,L)

for( ii in 1:L ) {

thetap[ii] = sum( thetau[ii] == theta ) / N

}

stheta = sort( thetau, index.return=T )

cdf = cumsum( thetap[ stheta$ix ] )

res = list( stheta = stheta$x, cdf=cdf )

g.x<-evalstep(time=res$stheta, stepf=cdf, newtime=x, subst=0)

mat.x<-cbind(mat.x,g.x)

if(j<21) {

segments( x[1], 0, res$stheta[1], 0, lwd=.02,col = gray( grayc[j%%20]) )

segments( res$stheta[1], 0, res$stheta[1], res$cdf[1], lwd=.02,

col = gray( grayc[j%%20]) )

for( i in 1:L ) {

segments( res$stheta[i], res$cdf[i],

res$stheta[i+1], res$cdf[i], lwd=.02,col = gray( grayc[j%%20]) )

segments( res$stheta[i+1], res$cdf[i],

res$stheta[i+1], res$cdf[i+1], lwd=.02,col = gray( grayc[j%%20]) )

}

segments( res$stheta[L], res$cdf[L], res$stheta[L], 1, ,

lwd=.02,col = gray( grayc[j%%20]) )

segments( res$stheta[L], 1, x[LL], 1, , lwd=.02,col = gray( grayc[j%%20]) )

}}

mean.mat<-apply(mat.x,1,mean)

for(ii in 2:200){

segments(x[ii-1], mean.mat[ii-1], x[ii-1], mean.mat[ii],lwd=2,col="red")

segments(x[ii-1], mean.mat[ii], x[ii], mean.mat[ii],lwd=2,col="red")

}}})}))
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Location Normal Dirichlet Process Mixture Model

update.configs = function( new.theta, ii )

{

old.theta.ii = theta[ii]

theta[ii] <<- new.theta

yy.nn=length(theta)

n.star=length(theta.star)

clust.jj = ( new.theta == theta.star )

if( length(which(clust.jj)) == 0 ){

if( n.star == yy.nn ) {

theta.star[ s.indic[ii] ] <<- new.theta

return}

else{

if( nj[ s.indic[ii] ] == 1 ){

theta.star[s.indic[ii]] <<- new.theta}

else{

theta.star[ n.star+1 ] <<- new.theta

nj[s.indic[ii]] <<- nj[s.indic[ii]] - 1

nj[n.star+1] <<- 1

s.indic[ii] <<- n.star+1

n.star <<- n.star + 1}}}

else{

if( new.theta != old.theta.ii ){

theta.star <<- sort( unique( theta ))

s.indic <<- match( theta, theta.star )

n.star <<- length( theta.star )

temp = table( theta )

nj <<- as.vector( temp )}

else{

}}}

update.m.configs = function( ii ){
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theta.star.m <<- theta.star

nj.m <<- nj

n.star.m <<- n.star

if( nj.m[ s.indic[ii]] == 1 ){

theta.star.m <<- theta.star.m[ -s.indic[ ii ]]

nj.m <<- nj.m[ -s.indic[ ii ]]

n.star.m <<- n.star.m - 1}

else{

nj.m[ s.indic[ii] ] <<- nj.m[ s.indic[ii] ] - 1}}

fullcond.theta = function( iter ){

qj = rep( 1, n.star.m )

for( ii in 1:yy.nn ){

update.m.configs( ii )

temp = exp( -0.5*( yy[ii] - mu)^2 / (phi2 + tau2 ))

q0 = alpha.DP / ( SQRT2PI * sqrt(phi2+tau2)) * temp

qj = dnorm( yy[ii], mean = theta.star.m, sd = sqrt( phi2 ))

sum.q.all = sum( nj.m * qj )

uu = runif( 1, 0, 1 )

if ( uu <= q0 / (sum.q.all+ q0)){

mu.h = (yy[ii]*tau2 + mu*phi2) / (tau2+phi2)

tau2.h = phi2 * tau2 / (tau2+phi2)

new.theta = rnorm( 1, mu.h, sqrt( tau2.h ))}

else{

temp = nj.m * qj

idx = sample( 1:n.star.m, size=1, prob = nj.m * qj/ (sum.q.all+ q0)) #)

