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• The effect on composition and P adsorption of the treated samples were examined. 28 

• Gypsum was found to be the most successful in enhancing the P adsorption capacity. 29 

 30 

Abstract 31 

Bauxite residue (red mud), the by-product produced in the alumina industry, is being 32 

produced at an estimated global rate of approximately 150Mt per annum.  Due to its highly 33 

alkaline nature, many refineries use neutralisation techniques such as mud farming 34 

(atmospheric carbonation), direct carbonation using carbon dioxide or reactions with 35 

seawater, to treat the bauxite residue and reduce its alkalinity prior to disposal in the BRDA 36 

(bauxite residue disposal area). Applying a treatment can render the bauxite residue non-37 

hazardous and may also prepare the bauxite residue for reuse, particularly as an adsorbent.  In 38 

this study, gypsum and seawater treatments were applied to the various bauxite residue 39 

samples obtained and the effects on its mineral, elemental and physiochemical properties 40 

were examined, as well as the effect on its phosphorus (P) adsorption capacity.  It was found 41 

that in addition to reducing the alkalinity of all bauxite residue samples used, the P adsorption 42 

capacity was also enhanced following amendment with seawater or gypsum, particularly with 43 

gypsum.  A positive correlation was detected between P adsorption and both Ca and CaO.  A 44 

negative correlation was detected between the P adsorption and pH of the media.  Fitting the 45 

data obtained from a batch adsorption experiment to the Langmuir adsorption isotherm, the 46 

maximum adsorption capacity was estimated to range from 0.345 to 2.73 mg P per g bauxite 47 

residue, highlighting the re-use potential for bauxite residue as an adsorbent for P.  48 

 49 

Keywords: bauxite residue; adsorption; bauxite residue filter; aqueous solution; phosphate 50 

removal 51 

 52 
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1. Introduction 53 

During the extraction of alumina from bauxite ore using the Bayer process, a by-product 54 

called bauxite residue (red mud) (Kirwan et al., 2013; Liu et al., 2014) is produced.  The 55 

global inventory for bauxite residue is approximately 3 billion tonnes, with an estimated 56 

annual production rate of 150 million tonnes (Evans, 2016; Mayes et al., 2016).  Bauxite 57 

residue is highly alkaline (pH >10) (Goloran et al., 2013), with a high salinity and sodicity 58 

(Gräfe et al., 2009).  Current best practice within this industry includes careful planning and 59 

management of highly engineered bauxite residue disposal areas (BRDAs), avoiding 60 

contamination of the surrounding environment (Prajapati et al., 2016).  In addition, some 61 

refineries use neutralisation techniques for the bauxite residue before disposal into the 62 

BRDAs (Klauber et al., 2011; IAI, 2015; Evans 2016).  These techniques include (1) direct 63 

carbonation, whereby the residue slurry is treated with either carbon dioxide, sulfur dioxide 64 

gas, or undergoes intensive mud farming using amphirollers (atmospheric carbonation) 65 

(Cooling, 2007; Fois et al. 2007; Dilmore et al., 2009; Evans, 2016) (2) addition of spent 66 

acids and/or gypsum (CaSO4.2H2O) (Kirwan et al., 2013), or (3) reaction of residues with 67 

seawater (Hanahan et al., 2004; Palmer and Frost, 2009; Couperthwaite et al., 2014).  68 

 69 

Bauxite residues typically comprise very fine particles, ranging from 0.01 µm to 200 µm 70 

(Pradhan et al., 1996). Depending on the type of bauxite ore used, in some refineries the 71 

bauxite residue undergoes a separation technique during processing (Evans, 2016), which 72 

allows it to be separated into two main fractions: a fine fraction with a particle size <100 µm 73 

and a coarse fraction with a particle size >150 µm (Eastham et al., 2006; Jones et al., 2012).  74 

The coarse fraction mainly consists of quartz (SiO2), whereas the fine fraction is dominated 75 

by iron (Fe) oxides (Snars and Gilkes, 2009). The ratio of the fine to coarse fraction produced 76 

is dependent on the bauxite ore used and the Bayer process employed (Li, 2001). Refineries 77 
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which carry out the separation technique, have found use for the coarse fraction to create 78 

roadways to the BRDA and/or storage embankments (Evans, 2016).  However, finding 79 

appropriate options for the re-use of the fine fraction bauxite residue remains elusive (Power 80 

et al., 2011; IAI, 2015).			81 

 82 

Fine fraction bauxite residue comprises Fe oxides (20-45%) and aluminium (Al) oxides (10-83 

22%) (IAI 2015), which make it suitable as a medium to adsorb phosphorus (P). The 84 

European Commission (EC) has identified waste management as an important aspect of the 85 

“circular economy” (EC, 2015), so in recent years, emphasis has been placed on investigating 86 

alternative methods of P recovery from wastewater (Grace et al., 2015, 2016).  A move from 87 

the more conventional methods of P recovery such as biological removal and chemical 88 

precipitation (Wang et al., 2008), to the use of low-cost adsorbents from industrial solid 89 

wastes, such as bauxite residue, have been examined.  In comparison to standard P removal 90 

by sand, bauxite residue has a high P retention capacity (Vohla et al., 2007).  However, its P 91 

removal potential is enhanced following treatment by heat, acid or gypsum (Table 1). Of the 92 

methods employed, acid and heat treatment have proved most successful in increasing the P 93 

adsorption capacity of the bauxite residue, with maximum adsorption capacities of up to 203 94 

mg P g-1 bauxite being achieved (Liu et al., 2007) compared to untreated residue (0.20 mg P 95 

g-1; Grace et al., 2015) (Table 1). However, whilst acid and heat treatments have proven to be 96 

very successful in increasing the adsorption capacity of bauxite residue, they are expensive, 97 

energy consuming (using high temperatures up to 700˚C) (Xue et al., 2016), and, without 98 

further treatment, do not allow for the easy reuse of the bauxite residue (e.g. as a possible 99 

media for plant growth) (Xue et al., 2016).   100 

 101 
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Treatments such as seawater or gypsum provide relatively inexpensive, alternative 102 

treatments, which may not only enhance the P adsorption capacity of the bauxite residue 103 

media, but may also help to improve its physicochemical characteristics. Seawater treatment 104 

improves bauxite’s physical structure, due to the addition of magnesium (Mg) and calcium 105 

