

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-03-20T11:28:07Z

Some rights reserved. For more information, please see the item record link above.

Title Process Mediation Based on Triple Space Computing

Author(s) Zhou, ZhangBing; Sapkota, Brahmananda; Cimpian, Emilia;
Foxvog, Doug; Vasiliu, Laurentiu; Hauswirth, Manfred

Publication
Date 2008

Publication
Information

ZhangBing Zhou, Brahmananda Sapkota, Emilia Cimpian,
Doug Foxvog, Laurentiu Vasiliu, Manfred Hauswirth, Peng Yu
"Process Mediation Based on Triple Space Computing",
Proceedings of the 10th Asia Pacific Web Conference (APWeb
2008), 2008(4976), Springer, 2008.

Publisher Springer

Link to
publisher's

version
http://dx.doi.org/10.1007/978-3-540-78849-2_67

Item record http://hdl.handle.net/10379/686

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Process Mediation Based on Triple Space Computing

Zhangbing Zhou ¹, Brahmananda Sapkota ¹, Emilia Cimpian ²,
Doug Foxvog ¹, Laurentiu Vasiliu ¹, Manfred Hauswirth ¹ and Peng Yu ³

¹ DERI, National University of Ireland at Galway, Ireland

{zhangbing.zhou, brahmananda.sapkota, doug.foxvog,
laurentiu.vasiliu, manfred.hauswirth}@deri.org

² STI International, University of Innsbruck, Austria
emilia.cimpian@deri.org

³ College of Computer Science and Technology, Jilin University, China
yupeng79@gmail.com

Abstract. Web services are inherently heterogeneous at both data and
behavioral levels because of the nature of the Web, which is the main obstacle
to the usability of Web services. The heterogeneity at a behavioral level is
generally addressed by process mediation, in which the message flow is
adjusted to suit the behavior of Web services involved in a given interaction. In
this paper, we present a novel approach for process mediation, and propose an
architectural for process mediation based on Triple Space Computing to solve
resolvable message sequence mismatches. These resolvable mismatches can be
classified into five classes for unveiling their essence. This work provides a
basis for the generalization of mismatches themselves, as well as a potentially
uniform solution to address these mismatches.

1 Introduction

Web services act as computational entities and the main pillar for Service-Oriented
Architecture, and aim at supporting interoperable machine-to-machine interactions
over the Web. Because of inherent autonomy and heterogeneity, Web services are
heterogeneous at both data and behavioral levels. In general, the messages are often
different in format and granularity, and public processes [9] are often diverse in
activities and messages in terms of form and sequence. Data heterogeneities can be
mitigated with the help of data mediation [1], while process mediation [12] aims at
aligning different interaction patterns by adjusting bi-directional flows of messages.
Process mediation is very valuable for complex service interactions in which several
Web services may involve. However, process mediation is optional for RPC-style
service interactions, where there is only a single request-response message exchange.

Based on the message exchange patterns specified for a Web service, called as the
public process, process mediation aims at resolving message sequence mismatches for:
(1) service discovery and selection: to ensure that discovered and/or selected Web
services are behaviorally compatible [15] with a given goal. A functional aspect is
currently the focus for service discovery and selection. Process mediation would be

used for identifying whether a goal and the services are compatible from a behavioral
aspect, (2) service composition: process mediation would guarantee that there are only
resolvable behavioral mismatches [12] among a goal and Web services, and (3)
service execution: process mediation would instruct the exchange of messages among
Web services, and thus smooth the interaction.

In this paper, we propose a novel approach of process mediation for dealing with
message sequence mismatches. We apply our method to WSMO1 based Web services.
However, our method is general and can be applied to other semantic Web services
(SWSs) models like OWL-S2 at ease. A public process can be described by these
SWSs conceptual models. In addition, we propose an architecture for process
mediation based on Triple Space Computing (TSC) [8]. Potential solutions are
presented for resolvable mismatches. Furthermore, we classify these mismatches into
five classes. The main contributions of this paper are four-fold: (1) a novel approach
of process mediation for dealing with behavioral mismatches, (2) an architecture for
process mediation based on TSC, (3) potential solutions for resolvable message
sequence mismatches, and (4) five classes for these resolvable mismatches.