new.theta = theta.star.m[ idx ]}

update.configs( new.theta, ii )}

theta.out[ iter, ] <<- theta

theta.star.out[[iter]] <<- theta.star

nj.out[[iter]] <<- nj}

fullcond.theta.star = function( iter ){

for( jj in 1:n.star ){
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yy.sum = sum( yy[ (s.indic == jj) ])

temp1 = nj[jj] * tau2 + phi2;

mu.theta.star = (mu*phi2 + yy.sum*tau2) / temp1;

s2.theta.star = tau2 * phi2 / temp1;

theta.star[jj] = rnorm( 1, mu.theta.star, sqrt(s2.theta.star) );}

for( ii in 1:yy.nn ){

theta[ii] <<- theta.star[s.indic[ii]];}

theta.out[ iter, ] <<- theta

theta.star.out[[iter]] <<- theta.star}

fullcond.alpha = function( iter ){

uu = rbeta( 1, alpha.DP +1.0, yy.nn )

ww = (a.alpha.DP + n.star -1) /

( yy.nn*(b.alpha.DP - log(uu)) + alpha.DP + n.star -1 )

if( runif( 1, 0, 1 ) < ww ){

alpha.DP <<- rgamma( 1, shape = a.alpha.DP + n.star,

rate = b.alpha.DP -log(uu) )}

else{

alpha.DP <<- rgamma( 1, shape = a.alpha.DP + n.star -1,

rate = b.alpha.DP -log(uu) )}

alpha.DP.out[ iter ] <<- alpha.DP}

fullcond.phi2 = function( iter ){

temp.sum = sum( (yy-theta)^2 )

phi2 <<- 1.0 / rgamma( 1, shape = c.phi2 + 0.5*yy.nn,

rate = d.phi2 + 0.5*temp.sum )

phi2.out[ iter ] <<- phi2}

fullcond.mu = function( iter ){

theta.star.sum = sum( theta.star )

temp1 = tau2 + n.star*var.mu

mu.res = (mu.mu*tau2 + var.mu*theta.star.sum) / temp1

s2.res = tau2*var.mu / temp1

mu <<- rnorm( 1, mu.res, sqrt(s2.res) )

mu.out[ iter ] <<- mu}
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fullcond.tau2 = function( iter ){

temp.sum = sum( (theta.star - mu )^2 )

tau2 <<- 1.0 / rgamma( 1, shape = c.tau2 + n.star/2,

rate = d.tau2 + 0.5*temp.sum )

tau2.out[ iter ] <<- tau2}

init.all = function( nnn ){

theta <<- rep( mean( yy ), yy.nn )

s.indic <<- rep( 1, yy.nn )

theta.star <<- theta[1]

n.star <<- 1

nj <<- yy.nn

theta.star.m <<- theta[1]

n.star.m <<- 1

nj.m <<- yy.nn-1

alpha.DP <<- 0.1 * yy.nn

mu <<- mean( yy )

tau2 <<- 10*var( yy )

phi2 <<- 10*var( yy )

SQRT2PI <<- sqrt( pi )

theta.out <<- matrix( 0, nrow=nnn, ncol=yy.nn )

theta.star.out <<- list()

nj.out <<- list()

alpha.DP.out <<- rep( 0, nnn )

mu.out <<- rep( 0, nnn )

phi2.out <<- rep( 0, nnn )

tau2.out <<- rep( 0, nnn )}

gibbs.sampler = function( iter ){

fullcond.theta( iter )

fullcond.theta.star( iter )

fullcond.alpha( iter )

fullcond.phi2( iter )

fullcond.mu( iter )
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fullcond.tau2( iter )}

read.input.files =function( fname.par, fname.dat ){

dd = read.table( fname.par )

burnin <<- dd[ dd[,1] == "burnin", 2 ]

monitor <<- dd[ dd[,1] == "monitor", 2 ]

thin <<- dd[ dd[,1] == "thin", 2 ]

a.alpha.DP <<- dd[ dd[,1] == "a.alpha.DP", 2 ]

b.alpha.DP <<- dd[ dd[,1] == "b.alpha.DP", 2 ]

c.phi2 <<- dd[ dd[,1] == "c.phi2", 2 ]

d.phi2 <<- dd[ dd[,1] == "d.phi2", 2 ]

c.tau2 <<- dd[ dd[,1] == "c.tau2", 2 ]

d.tau2 <<- dd[ dd[,1] == "d.tau2", 2 ]

yy <<- as.matrix( read.table( fname.dat ))

yy.nn <<- dim( yy )[1]