(Ca) which behave as flocculating agents, allowing many of the fine particles in bauxite 106 

residue to form more stable aggregates (Jones and Haynes, 2011), and a partial decrease in 107 

sodium (Na) due to ion exchange with Mg, Ca and potassium (K) (Hanahan et al., 2004). 108 

Seawater-treated bauxite residues also allow adsorbed P to become bio-available, unlike the 109 

metal cations which are unavailable, highlighting the P and metal retention capabilities 110 

(Fergusson, 2009).  Revegetation of bauxite residue using gypsum has also improved plant 111 

growth by reducing its alkalinity and salinity, and improving the structure of the residue 112 

(Courtney et al., 2009; Courtney and Kirwan, 2012).  In addition to this, modern alumina 113 

refineries are often located close to deep water ports, to allow for the bulk shipment of 114 

incoming bauxite (sometimes from multiple sources) to the refinery and/or for bulk shipment 115 

of alumina to aluminium smelters situated elsewhere. Therefore, there is ample scope for the 116 

increasing use of seawater neutralization technology for pre-treatment of residues in 117 

refineries not already employing treatments previously mentioned, prior to their deposition in 118 

the BRDA.  119 

 120 

To the best of the authors’ knowledge, no study has previously compared the use of raw 121 

seawater or gypsum treatments on the separate fractions of bauxite residue as a method of 122 

neutralisation and preparation for the re-use of bauxite residue in its separated and 123 

unseparated fractions as low-cost adsorbents and a potential source of P.  The objectives of 124 

this study were to (1) characterise bauxite residue from two different sources, before and after 125 

treatment with seawater and gypsum, and to investigate their potential to release trace 126 
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elements (2) investigate the effect of the treated bauxite residue on P adsorption (3) assess the 127 

impact of particle size, mineral and elemental (particularly Ca and Mg) composition of the 128 

bauxite residue on the adsorption of P.   129 

  130 

2. Materials and Methods 131 

 132 

2.1 Sample preparation 133 

A one kilogram, sample of fresh bauxite residue was obtained from Alteo Gardanne 134 

[Gardanne, France (43˚27’9”N, 5˚27’41” E)], who operate a co-disposal method for fine and 135 

coarse fractions of bauxite.  This sample will be referred to hereafter as UFR.  One kilogram 136 

of mud-farmed bauxite residue samples (treated by atmospheric carbonation and therefore 137 

non-hazardous), were also obtained from Rusal Aughinish Alumina [Limerick, Ireland 138 

(52˚37’06”N, 9˚04’19”W)], who separate the fine (particle sizes <100 µm) and coarse 139 

(particle sizes >150 µm) fraction of bauxite residue before disposal (IAI 2015) in a ratio of 140 

9:1 (fine: coarse).  The fine and coarse fractions will be referred to hereafter as UF (untreated 141 

fine) and UC (untreated coarse).  142 

 143 

Before any analysis or experiments were conducted, all bauxite residue samples were dried at 144 

105˚C for 24 hr.  Once dry, the samples were pulverised using a mortar and pestle and sieved 145 

to a particle size <2 mm. 0.3 kg of each sample were then treated with either seawater (S) or 146 

laboratory-grade gypsum (G) (Lennox, Ireland), so two treatments were applied to each 147 

source of bauxite residue. S or G, placed after the above abbreviations, indicates the 148 

treatment applied.  Gypsum was applied to the 0.3 kg bauxite residue samples at a ratio of 8% 149 

(w/w) (Lopez et al., 1998) and leached for 72 hr in accordance with standard methods (BSI, 150 

2002).  Seawater amendment involved mixing with 0.3 kg bauxite at a ratio of 5:1 (v/w) 151 
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(after Johnston et al., 2010), for 1 hr, followed by a 12 hr settlement period overnight.  The 152 

bauxite residue and seawater mixture was then filtered through a 0.45 µm membrane using a 153 

vacuum pump.  The treated bauxite residue samples were then oven dried for 24 hr, 154 

pulverised with a mortar and pestle, and sieved to <2 mm in size.   155 

   156 

2.2 Characterisation Study 157 

Untreated and treated bauxite samples were characterised (n=3) for their physical, chemical, 158 

elemental and mineralogical properties. Soil pH and electrical conductivity (EC) were 159 

measured in an aqueous extract, using 5 g of bauxite residue sample in a 1:5 ratio (solid: 160 

liquid) (Courtney and Harrington, 2010).  The bulk density (ρb) was determined after Blake 161 

(1965) and the particle density (ρp) after Blake and Hartge (1986) using 10 g of bauxite 162 

residue samples.  Total pore space (St) was calculated using the values obtained for the bulk 163 

and particle densities (Danielson and Sutherland, 1986). The effective particle size analysis 164 

(PSA) was determined on particle sizes <53 µm using optical laser diffraction on the Malvern 165 

Zetasizer 3000HS® (Malvern, United Kingdom) with online autotitrator and a Horiba LA-166 

920, and reported at specific cumulative % (10, 50 and 90%).  Mineralogical detection was 167 

carried out using X-ray diffraction (XRD) on 1 g samples using a Philips X’Pert PRO MPD® 168 