The rest of the paper is organized as follows: In Section 2, we give an introduction
to WSMO and TSC. In Section 3, we propose our TSC-based architecture for process
mediation. In Section 4, we present potential solutions for resolvable message
sequence mismatches and categorize them into five classes. In Section 5, we discuss
related works. In Section 6, we conclude this paper and indicate our future work.

2 Background

Due to the space limitation, we give a brief introduction to WSMO in Section 2.1 and
Triple Space Computing in Section 2.2.

2.1 WSMO

WSMO is one of the major SWSs conceptual models initiated by the Web Service
Modeling Ontology working group3 of the ESSI cluster4. WSMO defines four major
components: ontology, Web services, goal, and mediator, following the framework
proposed in WSMF [9]. Web services and goals have a common component: an
interface, which specifies how their functionality can be achieved though a two-fold
view of operational competence: choreography [10] and orchestration [14].

Choreography describes the behavioral interface of Web services by which a client
can consume its functionality [3]. This means that it presents an interface from a
user’s point of view. A user can be a person, an application, or another Web service.

Orchestration defines the behavioral interface of a Web service for achieving its
functionality by aggregating other Web services [18]. An orchestration could be

1 http://www.wsmo.org/TR/d2/v1.3/.
2 http://www.ai.sri.com/daml/services/owl-s/1.2/overview/.
3 http://www.wsmo.org/.
4 http://www.essi-cluster.org/.

regarded as a “composition” of several “sub-goals”. Each “sub-goal”, acting as a user,
consumes another Web service through its choreography. However, an orchestration
is optional if the functionality of a Web service could be achieved completely by its
choreography.

2.2 Triple Space Computing

TSC is a persistent communication and coordination paradigm for application and
service integration on the Web [21]. It is based on the convergence of Semantic Web
[22] and tuple-space computing [7] technologies. TSC acts as a globally accessible,
Web-scaled and space-like middleware to enable so-called Web paradigm:
information is persistently written to a globally shared space where other processes
can smoothly access it without starting a cascade of message exchanges [8]. Triple
Spaces introduce an infrastructure that enables machines to use an equally powerful
communication medium in the same way as the humans use the Web [21]. The main
advantages that TSC brings are four-fold: (1) time autonomy: the only time
dependency is that RDF triples must be written before they can be read, (2) location
autonomy: storage location provided by Triple Space is independent to that of the
provider or the requester, (3) reference autonomy: the provider and the requester do
not need to know each other and there is no explicit communication channel between
them. They exchange information by writing and reading RDF triples to and from a
Triple Space, and (4) data schema autonomy: data written to and read from a Triple
Space would follow TSC data schema, which follows RDF specification. This makes
the provider and the requester independent of their internal data schemas.

Besides the functionality of space-based computing, TSC offers more features such
as transaction support, distribution, and query using RDF format etc. For more
information about TSC, the reader can visit the web page of TripCOM Project5.

3 Process Mediation Integration with TSC

In this Section, we propose an approach of process mediation addressing behavioral
mismatches for WSMO-based Web services, and present a TSC-based architecture for
process mediation.

3.1 Process Mediation Framework

Process mediation bridges potential behavioral mismatches between a user and a Web
service chorography, or between a “sub-goal” of a Web service orchestration and the
choreography of another Web service. Data mediation is necessary to support process
mediation if the goal and the services are represented using different ontologies. In

5 http://tripcom.org/deliverables.php.

order to support this requirement, we propose a framework for process mediation as
shown in Figure 1. Process mediation would concentrate on behavioral compatibility
[5] between two partners since the majority of interactions are often related to two
partners, and an interaction involving multiple partners can often be decomposed into
several pair-wise interactions.

PM: Process Mediation
DM: Data Mediation

Web
Service

Implementa
tion

PM Choreo
graphy

DM

User

PM

PM

… DM

WS1

WSn

Orchest
ration

Fig. 1. Process Mediation Framework Based on WSMO

3.2 Architecture

TSC User

WS Chor
User
Data

WS
Data

PM

DM TSC: Triple Space Computing
WS Chor: Web Services Choreography
PM: Process Mediation
DM: Data mediation

Fig. 2. Integrating Process Mediation with Triple Space Computing

TSC-based process mediation architecture is presented in Figure 2. Data mediation
addresses potential data heterogeneity problems if a user and a Web service are
described by different ontologies. TSC brings machine-to-machine Web service
interaction to Web scale, and acts as a communication middleware between a user and
a Web service (actually the choreography of Web services). There is a virtual data
space within TSC for a given interaction, which includes two sub-spaces: one for the
user and another for the Web service. Data would follow TSC data schema. The user
and the Web service send requests to and retrieve responses from TSC. They do not
communicate directly. Based on data stored in TSC, process mediation could handle
possible behavioral mismatches between the user and the Web service.