yy <<- yy[,1] / 1000

mu.mu <<- mean(yy)

var.mu <<- var(yy) / sqrt( yy.nn )

if( 0 ) {

print( yy )

print( burnin )

print( monitor )

print( thin )

print( a.alpha.DP )

print( b.alpha.DP )

print( c.phi2 )

print( d.phi2 )

print( c.tau2 )

print( d.tau2 )

print( theta )

print( s.indic )

print( theta.star )

print( n.star )
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print( nj )

print( theta.star.m)

print( n.star.m )

print( nj.m )

print( alpha.DP )

print( mu )

print( tau2 )

print( phi2 )}

post.pred = function(){

y0 = seq( min(yy), max(yy), len = 100 )

y0.nn = length( y0 )

y0.pred = rep( 0, y0.nn )

temp = rep( 0, monitor )

for( ii in 1:y0.nn ) {

for( ll in (burnin+1):(burnin+monitor)) {

temp[ll] = sum( nj.out[[ll]] *

dnorm( y0[ii], theta.star.out[[ll]], sqrt(phi2.out[ll])) )

}

y0.pred[ii] =

mean( alpha.DP.out / (alpha.DP.out + yy.nn ) *

dnorm( y0[ii], mu.out, sqrt( tau2.out + phi2.out )) +

1/(alpha.DP.out + yy.nn) * temp )

}

list( y0 = y0, y0.pred = y0.pred )}

main.mcmc = function( fname.par, fname.dat ){

read.input.files( fname.par, fname.dat )

n.run = burnin + monitor

init.all( n.run )

for ( ii in 1:n.run )

{

if (ii %% (20) == 0)

print(ii)
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gibbs.sampler( ii )}}

dinvgamma = function( x, shape, rate ){

tt = shape*log(rate) - (shape+1)*log(x) -rate/x -lgamma(shape)

return( exp(tt) )}

##if( 0 )

{

system.time( replicate( 1,

main.mcmc( "dpm.par.txt", "galaxies.txt" )))

}

####if( 0 )

{

res = post.pred()

y0.axis = ( res$y0 )

y0.pred = ( res$y0.pred )

par( mfrow=c(2,3) )

acf( theta.out[,38] )

acf( alpha.DP.out )

acf( mu.out )

acf( phi2.out )

acf( tau2.out )

dev.new()

par( mfrow=c(2,3) )

hist( theta.out[,38], prob=T )

hist( alpha.DP.out, prob=T )

x = seq( min( alpha.DP.out ), max(alpha.DP.out), len = 100)

lines( x, dgamma( x, shape = a.alpha.DP, rate = b.alpha.DP ), col=2 )

hist( mu.out, prob=T )

x = seq( min( mu.out ), max(mu.out), len = 100)

lines( x, dnorm( x, mean = mu.mu, sd = sqrt( var.mu )), col=2)

hist( phi2.out, prob=T )

x = seq( min( phi2.out ), max(phi2.out), len = 100)

lines( x, dinvgamma( x, shape = c.phi2, rate = d.phi2 ), col=2 )
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hist( tau2.out, prob=T )

x = seq( min( tau2.out ), max(tau2.out), len = 100)

lines( x, dinvgamma( x, shape = c.tau2, rate = d.tau2 ), col=2 )

hist( yy, prob=T, breaks=30 )

lines( y0.axis, y0.pred, col=2 )

}

hist( yy, prob=T, breaks=30 ,main = "",ylim=c(0,.25),xlab="Velocity")

lines( y0.axis, y0.pred, col=2 )

Royston Parametric Approach

dat.KC<- data.frame(time=mydata$survtime, status=mydata$cens, prior=mydata$trt)

library(survival)

fit <- survreg(Surv(time,status) ~ prior, data = dat.KC, dist = "lognormal")

summary(fit)

mu_i <- log(predict(fit, dat.KC[dat.KC[, "status"] == 0, ]))

sigm <- fit$scale

k <- (log(dat.KC[dat.KC[, "status"] == 0, "time"]) - mu_i)/sigm

le <- length(k)

u <- runif(le, 0, 1)

F_k <- pnorm(k, 0, 1)

x_i <- qnorm(u * (1 - F_k) + F_k, 0, 1)

tau_i = exp(sigm * x_i + mu_i)

dat.KC[dat.KC[, "status"] == 0, "time"] <- tau_i

Royston<- dat.KC
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