(California, USA), whilst surface morphology and elemental detection were carried out using 169 

scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) on a 170 

Hitachi SU-70 (Berkshire, UK), using approximately 1 g samples.  Quantification of the 171 

elemental content was carried out on 1 g samples by Brookside Laboratories (OH, USA) after 172 

digestion (EPA, 1996) using Inductively Coupled Plasma Atomic Emission Spectroscopy 173 

(ICP-AES) and elemental composition quantified using X-ray fluorescence (XRF).  174 

Measurement of the point of zero charge (PZCpH) was after Vakros et al. (2002) using 1 g 175 

samples, and cation exchange capacity (CEC) was determined using the K saturation 176 
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technique (Thomas, 1982), using 5 g samples.  Brunauer-Emmett-Teller specific surface area 177 

(SSA) and pore volume analysis were conducted on 1 g samples, which were degassed at 178 

120ºC for 3 hr prior to analysis carried out by Glantreo Laboratories (Cork, Ireland). 179 

 180 

2.3 Phosphorus Adsorption Batch Study  181 

The P adsorption capacity of nine bauxite samples (untreated and gypsum/seawater treated 182 

samples) were examined in a bench-scale experiment. To conduct a P adsorption isotherm 183 

test, ortho-phosphorus (PO4
3--P) solutions were made up to known concentrations using 184 

potassium dihydrogen phosphate (K2HPO4) in distilled water. One gram of each of the sieved 185 

media was placed into a series of 50 ml-capacity containers and was overlain with 25 ml of 186 

the solutions.  Each sample was then shaken in a reciprocal shaker at 250 rpm for 24 hr.  At t 187 

= 24 hr, the supernatant water from each sample container was filtered using 0.45µm filters 188 

and analysed immediately using a nutrient analyser (Konelab 20, Thermo Clinical 189 

Labsystems, Finland).  The data obtained from the P adsorption batch studies were modelled 190 

using the Langmuir adsorption isotherm (McBride, 2000), which assumes monolayer 191 

adsorption on adsorption sites and allows for the estimation of the maximum P adsorption 192 

capacity (qmax) of the media: 193 

 194 

!" 	= 	 !%&' 	
(&	)*
_________
1 + (&	)*

                                                                                                     (1) 195 

 196 

where qi is the quantity of the contaminant adsorbed per gram of media (g g-1), Ce is the 197 

equilibrium contaminant concentration in the water (g m-3), ka is a measure of the affinity of 198 

the contaminant for the media (m3 g-1), and qmax is the maximum amount of the contaminant 199 

that can be adsorbed onto the media (g g-1).   200 
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 201 

2.3.1. Mobilization of Metals 202 

To determine whether the residue media released trace elements, 25 mL of water was mixed 203 

with 1 g of media for 24 hr and the supernatant was analysed by ICP-MS.  The elements 204 

selected for detection were Al, arsenic (As), barium (Ba), beryllium (Be), boron (B), 205 

cadmium (Cd), Ca, chromium (Cr), copper (Cu), Fe, gallium (Ga), K, lead (Pb), Mg, 206 

manganese (Mn), mercury (Hg), molybdenum (Mo), Na, nickel (Ni), P, selenium (Se), silicon 207 

(Si), titanium (Ti), vanadium (V), and zinc (Zn). 208 

 209 

2.4 Statistical analysis 210 

Linear regression analysis was utilised to examine the extent of correlation between the 211 

individual characteristic parameters of the bauxite residue samples and bauxite adsorption, 212 

using Minitab. A Pearson correlation coefficient and a correlation p-value were determined to 213 

quantify correlation. The p-value represents the probability that the correlation between the 214 

bauxite residue characteristic in question and the response variable (adsorption) is zero i.e. 215 

the probability that there is no relationship between the two.   216 

 217 

3. Results and Discussion 218 

 219 

3.1 Characterisation of bauxite residue  220 

 221 

3.1.1 Effect of treatments on elemental and mineralogical composition 222 

The mineral and total elemental composition of the three untreated bauxite residues [UF 223 

(untreated fine fraction), UC (untreated coarse fraction), and UFR (untreated co-disposed)] 224 

are shown in Tables 2 and 3.  Bauxite residues are typically high in Fe and Al oxides (Liu et 225 
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al., 2007), which was found to be the case in this study. The mineralogical composition 226 

present for all untreated samples was dominated by Fe2O3, Al2O3, SiO2 and CaO. A decrease 227 

in Al2O3 was noted following treatment with the gypsum and the seawater in all samples, 228 

with an increase in CaO content noted in samples treated with gypsum. 229 

 230 

XRD analysis showed that the main crystalline phases present in UF were haematite (Fe2O3), 231 

goethite (FeO(OH)), perovskite (CaTiO3), boehmite (AlO(OH)), rutile (TiO2), gibbsite 232 

Al(OH)3 and sodalite Na8(Al6Si6O24)Cl2 (Figure S1 in the Supplementary Material). 233 

Similarly, the main minerals in UFR were haematite (Fe2O3), goethite (FeO(OH)), boehmite 234 

(AlO(OH)), rutile (TiO2), gibbsite Al(OH)3 and sodalite Na8(Al6Si6O24)Cl2 (Figure S2).  235 

Boehmite (AlO(OH)), rutile (TiO2), gibbsite Al(OH)3 haematite (Fe2O3) were the 236 

predominant minerals present in UC (Figure S3). Following treatment with seawater and 237 

gypsum, a change in mineral phase in UFG, UFS, UFRS and UFRG occurred (Figure S4, S5, 238 

S6, S7). After treatment with gypsum, a higher presence of the calcium carbonate, calcite 239 