Typically, Web service interactions are based on the message exchange paradigm,
and often need to establish synchronous and stateful conversations. Therefore, they
require a strong coupling in terms of reference and time [16]. However, these strong

couplings do not exist in our architecture. The major advantages that TSC brings for
service interactions are:

Backend storage: TSC provides a global, Web-scale space middleware for service
interaction as well as process mediation. All data to be exchanged in an interaction is
available in a shared virtual data space.

Asynchrony: TSC acts as a message broker between Web services. Therefore, Web
services do not need to know each other explicitly, and communication channels
between Web services are unnecessary [6].

Without loss of generality, we assume that the messages exchanged between Web
services in a given interaction are asynchronous because synchronous can always be
translated into a pair of asynchronous request-response calls [17]. There are three
kinds of possible response for a request: data message to provide the information
requested, acknowledgement (ACK) to indicate that a message sent was received by
the receiver and the message is syntactically correct. An ACK does not suggest that
the message is semantically valid. Or negative acknowledgement (NAK) to indicate
that the data received is invalid in syntax.

State archiving for Web service interactions: TSC allows the storing of the history of
the interactions, which is a flow of messages to and from TSC. This provides three
main advantages: (1) this enables the monitoring of communicating applications,
therefore helping in reuse of available Web services [6], (2) the archived messages
represent the observed behavior of Web services. Therefore, we can check whether
this observed behavior is consistent with the modeled behavior for a given Web
service, and (3) the archived messages represent the locale of a given interaction. If
the interaction fails for some reason, the interaction could resume from the point of
failure with a possible manual adjustment, but does not need to start again from
scratch. This is critical for long-running or non-repeatable interactions.

Semantic autonomy: TSC data model acts as intermediate model for the partners
involving in a given interaction. They do not need to agree on a common data
representation. Therefore, data mediation is not mandatory.

4 Behavioral Mismatches and Potential Solutions

A Web service interaction, especially that of complex Web services, often requires a
flow of messages exchanged among the partner(s), and needs to maintain a state
internally [2]. There may be some mismatches between the exchanged messages if the
interaction is not perfect-match. Perfect-match means that the partners have exactly
the same pattern to realize their public processes, and thus the messages sent by one
partner are exactly the same in terms of order and granularity as requested by its
corresponding partner [12]. In this case, only data mediation would be used to address
possible data heterogeneity problems.

In this context, the mismatches could be classified into two categories: irresolvable
message sequence mismatches (Section 4.1) and resolvable message sequence
mismatches [12] (Section 4.2 and 4.3).

4.1 Irresolvable Message Sequence Mismatches

Irresolvable message sequence mismatches means that these mismatches cannot be
handled automatically. As stated in [12], the following two scenarios are presented as
irresolvable message sequence mismatches: (1) one partner wants to receive a
message that the other does not want to send, thus the interaction fails because of
lacking a required message, and (2) one partner expects an ACK for a certain message,
but the other does not want to receive this message. Process mediation cannot
generate such an ACK. Otherwise the entire communication is changed.

These types of mismatches, as stated in [9], could only be resolved by either of the
following two solutions: (1) to change the interface definition for the goal and/or the
Web service to avoid mismatches, or (2) to operate manually (such as skipping the
activity that causes a fault) to bypass the failure.

However, Web service interface is often not allowed to be changed arbitrarily, and
it is inappropriate to allow unexpected human interventions during service executions.
This indicates that it is inappropriate that irresolvable mismatches exist in the public
processes, and irresolvable mismatches are out of the scope process mediation.