(CaCO3), was detected in UFRG and UCG (Figure S7 and S8), and post seawater treatment, 240 

small peaks representing brucite (Mg(OH)2 were detected in UFS and UCS (S5 and S9).  241 

 242 

These findings are similar to previous studies that examined various neutralization techniques 243 

for bauxite residue (Gräfe et al., 2009).  When seawater is added to bauxite residue, a reaction 244 

occurs where the hydroxide, carbonate and aluminate ions are eliminated due to a reaction 245 

involving Mg2+ and Ca2+ (from the seawater) (Gräfe et al., 2009; Palmer and Frost, 2009). 246 

This results in the formation of alkaline solids such as the calcium carbonates, calcite and 247 

brucite, which cause a buffering effect, evidenced in a shift of pH to between 8 and 9 (Power 248 

et al., 2011).  The addition of gypsum (CaSO4) results in a drop in the pH (approximately 8.6) 249 

due to the precipitation of excess hydroxides (OH-), aluminium hydroxides (Al(OH)4
-), 250 
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carbonates (CO3
2-) to form calcium hydroxide/lime (Ca(OH)), tri-calcium aluminate (TCA), 251 

hydrocalumite and calcium carbonate (CaCO3), which behave as buffers and maintain pH 252 

(Gräfe et al., 2009).  The addition of Ca also flocculates and helps with the formation of more 253 

stable aggregates (Jones and Haynes, 2011). 254 

   255 

An analysis of water samples (Table S1) to examine mobilisation of metals showed that As, 256 

Al and Cr were present in the leachate from the UFR sample, but decreased following 257 

gypsum and seawater treatments.  Arsenic, Fe and Al were mobilised from the UF sample, 258 

but these concentrations were reduced following treatment with gypsum and seawater.  259 

Aluminium was mobilised from the UC.  The reduction in Fe and Al following treatment 260 

with either gypsum or seawater is in line with previous studies, which have shown that water 261 

soluble Fe and Al decrease following gypsum application (Courtney and Timpson, 2005). 262 

Overall, Al still remained above the maximum allowable concentration (MAC) of 0.2 mg L-1 263 

(200 µg L-1) (EPA, 2014) for Al for drinking water.  Sodium was still at a high level 264 

following gypsum and seawater treatments, ranging from 139.3±3.2 to 153±24.8 mg L-1 and 265 

241.3±26 to 388.7±18.6 mg L-1, respectively.  The MAC for Na in drinking water is 200 mg 266 

L-1 (EPA, 2014). 267 

 268 

3.1.2 Effect of treatments on physicochemical properties  269 

The untreated bauxite residues had high pH (10.8±0.12 to 11.9±0.06) and EC (704±90.8 to 270 

1184±48.8µS cm-1) (Table 4). Following treatment with gypsum and seawater, pH decreased 271 

and EC increased. Changes for pH after treatment with either seawater or gypsum are due to 272 

precipitation of calcium carbonates such calcite, brucite and aragonite, which behave as 273 

buffers and maintain a reduced pH (Menzies et al., 2004), while the increase in EC is 274 

attributed to the introduction of excess Na+ and Ca2+ (Gräfe et al., 2009). The pH of bauxite 275 
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residue is normally within the range of 11 to 13 (Newson et al., 2006), but varies due to the 276 

type of bauxite ore, Bayer process, and neutralisation techniques used in the refinery. Both 277 

seawater (Menzies et al., 2004; Johnston et al., 2010) and gypsum applications (Jones and 278 

Haynes, 2011; Courtney and Kirwan, 2012; Lehoux et al., 2013) are recognised methods of 279 

reducing the alkalinity of bauxite residues.  280 

  281 

No change was observed in the particle size or particle size density following the addition of 282 

the gypsum and seawater treatments to the various bauxite residue samples (Table 4). 283 

Similarly, the addition of gypsum or seawater did not have any impact on bulk density (Table 284 

4).  285 

 286 

The surface morphology of bauxite residues typically comprises 30% amorphous and 70% 287 

crystalline phase (Gräfe et al., 2009).  However, in this study SEM imaging suggests that the 288 

bauxite residue samples were not present in strong crystalline form (Figure 1), in particular 289 

for samples UF and UFR, as no distinctive crystalline structure to the bauxite residue samples 290 

was observed.  Liu et al. (2007) examined the effect of age on stored bauxite residue, and 291 

found that fresh bauxite residue particles are present in poorly formed crystallised or 292 

amorphous form in comparison to older bauxite residue (10 years), which has a stronger 293 

crystalline formation, indicating that crystallisation occurs in some of the minerals over time. 294 

As the bauxite residue used in this study was fresh, this would explain why there was not a 295 

strong distinction between amorphous or crystalline forms, similar to the findings of Liu et al. 296 

(2007). The composition of fine particles and larger particles in the coarse fraction (UC) were 297 

noticeable from the SEM (Figure 1). 298 

 299 
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Improved aggregate formation was noticeable in the gypsum and seawater-treated bauxite 300 

residues (Figure 1), due to the addition of Ca2+, which results in flocculation (Zhu et al., 301 

2016).  Changes in the surface morphology were also evident in the gypsum and seawater-302 

treated residues in comparison to the untreated residues, which appeared to have a much 303 

smoother surface (Figure 1).  This change in surface morphology following the treatments 304 

was attributed to the changes in mineral phase (Huang et al., 2008).   305 

 306 

3.2 Phosphorus Adsorption Study 307 

 308 

3.2.1 Effect of seawater and gypsum treatment on P adsorption 309 

All nine bauxite residue samples in this study were successful in removing P from aqueous 310 

solution (Table 5).  Bauxite residue has been shown in numerous P adsorption studies to have 311 

a high P retention capacity, particularly following treatment or modification (Ye et al., 2014; 312 

Grace et al., 2015).  In this study, gypsum or seawater treatment had a positive impact on P 313 

removal, with the gypsum-treated bauxite residue performing best (Table 5).  314 

 315 

Following seawater treatment, the P adsorption capacity of the bauxite residues increased to 316 

qmax values of 0.48, 0.66 and 1.92mg P g-1 media for UFS, UCS and UFRS, respectively. In 317 

previous studies, following treatment with seawater, bauxite residue had a higher adsorption 318 

capacity for P.  Akhurst et al. (2006) reported a maximum adsorption of 6.5 mg P g-1 when 319 

using a bauxite residue treated with brine (Bauxsol™).  This relatively high adsorption may 320 

be attributed to the higher concentrations of Ca2+ and Mg2+ in the brines (or products such as 321 

Bauxsol™, developed by Basecon™), in comparison to raw seawater (0.41, 1.29 and 10.77g 322 

kg-1 of Ca2+, Na and Mg2+, respectively) used in this study (Gräfe et al., 2009).  The gypsum-323 

treated bauxite residues had the highest qmax values – 2.46, 1.39 and 2.73mg P g-1 media for 324 
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UFG, UCG and UFRG, respectively. However, these values were lower than a P adsorption 325 

study carried out by Lopez et al. (1998), who used the same application rate of gypsum to the 326 

bauxite residue samples and reported a qmax of 7.03 mg P g-1.  The lower rate observed in the 327 

current study may be attributed to the 72 hr leaching process that the gypsum-treated bauxite 328 

residue underwent before use in the adsorption study, which may have allowed for further 329 

exchange and removal of Ca2+ following the leaching process.   330 

 331 

Overall, the bauxite residue in the current study had a higher P adsorbency than in other 332 

studies for zeolite (0.01 mg P g-1, Grace et al., 2015) and granular ceramics (0.9 mg g-1; Chen 333 

et al., 2012), but lower than fly ash, granular blast furnace slag and pyritic fill (6.48, 3.61 and 334 

0.88 mg P g-1, respectively; Grace et al., 2015), crushed concrete (19.6 mg P g-1; Egemose et 335 

al., 2012), untreated biochar (32 mg P g-1; Wang et al., 2015), and NaOH-modified coconut 336 

shell powder (200 mg P g-1; de Lima et al., 2012).     337 

 338 

3.2.2 Factors affecting P adsorption  339 

The adsorption of P onto media is influenced by many factors which include particle size, pH, 340 

component and surface characteristics (Wang et al., 2016). Numerous studies have 341 

investigated the effect of parameters such as kinetics of P adsorption (Akhurst et al., 2006; 342 

Liu et al., 2007; Ye et al., 2014; Grace et al., 2015), ionic solution (Akhurst et al., 2006), pH 343 

(Liu et al., 2007; Huang et al., 2008; Grace et al., 2015) on the adsorption of P from aqueous 344 

solution. While all bauxite residue samples in this study did remove P from aqueous solution, 345 

it is clear that the application of treatments, such as gypsum or seawater, has an effect on the 346 

adsorption capability, and that the rate of adsorption will vary as a result of the source of 347 

bauxite residue and treatments used (Wang et al., 2008).   348 

 349 
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The parameters which showed a statistically significant positive correlation of medium 350 

strength with P adsorption in this study were Ca (correlation coefficient = 0.47, p = 0.01, 351 

Degrees of Freedom (DoF) = 25) and CaO (correlation coefficient = 0.39, p = 0.04, DoF = 352 

25). A statistically significant negative correlation of medium strength was also detected 353 

between pH and P adsorption (correlation coefficient = - 0.38, p = 0. 05, DoF = 25).  pH was 354 

a contributing factor to the adsorption process with the amount of phosphate adsorbed 355 

increasing with a decrease in pH in the media following treatments, UFRG>UFRS>UFR, 356 

UFG>UFS>UF, UCG>UCS>UC.  This was a similar finding to several studies carried out 357 

(Li et al., 2006; Liu et al., 2007; Huang et al., 2008; Grace et al., 2015). The Ca ions also 358 

influenced P adsorption.  This is as a result of the high level of Ca2+ and Mg2+ present in the 359 

bauxite residue, particularly after seawater and gypsum treatments, when the majority of 360 

PO4
3- is removed from solution due to the formation of magnesium phosphate (Mg3(PO4)2) 361 

and calcium phosphate (Ca3(PO4)2) (Akhurst et al., 2006).   362 

  363 

The pH at which net charges are neutral on the surface of the adsorbent - the point of zero 364 

charge (PZC) - influences the rate of adsorption of P (Jacukowicz-Sobala et al., 2015). Where 365 

the pH is higher than the PZCpH, the surface of the adsorbent media becomes more negative 366 

(attracting more cations), as a result of the adsorption of OH- from the surrounding solution 367 

(Prajapati et al., 2016).  The PZCpH ranged from 6.16±0.21 to 6.96±1.21 (Table 4) in the 368 

three untreated samples.  Following treatment with gypsum and seawater, there were notable 369 

changes, but no statistical relevance was detected between the PZCpH and P adsorption in 370 

this study.  However, as bauxite residue is composed of numerous minerals, each with their 371 

own individual PZCpH (which, as noted in the literature, can range from anywhere between 372 

pH 2 to pH 9.8 (Gräfe et al., 2009)), this results in the bauxite residue being able to cater for a 373 
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wide range of pH (Gräfe et al., 2009) and also having the capability of removing both cations 374 

and anions from solution.   375 

 376 

The SSA analysis carried out on the bauxite residues show an increase in specific surface 377 

area in all samples following treatment with either the gypsum or the seawater (Table 4). 378 