4.2 Resolvable Mismatches and Potential Solutions

The left side of Figure 3 presents five scenarios for resolvable message sequence
mismatches taken from [12]. These five scenarios are atomic mismatches, and
complex mismatches can be built recursively by applying these five atomic ones. The
right side presents corresponding data transformation in TSC data space. Process
mediation has a priori knowledge of ontologies used by the business partners. Below
we introduce these mismatch scenarios and their potential solutions:

Scenario A: suppose that BP1 sends messages “a” and “b” to BP2, but only “b” is
expected by BP2. Process mediation should retain and store “a” for possible later use.
Potential Solution: “a” and “b” are sent to TSC and stored in the sub-space for BP1.
Based on BP2’s ontology, process mediation knows that only “b” is expected, process
mediation adds or updates data instance for “b” in the sub-space of BP2.

Scenario B: suppose that BP1 sends messages “a” and then “b” to BP2, while BP2
expects to receive “b” and then “a”. Process mediation reverses the ordering of these
two messages.
Potential Solution: “a” and “b” are sent to TSC and stored in the sub-space of BP1.
Based on the ontology of BP2, process mediation knows that both “a” and “b” are
expected by BP2, and process mediation adds or updates data instances for both “a”
and “b” in the sub-space of BP2.

Scenario C: suppose that BP1 sends both “a” and “b” in a single message to BP2,
while BP2 expects to receive “a” and “b” separately. According to BP2’s request,
process mediation should split this single message from BP1.
Potential Solution: There are two kinds of possible reasons for this mismatch:
- BP1 and BP2 use different ontologies: (“a” + “b”) is modeled by one concept in the
ontology of BP1, while “a” and “b” are modeled by different concepts in the ontology
of BP2.

- The ontologies of BP1 and BP2 are the same for “a” and “b”: one concept for “a”
and another concept for “b”. But the messages are coded in different granularities.
The granularity of a message indicates the number of the concepts implied by the data
instances in this message. The less the number of concepts in a message, the finer the
message is. In Scenario C, the messages of BP2 are finer than that of BP1, because
the message of BP1: (“a” + “b”) implies two concepts, while the messages of BP2:
“a” and “b” imply only one concept.

Data mediation knows the mapping for BP1 (“a” + “b”) to BP2 (“a”) and BP2
(“b”). Process mediation adds or updates data instances for “a” and “b” in the sub-
space of BP2.

PM
BP1

a

b b

a

b a

b

(a+b)
or

(b+a) b

a

b

a

a a
Scenario E

ACK

BP{1 or 2}: business partner 1 & 2
a, b: messages exchanged between the partners

PM

PM

PM

PM

(a+b)
or

(b+a)

a
b b

BP1 BP2
Scenario A

a
b a

b

Scenario B

Scenario C

(a and b) b
a

Scenario D

(a and b)a
b

a a

BP1 BP2

BP1 BP2

BP1 BP2

BP1 BP2

Mismatch Scenario Data in TSC

BP1

BP1

BP1

BP1

BP2

BP2

BP2

BP2

BP2

Fig. 3. Resolvable Message Sequence Mismatches

Scenario D: suppose that BP1 sends two messages “a” and “b” to BP2, while BP2
expects to receive them in one single message. Process mediation should combine two
messages from BP1 into one message for BP2.
Potential Solution: This is the reverse case of Scenario C, and could be solved in the
similar way as presented in Scenario C.

Scenario E: suppose that BP1 sends a message “a” to BP2 and expects an ACK for
“a”. If “a” is expected by BP2, and BP2 is not willing to send an ACK back, process
mediation should generate this ACK and send it back to BP1.

Potential Solution: “a” is sent to TSC and stored in the sub-space for BP1. Process
mediation knows that “a” is expected by BP2, so it updates the sub-space of BP2 for
“a” and generate an ACK for BP1. If “a” is either wrong in format or invalid in syntax,
a NAK is returned. Process mediation has the knowledge of message formats for both
BP1 and BP2.