There was also an increase in pore volume following the addition of either gypsum or 379 

seawater (Table 4). This is attributed to the formation of precipitates formed in the 380 

neutralisation process of both gypsum and seawater and the effect of the Ca acting as a 381 

flocculant with the finer particles present. This increase in surface area also contributes to the 382 

increase in P adsorption following treatments. Although particle size affects adsorption onto 383 

media, due to the availability of sites for P uptake, no significant correlation was observed in 384 

the current study.  385 

 386 

3.3 Implications of the findings of this study 387 

The use of gypsum and seawater treatments on bauxite residue improved the overall P 388 

adsorption capacity of the bauxite residue samples, but mixing the bauxite residue and 389 

treatments with actual wastewater will be necessary to fully understand the total adsorption 390 

behaviour of the bauxite residue.  In addition to improving the P adsorption, alkalinity was 391 

significantly reduced following both treatments; however, the EC was increased. This may 392 

limit the growth of plants on the gypsum or seawater-treated bauxite residues; therefore, one 393 

option may be to increase the rinsing period of the bauxite residue following treatment to 394 

remove the excess Ca2+ and Na+ ions in solution. Lowering the alkalinity, increasing the P, 395 

Ca2+ and Mg2+ content and improving the physical structure, provide the possible re-use 396 

option of using the treated bauxite residue as a growth media.   397 

 398 
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For a refinery, the cost of neutralisation techniques is an obvious consideration when 399 

deciding which technique(s) to use.  The use of seawater as a neutralisation technique would 400 

be a cheap and feasible option for a refinery that is close to the sea.  The establishment of a 401 

pipeline (if not already in place) would be the dominant capital cost.  The use of a Nano 402 

filtration system to concentrate the Ca2+, Mg2+ and Na+ ions in the seawater (Couperthwaite et 403 

al., 2014) could allow for the reduction in volume of seawater necessary for the neutralisation 404 

process, but may add to the cost.  Gypsum however may be a more expensive option, 405 

requiring machinery such as amphirolls for the mixing and spreading of the gypsum.  406 

However, depending on the refinery’s location, waste gypsum from construction sites or 407 

fossil fuel powered power stations may be used (Jones and Haynes, 2011). 408 

   409 

4. Conclusions 410 

 411 

This study examined the impact of gypsum and seawater treatments on the mineral, elemental 412 

and physiochemical properties of bauxite residue.  The untreated bauxite residues were high 413 

in Fe and Al oxides and their mineralogical composition was dominated by Fe2O3, Al2O3, 414 

SiO2 and CaO. Following treatment with gypsum and seawater, the pH decreased and EC 415 

increased, but no change was observed in the particle size or density. The SSA and pore 416 

volume of the bauxite increased following both treatments, which contributed to increased P 417 

adsorbency. Although the P adsorbency measured in this study was not as high as measured 418 

in other studies using different media, it still indicates that reuse in water or wastewater 419 

treatment facilities may be an appropriate option for bauxite residue. 420 

 421 
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Table 1 Phosphorus (P) adsorption studies that have been carried out using bauxite residues, untreated 693 

and treated residues, and their recovery efficiencies. 694 

 P recovery 
technique 

Factors 
investigated  

Type of 
water 

Initial P 
concentration 
of the water 

P recovered Reference 

Untreated 
bauxite residue 
 

Batch 
adsorption 
experiment 

Kinetics, pH 
and 
temperature 
 

Synthetic 
water 

5-100 mg P L-

1 
0.20 mg P g-1 

 
Grace et 
al. 2015 
 

Gypsum 
Treated 
 

Batch 
adsorption 
experiment 

Contact time 
(3, 6, 24, 
48hr) 
 

Synthetic 
water 
 

20-400 mg P 
L-1 
 

7.03 mg P g-1 Lopez et 
al. 1998 

Brine treated 
bauxite residue 
(Bauxsol™*) 
 

Batch 
adsorption 
experiment 
 

pH, ionic 
strength, time 

Synthetic 
water  

0.5-2 mg P L-1 6.5-14.9 mg P 
g-1 

Akhurst et 
al. 2006 

Acid and brine 
treated bauxite 
residue 
(Bauxsol™*) 
 

Batch 
adsorption 
experiment 
 

Kinetics and 
isotherms 
 
 

Synthetic 
water 
 

200 mg P L-1 
 
 

55.72 mg P g-1 
 
 

Ye et al. 
2014 
 

Heat treated 
bauxite residue 
 
 
Acid and heat 
treated bauxite 
residue  
 

Batch 
adsorption 
experiment 
 
Batch 
adsorption 
experiment 

Time, pH and 
initial 
concentration 
 
Time, pH and 
initial 
concentration 

Synthetic 
water 
 
 
Synthetic 
water  

155 mg P L-1 
 
 
 
155 mg P L-1 
 

155.2 mg P g-1 
 
 
 
202.9 mg P g-1 

Liu et al. 
2007 
 
 
Liu et al. 
2007 
 

Acid treated 
bauxite residue  

Batch 
adsorption 
experiment  

Acid type, 
pH  

Synthetic 
water  

1 mg P L-1  1.1 mg P g-1  Huang et 
al. 2008 

*Bauxsol™ = neutralised bauxite residue produced using the Basecon™ procedure, which uses brines high in 695 
Ca2+ and Mg2+ (McConchie et al. 2001). 696 
 697 
 698 
 699 
 700 
 701 
 702 
 703 
 704 
 705 
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Table 2 Mineralogical composition of the bauxite residues, untreated and treated.  706 
 707 

Parameter Untreated 
Fine (UF) 

Fine 
+gypsum 
(UFG) 

Fine+ 
seawater 
(UFS) 

Untreated 
Coarse (UC) 

Coarse+ 
gypsum 
(UCG)  

Coarse 
+seawater 
(UCS) 

Untreated  
French (UFR) 

French+ 
gypsum 
(UFRG) 

French 
+seawater 
(UFRS) 

          
Fe2O3 (%) 43.9±1.1 40.6±0.6 41.8±1.2 64.0±5.1 61.4±3.0 69.9±3.8 43.9±0.6 47.9±0.5 53.3±5.8 
Al2O3 (%) 12.7±0.6 11.3±1.0 11.1±2.5 19.4±1.8 11.1±0.6 7.4±0.7 14.0±1.0 11.2±0.3 11.4±2.2 
CaO (%) 5.9±0.2 8.2±0.5 4.4±0.3 1.1±0.2 7.6±0.4 1.2±0.1 5.6±0.1 7.7±0.3 3.2±0.5 
MgO (%) 3.6±1.3 3.5±0.8 3.1±1.0 4.7±1.8 3.6±0.8 2.6±0.6 4.1±0.6 3.8±0.9 3.2±1.6 
SiO2 (%) 8.6±0.7 8.5±0.9 8.6±1.7 2.6±0.3 1.3±0.2 1.4±0.2 9.4±0.5 5.1±0.4 4.3±0.3 
TiO2 (%) 2.4±0.3 2.1±0.6 2.7±0.1 0.9±0.1 1.0±0.1 2.1±0.6 2.5±0.02 2.3±0.1 2.3±0.5 
P2O5 (%) 0.6±0.04 0.4±0.02 0.4±0.1 0.3±0.02 0.2±0.02 0.2±0.06 0.5±0.01 0.5±0.02 0.5±0.01 
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Table 3 Elemental composition of the bauxite residues, untreated and treated.  
 
Parameter Untreated 

Fine (UF) 
Fine 
+gypsum 
(UFG) 

Fine+ 
seawater 
(UFS) 

Untreated 
Coarse (UC) 

Coarse+ 
gypsum 
(UCG)  

Coarse 
+seawater 
(UCS) 

Untreated  
French (UFR) 

French+ 
gypsum 
(UFRG) 

French 
+seawater 
(UFRS) 

          
B (mg kg-1) 470±8.81  425±29 448±13 615±13.3 622±29 722±32.1 566±18.9 539±25 483.8±31 
Al (mg kg-1) 72538±139

0 
81095±1219 80608±3090 45854±2769 48851±2336 45917±2080 67295±3343 65389±1326 64189±595 

As (mg kg-1) 21.9±1.73 9.7±0.4 <LODl <LODl <LODl <LODl 8.1±0.2 9.75±0.6 6.51±0.43 
Ba (mg kg-1) 43.8±1.19 29.4±5 33.3±0.7 13.9±1.01 18.3±3.4 12.7±2.8 45.7±1.5 41.4±1.4 49.4±3.8 
Cd (mg kg-1) 8.033±0.16 7.02±0.3 7.33±0.19 10.7±0.18 10.8±0.5 11.8±0.59 9.31±0.2 8.87±0.3 8.21±0.3 
Cr (mg kg-1) 1698±37.2 933±44 1170±12.9 880±3.8 817±13 803±21.3 1184±15.9 1090±9 1159±31.2 
          
Fe (mg kg-1) 338571±30

57 
289459±1859 298282±4937 434739±9980 460078±23043 471204±2575

3 
353392±10003 328114±4498 332251±3435 

Pb (mg kg-1) 34.88±0.54 27.8±2.8 36.9±0.8 29.56±3.03 24.6±3 22.06±2.47 34.5±0.9 32.3±0.8 37.4±2.1 
Mg (mg kg-1) 122.28±4.9

6 
163±37 1047±25.6 18.32±4.78 8.5±2.21 511.6±25.4 

 
109±3.9 150±9 2203.8±134 

Mn(mg kg-1)  163±2.63 140±6.1 167±6.8 187±15.5 223±99 185±31.1 134±0.9 139±1.9 142.9±4.2 
Ni (mg kg-1) 18.6±0.89 <LODl 2.25±0.2 3.54±0.27 3.15±0.5 4.18±0.22 1.1±0.1 1.24±0.2 1.23±0.3 
K (mg kg-1) 391±13.68 454±29 1108±41 255±38 195±23 556.99±67.38 399±13 359±11 1048±63.2 
Si (mg kg-1) 223.5±46.1 256±92 245.7±35 213±6.6 234±34 194.46±10.58 276±20 285±34 258.5±11.7 
Na (mg kg-1) 28347±553 38180±352 41864±2012 8804±666 5935±114 11101.55±11

21.8 
25514±317 23703±499 31974±1087 

Ti (mg kg-1) 1395±196 1309±100 1265±22 <LODl <LODl <LODl 1382±38 1288±120 1233±46 
V(mg kg-1)  1050±21.6 781±29 777±8 786±23.6 731±20 731.04±23 1036±12 920±7 983±21 
Zn (mg kg-1) 50.7±0.71 40.6±1.2 42.6±1.3 86.7±1.7 82±5.4 84.68±4.2 55.8±0.5 55.6±1.17 57.3±0.9 
Ga(mg kg-1) 78.9±2.02 81.2±0.53 73.9±0.6 71.8±1.03 69.3±2.3 73.5±1.6 86.8±1.3 78.6±2 78.8±0.9 
Ca(mg kg-1) 46657±8 

32 
51641±485 17159±413 4152±490 12771±823 4089.42±588.