4.3 Discussion

In this section, we analyze these resolvable mismatches shown in Figure 3. They can
be categorized into five classes:

Class One: Extraneous data. Scenario A in Figure 3 is a good example of this class:
one partner provides more data than what its partner wants to receive. However, this
is only applicable to asynchronous communication. If the interaction is synchronous,
this falls into irresolvable mismatches. An example is illustrated in Figure 4, which is
synchronous counterpart of Scenario A:

BP1 expects a response for “a”. “a” is not expected by BP2, which means that BP2
has not a priori knowledge about “a”, and is uncertain whether “a” is necessary or not.
If process mediation generates an ACK (or NAK) to BP1 for “a”, ACK (or NAK)
indicates that “a” is expected by BP2 (while NAK indicates that “a” is expected by
BP2, but “a” is not correct in terms of format or syntax). Obviously, ACK (or NAK)
conveys a misleading indication to BP1 and changes the interaction. Therefore, the
process mediation could not generate and send an ACK (or NAK) back to BP1, and
this is a scenario of irresolvable mismatches.

Fig. 4. Synchronous Communication for Extraneous Data

Class Two: Interaction with synchronous and asynchronous communication.
Scenario E in Figure 3 falls into this class, which means that one partner is
synchronous while the other is asynchronous. Based on the discussion in Class One, it
is clear that Class Two is resolvable only if the data sent is expected by the receiver.

Class Three: Data heterogeneity. Scenarios C and D in Figure 3 fall into this class,
which means that the partners use different ontologies, and some mismatches exist
between these ontologies. Data mediation aims at supporting process mediation for
solving these data heterogeneity problems.

Class Four: Message granularity heterogeneity. Scenarios C and D in Figure 3
belong to this class. This means that the ontologies used by the partners are similar,
but the messages of different partners are of different granularity. Process mediation

aims at solving this message granularity heterogeneity by combining or splitting the
messages.

Class Five: Unnecessary message sequence dependencies. Scenarios B and D in
Figure 3 fall into this class. Message sequence dependency means the ordering of the
messages. The necessary message sequence dependency means that message ordering
should be held during execution phases. We further explain this by Scenario B in
Figure 3. Firstly, we rename message “a” sending as MsgA, while message “b”
sending as MsgB. The purpose of messages renaming is to indicate that this concept
applies to both incoming and outgoing messages. Necessary message sequence
dependency of MsgA and MsgB indicates that: MsgA should be sent or received
before MsgB, while MsgB should not be sent or received before MsgA.

Based on Scenario B, Figure 5 gives an example for unnecessary message
sequence dependency, and shows that an unnecessary dependency can be removed. In
scenario B, BP1 is willing to send “a” and then “b”. However, BP1 could reverse the
sequence by sending “b” and then “a”. The changed sequence has no impact to the
behavior of BP1 because “b” does not depend on “a”. It is the same for messages “b”
and “a” in BP2.

a

b a

bPM
BP1 BP2

Scenario B

PM
BP1 BP2

Scenario B1

a,
b

a,
b

Fig. 5. Unnecessary Message Sequence Dependency

Based on this observation, we remove the sequence between “a” and “b” as
presented in Scenario B1. The behavior specified by Scenario B1 is the same as that
of Scenario B, while the message sequence mismatch in Scenario B disappears in
Scenario B1. Scenario B1 is actually an example of perfect-match.

a

b a

b a

b

PM PM
BP1 BP1BP2 BP2

(a+b)
or

(b+a)

Scenario B2

c c c

c

Scenario D2
Fig. 6. Necessary Message Sequence Dependency

Figure 6 presents examples for necessary message sequence dependency in
Scenario B2 and D2, which are based on Scenario B and D in Figure 3 with some
change. These mismatches are irresolvable.

Scenario B2: BP1 is willing to send “a” then wait for “c”, and after that send “b”. “c”
may be the response of “a”, therefore the content of “c” may depend on the content of

“a”. The same is for “c” and “b”. Consequently, the sequence of “a”, “c” and “b” is
necessary and cannot be changed. Similar for BP2 that the sequences among “b”, “c”
and “a” are necessary and need to preserve. A failure occurs during this interaction
because BP1 waits for “c” while BP2 waits for “b”. Process mediation cannot
generate “c” for BP1, as well as “b” for BP2.

Scenario D2: BP1 wants to send “a” then wait for “c”, after that send “b”. Based on
the analysis of Scenario B2, the sequences among “a”, “c” and “b” are necessary and
cannot be changed. The same for BP2 that the sequence between (“a+b”) or (“b+a”)
and “c” is necessary and should be preserved. The interaction between BP1 and BP2
fails because BP1 waits for “c” while BP2 waits for (“a+b”) or (“b+a”).

5 Related Works

The requirement of process mediation for supporting complex Web service
interactions has been widely accepted as an important research topic. In [11], the
authors present the scope of process mediation, list resolvable message sequence
mismatches, propose an approach to integrate process mediation as a component into
WSMX [19], and specify the interaction mode of process mediation with other
components. In addition, they argue that process mediation would be used to support
service invocation [13]. This work has been used in DIP project6. This work is a
starting point of process mediation in WSMX. This paper benefits much from this
work, especially message sequence mismatches in Section 4. However, the proposed
approach is simple and suits the simplest workflow pattern: sequence, but would fail
for complex ones such as choice or loop [20]. The work does not mention the
importance of process mediation for complex service interactions, in which process
mediation needs to support service discovery and selection to guarantee that the goal
and the services are behaviorally compatible.

An adapter-based approach is proposed in [4] intending to semi-automatically
resolve Web service differences at interface and business protocol levels. Possible
differences between Web services are identified and captured by mismatch patterns.
A pattern includes a business logic template, and can be used as a type of mismatch
addressed by an adapter. However, mismatch patterns at the interface level are
actually data heterogeneity problems covered by data mediation. Mismatch patterns at
the business protocol level are the same as our resolvable mismatches listed in Figure
3. This work aims to formalize Web service protocols and interface/protocol
mismatch patterns, and thus to provide a high-level framework as well as a uniform
mechanism to address these mismatches.

In [23], the authors present the purpose of a process mediator within WSMX,
which is a message broker among the partners. Process mediator needs to decide
which data belongs to which partner(s) based on choreography and ontology of the
partner(s). This work extends process mediation to multi-lateral interactions, and
focuses on message forwarding among the partners. However, this data distribution

6 http://dip.semanticweb.org/deliverables.html.

among the partners is actually, only a part of task that should be addressed by process
mediation.

6 Conclusion and Future Works

Process mediation is a complex task and important for complex service interactions in
which behavioral heterogeneity problems may exist in public processes. We argue
that process mediation would aim at pair-wise interactions only. We propose a
process mediation architecture based on TSC, and present potential solutions for
resolvable message sequence mismatches. In addition, we categorize these resolvable
mismatch scenarios into five classes. This analysis generalizes the resolvable message
sequence mismatches, provides the basis for checking Web service compatibility from
the behavioral aspect, and offers an opportunity to have a uniform solution to address
these mismatches.

Process mediation in the context of SWSs is still in its infancy [11]. The related
work is based on the exchanged messages, which represent a part of service behavior.
It is a common sense that two public processes, which are locally compatible, do not
necessarily mean that they are globally compatible. In the future, process mediation
needs to consider compatible [5] on the public process level, and to check whether the
mismatches are resolvable. Transitional support is another direction for ensuring the
integrity of the interaction and the recovery in case of failure. Also, we aim to
implement this proposal for evaluating it against the real data sets taken from the real-
life use cases.

Acknowledgments. The work presented in this paper was supported (in part) by the
EU funded TripCom Specific Targeted Research Project under Grant No. FP6-
027324, and (in part) by the Lion project supported by Science Foundation Ireland
under Grant No. SFI/02/CE1/I131.

References

1. Mocan, A., Cimpian, E. and de Bruijn, J.: D13.3v0.3 WSMX Data Mediation WSMX
Working Draft 11. Available at http://www.wsmo.org/TR/d13/d13.3/v0.3/. (2005).

2. Wombacher, A.: Decentralized Consistency Checking in Cross-organizational Workflows
E-Commerce Technology. In Proc. of the 8th IEEE International Conference on and
Enterprise Computing, E-Commerce, and E-Services (2006).

3. Norton, B., Pedrinaci, C., Lemcke, J., Kleiner, M., Henocque, L. and Vulcu, G.: DIP
Delivery: D3.9 An ontology for web services choreography and orchestration V3. Available
at http://dip.semanticweb.org/deliverables.html. (2006).

4. Benatallah, B., Casati, F., Grigori, D., Nezhad, H.R.M. and Toumani, F.: Developing
Adapters for Web Services Integration. In Proc. of Int'l Conf. Advanced Information System
Eng. (CAISE '05), Porto, Portugal (2005).