32 
15084±358 42703±2383 14820±926 

P(mg kg-1) 955±0.57 962±99 1018±15 1040±23 1011±59 1039.6±23 1298±26 1220±10 1320±53.8 
Be(mg kg-1)  <LODl <LODl <LODl <LODl <LODl <LODl <LODl <LODl <LODl 
Cu (mg kg-1) <LODl <LODl <LODl <LODl <LODl <LODl <LODl <LODl <LODl 
Hg (mg kg-1) <LODl <LODl <LODl <LODl <LODl <LODl <LODl <LODl <LODl 
Mo(mg kg-1) <LODl <LODl <LODl <LODl <LODl <LODl <LODl <LODl <LODl 
Se (mg kg-1) <LODl <LODl <LODl <LODl <LODl <LODl <LODl <LODl <LODl 

l<LOD = below the limits of detection. 708 
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Table 4 Physical and chemical characterisation of the bauxite residues, untreated and treated.  709 
 710 

Parameter Untreated 
Fine (UF) 

Fine 
+gypsum 
(UFG) 

Fine+ 
seawater 
(UFS) 

Untreated 
Coarse (UC) 

Coarse+ 
gypsum 
(UCG)  

Coarse 
+seawater 
(UCS) 

Untreated  
French (UFR) 

French+ 
gypsum 
(UFRG) 

French 
+seawater 
(UFRS) 

          
pH 10.8±0.12   8.7±0.04   9.02±0.07 11.4±0.29 6.79±0.08 7.95±0.16  11.9±0.06   9.17±0.02   9.49±0.01 
EC (µS cm-1)  704±90.8  1338±3.5 3080±17.3 856±1.53 909±2 916±1.53 1184±48.8 1219±7.21 5323±172 
% Water   23.5±0.65  28.9±0.6 32.1±1.72 0.39±0.2 0.82±0.18 3.13±0.72  28±0.54  35.3±1.32  36.5±0.16 
d10 (µm)a 

d50 (µm)b 

d90 (µm)c 

 0.6±0.09 
2.43±0.29 
6.02±0.86 

1.37±0.23 
3.56±0.59 
7.12±1.98 

1.26±0.06 
3.52±0.11 
7.69±1.97 

1.27±0.47 
5.13±0.63 
12.04±1.27 

1.11±0.23 
3.69±0.49 
9.51±0.25 

1.66±0.83 
3.68±0.4 
7.0±0.13 

1.3±0.04 
3.7±0.12 
10.11±2.37 

1.49±0.06 
4.11±0.39 
9.81±2.68 

1.08±0.74 
3.47±0.98 
7.17±3.25 

Total Pore 
Space (%)d 

 
50.03±2.25 

 
50.73±9.04 

 
50.03±1.75 

 
9.63±6.46 

 
10.82±1.09 

 
7.65±5.26 

 
61.77±1.16 

 
53.6±1.95 

 
53.87±0.78 

Bulk Density 
(g cm-3)e 

 1.5±0.02 1.5±0.01 1.49±0.01 2.53±0.01 2.48±0.03 2.55±0.01  1.31±0.03 1.32±0.03 1.31±0.02 

Particle Size 
Density (g cm-

3)f 

 2.99±0.1  3.11±0.5  2.94±0.12 2.81±0.21 2.65±0.4 2.7±0.14  3.41±0.07  2.85±0.08  2.85±0.07 

PZCpHg 6.96±1.21 3.43±0.73 6.28±0.98 6.89±0.09 3.11±0.12 6.39±0.51 6.16±0.21 6.32±0.51 4.43±0.09 
CEC (K)(cmol 
kg-1)h 

 
63.3±2.56 

 
64.1±3.41 

 
60.1±2.96 

 
N/Ak 

 
N/Ak 

 
N/Ak 

 
57.5±2.13 

 
56.4±3.49 

 
48.9±13.7 

Total Pore 
Volume (cm-3 
g-1)i 

0.03 
 

0.03 
 

0.03 
 

0.02 
 

0.02 
 

0.03 
 

0.03 
 

0.04 
 

0.03 
 

BET SSA (m2 

g-1)j 
11.73 12.77 13.82 

 
12.58 
 

13.19 
 

15.37 15.24 
 

17.57 
 

17.57 
 

ad10 (µm) = the size of particles at 10% of the total particle distribution, expressed in µm.	 711 
bd50 (µm) = the median; the size of particles at 50% of the total particle distribution, expressed in µm.  712 
cd90 (µm) = the size of particles at 90% of the total particle distribution, expressed in µm. 713 
dTotal Pore Space = the total pore space which may be calculated from particle density and bulk density. 714 
eBulk density = the mass of soil per unit volume, expressed as g cm-3. 715 
fParticle size density = the density of the solid particles, excluding pore spaces between them, expressed as g cm-3. 716 
gPZCpH = the pH at which the point of zero charge is occurring. 717 
hCEC= the cation exchange capacity, expressed as cmol kg-1. 718 
iBET SSA = specific surface area analysed using Brunauer-Emmett-Teller isotherm and expressed as m2 g-1. 719 
jTotal Pore Volume = measurement of total pore volume expressed as cm-3 g-1.    720 
kN/A =not available 721 
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Table 5 Maximum adsorbency (mg P g-1 media) of P using each of the bauxite residue samples, 722 

untreated and treated (level of fit of the data, R2, to Langmuir isotherm is included in brackets).  723 

 724 

Media  Treatment method employed 

 Untreated Gypsum Seawater 

 ----------------------------- mg P g-1 media -----------------------------

- 

UFR 1 (0.99) 2.73 (0.99) 1.92 (0.99) 

UF 0.38 (0.99) 2.46 (0.97) 0.48 (0.99) 

UC 0.35(0.98) 1.39 (0.99) 0.66 (0.99) 

 725 

  726 

 727 

 728 

 729 

 730 

 731 

 732 

 733 

 734 

 735 

 736 

 737 

 738 

 739 

 740 
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Figure 1. SEM (10kV; magnification x2,000; working distance 16.8mm) imaging for the three untreated bauxite residue pre and post treatment with either 

gypsum or seawater. 

 741 