5. Benatallah, B., Casati, F. and Toumani, F.: Representing, analysing and managing web
service protocols. Data & Knowledge Engineering 58: (2006), 327-357.

6. Sapkota, B., Kilgarriff, E. and Bussler, C.: Role of Triple Space Computing in Semantic
Web Services. In Proc. of the 8th Asia Pacific Web Conf (APWEB '06), (2006).

7. Gelernter, D.: Generative Communication in Linda. ACM Transactions on Programming
Languages and Systems 7: (1985), 80-112.

8. Fensel, D.: Triple-space computing: Semantic Web Services based on persistent publication
of information. In Proc. of IFIP Int'l Conf. on Intelligence in Communication Systems
(2004).

9. Fensel, D. and Bussler, C.: The Web Service Modeling Framework WSMF Electronic
Commerce Research and Applications. Page (2002), 113-137.

10. Roman, D., Scicluna, J., Nitzsche, J., Fensel, D., Polleres, A., de Bruijn, J. and Heymans, S.:
D14v0.4. Ontology-based Choreography. WSMO Working Draft 15. Available at
http://www.wsmo.org/TR/d14/v0.4/. (2007).

11. Cimpian, E. and Mocan, A.: WSMX Process Mediation Based on Choreographies In Proc.
of the 1st International Workshop on Web Service Choreography and Orchestration for
Business Process Management at the BPM 2005, Nancy, France. (2005).

12. Cimpian, E., Mocan, A. and Scicluna, J.: D13.7 v0.2 Process Mediation in WSMX WSMX
Working Draft. Available at http://www.wsmo.org/TR/d13/d13.7/v0.2/. (2005).

13. Cimpian, E., Mocan, A. and Stollberg, M.: Mediation Enabled Semantic Web Services
Usage. In Proc. of the 1st Asian Semantic Web Conference (ASWC '06), (2006).

14. Haas, H. and Brown, A.: Web Services Glossary W3C Working Group, Available at
http://www.w3.org/TR/ws-gloss/. (2004).

15. Bordeaux, L., Salaün, G., Berardi, D. and Mecella, M.: When are Two Web Services
Compatible? In Technologies for E-Services, 5th International Workshop (TES '04).
Springer Berlin / Heidelberg, Toronto, Canada. (2004).

16.Nixon, L.J.B., Bontas, E.P. and Scicluna, J.: D2.4.8.1: Technical and ontological
infrastructure for Triple Space Computing. Delivery of Knowledge Web project. Available
at: http://knowledgeweb.semanticweb.org/semanticportal/sewView/frames.jsp. (2006).

17. Pistore, M., Traverso, P. and Bertoli, P.: Automated Composition of Web Services by
Planning in Asynchronous Domains. In Proc. of the 15th Interational Conferece on
Automated Planning and Scheduling (ICAPS '05), Monterey, California. (2005).

18. Stollberg, M.: Reasoning Tasks and Mediation on Choreography and Orchestration in
WSMO. In Proc. of the 2nd International WSMO Implementation Workshop (WIW '05).
Innsbruck, Austria. (2005).

19. Zaremba, M., Moran, M., Haselwanter, T., Lee, H.K. and Han, S.K.: D13.4v0.3. WSMX
Architecture WSMX. Available at http://www.wsmo.org/TR/d13/d13.4/v0.3/. (2005).

20. Russell, N., ter Hofstede, A.H.M., van der Aalst, W.M.P. and Mulyar, N.: Workflow
Control-Flow Patterns: A Revised View. BPM Center Report BPM-06-22, BPMcenter.org
(2006).

21. Krummenacher, R., Hepp, M., Polleres, A., Bussler, C. and Fensel, D.: WWW or What is
Wrong with Web Services. In Proc. of 3rd European Conf. on Web Services (ECOWS '05)
(2005).

22. Berbers-Lee, T., Hendler, J. and Lassila, O.: The semantic web. Scientific America 284:
(2001) 34–43.

23. Haselwanter, T., Kotinurmi, P., Moran, M., Vitvar, T. and Zaremba, M.: WSMX: A
Semantic Service Oriented Middleware for B2B Integration. In proc. of the 4th International
Conference on Service Oriented Computing (ICSOC '06), Chicago, USA (2006).

